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Power systems are getting more complex than ever and are consequently 

operating close to their limit of stability. Moreover, with the increasing demand of 

renewable wind generation, and the requirement to maintain a secure power system, the 

importance of transient stability cannot be overestimated. Considering its significance in 

power system security, it is important to propose a different approach for enhancing the 

transient stability, considering uncertainties. Current deterministic industry practices of 

transient stability assessment ignore the probabilistic nature of variables (fault type, fault 

location, fault clearing time, etc.). These approaches typically provide a conservative 

criterion and can result in expensive expansion plans or conservative operating limits. 

With the increasing system uncertainties and widespread electricity market deregulation, 

there is a strong inevitability to incorporate probabilistic transient stability (PTS) 

analysis. Moreover, the time-domain simulation approach, for transient stability 

evaluation, involving differential-algebraic equations, can be very computationally 

intensive, especially for a large-scale system, and for online dynamic security 

assessment (DSA). 

The impact of wind penetration on transient stability is critical to investigate, as 

it does not possess the inherent inertia of synchronous generators. Thus, this research 

proposes risk-based, machine learning (ML) approaches, for PTS enhancement by 



 

replacing circuit breakers, including the impact of wind generation. Artificial Neural 

Network (ANN) was used for predicting the benefit-cost ratio (BCR) to reduce the 

computation effort. Moreover, both ANN and support vector machine (SVM) were used 

and consequently, were compared, for PTS classification, for online DSA. The training 

of the ANN and SVM was accomplished using suitable system features as inputs, and 

PTS status indicator as the output. DIgSILENT PowerFactory and MATLAB was 

utilized for transient stability simulations (for obtaining training data for ML 

algorithms), and applying ML algorithms, respectively. Results obtained for the IEEE 

14-bus test system demonstrated that the proposed ML methods offer a fast approach for 

PTS prediction with a fairly high accuracy, and thereby, signifying a strong possibility 

for ML application in probabilistic DSA. 
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CHAPTER 1 

 INTRODUCTION 

This chapter presents the overview, motivation, and background of the research. 

Additionally, the chapter describes the problem statement, research questions, research 

objectives, major contributions, research impact and limitations. A brief outline of the 

dissertation is also provided. 

1.1 Overview 

Driven by various techno-economic and environmental factors, the electric energy industry 

is anticipated to undergo a paradigm shift, with a significantly augmented level of 

renewables, especially, wind and solar power sources, gradually replacing conventional 

power production sources (coal, diesel, natural gas, etc.). This increasing demand of large-

scale wind integration in the conventional power system, along with the inherent and 

external uncertainties of the system, brings a lot of challenges [1-2]. One of them is the 

power system transient stability. Power systems are regularly exposed to unanticipated 

faults. Such faults can cause transient instability and can consequently lead to prevalent 

outages [3]. To preserve system security, system operators and planners perform analysis 

to make critical operating and planning decisions that will ensure safe operation of the 

power system after the occurrence such faults. The current general practice, within the 

power industry, is to use the deterministic approaches, with significant safety margins, to 

cover all possible uncertainties. With the adoption of a deterministic criterion for system 

security, power systems generally operate with a large security margin. Usually, these 
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deterministic criteria provide safe, but conservative limits for system operating conditions. 

The most crucial security criterion is the (N-1) security criterion that guarantees safe 

operation of the power system, after the failure of a single element of the system, where N 

is the total number of system components [3]. 

In the past several years, there has been a significant increase in connections of intermittent 

and stochastic, power electronics interfaced renewable energy generation sources. These 

uncertainties, coupled with load uncertainties, are becoming one of the vital characteristics 

of modern power systems. The transient stability assessment of such systems, using 

traditional deterministic methodology, is swiftly becoming inappropriate and thus, 

innovative probabilistic assessment approaches are desirable [4]. 

The conventional approaches for transient stability are computationally intensive [5-6]. 

Various soft computing approaches (these approaches are useful in solving complex 

problems, which cannot be realized by classical numerical methods), based on machine 

learning (ML) [7], may provide a better solution in this regard, especially, for online 

transient stability classification, incorporating various uncertainties. 

1.2 Motivation 

The current industry practices use the deterministic approach for transient stability 

assessment [8-9]. Although, the deterministic approaches result in highly secured power 

systems, but they do not consider the probability of operating conditions. Apart from the 

high cost due to conservative designs, the key drawback with the deterministic assessment 

techniques is that they consider all security problems to have equal risk [10]. Various 

literature (including research papers, technical reports, dissertations, and white papers) [9-
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30] mention that probabilistic risk-based transient stability, and incorporating risk in power 

planning procedures, is a future research area, and consequently, work needs to be done in 

this domain. Moreover, planning guides/manuals of various utilities [31-40] recommend 

using risk-based probabilistic approaches in the near future. Moreover, the integration of 

renewable generation, introduces more stochasticity in the system, making the application 

of probabilistic practices essential in the transient stability assessment process. 

Probabilistic assessment methods [41-42] can be helpful when uncertain parameters are 

included into system stability assessment. It is, thus, of great implication to propose a risk-

based approach, for overcoming the inadequacies of the deterministic approach. The 

integration of wind farms in the power system decreases the inherent inertia and hence, 

impacts transient stability. The time-domain simulation method for transient stability 

assessment involves numerical integration and differential-algebraic equations. This can 

pose a huge computation burden, especially for large-scale systems, and for online dynamic 

security assessment (DSA). A different and unique approach is required to reduce these 

computation efforts. These knowledge gaps have paved the motivation for this research, 

which is divided into parts: (1) proposing a risk-based probabilistic ML approach, using 

artificial neural network (ANN) for transient stability enhancement, by replacement of 

circuit breakers, incorporating wind generation, and (2) using both ANN and support 

vector machine (SVM) to classify transient stability status, for online application.  

1.3 Problem Statement 

Presently, majority of the power utilities resort to deterministic transient stability 

approaches, but to cater for future power networks (incorporating inherent multiple 
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uncertainties), it is essential to include risk-based stability criterion. The proposed approach 

provides a better and realistic quantification of system uncertainties, as it uses risk-based 

stability criterion for decision-making, as opposed to the currently used deterministic 

procedures. Moreover, it is important to propose faster methods for transient stability 

prediction, considering various uncertainties. This is, particularly, important for online 

DSA. The proposed approach, thus, consists of two main parts: (1) proposing a risk-based 

probabilistic ML approach ANN for transient stability enhancement, by replacement of 

circuit breakers, and consequently analyzing the impact of wind generation, and (2) using 

both ANN and SVM to classify transient stability status, for online application, in the 

presence of uncertainties. 

1.4 Research Questions  

This research attempts to answer the following research questions: 

1. How to enhance the current deterministic industry practices to cater for the future 

needs of the power systems? 

2. How to incorporate transient instability risk, for decision-making regarding CBs, 

considering system uncertainties? 

3. How does wind generation impact transient instability risk? 

4. How can cost-benefit analysis be applied to a power system, in the presence of 

uncertainties? 

5. How can artificial intelligence (e.g., ANN) be used to enhance computational 

efficiency of the traditional transient stability assessment methods? 
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6. How can artificial intelligence methods (ANN and SVM) be used for online 

probabilistic transient stability prediction (which is a significant component of 

online DSA)? 

1.5 Research Scope and Objectives  

The overall aim of this research is two-fold: (1) to apply ANN for probabilistic transient 

stability (PTS) enhancement, by replacing circuit breakers, and (2) to apply ANN and SVM 

for online PTS prediction. These aims are fulfilled through the following objectives (O1-

O9). 

O1. Literature review to summarize the state-of-the-art of research in PTS and risk-

based transient stability.  

O2. Literature review to summarize the state-of-the-art of research in application of 

ANN and SVM for transient stability classification.  

O3. Concept of marginal transient stability using time-domain approach. 

O4. Replacement of circuit breakers based on transient instability risk. 

O5. Analyzing the impact of wind generation on transient instability risk. 

O6. Ranking of circuit breakers for line and bus faults (based on transient instability 

risk). 

O7. Assess the impact of network topology on system instability probability and 

transient instability risk. 

O8. Application of ANN to reduce computation time in a probabilistic, time-domain 

simulation, transient stability problem. 
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O9. Application of ANN and SVM and consequently, comparing their performance for 

online PTS classification. 

1.6 Main Contributions of the Research 

The work within this dissertation contributes to the area of power system stability and is 

exclusively focused on transient stability, in the presence of uncertain parameters. The 

main outcome of this research is the proposed probabilistic cost benefit analysis approach 

for replacement of circuit breakers, based on transient instability risk. Consequently, ML 

algorithms (ANN and SVM) are applied for improving the computational efficiency, and 

for the application of online DSA. The following are the major contributions of the 

research. 

• Replacement of circuit breakers based on transient instability risk. 

• Concept of marginal transient stability using time-domain approach. 

• Application of ANN to reduce computation time in a probabilistic, time-domain 

simulation, transient stability problem. 

• Application of ANN and SVM and consequently, comparing their performance for 

online PTS classification. 

1.7 Impact of the Proposed Research 

• Presently, majority of the power utilities resort to deterministic approaches for 

transient stability assessment, but to cater for future power networks (incorporating 

inherent multiple uncertainties), it is essential to include risk-based stability 

criterion for decision-making.  
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• The proposed approach provides a better and realistic quantification of system 

uncertainties. 

• The proposed approach will help power system planners to replace circuit breakers 

based on transient instability risk. 

• The risk-based approach is suitable for justifying the economic investments rather 

than the presently used worst-case deterministic approach. 

• The approach will be useful for future power systems (which will include abundant 

renewable generation), as it will assess the impact of high wind penetration on 

transient instability risk. 

• The ML approaches (ANN and SVM) used will help in reducing computation 

efforts, especially for online application. 

1.8 Limitations of the Research 

The following are the limitations of the research. 

1. Only type 3 wind generator, i.e., doubly fed induction generator (DFIG), was used 

to assess the impact of wind generation of transient instability risk. 

2. The external uncertainties (weather, cyber attacks, human error, etc.) were not 

considered in this research. 

3. The research is directly associated with only transient stability. Other kinds of 

stability (frequency, voltage) were not considered. 

4.  (N-1) contingency criterion was used in this research.  

5. Only ANN and SVM ML algorithms were utilized in this research. 
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1.9 Dissertation Outline 

The dissertation is organized in five chapters. A brief description of each chapter is 

presented below. 

• Chapter 1 presents the overview and motivation of the research. Additionally, the 

chapter describes the problem statement, research questions, research objectives, 

major contributions, impact and limitations of the research. 

• Chapter 2 presents the background and overview related to power system stability, 

transient stability, probabilistic risk-based transient stability, ML, ANN, and SVM.  

• Chapter 3 describes the problem formulation and proposed approaches. Moreover, 

various assumptions are listed.  

• Chapter 4 describes the test system (IEEE 14-bus), case studies, results, and 

associated discussion. A validation approach, using sensitivity analysis, is also 

presented. 

• Chapter 5 concludes the dissertation and provides numerous recommendations for 

relevant future research work. Moreover, generic recommendations for promoting 

risk-based decision making in power systems are outlined. 
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CHAPTER 2 

BACKGROUND AND OVERVIEW 

This chapter presents the background and overview related to power system stability, 

transient stability, probabilistic risk-based transient stability, machine learning, artificial 

neural network (ANN), and support vector machine (SVM).  

2.1 Power System Reliability, Security, and Stability 

Power systems usually consist of three different stages: generation, transmission, and 

distribution, as illustrated by Figure 2.1.  In the first stage (generation), the electric power 

is generated, generally by using synchronous generators. Then, the transformers increase 

the voltage level, before the power is transmitted, to reduce the line currents, which 

consequently reduces the power transmission losses. After the transmission, the voltage is 

stepped down using transformers to be distributed to consumers [1]. 

The reliability of an electric power system is generally defined as “the probability that the 

power system will perform the function of delivering electric energy to consumers on a 

continuous basis and with acceptable service quality” [2]. Power system reliability 

evaluation is generally divided into two categories: adequacy and security [3-4], as 

illustrated by Figure 2.2. Adequacy involves the assessment that there are sufficient 

generation facilities in the system to meet the customer load demands, considering 

scheduled and rationally anticipated unscheduled outages of system components [5]. 

Adequacy is a steady-state issue and deals with both generation and transmission capacity. 

Security deals with the response of the system to sudden disturbances, such as line outages 
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or faults. Security is further divided into two categories: static and dynamic. Static security 

deals with steady-state analysis of post-disturbance system conditions to verify that there 

is no line overload or bus voltage violations. Dynamic security assessment (DSA) refers to 

the investigation required to determine whether a power system can satisfy the specified 

reliability criteria, under small or large disturbances [6]. Power system stability is “the 

ability of an electric power system, for a given initial operating condition, to regain a state 

of operating equilibrium, after being subjected to a physical disturbance, with most system 

variables bounded so that practically the entire system remains intact [7].” Stability is an 

important part of power system reliability and security.  

The usual practice for DSA has been to use a deterministic approach. Generally, the power 

system is designed to endure a set of contingencies, chosen on the basis that they have a 

substantial possibility of occurrence. In practice, these contingencies are defined as “the 

loss of any single element in a power system, either spontaneously or preceded by a single, 

double, or a three-phase fault.” This method is generally known as the (N-1) criterion, as it 

examines the behavior of an N-component network, following the loss of any one of its 

components [7-8]. 

 

Figure 2.1.  Power system composition 
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Figure 2.2.  Power system reliability classification 

 

The terms reliability, security, and stability are often confused and used interchangeably in 

research literature. It is important to distinguish between these terms and one must be 

careful as to when to use these terms.  The major differences between these three significant 

aspects of power system are outlined below [7]: 

1. “Reliability is the overall objective in power system design and operation. To be reliable, 

the power system must be secure most of the time. To be secure, the system must be stable, 

and must also be secure against other contingencies that would not be classified as stability 

problems e.g., damage to equipment such as an explosive failure of a cable, fall of 

transmission towers, due to ice loading or any other weather event. Moreover, a system 

may be stable following a contingency, but insecure because of post-fault system 

conditions, thereby causing line overloads or voltage violations. 

2. System security may be further differentiated from stability in terms of the resulting 

consequences. For example, two systems may both be stable with equal stability margins, 

but one may be comparatively more secure because the consequences of instability have 

less severity. 
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3. Security and stability are time-varying attributes. This implies that they can be estimated 

by studying the performance of the power system, under a specified set of conditions. On 

the other hand, reliability is a function of the time-average performance of the power 

system, i.e., it can only be estimated by considering of the behavior of the system, over an 

appreciable period.” 

Power systems are generally operated to deliver continuous power supply that maintains 

the stability. However, due to unwanted events, such as lightning, weather or any other 

unpredictable events, short circuits between the phase wires of the transmission lines or 

between a phase wire and the ground may occur. This is commonly known as a fault. Due 

to a fault, one or more generators may be severely disturbed, resulting in an imbalance 

between generation and load. If the fault perseveres and is not cleared in a pre-specified 

time, it may result in severe damages to the equipment, which, in turn, may cause a power 

loss and ultimately, a power outage. Consequently, protective equipment is installed to 

sense faults and isolate faulted parts of the power system, as soon as possible, before the 

fault energy is proliferated to the rest of the network [1]. 

Power system stability is very imperative for maintaining continuous supply of power [9]. 

Instability of a power system can occur in many diverse scenarios, majorly contingent on 

the system configuration and operating mode. One of the key stability problems is to 

maintain synchronism, especially, when the power system relies on synchronous machines. 

The dynamics of generator rotor angles and power-angle relationships influence this 

aspect. Another instability problem that may frequently occur is voltage collapse, which is 

mostly associated with load behavior [1]. Voltage collapse is generally described as the 
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process by which the sequence of events accompanying voltage instability causes a 

blackout or abnormally low voltages in a large portion of the power system [7]. 

Since the early 20th century, power system stability has been documented as a noteworthy 

issue in secure power system planning and operation [10-11]. Most of the blackouts caused 

by power system instability have demonstrated the significance of this phenomenon [12-

13]. Historically, transient stability has been the leading stability issue in most power 

networks. However, with the introduction of innovative technologies and increasing load 

demands, voltage and frequency stability have also gained importance. This has 

necessitated an understanding of the basics of power system stability.  

2.2 Classification of Power System Stability  

[7] has broadly classified power system stability into three major kinds: frequency, voltage, 

and rotor angle. This is pictorially shown in Figure 2.3. A brief description of this 

classification follows.  

Frequency Stability 

Frequency stability is the ability of a power system to maintain steady frequency after a 

severe system stress causes a substantial disparity between generation and load. It relies on 

the ability to maintain equilibrium between system generation and demand, with minimum 

inadvertent loss of load. Instability can manifest itself in the shape of sustained frequency 

swings, which subsequently cause tripping of generating units and loads. Frequency 

stability is determined by the overall response of the system (or each island if the system 

splits into islands). The governor response, also known as primary frequency control, 

ranges from few seconds to tens of minutes. Frequency stability analysis during this 
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duration is termed as short-term analysis. In the long-term analysis, central automatic 

generation control (AGC) directs specific generators to adjust their outputs to satisfy 

frequency constraints. It is important to note that frequency stability cannot be classified 

as small signal (small disturbance) or large signal (large disturbance) because it can occur 

due to any disturbance. 

Voltage Stability 

Voltage stability is the ability of a power system to maintain steady voltages at all buses in 

the system, after being subjected to a disturbance from a given initial operating condition. 

It depends on the ability to maintain equilibrium between system demand and system 

generation. Instability may manifest itself in the shape of a continuing decrease or increase 

of voltages at some or all buses. The culprit for voltage instability is typically the loads. 

Large disturbance voltage stability is the ability of a power system to maintain steady 

voltages after the occurrence of large disturbances, such as three-phase faults. The inherent 

features of system and load are major determinants of this ability. The period of interest of 

short-term, large disturbance, voltage stability typically ranges from a few seconds to tens 

of minutes. Small disturbance voltage stability refers to the ability of the system to maintain 

steady voltages when subjected to small perturbations, such as small changes in system 

load. Long term voltage stability constitutes of slower acting equipment, such as tap-

changing transformers, thermostatically controlled loads, and generator current limiters. 

The period of interest may extend to several or many minutes, and long-term simulations 

are required to assess the dynamic performance of the system. 

Rotor Angle Stability 
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Rotor angle stability is the ability of synchronous machines in a power system to maintain 

synchronism when a disturbance is applied. It depends on the ability to maintain/restore 

equilibrium between electromagnetic torque and mechanical torque of each synchronous 

machine in the system. The change in electromagnetic torque of a synchronous machine 

following a disturbance can be resolved into two components: (1) synchronizing torque 

component, in phase with rotor angle deviation, and (2) damping torque component, in 

phase with the speed deviation. Instability can result when the angular swing of generators 

causes a loss in synchronism. Small disturbance rotor angle stability is concerned with the 

ability of the power system to maintain synchronism under small disturbances, such as 

minor load variations. The disturbances are sufficiently small that linearization of system 

equations is permissible for analysis. On the other hand, large-disturbance rotor angle 

stability, or commonly called transient stability, focuses on the ability of the power system 

to maintain synchronism when a severe disturbance, such as a three-phase short circuit on 

a transmission line, is applied. The resulting system response consists of large excursions 

of generator rotor angles and is governed by the nonlinear power-angle relation. Transient 

stability relies, for the most part, on the initial operating state of the system and the severity 

of the disturbance. Instability is normally manifested in the form of aperiodic angular 

separations which are due to inadequate synchronizing torque. The time range for transient 

stability studies is about 3 to 5 seconds after the disturbance has occurred. It may range up 

to 10-20 seconds, for much larger systems with dominant inter-area swings. In addition to 

fault type, fault location, and system load, fault clearing time (FCT) and critical clearing 

time (CCT) are significant parameters in assessing transient stability [14]. FCT is the time 
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at which fault is cleared after fault occurrence, whereas, CCT is the maximum FCT after 

which the system becomes transiently unstable [14]. 

 

Figure 2.3.  Power system stability classification (highlighted ones are considered in this 

work) 

2.3 Historical Review of Power System Stability Problems 

This section provides a brief historical review of problems related to power system stability 

[1]. “The methods of power system stability analysis were largely influenced by the 

development of computational tools, stability theories, and power system control 

technologies. Thus, it is indispensable to present a review of the history of the subject, to 

better comprehend the methods used in industries, regarding system stability and how these 

developments relate to the proposed approach in this research. 

Power system stability is a multifaceted problem that has challenged power system 

engineers for many years. It was first recognized as a significant problem in 1920s [15]. 

The first field tests on the stability on a practical power system were conducted in 1925 

[16-17]. The early stability problems were related to remote power plants, feeding load 

centers over long transmission lines. With slow exciters and non-continuously acting 
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voltage regulators, power transfer capability was frequently impeded by steady-state and 

transient instability, due to inadequate synchronizing torque [18]. 

In the early years, graphical methods such as Equal Area Criterion (EAC) and the power 

circle diagrams were established. These methods were successfully applied to early 

systems that could be represented as two-machine systems. As the systems became larger 

and more interconnected, the intricacy of the systems grew and thus, the stability problems 

became more complex. This annulled the treatment of the systems as two-machine systems. 

A noteworthy step towards the enhancement of stability computations was the development 

of the network analyzer in 1930, which was capable of power flow analysis of multi-

machine power systems [9]. A network analyzer, fundamentally, is a scaled model of an 

AC power system, with adjustable resistors, inductors, and capacitors, to represent the 

transmission network and loads, voltage sources, whose magnitudes and angles are 

adjustable, and meters to measure voltages, currents, and power anywhere in the network. 

However, system dynamics still had to be solved by hand, by solving the swing equations, 

using step-by-step numerical integration. During this period, classical models were used 

for the swing equations. These models represented the generators as fixed transient 

reactances, with a fixed power supply behind these reactances. 

In the early 1950s, electronic analog computers were used for analysis of special problems, 

which necessitated detailed modeling of the synchronous machine, excitation system, and 

speed governor. In addition, during that period, expansion of digital computers was seen, 

and specifically, around 1956, the first digital program, for power system stability analysis 

was developed. In the 1960s, most of the power systems in the USA and Canada were 

combined as part of one of two large interconnected systems, one in the East and the other 
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in the West. In 1967, low capacity high-voltage direct current (HVDC) ties were also 

established between the east and west systems. Today, the power systems in the United 

States and Canada form virtually one large system. This interconnection between the two 

systems results in operating economy and increased reliability, though, it increased the 

complication of stability problems and augmented the impacts of instability [9]. 

Until recently, most industry effort has been focused on transient stability [9]. Powerful 

transient stability simulation programs have been developed that are capable of modeling 

large multifaceted systems, using detailed models. In the early 1990s, the emphasis was on 

small signal stability, which led to the growth of special study techniques, such as modal 

analysis, using eigenvalue techniques. In the 1970s and 1980s, frequency stability 

problems were experienced following chief system upsets. This led to an examination of 

the primary causes of such problems, and to the development of long-term dynamic 

simulation programs, to support in their analysis. In 1983, guidelines were established, for 

improving power plant response, during major frequency disturbance events.  

Recently, power systems are being operated under increasingly stressed conditions, due to 

the dominant trend to make the most of existing facilities. Increased competition, open 

transmission access, and construction and environmental constraints are determining the 

operation of electric power systems, which present greater challenges for secure system 

operation. This is evident from the increasing number of major power-grid blackouts that 

have been experienced in recent years, such as Northeast USA-Canada blackout of August 

14, 2003. Planning and operation of modern power systems require a cautious deliberation 

of all kinds of system instability. Momentous advances have been made in recent years, in 

providing better tools and techniques, to examine instability in power systems. Figure 2.4 
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presents a timeline view for historical appearances of different power system stability 

problems [19].” 

 

Figure 2.4.  Historical appearances of power system stability problems 

2.4 Applications of Power System Stability Studies 

A power system must maintain its integrity after disturbances and must have the ability to 

withstand a wide variety of faults, for a reliable service. However, limited by economic 

and technical limitations, power systems, in practice, can only be designed to be stable, for 

selected disturbances, based on their probability of occurrence and severity. Power system 

stability related studies can ensure secure operation of transmission networks by: 

1. Ensuring proper selection and deployment of protective and emergency control facilities.  

2. Obtaining power system stability limits and ensuring operation stays within these limits.  

 

Power system stability studies provide good references for the system operators, when 

monitoring system components from potential instability hazards. One of the tasks for a 

power system operator is to make sure that the system plants are operating under acceptable 

conditions and output reliable electric power, after being subjected to credible events under 

heavily stressed scenarios. There are several roles of system operators according to [20]. 

For example, the ISO (Independent System Operator) is responsible for planning and 

operation of the network, and TNSO and DNO (Transmission Network System Operator, 
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Distribution Network Operator) should be responsible for their own portion of the network 

[19]. The stable and economical operation of a power system within security limit is of 

great interest to these operators. Two types of studies, operational studies which focus on 

short-term secure and reliable operation of the network, and planning studies, which deals 

with long-term market-profiting operation of the network, are considered by operators and 

planners. Table 2.1 presents the applications of stability studies in different areas and time 

frames of system analysis [19]. Power system transient, small signal and voltage stability 

problems are equally important for all areas of the network and are of interest of both short-

term operational studies and long-term planning studies. The frequency stability is usually 

of concern for operators, responsible for the whole system, and when the operational 

studies are considered. 

Table 2.1.  Power system stability aspects and their implications in system-wide regime 

Power System 

Phenomenon 

Interest 

of ISO 

(whole 

network) 

Interest of 

TNSO, DNO 

(part of the 

network) 

Operational 

studies (short 

term) 

Planning 

studies 

(long term) 

Transient 

stability 

    

Small signal 

stability 

    

Voltage 

stability 

    

Frequency 

stability 

 x  x 
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2.5 Significance of Stability for Power System Security 

Evaluation of the operating state of a power system is mandatory for the system operator 

in taking suitable decisions, and thereby, keeping the electrical properties within 

satisfactory limits. Also, analysis of the system performance under various conditions and 

phenomena helps designing the control systems. The power system can be seen as a “black 

box”, with a well-defined function, to which consumers are connected. It should ensure the 

continuity of supply with electrical energy to the consumers irrespective of its operating 

conditions. In order to perform this function, the power system must be designed so that to 

survive any disturbance, e.g., short-circuits followed by a line tripping, tripping of any 

element without a fault, etc. [21]. 

The number of possible events that theoretically may occur is infinite and therefore, 

designing the power system to withstand all possible events or combination of events is 

literally impossible. The practice is to evaluate the power system state using one or more 

indexes for all possible events, and consequently, rank the events in descending order of 

the combined index values. The indices penalize violation of transmission capacity limit, 

voltage limits, stability limits, etc. Countermeasures are designed for those disturbances 

that the power system cannot survive. These measures are designed to counteract all critical 

disturbances starting from the top of the list [21]. 

As mentioned before, security is used to indicate if the power system is able to withstand 

disturbances. The power system security may be defined as the ability to withstand any 

kind of disturbance without interruption of the power supply service. It can be implied that 

the power system is fully reliable if it is secure at all times. Security may also be associated 
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to the term robustness, which reflects the way in which the power system can withstand 

disturbances. As mentioned before, the security of a power system is defined as its ability 

to overcome contingencies, such a severe fault, and deliver the energy to customers in 

abnormal conditions. A secure system is also a stable one—both during and after a 

contingency. Therefore, stability assessment of the system is essential to ensure its security. 

In other words, a secure system is the one that is stable for all credible contingencies. 

However, for the stability of the system, only the current system condition needs to be 

checked (without any contingency assessment) [22]. 

2.5.1 Power System Security States 

“The national grid codes stipulate that the state quantities must remain within acceptable 

ranges for any disconnection of an element (line, transformer, generator, etc.). This is 

commonly known as the (N-1) security criteria. The operating conditions vary 

continuously, and the power system moves from one state to another, as indicated by Si in 

Figure 2.5. Transition to one state or another depends on the random events that may occur 

or on the decision taken by the system operator. In the ‘NORMAL’ state, all parameters 

are within acceptable ranges and the power system is stable and secure. Furthermore, from 

this state, disconnection of any element can bring no harm to the power system. However, 

significant changes, for instance, sudden load increase or extreme weather conditions make 

the system vulnerable to disconnection on an element. and the power system may enter in 

the ‘ALERT’ state. Figure 2.5 illustrates a classification of possible states of the power 

system, depending on the event that may occur [21]. 

When the power system enters in the ‘ALERT’ state, immediate corrective actions, such 

as tap changing, active and reactive power control of generators, etc., must be taken in 
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order to restore the normal operation. The restoration process may take shorter or longer 

time depending on the dynamics of the corrective actions. If, during this transition, a 

contingency occurs, the system can enter in an ‘EMERGENCY’ state, in which there are a 

large number of bus voltage limits violations or exceeding of branch ampacity. In this state, 

extreme remedial actions, such as load shedding, tripping of transmission lines, 

disconnections of generators, etc., can still be taken and system restoring to a normal 

operation is possible. If the contingency is too severe, the power system may become 

instable and eventually enters the ‘COLLAPSE’ state [21]. 

It must be noted that violation of an operating constraint may not necessarily mean that the 

power system becomes instable. Due to high loading, the voltage in the system nodes can 

become too low and the loads demand more current which, in time, may overload the 

transmission lines. This will finally jeopardize the electrical network integrity, limits the 

transmission capacity and eventually, leads to instability conditions [21].” 

 

Figure 2.5.  Power system security states 

2.6 Factors affecting Transient Stability 
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There are various factors which affect transient stability. They are outlined below [23-24]. 

1. Pre-and-post-disturbance system state, such as the generators loading, before the 

fault and the generator outputs, during the fault, system load, and network topology. 

The higher the loading before the fault, the more likely is the system to be less 

stable during faults. 

2. The duration, location and type of the fault determine the amount of kinetic energy 

gained by synchronous generator (SG). Longer fault duration allows generator 

rotors to gain more kinetic energy during the fault. At a specific limit, the gained 

energy may not be dissipated after the fault clearance. This gained energy may 

cause instability. Moreover, in general, three phase faults near generator terminals 

are more likely to cause instability, as compared to other kinds of faults. 

3. System relaying, and protection have remarkable significance in system stability. 

The kinetic energy picked by the SG is directly proportional to fault duration. 

Therefore, faster fault clearing time results in a greater stability margin. 

4. System reactance: the power transfer capacity is inversely proportional with the 

transmission reactance. The transfer capability in pre-fault conditions can be 

increased by decreasing the series reactances of the system. A decrease in the 

system reactances can be attained by the addition of parallel transmission lines 

and/or use of transformers with low leakage reactance voltage [25]. 

5. System voltage: The transfer capacity increases proportionally to the square of the 

system voltage. An increase in system voltage increases the difference between the 

initial rotor angle and critical clearing angle, thereby, allowing the generator 

rotation through a large angle deviation, before reaching the critical clearing angle. 
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It is understandable that increasing the system voltage is not applicable to a large 

existing power system, as the components of the power system are designed for a 

certain voltage level and must be replaced, before increasing the voltage level. 

6. System inertia: During transient events, inertia provided by SGs counteracts the 

changes in frequency, and therefore helps with maintaining transient stability. 

Thus, a reduction in inertia increases the chance of a system to become unstable 

[26]. 

