719 research outputs found

    A review of model based and data driven methods targeting hardware systems diagnostics

    Get PDF
    System health diagnosis serves as an underpinning enabler for enhanced safety and optimized maintenance tasks in complex assets. In the past four decades, a wide-range of diagnostic methods have been proposed, focusing either on system or component level. Currently, one of the most quickly emerging concepts within the diagnostic community is system level diagnostics. This approach targets in accurately detecting faults and suggesting to the maintainers a component to be replaced in order to restore the system to a healthy state. System level diagnostics is of great value to complex systems whose downtime due to faults is expensive. This paper aims to provide a comprehensive review of the most recent diagnostics approaches applied to hardware systems. The main objective of this paper is to introduce the concept of system level diagnostics and review and evaluate the collated approaches. In order to achieve this, a comprehensive review of the most recent diagnostic methods implemented for hardware systems or components is conducted, highlighting merits and shortfalls

    Static and dynamic fault tree analysis with application to hybrid vehicle systems and supply chains

    Get PDF
    One of the most challenging parts of reliability analysis is building a reliability model of the system. Reliability block diagram, Markov models, and fault tree analysis are some of the most common techniques for constructing a reliability model. Fault tree analysis provides a way to combine components, which together can cause system failure. This research uses both static and dynamic fault trees to quantify the reliability of a hybrid vehicle system and to analyze supply chain risk. The hybrid vehicle combines a mechanical power source, such as the internal combustion engine (gasoline engine or diesel engine), and an electric power source (electric motor) to take advantage of two power sources and compensate from each source. The hybrid system’s complexity and non-mature technology carry potential risks for the vehicle. This research uses a static fault tree to analyze the reliability of the 2004 Toyota Prius under different operational modes. We apply Bayesian analysis that combines survey data to estimate the reliability of the hybrid vehicle’s battery. Supply chain risk analysis is increasingly becoming an important field and supply chain risk models help identify significant risks that can occur and the consequences if those risks occur. We use dynamic fault trees, which are relatively new in reliability analysis, to understand the timing of potential failures in different types of supply chains. We estimate failure rates for each supply chain under different production scenarios and simulate delivery time for the supply chain

    Bayesian convolutional neural networks for RUL prognostics of solenoid valves with uncertainty estimations

    Get PDF
    Solenoid valves (SV) are essential components of industrial systems and therefore widely used. As they suffer from high failure rates in the field, fault prognosis of these assets plays a major role for improving their maintenance and reliability. In this work, Bayesian convolutional neural networks are used to predict the remaining useful life (RUL) of SVs, by training them on the valve's current signatures. Predictive performance is further improved upon by using salient physical features obtained from an electromechanical model as the network's training input. Results show that our designed network architecture produces well-calibrated uncertainty estimations of the RUL predictive distributions, which is an important concern in prognostic decision-making

    A failure probability assessment method for train derailments in railway yards based on IFFTA and NGBN

    Get PDF
    Derailment is one of the main hazards during train passes through railway turnouts (RTs) in classification yards. The complexity of the train-turnout system (TTS) and unfavorable operating conditions frequently cause freight wagons to derail at RTs. Secondary damages such as hazardous material spillage and train collisions can result in loss of life and property. Therefore, the primary goal is to assess the derailment risk and identify the root causes when trains pass through RTs in classification yards. To address this problem, this paper proposes a failure probability assessment approach that integrates intuitionistic fuzzy fault tree analysis (IFFTA) and Noisy or gate Bayesian network (NGBN) for quantifying the derailment risk at RTs. This method can handle the fact that the available information on the components of the TTS is imprecise, incomplete, and vague. The proposed methodology was tested through data analysis at Taiyuan North classification yard in China. The results demonstrate that the method can efficiently evaluate the derailment risk and identify key risk factors. To reduce the derailment risk at RTs and prevent secondary damage and injuries, measures such as optimizing turnout alignment, controlling impact between wagons, lubricating the rails, and regularly inspecting the turnout geometries can be implemented. By developing a risk-based model, this study connects theory with practice and provides insights that can help railway authorities better understand the impact of poor TTS conditions on train safety in classification yards

    Evolving Clustering Algorithms And Their Application For Condition Monitoring, Diagnostics, & Prognostics

    Get PDF
    Applications of Condition-Based Maintenance (CBM) technology requires effective yet generic data driven methods capable of carrying out diagnostics and prognostics tasks without detailed domain knowledge and human intervention. Improved system availability, operational safety, and enhanced logistics and supply chain performance could be achieved, with the widespread deployment of CBM, at a lower cost level. This dissertation focuses on the development of a Mutual Information based Recursive Gustafson-Kessel-Like (MIRGKL) clustering algorithm which operates recursively to identify underlying model structure and parameters from stream type data. Inspired by the Evolving Gustafson-Kessel-like Clustering (eGKL) algorithm, we applied the notion of mutual information to the well-known Mahalanobis distance as the governing similarity measure throughout. This is also a special case of the Kullback-Leibler (KL) Divergence where between-cluster shape information (governed by the determinant and trace of the covariance matrix) is omitted and is only applicable in the case of normally distributed data. In the cluster assignment and consolidation process, we proposed the use of the Chi-square statistic with the provision of having different probability thresholds. Due to the symmetry and boundedness property brought in by the mutual information formulation, we have shown with real-world data that the algorithm’s performance becomes less sensitive to the same range of probability thresholds which makes system tuning a simpler task in practice. As a result, improvement demonstrated by the proposed algorithm has implications in improving generic data driven methods for diagnostics, prognostics, generic function approximations and knowledge extractions for stream type of data. The work in this dissertation demonstrates MIRGKL’s effectiveness in clustering and knowledge representation and shows promising results in diagnostics and prognostics applications

