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a b s t r a c t

In the real world, projects are subject to numerous uncertainties at different levels of planning. Fuzzy

project scheduling is one of the approaches that deal with uncertainties in project scheduling problem.

In this paper, we provide a new technique that keeps uncertainty at all steps of the modelling

and solving procedure by considering a fuzzy modelling of the workload inspired from the fuzzy/

possibilistic approach. Based on this modelling, two project scheduling techniques, Resource Con-

strained Scheduling and Resource Leveling, are considered and generalized to handle fuzzy parameters.

We refer to these problems as the Fuzzy Resource Constrained Project Scheduling Problem (FRCPSP)

and the Fuzzy Resource Leveling Problem (FRLP). A Greedy Algorithm and a Genetic Algorithm are

provided to solve FRCPSP and FRLP respectively, and are applied to civil helicopter maintenance within

the framework of a French industrial project called Helimaintenance.

1. Introduction

A project is informally defined as a unique undertaking,

composed of a set of precedence related tasks that have to be

executed using diverse and mostly limited company resources.

Project scheduling consists of deciding when tasks should be

started and finished, and how many resources should be allocated

to them (Creemers et al., 2008). Project scheduling respecting

precedence and resource constraints is a research problem which

is generally known to be NP-Hard. Many uncertainties can affect

the project scheduling problem and hence increase its complexity

(Bidot, 2005). These uncertainties can be grouped into three sub-

sets; uncertainties in tasks, uncertainties in resources and temporal

uncertainties (Elkhayari, 2003).

Among the applications that are considered by this study, we

cite the civil helicopter heavy maintenance activity. This activity

is almost carried out by an external maintenance center called

Maintenance Repair and Overhaul (MRO) center that maintains a

multi-customers relation. Each customer’s helicopter is viewed as

a unique project with its release and due date that should be

respected. The presence of uncertainties is the major issue of the

maintenance activity. How to deal with these uncertainties at the

operational level of planning is studied in this paper. A quite

similar problem exists in heavy maintenance of (other) complex

systems e.g. trains and boats (De-Boer, 1998).

To deal with uncertainties in project scheduling, Herroelen and

Leus (2005) distinguish between five main approaches: reactive

scheduling, stochastic project scheduling, stochastic project net-

works, fuzzy project scheduling and proactive/robust scheduling.

Particularly, the fuzzy project scheduling, based on the assumption

that task durations rely on human estimations, is used when theory

of probabilities is not compatible with the decision-making situation

because of the lack of historical data (Pierre et al., 2004; Herroelen

and Leus, 2005), which is the case for helicopter maintenance activity

(Masmoudi and Haı̈t, 2010) (see Section 2.2).

Resource availability is one of the important constraints to

take into account to obtain feasible scheduling. Thus, two major

techniques; resource constrained scheduling (RCS) and resource

leveling (RL) are employed (Kim et al., 2005a). As far as we know,

in fuzzy scheduling literature, dates and durations are considered

fuzzy, but deterministic workload plans are provided (Hapke and

Slowinski, 1996; Leu et al., 1999). In this paper, we deal with

fuzzy project scheduling problems and provide a fuzzy solution

with a fuzzy workload. A new approach is provided based on the

idea to keep uncertainty in all calculations at each step. Firstly, we

exploit the fuzzy/possibilistic approach to model a new concept

that we call fuzzy workload. Secondly, based on this modelling

concept, two techniques RCS and RL are generalized to handle

fuzzy parameters. Finally, these techniques are supported by

adapted Genetic Algorithm and Greedy Algorithm, respectively.

This paper is organized as follows. Section 2 recalls the state of the

art for project scheduling problem under uncertainty and defines the
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specific problem to address. In Section 3, we recall some basics of

fuzzy sets modelling and possibilistic approach. Section 4 describes a

newmodelling approach to deal with resource management problem

in fuzzy area. Sections 5 and 6 contain a generalization of two

algorithms to uncertain data: Greedy and Genetic Algorithms. In

Section 7, these two algorithms are applied to instances from civil

helicopters maintenance activity. Section 8 is a conclusion of

the work.

2. Project scheduling under uncertainty

2.1. State of the art

To deal with uncertainties in project scheduling issues, both

fuzzy sets and probabilities are considered in the literature (Hillier,

2002; Herroelen and Leus, 2005). The literature on project stochastic

scheduling is rather sparse (Subhash et al., 2010) and most of the

efforts concentrate on the Stochastic Resource Constrained Project

Scheduling Problem (Herroelen and Leus, 2005). Since the early 90s,

fuzzy logic has become a very promising mathematical approach to

model uncertainty and imprecision in manufacturing problems

(Wong and Lai, 2011) and scheduling problems (Slowinski and

Hapke, 2000). Below, how the precedence and resource issues

within fuzzy project scheduling are treated in the literature.

To deal with precedence constraint, Program Evaluation and

Review Technique (PERT) and Critical Path Method (CPM) are

considered. They are based on two successive steps; a forward

propagation to determine the earliest starting and finishing dates

(and consequently the project duration and the free floats) and a

backward propagation for the latest starting and finishing dates (and

the total floats). The majority of the research on the fuzzy project

scheduling topic has been devoted to fuzzy PERT and CPM techni-

ques (Chanas et al., 2002; Guiffrida and Nagi, 1998; Zareei et al.,

2011). In the fuzzy case, forward propagation is done using fuzzy

arithmetic, leading to fuzzy earliest dates and a fuzzy end-of-project

event. Unfortunately, backward propagation is no longer applicable

because uncertainty would be taken into account twice. Dubois et al.

(2003) show that the boundaries of uncertain parameters like the

tasks’ latest dates and floats are reached in extreme configurations.

Fortin et al. (2005) justify the problem complexity and propose

some algorithms to calculate the tasks’ latest dates and floats while

uncertainties are represented by intervals.

To deal with resources in operational level of planning, RCS and

RL techniques are considered. The study of fuzzy scheduling has

been initiated in Hapke et al. (1994) and Hapke and Slowinski

(1996). Many techniques particularly the serial and the parallel

scheduling schemes (Hapke and Slowinski, 1996), and the resource

levelling technique (Leu et al., 1999) were generalized to handle

fuzzy parameters. To decide the feasibility of a project schedule, the

workload plan is established and compared to the available capacity.

In the literature, the majority of authors who work with fuzzy sets in

scheduling problems transform the fuzzy scheduling into crisp

scheduling by applying either alpha-cuts (see Section 4) or a

defuzzification technique. Thus, they generate deterministic work-

load plans (Hapke and Slowinski, 1996; Leu et al., 1999). On the

other hand, Masmoudi and Haı̈t (2011a,b) use the possibility theory

to define a new concept of fuzzy workload plan in operational level

of planning. This original idea is developed in detail in this paper and

applied to a real multi-project environment such as the civil

helicopter maintenance activity which is described below.