2.7 Deterministic and Probabilistic Transient Stability 

Traditionally, deterministic criterion has been used for transient stability evaluation for 

power system planning and operation [27-28]. This method is generally considered for a 

single operating condition, commonly known as the worst-case scenario. In most cases, the 

(N-1) contingency principle is used. This means that individual system components are 

removed one by one for the analysis. The worst-case scenario then gets transformed to 

numerous extreme operating conditions, together with several most critical contingencies, 

for which the system should be designed to withstand. While this worst-case approach has 

served the industry well; however, in a competitive environment, the utilities will need to 

know the level of risk, associated with their observed criteria, so that they adjust their 

service quality based on the expectation of consumer i.e., the acceptable level of risk and 

corresponding price [29]. The conventional transient stability assessment follows a step-

by-step procedure in which the factors such as the load, fault types, fault locations, etc., are 

selected in advance, usually in accordance with the worst-case philosophy [29]. 
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Furthermore, to guarantee that the most severe disturbance is selected, the contingency 

types and locations are normally provided in advance. 

In the deterministic approach, the contingencies are selected based on the probability. Thus, 

to some extent the probability of events is considered. Though, once the contingencies are 

selected, they are treated as equally probable and operation limits are introduced based on 

the influence of contingencies. In the probabilistic approach, these operating limits are 

computed by considering both consequence (severity) and probability [30]. The 

deterministic approach has at least the following three drawbacks [31]. 

1. “Only consequences of contingencies are evaluated, but probabilities of occurrence 

of contingencies are ignored. Even if the consequence of a selected contingency is 

not very severe, system risk could still be high, if its probability is relatively large. 

Conversely, if the probability of an outage event is extremely small, the 

contingency analysis of such an event may result in an uneconomic operational 

decision.  

2. All uncertain factors that exist in real life (such as uncertainty of load variations, 

variability of renewable generation, random failures of system components, fuzzy 

factors in parameters or input data, errors in real-time information, volatility of 

power demand on the market, etc.) are ignored in the deterministic analysis. This 

can lead to results, biased from the reality.  

3. The deterministic approach is based on pre-selected worst cases. In 

implementation, however, the actual worst case may be missed [31].” 

Moreover, as the result of deterministic stability analysis is binary (stable or unstable), 

therefore, the transient instability risk cannot be quantified. As a matter of fact, the electric 
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power sectors need to know the risk level to take actions to upsurge the system security. 

Therefore, examining the system transient stability by applying risk assessment has 

become a critical research technique [32]. A pictorial representation of a typical framework 

for deterministic transient stability study is shown in Figure 2.6. 

With the current drift towards competitive and deregulated electricity market environment, 

the power utilities are required to guarantee, besides a safe reliability level, an economical 

operational efficiency. They are forced to maximize the utilization of their existing 

facilities. Therefore, some operators consider exploring the operating areas, beyond the 

traditional operating limits, where the system is vulnerable to costly outages, in order to 

see whether the incurred risk weighs against the potential economic benefits of violating 

the limits. In these situations, a probabilistic assessment approach becomes tremendously 

beneficial [33]. The probabilistic studies consider the stochastic and probabilistic nature of 

the real power system. It considers the probability distribution of one or more uncertain 

parameters, and hence, reflects the actual system in a better manner. Although, it has been 

long established that deterministic studies may not sufficiently characterize the full extent 

of system dynamic behavior, the probabilistic approach has not been extensively used in 

the past in power system studies, mainly due to lack of data, limitation of computational 

resources, and mixed response from power utilities and planners [28, 30-31]. Probabilistic 

approaches are mainly appropriate, for the examination of a system, with randomness and 

uncertainty, which are obviously the main features of future power networks. 

 In the past several years, there has been a considerable increase in connections of 

intermittent and stochastic, power electronics interfaced renewable energy generation 

sources. These uncertainties, coupled with load uncertainties, are becoming one of the 
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crucial characteristics of modern power systems. The transient stability assessment of such 

systems using traditional deterministic methodology is swiftly becoming inappropriate and 

thus, unique probabilistic assessment methods are desirable, and are being established [34]. 

Although, the deterministic approaches result in highly secured power systems, but they 

do not consider the probability of operating conditions. Consequently, apart from the high 

cost due to conservative designs, the chief disadvantage with the deterministic assessment 

techniques is that they treat all security problems to have equal risk [35]. The rising power 

system uncertainties has motivated the application of probabilistic methodologies, for 

transient stability assessment. It is, thus, of great significance to propose a risk-based 

approach, for overcoming the shortcomings of the deterministic approach. The 

probabilistic analysis can provide a more inclusive, coherent, and realistic measure of the 

system stability level; consequently, this type of assessment can provide a profound 

understanding of system stability problems, as compared to the deterministic stability 

assessment. A pictorial representation of a typical framework for probabilistic transient 

stability (PTS) study is shown in Figure 2.7. 
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Figure 2.6.  Framework for deterministic transient stability assessment 

 

2.8 Transient Stability Assessment Methods 

There are three main methods for assessing transient stability [33, 36-37], as elaborated in 

Figure 2.8. A brief overview of these methods is discussed below. 

Time-domain Simulation Method 

While formulating the mathematical model of a power system with its components, the 

most traditional way to observe its dynamic behavior, after a disturbance, is by numerically 
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integrating a set of differential equations, over a certain time. This method is also known 

as assessment by time domain simulation (TDS). Since almost any component can be 

encompassed in this mathematical model, there are no modeling boundaries. 

 

Figure 2.7.  Framework for probabilistic transient stability assessment 

The TDS approach is one of the traditional approaches used for transient stability 

assessment (TSA) [38]. It is the most accurate, and time-consuming category. This method 

requires the whole system detailed model and accurate information about disturbances, to 

solve the nonlinear differential–algebraic equations, and is based on numerical integration 

[39-41]. It is typically used to assess transient stability status, and to provide detailed 
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operational information of the faulted system. Although, this approach is a popular method 

due to its high accuracy, but it is inappropriate for online TSA, chiefly due to its extensive 

computation effort. Moreover, this method does not have any criterion to indicate the 

system stability before the fault clearance [42-43].  One of the primary works in this area 

[44], by determining the coherent group of the generators, relies on developing a low order 

equivalent model of the power system, to forecast stability status. To further simplify, the 

piecewise constant current load approximation technique was used. [44] used the swing 

equation, in a simplified two machine system, to envisage the rotor angle, about 0.5 second 

later. [45] proposed an implicitly decoupled active-reactive power (PQ) integration 

approach, to decrease the computation load.  

Direct Methods 

Direct methods are also conventional TSA approaches, which substitute the numerical 

integration of the post-fault system equations, by a stability standard [46]. Direct methods 

of TSA include equal area criterion (EAC) approach, extended equal area criterion (EEAC) 

technique, and energy function technique, based on the transient energy function (TEF) 

technique. A direct method, based on TEF, is conducted by constructing Lyapunov 

functions such that transient energy and system stability can be determined, while the 

EEAC technique (an extension of EAC approach) is the graphical solution, used to 

determine the stability of single machine infinite bus (SMIB), as elucidated in [47]. Since 

the EEAC technique considers SMIB, therefore, the system needs to be oversimplified, 

therefore, it cannot be applied to complex interconnected power systems. Similarly, the 

TEF technique presented a restriction of only capable of forecasting the stability, based on 

the first swing and if the second swing presents itself and go unstable, then the stability 
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examination will be inaccurate [48]. The TEF method is based on Lyapunov’s second 

theory. The main advantage of Lyapunov’s second theory is that the Lyapunov function is 

invariant from systems nonlinear equations [49]. In the literature, several functions were 

proposed as Lyapunov functions [50]. Determining an appropriate Lyapunov function for 

a bulk power system, effort in computing the level of the kinetic and potential energies, 

and its inefficiency are some of the disadvantages of the TEF method [51-52]. Another 

downside of this class is the evaluation of critical energy [53]. Although, these methods 

have a low computational burden, they give conservative results, since it is problematic to 

determine the exact energy function, and it is complicated to precisely define Lyapunov 

functions [36]. The accuracy and reliability of the TEF modeling is another challenge [52]. 

The TEF-based methods are difficult to implement, especially due to many potential 

function terms of the TEF of the system. Also, these approaches require postfault data for 

TSA, and hence, they are not suitable for TSA for online applications [43]. 

The first work, in the class of direct approaches, was published in 1989, which used a quasi-

unstable equilibrium point (QUEP) approach [54]. This approach, by using generating unit 

clustering procedure, decreased the complexity of power system. It also computed stability 

sensitivity coefficients, for use in constrained economic dispatch. In [50], after fault 

occurrence, the total energy of the power system was observed incessantly. Also, the total 

energy function, based on Lyapunov’s direct method, was computed. If this energy was 

greater than the stability limit, the out-of-step condition was forecasted. This approach, by 

using the center of oscillations, streamlines the power system into a two-machine system. 

In [55], the stability margin was assessed using the TEF technique. In the off-line stage, 

various fault conditions and post-fault topologies were inspected, and the corresponding 
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modes were stored in a look-up table. In the online step, after fault clearance, the 

normalized kinetic energy was compared with the look-up tables, to determine the most 

probable ones. Eventually, the unstable equilibrium point (UEP) and the associated control 

action were assessed. This technique required an observable system, with adequate number 

of phasor measurement units (PMUs). 

Hybrid Method 

The hybrid method integrates the TDS and the TEF methods of investigating transient 

stability, in which the TDS computes the real system trajectory, while the TEF constructs 

a stability index of the dynamic security assessment (DSA), as stated in [56]. Hybrid 

methods are also inadequate for online DSA, as prediction is dependent on the UEP, due 

to the TEF idea used, as explained in [56]. Another drawback is that the system 

representation becomes complex, as they use TEF concept. Research work associated with 

hybrid methods can be found in [41, 57-60]. 

 

Figure 2.8.  Methods for transient stability assessment of a power system 

2.9 Swing Equation and Transient Stability 
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A power system, typically, consists of various synchronous machines, operating 

synchronously, under all operating conditions. The swing equation describes the rotational 

dynamics of a synchronous machine and is used in transient stability analysis to 

characterize that dynamic. “Under normal operating conditions, the relative position of the 

rotor axis and the resultant magnetic field axis is fixed. The angle between the two is 

commonly known as the power angle, load angle or torque angle. During any disturbance, 

the rotor decelerates or accelerates, with respect to the synchronously rotating air gap 

magnetomotive force, creating relative motion. The equation describing the relative motion 

is known as the swing equation, which is a non-linear second order differential 

equation that describes the swing of the rotor of synchronous machine [61-62].” 

“The goal of transient stability study is to determine if the generator rotor can return to 

constant speed, after a disturbance. Using the simple equivalent model of SG, the equation 

representing the SG rotor motion is given as 

 

2

2
m e

d
J T T

dt


     (2.1) 

where J is generator’s moment of inertia (kgm2),  is the angular displacement of the rotor 

with respect to a stationary axis on generator stator (in radians), t is the time (s), mT  is the 

input mechanical torque (Nm), and eT is the output electrical torque (Nm).  

If the generator’s internal friction losses and the heating losses are neglected, to maintain 

synchronous speed under ideal operation situation, the input mechanical torque mT  and the 

output electrical torque eT  must be equal. When the input mechanical torque is greater than 

the output electrical torque, the generator rotor will accelerate and vice versa. Figure 2.9 is 

a simplified diagram of a SG. It illustrates the stator, rotor, input mechanical torque and 

https://en.wikipedia.org/wiki/Power_system
https://en.wikipedia.org/wiki/Magnetic_field
https://en.wikipedia.org/wiki/Differential_equation
https://en.wikipedia.org/wiki/Differential_equation
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output electrical torque. m  denotes the synchronous speed of generator. In a 60 Hz power 

system, it equals to 120pi rad/s, i.e., 3600 RPM (revolutions per minute). 

 

Figure 2.9.  Simplified diagram of the SG 

In power systems, most of the SGs are driven by the steam turbine. The input torque mT  

of this kind of generator is controlled by the turbine governor. The governor adjusts the 

amount of steam entering the steam turbine, according to the generator output power. The 

output torque eT  is the equivalent torque which relates to the power fed into the power 

system. It reflects the instantaneous power system operation status. Due to the physical 

nature of the steam turbine, the generator input torque cannot be adjusted immediately. 

After the disturbance, because of the slow response speed of the input torque, when the 

output torque is less than the input torque, it is possible that the generator will gain enough 

energy to keep its rotor accelerating forever. This is the inherent nature of power system 

transient stability – the balance of generator input and output torque (power). The generator 

output torque cannot be directly obtained because only the generator electric power output 

can be measured. The electric power equals the torque multiplies the angular velocity. 

When the generator is synchronous with the power grid, the angular velocity is called 
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synchronous speed, m . The relation between generator electric power, PG, and the output 

torque, TG, is illustrated using (2.2) [61].” 

 G G mP T    (2.2) 

Substituting (2.2) in (2.1),  
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2
m m e

d
J P P

dt


     (2.3) 

where mP and eP denote input mechanical power and output electrical power, 

respectively.  

The angle   in (2.3) is measured with respect to a stationary reference axis on the stator. 

This means its value is increasing continuously with time. The most common way of 

describing the change of generator rotor angle is to use the synchronous speed as the 

reference. Therefore, (2.4) defines the generator rotor angle displacement, with respect to 

the synchronous speed. 

   m mt     (2.4)  

where m  denotes the electrical angle for distinguishing  and  m . 

The second order derivative of (2.4) with respect to time is 

 

2 2

2 2
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 
   (2.5) 

Substituting (2.5) in (2.3) produces the generator swing function used for transient stability 

studies, i.e.,  
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
   (2.6) 

Where M is known as the moment of inertia of the rotor mass. 
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In (2.6), Pm can be measured at the prime mover of the generator, and Pe is the electrical 

power output which is computed by the power flow equation. Equation (2.6) is known as 

the swing equation which describes the rotational dynamics of a synchronous machine for 

transient stability studies. 

Figure 2.10 illustrates the behavior of a synchronous machine for stable and unstable 

situations [25, 63]. “In Case 1, the rotor angle increases to a maximum, then decreases and 

oscillates with decreasing amplitude until it reaches a steady state. This case is considered 

transient stable. In Case 2, the rotor angle continues to increase steadily (due to insufficient 

synchronizing torque) until synchronism is lost. This type of transient instability is referred 

to as first-swing instability. In Case 3, the system is stable in the first swing, but becomes 

unstable because of growing oscillations, as the end state is approached. This form of 

instability occurs, when the post-fault steady-state condition is itself is small-signal 

unstable, i.e., it occurs due to lack of sufficient damping torque in the post fault system 

condition.” 

 

Figure 2.10.  Rotor angle response to a transient disturbance 
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2.10 Computational Approaches for Probabilistic Transient Stability 

This section briefly describes different computational approaches [64-66], which are 

generally applied for PTS analysis. These methods include Monte Carlo (MC), Quasi-

Monte Carlo [67], Markov chain Monte Carlo [68], point estimate (PE) method [69], 

cumulant-based method [70], probabilistic collocation approach [71], convolution method 

[72], first-order-second-moment method [73], and unscented transformation [74]. This 

research uses MC simulation and therefore, it is discussed firstly in detail. However, a brief 

description of other methods is also provided. 

Monte Carlo Method 

The MC approach is usually considered as the standard approach for probabilistic 

simulation. In this method, there is a large number of random sampling of system 

uncertainties to obtain a large data set (i.e., a numerical solution), for determining the 

distribution of an unknown probabilistic entity, i.e., output probability density functions 

(PDFs). The accuracy of the output increases with the number of simulations. The MC 

simulation involves these key steps: outlining a domain of possible inputs, generating 

random input samples from the input probability distribution over the domain, executing 

deterministic simulations and analysis for each sample, and eventually, empirically 

analyzing the results. The MC method involves the repeated sampling of system 

uncertainties [66]. A large data set can be retrieved from these samplings, and the 

distribution of an unknown probabilistic entity can be determined. There are two essential 

theorems of statistics behind the application of MC method in uncertainty-related analysis: 

the Weak Law of Large Numbers [75], and the Central Limit Theorem [76]. The Weak 
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Law of Large Numbers states that the sample average converges in probability towards the 

expected value, and the Central Limit Theorem states that the properly normalized sum of 

independent random variables (RVs) tends toward a normal distribution. The simulation 

procedure generally involves inputs domain definition, probability distribution generation, 

performing deterministic computations on the inputs and aggregation of the results. The 

advantage of MC simulation is that the method is very flexible and virtually limitless for 

analysis. It is easily expandable and deployable. However, the simulation time can be quite 

long with large sampling database, as random samples of size N are generated following 

the PDFs of the input variables, and the accuracy of the samplings is highly related to the 

MC run-time. The MC stopping rule is needed to ensure that sufficient number of 

simulations are run to ensure required accuracy of the results. The outputs of this approach 

are estimate values rather than the exact values and the stopping rule can help to determine 

the minimum number of simulations required to achieve a specified confidence level. The 

numerical steps for obtaining the minimum number of simulations are given by (2.7) to 

(2.12) [76]. 

1. Take N samples and record X1,…., XN. 

2. Continue sampling until 
2
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3. Stop sampling, then: 
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In the above equations, 0n  is the initial iteration value, r is the relative error for the 

samples,   is the maximum uncertainty level that should be achieved, N is the actual 

sample size needed for the required accuracy r  with the coverage probability 1  , as r

tends towards 0, X is the mean value of the obtained result,  is the real mean value of the 

studied variables, 
1 
is the inverse function of the normal distribution with  =1 and 

0  . The expression for the relative error is given by 

 

1(1 )
2

( )

N

r
N

E N

 




  

  (2.13) 

where N denotes the variance of the obtained result, and E(N) is the mean value of the 

samples. The relative error is computed in each simulation and is compared with a target 

relative error in MC simulation. Therefore, the simulation can be terminated when required 

confidence level is achieved. The MC method is very flexible and virtually limitless for 

analysis. However, for a larger test system, with a huge number of uncertain variables, it 

can consume a lot of computational resources. 
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Quasi Monte Carlo (QMC) Method 

The principle of Quasi-Monte Carlo (QMC) approach is similar to the standard MC 

method; however, a distinct approach is used to generate the sample sets. While the MC 

method produces samples using a pseudorandom sequence to accurately sample from the 

input distributions, QMC modifies this sampling, deliberately, to more efficiently cover 

the desired portion of the input domain. This is usually attained using quasi-random (low-

discrepancy) sequences, such as Halton or Sobol sequences, to generate samples that are 

equidistant in the input domain rather than equiprobable [77]. 

Markov Chain Monte Carlo (MCMC) 

Markov Chain Monte Carlo (MCMC) approach produces samples from a probability 

distribution, by constructing a Markov Chain with a target distribution. Consequently, the 

Markov Chain produced can be used as a sample of the desired distribution. The 

convergence of the entire process progresses with the sample size. The MCMC is 

frequently used when it is problematic to directly sample the target distribution. The 

Markov Chain production replaces the sample generation portion of a standard MC 

approach, after which the individual deterministic simulations are executed, and results 

collected and analyzed. The key steps of an MCMC simulation are initializing an arbitrary 

starting sample, producing candidate points, repeating the sample generation until the 

convergence criteria are fulfilled, and obtaining targeted variable set, along with the desired 

distribution. 

Point Estimate Method 

The PE methods use a small number of specified point values to represent the distributions 

of network uncertainties. Consequently, the point values for different uncertainties are 
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combined in different permutations to form concentrations. The system model is then 

evaluated for these different concentrations, and the output values are combined, with 

concentration weightings, to approximate the moments of the output distribution. Different 

PE methods use different numbers of points, such as 2n, 2n+1, and 4n+1 (where n is the 

number of uncertain parameters).  

Cumulant-based Method 

A cumulant is a statistical measure of a distribution, i.e., an alternative to the moment of 

the distribution. The input cumulants are mapped to the output cumulants, through 

sensitivity functions describing the input–output behavior. The cumulants of the system 

output can be described simply by a sum of the cumulants of the independent input 

uncertainties. The cumulant is simple to calculate, and the output cumulants can then be 

used to determine the output moments. This delivers an analytical solution for obtaining 

output variation based on the input uncertainty. These methods are tremendously 

dependent on the accuracy of this relationship and are frequently only valid when the 

uncertainty is minor and the input–output relationship is roughly linear. 

Probabilistic Collocation Approach  

The probabilistic collocation method (PCM) expresses the system model output as a 

polynomial function of the uncertain parameter set. The fundamental concept is to use a 

small number of sample points, to generate a computationally cheap function, that can be 

used to replace the intensive computation burden, of the full power system study, during 

further repeated sampling. Polynomial functions of increasing order and complexity can 

be used to capture high-order interactions, though at a larger computational cost. 

Uncertainties, generally, must be pre-ranked to classify critical parameters, as the number 
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of samples required to generate the function grows exponentially, with the number of 

considered uncertain variables. 

Convolution Method   

In this method, linearization methods are applied to represent line load flows as a linear 

combination of input variables. Assuming the independence of these variables, the PDFs 

of probabilistic input variables can be obtained. The main issue of this method is to 

compute the equivalent discrete function. When this function, characterized by “u” 

impulses, is convolved with another, having “v” impulses, the resulting function will have 

“u times v” impulses. The key issue related to this approach is that it demands a large 

amount of storage and computation time, especially for large systems [78-79]. 

First-Order-Second-Moment Method  

The first-order second-moment (FOSM) method is based on a first order Taylor series 

estimation of a linearized function. This approach requires only expected values and 

covariances of RVs. One chief benefit of this approach is that it allows the evaluation of 

uncertainty in the output parameters, without previous knowledge of the PDFs of input 

RVs. Though, the approach is not suitable when the expected value of the input RV is in 

close vicinity to the global extremum of the function. In this scenario, the computed 

uncertainty of the RV may vary extensively from the actual one [78-79]. 

Unscented Transformation  

The method is based on computing the statistics of a RV, which goes through a set of 

nonlinear transformations. This approach is time-efficient and can easily be applied to 

problems constituted of correlation, among multiple uncertain input parameters. However, 

the run time of the approach is directly linked to the number of uncertain input RVs [78-
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79]. 

2.11 Probabilistic Factors in Transient Stability 

There are various factors which are involved in PTS assessment of power systems, such as 

fault type, fault location, load, and FCT. Suitable PDFs are used to model these factors. 

The modeling approaches are described below [80].  

Normally, shunt faults, such as three-phase (LLL), double-line-to-ground (LLG), line-to-

line (LL) and single-line-to-ground (LG) short circuits, are considered for evaluating PTS. 

A probability mass function (PMF) is normally used to model the fault type. Based on past 

system statistics, a usual practice is to select the probability of LLL, LL, LLG, and LG 

short circuits, as 0.05, 0.1, 0.15 and 0.7, respectively [81].  

The probability distribution of fault location on a transmission line is usually assumed to 

be uniform. This means that the fault can occur with equal probability at any line of the 

test system and at any point along the line [34]. Generally, very limited historical 

information is available on the locations of the faults on the lines; thus, it is reasonable to 

assume that nearly every location on a line has the same probability to be struck by a fault. 

The procedure of fault clearing consists of three stages: fault detection, relay operation and 

breaker operation. If the primary protection and breakers are 100% reliable, the clearing 

time is the only uncertain factor. A normal (Gaussian) PDF is generally used to model this 

time [34]. The PDFs, or PMFs, in case of discrete RVs, used for faulted line, fault type, 

fault location (on the line), and FCT are shown in Figures 2.11-2.14, respectively. To 

incorporate the uncertainty of loads, a normal PDF was used.  Let f(Xi) denote the PDF for 

load at ith bus, i.e., 
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where i  and i  denotes the mean and standard deviation of the forecasted peak load for 

ith bus, respectively. 

 
 

Figure 2.11.  PMF for faulted line 

 

 

 
 

Figure 2.12.  PMF for fault type 
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Figure 2.13.  Uniform PDF for fault location (on the line) 

 
 

 
 

Figure 2.14.  Normal (Gaussian) PDF for FCT 

 
2.12 Quantification Index for Probabilistic Transient Stability 

To quantify the output for PTS approach, different researchers have proposed various 

indices. These indices include probability of instability of different lines [82], transfer limit 

calculation [29], generation rejection requirement [29], probability of system instability 

[83], maximum rotor angle deviation [84], and expected frequency of transient instability 

[85]. In recent years, Transient Stability Index (TSI) has been used to quantify the transient 

stability of a system consisting of synchronous generators [86-87]. It is the most commonly 

used index for describing the transient stability of a power system with synchronous 
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generators. This index is based on the maximum rotor angle separation between any two 

synchronous generators, after the fault has occurred. Mathematically, it is given by  

 
max

max

360

360

i

i

iTSI








 (2.15) 

where max i  is the post-fault maximum rotor angle separation (in degrees) between any 

two synchronous generators in the system at the same time (for a fault on ith line). A 

negative TSI value specifies that the power system is unstable. For instance, Figure 2.15 

illustrates the variation of maximum rotor angle difference, δmax, for typical stable and 

unstable situations in a power system. 

 

Figure 2.15.  Maximum rotor angle difference: (a) stable case (b) unstable case 
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The TSI provides a swift indication of the transient stability status of the system (for a fault 

on any line, at any point, for any FCT and for any load). Therefore, this index is used in 

this paper to quantify the PTS status. Let Si represent the PTS status indicator for the ith 

iteration of MC simulation. Mathematically, 

 
 1 ,  if  < 0 (unstable)

0,  if 0     (stable)

i

i

i

TSI
S

TSI


 


 (2.16) 

Therefore, if the system is transiently stable, for ith MC sample, value of Si will be 0; 

otherwise, it will be 1. This information will be used for training the machine learning 

(ML) algorithms. 

 

2.13 Modeling of Generation Sources 

This section briefly describes the modeling of generation sources including, SG and wind 

generator, specifically doubly fed induction generator (DFIG). 

2.13.1 Synchronous Generator 

Standard 6th order model is used for modeling all SGs. In this model, four windings are 

considered, two on the q-axis and two on the d-axis. However, the network and stator 

transients are neglected. All synchronous machines are equipped with (TGOV1) turbine 

governor, (IEEEX1) exciter and (STAB1) power system stabilizer.  In this model of SG, the 

field coil on the direct axis (d-axis) and damper coil on the quadrature axis (q-axis) are 

considered. The associated mathematical model, for a standard 6th order SG, is given by 

the following equations [88]. 

 ( )J m c o
d

T M M D
dt


      (2.17) 
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 ' 'd q q a d dE x I R I v     (2.24) 

where JT is generator inertia constant; mM is mechanical torque; cM  is electromagnetic 

torque; D is damping coefficient; δ is rotor angle;  is rotor speed; o is synchronous 

speed; fdE  is field voltage; ' dE and ' qE are d and q axis components of  transient electric 

potential; '' dE and '' qE  are d and q axis components of subtransient electric potential; dx

, ' dx , '' dx , qx , ' qx , '' qx  are d and q axis synchronous reactance, transient reactance and 

subtransient reactance, respectively; ' doT  , ' qoT  are d and q axis transient time constants; 

Ra is armature resistance, vd and vq are d and q axis components of stator terminal voltage, 

and '' doT , '' qoT  are d and q axis subtransient time constants. 

2.13.2 Wind Generation 
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The dynamic behavior of wind generation is significantly different from the conventional 

SGs. There are four main types of wind generators. Although, DFIG wind generator is used 

in this research, a brief overview of other kinds is also presented [89]. 

Fixed Speed Induction Generator (Type 1) 

In the early stages of wind power development, most wind farms were equipped with fixed 

speed wind turbines and induction generators. A fixed speed wind generator is typically 

equipped with a squirrel cage induction generator whose speed variations are limited, as 

shown in Figure 2.16.  Power can only be controlled using pitch angle variations. Since 

induction machines have no reactive power control capabilities, fixed or variable power 

factor correction systems are typically required for compensating the generator reactive 

power demand [90]. The turbine speed is fixed (or nearly fixed) to the electrical grid’s 

frequency and produces real power when the turbine shaft rotates faster than the electrical 

grid frequency creating a negative slip (positive slip and power is motoring convention) 

[89]. This kind of wind generator is usually referred to as a constant/fixed speed wind 

generator, as its rotor speed often fluctuates within a very small range, such as 1% to 2% 

of the rated speed [89].  

 

Figure 2.16.  Typical configuration of a Type 1 wind generator 

Induction Generator with Variable Rotor Resistance (Type 2) 
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This kind of wind generator is also known as wound rotor induction generator. In such 

generators, wound rotor induction generators are connected directly to the step-up 

transformer in a fashion like type 1, with regards to the machine’s stator circuit, but also 

include a variable resistor in the rotor circuit, as illustrated in Figure 2.17. This can be 

achieved with a set of resistors and power electronics, external to the rotor, with currents 

flowing between the resistors and rotor via slip rings. On the other hand, the resistors and 

electronics can be mounted on the rotor, eliminating the slip rings—commonly known as 

the Weier design. The variable resistors are connected into the rotor circuit softly and can 

be used to control the rotor currents fairly swiftly to keep constant power, even during 

gusting conditions, and can affect the machine’s dynamic response during disturbances 

[89]. 

 

Figure 2.17.  Typical configuration of a Type 2 wind generator 

Generally, type 1, and type 2 generators are simple and economical, and require low 

maintenance, but they suffer from various drawbacks such as poor voltage control ability, 

large starting inrush, absence of speed control (very limited in type 2), high mechanical 

stress, and poor zero-voltage ride through capability [91]. 

Doubly Fed Induction Generator (Type 3) 
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The DFIG is currently the most commonly installed wind turbine in power systems [92].  

They are gaining approval and acceptance these days for several reasons. The main reason 

being their ability to fluctuate their operating speed, typically +/- 30%, around the 

synchronous speed.  It enhances the type 2 design to the next level, by adding variable 

frequency AC excitation (instead of resistance) to the rotor circuit. The additional rotor 

excitation is supplied via slip rings by a current regulated, voltage-source converter, which 

can adjust the rotor currents’ magnitude and phase nearly instantaneously. The stator is 

directly connected to the grid and the rotor is fed from a back-to-back AC/DC/AC 

converter set, as shown in Figure 2.18. The rotor side converter (RSC) controls the wind 

turbine output power and the voltage measured at the grid side. The grid side converter 

(GSC) regulates the DC bus voltage and interchange reactive power with the grid, allowing 

the production or consumption of reactive power [92]. “A small amount power injected 

into the rotor circuit can affect a large control of power in the stator circuit. This is a major 

advantage of the DFIG — a great deal of control of the output is available with the presence 

of a set of converters that typically are only 30% of the rating of the machine. In addition 

to the real power that is delivered to the grid from the generator’s stator circuit, power is 

delivered to the grid through the grid-connected inverter, when the generator is moving 

faster than synchronous speed. When the generator is moving slower than synchronous 

speed, real power flows from the grid, through both converters, and from rotor to stator. 

These two modes, made possible by the four-quadrant nature of the two converters, allows 

a much wider speed range, both above and below synchronous speed by up to 50%, 

although narrower ranges are more common. The greatest advantage of the DFIG, is that 

it offers the benefits of separate real and reactive power control, much like a traditional 



59 

 

SG, while being able to run asynchronously. The field of industrial drives has produced 

and matured the concepts of vector or field-oriented control of induction machines. Using 

these control schemes, the torque producing components of the rotor flux can be made to 

respond fast enough that the machine remains under relative control, even during 

significant grid disturbances [89].” 