    An Inference-based Prognostic Framework for Health Management of Automotive Systems

    Get PDF
    This paper presents a unified data-driven prognostic framework that combines failure time data, static parameter data and dynamic time-series data. The framework employs proportional hazards model and a soft dynamic multiple fault diagnosis algorithm for inferring the degraded state trajectories of components and to estimate their remaining useful life times. The framework takes into account the cross-subsystem fault propagation, a case prevalent in any networked and embedded system. The key idea is to use Cox proportional hazards model to estimate the survival functions of error codes and symptoms (probabilistic test outcomes/prognostic indicators) from failure time data and static parameter data, and use them to infer the survival functions of components via soft dynamic multiple fault diagnosis algorithm. The average remaining useful life and its higher-order central moments (e.g., variance, skewness, kurtosis) can be estimated from these component survival functions. The framework is demonstrated on datasets derived from two automotive systems, namely hybrid electric vehicle regenerative braking system, and an electronic throttle control subsystem simulator. Although the proposed framework is validated on automotive systems, it has the potential to be applicable to a wide variety of systems, ranging from aerospace systems to buildings to power grids

    Intelligent fault detection and classification based on hybrid deep learning methods for Hardware-in-the-Loop test of automotive software systems

    Get PDF
    Hardware-in-the-Loop (HIL) has been recommended by ISO 26262 as an essential test bench for determining the safety and reliability characteristics of automotive software systems (ASSs). However, due to the complexity and the huge amount of data recorded by the HIL platform during the testing process, the conventional data analysis methods used for detecting and classifying faults based on the human expert are not realizable. Therefore, the development of effective means based on the historical data set is required to analyze the records of the testing process in an efficient manner. Even though data-driven fault diagnosis is superior to other approaches, selecting the appropriate technique from the wide range of Deep Learning (DL) techniques is challenging. Moreover, the training data containing the automotive faults are rare and considered highly confidential by the automotive industry. Using hybrid DL techniques, this study proposes a novel intelligent fault detection and classification (FDC) model to be utilized during the V-cycle development process, i.e., the system integration testing phase. To this end, an HIL-based real-time fault injection framework is used to generate faulty data without altering the original system model. In addition, a combination of the Convolutional Neural Network (CNN) and Long Short-Term Memory (LSTM) is employed to build the model structure. In this study, eight types of sensor faults are considered to cover the most common potential faults in the signals of ASSs. As a case study, a gasoline engine system model is used to demonstrate the capabilities and advantages of the proposed method and to verify the performance of the model. The results prove that the proposed method shows better detection and classification performance compared to other standalone DL methods. Specifically, the overall detection accuracies of the proposed structure in terms of precision, recall and F1-score are 98.86%, 98.90% and 98.88%, respectively. For classification, the experimental results also demonstrate the superiority under unseen test data with an average accuracy of 98.8%

    Risk-Based Machine Learning Approaches for Probabilistic Transient Stability

    Get PDF
    Power systems are getting more complex than ever and are consequently operating close to their limit of stability. Moreover, with the increasing demand of renewable wind generation, and the requirement to maintain a secure power system, the importance of transient stability cannot be overestimated. Considering its significance in power system security, it is important to propose a different approach for enhancing the transient stability, considering uncertainties. Current deterministic industry practices of transient stability assessment ignore the probabilistic nature of variables (fault type, fault location, fault clearing time, etc.). These approaches typically provide a conservative criterion and can result in expensive expansion plans or conservative operating limits. With the increasing system uncertainties and widespread electricity market deregulation, there is a strong inevitability to incorporate probabilistic transient stability (PTS) analysis. Moreover, the time-domain simulation approach, for transient stability evaluation, involving differential-algebraic equations, can be very computationally intensive, especially for a large-scale system, and for online dynamic security assessment (DSA). The impact of wind penetration on transient stability is critical to investigate, as it does not possess the inherent inertia of synchronous generators. Thus, this research proposes risk-based, machine learning (ML) approaches, for PTS enhancement by replacing circuit breakers, including the impact of wind generation. Artificial Neural Network (ANN) was used for predicting the benefit-cost ratio (BCR) to reduce the computation effort. Moreover, both ANN and support vector machine (SVM) were used and consequently, were compared, for PTS classification, for online DSA. The training of the ANN and SVM was accomplished using suitable system features as inputs, and PTS status indicator as the output. DIgSILENT PowerFactory and MATLAB was utilized for transient stability simulations (for obtaining training data for ML algorithms), and applying ML algorithms, respectively. Results obtained for the IEEE 14-bus test system demonstrated that the proposed ML methods offer a fast approach for PTS prediction with a fairly high accuracy, and thereby, signifying a strong possibility for ML application in probabilistic DSA. Advisor: Sohrab Asgarpoo

    Online failure prediction in air traffic control systems

    Get PDF
    This thesis introduces a novel approach to online failure prediction for mission critical distributed systems that has the distinctive features to be black-box, non-intrusive and online. The approach combines Complex Event Processing (CEP) and Hidden Markov Models (HMM) so as to analyze symptoms of failures that might occur in the form of anomalous conditions of performance metrics identified for such purpose. The thesis presents an architecture named CASPER, based on CEP and HMM, that relies on sniffed information from the communication network of a mission critical system, only, for predicting anomalies that can lead to software failures. An instance of Casper has been implemented, trained and tuned to monitor a real Air Traffic Control (ATC) system developed by Selex ES, a Finmeccanica Company. An extensive experimental evaluation of CASPER is presented. The obtained results show (i) a very low percentage of false positives over both normal and under stress conditions, and (ii) a sufficiently high failure prediction time that allows the system to apply appropriate recovery procedures
    corecore