2.2. Helicopter maintenance scheduling problem

Almost the totality of research in helicopter maintenance field are

carried out in the military domain. To the best of our knowledge,

only few works have been published on civil helicopter maintenance

(Glade, 2005; Djeridi, 2010), and none on scheduling heavy inspec-

tions. Addressing civil customers involves a great heterogeneity of

helicopters. Indeed, the average number of helicopters by civil owner

is between two and three, and the conditions of use can radically

vary from one customer to another (sea, sand, mountain, etc.). On the

contrary, in the military domain, there are important homogeneous

fleets, and the missions for which the helicopters are assigned are

quite similar. Moreover, the management process in Civil MROs is

different from the process in military MROs. In fact, in the military

domain, the helicopters maintenance is managed respecting planned

and expected missions (Sgaslink, 1994). This is similar to the

maintenance of machines in production industry that is managed

respecting the orders due dates (Nakajima, 1989). On the contrary, in

the civil domain, heavy maintenance is carried out by an external

maintenance center that is not concerned by the exploitation, but

maintains a highly multi-customers relation, and considers each

customer’s helicopter as a unique project with its release and due

date that should be respected. The application of global optimization

approaches, as can be found in the military domain for important

homogeneous fleets and one single customer (Hahn and Newman,

2008), is not necessarily pertinent for civil helicopter maintenance.

The helicopter maintenance visits contain planned mainte-

nance tasks and also corrective maintenance tasks since several

failures are discovered during the helicopters inspections. Pre-

cedence constraints exist between the tasks, due to technical or

accessibility considerations. Hence helicopter maintenance visits

may be seen as projects involving various resources as operators,

equipment and spare parts. Minimizing the helicopters immobi-

lization gives a competitive advantage to the company. Conse-

quently, the management of a maintenance center is viewed as

multi-project management, where every project duration should

be minimized while respecting capacity constraints.

Managing helicopter maintenance activity is a complex task as

it is affected by high uncertainties (Masmoudi and Haı̈t, 2010)

that should be taken into account when dealing with scheduling

optimization. We can identify three main sources of uncertainty:

� Tasks durations: differ according to skills level of assigned

operator. It differs also from one helicopter to another accord-

ing to the compactness, state, and mission use. Tasks starting

dates are consequently uncertain.

� Maintenance program updates: manufacturers and authorities

send regularly new documents (Service Bulletin, Airworthiness

Directives, etc.) to add, eliminate or modify some tasks from

the maintenance program document.

� Absence of operators: the unexpected lack of resources causes

the delay of several tasks and hence some tasks’ durations are

increased.

According to our knowledge, dealing with uncertainties is a

main issue of civil helicopter maintenance scheduling problem

that has never been studied in the literature. Considering the non-

repetitive aspect of the problem (each helicopter has its own

history, the customers are numerous and the conditions of use are

highly different), the difficulty to predict the exploitation or

establish statistics on corrective tasks or tasks’ durations and

the very limited available data, we propose a fuzzy set modelling

for tasks’ dates and durations, and hence a possibilistic approach

instead of stochastic approach.

3. Fuzzy/possibilistic approach

3.1. Fuzzy set modelling

An ensemblist representation can be either a simple interval or

a more complex and complete form as triangular or trapezoidal



fuzzy profile (Fig. 1). A fuzzy model has the advantage to be

supported by the possibility theory (see Section 3.2) for decision

making.

Zadeh (1965) has defined a fuzzy set ~A, whose boundaries are

gradual rather than abrupt, as a subset of a referential set X. The

membership function m ~A of a fuzzy set assigns to each element

xAX its degree of membership m ~A ðxÞ taking values in (0,1].

To generalize some operations from classical logic to fuzzy

sets, Zadeh has shown that it was possible to represent a fuzzy

profile by an infinite family of intervals called a-cuts. Hence, the
fuzzy profile ~A can be defined as a set of intervals Aa ¼ ½Aamin,

Aamax� ¼ fxAX=m ~A ðxÞZag with aAð0,1� (Fig. 1). It becomes conse-

quently easy to use classical interval arithmetics and adapt it to

fuzzy profiles. Dubois and Prade (1988) and Chen and Hwang

(1992) have defined mathematical operations that can be per-

formed on trapezoidal fuzzy sets. Let ~AðaA,bA,cA,dAÞ and ~BðaB,bB,

cB,dBÞ be two trapezoidal fuzzy numbers, then:

~A � ~B ¼ ðaAþaB,bAþbB,cAþcB,dAþdBÞ ð1Þ

~A 	 ~B ¼ ðaAÿdB,bAÿcB,cAÿbB,dAÿaBÞ ð2Þ

minð ~A, ~BÞ ¼ ðminðaA,aBÞ,minðbA,bBÞ,minðcA,cBÞ,minðdA,dBÞÞ ð3Þ

maxð ~A, ~BÞ ¼ ðmaxðaA,aBÞ,maxðbA,bBÞ,maxðcA,cBÞ,maxðdA,dBÞÞ ð4Þ

~A [ ~B ¼max
xAX

ðm ~A ðxÞ,m ~B ðxÞÞ ð5Þ

~A \ ~B ¼min
xAX

ðm ~A ðxÞ,m ~B ðxÞÞ ð6Þ

a ~A ¼
ðaaA,abA,acA,adAÞ if a40

ðadA,acA,abA,aaAÞ if ao0

(

ð7Þ

Other operations like multiplication and division have also

been studied. For more details on fuzzy arithmetics, one can refer

to Dubois and Prade (1988).

3.2. Possibility theory

To cope with decision making on fuzzy area, Zadeh (1978) has

developed the concept of possibility, based on fuzzy subsets.

Possibility theory introduces both possibilitymeasure (denotedP)

and necessitymeasure (denoted N), in order to express plausibility

and certainty of events.

Let t be a variable in the fuzzy interval ~A and t be a real value.

To measure the truth of the event trt, equivalent to tAðÿ1; t�,

we need the couple PðtrtÞ and NðtrtÞ representing the fact

that trt is respectively possibly true and necessarily true (Fig. 2).