 

Figure 2.18.  Typical configuration of a Type 3 wind generator 

These wind generators have a good conversion efficiency, decoupled control of active and 

reactive power, and can provide voltage/frequency support. However, they require regular 

maintenance of slip rings and brush assembly, and there may be severe stresses on rotor 

and gearbox, especially during unbalanced faults [91]. 

A reduced 3rd order model, which neglects the stator transients, is used to represent DFIGs, 

in this research. The model has a structure like that proposed by WECC [93] and IEC [94]. 

Ignoring the stator current dynamics, the mathematical equations governing the DFIG 

model are as follows [95]. 
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where de , qe are d and q components of internal voltage; wP , wQ  are active and reactive 

power of DFIG absorbed by the network; X , 'X are open-circuit and short-circuit 

reactance; oT is the transient open-circuit time constant; Hg is generator inertia constant; 

b , s , r are system base speed, synchronous speed and rotor speed, respectively; s is 

generator slip; tw is the shaft twist angle (radians); twK , twD  are the shaft stiffness and 

mechanical damping coefficients; dsv , qsv  are stator voltages; drv , qrv  are rotor voltages; dsi

, qsi are stator currents; dri , qri are rotor currents; sr is stator resistance; mL , rL are 

magnetizing and rotor inductances.  

Asynchronous or SG with Full Converter Interface (Type 4) 

The type 4 wind generator (Figure 2.19) offers a great deal of flexibility in design and 

operation, as the output of the rotating machine is sent to the grid, through a full-scale back 

to-back frequency converter. The turbine can rotate at its optimal aerodynamic speed. In 

addition, the gearbox may be removed, such that the machine spins at the slow turbine 

speed and generates an electrical frequency, well below that of the grid. This is no issue 

for a type 4 turbine, as the inverters convert the power, and offer the possibility of reactive 
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power supply to the grid. The rotating machines of this type have been constructed as 

wound rotor synchronous machines, similar to conventional generators, found in 

hydroelectric plants, with control of the field current and high pole numbers, as permanent 

magnet synchronous machines, or as squirrel cage induction machines. However, based 

upon the ability of the machine side inverter to control real and reactive power flow, any 

type of machine could be used. Developments in power electronic devices and controls in 

the last decade have made the converters receptive and efficient. However, the power 

electronic converters must be sized to pass the full rating of the rotating machine, plus any 

capacity to be used for reactive compensation [89]. 

The type 4 wind generators generally offer maximum flexibility, due to the fully 

controllable converter interface. They offer decoupled control of active and reactive power 

and due to absence of slip rings, there is very limited maintenance required. The major 

drawback, however, is their high cost, as they require the full rated power converters for 

grid connection [91]. 

 

Figure 2.19.  Typical configuration of a Type 4 wind generator 

 

2.14 DFIG Control 

DFIG can be operated in two different reactive power control modes: constant power factor 

control (PQ mode) and voltage control (PV mode). In the power factor control mode, the 
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reactive power from the turbine is controlled to match the active power production at a 

fixed ratio. When terminal voltage control is activated, the reactive power production is 

controlled to attain a target voltage at a specified bus [92]. In the constant power factor 

operation mode, the reactive power is not exchanged between the wind farm and the 

system. In the constant voltage operation mode, since the power factor of the wind turbine 

generator is adjustable, the voltage of the generator terminal can be quickly recovered 

through the regulation capacity of reactive power. Therefore, the PV mode produces a 

better transient stability. Various research [92, 96-100] have established the superiority of 

PV mode over PQ mode, for transient stability assessment. This is because, in voltage 

control mode, wind generators regulate the voltage level at their point of common coupling 

(PCC) to a set point. When there is a fault in the power system, the rotor of SGs accelerates. 

Once the fault is cleared, wind generators improve power system voltages, by injecting 

reactive power into the power system, to regulate the voltage level, at their PCC, to the set 

point. The increase in power system voltages enhances power system transfers, therefore 

allowing SGs to inject larger amounts of the kinetic energy stored in their rotor, resulting 

in the rotors of generators to decelerate quicker, which enhances transient stability [96, 

101]. Thus, in this work, the DFIGs are equipped with terminal voltage control, i.e., the 

DFIG can exchange reactive power with the grid, to achieve a target voltage at the bus, at 

which DFIG is connected. This is illustrated in Figure 2.20. The point of common coupling 

is taken as the reference point. The voltage at the point of common coupling, denoted by 

VPCC, is detected, and is compared with the reference voltage, VREF, to compute the reactive 

power demanded by grid, Qout. 
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Figure 2.20.  Terminal voltage control of DFIG 

2.15 Literature Review: Probabilistic Transient Stability 

This section will review some literature, pertinent to probabilistic transient stability (PTS). 

A significant amount of literature is available in the domain of PTS. [102] proposed a 

probabilistic framework, for power system transient stability assessment, with high 

renewable generation penetration. The presented framework enables comprehensive 

calculation of transient stability of power systems, with abridged inertia. A major drawback 

of the work is considering only three-phase line faults. [103] presented a study of the effects 

of some important power system parameters on transient stability. The parameters 

considered for this assessment include fault location, load increment, machine damping 

factor, fault clearing time (FCT) and generator synchronous speed. The work considers 

only three-phase line faults. In [104], the abridged version of an altered single machine 

infinite bus (SMIB) system, with a doubly fed induction generator (DFIG)-based wind farm 

integration, is analyzed, considering the transient features of the DFIG-based wind farm, 

in the diverse periods of a fault. The assessment specifies that the performance of 

synchronous generator (SG) can either be enhanced or depreciated with DFIG integration. 

Only a three-phase fault is considered on a specific line, which clears after a pre-selected 

time. [105] presented the results of a PTS assessment, conducted on the large-scale system 

of B.C. Hydro, including a generation rejection study, on the Peace system and a transfer 
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limit study on the Columbia system. In this paper, B.C. Hydro’s historical statistics on the 

probabilistic states of load level factor, fault type, fault location, fault clearing, and 

automatic reclosing were used in a Monte Carlo (MC) formulation to produce sample states 

for the case studies. 

[106] illustrated the incorporation of probabilistic analysis in transient stability of a 

practical power system, by applying it to a multimachine configuration. [107] provided an 

analytical algorithm, based on transient energy margin, for the online PTS assessment of 

existing or forecasted operating conditions. [108] presented two approaches, for computing 

the probability of transient instability. These methods are based on Bayesian theory and 

Cartesian products. [109] presented a stochastic-based method, to assess the PTS index of 

the power system, including the wind farm and the Superconducting Magnetic Energy 

Storage (SMES). Uncertain factors include both sequence of disturbance in power grid and 

stochastic generation of the wind farm. [110] proposed a stochastic-based approach, to 

determine the PTS indices of a power system, incorporating wind farms. In this scenario, 

researches were conducted on a hypothetical test system, considering the uncertainties of 

the factors, associated with power system operation, namely fault type, fault location, fault 

impedance, fault clearing process, system parameters, operating conditions, and high-

speed reclosing. [111] illustrated the method of bisection to analytically evaluate the PTS 

indices. [112] provided a probabilistic approach to assess the transient stability of a wind 

farm. It extended and illustrated a rudimentary procedure, for calculating the probability of 

transient stability, for each transmission line, and for the overall system. 

A PTS assessment method, based on MC simulation, was proposed in [113]. Two 

instability probability indices were also defined as indicators of the overall system stability 
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and the severity of individual component fault. In [114], a probabilistic assessment 

technique, based on quasi-MC method, to analyze the transient stability of power system, 

incorporating wind power, was presented. Two indices were introduced, to assess the 

transient stability of power system. [115] proposed an analytical assessment method, for 

transient stability assessment of multimachine power systems, under stochastic continuous 

disturbances. In the suggested technique, a probability measure of transient stability was 

presented and analytically solved by stochastic averaging. [116] proposed a method, for 

obtaining PTS assessment, by using distribution functions, based on location, fault type, 

and sequence. [117] proposed the use of MC simulations, in the computation of 

probabilistic measures, for the transient stability problem. [118] suggested approximate 

methods, for evaluating probabilistic transient instability, and classifying critical stability 

areas, for system planning. In [119-120], an approach was developed, for obtaining a 

stability index, for individual lines, and for the overall system, for numerous fault types. 

The impact of clearing times and reclosing times was also investigated for critical lines. In 

[121], an approach was presented to assess the distribution of the probability of instability. 

In [122], conditional probabilities were used in the evaluation of probabilistic transient 

instability. [123] proposed a real-time approach for computing probabilistic critical 

clearing time (CCT) which is applicable to PTS assessment. The goal of the proposed 

approach was to offer a low computational burden and high accuracy to calculate the 

probabilistic density function (PDF) of CCT in two stages. 

[124] proposed a method for power system PTS assessment, considering the wind farm 

uncertainties and correlations. Specifically, the inverse Nataf transformation based three-

point estimation method and the Cornish-Fisher expansion were combined, to deal with 
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the uncertainties, and the correlations amongst numerous wind farms. In [125], two-point 

estimate method was used, to determine the maximum relative rotor angles’ probability 

distribution functions, for a given fault, with uncertain load demands and clearing time. A 

probabilistic approach, to assess the transient stability of power systems, with increased 

penetration of wind and photovoltaic (PV) generation, was presented in [126]. The impact 

on transient stability, due to the intermittent behavior of Distributed Energy Resources 

(DERs), and their dynamic response, when a disturbance happens, was examined. An 

analytical approach, for probabilistic dynamic security assessment (DSA) of power 

systems, incorporating wind farms, was presented in [127]. The probability of transient 

stability, given a specific fault and uncertainties of output power of wind farm and load 

was analytically computed. 

2.16 Literature Review: Risk-based Transient Stability 

The product of probability of an unforeseen event and its impact is commonly known as 

risk, which is generally mathematically defined as (2.32) [128-131]. 

    rP ( ) ( )i i

i

Risk E Sev E                 (2.32) 

where iE  is the ith event (contingency) and rP ( )iE is its probability. ( )iSev E quantifies the 

impact of iE . 

The risk is the system’s exposure to failure and is generally determined by considering 

both the probability of occurrence of an event and the impact of the event. The deterministic 

stability assessment introduces operating limits, based on the impact of contingencies. 

However, based on the risk-based approach, these operating limits are calculated by using 

the weighted sum of risk components of all the contingencies, considering both the 
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probability and the impact [129]. A simple example can be used to outline the significance 

of using risk in power systems. Consider two contingencies (C1 and C2), along with their 

probability of occurrence and the corresponding severity (impact), as outlined in Table 2.2. 

If decision-making is assumed to be based on deterministic criteria, C2 is found to be more 

severe as its impact is greater than C1; however, if risk-based (considers both probability 

and impact) decision-making is used, the converse is true. 

 

Table 2.2.  Risk values for two different contingencies 

Contingency Probability Impact Risk 

C1 0.05 20 1 

C2 0.02 30 0.6 

 

Power system risk evaluation generally consists of the following four tasks [132]. 

1. Determining component outage models. 

2. Selecting system states and calculating their probabilities. 

3. Evaluating the consequences of selected system states. 

4. Calculating the risk indices. 

A power system consists of various components, including generators, transmission lines, 

transformers, circuit breakers, switches, etc. Generally, component outages are the main 

cause of a system failure state. The first task in system risk evaluation is to determine 

component outage models. Component failures are divided into two groups: independent 

and dependent outages. Each group can be further classified according to the outage modes. 

In most cases, only repairable forced outages are considered, whereas in some cases, 
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planned outages are also modeled. Aging failures are generally not included in the 

traditional risk evaluation.  

The second task is to select system failure states and calculate their probabilities. There are 

two rudimentary methods for selecting a system state: state enumeration and MC 

simulation. In general, if complex operating conditions are not considered and/or the failure 

probabilities of components are quite small, the state enumeration techniques are more 

efficient. When complex operating conditions are involved, and/or the number of severe 

events is relatively large, MC methods are often preferable.  

The third task is to perform the analysis for system failure states and evaluate their 

consequences. Depending on the network under study, the assessment could be related to 

simple power balance, optimal power flow (OPF), or even transient stability evaluation. 

As discussed before, risk is a combination of probability and consequence. With the 

information obtained in the second and third tasks, an index denoting system risk can be 

established. There are several conceivable risk indices for various purposes. Most of them 

are essentially the mean (average) value of a random variable. The expected indices serve 

as the risk indicators that reflect various factors, including component capacities and 

outages, load profiles and forecast uncertainties, and system topologies and operational 

conditions [132]. 

Risk-based approach describes possibility of contingency by probability, and the 

corresponding impact (or consequence) by severity function. The product of this 

probability and associated severity is termed as risk. In risk-based stability assessment, the 

risk index consists of each possible contingency occurrence probability and the associated 

impact [133]. The first attempt toward risk-based transient stability was proposed in [134] 
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and [135], where the notion of limiting operating point functions was used. These functions 

return the limiting generation level for any fault type and fault location. [136] used risk-

based approach, to analyze the transient stability of power networks, incorporating wind 

farms. The proposed methodology of transient instability risk assessment is based on the 

MC method and eventually, an inclusive risk indicator, based on angle and voltage 

stability, is devised. The work considered only three phase line faults.  

[137] presented a distributed computing approach for transient stability analysis, in terms 

of measuring critical clearing time and the overall risk index, for various uncertainties. The 

work considered only a three phase to ground fault. [138] presented a method to determine 

the risk of transient stability. It described the application of rotor trajectory index (RTI), to 

assess the severity of power systems, when it was subjected to a three-phase fault. The RTI 

was suggested as an index used to represent severity of transient instability. [139] focused 

on risk of transient instability. A procedure was suggested to evaluate the potential loss of 

synchronism of a generator, in terms of probability and consequences. A transient risk 

assessment method, based on trajectory sensitivity, was presented in [140]. The 

contingency cost was considered as minimum control cost to move the system from 

instability to stability, and the sensitivities of relative rotor angle, with respect to output of 

generators and dispatchable load, were utilized to consider the transient stability constraints 

in the OPF. Some other research work associated with risk-based transient stability can be 

found in [141-143]. The major shortcoming in these works include not considering all 

the fault events (faulted line, fault type, fault location, fault clearing time) randomly, 

i.e., only some of the events are considered random variables, while others are 

considered as deterministic. 
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In recent years, there has been an increased deployment of renewable energy in the U.S. 

electricity grid. In 2020, around 834 billion kW-hours of electricity (about 21% of total 

electricity production) produced in the United States were from renewable energy sources 

[144]. The chief motivating factors for the increased renewable generation are the reduced 

cost of electricity production and the state-level renewable energy portfolio standards. 

Most of the renewable energy penetration is in the form of type 3 wind turbine generators. 

The increased penetration of converter-based generation can have a substantial 

consequence on the transient stability of a power system. This kind of generation is 

integrated to the grid with no rotating mass and inertia, as they are interfaced using power 

converters. Power system inertia is the term given to the store of kinetic energy, found in 

by the rotating mass of traditional steam and diesel generators, which turn in synchronicity 

with each other, and are coupled to the power system, delivering a steady system frequency 

[145]. This reduced inertia, due to wind generation integration, implies that it is more 

difficult to hamper a rate of change in system variables, such as system frequency, bus 

voltage and generator rotor angle. Most of the research efforts [146-150] in this area are 

centered on transient stability analysis. These studies show that increased renewable 

penetration can have both valuable and harmful effects on system stability. Due to the 

altered dynamics of the system due to increased converter-interfaced generation, it is 

indispensable that the power system reliability standards be revisited [151]. Some 

significant work associated with PTS, incorporating wind generation, can be found in [110, 

112, 114, 124, 126, 127, 136, 152-157].  

From the literature review, it is established that most works on PTS assessment 

assume three-phase faults. Although, the assumption may be suitable for a 



71 

 

deterministic analysis since it is the most severe fault; however, other faults cannot be 

ignored, as their probabilities are higher, and must be included in probabilistic 

stability assessment. [158-165] indicated that risk-based instability approach is an 

open area of research and requires further work. Moreover, the impact of reduced 

inertia systems (i.e., higher wind penetration), on power system transient stability, is 

of great implication [166-168].  

 

2.17 Literature Review: Transient Stability Improvement Methods 

Several variables, such as fault type, fault location, FCT, system impedance, system inertia, 

system loading, network topology, and system voltage, can impact the transient stability 

[169]. Thus, an extensive range of techniques for improvement of transient stability can be 

found in the literature. According to [169], the techniques of transient stability 

improvement are aimed to realize one or more of the following effects: 

(a) Reducing the impact of disturbance or severity of the fault.  

(b) Increase of the synchronization forces to support the restoration of steady-state 

operation after a disturbance. 

(c) Reduction of the acceleration or deceleration power through control of the prime mover 

to meet the equilibrium of mechanical and electrical power.  

(d) Applying artificial load to synchronous generation to reduce accelerating power by 

increasing electrical power. 

Effects related to (a) can be attained by faster fault clearing times, through high-speed 

breakers, thereby, reducing the fault severity, by reducing the clearing angle. An increase 
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of the synchronization forces mentioned in (b) can be achieved using Flexible Alternating 

Current Transmission Systems (FACTS), e.g., voltage support at a long transmission line; 

techniques related to (c) and (d) deals with the re-establishment of the equilibrium, between 

the mechanical and electrical power, thus, reducing the acceleration/deceleration power on 

the shaft of the synchronous machine. 

An extensive assortment of methods for enhancement of transient stability can be found in 

the literature [169-170]. Among these methods, the braking resistor [171], (FACTS) 

devices [172], Superconducting Fault Current Limiter (SFCL) [173], Static VAR 

Compensator (SVC) [174], SMES [175], and high-speed circuit breakers (CBs) [175] are 

quite common. Braking resistor consists of a dummy load connected in parallel with the 

SGs. An artificial electrical load is applied during transient disturbance to increase the 

electrical power and to re-establish the equilibrium [169]. However, for application of 

braking resistor, a step-down transformer must be connected to the generator terminal, 

which adds cost to the system. Although, FACTS devices can regulate both active and 

reactive powers, their application will incur more cost in the power system because of their 

complex structure and control system. The SFCL requires cooling system to maintain its 

superconductivity. Therefore, its application is also expensive. Likewise, the SMES is an 

active and reactive power controlling device, but it is expensive. Some other methods for 

transient stability improvement include SG redispatch [177], load shedding [178], fast 

excitation system [179], fast valving [180], and virtual inertia [181]. A comparative 

analysis of these methods is beyond the scope of this research; however, a brief description 

for each one is provided [169]. 

Synchronous Generator (SG) Redispatch 
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One of the most effective actions, to upsurge the transient stability margin, is to redispatch 

generators, to reduce their active power set point, which implies generators are operated 

further away from the stability limit. Due to cost efficiency, the dispatch of generators is 

usually determined using OPF calculations, and transient stability constraints are derived 

using a time-domain sensitivity analysis [177, 182-183]. In [177], a fourth-order Taylor 

expansion is used to speed up the solutions of OPF computations, including transient 

stability constraints. [182] proposed to derive linearized transient stability constraints, 

outside the OPF calculations, to reduce the complexity of the OPF formulation. In [183], 

time-domain simulations were combined with pre-assessment contingency filtering and a 

fast re-dispatch estimation, to decrease the computational burden of the stability 

assessment. 

Load Shedding 

Commonly, load shedding is associated with frequency regulation, such as under frequency 

load shedding, to prevent a power system from collapse, due to generation shortfall. 

However, load shedding can also be used to enhance transient stability of power systems, 

e.g., decrease the loading of generators, by reducing the load. [178] proposed a 

coordination of generation rescheduling and load shedding to enhance transient stability. 

If the generation rescheduling is unable to rectify the issue, load shedding is done to ensure 

that the system is within the defined security boundaries. In [184], the power system 

stability problem was dealt, by reducing transients, using a load shedding scheme. A relay 

coordination scheme was suggested, based on under-voltage/overcurrent, to shed the less 

priority load, in an interconnected transmission network. 

Fast Excitation System 
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A noteworthy improvement in transient stability can be attained with fast responding 

excitation systems of SGs, by increasing the field current to increase the internal machine 

voltage. This increases the electrical power, during the fault, which decreases the 

acceleration area and hence, leads to an increased (CCT). High-speed excitation systems 

are not very effective for bolted three-phase faults at the generator terminals since the 

voltage drops to zero. However, they are very effective for faults occurring further away 

from the generator, where the voltage at the generator bus is greater than zero [185]. 

Another method, in this regard, is a discontinuous excitation control, which is referred to 

as transient stability excitation control, where the terminal voltage is kept near the 

maximum permissible value, over the entire positive swing of the rotor angle and returns 

to normal operation mode, after the first swing. The use of fast excitation systems may 

compromise the damping of local plant oscillations, which requires the excitation system 

to be supplemented with a power system stabilizer [186]. [187-188] used nonlinear 

excitation controllers. The controllers are designed robustly and can operate over a wide 

range of operating conditions. The simulation results showed boosted performance, under 

transient conditions, through increased damping of oscillations, after the disturbance. [189] 

presented the design of the voltage source converter (VSC) excitation system and an 

integrated prototype using digital signal processor (DSP). It was demonstrated that the VSC 

excitation system drastically improved the transient stability limit. 

Fast Valving 

Fast valving of the turbine is an effective practice, to improve transient stability, by rapidly 

plummeting the mechanical power during the fault [190]. According to [191], the notion 

of fast valving was first introduced in 1925. During faults, the electrical power drops to a 
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reduced value and creates a difference between mechanical and electrical power, causing 

an acceleration of the machine. To counter that imbalance, generators with fast valving 

capability, rapidly lower the mechanical power, which is applied to the machine, to 

decrease the acceleration power to a minimum. One of the restrictions of fast valving is 

that it can only be applied to thermal generating units [192]. A fast-valving scheme of 

steam turbines, using two parallel valves, for enhancing the transient stability, was 

presented in [193]. 

Virtual Inertia 

The provision of virtual inertia has recently gained more significance, as the penetration of 

converter-based renewable energy systems is increasing. Virtual inertia is typically referred 

to frequency stability, but it has also a considerable impact on transient stability. Although, 

the installation of virtual inertia devices does not affect the inertia of SGs, it may re-route 

some active power flows in the network, thereby, changing the CCT in certain situations. 

At times of high renewable generation penetration, the available rotational inertia is 

reduced because conventional synchronous machines are shut down. Virtual inertia can be 

provided by units which have stored additional energy, either in rotational or chemical 

form. Wind turbines of type 3 and 4, and battery storages equipped with an inertia control 

algorithm, are appropriate for virtual inertia provision. [194-196] proposed an application 

of virtual inertia control of DFIG wind turbines, using a derivative controller, which uses 

the frequency as an input signal, to adjust the active power set point of the machine, based 

on the rate of change of frequency (ROCOF). 

Braking Resistor 



76 

 

The idea to use a braking resistor for transient stability improvement can be seen from a 

similar viewpoint as fast valving, with the difference that it acts on the electrical power, 

instead of the mechanical power. An artificial electrical load is applied during transient 

disturbance to upsurge the electrical power and to re-establish the equilibrium, or at least 

minimize the difference, between mechanical and electrical power. In [197-198], the 

authors proposed two variants of braking resistor: one with a thyristor rectifier and one 

with a diode rectifier and chopper. A fuzzy logic-controlled braking resistor was presented 

in [199]. However, for the practical application of braking resistors, cautious deliberations 

must be made regarding installation costs, torsional stress on the shaft and other additional 

adverse impacts which may occur. 

Variable Series Compensation 

Thyristor-controlled series capacitor (TCSC) and static synchronous series compensator 

(SSSC) are capable to act on the power system in a serial manner, contrary to shunt devices. 

Variable series devices can be used in preventive, as well as, in emergency control. Instead 

of line reinforcement or installation of additional lines, TCSCs offer a robust substitute to 

improve transient stability, by optimizing the transmission impedance [200]. The TCSC 

decreases the effective series reactance and, thus, decreases the angular separation with the 

power transfer being constant. In [201], a fuzzy logic based TCSC damping controller was 

used, in a SMIB system, to augment the power system transient stability. [202] presented 

an approach for enhancing the transient stability using SSSC. 

Variable Shunt Compensation 

FACTS, with reactive power capability for voltage control, at selected points of the power 

system can contribute to enhance the transient stability, by increasing the synchronization 
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power flow among the generators [190]. SVC and static synchronous compensator 

(STATCOM) are capable to control the voltage/reactive power at their connection point. 

SVC comprises a mechanical reactor and capacitor, a thyristor-controlled reactor and 

capacitor, and a harmonic filter. A standard proportional integral (PI) controller for SVCs, 

which used the voltage measurement as input to control the reactive power, was introduced 

in [203]. [204] presented the application of a fuzzy logic controlled Static Compensator 

STATCOM to enhance the transient stability of a power system.  

Fault Current Limiter (FCL) 

A fault current limiter (FCL), also known as fault current controller (FCC), is a device 

which restricts the forthcoming fault current, when a fault occurs, without complete 

disconnection. Resistive, inductive, or combined designs of FCLs are generally used to 

improve the transient stability during faults. The resistive type is effective in consuming 

the acceleration energy of generators during faults, whereas, the inductive type suppresses 

the voltage drop. The FCLs used in power systems can be grouped into two main groups, 

namely superconducting FCLs [205-207] with highly nonlinear response to temperature, 

current and magnetic field variations, and bridge-type FCLs, based on solid-state devices 

[208-210], which are either insulated-gate bipolar transistor (IGBT)- or thyristor-

controlled. 

Magnetic Energy Storage 

A SMES system is a very efficient storage device capable of storing large amounts of 

energy. SMES is a device, consisting of a superconducting coil, in which AC power is 

converted into DC by an AC-DC converter and stored in superconducting coil, in the form 

of magnetic energy. Its storage efficiency is nearly 90%. As SMES can be charged or 

https://en.wikipedia.org/wiki/Fault_current
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discharged very quickly, through the semiconductor AC-DC converter system, it can be 

applied for both active and reactive power compensation, for power system stabilization 

[211-212]. The chief disadvantage of the SMES technology is the need of a large amount 

of power, to keep the coil at low temperatures, combined with the high overall cost, for the 

employment of such a unit. Moreover, above a specific field strength, known as the critical 

field, the superconducting state is destroyed [213-214]. [215] discussed artificial neural 

network (ANN) controlled SMES unit, for enhancement of transient stability of a power 

system, under various system operating conditions and different fault conditions.  

High Speed Circuit Breakers  

Synchronous generators accelerate and pick up kinetic energy during severe faults. The 

kinetic energy, which is picked up by the generator, is directly proportional to the fault 

duration. Therefore, it is desired to clear faults as fast as possible, i.e., the shorter the fault 

duration, the smaller the severity of the disturbance [190]. The tripping times of modern 

high-speed CBs are around two to three cycles for high-voltage and one cycle for low- and 

medium-voltage CBs [216-217]. [176] proposed the coordinated operation of optimal 

reclosing of CBs and SVC, for enhancing the transient stability, of a multi-machine power 

system. [170] proposed the coordinated operation of the bridge type fault current limiter 

(BFCL) and optimal reclosing of CBs to improve the transient stability of a multi-machine 

power system. [218] investigated the enhancement of transient stability of a two-area 

system, using solid state CB, which is capable of fast switching, in case of faults and thus, 

controlling the real and reactive power flows, in a faulted transmission line. [219] presented 

the optimal reclosing of CBs, for the distributed generation (DG) connected IEEE 9-bus 

system. The optimal reclosing technique is derived using the total load angles of the DGs. 
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Both transient and permanent faults, at different points in the power system model, were 

considered.  

Although, [170, 218-219] dealt with transient stability enhancement using CBs, but 

these works consider the deterministic approach, implying the transient stability 

analysis is performed deterministically, i.e., for specific fault types, fault locations, 

and FCTs. Although, the concept of risk was applied for transient stability 

improvement, using generation redispatch/load shedding and TCSC, in [178] and 

[220], respectively; it has not been attempted for a decision-making framework 

involving CBs (according to the best of author’s knowledge). 

 

As mentioned before, conventional approaches for transient stability assessment are 

inadequate for transient stability assessment, specifically online, due to various drawbacks 

discussed, such as huge computational burden and modeling limitations. Moreover, the 

evaluation of transient instability risk is computationally rigorous due to repetitive time 

domain simulations. ML approaches, with their useful features of pattern recognition, 

learning abilities, and rapid prediction of system security states, provide a good substitute. 

Thus, the ML algorithms are applied, in this research, to tackle this issue, as these 

algorithms have widely been suggested for reducing the computation efforts [221-227]. 

Moreover, ML algorithms have a major advantage of incorporating significant inputs only, 

whereas time-domain method generally requires complete description of the system model 

[221-222]. 

2.18 Replacement of Circuit Breakers 
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Utilities generally use deterministic approaches for CB replacement as they are using 

worst-case conditions (peak load, three phase faults, etc.) to comply with NERC TPL 

standards. In other words, utilities use deterministic approaches because they must follow 

Standards (ANSI, IEEE, etc.) in which probabilistic approaches are unacceptable. 

Probabilistic approaches require information about the probability distribution of the input 

variables, and thereby, they violate the industry standards (NERC TPL-001-4) of using 

specific deterministic values/parameters. Majority of utilities replace CBs based on aging, 

repair, tests, maintenance, manufacturer no longer supporting CB model, and upgradation 

(replacing oil filled breakers with SF6 breakers). The interrupting capability for 

symmetrical current rated CBs is generally assessed using the latest version of IEEE/ANSI 

standard C37.010.  Existing literature uses asset management strategies (mainly based on 

maintenance and aging) to replace CBs. A brief overview follows. 

In [228], optimum maintenance strategies of CBs were predicted depending on their ages. 

It presented an optimization approach of maintenance strategy for CB in a transmission 

and distribution system. In this approach, a present and future CB performance was 

estimated by using monitoring data, and impacts of performance in each CB on the system 

were evaluated. By minimizing the impacts, suitable maintenance procedures and timing 

were derived. In order to maintain availability of power system, [229] established a 

refreshment regulation of high voltage CBs. The refreshment criteria were based on 

technical, age, and risk consideration. It discussed parameters used for technical 

consideration, as well as failure occurrence and criticality of substation towards the system 

for risk consideration. Consequently, the parameters of technical and risk consideration 
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were applied to obtain risk criteria which were used as priority scale for refreshment 

program. 

[230] dealt with the model of ageing behavior of different CB types. Furthermore, the 

model simplified the condition control of pieces of equipment, and provided the asset 

manager with information about the yearly capital and operational expenditures. Capital 

expenditures included new installation costs in consequence of replacement and grid 

enlargement, and operational expenditures comprised of maintenance costs, which can be 

subdivided in inspection and overhaul costs as well as in minor and major failure costs.  

[231] proposed risk assessment for CB utilization by using failure modes, effects, and 

criticality analysis (FMECA). The CB components were divided into three main parts such 

as live part, operating mechanism and insulation, and control device. FMECA was 

categorized into four groups such as finance, safety, environment and efficiency. Finally, 

criticality was categorized into 4 levels such as low level, medium level, high level and 

highest risk level. Data collection and analysis were performed. The results of the criticality 

analysis can assist in making maintenance resource management decisions in order to avoid 

damage to the system with efficient usage of available or limited resources. 