Thus:

PðtrtÞ ¼ sup
ur t

m ~A ðuÞ ¼ m
½ ~A;þ1Þ

ðtÞ ¼ sup
u

minðm ~A ðuÞ,mðÿ1;t�ðuÞÞ ð8Þ

NðtrtÞ ¼ 1ÿsup
u4 t

m ~A ðuÞ ¼ m
� ~A ;þ1Þ

ðtÞ ¼ inf
u
maxð1ÿm ~A ðuÞ,mðÿ1;t�ðuÞÞ

ð9Þ

Consequently, let t and s be two variables in fuzzy intervals ~A

and ~B respectively, and t a real value. To measure the truth of the

event ‘‘t between t and s’’ we need bothPðtrtrsÞ andNðtrt rsÞ
(Fig. 3). Thus:

PðtrtrsÞ ¼ m
½ ~A ; ~B �ðtÞ ¼ m

½ ~A ;þ1Þ\ðÿ1; ~B �ðtÞ ¼minðm
½ ~A ;þ1Þ

ðtÞ,mðÿ1; ~B �ðtÞÞ

ð10Þ

NðtrtrsÞ ¼ m
� ~A; ~B ½ðtÞ ¼ m

� ~A;þ1Þ\ðÿ1; ~B ½ðtÞ ¼minðm
� ~A;þ1Þ

ðtÞ,mðÿ1; ~B ½ðtÞÞ

ð11Þ

The expressions (10) and (11) will be considered in Section 4

to define the necessity and possibility of a task to be present

between its starting and finishing times. This will permit to

deduce the new concept of fuzzy workload.

4. Fuzzy task presence and fuzzy workload

The project dates and durations are represented by trapezoidal

fuzzy numbers. Let ~SðaS,bS,cS,dSÞ be the fuzzy starting time of a

task T, and ~Dðw,x,y,zÞ its duration. Let ~F ðaF ,bF ,cF ,dF Þ be its finishing

time with ~F ¼ ~Sþ ~D. Let C be the number of operators assigned to

the task T. Once starting and finishing times of all tasks are

defined, several deterministic resource workload plans are estab-

lished by applying alpha-cuts (Fig. 4).

In this section, we provide a new technique to deal with fuzzy

resource-constrained task scheduling. Instead of applying alpha-

cuts on a fuzzy Gantt to get deterministic resource plans, both

Gantt and workload plan are considered fuzzy.

Inspired from (10) and (11), we can define � ~S; ~F ½ (resp. ½ ~S; ~F �), the

domain where the task T presence is necessarily (resp. possibly)

true. They represent the truth of the event ‘‘t between the starting

and finishing times of T’’. Associated membership functions, m
� ~S ; ~F ½ðtÞ

and m
½ ~S ; ~F �ðtÞ, are respectively denoted N(t) and PðtÞ.

Fig. 1. Trapezoidal fuzzy set.

Fig. 2. Possibility and necessity of trt with tA ~A .

Fig. 3. Possibility and necessity of t being between ~A and ~B .



We can distinguish three different configurations depending

on the intersection degree between fuzzy starting and finishing

times: a configuration without overlap ðdSraF Þ, a configuration

with small overlap (dS4aF and cSrbF) and a configuration with

large overlap ðcS4bF Þ.

Task presence distributions are used to build task resource

usage profiles in a way that keeps track of uncertainty on starting

and finishing times. Hence, the profile reflects the whole possible

time interval while giving a plausible repartition of workload

according to the duration parameter value. To this aim, the resource

usage profiles are defined as projections onto the workload space of

the task presence distributions. Each configuration of starting and

finishing times is studied separately within two (symmetric and

non-symmetric) distributions of the workload, used in the schedul-

ing optimization algorithms (Fig. 5).

4.1. Configuration without overlap

In the configuration without overlap between the starting time
~S and the finishing time ~F (Fig. 6), we can identify the following

intervals of possibility and necessity:

½dS; aF � : P¼ 1 N¼ 1

½cS; dS� and ½aF ; bF � : P¼ 1 NZ0

½bS; cS� and ½bF ; cF � : P¼ 1 N¼ 0

½aS; bS� and ½cF ; dF � : PZ0 N¼ 0

½0; aS� and ½dF ; þ1½: P¼ 0 N¼ 0

Then we characterize the probability of task T presence as a

distribution P(t) situated between the possibility and the neces-

sity profiles: NðtÞrPðtÞrPðtÞ. We propose a parametric piece-

wise linear distribution to represent the probability of the

presence of task (dashed lines in Fig. 6).

Both symmetric and non-symmetric distributions are considered

and will be used to establish resource requirement. The symmetric

distribution is a particular case, and thus the non-symmetric dis-

tribution which is the general one is represented by a compound

function depending on different intervals of possibility and

necessity:

PðtÞ ¼

ll
bSÿaS

ðtÿaSÞ if tA ½aS; bS�

ll if tA ½bS; cS�

1

dSÿcS
ðð1ÿllÞtþlldSÿcSÞ if tA ½cS; dS�

1 if tA ½dS; aF �

1

bFÿaF
ððlrÿ1ÞtþbFÿlraF Þ if tA ½aF ; bF �

lr if tA ½bF ; cF �

ÿlr
dFÿcF

ðtÿdF Þ if tA ½cF ; dF �

0 otherwise

8

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

:

ð12Þ

where parameters ll and lr , varying from 0 to 1, make profile P(t)

evolve from N(t) ðll ¼ lr ¼ 0Þ to PðtÞ ðll ¼ lr ¼ 1Þ.

Suppose that the resource requirement of the task is r.

Resource workload then lies in ½r �w,r � z�, according to the task

duration. Fig. 7b presents the resource profiles LN(t) and LPðtÞ,

projections of the necessity and possibility presence distributions.

We define the ‘‘equivalent durations’’ DN and DP of the areas

covered by resource profiles LN(t) and LPðtÞ:

r � DN ¼

Z þ1

0
LNðtÞ dt ¼ rðbFÿcSþaFÿdSÞ=2 ð13Þ

r � DP ¼

Z þ1

0
LPðtÞ dt ¼ rðdFÿaSþcFÿbSÞ=2 ð14Þ

In case of symmetric distribution, the link between task

duration D and profile parameter l is given by the following

formula that expresses the equivalence of resource requirement:

r � D¼

Z þ1

0
r � PnðtÞ dt¼

Z þ1

0
ðl � LPðtÞþð1ÿlÞLNðtÞÞ dt

¼ l � r � DPþð1ÿlÞr � DN

Fig. 4. Alpha-cuts and deterministic workloads.

Fig. 5. Different configurations: with and without overlap.

Fig. 6. Presence of a task: no overlap configuration. (a) General distribution: non-symmetric. (b) Particular distribution: symmetric.



¼ l � rðdFÿaSþcFÿbSÞ=2þð1ÿlÞrðbFÿcSþaFÿdSÞ=2 ð15Þ

In general case where distribution is non-symmetric, the link

between the task duration and the profile is as follows:

r � ¼ r � ll
dSÿbS

2
þ

cSÿaS
2

� �

þr � lr
cFÿaF

2
þ

dFÿbF
2

� �

þr �
aFÿdS

2
þ

bFÿcS
2

� �

ð16Þ

In case of symmetric distribution, if DN and DP do not match

with task extreme durations w and z, i.e. DNow or zoDP, then

the profiles must be modified so that resource workload belongs

to ½r �w,r � z�. The extreme workloads are defined within a mini-

mal or maximal values of l, denoted respectively lmin and lmax.