[232] suggested a reliable life calculation method for SF6 CBs. The reliability evaluation 

model was established based on Fault Tree Analysis (FTA) method. From FTA, all the 

bottom events which cause top event (failure of the SF6 CB) were determined. To estimate 

the reliability by inspection results and test results of the CBs, Health Index (HI) was 

presented to compute the failure probability of each bottom event. Consequently, the 

reliability of the top event was obtained. Collecting the failure probability and the age data 

of different SF6 CBs with the same type in power system, the data was applied to estimate 
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the reliability function of two parameters Weibull distribution by the least square method. 

Finally, the reliable life of the SF6 CB was estimated after inversion calculation by 

reliability function.  

[233] presented methods for evaluation on grease degradation of aged generator CBs and 

for establishing equipment replacement criteria with asset management applied to power 

transmission equipment. Replacement criteria were organized with asset management 

based on risk evaluation. [234] proposed a system developed at American Electric Power 

(AEP) for monitoring CBs. It presented an overview of the results of field trials that showed 

the maintenance reductions gained by predicting required maintenance instead of 

scheduling it. The system discussed provided the ability to monitor real-time trip and close 

coil assembly performance by recording mechanical and electrical characteristics including 

trip coil current and operate time during CB operations. Recorded trip and close coil 

characteristics were used to diagnose armature misalignments, lubrication problems, and 

interwinding short circuits to assist with maintenance and ensure future operations.  

In [235], an algorithm was proposed using branch and bound method to search an optimal 

replacement scheduling of obsolete equipment in aged primary substations. The developed 

tool can efficiently find an optimal solution from huge combinations of replacement 

schedules. The objective function to be minimized was the net present value of the sum of 

operation and maintenance cost, replacement cost, and the reliability cost in case of CB 

failure for each substation during the specified time frame. To solve this problem under the 

constraints such as annual budget ceiling, number of replacement targets per annum, and 

replacement time frame for each substation, the branch and bound method was applied.  A 

probabilistic maintenance model was implemented in [236]. The model parameters used 
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were mean time in each stage, inspection rate of each stage, and probabilities of transition 

from one stage to others. Sensitivity analysis of model parameters was conducted to 

establish cost-effective maintenance process. The analysis covered mean time to first 

failure, probability of failure, maintenance cost, inspection cost, and failure cost.  

[237] proposed the study of the variable failure rate of high-voltage CB by using the 

Weibull distribution method to set time-based maintenance schedule properly. Power CB 

was installed in the substation in varied configurations. The case study conducted was 

compared with, main and transfer bus arrangement, and breaker-and-a-half bus 

arrangement. After getting mean time between failure, the parts can be categorized, and 

consequently, the time-based maintenance schedule can be set. The results from the table 

of maintenance schedule by categorizing each part of power CB with the new replacement 

subcomponent group showed that the failure rate of power CB can be diminished and it 

helped to plan maintenance schedule. A probabilistic maintenance model for CBs was 

suggested in [238]. Information collected during inspection tests was analyzed and the 

condition of the breaker was defined. Maintenance action was taken according to the 

condition of the breaker. Monte Carlo simulation was used to implement the model. 

Maintenance cost and time to failure of each transformer and CB was also incorporated in 

the analysis. Some other work dealing with replacement of CB based on aging/maintenance 

can be found in [239-244]. 

From the literature review, it is deduced that existing practices of replacement of CBs are 

mainly based on asset management and short circuit studies (to determine the interrupting 

capacity of the CB). The maintenance is considered if the point of concern is aging of the 

breaker and the decision must be made between replacing the breaker based on 
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maintenance. However, the decision-making in this proposed research is based solely on 

FCTs. It implicitly assumes the same “maintenance status” for all CBs. Moreover, 

aging/maintenance issue in CB is a “static” problem (as opposed to the “transient” problem 

dealt in this research). As mentioned in Chapter 1, there are sufficient evidences to 

demonstrate that risk-based transient stability approaches are a potential future work and 

hence, this research applies it to a specific problem (CB replacement), which has not been 

attempted before.  

2.19 Marginal Transient Stability 

[245-249] uses the method of transient energy function (TEF) to evaluate the marginal 

transient stability. In [245], an on-line dynamic contingency screening and ranking 

approach integrated with fast potential energy boundary surface (PEBS) method and 

corrected hybrid method to enhance efficiency of system transient stability assessment for 

a large complex power system was presented. The PEBS approach re-ranked the must-run 

contingencies according to their critical clearing time evaluated at this level. Ignoring 

highly stable contingencies, the marginal stable and unstable contingencies were further 

examined in the corrected hybrid method to detect their stability behavior and operation 

limits. 

[246] proposed an iterative algorithm for determining parameter values that resulted in 

marginal stability of a system. The algorithm was based on Gauss-Newton solution of a 

nonlinear least-squares problem. Gradient information was provided by trajectory 

sensitivities. In [247], a new approach called marginally unstable injection (MUI) for 

developing a more accurate transient stability index was proposed using the concept of 
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TEF. An energy margin for transient stability assessment based on a reduced energy 

function was also formulated.  

In [248], stability limits in terms of plant generation limits, load changes, or network 

configuration changes were derived using analytical sensitivity approach of the energy 

margin. A detailed development of the analytical sensitivity procedure was also suggested. 

[249] presented the development and evaluation of an analytical method for the direct 

determination of transient stability. The method developed was based on the analysis of 

transient energy and considered the nature of the system disturbance and the impact of 

transfer conductances on the system behavior. The approach also predicted critical clearing 

times for first swing transient stability. 

The above-mentioned papers use the concept of unstable equilibrium points (UEPs) located 

on the boundary of potential energy surface. The system energy at this boundary is known 

as the critical energy. The TEF method is used to control these UEPs to acquire the required 

stability level. If the system energy exceeds the critical energy, system goes into unstable 

region. In other words, the energy required by the post-fault unstable system to reach the 

first instance of stability is known as the marginal stability. The theoretical background of 

TEFs can be found in [250-251]. Although, the TEF methods are not computationally 

extensive, but they do not yield accurate results when compared to time domain approach. 

Also, it is complex to integrate renewable generation with their associated controllers [252-

253]. Their main drawback is their high intricacy in the following situations: (1) 

considering differential-algebraic equation models of power systems, (2) dealing with the 

detailed models of the system’s components, (3) when a large number of system’s 

parameters must be considered for the sensitivity analysis [252-253]. The time-domain 



86 

 

approach yields accurate results and is a widely recognized approach to describe power 

system transient behavior [254]. Thus, the concept of marginal transient stability using time 

domain approach has been explored in this research. 

2.20 Machine Learning: Overview and Background 

ML is widely regarded as the subset of artificial intelligence (simulation of 

human intelligence in machines, which are programmed to think like humans and mimic 

their actions), as outlined by Figure 2.21. The term ML was invented, in 1959, by Arthur 

Samuel, an American pioneer, in the domain of artificial intelligence [255]. ML basically 

is an application of artificial intelligence that provides systems the ability to automatically 

learn and enhance from experience without being explicitly programmed [226, 255-256]. 

In fact, the ML performs data analysis, using a set of instructions, through a variety of 

algorithms, for decision making and/or predictions [257]. Laborious designing and 

programming of algorithms are essential to be conducted, for ML, to implement diverse 

functionalities, such as, classification, clustering, and regression. Deep learning (DL) is a 

class of ML algorithms that uses multiple layers to progressively extract higher-level 

features from the raw input. For example, in image processing, lower layers may identify 

edges, whereas higher layers may identify the concepts relevant to a human being, such as 

digits, letters or faces [258]. It is majorly used for speech recognition, computer vision 

(high-level understanding from digital images or videos), medical image analysis, and 

natural language processing. There are several architectures used in DL such as deep neural 

networks, deep belief networks, recurrent neural networks, long short-term memory, and 

https://en.wikipedia.org/wiki/Arthur_Samuel
https://en.wikipedia.org/wiki/Arthur_Samuel
https://en.wikipedia.org/wiki/Machine_learning
https://en.wikipedia.org/wiki/Algorithm
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convolutional neural networks. The DL generally requires huge processing power and 

massive data [258]. The focus of this work is, however, on ML. 

ML differs from traditional programming, in a very distinct manner. In traditional 

programming, the input data and a well written and tested program is fed into a machine to 

produce output. When it comes to ML, input data along with the output is fed into the 

machine during the learning phase, and it works out a program for itself. This is illustrated 

in Figure 2.22 [259]. 

During the last decade, ML, and DL has demonstrated promising contributions to many 

research and engineering areas, such as data mining [260], medical imaging [261], 

communication [262], multimedia [263], geoscience [264], remote sensing classification 

[265], real-time object tracking [266], computer vision-based fault detection [267], and so 

forth. The integration of advanced information and communication technologies, 

specifically Internet of Things (IoT), in the power grid infrastructures, is one of the main 

steps towards the smart grid. Since the vital capability of IoT devices is their capability to 

communicate data to other devices in a more pervasive fashion, and hence a massive 

amount of data is made available at the control centers. Such meaningfully enhanced 

system condition awareness and data availability demands for ML-based solutions and 

tools to conduct efficient data processing and analysis, to encourage the system operational 

management and decision-making [225]. Therefore, ML has been applied in various fields 

of power system, such as load forecasting [268], fault diagnosis [269], substation 

monitoring [270], reactive power control [271], unit commitment [272], maintenance 

scheduling [273], wind power prediction [274], energy management [275], load restoration 
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[276], solar power prediction [277], state estimation [278], transient stability assessment 

[279], economic dispatch [280], and electricity price forecasting [281]. 

 

Figure 2.21.  ML as a subfield of artificial intelligence 

 

 

Figure 2.22.  Traditional programming vs. ML 

 

 2.20.1 Steps of Machine Learning 

There are seven main steps of successfully implementing ML. They are outlined below and 

illustrated in Figure 2.23 [282]. 

Gathering Data 

The first and the most significant step of ML is gathering data. This step is very critical, as 

the quality and quantity of data gathered will directly determine how good the predictive 
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model will turn out to be. The data collected is then tabulated, and is commonly called as 

the training or learning data. 

Data Preparation 

After the training data is gathered, the next step of ML is data preparation, where the data 

is loaded into a suitable place and then, prepared for use in ML training. Here, the data is 

first put all together and consequently, the order is randomized as the order of data should 

not affect what is learned. This is also a good chance to do any visualizations of the data, 

as this will help see if there are any pertinent relationships between the different variables, 

and presence of any data imbalances or anomalies. Also, at this stage, the data must be 

divided into two parts. The first part, that is used in training the model, will be most of the 

dataset and the second will be used for the evaluation (validation and testing) of the 

performance of the trained model. 

Model Selection 

The subsequent step that follows in the workflow is choosing a model among the many 

that researchers and data scientists have created over the years. There are different 

algorithms for different tasks.  Some are appropriate for image data, others for sequences 

(such as text, or music), some for numerical data, others for text-based data. A selection 

should be made based on the task required. 

Training 

After the above-mentioned steps are completed, the next step involves training, where the 

data is used to incrementally improve the ability of the model to predict. The training 

process involves initializing some random values for the model, predicting the output with 

those values, then comparing it with the model’s prediction and eventually, adjusting the 
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values such that they match the predictions that were made formerly. This process then 

repeats, and each cycle of updating is called one training step. 

Evaluation 

Once training is complete, evaluation is performed. This is where the testing dataset comes 

into play. Evaluation allows the testing of the model against data that has never been seen 

and used for training and is meant to be representative of how the model might perform in 

the real world. 

Hyperparameter Tuning 

Once the evaluation is over, any further improvement in the training process is possible by 

tuning the parameters. There were a few parameters that were implicitly assumed when the 

training was done. Another parameter included is the learning rate that defines how far the 

line is shifted during each step, based on the information from the previous training step. 

These values are significant in the accuracy of the training model, and how long the training 

will take. For complicated models, initial conditions play a significant role in the 

determination of the outcome of training. Differences can be seen depending on whether a 

model starts off training with values initialized to zeroes versus some distribution of values. 

These parameters are commonly referred to as hyperparameters. The tuning of these 

parameters depends on the dataset, model, and the training process.  

Prediction 

ML is fundamentally using data to answer questions. Prediction is the final step where you 

get to answer few questions. This is the point where the value of ML is realized.  The model 

gains independence from human interference and thus, draws its own conclusion, based on 
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its data sets and training process. Here, eventually, the trained model can be used to predict 

the outcome for any desired inputs. 

 

 

Figure 2.23.  Seven steps of ML 

 

2.21 Classification of Machine Learning 

ML is generally classified into three broad types [225], as shown in Figure 2.24. A brief 

description of each type is given below. 

 

Figure 2.24.  Types of ML 
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Supervised Learning (SL) 

In supervised machine learning (SML), the aim is to learn a mapping between the inputs 

to outputs based on a given labeled set of input/output pairs in the training set. In this kind 

of learning, each example is a pair consisting of an input object (typically a vector) and a 

desired output value. A supervised learning (SL) algorithm examines the training data and 

generates an inferred function, which can be used for mapping new examples. Some 

common SL algorithms include artificial neural network (ANN), support vector machine 

(SVM), decision trees, Naïve Bayes, and k-nearest neighbor (kNN) [283]. The generic 

framework for SL is illustrated in Figure 2.25.  

 

 

Figure 2.25.  SL generic framework 

 

Unsupervised Learning (UL) 

In unsupervised learning (UL), the training of an algorithm is conducted, using information 

that is neither labeled nor classified, such that the algorithm may cluster the information 

based on similarity or difference. In contrast to the SL that makes use of  labeled data, UL, 

also known as self-organization, allows for modeling of probability densities over inputs.  

https://en.wikipedia.org/wiki/Self-organization
https://en.wikipedia.org/wiki/Probability_density_function
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The goal of UL is to discover hidden patterns in unlabeled data. Some of the most common 

algorithms used in UL include clustering and anomaly detection [283]. The generic 

framework for UL is illustrated in Figure 2.26.  

 

Figure 2.26.  UL generic framework 

 

Reinforcement Learning (RL) 

Reinforcement learning (RL) is an iterative process to predict the next optimal step to 

perform a task to get a final reward. In each stage, the deep learning agent receives an 

award when it moves in the direction of the goal. RL is suitable for training a computer to 

drive a vehicle or playing a game against an opponent [224]. Basically, in RL, an agent 

interacts with its environment and adapts its actions, based on the reward received in 

response to its actions [293].  RL differs from SL in the sense that it does not need labelled 

input/output pairs be presented, and does not need sub-optimal actions to be explicitly 

corrected. Instead, the emphasis is on finding a balance between exploration (of uncharted 

territory) and exploitation (of current knowledge) [294]. A few significant terms associated 

with RL are defined below [293]. 

a) Agent: the program, trained with the goal of doing the job specified. 
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b) Environment: the world, real or virtual, in which the agent performs actions. 

c) State: the observation, the agent does on the environment, after performing an 

action. 

d) Action: A move, that the agent performs on the environment, based on its 

observation. 

e) Reward: The feedback the agent receives, based on the action it performed. If the 

feedback is positive, it receives a reward and if the feedback is negative, it receives 

a penalty. 

In RL process, the environment gives the agent a state. The agent chooses an action and 

receives a reward from the environment along with the new state. This learning process 

continues, until the goal is achieved. The generic framework for RL is illustrated in Figure 

2.27.  

 

Figure 2.27.  RL generic framework 

The focus of the present work is on SML algorithms. As previously mentioned, commonly 

used SMLs include ANN, SVM, decision trees, random forest, and Naïve Bayes. However, 

amongst these algorithms, the present work will focus on ANN and SVM. 

2.22 Machine Learning Regression and Classification 



95 

 

The two most common applications of ML include regression and classification [285]. 

These two are often confused and used interchangeably, however, a distinction must be 

made between the two. Both applications deal with predicting a quantity. Regression is the 

task of predicting a continuous quantity. The core goal of regression problems is to estimate 

a mapping function, based on the input and output variables. Some common types of 

regression are linear, logistic, polynomial. Linear regression establishes a relationship 

between dependent variable and one or more independent variables, using a best fit straight 

line (also known as regression line). Logistic regression is used when the dependent 

variable is dichotomous (binary). Logistic regression estimates the parameters of a logistic 

model and is a form of binomial regression. Logistic regression focuses on the data that 

has two possible criterions and the relationship between the criterions and the predictors. 

A regression equation is a polynomial regression equation if the power of independent 

variable is more than one. In this regression technique, the best fit line is not a straight line. 

It is rather a curve that fits into the data points.  

Classification is the task of predicting discrete class labels. There are two kinds of 

classification: binary and multi. Binary classification refers to those classification tasks that 

have two class labels, and multi classification refers to the tasks with more than two class 

labels. Some algorithms can be used for both classification and regression, with small 

modifications, such as decision trees and ANNs. Some algorithms cannot, or cannot easily 

be used for both problem types, such as linear regression is used only for regression 

predictive modeling, and logistic regression for classification predictive modeling. Most 

prominently, the manner classification and regression predictions are evaluated differs 

significantly and does not overlap; for example, classification predictions can be evaluated 
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using accuracy metric, whereas regression predictions cannot. In a similar fashion, 

regression predictions can be evaluated using root mean squared error, whereas 

classification predictions cannot. The difference between classification and regression is 

graphically illustrated, using Figures 2.28 and 2.29.  

Generally, for ML classification and regression tasks, the entire data set is divided into 

three parts: training, validation, and testing. A training dataset is used during the learning 

process and is used to fit the parameters (e.g., weights, biases) of the model. A validation 

dataset is used to tune the hyperparameters (i.e., the architecture) of a classifier. A test 

dataset is independent of the training dataset, but that follows the same probability 

distribution as the training dataset. Thus, a test set is used only to assess the performance 

(i.e., generalization) of a fully specified model [286].   

 

Figure 2.28.  Difference between regression and classification 

 

https://en.wikipedia.org/wiki/Independence_(probability_theory)
https://en.wikipedia.org/wiki/Probability_distribution
https://en.wikipedia.org/wiki/Probability_distribution
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Figure 2.29.  Application of ML in prediction (classification and regression) 

 

2.23 Bias and Variance 

A constant challenge in ML is differentiating between underfitting and overfitting. These 

terms decide how closely your model follows the actual patterns of the dataset. To 

comprehend underfitting and overfitting, bias and variance must be elaborated [287].  

Bias, essentially, refers to the gap between the predicted value and the actual value. In the 

case of high bias, the predictions are likely to be skewed in a certain direction away from 

the actual values. Variance describes how dispersed your predicted values are. Bias and 

variance can be greatly understood by examining the visual representation of shooting 

targets, as shown in Figure 2.30. Shooting targets are not a visual chart used in ML, but it 

greatly aids to clarify bias and variance. Imagine that the center of the target (the bull’s 

eye), perfectly predicts the correct value of the model. The dots marked on the target then 

represent an individual realization of the model, based on the training data. In certain cases, 

the dots will be densely positioned close to the bull’s eye, ensuring that predictions made 

by the model are close to the actual data. In other cases, the training data will be scattered 
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across the target. The more the dots deviate from the bull’s eye, the higher the bias and the 

less accurate the model will be in its overall predictive ability. In the first target, we can 

see an example of low bias and low variance. Bias is low because the hits are closely 

aligned to the center and there is low variance because the hits are densely positioned in 

one location. The second target (located on the right of the first row) shows a case of low 

bias and high variance. Although, the hits are not as close to the bull’s eye as the previous 

example, they are still near to the center and bias is therefore relatively low. However, there 

is high variance because the hits are spread out from each other [287]. 

The third target (located on the left of the second row) represents high bias and low variance 

and the fourth target (located on the right of the second row) shows high bias and high 

variance. Ideally, we want a situation where there is low variance and low bias. In reality, 

though, there is more often a trade-off between optimal bias and variance. Bias and 

variance both contribute to error, but it is the prediction error that we want to minimize, 

not bias or variance, specifically [287]. 

 

 

Figure 2.30.  Shooting targets used to represent bias and variance 
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As evident in Figure 2.31, we can see two lines moving from left to right. The purple line 

represents the test data, and the other line below represents the training data. From the left, 

both lines begin at a point of high prediction error, due to low variance and high bias. As 

they move from left to right, the converse occurs: high variance and low bias. This leads 

to low prediction error in the case of the training data and high prediction error for the test 

data. In the center of the chart, there is an optimal balance of prediction error between the 

training and test data. This is commonly known as bias-variance trade-off [287]. 

 

 

Figure 2.31.  Model complexity based on prediction error 

 

2.24 Overfitting and Underfitting 

Two of the most well-known issues in ML are overfitting and underfitting [288-289]. These 

terms refer to the insufficiencies that the model’s performance might suffer from. This 

means that knowing “how off” the model’s predictions is a matter of knowing how close 

it is to overfitting or underfitting. A model that generalizes well is a model that is neither 
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underfit nor overfit. Generalization is the ability of the model to give sensible outputs to 

sets of input that it has never seen before. Let us assume, we have the dataset (shown in 

Figure 2.32), for which the ML model is required. 

 

Figure 2.32.  Example dataset 

Training the linear regression model in this example is all about minimizing the total 

distance (i.e., cost) between the line we are trying to fit and the actual data points. This 

goes through multiple iterations, until we find the relatively “optimal” configuration of our 

line within the data set. This is precisely where overfitting and underfitting occur. In linear 

regression, we would like our model to follow a line, as shown in Figure 2.33. 

 

Figure 2.33.  Desired ML model 

Even though the overall cost is not minimal (i.e., there is a better configuration, in which 

the line could yield a smaller distance to the data points), the line above fits within the trend 

very well, making the model reliable. Let us say, we want to infer an output for an input 
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value that is not currently resident in the data set (i.e., generalize). The line above could 

give a very likely prediction for the new input, as, in terms of ML, the outputs are expected 

to follow the trend, observed in the training set. 

When the training algorithm is run on the example data set, the overall cost (i.e., distance 

from each point to the line) can become smaller with more iterations. Leaving this training 

algorithm run for a long duration, results in minimal overall cost. However, this means that 

the line will be fit into all the points (including noise), capturing secondary patterns that 

may not be required for the generalization of the model. Referring to our example, if we 

leave the learning algorithm running for long, it could end up fitting the line, as illustrated 

in Figure 2.34. 

 

Figure 2.34.  Overfitting in ML model 

The core of an algorithm like linear regression is to capture the dominant trend and fit our 

line within that trend. In Figure 2.34, the algorithm captured all trends — but not the 

dominant one. If we want to test the model on inputs that are beyond the line limits, we 

have (i.e., generalize), what would that line look like? There is really no way to tell. 

Therefore, the outputs are not reliable. If the model does not capture the dominant trend 
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that we can see (positively increasing, in our case), it cannot predict a likely output, for an 

input that it has never seen before, thereby, confronting the purpose of ML. 

Overfitting is the case where the overall cost is small, but the generalization of the model 

is unreliable. This is due to the model learning “too much” from the training data set. We 

always want to find the trend, not fit the line to all the data points. Overfitting (or high 

variance) leads to more bad than good. There is no use of such a model that has learned 

very well from the training data but still is unable to make reliable predictions for new 

inputs. 

We want the model to learn from the training data, but we do not want it to learn too much 

(i.e., too many patterns). One solution could be to stop the training earlier. However, this 

could lead the model to not learn enough patterns from the training data, and possibly not 

even capture the dominant trend. This case is called underfitting, as illustrated by Figure 

2.35. Underfitting is the case where the model has “not learned enough” from the training 

data, resulting in low generalization and unreliable predictions. 

It must be noted that underfitting (or high bias) is just as bad for generalization of the model 

as overfitting. In high bias, the model might not have enough flexibility in terms of line 

fitting, resulting in a simplistic line that does not generalize well. 

 

Figure 2.35.  Underfitting in ML model 
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As the goal of SL is to approximate an unknown function by using a dataset of samples, it 

is a common problem that the model either adapts too well to the input data or is unable to 

approximate the unknown function because of lack in model capacity. This is undesirable, 

as we want the model to learn the general patterns found in the input space, and not adapt 

too much to the noise in the data samples. If the model is unable to approximate the function 

due to lack of model capacity, it is termed as underfitting. If the model adapts too well to 

the training dataset, and ends up memorizing the data samples, it is termed as overfitting 

[288]. There are multiple ways to deal with overfitting and underfitting of models, which 

can roughly be divided into two categories: data augmentation and model tuning. The 

process of making the model more robust is called generalization, and methods from both 

categories are often used to reduce the risk of overfitting or underfitting. The goal of 

generalization is to reduce the estimated generalization error, the model loss, when 

presented with new, unseen samples.  

The method of early stopping [290] is often used to counter overfitting. When a learning 

algorithm is trained iteratively, the performance of each iteration of the model can be 

estimated. Up until a certain number of iterations, new iterations improve the model. After 

that point, however, the model’s ability to generalize can deteriorate, as it begins to overfit 

the training data. Early stopping means the stopping of the training process before the 

learner passes that point. In other words, early stopping rules provide guidance as to how 

many iterations can be run before the learner begins to overfit. This is illustrated in Figure 

2.36. On the other hand, underfitting can be prevented by increasing the training time of 

the model, and by increasing the number of input features. 
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Figure 2.36.  The method of early stopping 

 

2.25 Cross Validation: Overview and Classification  

This section presents a brief overview and different kinds of cross validation, which is 

commonly used in ML algorithms [291].  Cross validation is a method for validating the 

model efficiency by training it on the subset of input data and testing it on unseen subset 

of the input data, i.e., test data. It is a procedure used to verify how a statistical model 

generalizes to an independent dataset. Usually, an error estimation for the model is made 

after training, better known as evaluation of residuals. In this process, a numerical estimate 

of the difference in predicted and original responses is conducted, also called the training 

error. However, this only gives an idea about how well the model does on data used to 

train. The problem with residual evaluations is that they do not give an indication of how 

well the learner will do when it is asked to make new predictions for data it has not already 

seen. One way to overcome this problem is to not use the entire data set when training a 
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learner. Some of the data is removed before training begins. Then, when training is done, 

the data that was removed, can be used to test the performance of the learned model on 

new data. This is the basic idea for a whole class of model evaluation methods, commonly 

called cross validation. Cross validation is a model evaluation method that is generally 

better than evaluation of residuals. Some commonly used types of cross validation methods 

are described below. 

Holdout Cross Validation 

The holdout method is the simplest kind of cross validation. In this approach, the data set 

is split into two sets, called the training set and the testing set. The function approximator 

fits a function using the training set only. Afterwards, the function approximator is asked 

to predict the output values for the data in the testing set (it has never seen these output 

values before). The errors it makes, are accrued, to determine the mean absolute test set 

error, which is used to evaluate the model. The benefit of holdout method is that it is 

typically superior to the residual method and takes no longer to compute. It is because it 

only needs to be run once. However, its evaluation can have a high variance. The evaluation 

may depend profoundly on which data points end up in the training set and which end up 

in the test set, and thus, the evaluation may be significantly different, depending on how 

the division is made. This is illustrated in Figure 2.37. 
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Figure 2.37.  Holdout cross validation 

 

Monte Carlo Cross Validation 

Monte Carlo validation divides the data randomly into train and test set, and this process 

is repeated multiple times. The results are averaged over all splits. The drawback of this 

method is that some observations may never be chosen, whereas some might be selected 

multiple times. This is illustrated in Figure 2.38. 

 

Figure 2.38.  Monte Carlo cross validation 

 

K-Fold Cross Validation  

K-fold cross validation is the most commonly used cross validation approach and provides 

one way to improve the holdout method. The data set is divided into k subsets, and the 

holdout method is repeated k times. Each time, one of the k subsets is used as the test set 

and the other k-1 subsets are put together to form a training set. Then, the average error 
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across all k trials is computed. The benefit of this method is that it matters less how the 

data gets divided. Every data point gets to be in a test set exactly once and gets to be in a 

training set (k-1) times. The variance of the resulting estimate is reduced, as k is increased. 

The disadvantage of this method is that the training algorithm must be rerun from 

scratch, k times, which means it takes k times as much computation to make an evaluation. 

In other words, this approach attempts to maximize the use of the available data 

for training and consequently, testing a model. It can also prevent over fitting, while 

training the data [292]. This is illustrated in Figure 2.39. 

 

Figure 2.39.  Graphical representation of K-fold cross-validation (for K=5) 

 

2.26 Performance Evaluation Metrics 

This section will discuss the commonly used performance evaluation metrics for ML 

regression and classification tasks. 

2.26.1 Regression Metrics 

There are various metrics used to evaluate the results of the regression. A brief description 

of these metrics is presented below [293]. In these metrics, N denotes total data points, yi 
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denotes actual (target) value, ŷ denotes the predicted value, and y  denotes the mean value 

of y. 

Coefficient of Regression, R 

It is also known as the Pearson correlation coefficient or the bivariate correlation. This 

metric measures linear correlation between two variables. It has a value between +1 and 

−1. A value of +1 is total positive linear correlation, 0 is no linear correlation, and −1 is 

total negative linear correlation. Mathematically, it is given by,  
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Coefficient of Determination, R-squared 

This metric measures how much of variability in dependent variable can be explained by 

the model. It is the square of R and hence, is called R-squared. It estimates the proportion 

of the variance for a dependent variable that is explained by an independent variable or 

variables in the regression model. Its value is between 0 to 1 and a larger value indicates a 

better fit between predicted and actual value. Mathematically, 
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where SSres and SStot denotes the residual sum of squared errors and total sum of squared 

errors of the regression model, respectively. 

MSE 

https://www.investopedia.com/terms/r/regression.asp
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The mean squared error (MSE) is calculated by the sum of square of prediction error, i.e., 

the actual output minus predicted output, divided by the total number of data points. It 

gives an absolute number on how much the predicted values deviate from the actual values. 

Mathematically, 

 
2

1

1
ˆ( )

N

i

i

MSE y y
N 

    (2.35) 

RMSE 

Root mean square error (RMSE) is the square root of MSE. It is used more commonly than 

MSE because firstly, sometimes MSE value can be too big to compare easily. Secondly, 

MSE is calculated by the square of error, and thus, square root brings it back to the same 

level of prediction error and makes it easier for interpretation purposes. Mathematically, 

 2

1

1
ˆ( )

N

i

i

RMSE y y
N 

    (2.36) 

MAE 

Mean absolute error (MAE) is similar to MSE. However, instead of the sum of square of 

errors in MSE, MAE is taking the sum of absolute value of errors. Mathematically, 

 
1

1
ˆ| |

N

i

i

MAE y y
N 

    (2.37) 

Compared to MSE or RMSE, MAE is a more direct representation of sum of error 

terms. MSE gives larger penalization to a larger prediction error by squaring it, while MAE 

treats all errors the same. 

2.26.2 Classification Metrics 
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There are various metrics used to evaluate the results of the regression. A brief description 

of these metrics is presented below. 

Confusion Matrix  

The confusion matrix [294] is one of the most intuitive and simplest approach, used for 

determining the correctness and accuracy of the model. It is used for a classification 

problem, where the output can be of two or more types of classes. An example will better 

help in illustrating the concept. The first step is to assume a label to the target variable, i.e., 

say, 1, for a person having cancer, and 0, for a person not having cancer. Now, the problem 

is identified, the confusion matrix, is a table with two dimensions (“actual” and 

“predicted”) and sets of “classes” in both dimensions. In the presented example, the actual 

classifications are columns and predicted ones are rows, as illustrated in Figure 2.40. 

 

Figure 2.40.  Confusion matrix illustration 

The confusion matrix is not a performance measure as such, but almost all the performance 

metrics are based on this matrix and the numbers inside it. Some significant terms 

associated with confusion matrix are defined below. 

True Positives (TP): True positives are the cases when the actual class of the data point 

was 1 (True) and the predicted is also 1 (True), for instance, the case where a person is 
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actually having cancer (1) and the model classifying his case as cancer (1) comes under 

true positive. 

True Negatives (TN): True negatives are the cases when the actual class of the data point 

was 0 (False) and the predicted is also 0 (False), for instance, the case where a person not 

having cancer and the model classifying his case as not cancer comes under true negatives. 

False Positives (FP): False positives are the cases when the actual class of the data point 

was 0 (False) and the predicted is 1 (True). False is because the model has predicted 

incorrectly and positive because the class predicted was a positive one (1), for instance, a 

person not having cancer and the model classifying his case as cancer comes under false 

positive. They are also known as type I errors. 

False Negatives (FN): False negatives are the cases when the actual class of the data point 

was 1 (True) and the predicted is 0 (False). False is because the model has predicted 

incorrectly and negative because the class predicted was a negative one (0), for example, a 

person having cancer and the model classifying his case as no cancer, comes under false 

negative. They are also known as type II errors. 

Classification Accuracy (CA) 

Classification Accuracy (CA) is a commonly used classification performance metric [295]. 

It is calculated as the number of all correct predictions divided by the total number of the 

data points. The ideal value of CA is 1, whereas the worst is 0. It is mathematically defined 

as 

 
TP TN TP TN

CA
TP TN FP FN N

 
 

  
 (2.38) 
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where TP, TN denote the correctly predicted data, and FP, FN denote incorrectly predicted 

data, respectively. N denotes total data points. 

Classification Error (CE) 

Classification error (CE) represents the number of incorrect predictions from the total 

number of the data points. The closer it is to zero, the better. Mathematically, 

 1
FP FN FP FN

CE CA
TP TN FP FN N

 
   

  
      (2.39) 

Sensitivity 

Sensitivity (or recall) is a measure of actual positives which are correctly identified [295]. 

Mathematically, 

 1
TP

S
TP FN




 (2.40) 

where S1 denotes sensitivity. 

Specificity 

Specificity is the proportion of truly negative cases that were classified as negative [295]. 

Mathematically, 

 2
TN

S
TN FP




 (2.41) 

where S2 denotes specificity. 

Precision 

In the simplest terms, precision is the ratio between the true positives and all the positives 

[296]. Mathematically, 

 
TP

P
TP FP




      (2.42) 
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where P denotes precision. 

F1-score 

As evident from (2.40) and (2.42), recall S1 and precision P cannot be simultaneously 

improved; increasing one leads to the decrease of the other one, and vice versa. To counter 

this, the metric F1-score is normally used. The F1-score is a single metric which relates 

both P and S1 through their harmonic mean. This score lies between 0 and 1; with 1 being 

ideal and 0 being the worst.  In simple words, the F1-score tries to find the balance between 

precision and recall. Mathematically, it is given by, 

 
1

1

1

2 P S
F

P S

 



     (2.43) 

Receiver Operating Characteristic (ROC) curve  

A receiver operating characteristic (ROC) curve is a graphical plot that establishes the 

diagnostic ability of a binary ML classifier [297]. In this plot, the true positive rate (S1) is 

plotted against the false positive rate (1-S2), as exemplified by Figure 2.41. A classification 

ML model with perfect discrimination has a ROC plot that passes through the upper left 

corner (100% sensitivity, 100% specificity), i.e., its area under curve (AUC) is equal to 1.  

AUC is one of the most widely used metrics for classification. AUC of a classifier is equal 

to the probability that the classifier will rank a randomly chosen positive example higher 

than a randomly chosen negative example. The closer the AUC is to 1, the greater the 

classification accuracy, i.e., the blue curve in Figure 2.41 should be as close as possible to 

the top left corner. The closer the curve comes to the 45-degree diagonal of the ROC space, 

the less accurate is the classifier. 
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Figure 2.41.  Illustration of the ROC curve  

 

2.27 Artificial Neural Networks: Background and Overview 

The development of ANNs was inspired by the studies of the central nervous system of the 

human, where the nodes and the interaction within themselves, are to mimic the brains 

neurons and their synaptic connections. By introducing a training data set to the network, 

the synaptic weights are iteratively strengthened, until the response of the network follows 

the output data, like the learning process in the biological brain [298]. ANNs are powerful 

processing tools, enfolding the ability of learning from experience. From a general 

viewpoint, ANNs are a data-driven, black box technique, aiming at learning and modeling 

the input-output relationship, of a given process, from the knowledge of a set of input-

output measurements only. Neural networks are nature-inspired techniques. Specifically, 

ANNs aim at mirroring the functionality and the learning capabilities of the human brain. 

Thus, they are organized as a network of atomic computational units called artificial 

neurons, each of them performing a simple and rudimentary processing of its inputs and 

consequently, propagating the resulting output to the other neurons [299]. Thus, ANNs 
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have been applied, with promising performances, in various black box modeling tasks, 

involving classification [300-302] and function approximation [303-305]. Generally, 

ANNs have three layers: input, hidden, and output. The input layer contains the initial data 

which is fed into the neural network; the output layer produces the results for the given 

inputs, and the hidden layer is an intermediate layer between input and output layer, where 

all the required computation is done, i.e., the hidden layer performs nonlinear 

transformations of the inputs entering the network [303-304]. 

2.28 Brief History of ANNs 

This section will briefly overview the historical timeline of ANNs, as illustrated in Figure 

2.42 [306-308].  Although, the study of the human brain is thousands of years old, the first 

step towards neural networks took place in 1943, when Warren McCulloch, a 

neurophysiologist, and Walter Pitts, a young mathematician, wrote a paper on the working 

principle of neurons. Strengthening the concept of neurons and their working principle was 

formulated into a book, The Organization of Behavior, written by Donald Hebb, in 1949. 

It concluded that neural pathways are reinforced each time that they are used. 

“In the 1950s, N. Rochester, from the International Business Machines (IBM) research 

laboratories, led the first effort to simulate a neural network. In 1956, the Dartmouth 

Summer Research Project on artificial intelligence provided a boost to both artificial 

intelligence and neural networks. This stimulated research in artificial intelligence and in 

the much lower-level neural processing part of the brain. In 1957, J. Neumann 

recommended emulating simple neuron functions, by using telegraph relays or vacuum 

tubes. 
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In 1958, F. Rosenblatt began working on the perceptron. He was absorbed with the 

operation of the eye of a fly. Much of the processing which tells a fly to flee is done in its 

eye. The perceptron, which resulted from this research, was built in hardware and is the 

oldest neural network still in use today. A single-layer perceptron was found to be valuable 

in classifying a continuous-valued set of inputs into one of two classes. The perceptron 

computes a weighted sum of the inputs, subtracts a threshold, and passes one of two 

possible values out as the result. 

In 1959, B. Widrow and M. Hoff developed models they called ADALINE and 

MADALINE. These models were named for their use of Multiple ADAptive LINear 

Elements. MADALINE was the first neural network to be applied to a real-world problem. 

It is an adaptive filter which eliminates echoes on phone lines. Growth on neural network 

research ceased due fear, unfulfilled claims, etc. until 1981. This caused respected voices 

to evaluate the neural network research. The result was to pause much of the funding. This 

period of underdeveloped growth lasted through 1981. 

In 1982, several events caused a renewed interest. J. Hopfield presented a paper to the 

national Academy of Sciences. His approach was not to simply model brains, but to create 

useful devices. With lucidity and mathematical investigation, he showed how such 

networks could work and what they could do. By 1985, the American Institute of Physics 

began what has become a yearly meeting - Neural Networks for Computing. By 1987, the 

IEEE first International Conference on Neural Networks drew more than 1,800 attendees. 

In 1997, A recurrent neural network framework, Long Short-Term Memory (LSTM) was 

proposed by Schmidhuber and Hochreiter. 

In 1998, Y. LeCun published Gradient-Based Learning Applied to Document Recognition. 
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Several other steps have been taken since then to get us to where we are now; today, 

discussions regarding ANNs are predominant. Presently, most neural network 

development is simply proving that the principal works.” 

 

Figure 2.42.  Pictorial view of history of neural networks 

2.29 Components of ANN 

This section will briefly describe various components of a typical ANN [309-310]. 

Neurons 

ANNs are comprised of artificial neurons which are theoretically derived from 

biological neurons. Each artificial neuron has inputs and produces a single output, which 

can be directed to numerous other neurons. The inputs can be the feature values of a sample 

of external data, such as images or documents, or they can be the outputs of other neurons. 

The outputs of the final output neurons of the neural net achieve the task, such as image 

recognition. To determine the output of the neuron, the weighted sum of all the inputs is 

https://en.wikipedia.org/wiki/Artificial_neurons
https://en.wikipedia.org/wiki/Neuron
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computed, weighted by the weights of the connections from the inputs to the neuron. Then, 

a bias term is added to this sum. This weighted sum is occasionally called the activation. 

This weighted sum is then passed through a (usually nonlinear) activation function for 

output generation. 

Connections and Weights 

“The network consists of connections, each connection providing the output of one neuron 

as an input to another neuron. Each connection is assigned a weight that represents its 

relative importance. A given neuron can have multiple input and output connections.” 

Activation Function 

Activation functions are functions used in neural networks to compute the weighted sum 

of input and biases, which is used to decide whether a neuron can be fired or not. Activation 

function can be either linear or non-linear depending on the function it represents. 

Layers 

“The neurons are typically organized into multiple layers, especially in deep learning. 

Neurons of one layer connect only to neurons of the immediately preceding and 

immediately following layers. The layer that receives external data is the input layer. The 

layer that produces the ultimate result is the output layer. In between them are zero or 

more hidden layers. Single layer and unlayered networks are also used. Between two 

layers, multiple connection patterns are possible. They can be fully connected, with every 

neuron in one layer connecting to every neuron in the next layer. They can be pooling, 

where a group of neurons in one layer connect to a single neuron in the next layer, thereby 

reducing the number of neurons in that layer. Neurons with only such connections form 

a directed acyclic graph and are known as feedforward networks. Alternatively, networks 

https://en.wikipedia.org/wiki/Deep_learning
https://en.wikipedia.org/wiki/Feedforward_neural_network
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that allow connections between neurons in the same or previous layers are known 

as recurrent networks.”  

Hyperparameter 

A hyperparameter is a constant parameter whose value is set before the learning process 

begins. The values of parameters are derived via learning. Examples of hyperparameters 

include number of neurons, the number of hidden layers and batch size.  

Loss Function 

The loss function (or a cost function) is one of the most significant component of the 

ANN. It essentially represents the prediction error of neural network, and the method to 

calculate the loss is called loss function. The loss function simply computes the absolute 

difference between the predicted and the actual value. 

2.30 Types of ANN 

This section briefly describes various kinds of ANN. There are two broad types of ANN: 

static and dynamic [311]. The static ANNs, such as multilayer perceptron neural network 

(MLPNN), are characterized by memoryless node equations; on the contrary, dynamic 

ANNs, such as recurrent neural network (RNN), are described by differential equations. 

ANN has various kinds as depicted by Figure 2.43 [312]. A brief description follows. 

Feedforward Neural Network (FNN) 

It is the simplest form of neural networks, where input data travels in one direction only, 

passing through artificial neural nodes, and exiting through output nodes. In feedforward 

neural network (FNN), hidden layers may or may not be present, input and output layers 

are always present. They can be further categorized as a single-layered (no hidden layer) 

https://en.wikipedia.org/wiki/Recurrent_neural_network
https://en.wikipedia.org/wiki/Parameter
https://en.wikipedia.org/wiki/Learning_rate
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or multilayered (at least one hidden layer) FNN. This kind of ANNs have some advantages, 

for instance, they are less intricate, easy to design, and maintain. Moreover, they are fast 

and speedy (one-way propagation), and are highly responsive to noisy data; however, they 

cannot be applied for deep learning applications, due to absence of dense layers. 

Convolutional Neural Network (CNN) 

Convolutional neural network (CNN) contains a three-dimensional arrangement of 

neurons, instead of the standard two-dimensional array. The first layer is called a 

convolutional layer. Each neuron in the convolutional layer only processes the information 

from a small part of the visual field. Input features are taken in batch-wise, like a filter. The 

network understands the images in parts, and can compute these operations multiple times, 

to complete the full image processing. Processing involves conversion of the image from 

RGB (red, green, blue) or HIS (hue, saturation, intensity) scale to grey-scale. Advancing 

the changes in the pixel value aids in detecting the edges, and therefore, images can be 

classified into different categories. They are commonly used for deep learning with few 

parameters and therefore, they require few parameters to learn as compared to 

fully connected layer. Their main advantage is that they automatically detect the significant 

features, without any human supervision. For instance, given many pictures of pigs and 

horses, it can learn the key features for each class by itself. However, they are 

comparatively intricate to design and maintain, and are comparatively slow (depending on 

the number of hidden layers). Moreover, CNN requires a huge dataset to process and train 

the network. 

Radial Basis Function Neural Network (RBFNN) 
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A radial basis function (RBF) neural network is a network which uses radial basis 

functions as activation functions (these functions are used to determine the output of a 

neuron in an ANN). The output of the network is a linear combination of radial basis 

functions of the inputs and neuron parameters. Radial basis function neural network 

(RBFNN) consists of an input vector, followed by a layer of RBF neurons and an output 

layer, with one node per category. Classification using RBFNN is generally performed by 

measuring the input’s similarity to data points from the training set, where each neuron 

stores a prototype. Compared to MLPNN, the training phase is faster, due to absence of 

backpropagation (BP) learning. Moreover, RBFNN have advantages of easy design, good 

generalization, and strong tolerance to input noise. However, the classification is slow, in 

comparison to MLPNN, as every node in the hidden layer must compute the RBF function, 

for the input sample vector. 

Recurrent Neural Network (RNN) 

A recurrent neural network (RNN) is a class of ANNs, where connections between nodes 

form a directed graph, along a temporal sequence. This allows it to exhibit temporal 

dynamic behavior. Primarily derived from FNNs, RNNs can use their internal state 

(memory) to process variable length sequences of inputs. They have a crucial advantage to 

process inputs of any length. Moreover, they can use their internal memory for processing 

the arbitrary series of inputs, which is not the case with FNNs. Moreover, model size does 

not increase with input size in the case of RNNs. However, due to its recurrent nature, the 

computation process of RNN is slow, it cannot consider any future input for the current 

state, and the training procedure of RNN models can be complicated. Moreover, it cannot 

process very long sequences if using tanh as an activation function. 

https://en.wikipedia.org/wiki/Activation_function
https://en.wikipedia.org/wiki/Artificial_neural_network
https://en.wikipedia.org/wiki/Feedforward_neural_networks
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Modular Neural Network (MNN) 

“A modular neural network (MNN) is an ANN, characterized by a series of independent 

neural networks, moderated by some intermediary. Each independent neural network 

serves as a module and operates on separate inputs, to achieve some subtask of the task, 

the network aims to perform. [313] The intermediary takes the outputs of each module and 

processes them to produce the net output of the network. The intermediary only accepts 

the modules’ outputs—it does not respond to, nor otherwise signal, the modules. Moreover, 

the modules do not interact with each other. The possible neuron (node) connections 

increase quadratically, as nodes are added to a network. Computation time depends on the 

number of nodes and their connections; any increase has drastic consequences for 

processing time. Assigning specific subtasks to individual modules reduce the number of 

necessary connections. However, each module can be trained independently and thereby, 

can precisely accomplish its simpler task. This means the training algorithm and the 

training data can be implemented more quickly.” 

The nonexistence of wide research into learning and formation techniques for neural 

modularity makes it hard for practitioners to proficiently deploy the technique. Also, there 

is still a substantial gap regarding stimulation of problem decomposition in modular 

networks, so that their topological modularity may also become a full functional modularity 

[314]. 

Multilayer Perceptron Neural Network (MLPNN) 

A multilayer perceptron (MLP) is a class of FNN. This work focuses on MLPNN as it is 

the simplest and most commonly used ANN [315]. The MLPNN was first developed in 

early 1970s [316]. This kind of neural network constitutes an input layer (comprising of 

https://en.wikipedia.org/wiki/Artificial_neural_network
https://en.wikipedia.org/wiki/Neuron
https://en.wikipedia.org/wiki/Algorithm
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input neurons), an output layer (comprising of output neurons), and one or more hidden 

layers (comprising of hidden neurons). The numbers of neurons in both input and output 

layers depend on the kind of problem, whereas the numbers of neurons in the hidden layers 

are arbitrary and are generally selected by trial-and-error approach. Figure 2.44 

demonstrates a generic MLPNN with a single hidden layer. The layers in the MLPNN are 

interconnected by links, which are related with weights that command the impact on the 

information passing through them [317]. In this network, the flow of information is 

unidirectional (from input to output through the hidden layer). A learning algorithm 

determines the weights.  

 

Figure 2.43.  Types of ANN 
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Figure 2.44.  A typical MLPNN with one hidden layer 

 

2.31 Network Training: Feedforward 

Consider a basic neural network structure, as shown in Figure 2.45 [317]. The input layer 

consists of 0x  to Dx  input nodes. The input parameters are x1 to xD and the input bias is 

0x . When moving from the input layer to the hidden layer, the raw data, x, is linearly 

combined using a pre-activation equation, aj, given by 

 
(1) (1)

0

1

D

j ji i j

i

a w x w


    (2.44) 

 

Figure 2.45.  Basic structure of a neural network 
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After each nodal input, aj, is calculated, the activation is calculated, for each node, in the 

hidden layer z1 to zM, using a chosen activation function. For this example, both the hidden 

layers and output layer activation functions are the same. The variables in the pre-activation 

equation are as follows: 

1. xi: Input matrix (includes the bias term x0).  

2. 
(1)

jiw : Weights are defined for each connection between an input node and the successive 

layer’s nodes.  

3. 
(1)

0jw : Weights defined exclusively for each connection between the bias (x0) and hidden 

layer nodes. 

Now that the input data from the input layer has been transformed using (2.44), aj becomes 

the input, going into each node, within the hidden layer. The hidden layer activation 

function is the next mathematical transformation and will occur at each node, within the 

hidden layer. For this example, the hidden layer activation function is arbitrarily defined 

as the sigmoid function, given by, 

 
1

( )
1 j

j j
a

z a
e




 


  (2.45) 

Once the hidden layer activation function output zj is computed, the process can be 

considered as repeating. Now, the output of the first hidden layer is the input to the next 

layer, which, in this example, is the output layer. 
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k kj j k
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a w z w


   (2.46) 

The activation function can be different for each layer, but for this example the activation 

function will be the same for both the hidden layer and the output layer. Because this is the 
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output layer, the output of the output layer’s activation function represents the predicted 

targets, given by,  
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  (2.47) 

To finish describing the feed forward mathematical process, for the entire neural network, 

shown in Figure 2.45, the overall output of the FNN example can be described by  
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      (2.48) 

The above explanation is a basic example of how a FNN can be built and used.  

 

2.32 Network Training: Backpropagation Algorithm 

BP algorithm is extensively used as a learning algorithm for MLPNN. It is based on a 

gradient descent technique [317]. It comprises of the re-iteration of two main phases, 

known as the forward and the backward ones. During the forward step, the input samples 

belonging to the training set are fed to the network, and the related outputs are assessed. 

During the backward phase, the predicted outputs are compared with the expected ones 

and the resulting errors are fed back to the network to update all the weights. The latter 

step is performed by minimizing an appropriate error function by means of the gradient 

descent algorithm. Usually, a differentiable function must be considered, and common 

examples include mean squared error (MSE), or root mean squared error (RMSE), which 

are used in function approximation problems [299]. Now that one pass through a FNN has 

been explained (Section 2.31), the next step is where the ML occurs. The overall output, 

which was calculated, yk, is compared to the training outputs, which correspond to the 
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training inputs, xi. Depending on how the FNNs predicted targets, ( , )ny x w , compared with 

the actual training data targets, tn, the weights and biases will be adjusted. This is done by 

using an error function: as with the activation function, many different error functions can 

be used depending on the application, but for this example a simple sum-of-squares error 

function is used, given by 
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

    (2.49) 

where N indicates the total number of data observations. 

The error is first calculated at the output layer and propagates backwards, through the FNN 

all the way back to the input layer. By taking the derivative of the error function with 

respect to the weights, the error function provides information on how to adjust the weights 

and biases from their initial values to a value, which will improve the output of the FNN, 

yk, to be closer to the actual target values. One parameter which influences the quickness 

of error minimization is the learning rate hyperparameter. The learning rate describes the 

magnitude of the adjustment step size for improved weight and biases. A simple flowchart 

[318] elaborating the basics steps of BP algorithm is shown in Figure 2.46. The detailed 

mathematics of this algorithm is beyond the scope of this research; however, an eager 

reader may refer to [319] for associated mathematical functions involved.  

 

2.33 Output of a Single Neuron 

The artificial neuron was firstly theorized by McCulloch and Pitts in [320], and a first real 

implementation of an ANN was proposed by Rosenblatt, in [321], with the perceptron. The 
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procedure to determine the output of any single neuron in the MLPNN is described as 

follows [322]. Let x1, x2, x3, …. xn, and wi1, wi2,…..win be the inputs and corresponding 

weights, associated with the neuron, respectively. Let bk be the bias (constant). Let y be 

the output of the neuron. This is illustrated in Figure 2.47. Mathematically, 
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[ ( ) ]
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j ij k

j

y x w b


    (2.50) 

where   denotes the activation function. It must be noted that bias is a significant 

parameter in the MLPNN which is used to offset the output, along with the weighted sum 

of the inputs to the neuron. Moreover, it allows to shift the activation function to either 

right or left [322]. 

 

Figure 2.46.  Backpropagation (BP) algorithm 
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Figure 2.47.  Output evaluation process of a single neuron 

 

2.34 ANN Model Construction  

There is no recognized technique regarding how to determine the best number of neurons 

to use in an ANN. In fact, the number of hidden neurons and layers depends on the number 

of inputs, outputs, sample points, complexity of data [323]. The most common way to 

decide the configuration is by running a series of tests repeatedly, where the number of 

hidden neurons is modified until the best configuration is determined. 

At the beginning of each training, the synaptic weights are assigned a randomly set starting 

value, which means that unless the starting values are saved, the chance that the exact 

network is repeated twice is tremendously small. There is also a risk that the starting values 

are far from the minima and the learning algorithm gets stuck in a local minimum, the result 

being a network with poor performance. It is, thus, important to train the network 

iteratively, with the established configuration, to ensure that the network is not the product 

of a poor learning cycle. The general framework to train the network is illustrated in Figure 

2.48, where training data is fed into the model who gives its response and compares it to 

the actual value supplied by the training data. 
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Figure 2.48.  ANN training framework 

 

2.35 Activation Functions in ANNs 

This section briefly describes common activation (or transfer) functions, used in ANN 

training [324-325]. An activation function is used to determine the output of neural 

network, like, say, yes or no. It maps the resulting values in between 0 to 1 or -1 to 1, etc. 

(depending upon the function). Activation functions also have a key impact on the neural 

network’s ability to converge and the convergence speed, or in some cases, activation 

functions might prevent neural networks from converging in the first place. The activation 

functions can be basically divided into two major kinds, linear and nonlinear, as described 

below. 

2.35.1 Linear or Identity Activation Function 

The simplest activation function is known as the linear activation, where no transform is 

applied, as illustrated in Figure 2.49. A network comprised of only linear activation 

functions is quite easy to train but cannot learn complex mapping functions. Linear 

activation functions are still used in the output layer for networks that predict a continuous 

quantity (e.g., regression problems). As evident, the output of such functions will not be 

confined between any range. Therefore, it does not help with the complexity or various 
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parameters of usual data, that is fed to the neural networks. Moreover, it is not possible to 

use BP (gradient descent) to train the model—the derivative of the function is a constant 

and has no relation to the input. Thus, it is not possible to go back and understand which 

weights in the input neurons can provide a better prediction. 

 

 
Figure 2.49.  Linear activation function 

 

2.35.2 Nonlinear Activation Function 

The Nonlinear activation functions are the most commonly used activation functions in 

ANNs. All modern neural network models use this type of activation function. These 

functions allow the model to create complex mappings between the network’s inputs and 

outputs, which are essential for learning and modeling complex data, such as images, video, 

audio, and data sets, which are non-linear or have high dimensionality. Nonlinearity helps 

to makes the graph, something similar to Figure 2.50. Thus, it makes it easy for the model 

to generalize or adapt, with variety of data and to differentiate between the output.  The 

main benefit of using nonlinear functions is that they allow BP because they have a 

derivative function, which is related to the inputs. Moreover, they allow “stacking” of 
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multiple layers of neurons to form a deep neural network. Multiple hidden layers of neurons 

are required to learn complex data sets with high accuracy levels. 

 

Figure 2.50.  Nonlinear activation function 

Nonlinear activation functions are further divided into various kinds described below. 

Sigmoid or Logistic Activation Function 

The sigmoid (or logistic/Fermi) function curve resembles a S-shape, as shown in Figure 

2.51. The main reason to use sigmoid function is because it lies between 0 to 1. Therefore, 

it is specifically used for models, where it is required to predict the probability as an output. 

Since probability exists only between the range of 0 and 1, sigmoid is the right choice. 

Another benefit of using this activation function is that it is differentiable, i.e., the slope of 

the sigmoid curve at any two points can be determined. The function is monotonic (a 

function which is either entirely non-increasing or non-decreasing). The monotonicity 

criterion helps the neural network to converge easier into a more accurate classifier.  

Although, the major advantage of using this activation function is that it is simple to apply 

for classification; however, it has a disadvantage that it gives rise to the problem of 

“vanishing gradient” because its output is not zero centered. Therefore, a large change in 
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the input of the sigmoid function will cause a small change in the output. Hence, the 

derivative (gradient) becomes small. In other words, when inputs become very small or 

very large, the sigmoid function saturates at 0 and 1. In this case, its derivative is very 

close to zero. Thus, in this case, it has almost no gradient to propagate back through the 

network. A small gradient implies that the weights and biases of the initial layers will not 

be updated effectively in each epoch (iteration through the process of providing the 

network with an input and updating the network’s weights). Since these initial layers are 

quite crucial in identifying the essential elements of the input data, it can cause an overall 

inaccuracy in the entire network. 

 

Figure 2.51.  Sigmoid activation function 

Hyperbolic tangent (Tanh) Activation Function 

Tanh is also like logistic sigmoid but better. The range of the tanh function is from -1 to 1. 

Tanh is also sigmoidal (S-shaped), as illustrated by Figure 2.52. 
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Figure 2.52.  Tanh vs. sigmoid activation functions 

The tanh function is differentiable and monotonic and is mainly used classification between 

two classes. Both tanh and sigmoid activation functions are commonly used in FNNs. 

However, similar to sigmoid activation function, when input becomes large (negative or 

positive) the tanh function saturates at -1 or +1, with the derivative extremely close to zero. 

Therefore, like sigmoid function, tanh activation function suffers from vanishing gradients 

problem, and comes under the class of saturating activation functions. 

ReLU (Rectified Linear Unit) Activation Function  

The rectified linear unit (ReLU) activation function is a piecewise linear function that will 

output the input directly if it is positive, otherwise, it will output zero, as illustrated by Figure 

2.53. It is used in almost all the CNNs and deep learning algorithms. As evident, the ReLU 

is half rectified (from bottom). R(z) is zero when z is less than zero and R(z) is equal to z 

when z is above or equal to zero. Although, the function and its derivative both 

are monotonic, but the issue is that all the negative values become zero immediately, which 

reduces the ability of the model to fit or train from the data correctly. This implies that any 

negative input given to the ReLU activation function turns the value into zero, immediately 
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in the graph, which in turns affects the resulting graph by not mapping the negative values 

correctly. 

 

Figure 2.53.  ReLU activation function 

 

Softmax Activation Function 

The softmax function is a more generalized logistic activation function, which is widely 

used for multiclass classification. The softmax function, also known as softargmax 

or normalized exponential function, is a generalization of the logistic function to multiple 

dimensions. It is used in multinomial logistic regression and is often used as the 

last activation function of a neural network to normalize the output of a network to 

a probability distribution, over predicted output classes, based on Luce’s choice axiom. 

The softmax regression is a form of logistic regression that normalizes an input value into 

a vector of values that follows a probability distribution whose total sums up to 1. The 

output values are between the range [0,1], which is beneficial because it allows to avoid 

binary classification and accommodate as many classes or dimensions as possible in the 

neural network model. This is why softmax is sometimes referred to as a multinomial 

logistic regression. It is mathematically given by 

https://en.wikipedia.org/wiki/Logistic_function
https://en.wikipedia.org/wiki/Multinomial_logistic_regression
https://en.wikipedia.org/wiki/Activation_function
https://en.wikipedia.org/wiki/Artificial_neural_network
https://en.wikipedia.org/wiki/Probability_distribution


136 

 

 

1

( )
i

j

z

i
K

z

j

e
z

e








 (2.51) 

where 

 : softmax 

z : input vector 

ize : standard exponential function for input vector 

K : number of classes in the multi-classifier 

jze  : standard exponential function for output vector 

2.36 Review of Related Work: ANN Application to Transient Stability 

Application of ANN to power system is an area of rising interest; the chief reason being 

the ability of ANN to process and learn intricate nonlinear relations [326]. Moreover, they 

possess the ability of parallel processing of data. Recently, transient stability assessment 

(TSA) problem has been approached using pattern recognition techniques, with some 

promising results. In these techniques, a relation mapping is established between the input 

features and the output results of a stability assessment, based on many offline simulations. 

ANNs have been widely applied to create this relation mapping by numerous research [319, 

327-329]. 

[319] used ANNs to predict critical clearing time (CCT) for a small test power system. 

[327] used an individual transient energy function (TEF) approach to predict energy margin 

and stability. [328] devised an integrated approach of unsupervised and supervised learning 

for TSA. [330] proposed a fast pattern recognition and classification method for states of 

dynamic security. In [331], ANNs were used to predict stability of a system consisting of 
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227 buses and 53 generators. [332] applied the recurrent RBF and the MLPNN for 

predicting rotor angles and angular velocities of synchronous machines. [333] used ANN 

to classify system stability status for various contingencies. In [334], the nonlinear mapping 

relation between the transient energy margin and the generator power, at different fault 

clearing time (FCT), was established by using the multilayer FNN. Lyapunov’s direct 

method, based on the system dynamic equivalents, was used as a fast method to obtain the 

training set for the ANN. [335] presented a novel ANN-based global online fault detection, 

pattern classification, and relaying detection scheme, for synchronous generators (SGs) in 

interconnected electric utility networks. The online ANN based relaying scheme classified 

fault existence and fault type as either transient stability or loss of excitation, and the 

allowable CCT, and loss of excitation type as either open circuit or short circuit condition.  

An innovative two-layer, fuzzy hyperrectangular composite neural network was presented, 

in [336], to provide real-time transient stability prediction, for high-speed control in power 

systems. In [337], investigation was carried out for the improvement of power system 

stability, by utilizing auxiliary controls for controlling high voltage direct current (HVDC) 

power flow. The current controller model and the line dynamics were considered in the 

stability analysis. Transient stability analysis was done on a multi-machine system, where 

a neural network controller was developed to enhance the stability of the power system. 