Hence, the range of l is reduced from ½0,1� to ½lmin,lmax� such as

If DNow, lmin ¼ ðwÿDNÞ=ðDPÿDNÞ

If zoDP, lmax ¼ ðzÿDNÞ=ðDPÿDNÞ

Fig. 8 shows an example of restricted extreme profiles.

Let us consider the particular case of task with a fuzzy

duration, and deterministic starting time (aS ¼ bS ¼ cS ¼ dS ¼ s,

Fig. 9a). If we choose D¼z, then there is only one possible position

for the task, between s and dF. So the resource chart is fixed,

rectangular shaped. One can remark that in this case, the projec-

tion LPðtÞ of the probability distribution is not able to represent

the resource consumption: even with l¼ 1, the resource work-

load would be underestimated (Fig. 9b). Indeed, the surface of

profile LPðtÞ is r � ðcFÿsþdFÿsÞ=2¼ r � ðyþzÞ=2, lower than r � z.

For any duration D so that ðyþzÞ=2oDrz, the area of resource

profile LPðtÞ is too small to represent the resource workload. To

cope this problem, we modify the resource profile: in place of points

ðs,s,cF ,dF Þ, the new profile is defined by the points ðs,s,c0F ,dF Þ, where

c0F ¼ cFþmaxð0,2DÿzÿyÞ. Hence, while Dr ðyþzÞ=2, the initial

profile is used and lr1, then the new profile is used. When D¼z,

the rectangular profile is attained. A similar modification can be

done for the minimal duration, when the area of the projected

necessity distribution is greater than r �w.

These modifications can be generalized to the case with fuzzy

times and duration. Then the profiles, if needed, are modified on

both sides. The extended maximal profile, defined by ðaS,b
0
S,c

0
F ,dF Þ,

is used when DPoDrz. Values b0S and c0F are

b0S ¼ bSÿ2ðDÿDPÞ
bSÿaS

bSÿaSþdFÿcF
ð17Þ

c0F ¼ cFþ2ðDÿDPÞ
dFÿcF

bSÿaSþdFÿcF
ð18Þ

The reduced minimal profile, defined by ðc0S,dS,aF ,b
0
F Þ, is used

when wrDoDN . Values c0S and b0F are

c0S ¼ cSþ2ðDNÿDÞ
dSÿcS

dSÿcSþbFÿaF
ð19Þ

b0F ¼ bFÿ2ðDNÿDÞ
bFÿaF

dSÿcSþbFÿaF
ð20Þ

Fig. 10 shows an example of modified extreme profiles.

4.2. Configuration with small overlap

For the small overlap configuration (as in the previous config-

uration), the general distribution is also represented by a compound

Fig. 7. Configuration without overlap: presence distributions (a) and resource

profiles (b).

Fig. 8. Resource profiles: restriction to lmin and lmax in order to match with

extreme workloads.

Fig. 9. Case of a deterministic starting time: presence distributions and maximal

resource profile.

Fig. 10. Resource profiles: extension of maximal profile and reduction of minimal

profile in order to match extreme workloads r �w and r � z.



function (dashed line in Fig. 11):

pðtÞ ¼

ll
bSÿaS

ðtÿaSÞ if tA ½aS; bS�

ll if tA ½bS; cS�

1

dSÿcS
ðð1ÿllÞtþlldSÿcSÞ if tA ½cS;a�

1

bFÿaF
ððlrÿ1ÞtþbFÿlraF Þ if tA ½a; bF �

lr if tA ½bF ; cF �

ÿlr
dFÿcF

ðtÿdF Þ if tA ½cF ; dF �

0 otherwise:
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ð21Þ

where the higher point ða,bÞ is calculated as follows:

a¼
ðbFÿaF ÞðlldSÿcSÞþðdSÿcSÞðlraFÿbF Þ

ðbFÿaF Þðllÿ1ÞþðdSÿcSÞðlrÿ1Þ
ð22Þ

b¼
ðbFÿlraF Þðllÿ1ÞþðlldSÿcSÞðlrÿ1Þ

ðbFÿaF Þðllÿ1ÞþðdSÿcSÞðlrÿ1Þ
ð23Þ

And particularly while ll ¼ lr ¼ l:

a¼ a0 ¼
ds � bfÿaf � cs

ðbfÿcsÞþðdsÿaf Þ
ð24Þ

b¼
ðbfÿcsÞþlðdsÿaf Þ

ðbfÿcsÞþðdsÿaf Þ
ð25Þ

The b value varies in a range ½b0,1� and the a value varies in a

range ½aF ,dS� along with parameters l or ll and lr .

The areas of the projected necessity and possibility distribu-

tions are

r � DN ¼

Z þ1

0
r � NðtÞ dt¼ r � b0

bFÿcS
2

¼ r
ðbFÿcSÞ

2

2ðdSÿaFþbFÿcSÞ
ð26Þ

r � DP ¼

Z þ1

0
r �PðtÞ dt¼ r � ðdFÿaSþcFÿbSÞ=2 ð27Þ

If r � DN is lower than the minimal workload r �w (respectively,

r � DP greater than the maximal workload r � z) we use the

projection of the presence probability distribution and determine

lmin (respectively, lmax). Given D so that DNoDoDP,

r � D¼

Z þ1

0
r � PlðtÞ dt¼ l � r � DPþð1ÿlÞr � DN

In general case where distribution is non-symmetric, the link

between the task duration and the profile is given by the following

formula:

r � D¼

Z þ1

0
r � pðtÞ dt

¼ r � ll
cSþa

2
ÿ
aSþbS

2

� �

þr � lr
dFþcF

2
ÿ
aþbF
2

� �

þr � b
bFÿcS

2

� �

ð28Þ

In case of symmetric distribution, when DNow, lmin ¼

ðwÿDNÞ=ðDPÿDNÞ and when DP4z, lmax ¼ ðzÿDNÞ=ðDPÿDNÞ.

The extended maximal profile, defined by ðaS,b
0
S,c

0
F ,dF Þ, is used

when DPoDrz. It is the same extended profile as the one of no

overlap configurations.