[338] discussed the issue of ANN input dimension reduction. Two different methods, for 

TSA application, were discussed and compared for efficiency and accuracy. [339] 

described a neural network-based, adaptive pattern recognition approach, for estimation of 

the CCT. [340] proposed an application of ANN, for contingency screening and ranking of 

a power system, with respect to transient stability. [341] suggested a method of TSA, by 
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adaptive pattern recognition which makes use of an ANN.  [342] aimed to examine the use 

of ANNs, in the analysis of the transient stability of a power system (determination of CCT 

for short-circuit faults type, with transmission line outage), using a supervised FNN.  

In [343], a multilayer feedforward ANN is employed for the online TSA of a power system. 

[344] used RBFNN as a control scheme, for the unified power flow controller (UPFC), to 

improve the transient stability performance of a multimachine power system. [345] focused 

on validating the accuracy of ANN for assessing the transient stability of a single machine 

infinite bus system. The fault CCT, obtained through ANN, was compared with the results, 

obtained through the traditional equal area criterion (EAC) method. The multilayer FNN 

concept was applied to the test system. Some other significant work, associated with ANN 

applications to transient stability, can be found in [346-353]. 

Based on the detailed literature review and to the best of author’s knowledge, there 

exists no research works on probabilistic transient stability (PTS), which uses ANN-

based ML approach, considering the uncertainties of load, faulted line, fault type, 

fault location (on the line), and FCT. Although, [354] used ANN for probabilistic 

dynamic security assessment (DSA), but the approach only considers the uncertainty 

of load (ignoring other uncertainties of fault type, fault location, and FCT). Moreover, 

[347] specifically mentions the potential of ANN for online DSA. In addition, [355-

361] strongly indicate that ML is a promising and upcoming approach for online 

DSA. Thus, one of the main contributions of this research is to predict (classify) PTS 

status using an ANN-based ML approach. 

 

 2.37 Support Vector Machine: Background and Overview 
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A SVM is a supervised learning algorithm that can use given data to solve certain problems 

by attempting to convert them into linearly separable problems [360]. SVM, which is also 

known as maximum margin classifier, can be used for both classification and regression 

problems. It was first introduced by Vapnik [360-361] and was elaborated by Schölkopf et 

al. [362]. Although, ANN is the most commonly used ML method for transient stability 

classification, it generally requires an extensive training process and an intricate design 

procedure. Moreover, ANN usually performs well for interpolation but not so well for 

extrapolation, which reduces its generalization ability. They are more susceptible to 

becoming trapped in a local minimum. Although, majority of ML algorithms can overfit, 

if there is a dearth of training samples, but ANNs can also overfit if training goes on for a 

very long duration [361]. On the other hand, in the recent years, SVM classifiers have 

received a huge attention from power systems researchers because of producing single, 

optimum and automatic sparse solution by simultaneously minimizing both generalization 

and training error and separating data by the large margin at high dimensional space [364-

365]. Due to some of these downsides of ANN, it becomes essential to develop a more 

efficient classifier for transient stability status prediction. SVM does not suffer from these 

drawbacks and has the following advantages over ANN [366]: (1) less number of tuning 

parameters, (2) less susceptibility to overfitting, and (3) the complexity is dependent on 

number of support vectors (SVs) rather than dimensionality of transformed input space. 

SVM classifiers depend on training points, which lie on the boundary of separation 

between different classes, where the evaluation of transient stability is important. A decent 

theoretical progress of the SVM, due to its basics built on the Statistical Learning Theory 

(SLT) [360], made it possible to develop fast training methods, even with large training 
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sets and high input dimensions [367-369]. This useful characteristic can be applied to 

tackle the issue of high input dimension and large training datasets in the PTS problem. 

The basic implementation of an SVM, commonly known as a hard margin SVM, requires 

the binary classification problem to be linearly separable. This is frequently not the case in 

practical problems, and therefore, SVM provides a kernel trick to resolve this issue. The 

strength of the SVM algorithm is based on the use of this kernel trick to transform the input 

space into a higher dimensional feature space. This allows for defining a decision boundary 

that linearly separates the classes. The SVM algorithm attempts to find that decision 

boundary or hyperplane with the highest distance from each class [366]. The hyperplane 

can be mathematically defined as follows [370], 

 ( ) 0Tw x b   (2.52) 

where w is the weight vector, x is the sample feature vector and b is the bias value. The 

samples that assist the algorithm to define the optimal hyperplane are those that lie closest 

to it, and they are known as SVs. The kernel function plays a significant role in SVM 

classification [371]. The kernel function is applied on each data instance to map the 

original non-linear data points into a higher-dimensional space in which they become 

linearly separable. An SVM classifier minimizes the generalization error by optimizing the 

relation between the number of training errors and the so-called Vapnik-Chervonenkis 

(VC) dimension (this dimension is a measure of the capacity of a set of functions that can 

be learned by a statistical binary classification algorithm. It is defined as the cardinality of 

the largest set of points that the classification algorithm can shatter). This is achieved by 

following the method of structural risk minimization (SRM) which states that the 

https://en.wikipedia.org/wiki/Algorithm
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classification error expectation of unseen data is bounded by the sum of a training error 

rate and a term that depends on the VC dimension [370]. Compared to empirical risk 

minimization (ERM)-based formulation (which is used by most ML algorithms, including 

ANN), the SRM-based formulation allows the SVM to prevent overfitting problems, by 

defining an upper bound, on the expected risk. A formal theoretical bound exists for the 

generalization ability of an SVM, which depends on the number of training errors (t), the 

size of the training set (N), the VC dimension associated to the resulting classifier (h), and 

a chosen confidence measure for the bound itself ( ) [370, 372-373]: 

  

2
(ln( ) 1) ln( )

4

N
h

t hR
N N


 

   (2.53) 

The risk (or classification error expectation) R represents the classification error 

expectation over all the population of input/output pairs, even though the population is only 

partially known. This risk is a measure of the actual generalization error and does not 

require prior knowledge of the probability distribution of the data. SLT derives inequality 

(2.53) to mean that the generalization ability of an SVM is measured by an upper limit of 

the actual error given by the right-hand side of (2.53), and this upper limit is valid with a 

probability of 1-  (0< <1). As h increases, the first summand of the upper bound (2.53) 

decreases and the second summand increases, such that there is a balanced compromise 

between the two terms (complexity and training error), respectively [370]. The SVMs used 

for binary classification problems are based on linear hyperplanes to separate the data, as 

shown in Figure 2.54. The hyperplane (represented by dotted line in Figure 2.54) is 

determined by an orthogonal vector w and a bias b, which identify the points that satisfy 
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( ) 0Tw x b  . By determining a hyperplane which maximizes the margin of separation, 

denoted by  , it is instinctively anticipated that the classifier will have an improved 

generalization ability. The hyperplane having the largest margin on the training set can be 

completely determined by the points that lie closest to the hyperplane. Two such points are 

x1 and x2 as shown in in Figure 2.54 (b), and they are known as SVs because the hyperplane 

(i.e., the classifier) is completely dependent on these vectors. Consequently, in their 

simplest form, SVMs learn linear decision rules as 

  ( ) ( )Tf x sign w x b   (2.54) 

so that (w, b) are determined as to correctly classify the training examples and to maximize

 . For linearly separable data, as shown in Figure 2.54, a linear classifier can be found 

such that the first summand of bound (2.53) is zero. 

 

 

Figure 2.54.  SVM (maximum margin) classifier 

 

It is always possible to scale w and b such that 

  1Tw x b    (2.55) 
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for the SVs, with  

  1Tw x b   and  1Tw x b     (2.56) 

for non-SVs. 

Using the SVs x1 and x2 of Figure 2.54, and (2.55), the margin   can be calculated as  

  2 1
2

( )
|| || || ||

Tw
x x

w w
     (2.57) 

where || ||w is the Euclidean Norm of w. For linearly separable data, the VC dimension of 

SVM classifiers can be evaluated as  
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       (2.58) 

where n is the dimension of the training vectors and D is the minimum radius of a ball 

which contains the training points. Thus, the risk (2.53) can be reduced by decreasing the 

complexity of the SVM, that is, by increasing the margin of separation  , which is 

equivalent to reducing || ||w . In practice, as the problems are not probable to be detachable 

by a linear classifier, thus, the linear SVM can be extended to a nonlinear version by 

mapping the training data to an expanded feature space using a nonlinear transformation: 

  1( ) ( ( ),......, ( )) m
mx x x R     (2.59) 

where m > n. Then, the maximum margin classifier of the data for the new space can be 

determined. With this method, the data points which are non-separable in the original space 

may become separable in the expanded feature space. The next step is to estimate the SVM 

by minimizing | ||w  (i.e., maximizing  ) 
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TV w w w  (2.60) 

subject to the constraint that all training patterns are correctly classified, i.e.,  

  { ( ) } 1,    1,...,T
i iy w x b i N      (2.61) 

Though, depending on the kind of nonlinear mapping (2.59), the samples of training data 

may not be linearly separable. In this case, it is not possible to find a linear classifier that 

satisfies all the conditions given by (2.60). Thus, instead of (2.60), a new cost function is 

optimized, i.e., 
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          (2.62) 

where N non-negative slack variables i  are introduced to allow training errors (i.e., 

training patterns for which { ( ) } 1T
i i iy w x b      and 1i  ) and allow for some 

misclassification. By minimizing the first summand of (2.62), the complexity of the SVM 

is reduced, and by minimizing the second summand of (2.62), the number of training errors 

is decreased. C is a positive penalty factor (also known as regularization factor or soft 

margin parameter) which decides the tradeoff between the two terms. In case it is small, 

the separating hyperplane is more focused on maximizing the margin (at the expense of 

larger classification mistakes), as shown in Figure 2.55 (A), while the number of 

misclassified points is minimized for larger C values (at the expense of keeping the margin 

small and tendency to overfit the data), as shown in Figure 2.55 (B), The minimization of 

the cost function (2.62) leads to a quadratic optimization problem with a unique solution. 
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The nonlinear mapping (2.59) is indirectly obtained by the kernel functions, which 

correspond to inner products of data vectors in the expanded feature space

( , ) ( ) ( ),  ,T nK a b a b a b R    [370, 373].  

 

Figure 2.55.  Trade-off between maximum margin and minimum training error 

 

2.38 Types of SVM 

There are two main types of SVM [374-375]. They are described below. 

Linear SVM 

Linear SVM is used for data that are linearly separable i.e., for a dataset that can be 

categorized into two categories by utilizing a single straight line, as shown in Figure 2.56. 

Such data points are termed as linearly separable data, and the classifier used is described 

as a linear SVM classifier. 

 

Figure 2.56.  Linear SVM 
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Nonlinear SVM 

Nonlinear SVM is used for data that are non-linearly separable data i.e., a straight line 

cannot be used to classify the dataset, as illustrated by Figure 2.57. For this, something 

known as a kernel trick is used that sets data points in a higher dimension, where they can 

be separated using planes or other mathematical functions. Such data points are termed as 

non-linear data, and the classifier used is termed as a nonlinear SVM classifier. 

 

Figure 2.57.  Nonlinear SVM 

 

2.39 Kernel Functions in SVM 

In certain applications, the data set classes can be deeply overlapping, which makes it 

impossible to perform a linear classification in the feature space, even by introducing slack 

variables. The solution for these applications can be obtained by applying Cover’s theorem 

[376]. It stipulates that it is highly probable to solve a nonlinear classification problem, 

using linear classifiers, by projecting the input set into a higher dimensional space using a 

nonlinear transformation function [376]. It is evident that the equation of the optimal 

hyperplane and the decision rule are function of the inner product of the SVs and the new 

input vector. By mapping the input set into a higher dimensional space, it is required to 
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compute the high dimensional inner product of their transformation, which requires a good 

knowledge of the mapping function. According to the Hilbert-Schmidt theory for inner 

products in high dimensional spaces, computing ( ), ( )i jx x    is equivalent to computing 

a symmetric function ( , )i jK x x satisfying Mercer’s theorem [377]. Here, K is called the 

kernel function. Its main advantage is that it does not require any knowledge on the 

mapping function. Therefore, the use of the function K is commonly referred to as the 

kernel trick. 

The kernel function is what is applied on each data instance to map the original non-linear 

observations into a higher-dimensional space in which they become separable. The kernel 

functions return the inner product between two points in a suitable feature space. The 

function of kernel is to take data as input and transform it into the required form using the 

transformation   (as illustrated by Figure 2.58). Commonly used kernel functions include 

the linear, polynomial, sigmoid, Gaussian RBF, and Laplace RBF, as shown in Table 2.3. 

The choice of the kernel function depends essentially on the data set and in certain cases 

several trials must be performed before choosing the appropriate one. The Gaussian kernel 

generally is preferred over others because it has the ability of mapping samples nonlinearly 

into a higher dimensional space, and therefore, unlike linear kernel, it can tackle the 

scenario when the relationship between class labels and attributes is nonlinear. Although, 

sigmoid kernel performs like a Gaussian kernel for certain parameters, but there are some 

parameters for which the sigmoid kernel is not the dot product of two vectors, thus, it is 

invalid. Moreover, as compared to polynomial kernel, it has few hyperparameters 
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(parameters whose values are used to control the learning process) [371]. Thus, this 

research work uses a Gaussian RBF kernel, which is mathematically given by,  

 
2|| ||
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where   denotes the kernel parameter of the SVM classifier and   is the width of the 

Gaussian function.  

The hyperparameters C and  impact how sparse and easily separable the training data are 

in the expanded feature space. Consequently, these parameters decide the complexity and 

training error rate of the resulting SVM classifier. These parameters must be optimized for 

achieving the best performance for the SVM classifier. 

Table 2.3.  Common SVM kernels 

Kernel Equation 

Polynomial degree( , ) ( )i j i jK x x x x    

Gaussian RBF 2
||||( , ) i jx x

i jK x x e    

Linear ( , ) constanti j i jK x x x x     

Laplace RBF || ||
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i jK x x e 




  
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Figure 2.58.  Illustration of kernel function 

2.40 Methods Used in SVM Optimization 

There are various methods which are used to optimize the hyperparameters of SVM: C and 

 . This section briefly reviews these methods. 

Grid Search 

The conventional way of performing hyperparameter optimization has been grid search, or 

a parameter sweep, which is merely an exhaustive searching through a manually specified 

subset of the hyperparameter space of a learning algorithm. A grid search algorithm must 

be guided by some performance metric, typically measured by cross validation on the 

training set or evaluation on a hold-out validation set. Since the parameter space of the 

learner may include real-valued or unbounded value spaces for certain parameters, 

manually set bounds and discretization may be essential before applying grid search. A 

major drawback is that the grid search suffers from the curse of dimensionality [378]. 

Random Search  

Random search replaces the exhaustive enumeration of all combinations by selecting them 

randomly. This can be simply applied to the discrete spaces and can also be generalized to 

continuous and mixed spaces. It can outclass grid search, especially when only a small 

https://en.wikipedia.org/wiki/Cross-validation_(statistics)
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number of hyperparameters affects the final performance of the ML algorithm. In this case, 

the optimization problem is said to have a low intrinsic dimensionality. The chance of 

finding the optimal parameter is relatively higher in random search because of the random 

search pattern where the model might end up being trained on the optimized parameters, 

without any aliasing. Random search works best for lower dimensional data, since the time 

taken to determine the right set is less with less number of iterations. However, 

the drawback of random search is that it yields high variance during computing. This is 

because the selection of parameters is completely random, and no intelligence is used to 

sample these combinations [379]. 

Bayesian Optimization 

Bayesian optimization is a global optimization method for noisy black-box functions.  It is 

a sequential search framework that includes both exploration and exploitation and can be 

considerably more efficient than either grid search or random search. Applied to 

hyperparameter optimization, Bayesian optimization builds a probabilistic model of the 

function mapping, from hyperparameter values to the objective evaluated on a validation 

set. By iteratively evaluating a promising hyperparameter configuration, based on the 

current model, and then updating it, Bayesian optimization aims to gather observations 

revealing as much information as possible about this function, and the location of the 

optimum. It attempts to balance exploration (hyperparameters for which the outcome is 

most uncertain) and exploitation (hyperparameters expected close to the optimum). In 

practice, Bayesian optimization has been proven to obtain better results in fewer 

evaluations compared to grid search and random search, due to the capability to reason 
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about the quality of experiments before they are run [380]. In short, Bayesian optimization 

jointly tunes more parameters with fewer experiments and find better values [380]. 

 

2.41 Review of Related Work: SVM Application to Transient Stability  

This section will review the application of SVM in transient stability prediction, 

specifically classification. Recently, SVM has been applied to power system transient 

stability classification problem. A SVM-based transient stability classifier was trained in 

[370] and its performance was compared with a MLP classifier. [363] devised a multiclass 

SVM classifier for TSA classification. [381] suggested a SVM classifier to predict the 

transient stability status, using voltage variation trajectory templates. [366] trained a binary 

SVM classifier, with combinatorial trajectories inputs, to predict the transient stability 

status. [382] employed the SVM to rank the SGs, based on transient stability severity, and 

consequently, classified them into vulnerable and nonvulnerable machines. [383] proposed 

two SVMs, using Gaussian kernels, for classifying the post-fault transient stability status 

of the system. [384] presented a SVM-based approach, for transient stability detection, 

using post-disturbance signals, from the optimally located distributed generations. [385] 

proposed a multi-SVM power system TSA method, based on relief algorithm. Firstly, the 

proposed method selected numerous feature subsets, with different size based on relief 

algorithm; then, used these selected feature subsets for SVM training, and eventually, these 

trained SVMs were integrated to evaluate the transient stability of power system.  

[386] focused on the prediction of the transient stability of power systems, using only pre-

fault and fault duration data, measured by wide area measurement system (WAMS). In the 
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suggested approach, the time-synchronized values of voltage and current, generated by 

SGs, were measured using phasor measurement units (PMUs), installed at generator buses, 

and given as input to the proposed algorithm, to extract a proper feature set. Then, the 

proposed feature set was applied to (SVM) classifier, to predict the transient stability status. 

In [387], a different time series forecasting algorithm, using SVM, was proposed, which 

utilized synchronized phasor data, to provide fast transient stability swings prediction, for 

the use of emergency control.  In [388], a conservative prediction model, for power system 

transient stability, was suggested, targeting at enhancing accuracy, for predicting the 

unstable cases. The model was recognized as an ensemble learning model, using multiple 

SVMs as sub-learning machines. Some other relevant work dealing with SVM-based 

transient stability prediction can be found in [372, 389-395].  

Based on the detailed literature review and to the best of author’s knowledge, there 

exists no research work on PTS which uses SVM-based ML approach, considering 

the uncertainties of load, faulted line, fault type, fault location (on the line), and FCT. 

Moreover, [396] specifically mentions the potential of SVM for online transient 

stability assessment. In addition, [355-359] strongly indicate that ML is a promising 

and upcoming approach for online DSA. Thus, one of the main contributions of this 

research is to predict (classify) PTS status using an SVM-based ML approach. 
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CHAPTER 3 

PROBLEM FORMULATION AND PROPOSED 

APPROACHES 

This chapter describes the problem formulation and proposed approaches. Firstly, a brief 

review of the softwares used is presented. Moreover, various assumptions are listed. In the 

remaining part, mathematical formulations, associated with the proposed approaches, are 

elaborated. 

3.1 Brief Review of Softwares Used 

This section will briefly review the two softwares used in this research work: DIgSILENT 

PowerFactory and MATLAB. In this research, DIgSILENT PowerFactory was primarily 

used for probabilistic transient stability (PTS) simulations (for obtaining training data for 

machine learning (ML) algorithms), whereas, MATLAB was employed for applying these 

ML algorithms, and consequently, evaluating their performance for regression and 

classification tasks. 

DIgSILENT PowerFactory 

DIgSILENT (Digital Simulation of Electrical Networks) PowerFactory, is principally a 

computer-aided engineering tool, for analyzing transmission, distribution, and industrial 

electrical power systems. It has been designed as an advanced integrated and interactive 

software package, dedicated to electrical power system, and control analysis, to accomplish 

the chief objectives of planning and operation optimization. The software was established 

by qualified engineers and programmers, with many years of experience, in both electrical 
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power system analysis and computer programming. The accuracy and validity of results 

obtained with PowerFactory has been confirmed in many implementations, by 

organizations involved in the planning and operation of power systems, throughout the 

world. To address power system analysis requirements of the users, PowerFactory was 

designed as an integrated engineering tool to provide an inclusive suite of power system 

analysis functions, within a single executable program [1]. It has applications in various 

fields of power system, including stability analysis, load flow analysis, short circuit studies, 

reliability assessment, and protection analysis. It also has an embedded coding tool, 

commonly known as the DIgSILENT Programming Language (DPL), which serves the 

purpose of offering an interface, for automating tasks in the PowerFactory program. The 

presence of DPL adds a new dimension to the DIgSILENT PowerFactory program by 

allowing the creation of new calculation functions. Such user-defined calculation 

commands can generally be used in all significant areas of power system analysis. 

MATLAB 

MATLAB is a proprietary multi-paradigm programming language and numeric computing 

environment, developed by MathWorks. It allows matrix manipulations, plotting 

of functions and data, implementation of algorithms, creation of user interfaces, and 

interfacing with programs written in other languages. Although, MATLAB is primarily 

intended for numeric computing; an additional package, Simulink, adds graphical multi-

domain simulation and model-based design for dynamic and embedded systems. As of 

2020, MATLAB has more than 4 million users worldwide. MATLAB users come from 

various backgrounds of engineering, science, and economics [2].  

MATLAB has applications in various significant fields, including signal processing, 

https://en.wikipedia.org/wiki/Function_(mathematics)
https://en.wikipedia.org/wiki/Algorithm
https://en.wikipedia.org/wiki/Simulink
https://en.wikipedia.org/wiki/Embedded_system
https://en.wikipedia.org/wiki/Engineering
https://en.wikipedia.org/wiki/Science
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wireless communications, control systems, power systems, mathematical optimization, and 

code generation. MATLAB supports various ML tasks, such as regression and 

classification, through the availability of numerous toolboxes and built-in applications. The 

neural network toolbox highlights the use of neural network paradigms that build up to—

or are themselves used in— engineering, financial, and other practical applications [3]. 

The classification learner application trains models to classify data. Using this app, 

supervised ML can easily be explored using various classifiers. Several tasks, including 

data exploration, feature selection, specification of validation schemes, training of models, 

and result assessment, can be effortlessly performed [4]. 

3.2 Assumptions 

This section lists the assumptions made in this research work. They are described as 

follows: 

1. The test transmission network (IEEE 14-bus) is assumed to be rich in wind 

resources, wherever these sources are connected.  

2. A five-year decision-making period is considered for circuit breakers (CBs). This 

is the economic life of CBs. 

3. All lines are equally probable (uniform distribution) to faults [5-7]. 

4. Fault can occur at any point of the line with equal probability [5]. 

5. Any kind (LG, LL, LLG, or LLL) of shunt fault (short-circuit fault) fault can occur 

based on the discrete probability mass function (PMF) defined [8]. 

6. Fault type and fault location are independent, i.e., any fault can occur on any point 

along any line of the network [5]. 
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7. Fault clearing time (FCT) is assumed to follow a normal (Gaussian) probability 

density function (PDF) [6, 9-10]. 

8. Every bus load is assumed to follow a normal PDF [11-12]. 

9. Initial operating conditions are based on load flow [6, 9]. 

10. Upon fault detection, a tripping signal is sent to both ends of the line such that 

both breakers are tripped at the same time instance [13]. 

11. The CBs are assumed to be 100% reliable (i.e., stuck breaker condition is not 

considered) [7-8]. 

12. Although, for the CB replacement, and consequent ML applications, the pre-fault 

network topology changes are not considered, however, the impact of network 

topology change on PSYS  and RA is determined. 

13. Risk-neutrality is used for decision-making, i.e., the average (or mean) behavior 

of the specified performance metric (which, in this research, is the benefit-cost 

ratio (BCR)) is a good measure for making decision [14-15]. 

14. Type 3 wind generators (DFIGs) were employed to study the impact of wind 

generation. 

15. DFIGs are equipped with terminal voltage control capability [16-18]. 

16. In CBA formulation, generation is always available to fulfil the load demand; 

thus, cost of load shedding is not incorporated. 

17. Levenberg-Marquardt backpropagation algorithm was used to train the artificial 

neural network (ANN) [19-20]. 

18. Holdout cross-validation was used for ANN (70%, 15%, and 15% for training, 

testing, and validation, respectively) [20]. 
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19. Logsig and tansig activation functions were used for hidden and output layers of 

ANN, respectively [20-21]. 

20. For support vector machine (SVM), Gaussian radial basis function (RBF) kernel 

function was used [22-23]. 

21. For SVM hyperparameter optimization, Bayesian optimization was used [24]. 

22. K-fold cross validation was used for SVM [22]. 

3.3 Methodology for Proposed Approaches 

This section discusses the methodology for the two key proposed approaches: (1) ANN 

prediction (regression) for PTS enhancement decision making using CBs, and (2) PTS 

classification using ANN and SVM and consequently, comparing the resulting 

performance metrics. A summarized flowchart of the big picture, incorporating main 

research objectives (O1-O9) [as outlined in Chapter 1], and proposed approaches is shown 

in Figure 3.1. Moreover, specifically, the generic framework for both ML approaches is 

shown in Figure 3.2. 



210 

 

 

Figure 3.1.  Summarized flowchart linking main objectives and proposed approaches (the 

big picture) 

 

Figure 3.2.  Framework for the proposed ML approaches (O8/O9) 

 

3.3.1 ANN Prediction for PTS Enhancement Decision Making using CBs 
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The methodology for the first proposed approach is described in Figure 3.3. The symbol i 

indicates the sample number for the Monte Carlo (MC) simulation. A fixed system 

topology is used, i.e., it is assumed that before the fault, all system components (generators, 

transformers, etc.) are operating normally and there is no failure. In the next step, value for 

system load is selected. This is selected based on the normal PDF (defined for each bus 

load). The relevant details are discussed in Chapter 2, Section 2.11.  Load flow is then run 

to acquire the current state of the system. After this step, faulted line, fault type, fault 

location, and FCT are selected, based on PDFs defined (Chapter 2, Section 2.11). The fault 

is created at time t=1 s. For each MC sample, time-domain stability simulation is run for 

10 s to determine the outcome (transiently stable or unstable). This is determined based on 

maximum rotor angle difference, max  (unstable if max >360). If the sample is transiently 

unstable, Ri (transient instability risk for ith sample) is evaluated (which is consequently 

used for evaluation of the average risk index, RA). The MC simulation (MCS) is stopped 

after N simulations (the procedure to determine N is described in Chapter 4, Section 4.2), 

and consequently, PSYS (probability of system being transiently unstable) and, value of RA 

is determined. The value of PSYS is computed as the ratio of transiently unstable samples to 

total MC samples.  
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Figure 3.3.  Methodology for PTS enhancement using CBs and ANN application for 

regression (O3, O4, O8) 

 

In the next step, for each unstable MC sample, the FCT is reduced in steps (of 0.01 s) to 

ensure the value of Ri (and RA) is zero. The value of RA =0 is termed as system marginal 

transient stable risk.  In short, the risk for the fault which is cleared at CCT is termed as 

marginal transient stable risk. If the system is transiently unstable for a FCT; then, the risk 

evaluated at the first instance of transient stability (determined by decreasing that FCT in 

steps) is termed as marginal transient stable risk. This is illustrated using Figure 3.4. In the 

next step, to achieve this risk reduction and justifying the replacement of CBs, cost benefit 

analysis (CBA) is conducted. In the next step, wind generation is integrated and its impact 



213 

 

on the average risk index, RA, is assessed. In the final step, ANN-based ML algorithm is 

used to predict the expected value of BCR of mth line (denoted by EBCRm). 

 

Figure 3.4.  Concept of marginal stability (O3) 

 

3.3.2 Ranking of Circuit Breakers 

This subsection elaborates the approach to rank individual lines’ CBs based on the value 

of RA, for both line and bus faults. This will enable the planners to be extra cautious towards 

the critical lines/buses and corresponding CBs, for improved decision making. The 

approach is elaborated for line and bus faults, in Figure 3.5 and Figure 3.6, respectively. 

For each line/bus, 2401 MC samples (using Cochran’s formula, and assuming a 95% 

confidence level and 2% margin of error) were used to compute the value of RA, using time-

domain simulation, considering PDFs of various uncertainties (system load, fault type, 

FCT, etc.). Consequently, based on the value of RA obtained for each line/bus, the CBs 

were ranked. Similarly, the approach is elaborated using only three phase bus faults in 

Figure 3.7. 



214 

 

 

Figure 3.5.  Methodology for CB ranking for line faults (O6) 
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Figure 3.6.  Methodology for CB ranking for bus faults (O6) 
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Figure 3.7.  Methodology for CB ranking for LLL bus faults (O6) 

 

3.3.3 Impact of Network Topology on PSYS and RA 

Figure 3.8 elaborates the procedure to study the impact of network topology on PSYS and 

RA. As illustrated, in each MC sample, to simulate the variation of network topology, a 

single line is randomly outaged before selecting the random variables of faulted line 

(different from the random line already outaged), fault type, FCT, etc. The value of PSYS 

and RA is determined at the end of the MC simulation. 



217 

 

 

Figure 3.8.  Impact of network topology on PSYS and RA (O7) 

 

3.3.4 PTS classification using ANN and SVM 

For the second proposed approach, i.e., PTS classification using ANN and SVM, the first 

step was feature selection, i.e., to select the input and output data, for the ANN 

classification model. For feature selection, time-domain simulations were conducted, based 

on defined input probability distributions, as elaborated by Figure 3.9. System load, fault 
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type, fault location, and FCT were used as inputs to the ML algorithms, and transient 

stability status, Si, was selected as the output (the binary variable to be classified as 

transiently stable or unstable). 500 samples were used for each line to train each ML model. 

It must be mentioned that generally, there is no accepted rule of thumb to determine the 

number of samples for training the ML model; this typically depends on complexity of the 

problem, required performance level, and the ML algorithm used. As there are 16 lines in 

the system, thus, the total number of samples used for ML model were 8000 ( 500 16 ). 

When the MC simulation is run for all the 16 lines in the network, feature selection is 

performed from the resulting data obtained, to be used as training data for the ML 

classification model, as shown in Figure 3.10. A summarized workflow of ML application 

to online PTS prediction is shown in Figure 3.11. As illustrated, the first step deals with 

the offline mode. In this mode, time-domain simulations are conducted, considering the 

uncertainties of input variables in the form of PDFs (generally obtained from past historical 

observations). In the next step, these distributions are sampled to gather enough training 

data. For each sample, the PTS status is measured by a binary variable, say, x, which can 

take two labels (say, 1 for transiently unstable, and 0 for transiently stable). Therefore, the 

final training data consists of the PTS status labels and the corresponding input operating 

conditions. In the next step, this offline-based database is used for online PTS prediction. 

The ML model ‘learns’ the stability rules and consequently, can be used to predict the PTS 

status for current operating point. 
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Figure 3.9.  Methodology for PTS classification using ANN and SVM (O9) 

 

Figure 3.10.  Feature selection framework for ANN and SVM (O9) 
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Figure 3.11.  Summarized workflow of ML application for online PTS prediction (O9) 

3.4 Mathematical Formulation for Transient Instability Risk 

Risk-based approach describes possibility of contingency by probability, and the 

corresponding impact (or consequence) by severity function. The product of this 

probability and associated severity is termed as risk [11, 25-26]. Critical clearing time 

(CCT) is the maximum clearing time before which the fault must be cleared to keep the 

system transiently stable [27]. The risk for the fault which is cleared at CCT is termed as 

marginal stable risk in this research. In other words, if the system is transiently unstable 

for a FCT; then, the risk evaluated at the first instance of transient stability (determined by 

decreasing that FCT in steps) is termed as marginal transient stable risk.  

Based on the conceptual framework of risk mentioned in [11, 25-26, 28-29], let Ri be the 

transient instability risk for ith MC sample. Similarly, let AR  be the average risk index for 

transient instability (for the decision-making period of 5 years). Mathematically,  

                                        Pr( ) ( ) Pr( ) Pr( | ) ( )i i i i i i i iR U F Sev F F U F Sev F                           (3.1) 
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where N denotes the number of MC samples (each sample represents a faulted line).  

The term Pr( )i iU F represents the joint probability of: (i) occurrence of Fi (i
th fault event), 

and (ii) transient instability event Ui. According to conditional probability theory, this term 

can be written as Pr( ) Pr( | ) Pr( )i i i i iU F U F F   , as reflected by (3.1). 

Pr( | )i iU F is the probability of transient instability given Fi has occurred. Its value is 1 and 

0 if the system is unstable and stable (for ith fault event), respectively [29], i.e.,  

max1, for 360
Pr( | )

0, otherwise 

i

i iU F
 

 


       (3.3) 

Pr( )iF is the probability of Fi (i
th fault event) and can be defined mathematically as follows. 

  Pr( ) Pr( ) Pr( ) Pr( )i oi Li TiF F F F     (3.4) 

where Pr( )oiF , Pr( )LiF , and Pr( )TiF denote the probability of fault occurrence, fault location, 

and fault type, respectively, for the ith MC sample. 

Let Foi be a random variable following a uniform (PMF) [5] on the interval {1,2, 3,…..NL}. 

Then, 

  

1
, for 1

Pr( )

0,  otherwise

L

oi L

i N
F N


 

 



 (3.5) 

where LN denotes total number of lines in the test system. Let FLi be a random variable 

following a continuous uniform PDF [5] on the interval [0,100]. Then, 
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where Np=100. Pr( )TiF is chosen based on PMF as shown in Table 3.1 [8], where, x=1, 2, 3, 

and 4 denote single line to ground (LG), double line to ground (LLG), line to line (LL), 

and three-phase (LLL) fault, respectively. 

Table 3.1.  Probability of fault types 

x 1 2 3 4 

Pr( )TiF  0.7 0.15 0.1 0.05 

 

( )iSev F  quantifies the impact (severity) of iF . Mathematically, it is given as follows 

 
| |,  if  < 0

( )  , 0 | | 1
0,  if 0

i i

i i

i
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Sev F TSI

TSI
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
 (3.7) 

where TSIi denotes the transient stability index for the ith MC sample, i.e., 

  
max

max

360

360

i
i
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TSI

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
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
  (3.8) 

where max i  is the post-fault maximum rotor angle difference (in degrees) between any 

two synchronous generators (SGs) in the system at the same time for a fault on ith line [16]. 

A negative TSIi indicates the system in transiently unstable for the ith MC sample. 

It is appropriate to model the uncertainty for each bus load forecast with a normal PDF 

having a mean equal to the forecasted value and an associated standard deviation [11-12]. 

Let f(Xi) denote the PDF for load at ith bus, i.e.,  
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where i  and i  denotes the mean and standard deviation (10% of the mean) of the 

forecasted peak load for ith bus, respectively. Thus, the PDF for system load, ( )jf X , is 

given by 
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2

2

( )
1

( )
2

j j

j

X

j

j

f X e




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    (3.10) 

where j  and j  denotes the mean (259 MW) and standard deviation (11.5 MW) of the 

forecasted system peak load (the sum of multiple independent normally distributed random 

variables is normal, with its mean being the sum of the individual means, and its variance 

being the sum of the individual variances, i.e., the square of the standard deviation is the 

sum of the squares of the individual standard deviations), respectively. 

The FCT is assumed to follow a normal PDF [6, 9-10], with a mean and standard deviation 

of 0.9 s and 0.1 s, respectively.  

Let Si represent the system transient stability status for the ith MC sample.  Mathematically, 

  
 1 ,  if  < 0 (unstable)

  
0,  if 0     (stable)

i

i

i

TSI
S

TSI


 


  (3.11) 

Therefore, if the system is transiently stable, for ith MC sample, value of Si will be 0; 

otherwise, it will be 1. This information will be used for ML training for classification 

purpose. 

Let PLGI, PLLI, PLLGI, and PLLLI denote the probability of instability for LG, LL, LLG, and 

LLL faults, respectively. Also, let PSYS denote the probability of system instability. 

Mathematically, 

PLGI = 
1uN

N
         (3.12) 
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PLLI = 
2uN

N
        (3.13) 

PLLGI = 
3uN

N
        (3.14) 

PLLLI = 
4uN

N
       (3.15) 

PSYS =
uN

N
        (3.16) 

where 1uN , 2uN , 3uN , and 4uN  denote number of unstable samples for LG, LL, LLG and 

LLL faults, respectively; Nu denotes total unstable samples, irrespective of fault type.  

3.5 Mathematical Formulation for Cost Benefit Assessment 

The CBA is an assessment process to determine the feasibility and provide economic 

justification for a project investment. This decision is based on BCR (BCR>1 justifies the 

investment; BCR<1 does not justify the investment). In this work, CBA is applied to 

determine whether the existing CBs should be replaced with the faster ones, for transient 

stability enhancement reducing Ri (and RA) to zero. To do this, the costs associated with Ri 

must be formulated. This is described below. 

3.5.1 Costs of Transient Instability Risk 

The cost consequence of transient instability can be evaluated by assessing the direct and 

indirect costs incurred due to tripping of synchronous machines. These mainly consist of 

two components [28, 30].  

Replacement Cost 

When a SG with an operation cost CORIG is tripped, a SG with a much more expensive 

operation cost CEMER is utilized for h hours instead. The generation lost for mth SG, denoted 
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by PGm, producing energy at an original cost of CORIG ($/MW) must be replaced for h hours, 

by a more expensive generation, with a cost of CEMER ($/MW). Let 
m

REPC  denote the 

replacement cost of mth SG, i.e.,  

  ( )m
mREP EMER ORIG GC C C P h      (3.17) 

It is assumed that CORIG is $20/MW and CEMER is $40/MW. The downtime h is assumed to 

be 10 [28, 30]. Thus, the replacement cost (for ith unstable MC sample), for n transiently 

unstable SGs, is given as 

  
1

200n
m

n

REPi G

m

C P


   (3.18) 

Repair and Startup Cost 

When a synchronous machine is tripped due to transient instability, the tripped 

synchronous machines must be repaired and restarted. Let 
i

RSC  denote the repair and 

startup cost for transient instability for ith transiently unstable sample. Mathematically, 

  60,000i
RS iC n   (3.19) 

where in denotes the number of synchronous machines which are transiently unstable for 

the ith MC sample [28, 30]. Thus, the cost associated with an ith transiently unstable sample, 

iC , is 

  
1

(60, )(20 0000 )in
mE RS

n

i R Pi G

m

iC PCC n


      (3.20) 

In other words, the cost associated with risk Ri [ Pr( ) ( )i i iR F Sev F  ] is given by Ci. This 

will be the monetary benefits gained by reducing Ri to zero (marginal stability risk). 

3.5.2. Costs of Circuit Breakers 
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Based on [31-32], CBs for high-voltage transmission systems typically have a FCT of 3 

cycles (0.05 s). According to [33], the capital cost of such a breaker can be determined as 

follows: The cost consists of material cost CM, installation cost CI, and foundation cost CF 

(elaborated in Table 3.2). Let CBR be the capital cost of a single CB, with a FCT of 0.05 s, 

i.e., 

  BR M I FC C C C    (3.21) 

A relation between FCT and CBR must be formulated. It is assumed that CM has a linear 

inverse relation with the FCT, i.e.,
1

MC
FCT

 . Moreover, CI and CF are assumed to be 

constant. Thus, based on a FCT of 0.05 s, the relation between CM and FCT can be 

mathematically expressed as 

  M
k

C
FCT

  (3.22) 

where k=3700 ( 74,000 0.05 ) is the proportionality constant. 

Let FCTi denote the fault clearing time for an ith unstable MC sample. Let CCTi denote 

critical clearing time (the time to acquire marginal stability) for the same ith unstable 

sample. Let CBi denote the capital cost of a single CB for reducing Ri to zero. 

Mathematically,    
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Table 3.2.  Capital cost of a single CB (For a FCT of 0.05s) 

Cost type Cost value ($) 

Material cost, CM 74,000 

Installation cost, CI 14,000 

Foundation cost, CF 6,000 

Capital cost, CBR 94,000 

 

  
3700

20,000 20,000Bi

i i

k
C

CCT CCT
     (3.23) 

The present value of money is computed as 

   =
(1 )n

FV
PV

r
 (3.24)  

where PV denotes present value, FV denotes future value, r is interest rate (assumed as 

5%), and n=5 years (time after which the decision-making is required). BCR is computed 

as 

  
 of benefits

BCR
 of costs

PV

PV
  (3.25) 

For the ith unstable MC sample, let Ci be the future monetary benefits gained by replacing 

two slower CBs (at both ends of a faulted line) with faster ones, and let 2CBi be the 

associated capital cost (PV) of the two faster CBs, which are installed in place of the slower 

breakers (it is assumed that upon fault detection, a tripping signal is sent to both ends of 

the faulted line such that both CBs are tripped at the same time instance). Thus, BCR for 

ith unstable MC sample, denoted by BCRi, is given by 

  
2

p
i

i

Bi

C
BCR

C
  (3.26) 
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where 
p

iC denotes the PV of Ci, and is given as  

  
5 5(1 0.05) (1.05)

p i i
i

C C
C  


 (3.27) 

Table 3.3 displays the conceptual framework of the CBA (the values are assumed just to 

illustrate the concepts and associated mathematics). 

Let EBCRm be the expected value of BCR for mth line, i.e., 

  1

mN

m

m
m

m

BCR

EBCR
N




 (3.28) 

where mN  denotes the number of transiently unstable MC samples for mth line. For 

simplicity, EBCRm is denoted as DVm (decision variable for mth line), as it helps in decision-

making, regarding replacement of CBs.  

Table 3.3.  Conceptual framework for CBA 

MC 

sample 

no. 

Faulted 

line 

FCTi 

(s) 

Ri CCTi 

(s) 

Ci ($) p
iC ($) 2CBi 

($) 2

p
i

i

Bi

C
BCR

C
  

1 Line 1 0.9 10 0.7 25 19.58 30 0.652 

2 Line 3 0.8 15 0.6 45 35.25 55 0.640 

3 Line 5 0.9 20 0.8 34 26.63 65 0.409 

4 Line 3 0.6 25 0.5 56 43.87 44 0.997 

5 Line 14 0.7 30 0.6 78 61.11 33 1.851 

: : : : : : : : : 

: : : : : : : : : 

: : : : : : : : : 

2,401 Line 12 0.7 45 0.5 54 42.3 65 0.650 

  

3.6 ANN Application for PTS Enhancement Decision Making using CBs 

The generic block diagram for the proposed ANN regression approach is shown in Figure 

3.12. For the regression task, the first step was to select the input and output data, for the 
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ANN training model. System load, fault type, fault location, and FCT were used as inputs 

to the ANN, and DVm was selected as the output (the value to be predicted). This data is 

required for each line. To gather sufficient training data for each line, 500 MC simulations 

were performed for each line (based on Figure 3.3) and consequently, the number of 

samples which led to transient instability were used for training (for stable samples, RA and 

hence, DVm is zero). Hence, a total of 8000 ( 500 16 ) MC simulations were performed.  

It must be mentioned that generally, there is no accepted rule of thumb to determine the 

number of samples for training the ML model; this typically depends on complexity of the 

problem, required performance level, and the ML algorithm used. The total unstable 

samples turned out to be 3,108. The random data division for training, validation, and 

testing was set at 2,176 (70%), 466 (15%), and 466 (15%), respectively. To quantify the 

performance of the regression algorithm, mean squared error (MSE) and root mean squared 

error (RMSE) were used.     

Levenberg-Marquardt backpropagation algorithm was used to train the ANN. This 

algorithm gives a fast convergence and enhanced training performance. As there are 4 

inputs (system load, fault type, fault location, and FCT) and one output (DVm) for the multi-

layer perceptron neural network (MLPNN), the number of neurons, in the input and output 

layer of MLPNN, for this problem, are 4 and 1, respectively. The number of neurons used 

in the hidden layer were chosen as 20 (based on trial and error approach). The tan-sigmoid 

activation/transfer function (this function is used to determine the output of a neuron in an 

ANN) was used for neurons of hidden layer and the linear activation function was used for 

neuron of output layer.  
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Figure 3.12.  Proposed ANN approach for regression (O8) 

3.7 ANN Application for Probabilistic Transient Stability Classification 

The generic block diagram, for the proposed ANN classification approach, is shown in 

Figure 3.13. The proposed MLPNN used has four input layers (each for system load, fault 

type, fault location and FCT), one hidden layer, and one output layer (for Si). Samples for 

training data were chosen using the MC simulation-based, time domain approach 

(described in Section 3.3). Batch training style was used, i.e., the weights and biases are 

only updated after all inputs are fed to the MLPNN. In the MATLAB environment, it is 

significantly faster and produces smaller errors as compared to incremental training (where 

the weights and biases are updated every time an input is presented to the MLPNN) [3].  

For the ANN classification task, the first step was feature selection, i.e., to select the input 

and output data for the ANN classification model. System load, fault type, fault location, 

and FCT were used as inputs to the ANN, and transient stability status, Si, was selected as 

the output (the binary variable to be classified as transiently stable or unstable). 500 

samples were used for each line to train the ANN model. As there are 16 lines in the system, 

thus, the total number of samples used for ML model were 8000 ( 500 16 ). The random 

data division for training, validation, and testing was set at 5,600 (70%), 1,200 (15%), and 

1,200 (15%), respectively.  Levenberg-Marquardt backpropagation algorithm was used to 

train the ANN. As there are four inputs (system load, fault type, fault location, and FCT) 

and one output (Si) for the MLPNN, the number of neurons, in the input and output layer 
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of MLPNN, for this problem, are 4 and 1, respectively. The number of neurons used in the 

hidden layer were chosen as 20 (based on trial and error approach). The log-sigmoid 

(logsig) activation/transfer function (this function is used to determine the output of a 

neuron in an ANN) was used for neurons of hidden layer, and the tan-sigmoid (tansig) 

activation function was used for neuron of output layer.  

3.8 SVM Application for Probabilistic Transient Stability Classification 

The block diagram for the proposed SVM framework is shown in Figure 3.14. The 

proposed SVM framework used has four inputs (system load, fault type, fault location and 

FCT), and one output (for Si).  For the SVM classification task, the first step was feature 

extraction, i.e., to select the most relevant input and output data for the SVM classification 

model. System load, fault type, fault location, and FCT were chosen as inputs, and transient 

stability status, Si, was selected as the output (the binary variable to be classified as 

transiently stable or unstable). 500 samples were used for each line to train the SVM model. 

As there are 16 lines in the system, thus, the total number of samples used for SVM model 

were 8000 ( 500 16 ). Thus, the size of the input feature matrix was 8000 4 . The 

Gaussian RBF kernel function was used for training the SVM, as there is ample 

nonlinearity amongst the data presented to the SVM classifier. The hyperparameters (C 

and  ) were optimized using Bayesian optimization. The data presented to SVM is 

randomly divided in two subsets: training subset and testing subset. The K-fold cross-

validation approach [22] is used to accomplish this, as this prevents over fitting while 

training the data. This work used the value of K as 5, i.e., in each fold, 20% data was used 

for testing and 80% for training.  
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Figure 3.13.  Proposed ANN approach for classification showing input features and 

corresponding output (O9) 

 

Figure 3.14.  Framework for the proposed SVM classification approach showing input 

features and corresponding output (O9) 
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CHAPTER 4 

CASE STUDIES AND RESULTS 

This chapter describes the test system used, related case studies, results, and associated 

discussion. A validation approach, using sensitivity analysis, is also presented. 

4.1 Case Studies 

The IEEE 14-bus test transmission system, as shown in Figure 4.1, was used to conduct 

the required simulations. Figure 4.2 shows the same system with circuit breakers (CBs) 

labelled for each line (which will be useful for ranking CBs in the later part of this chapter).  

It represents a simplified model of the transmission system in the Midwest United States. 

It consists of five synchronous machines, three of which are synchronous compensators 

used only for reactive power support. There are 11 loads in the system totaling 259 MW 

and 81.3 MVAr. This system has 16 transmission lines. The numerical data and parameters 

were taken from [1]. This system is a good choice for the present study, as it has been 

widely used by various researchers for studying transient stability phenomenon in power 

transmission systems [2-5]. As mentioned before, a normal (Gaussian) probability density 

function (PDF) is used to define the uncertainty in system loads. The active power of each 

load was assigned a mean equal to the original load active power value, as given in test 

system data in [1], and a standard deviation equal to 10% of the mean value. Six different 

cases were considered for analysis. Their description is as follows. In Case 1 (base case), 

the test system was used in its original format, i.e., no wind generation was present in the 

network and all generation consisted of conventional synchronous generators (SGs). Type 
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3 wind farms, i.e., doubly fed induction generators (DFIGs) are used in this research, as 

they are the most commonly used wind farms in power systems [6]. As mentioned before, 

in this work, the DFIGs are equipped with terminal voltage control, i.e., the DFIG can 

exchange reactive power with the grid to achieve a target voltage at the bus at which DFIG 

is connected. Cases 2-6 deal with the impact of wind farms. This impact is studied in two 

different forms: (1) replacing the existing SG with a DFIG, and (2) adding DFIGs to the 

existing network. Case 2 replaces the SG at bus 2 with a DFIG (with the same MW and 

MVA rating). Cases 3-6 integrate DFIGs at specific buses (refer to Table 4.1 for 

description). In Cases 3-6, to account for increased generation due to wind farms, an equal 

amount of load is also added at the same bus where the wind farm is connected. The active 

power forecast error distribution of each wind generator is represented by a normal PDF 

[7-10], with a mean of 40 MW and a standard deviation of 4 MW. The active power of 

each additional load added is a normal PDF with a mean of 40 MW and a standard deviation 

of 4 MW. All time-domain simulations are RMS simulations and were performed using 

DIgSILENT PowerFactory software [11]. For machine learning (ML) application, neural 

network toolbox and classification learner application of MATLAB was used [12]. 
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Figure 4.1.  IEEE 14-bus system 

 

Figure 4.2.  IEEE 14-bus system (with CB labels) 
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Table 4.1.  Description of DFIG locations 

Case type Bus locations for DFIG  

Case 3 2 

Case 4 2, 3 

Case 5 2, 3, 8 

Case 6 2, 3, 8, 6 

 

4.2 Results and Discussion 

This section presents the results of the proposed research methodologies and associated 

discussion. 

4.2.1 Risk-Based Probabilistic Transient Stability (PTS) Enhancement using Circuit 

Breakers and Impact of DFIG  

The first step was to compute the number of samples required for performing the Monte 

Carlo (MC) simulation. For this purpose, Cochran's formula was used [13]. Assuming a 

95% confidence level and 2% margin of error, the number of required MC samples, N, 

were determined to be 2,401. The MC simulation was stopped after N simulations, and 

consequently, PSYS and value of RA is determined. The value of PSYS and RA of comes out 

to be 0.37 and 0.005 %, respectively. In the next step, based on the proposed approach, 

described in Chapter 3, the time-domain simulations were performed for all Cases (1-6) for 

N MC samples. The value of RA for each case are shown in Figure 4.3. As evident, the 

replacement of SG by DFIG at Bus 2 (Case 2), resulted in an increase in the value of RA. 

This is because the inherent inertia of system is reduced and the DFIG does not have 

enough capability to provide reactive power support during fault time, as compared to SG. 
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Moreover, the integration of DFIG farms with increasing penetration, gradually reduced 

the value of RA (Cases 3-6). This is understandable, because, in addition to the existing 

inherent inertia provided by SGs, DFIG provides reactive power support to the system. The 

results, for DVm, are shown in Figure 4.4. The CBs on the lines whose DVm is greater than 

1 should be replaced. As evident, the replacement of SG with DFIG at Bus 2 (Case 2) 

causes a slight increase in DVm values. This is due to increase in the value of RA (as 

illustrated by Figure 4.3), which consequently, increases the value of CAi. Moreover, the 

value of DVm gradually decreases with integration of DFIG wind farms. The reason is that 

with the addition of DFIG, the value of RA decreases, which in turn, reduces the value of 

CAi.  

 

Figure 4.3.  Value of RA for different cases 

 

Figure 4.4.  Value of DVm for different cases 



242 

 

4.2.2 Comparison of Proposed Approach with Deterministic Scenarios 

To compare the proposed probabilistic approach with the conventional deterministic 

approach, simulations were done (for Case 1 only), for each line in the network, for specific 

input conditions. Two different deterministic scenarios (with peak load) were considered: 

(1) LLL fault in the middle of line with a fault clearing time (FCT) of 0.9 s, and (2) a close-

in LLL fault from 0.1% of the sending bus with a FCT of 0.9 s. The comparison, for values 

of DVm, between the proposed approach and two deterministic scenarios, is graphically 

depicted in Figure 4.5. As evident from Figure 4.5, the scenarios for deterministic approach 

are conservative, and their results demonstrate that CBs on each line must be replaced, as 

DVm for each of them is greater than 1; however, referring to the proposed probabilistic 

approach, the CBs of only 9 lines (out of 16) needs to be replaced. This implies that the 

proposed probabilistic approach considers the randomness of input variables for decision-

making, based on risk, rather than the specific deterministic scenarios. This also verifies 

the fact that close-in faults (faults near sending-end bus bars) are severe than faults in the 

middle of line. It must be mentioned that although, this comparison is performed for base 

case only, it can be extended to other cases in the same manner.  
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Figure 4.5.  DVm value for proposed and deterministic approaches 

 

4.2.3 Ranking of Circuit Breakers 

Based on the approach discussed in Section 3.3.2, the CBs were first ranked for line faults, 

as shown in Table 4.2 and Figure 4.6. As evident, CBs B1 and B2 (on line_0006_0013) are 

the most critical, and CBs B31 and B32 (on line_0009_0010) are the least critical.  

Similarly, the CBs were ranked for bus faults, as shown in Table 4.3 and Figure 4.7. It must 

be noted that for bus faults, the following probabilities were assumed: PLG=0.007, 

PLLG=0.0015, PLL=0.001, PLLL=0.0005. 

 As evident, CBs B1, B9, and B15 (associated with bus_0006) are the most critical, and 

CBs B30 and B31 (associated with bus_0010) are the least critical. This quantification is 

essential to power planners, as it can identify which lines/buses require more attention 

while planning a system. These results can aid in efficient decision making, considering 

the level of risk associated with CBs.  

The CBs were also ranked using deterministic three phase bus faults (including other 

deterministic factors, such as load, FCT, etc.). The results are shown in as shown in Table 
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4.4 and Figure 4.8. As evident, CBs B1, B9, and B15 (associated with bus_0006) are the 

most critical, and CBs B30 and B31 (associated with bus_0010) are the least critical. 

Moreover, as expected, the value of RA is significantly higher for the deterministic case 

(only three phase bus faults) as compared to the probabilistic case. This is because for the 

deterministic case (probability of LLL fault being 1), the impact is greater as compared to 

probabilistic case (which includes all faults). 

 

Table 4.2.  Ranking of CBs (based on RA) for line faults 

Priority Rank Line  CBs RA (%) 

1 Line_0006_0013 B1, B2 0.0058 

2 Line_0009_0014 B3, B4 0.0056 

3 Line_0012_0013 B5, B6 0.0056 

4 Line_0002_0005 B7, B8 0.0054 

5 Line_0006_0011 B9, B10 0.0053 

6 Line_0001_0002/2 B11, B12 0.0052 

7 Line_0001_0002/1 B13, B14 0.0051 

8 Line_0006_0012 B15, B16 0.005 

9 Line_0002_0004 B17, B18 0.0049 

10 Line_0013_0014 B19, B20 0.0048 

11 Line_0003_0004 B21, B22 0.0047 

12 Line_0004_0005 B23, B24 0.0045 

13 Line_0002_0003 B25, B26 0.0042 

14 Line_0001_0005 B27, B28 0.0041 

15 Line_0010_0011 B29, B30 0.0039 

16 Line_0009_0010 B31, B32 0.0037 
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Figure 4.6.  Ranking of CBs (based on RA) for line faults 

 

Table 4.3.  Ranking of CBs (based on RA) for bus faults 

Priority Rank Bus CBs RA (%) 

1 Bus_0006 B1, B9, B15 0.0061 

2 Bus_0009 B3, B32 0.0059 

3 Bus_00012 B5, B16 0.0058 

4 Bus_0005 B8, B18, B23 0.0056 

5 Bus_00011 B10, B29 0.0055 

6 Bus_0001 B11, B13, B27 0.0054 

7 Bus_0002 B7, B12, B14, B17 0.0054 

8 Bus_0004 B18, B22, B24 0.0052 

9 Bus_0013 B2, B6, B19 0.005 

10 Bus_0014 B4, B20 0.0048 

11 Bus_0003 B21, B26 0.0046 

12 Bus_0010 B30, B31 0.0044 
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Figure 4.7.  Ranking of CBs (based on RA) for bus faults 

 

Table 4.4.  Ranking of CBs (based on RA) for LLL bus faults 

Priority Rank Bus CBs RA (%) 

1 Bus_0006 B1, B9, B15 1.02 

2 Bus_0009 B3, B32 0.96 

3 Bus_00012 B5, B16 0.93 

4 Bus_0005 B8, B18, B23 0.88 

5 Bus_00011 B10, B29 0.84 

6 Bus_0001 B11, B13, B27 0.81 

7 Bus_0002 B7, B12, B14, B17 0.78 

8 Bus_0004 B18, B22, B24 0.76 

9 Bus_0013 B2, B6, B19 0.74 

10 Bus_0014 B4, B20 0.71 

11 Bus_0003 B21, B26 0.62 

12 Bus_0010 B30, B31 0.61 
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Figure 4.8.  Ranking of CBs (based on RA) for LLL bus faults 

 

4.2.4 Computation of Instability Probability for Line and Bus Faults 

The probability of instability for individual LG, LLG, LL, and LLL faults, denoted by PLGI, 

PLLGI, PLLI, and PLLLI, respectively, was also computed. The results are shown in Table 4.5 

and Figure 4.9 for line faults. For bus faults, the results are shown in Table 4.6 and Figure 

4.10. From these results, it is evident that PLLLI has the maximum value, and PLGI  has the 

minimum value. This is because LLL fault is the most severe fault. Moreover, PLGI, PLLGI, 

PLLI, and PLLLI are approximately double for bus faults as compared to line faults. This 

reiterates the fact that bus faults are more severe than line faults. Also, as expected, PSYS is 

greater for bus faults as compared to line faults. 

 

Table 4.5.  Probability of instability (for individual faults) and system instability [line 

faults] 

PLGI PLLGI PLLI PLLLI PSYS 

0.34 0.36 0.38 0.39 0.37 
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Figure 4.9.  Probability of instability (for individual faults) and system instability [line 

faults] 

 

Table 4.6.  Probability of instability (for individual faults) and system instability [bus 

faults] 

PLGI PLLGI PLLI PLLLI PSYS 

0.65 0.68 0.71 0.73 0.70 

 

 

 

Figure 4.10.  Probability of instability (for individual faults) and system instability [bus 

faults] 
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4.2.5 Impact of Network Topology on PSYS and RA 

Based on the flowchart of Figure 3.7, the impact of network topology (using random N-1 

line contingency) on PSYS and RA was studied. The results are shown in Table 4.7. As 

evident, the network topology considerably impacts PSYS and RA. This signifies the 

importance of considering network topology in probabilistic transient stability analysis. 

 

Table 4.7.  Impact of network topology change on PSYS and RA  

Topology PSYS RA (%) 

Fixed 0.37 0.005 

(N-1) line contingency 0.52 0.0072 

 

4.2.6 Machine Learning Approaches   

In the second part, ML was applied for improving computation efficiency. This is divided 

into two tasks: (1) regression and (2) classification. Although, these tasks were 

demonstrated for the base case only, they can easily be extended to include the cases with 

wind integration. The results for each task are presented and discussed below. 

4.3 Machine Learning Regression 

The plots for coefficient of regression, are shown in Figure 4.11. For an ideal fit, the data 

must lie on a 45-degree line, where the predicted output values are equal to the target output 

values. The obtained fit is good enough for all data sets, with the values of correlation 

coefficient (or regression coefficient), R, in each case (training, validation, testing), greater 

than 0.97. Figure 4.12 shows the learning curve of the multilayer perceptron neural network 

(MLPNN). As evident, the best validation performance for the training model occurs at 
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epoch 161. Moreover, the value of mean squared error (MSE) at that point is 0.014598. It 

took 1 second with 167 epochs to train the ANN on an Intel Core i7 Processor with a 16 

GB RAM. The training stopped after 167 epochs because the approach of early stopping 

(the approach to stop training at the point when performance on a validation dataset starts 

to worsen) was used to enhance the generalization of the trained network. The summary of 

various regression metrics for artificial neural network (ANN) is shown in Table 4.8. 

 

Figure 4.11.  Coefficient of Regression (R) plot for prediction performance assessment 
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Figure 4.12.  Learning curve of the MLPNN  

 

Table 4.8.  Performance metrics for ANN regression  

Regression Metric Training Validation Testing All 

R 
0.982 0.979 0.977 0.980 

 

R2 0.964 0.958 0.954 0.960 

 

MSE 0.009 0.0145 0.0185 0.042 

RMSE 0.094 0.120 0.1360 0.2049 

 

4.4 Machine Learning Classification 

This section discusses the results for PTS classification using ANN and support vector 

machine (SVM). 

4.4.1 PTS classification using ANN 

The confusion matrix, for the classification of Si, is shown in Figure 4.13. As evident, CA 

for the confusion matrix (all samples) is very high (≈98%). Moreover, as evident from 
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Figure 4.14, the ROC curves are very accurate (AUC >0.99 for all cases). Moreover, Figure 

4.15 illustrates the error histogram (distribution of classification error for training, 

validation, and testing sets) obtained for the ANN classifier. It further verifies the excellent 

accuracy performance of the designed classifier. The values of various classification 

metrics are summarized in Table 4.9. As evident, values for metrics CA, F1, and AUC are 

in high accuracy range (≈0.97-0.99), and CE is quite small (0.019). The training time for 

the ANN classifier was only 0.01 s. Thus, it can be inferred that the trained ML algorithm 

can rapidly classify the PTS status, Si, with a high accuracy (≈98%). 