The reduced minimal profile, defined by ðc0S,dS,aF ,b
0
F Þ, is used

when wrDoDN . Values c0S and b0F are

c0S ¼ y � cSþð1ÿyÞdS ð29Þ

b0F ¼ y � bFþð1ÿyÞaF ð30Þ

where y¼ ð1ÿb0Þ=ð1ÿb
0
Þ and

b0
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2D2þ2ðdSÿaF Þr � D

q

ÿr � D

dSÿaF
ð31Þ

4.3. Configuration with large overlap

For the large overlap configuration (as in the previous config-

uration), the general distribution is also represented by a com-

pound function (Fig. 12):

pðtÞ ¼

ll
bSÿaS

ðtÿaSÞ if tA ½aS; bS�

ll if tA ½bS; bF �

1

bFÿcS
ððllÿlrÞtþlrbFÿllcSÞ if tA ½bF ; cS�

lr if tA ½cS; cF �

ÿlr
dFÿcF

ðtÿdF Þ if tA ½cF ; dF �

0 otherwise

8
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>

>

>
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>

:

ð32Þ

The necessity presence distribution is NðtÞ ¼ 0 8t. The areas of

the projected necessity and possibility distributions are

r � DN ¼

Z þ1

0
r � NðtÞ dt¼ 0 ð33Þ

Fig. 11. Presence of a task: small overlap configuration. (a) Non-symmetric and (b) symmetric

Fig. 12. Presence of a task: large overlap configuration. (a) Non-symmetric and (b) symmetric.



r � DP ¼

Z þ1

0
r �PðtÞ dt¼ r � ðdFÿaSþcFÿbSÞ=2 ð34Þ

If the minimal workload r �w is greater than zero (respectively,

r � DP greater than the maximal workload r � z) we use the

projection of the presence probability distribution and determine

lmin (respectively, lmax). Given D so that 0oDoDP,

r � D¼

Z þ1

0
r � PlðtÞ dt¼ l � r � DP

In general case where distribution is non-symmetric, the

link between the task duration and the profile is given by the

following formula:

r � D¼

Z þ1

0
r � pðtÞ dt¼ r � ll

cSþbF
2

ÿ
aSþbS

2

� �

þr � lr
dFþcF

2
ÿ
cSþbF

2

� �

ð35Þ

In case of symmetric distribution, when w40, lmin ¼w=DP

and when DP4z, lmax ¼ z=DP.

The extended maximal profile, defined by ðaS,b
0
S,c

0
F ,dF Þ, is used

when DPoDrz. It is the same extended profile as the one of no

overlap configurations. The minimal profile is never reduced.

In this section we studied the resource workload for a fuzzy

task and provided symmetric and non-symmetric fuzzy distribu-

tion for the three possible configurations depending on the degree

of intersection between the starting and finishing times. These

modelling approaches will be used later to solve fuzzy scheduling

problems.

5. Greedy algorithm for fuzzy resource constrained

scheduling

The Schedule Generation Schemes (SGS) are the core of many

heuristics for the RCPSP. The so-called Serial SGS performs activity

incrementation and the Parallel SGS performs time incrementation

(Kolish and Hartmann, 1999). In both procedures, tasks are ranked

in some order and scheduled according to resource availabilities.

Hapke and Slowinski (1996) have proposed a parallel scheduling

procedure for fuzzy projects based on fuzzy priority rules and fuzzy

time incrementation. However, resources are considered scarce and

deterministic workload plans are deduced within alpha-cuts appli-

cation on a fuzzy Gantt chart as shown in Fig. 4. The Parallel SGS

that we propose in this section mainly differs from the latter on the

resource availability test.

Before going in detail through the new fuzzy Parallel SGS, the

following subsection is dedicated to explain how to deal with

complex configuration while fuzzy resource and fuzzy precedence

constraints are both considered, and the consequent subsection

will show a list of adapted priority rules to the context of fuzzy

multi-project scheduling problem.

5.1. Precedence and resource constrained tasks

When considering a precedence constraint between two tasks,

their workload profiles may not overlap because the constraint

expresses the fact that the two tasks cannot be performed

simultaneously.

Let us consider two tasks A and B so that A precedes B. Their

resource consumptions are denoted rA and rB. We assume that the

starting time of B is equal to the finishing time of A (e.g. in case of

forward earliest times calculation). This means that between the

starting time of A and the finishing time of B, an activity will occur

successively induced by A then B. So between the necessity peaks

of A and B, we can affirm that an activity will necessarily occur,

induced by A or B. This necessary presence of A or B is projected

onto the resource load space using the minimal resource require-

ment minðrA,rBÞ, associated to pseudo-task A3B starting at ~SA and

finishing at ~FB (Fig. 14). The projected necessity and possibility

load profiles of the sequence A-B are defined as follows:

LNðA-BÞðtÞ ¼maxðrA � NAðtÞ,rB � NBðtÞ,minðrA,rBÞ � NA3BðtÞÞ ð36Þ

LPðA-BÞðtÞ ¼maxðrA �PAðtÞ,rB �PBðtÞÞ ð37Þ

The probability workload profile is more complex to define. A

constructive way can be provided; firstly the distribution of A is

defined and then the distribution of B is deduced respecting

resources and precedence constraints. Let us consider A without

predecessors. Hence, we can assign to A its symmetric distribu-

tion while llA ¼ lrA ¼ lA. For B we apply the following checks in

Fig. 13: where DB is the duration of B, f is a function deduced from

(16), (28), and (35), and lB is the parameter value of task B

distribution while considering l
l
B ¼ l

r
B.

Once probabilistic distributions of A and B are defined respect-

ing resource and precedence constraints, the sum of the two

distributions corresponds to the total probabilistic workload:

LPðA-BÞðtÞ ¼ rA � PAðtÞþrB � PBðtÞ ð38Þ

Fig. 14 shows the workload while rA¼2, and rB¼1. The integration

of these profiles considering updates made by the aforementioned

formula gives the total workload.

5.2. Fuzzy priority rules

Priority heuristics using crisp or fuzzy time parameters are

found efficient by many researchers either for one project or

multi-project scheduling (Kolish and Hartmann, 1999; Browning

and Yassine, 2010; Hapke and Slowinski, 1996). It is generally

useful to perform parallel scheduling with a set of rules instead

of one as the computational complexity is low (Hapke and

Slowinski, 1993). Some rules that appear to be good in minimiz-

ing Makespan are presented in Table 1.

The list is not exhaustive and many other interesting rules

could be used, like the Minimum Worst Case Slack (MINWCS), the

Fig. 13. Workload modelling for two directly successive tasks.

Fig. 14. Fuzzy continuous workload plan.



Minimum Total Work Content (MINTWC) and some dynamic and

combined rules presented in Browning and Yassine (2010).

5.3. Fuzzy parallel SGS

Let S (index j¼ 1: :S) be the set of tasks to be scheduled. Within

a loop, we calculate the distribution parameters of each task j (Hl
j

then Hr
j) task by task within a new Parallel SGS technique based

on the new fuzzy workload modelling provided in this paper. The

structure of the new fuzzy Parallel SGS in shown in Fig. 15, where:

Avð~tÞ is the set of tasks whose defuzzification values of ear-

liest starting times (set of Esj) are less than or equal to

the defuzzification value of ~t ðEsjrt,8jAAvð~tÞÞ.
~lð~tÞ is the least value among the earliest starting times of

tasks from Að~tÞ and the finishing times of tasks from Sð~tÞ.

Að~tÞ is the set of tasks that are not yet scheduled and whose

immediate predecessors have been completed by ~t .

Sð~tÞ is the set of tasks present in ~t; a task j is considered as

present in ~t when SjrtrF j (Sj and Fj are the defuzzi-

fications of starting and finishing times of j, respectively.

The considered defuzzification technique is the mean value

provided by Dubois and Prade (1987). Let t be the mean value of ~t ,

t¼ ðatþbtþctþdtÞ=4.

This fuzzy Parallel SGS structure is similar to the one provided

by Hapke and Slowinski (1996). However, there are two major

differences. First, the possibility to schedule a task is checked

according to the resource requirement and resource availability

which are deterministic in Hapke and Slowinski’s algorithm and

fuzzy in ours. Second, to generalize the Parallel SGS dynamic time

progression (Kolish and Hartmann, 1999) to fuzzy consideration,

Hapke and Slowinski (1996) consider weak and strong inequal-

ities to compare fuzzy times and make the adequate incrementa-

tion. In our approach, the same progression technique is

considered but, according to our fuzzy workload consideration,

an additional specific time progression technique is proposed

when at least one task is available for scheduling but not yet

scheduled because of resource availability issue.

We mention that the Parallel SGS algorithm is to be run as

much time as priority rules we have. Hence, we talk about multi-

priority rule method (Boctor, 1990). Other procedures based on

Parallel and Serial SGS and called multi-pass methods (Kolish and

Table 1

Priority rules giving good results in Makespan minimization.

Rule Name Formula

EST Early start timea minð ~E
s

j Þ

EFT Early finish timea minð ~E
f

j Þ

LST Late start timea,b,c minð ~L
s

j Þ

LFT Late finish timea,b,c minð ~L
f

j Þ

MINSLK Minimum slacka,b,c minð~f jÞ

MAXSLK Maximum slackc maxð~f jÞ

SPT Shortest processing timea,b,c minð ~p jÞ

LPT Longest processing timea,c minð ~p jÞ

LIS Least immediate successorsa minð9Sj9Þ
MIS Most immediate successorsa maxð9Sj9Þ
MTS Most total successorsb,c maxð9Sj 9Þ
GRD Greatest resource demanda

~pj
PK

k ¼ 1 rjk

SASP Shortest activity from shortest projectc minð ~p jlÞ

LALP Longest activity from longest projectc maxð ~p jlÞ

GRPW Greatest rank positional weighta,c maxð ~p jþ
P

iASj
~p iÞ

LRPW Least rank positional weighta minð ~p jþ
P

iA Sj
~p iÞ

Where ~p j: duration,
~f j: margin, rjk is the requirement for resource Rk.

~L
f

j : last finishing,
~E
f

j : earliest finishing.
~L
s

j : last starting,
~E
s

j : earliest starting.

Sj: direct successors, Sj : total successors.
a Used by Hapke and Slowinski (1996) for a fuzzy RCPSP.
b Used by Kolish and Hartmann (1999) for deterministic RCPSP.
c Used by Browning and Yassine (2010) for multi-projects RCPSP (RCMPSP).

Fig. 15. Fuzzy parallel SGS technique for resource leveling problem.



Hartmann, 1999) can be studied, but this is not the objective of

this paper.

6. GA for fuzzy resource leveling

Resource leveling, also called smoothing technique, aims at

completing projects respecting their due dates within a resource

usage that is levelled as possible throughout the total project

durations. Based on the result of the PERT/CPM technique, the

result of the resource leveling is a schedule respecting precedence

constraints. In this paper, a schedule will be defined by the tasks

starting times that are between the earliest and latest starting

times.

Many exact and heuristic techniques were developed to solve

resource leveling problems (Zhao et al., 2006; Easa, 1989). Since

1975, the Genetic Algorithm has proven its effectiveness for com-

plex problems like particularly the multi-projects and multi-objec-

tives scheduling problems (Kim et al., 2005b). A GA is a search

heuristic that follows the natural evolutionary process. The techni-

que of GA is quite known, thus to get more complete information

about it we refer readers to Goldberg (1989).

6.1. Genetic algorithm description

In multi-projects context, the Resource Leveling Problem can

be defined as a set of tasks with precedence constraints and

predetermined durations. A schedule is defined by a set of tasks

starting times. Let n be the total number of tasks, P be the number

of projects to schedule and nj be the number of tasks in project j

ðn¼
PP

j ¼ 1 njÞ. A schedule is defined by the set S¼ ðS11,S21, . . . ,

Sn11, . . . ,Sij, . . . ,S1P , . . . ,SnPPÞ where Sij is the starting time of the

task i from the project j.

The CPM technique is applied to a scheduling problem without

considering resources in order to define the lower and upper bounds

of each value Sij which are respectively the earliest starting time

(ESij) and the latest starting time (LSij) of the task i from the project j.

The objective L is to smooth resource utilization which can be

mathematically expressed as follows:

L : min
X

K

k ¼ 1

X

T

t ¼ 1

X

P

j ¼ 1

X

nj

i ¼ 1

rkijtÿrnk

2

4

3

5

2

ð39Þ

where:

L the resource leveling index that indicates the sum of

squared differences between period resource usage and

average resource usage

rkijt the partial resource k demand of the activity i from the

project j at the period of time t

D the projects duration

K the number of resource types

P the number projects

nj the number of tasks in project j

rnk average of resource k per period ðrnk ¼ ½
PT

t ¼ 1

PP
j ¼ 1

Pnj

i ¼ 1 rkit=DÞ

The issue of applying Genetic Algorithm is to select an appro-

priate form of the chromosome representation. In resource leveling

problem, the well-appropriate form is the one considering the task

starting times as decision variables being coded as genes values.

Thus, the sequence of the tasks in the chromosome corresponds to

the sequence of tasks project by project sorted by their Id number.

Each gene value is equal to a possible starting time of corresponding

task (Fig. 16). The starting time of each task Tij is chosen randomly in

its domain rate respecting precedence constraints.

The fitness function needed to evaluate chromosomes is the

resource leveling index L defined in (39). The adopted selection

technique is the roulette wheel method that we combine with

Elitist method (Goldberg, 1989) in order to improve selection

efficiency. Thus, the selection probability for a chromosome k is

proportional to the ratio f k=
Pnpop

j ¼ 1 f j, where fk is the fitness value

of the chromosome k and npop is the population size. According to

the Elitist method, the best chromosomes of the current genera-

tion are kept and preserved into the next generation.

The GA operators are uniform 1-point crossover and uniform

mutation. Table 2 presents an example of multi-projects that will

be considered afterward to show the different GA operators.

The crossover starts with randomly selecting a cut point and

parent’s chromosomes. The right parts of the chromosomes are

swapped and hence children are generated (Fig. 17).

Some children generated in this way do not satisfy precedence

constraints. To deal with this situation, a reparation technique is

applied (Fig. 18).

Let k be the one-cut-point value and task Tij the corresponding

task of gene k. All the gene values of the successors of k must be

checked to deal with precedence constraints. Hence, task kþ1 is

the first task to be checked if it is part of project j, otherwise no

repair is needed. The repairing formula is as follows:

Slj ¼max Slj, max
pApredðT ljÞ

ðSpjþDpjÞ

 !

8lA ½iþ1,n� ð40Þ

where:

predðT ljÞ the set of predecessors of task Tlj
Dpj the duration of the task Tpj

Fig. 16. Chromosome representation in multi-project resource leveling

Table 2

Small multi-projects example.

Task Duration Predecessors

T11 3 –

T12 1 –

T13 3 –

T21 2 T11
T22 6 T12
T23 3 T13
T31 3 T11
T32 2 –

T33 2 T13
T42 1 T22



The mutation consists of randomly replacing at least one gene

with a random value within the range of the corresponding task’s

starting time (Fig. 19).

Let k be a selected gene to mutate and task Tij its associated

task. The new value of the gene is chosen randomly between

the maximum finishing time of predecessor tasks ðmaxpApredðT ijÞ

ðSpjþDpjÞÞ and the minimum starting time of successor tasks

ðminpA succðT ijÞðSpjÞÞ minus Dij, duration of Tij.

6.2. GA generalization for fuzzy resource leveling

Resource Leveling technique for Fuzzy Scheduling Problem is

studied in some recent papers (Zhao et al., 2006; Leu et al., 1999)

where genetic algorithm is adapted to projects with fuzzy time

parameters. The idea in these papers is to make different a-cuts
on tasks’ durations to obtain pessimistic and optimistic scenarios

for each a-cut, and then apply deterministic Genetic Algorithm to

each scenario to find the corresponding best plan.

In this section, a new vision of fuzzy resource leveling is

provided. The Genetic Algorithm developed in Section 6.1 copes

well with deterministic multi-projects and multi-resources sche-

duling problems. To be generalized to handle fuzzy parameters,

some useful hypothesis and extensions are suggested, where the

main idea is to make just one couple of fuzzy Genetic Algorithm

instead of numerous deterministic ones.

A trapezoidal fuzzy number is numerically represented by four

deterministic values. Genetic algorithm becomes very heavy in

computation when considering four numbers for each fuzzy

decision variable. To deal with this problem only one value is

considered and then the encoding and decoding of each solution

(chromosome) is done according to the principle of linearity that

is explained below.

Let ~ES ij ¼ ½es1,es2,es3,es4� be the earliest starting time and
~LSij ¼ ½ls1,ls2,ls3,ls4� be the latest starting time of task Tij. To generate

a possible starting time ~Sij ¼ ½s1,s2,s3,s4�, we choose randomly a

value of s4 between es4 and ls4. Let b¼ ðs4ÿls4Þ=ðes4ÿls4Þ. Thus, ~S ij is

simply calculated according to the principle of linearity within

si ¼ besiþð1ÿbÞlsi 8iAf1,2,3,4g. In Fig. 20, four examples of possible

starting times are shown; ~ES with b¼ 1, ~S1 with b¼ 2=3, ~S2 with

b¼ 1=3 and ~LS with b¼ 0.

Some algorithms in Fortin et al. (2005) are provided to calculate

fuzzy latest starting times and fuzzy total floats. However, no

algorithms are provided in the same framework to calculate fuzzy

latest finishing times. As these parameters are necessary for our

Fig. 17. Uniform 1-point crossover.

Fig. 18. Reparation after crossover.

Fig. 19. Uniform mutation.



study, the following formula is provided to calculate them:

~LF ij ¼minð ~LSijþ ~D ij,minð ~LSsuccðijÞÞ,
~DdðjÞÞ ð41Þ

where:

~LF ij the fuzzy latest finishing time of task Tij
~Ddj the fuzzy due-date of the project j

As latest starting times are calculated within the consideration

of extreme configuration as explained in Dubois et al. (2003), the

value of ~LSijþ ~D ij can exceed the range domain of ~LF ij. In fact, the

duration ~D ij of task Tij is not necessarily totally in the range of the

extreme configurations provided by the forward propagation.

Thus, Eq. (41) provides meaningful computable results respecting

precedence constraints. Considering the same explanation, the

finishing time is calculated as follows:

~F ij ¼minð ~Sij þ ~D ij,
~LF ijÞ ð42Þ

Once starting and finishing times are calculated for each task,

fuzzy workload is established as explained in Section 4. Sym-

metric distributions are considered because tasks are not neces-

sarily critical i.e. task B is a successor of task A, but B does not start

exactly at the end of A. The concept of possible and necessary

criticality is explained in Chanas et al. (2002).

For each solution (chromosome), the corresponding fuzzy

fitness ~L is calculated as follows:

~L ¼min
X

K

k ¼ 1

X

T

t ¼ 1

X

P

j ¼ 1

X

nj

i ¼ 1

~rkijtÿ~rnk

2

4

3

5

2

ð43Þ

with ~rnk ¼ ½
PT

t ¼ 1

PP
j ¼ 1

Pnj

i ¼ 1
~rkit�= ~D

Many defuzzification techniques are provided in literature

(Fortemps, 1997; Dubois and Prade, 1987) to cope with fuzzy rules

particularly while using Genetic Algorithm (Sánchez et al., 2009).

We can consider the extreme durations w or z to get the corre-

sponding optimistic and pessimistic workload plans. Moreover, we

can convert the continuous workload plan into a periodic workload

plan, and apply the robustness functions defined in Masmoudi et al.

(2011c). In this paper, we solve the problem after applying the

defuzzification technique of Dubois and Prade (1987). ~D is always

projected to the maximum value of the projects duration.

Leu et al. (1999) consider a fuzzy profile to represent the

uncertain activity duration and employ also Genetic Algorithm and

fuzzy set theory to develop a resource leveling model under

uncertainty. However, they apply different alpha-cuts (called accep-

table risk levels) on all activity durations and keep for each alpha-

level the two deterministic problems corresponding to all lower

(optimistic) and all upper (pessimistic) bounds. Then, for each

deterministic problem, they apply deterministic CPM techniques

to get the margin of each activity and apply a deterministic

GA-based approach to solve the problem. Finally, for each alpha in

ð0,1� they get a solution for the two corresponding deterministic

(pessimistic and optimistic) problems. On the contrary, we apply a

generalization of the Pert technique per interval provided by Boctor

(1990) to fuzzy activities durations to get the fuzzy times. Then

based on the fuzzy modelling of resource usage provided in Section

4, we proposed a complete fuzzy Genetic Algorithm procedure to

generate only one fuzzy solution instead of multiple deterministic

solutions.

The two algorithms described in Sections 5 and 6 are basically

a generalization to fuzzy area of existing deterministic algorithms

such as the Parallel SGS of Kolish and Hartmann (1999) and the

Genetic Algorithm for RLP of Leu et al. (2000). In this paper, we

have added a layer of specific treatments to these algorithms to

support the new fuzzy modelling of resource workload provided

in Section 4. An application to helicopter maintenance projects is

presented in the next section.

7. Application to helicopter maintenance

Uncertainty affecting the scheduling problem in MROs can be

managed by a fuzzy set modelling of tasks’ dates and durations

based on expert knowledge. For the following, we adopt 4-point

trapezoidal number for each uncertain duration and consider

several checks to carry out on components from PUMA helicopter:

� Main rotor: The work is carried out by 1 expert during 35–70 h.

� Propeller: The work is carried out by 1 expert during 70–105 h.

� Hydraulic system: The work is carried out by 1–2 experts

during 18–35 h.

Each Component Check can be considered as a small project

containing several tasks subject to precedence constraints. The

MRO’s resources (technicians and equipments) are limited, and thus

will be shared by all projects. We consider that the technicians have

the necessary qualifications to inspect the different components.

Hence, the problem is to schedule small projects respecting both

precedence constraints and workshop resource constraints.

For each task j, we need to transform the work content pj into a

duration Dj based on 35-h working week and the number of

operators nj assigned to j: Dj ¼ pj=ð35nnj).

Table 3 contains the instance data on which we will apply our

algorithms. Fig. 21 shows the earliest workload plan without

consideration of resource constraints. Dealing with resources

consideration, additional decisions on MRO’s capacities limit

and Projects due dates will be specified before the application

of the Parallel SGS and the Genetic Algorithm, respectively. As

notified before, the defuzzification formula that we have consid-

ered is the mean average provided in Dubois and Prade (1987). By

applying other defuzzification functions, we get different results.

Finding the best defuzzification technique for our application

would be interesting, but, this is out of scope of our study.

For the resource scheduling, we consider the case where three

operators are available at one time, only one test bench, one non-

destructive testing equipment, and one cleaning machine exist in

the workshop. We apply the Parallel SGS with the consideration

of the aforementioned priority rules and the best result is

provided by the LPRW rule. Fig. 22 shows the result.

For the Genetic Algorithm, we considered the due date of the

three projects equal to 10 days. The values of the GA are chosen as

follows:

� npop: population size ðnpop ¼ 60Þ.

Fig. 20. Linearity.



� mn: the best candidates to keep ðmn ¼maxð2,npop=20ÞÞ.

� mk: number of candidate to crossover ðmk ¼ 2n roundð2n

ðnpopÿmnÞ=5ÞÞ.

� md: number of candidate to mutate ðd¼ roundð3n ðnpopÿ

mnÞ=5ÞÞ.

� gmut: number of genes to mutate by candidate ðgmut¼

minð2,roundðn=10ÞÞÞ.

� niter: number of iterations ðniter ¼ 14Þ.

� nstop: stop algorithm condition (with nstop ¼ 5, if the result is

the same for five successive iterations then stop algorithm).

Table 3

Real mechanical tasks from a PUMA HMV.

Part name Tasks Id Id Pred. Experts Equipments Duration (days)

Main rotor Put off muff 1 – 1 – [0.5, 0.7, 1, 1.5]

Put off bearings 2 1 1 – [1, 1.2, 1.4, 1.6]

Put off flexible components 3 – 1 – [0.1, 0.13, 0.17, 0.2]

Clean 4 2-3 1 Cleaning machine [1, 1.2, 1.4, 1.5]

Non-destructive test 5 4 1 Testing equipment [0.2, 0.3, 0.5, 0.6]

Assemble components 6 5 1 – [1, 1.2, 1.4, 1.5]

Check water-tightness 7 6 1 – [0.2, 0.3, 0.4, 0.5]

Touch up paint 8 7 1 – [0.1, 0.13, 0.17, 0.2]

Tight screws 9 8 1 – [0.3, 0.5, 0.6, 0.7]

Propeller Put off axial compressor 10 – 1 – [1.2, 1.5, 1.8, 2]

Put off centrifugal compressor 11 10 1 – [1.5, 1.6, 1.8, 2]

Purchase 12 10 0 – [0, 1, 2, 4]

Put off turbine 13 – 1 – [0.5, 0.7, 0.8, 1]

Clean 14 11–13 1 Cleaning machine [0.2, 0.4, 0.5, 0.6]

Non-destructive test 15 14 1 Testing equipment [0.2, 0.3, 0.4, 0.5]

Assemble components 16 12–15 1 – [2, 2.2, 2.8, 3.2]

Touch up paint 17 16 1 – [0.1, 0.13, 0.16, 0.2]

Tight screws 18 17 1 – [0.12, 0.17, 0.2, 0.3]

Test 19 18 1 Test Bench ½0:12,0:17,0:2,0:23�

Hydraulic system Evacuate oil 20 – 2 – [0.1, 0.13, 0.16, 0.2]

Put off servos 21 20 2 – [0.6, 0.7, 0.8, 1]

Clean 22 21 1 Cleaning machine [0.2, 0.3, 0.4, 0.6]

Non-destructive test 23 22 1 Testing equipment [0.2, 0.3, 0.4, 0.6]

Assemble then remove joints 24 23 2 – [0.8, 1, 1.2, 1.4]

Test 25 24 1 Test Bench [0.1, 0.13, 0.16, 0.2]

Tight screws 26 25 2 – [0.1, 0.13, 0.16, 0.2]
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Figs. 23 and 24 show the result and the convergence of the GA,

respectively.

8. Conclusion

In this paper, we have presented a fuzzy model for project

scheduling problems. A method to establish a resource workload is

proposed for both tactical and operational levels of planning.

Provided models are applied to the helicopter maintenance domain.

Based on these modelling approaches, some recent papers provide

a generalization of several scheduling heuristics to handle fuzzy

parameters; a Genetic Algorithm is generalized to solve Fuzzy

Resource Levelling problem (Masmoudi and Haı̈t, 2011b) and a

Parallel SGS is generalized to solve Fuzzy RCSPS problem (Masmoudi

and Haı̈t, 2011a). These two techniques can be applied simulta-

neously within a decisional loop handling projects due dates and

production capacity simultaneously i.e. we can increase/decrease a

project due date and apply resource leveling technique or increase/

decrease the production capacity and apply Resource scheduling

technique (Kim et al., 2005a). Future work will focus on applying

such technique and dealing with the complexity of different possible

fuzzy profiles (rectangular, triangular, exponential, etc.). The com-

parison of our fuzzy approaches (models and solving techniques) to

existing stochastic ones is under study. The afore developed fuzzy

techniques will be included into a Decisional Support System to

manage a Maintenance Repair and Overhaul center.
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