 

 

Figure 4.13.  Confusion matrix for transient stability classification performance 

assessment 
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Figure 4.14.  ROC curve for transient stability classification performance assessment 

 

 

Figure 4.15.  Histogram for classification error 
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Table 4.9.  ANN classification performance assessment 

Classification Metric Training Validation Testing All 

CA  0.983 0.974 0.975 0.981 

CE 0.017 0.026 0.025 0.019 

F1 0.978 0.967 0.969 0.975 

AUC 0.999 0.991 0.992 0.998 

 

4.4.2 ANN Sensitivity Analysis 

As mentioned before, logsig and tansig functions were used as activation functions, for 

hidden layers and output layer, respectively. The CA values for different activation 

functions (with 20 hidden neurons) are illustrated in Table 4.10. As evident, the choice of 

activations function, used in this work, provide the best results. Moreover, CA values for 

different data divisions (with 20 hidden neurons) are shown in Table 4.11. This verifies the 

fact that more training data leads to greater classification accuracy. However, one must be 

careful when selecting the ratios for data division. Using a small percent (≈5%) for testing 

and validation data may not be suitable for a small dataset, whereas, using a comparatively 

small percent (≈60%) of training data may generate superior results, when the dataset 

consider is comparatively small. Fewer training samples lead to large variance (inability to 

generalize to new data) in training performance, whereas, fewer testing samples lead to 

large variance in testing performance. Therefore, there is no formal rule for this data 

division, and it majorly depends on the required accuracy and the amount of data available 

(size of dataset). 
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Table 4.10.  CA values for different activation functions 

Hidden layer Output layer CA (All) 

logsig linear 0.931 

tansig linear 0.952 

linear logsig 0.598 

linear tansig 0.712 

logsig tansig 0.981 

tansig logsig 0.961 

 

Table 4.11.  CA values for different data divisions 

Sr. No.  Training (%) Validation (%) Testing (%) CA (All) 

1 60 20 20 0.976 

2 70 15 15 0.981 

3 80 10 10 0.988 

4 90 5 5 0.994 

 

4.4.3 PTS Classification Using SVM 

The confusion matrix and the ROC curve (for testing data), for the classification of Si, are 

shown in Figure 4.16 and Figure 4.17, respectively. From Figure 4.16, it is evident that CA 

for the confusion matrix is very high, i.e., approximately 97% (59.46% + 37.23%). 

Moreover, as evident from Figure 4.17, the ROC curve is very accurate (AUC >0.99). The 

values of various classification metrics are summarized in Table 4.12. As evident, values 

for CA and AUC are in the fairly high accuracy range (>0.95), and CE is quite small (0.033). 

Once trained, the SVM classifier can be directly used to classify Si. The training time for 
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the SVM classifier was only 0.03 s. Thus, it can be inferred that the trained SVM algorithm 

can rapidly classify the PTS status, Si, with a high accuracy (≈97%). 

4.4.4 SVM Sensitivity Analysis 

As mentioned before, the value of K for K-fold cross-validation used was 5. To verify that 

it is indeed the best value, a sensitivity analysis was performed. The SVM classifier was 

trained for various values of K, and the corresponding CA values were determined. The 

results obtained are shown in Figure 4.18. As evident, increasing K beyond 5 does not alter 

the CA. Hence, K=5 is a good choice for K-fold cross-validation, for this work. This also 

validates the fact that K=5 and K=10 are generally the most commonly used values for a 

K-fold cross-validation procedure [14]. Moreover, for K=5, the values of CA, for different 

kernel functions, are shown in Table 4.13. As evident, Gaussian radial basis function (RBF) 

kernel has the highest accuracy. This also validates the reason of Gaussian RBF kernel 

being the most commonly used kernel function for SVM classification [15]. 

 

 

Figure 4.16.   Confusion matrix for transient stability classification performance 

assessment 
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Figure 4.17.  ROC curve for transient stability classification performance assessment 

  

Table 4.12.  SVM performance assessment using various classification metrics 

Classification Metric Value 

CA  0.967 

CE 0.033 

F1 0.957 

AUC 0.991 

 

 

Figure 4.18.  Variation of CA with K 
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Table 4.13.  Variation of CA for different kernel functions 

Kernel function  CA 

Linear 0.872 

Polynomial (order 2) 0.916 

Polynomial (order 3) 0.829 

Gaussian RBF 0.967 

 

Thus, to sum up, the proposed ANN approach can be used to predict (regression) the 

decision-making variable, DVm, incorporating various uncertain factors (load, fault type, 

fault location, and FCT), with a fairly high accuracy. Moreover, proposed ANN and SVM 

approaches can be used to predict (classify) the PTS status, incorporating various uncertain 

factors (system load, fault type, fault location, and FCT). These approaches have an edge 

over the conventional approaches, as they are computationally efficient, without sacrificing 

the accuracy too much. It is strongly believed that the proposed approaches can drastically 

contribute to advancing the existing methods of online dynamic security assessment 

(DSA). Comparing the performance of SVM and ANN for PTS classification, it is evident, 

values for all metrics for ANN surpass SVM. Therefore, assuming an enhanced and more 

accurate requirement for system dynamic security, ANN should be preferred over SVM, 

for an online transient stability prediction, incorporating various uncertainties of load, fault 

type, fault location, and FCT.  

It must be mentioned that the demonstrated ML algorithms used in this research are system-

specific and, although, they performed quite well, for the IEEE 14-bus system, it does not 

assure that they will still perform the same for other systems with different operating 
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conditions and characteristics. As the proposed approaches are scalable and, can be 

extended to any test system; therefore, ample testing and validation of the proposed 

approaches must be conducted on other standard test systems, before reaching a generic 

conclusion, regarding classification performance assessment of ANN and SVM. 

Moreover, the proposed approaches using ML does not consider all possible risks, i.e., 

risks related to limited number of operating conditions (based on margin of error and 

confidence level), and assessment of cost impacts of transient instability. Moreover, 

generic restrictions exist for ML-based approaches, for instance, the training database and 

ML models must be reorganized when the PDFs of the input random variables, and the 

network topology varies over time, and consequently, the number of transient stability 

simulations required for training may be greater than that estimated for a fixed topology. 

An additional limitation regarding ANN is that there is no rule for determining the structure 

of ANN as it needs to be determined through repeated trial and error approach. Moreover, 

it requires processors with parallel processing power, according to their structure [16]. 

Also, the best ML approach may change depending on the application [17]. An additional 

limitation regarding SVM is that it is sensitive to noise (target classes overlap) and outliers 

(target classes deviate significantly from the rest of the classes), and consequently, does 

not give a good performance. Moreover, choosing the optimal kernel function is not 

straightforward, and may require several optimization simulations [18]. 

 

4.5 Tradeoff between N, CA, and Training Time 
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The trade-off between the three parameters: (1) total training samples (N), (2) CA, and (3) 

offline training time is a significant matter in ML modeling which needs to be discussed. 

The results of sensitivity analysis for this trade-off, for the proposed ANN and SVM 

models, are shown in Table 4.14 and Table 4.15, respectively. As evident, the classification 

accuracy, CA, and training time, increases with increasing N. The training time roughly 

doubles by doubling N; however, the change in CA is not that drastic. This type of 

sensitivity analysis must be performed by the power utilities, and consequently, the 

parameters (CA, N, training time) must be chosen carefully based on the specific 

requirements of utilities. 

Table 4.14.  Variation of CA values and training time with N (for ANN) 

N CA (All) Training time (s)  

8,000 0.981 0.01 

16,000 0.988 0.04 

32,000 0.996 0.09 

64,000 0.999 0.17 

 

Table 4.15.  Variation of CA values and training time with N (for SVM) 

N CA  Training time (s)  

8,000 0.967 0.03 

16,000 0.975 0.07 

32,000 0.983 0.15 

64,000 0.992 0.28 
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4.6 Validation Using Sensitivity Analysis 

Validation means to quantify the confidence in the predictive capability of a code for a 

given application through comparison of calculations with a set of experimental data [19]. 

It is significant to validate the simulation results for a power system. Performing a 

comparison of simulation output data with a real power system is the best way to validate 

a model. A real time digital simulator also provides a good alternative because the 

simulator functions in real time, the power system algorithms are computed rapidly enough 

to unceasingly produce output conditions that realistically represent conditions in a real 

system. These approaches are hard to implement due to cost constraints, therefore, 

sensitivity analysis is often employed, as a validation technique in research literature. 

Sensitivity analysis characterizes how the uncertainty in the output of a mathematical 

model or system (numerical or otherwise) can be divided and allocated to numerous 

sources of uncertainty in its inputs [20]. A sensitivity analysis, essentially, regulates how 

different values of an independent variable affect a dependent variable. Various research 

[19, 21-25] have used this approach to validate different mathematical models and results. 

Thus, this work also used it to validate the findings. It must be noted that the sensitivity 

analysis is performed only on the base case, however, it can easily be extended to other 

cases to verify its aptness. 

One of the simplest and most commonly used sensitivity analysis approaches is that of 

changing one-factor-at-a-time (OAT), to determine what effect this produces on the 

output. OAT usually involves two main steps [26]: (1) moving one input variable, keeping 

others at their baseline (nominal) values, then, (2) returning the variable to its nominal 

https://en.wikipedia.org/wiki/Mathematical_model
https://en.wikipedia.org/wiki/Mathematical_model
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value, then repeating for each of the other inputs in the same manner. In the first step, 

several variables were changed (one at a time) to observe the impact on the output, which 

in this research, is the average risk index, RA. The PDF of other variables was kept fixed 

(the description of the PDFs can be found in Chapter 3), as illustrated in Table 4.16. The 

results (obtained for 2,401 MC samples) are shown in Tables 4.17-4.19, and, graphically, 

in Figures 4.19-4.21. 

 

Table 4.16.  Description of variables for performing sensitivity analysis 

Case 

No. 

Variable 

changed 

Variables kept fixed Description of variable (kept 

fixed) 

1 Fault type FCT, fault location FCT (normal) 

Fault location (uniform) 

2 Fault location FCT, fault type FCT (normal) 

Fault type (discrete) 

3  FCT Fault type, fault 

location 

Fault type (discrete) 

Fault location (uniform) 

 

Table 4.17.  Sensitivity analysis (Case 1) 

Fault Type RA (%) 

LG 0.0064 

LLG 0.0012 

LL 0.00088 

LLL 0.00042 
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Table 4.18.  Sensitivity analysis (Case 2) 

Fault Location (%) RA (%) 

10 0.0056 

30 0.0047 

50 0.0039 

70 0.0045 

90 0.0054 

  

Table 4.19.  Sensitivity analysis (Case 3) 

FCT RA (%) 

0.7 0.0035 

0.8 0.0042 

0.9 0.0054 

1.0 0.0063 

1.1 0.0068 

1.2 0.0075 

1.3 0.0075 

 

 

Figure 4.19.  Sensitivity analysis (Case 1) 
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Figure 4.20.  Sensitivity analysis (Case 2) 

 

 

Figure 4.21.  Sensitivity analysis (Case 3) 

 

The actual results, based on MC simulation (MCS), for 6 random samples are shown in 

Table 4.20. Comparing these results and trends with the sensitivity analysis results, 

obtained above, it can easily be verified that actual results are valid. Here, Ri indicates the 

transient instability risk for the ith MC sample. 
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Table 4.20.  Actual results based on MCS 

Sr. No. Fault Type Fault Location (%) FCT(s) Ri (%) 

1 LG 41.5 1.08 0.00462 

2 LG 4.6 0.88 0.00123 

3 LL 81.9 0.95 0.00151 

4 LLG 93.6 1.08 0.00867 

5 LG 76.9 1.01 0.00314 

6 LLL 87.2 1.04 0.00397 
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CHAPTER 5 

CONCLUSION AND FUTURE RESEARCH 

This chapter concludes the research presented in this dissertation and provides numerous 

recommendations for relevant future research work. Moreover, generic recommendations 

for promoting risk-based decision making in power systems are outlined. 

5.1 Conclusion 

Power system transient stability is an integral part of power system planning and operation. 

Traditionally, it has been assessed using deterministic approach. Also, current North 

American Electric Reliability Corporation (NERC) reliability standards are deterministic 

and do not include any probabilistic methods. With the increasing system uncertainties, 

environmental pressures of incorporating green energy, and widespread electricity market 

liberalization (deregulation), there is a strong need to incorporate probabilistic analysis in 

transient stability evaluation. Moreover, conventional approaches to assess transient 

stability are time consuming and hence, are not suitable for online application. Thus, this 

dissertation presented risk-based machine learning (ML) approaches for probabilistic 

transient stability (PTS). The proposed approaches are based on time-domain simulation 

approach and ML. Time-domain simulations, using DIgSILENT PowerFactory, were used 

for gathering the training data, for the two ML algorithms, i.e., artificial neural network 

(ANN) and support vector machine (SVM). MATLAB was used to model the ML 

algorithms, and the IEEE 14-bus test system was used to test and validate the effective of 
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the proposed approaches. Numerous parameters, such as system load, fault type, fault 

location, and fault clearing time (FCT) were considered as random variables.  

In the first part, a probabilistic cost benefit analysis was applied for decision making, 

regarding replacement of circuit breakers (CBs). The results obtained showed that risk-

based approach has an edge over deterministic approach in the sense that it considers the 

uncertainty in the relevant associated variables, in the form of relevant probability density 

functions, as opposed to the deterministic approach (which considers the input variables as 

specific worst-case scenarios). The analysis also demonstrated that replacement of 

synchronous generators with doubly fed induction generators (DFIGs) deteriorated the 

transient stability. Moreover, the addition of DFIGs to an existing network improved the 

transient stability by decreasing the average risk of the system. The CBs were ranked for 

line and bus faults, based on RA value. This ranking can be very useful for system planners 

for decision-making.  Moreover, probability of instability (for individual faults) and system 

instability was evaluated was line and bus faults. The results obtained reinforces the fact 

that bus faults are more severe than line faults. The variation of network topology (using 

single line contingency) drastically impacts the value of PSYS and RA, indicating the 

significance of its inclusion in the PTS framework. Moreover, ANN-based regression was 

applied to improve computation efficiency, for predicting the value of benefit-cost ratio 

(BCR), for each line in the network.  

In the second part, ANN and SVM were applied for online PTS prediction (classification). 

In addition to uncertain system load conditions, various uncertain factors such as faulted 

line, fault type, fault location, and FCT were considered. Time-domain simulations were 

used to create the data required for training the ML models. The TSI was used as the 
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indicator for the PTS status. The results obtained for the IEEE 14-bus system demonstrated 

that both ANN and SVM can rapidly estimate the transient stability, considering 

uncertainties, with a fairly high accuracy, however, ANN outperformed SVM, as its 

classification performance metrics were found to be superior.  

The results obtained for the proposed approaches indicated a strong possibility of ANN 

and SVM, for online dynamic security assessment (DSA) because of their enhanced 

computational efficiency and high accuracy. Based on the work presented in this research 

and recent advancements in the domain, it is firmly believed that ANNs and SVMs have 

more to offer in the domain of power system security and stability. Moreover, the proposed 

approaches are universal in the sense that they are scalable and hence, can be extended to 

any system size, topology, and can incorporate various other ML approaches.  

It is significant to recognize that the purpose of using the PTS assessment is not to replace 

the traditional deterministic criteria, which have been utilized for years in the power sector. 

However, the probabilistic method provides a sophisticated complement to enhance the 

transient stability analysis in utilities. The comprehensive acceptance of the probabilistic 

method is a gradual process. Jumping from an established approach directly to an evolving 

one would result in confusion and loss of credibility. Therefore, utilities should start to get 

used to the probabilistic perspective by gradually implementing probabilistic approaches 

into the power system decision-making processes. 

5.2 Recommendations for Future Research 

This section presents some recommendations for future research. They are outlined below. 

Ensemble Machine Learning Approaches 
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Ensemble methods employ multiple learning algorithms to obtain an improved predictive 

performance than could be obtained from any of the constituent individual learning 

algorithms [1-2]. Their main advantages are performance (an ensemble allows improved 

predictions and can achieve improved performance than any individual contributing 

model) and robustness (an ensemble decreases the dispersion of the predictions and model 

performance). However, selecting the right ensemble approach is an exigent task, as it 

depends on a lot of factors, including input data characteristics, available computational 

resources and required prediction performance. For instance, models with high variance 

are likely to benefit from using bagging, whereas highly biased models, it is better to use 

them boosting. Moreover, it is hard to estimate the correlation between the individual 

algorithms employed in an ensemble. Ensemble learning approaches for online transient 

stability assessment are still being researched, and this is still an open area of research. 

Some common ensemble algorithms include bagging, boosting, Bayes optimal classifier, 

and Bayesian model combination. 

Transient Stability of Integrated Gas and Power System 

With the quick development of natural gas fired units worldwide, the interdependency of 

natural gas system and power system has substantially augmented. This integrated energy 

system, constitutes of natural gas system and power system, has benefits of low harmful 

emissions. Conventionally, power systems and natural gas systems have been planned 

discretely [3-4]. As these two energy systems are increasingly becoming interconnected, it 

is valuable to model their joint expansion planning, which also includes transient stability 

assessment. There is a need to propose a unified approach for incorporating natural gas 

systems in the transient stability analysis, including, but not limited to, wells, pipelines, 
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compressors, liquefied natural gas terminals and gas storage. In addition, economic aspects 

of gas, such as gas price and gas contracts, gas supply constraints, limited transmission 

capacity of pipeline network, etc. could also affect the natural gas supply adequacy and 

hence, the long-term transmission reliability and planning.  

Validation Challenge 

One of the real problems that the simulation modeling faces is how to validate its models 

[5]. A valid simulation model is a functionally accurate representation of the real system. 

If the real system is hard to create, the simulation model and its output data can be verified 

with solving the analytics model, if all conditions in the simulation model are applied to 

the analytical model. Performing a comparison of simulation output data with a real system 

is the best way to validate the proposed model. In this approach, the simulation model and 

its outputs are compared to the real system and its output. Although, this process of 

validation seems simple; however, it may present some hurdles in implementation process, 

as real wind and diesel generators will be required to model the power system. 

Network Topology  

Another key challenge is to incorporate changes of the network topology in the ML 

approaches. The security of the power system is highly related to the topology of the system 

[6], and changes in the network topology can happen frequently for various reasons, such 

as for maintenance purposes or unexpected component failures [7]. The impact of changing 

topology on transient stability rules is a substantial challenge. This is because if topological 

changes are not considered and transient stability rules are trained only for one specific 

topology, the resulting assessment of the transient stability (and security) using these rules 

may provide erroneous predictions, which ultimately leads to incorrect decision-making. 
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Therefore, a key future direction is to enhance the ML workflow, by considering changes 

in the system topology.  

Power System Resilience: Weather and Cyber Attacks 

The resilience of a power system, in general, its ability to respond to unforeseen, high 

impact low frequency events, and its ability to rapidly and efficiently restore to its pre-

event operation state [8]. Uncertainties introduced by unforeseen, high risk events, such as 

natural disasters (hurricanes, earthquakes, floods, etc.), extreme weather (ice storms, heat 

waves, high winds, etc.), cyber-attacks, etc. can prove lethal to the power system, and 

hence, can have a detrimental impact on the transient stability. The central challenge in this 

regard is to model these phenomena, and their allied impact accurately enough, to be 

incorporated in a risk-based transient instability formulation. 

Other Aspects of Stability 

Although, classification of power system stability is an efficient way to deal with the 

complexities of the problem, the overall stability of the system should always be the 

broader aspect. Solutions to stability problems of one category should not be at the expense 

of another [9]. Therefore, it is indispensable to consider other aspects of the stability 

phenomenon, and at each aspect, from more than one viewpoint (under both small and 

large disturbances). As this work focused only on transient stability, the proposed risk-

based approach can be extended to voltage and frequency stability (for both large and small 

disturbances), and consequently, suitable risk indices can be established. 

Larger Test System 

The study can be repeated for a larger test system. The proposed framework should be 

applied on large-scale power system, where the system can be divided into multiple 
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regions, to improve the accuracy of ANN and SVM algorithms [10], to approximate the 

enclosed transient stability aspects, in each region. This should be accomplished by 

establishing a technique to consider the impact of stability of each region on the other 

regions during implementation of ANN and SVM. 

5.3 Recommendations for Risk-based Decision-Making 

Given the unprecedented changes in the electric power industry, and the pressure to ensure 

system reliability at a minimum cost, transmission planning is becoming more complex 

than ever. Risk-based planning has a momentous potential to provide a better decision-

making framework for transmission planners. However, this is still an area of active 

research and substantial gaps remain in terms of developing a robust probabilistic 

framework that planners can routinely use. Some significant recommendations in this 

regard are outlined below [11-12]. 

Closer Coordination with NERC 

All the existing NERC transmission planning standards are deterministic. However, 

recently NERC has shown interest in considering probabilistic approaches in transmission 

planning and organized multiple workshops in Eastern Interconnection as well as in WECC 

on risk-based planning. NERC and states, in collaboration with other stakeholders can 

collaborate, and develop a long-term vision for establishing risk-based planning 

framework. Also, there are no well-defined risk criteria and indices that can be largely 

accepted and enforced. This is an important domain which requires noteworthy effort and 

coordination.  

Greater Awareness about Uncertainties and Risks  
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Transmission planning is a demanding activity involving federal, state, local, and private 

entities. All the stakeholders may not be equally aware of various risks and uncertainties 

that are going to impact transmission planning in the future. Also, they may have different 

views about the future. It is also recommended that states get more actively involved in 

regional transmission planning processes initiated by Federal Energy Regulatory 

Commission (FERC) or regional planning organizations for improved alliance and wider 

outlook on risk-based decision-making.  

Promote Research Efforts on Risk-based Planning 

As mentioned before, risk-based planning requires active research and industry 

participation for its wider adoption. States can encourage research efforts and work closely 

with research organizations, universities, national labs, commercial software developers, 

and utility industry to ensure that research needs are addressed, and practical solutions are 

proposed. The research community needs to work more closely with the industry to clearly 

demonstrate the benefits of probabilistic methods. The industry needs to clearly 

communicate inadequacies in deterministic methods and areas that probabilistic methods 

can be most productive. Cooperative efforts of the research and industry communities are 

the need of the hour to face the challenges in terms of both comprehending and practical 

application. 
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APPENDIX A 
 

A.1 IEEE 14 bus data (input data) 

 
A.1.1 Load demand 

 
 

 

A.1.2 Generator dispatch 

 
 

 

A.1.3 Generator controller settings 
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A.1.4 Data of lines given in [1] based on 100 MVA 

 
 

 

A.1.5 Data of lines given in the PowerFactory model 
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A.1.6 Data of transformers given in [1] based on 100 MVA, with rated voltages 

added in the PowerFactory model 

 
 

 

A.2 IEEE 14 bus data (load flow results) 
 

A.2.1 Results of buses 

 
 

A.2.2 Results of generators 
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A.2.3 Results of lines 
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APPENDIX B 

B.1 DPL (DIgSILENT) Code for performing PTS and Computing BCR 

set sLines,sBuses, sGens; 

object rLine,oLine,oBus,Cost,opf,oGen,oLine1,FaultL; 

int n,d,o,r,m,z,a,f,p,samp,k,l,FaultT,i,j; 

int Psl,Psl1,Gu,Gu1, Vec; 

int w,x,W,X,P,N,D,O,st,B2,B5,t,g; 

double q,y,s,b,R,RTUNA,RTUNA1,RA,RA1, Faultloc; 

double c,V,h,RTUNV,RTUNV1,RV,H,RV1,HH; 

double u,v,F,RTUNF,RTUNF1,RF,U,RF1,UU; 

double G,A,ss,sv,aft,afl,afct,Z,B,B1,B3,B4,B6,C; 

double ACost,VCost,FCost,Pg,Pg1,Pg2,Pload,Pload1; 

double 

Cr,C2,T1,T2,CA,CB,BCR,BB,CC,APCT,VPCT,FPCT,MV1,MV2,MA1,MA2,MF1,MF2

; 

double APCT1,VPCT1,FPCT1; 

SetRandomSeed(1); 

Allservice.Execute(); 

ClearOutput(); 

sGens=Gens.Get(); 

sBuses=Bus.Get(); 

sLines=Lines.Get(); 

VecL.Clear(); 

VecFT.Clear(); 

VecFL.Clear(); 

VecFCT.Clear(); 

n=1; 

d=1; 

k=1; 

j=1; 
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x=0; 

X=0; 

D=0; 

N=0; 

RA=0; 

samp=2401;  !Choose Number of Monte Carlo Samples 

MatRUNA.Init(0,0,0); 

Mat.Init(0,0,0); 

MatRUNA1.Init(0,0,0); 

MatACost.Init(0,0,0); 

MatBus.Init(0,0,0); 

MatPg.Init(0,0,0); 

MatF.Init(0,0,0); 

MatAPCT.Init(0,0,0); 

MatFinal.Init(0,0,0); 

MatFinal1.Init(0,0,0); 

MatA1.Init(0,0,0); 

MatA2.Init(0,0,0); 

for(z=1;z<=samp;z+=1) 

{ 

c=0; 

RTUNA=0; 

RTUNA1=0; 

oLine=sLines.First(); 

r=RndUnifInt(1,16);   !Select Fault Line Randomly 

if(r=1) 

{oLine=sLines.First();} 

else 

{ 

for(a=2;a<=r;a+=1) 
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{ 

oLine=sLines.Next(); 

} 

 } 

for(w=x;w<=x;w+=1) 

{ 

VecL.Insert(w,oLine);           !Put faulted lines in vector 

} 

x+=1; 

printf('\ccFaulted Line is %s',oLine:loc_name); 

ShcEvent:p_target=oLine; 

y=fRand(0,0,0.7); 

printf('\cc--------------value of y is %f---------------', y); 

if(y>0.15.and.y<=0.7) 

{f=2;} 

if(y<=0.05) 

{f=0;} 

if(y>0.05.and.y<=0.1) 

{f=3;} 

if(y>0.1.and.y<=0.15) 

{f=1;} 

ShcEvent:i_shc=f; !Select Fault Type 

printf('\ccvalue of f is %d', f); 

for(W=X;W<=X;W+=1)                !Putting fault types in vector 

{ 

VecFT.Insert(W,f); 

} 

X+=1; 

oLine:fshcloc=fRand(0,0,100);  !Select Fault Location 

A=oLine:fshcloc; 
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printf('\ccfault location is %f', A); 

for(P=N;P<=N;P+=1)               !Putting fault locations in vector 

{ 

VecFL.Insert(P,A); 

} 

N+=1; 

ShcEventEnd:time=fRand(1,1.9,0.1); !Select FCT 

ShcEventEnd:p_target=oLine; 

printf('\ccfault clearinf time is %f', ShcEventEnd:time); 

for(O=D;O<=D;O+=1)                 !Putting clearing time in vector 

{ 

VecFCT.Insert(O,ShcEventEnd:time); 

} 

D+=1; 

ComLdf.Execute(); !Execute Load Flow 

oBus=sBuses.First(); 

oGen=sGens.First(); 

g=1; 

for(oBus=sBuses.First();oBus;oBus=sBuses.Next()) 

{ 

C=oBus:m:Pload; 

for(t=g;t<=g;t+=1) 

{ 

MatPload.Set(t,1,C); 

} 

 g+=1; 

} 

printf('\ccLoad on each bus is %o', MatPload); 

g=1; 

for(oGen=sGens.First();oGen;oGen=sGens.Next()) 
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{ 

C=oGen:pgini; 

for(t=g;t<=g;t+=1) 

{ 

MatPg.Set(t,1,C); 

} 

g+=1; 

} 

printf('\ccActive power is %o', MatPg); 

g=1; 

for(oBus=sBuses.First();oBus;oBus=sBuses.Next()) 

{ 

C=oBus:m:u; 

for(t=g;t<=g;t+=1) 

{ 

MatBus.Set(t,1,C); 

} 

 g+=1; 

} 

ComI.Execute(); !Execute Time-domain Simulation 

Coms.Execute(); 

oGen=sGens.First(); 

printf('\ccMax Angle Diff for Fault at %s: %.2f', oLine:loc_name,oGen:c:dfrotx); 

s=oGen:c:dfrotx; 

Pg=0; 

g=1; 

Pg2=0; 

m=0; 

for(oGen=sGens.First();oGen;oGen=sGens.Next()) 

{ 
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if (oGen:s:outofstep=1) 

{ 

 m+=1; 

Pg2=MatPg.Get(g,1); 

Pg+=Pg2; 

} 

g+=1;  

} 

Psl=m; 

printf('\cc Number of pole slip in Gen value of Pg after fault %d ----- %f',Psl,Pg); 

if(m>=1) 

{ 

s+=360; 

} 

for(p=n;p<=n;p+=1) 

{ 

Mat.Set(n,1,s); 

} 

n+=1; 

b=((360-s)/(360+s));  !Compute Maximum rotor angle difference 

ACost=((200*Pg)+(60000*Psl)); !Compute transient instability cost 

printf('\cc value of ACost  %f',ACost); 

if(b<0) 

{ 

if(f=0) 

{ 

 R=0.05*0.000625*abs(b); 

 } 

if(f=1) 

{ 
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 R=0.15*0.000625*abs(b); 

 } 

if(f=2) 

{ 

 R=0.70*0.000625*abs(b); 

 } 

if(f=3) 

{ 

 R=0.10*0.000625*abs(b); 

 } 

RTUNA+=R; 

RA+=RTUNA; 

for(o=d;o<=d;o+=1) 

{ 

MatRUNA.Set(d,1,RTUNA); 

}  

d+=1; 

} 

MatACost.Set(z,1,ACost); 

} 

printf('\ccValue of Maximum Angle Diff for each sample is %o', Mat); 

printf('\ccvalue of Risk of angles for unstable samples is %o',MatRUNA); 

printf('\ccvalue of RA is %f', RA); 

G=RA; 

if(G=RA) 

{ 

d=0; 

for(Z=1;Z<=samp;Z+=1) 

{ 

ss=0; 
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st=Z-1; 

oLine1=VecL.Get(st); 

aft=VecFT.Get(st); 

afl=VecFL.Get(st); 

afct=VecFCT.Get(st); 

ShcEvent:p_target=oLine1;     !same faulted line as above 

ShcEvent:i_shc=aft;            !same fault type as above                   

oLine1:fshcloc=afl;             !same fault location  as above 

ShcEventEnd:time=afct;          !ending fault at CCT 

ShcEventEnd:p_target=oLine1; 

ComI.Execute(); 

Coms.Execute(); 

oGen=sGens.First(); 

printf('\ccMax Angle Diff for Fault at %s: %.2f', oLine1:loc_name,oGen:c:dfrotx); 

s=oGen:c:dfrotx; 

m=0; 

for(oGen=sGens.First();oGen;oGen=sGens.Next()) 

{ 

if (oGen:s:outofstep=1) 

{ 

 m+=1;  

}  

} 

if(m>=1) 

{ 

s+=360; 

} 

b=0; 

b=((360-s)/(360+s)); 

B=0; 
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Pg=0; 

Pg1=0; 

Psl=0; 

Psl1=0; 

ss=0; 

APCT1=0; 

if(b<0) 

{ 

while(b<0) 

{ 

m=0; 

Pg=Pg1; 

Psl=Psl1; 

ss+=0.01; 

ShcEvent:p_target=oLine1;     !same line as above 

ShcEvent:i_shc=aft;            !same type of fault                    

oLine1:fshcloc=afl;             !same fault location 

sv=afct-ss; 

ShcEventEnd:time=sv;          !ending fault at CCT 

APCT1=sv; 

ShcEventEnd:p_target=oLine1; 

B=b; 

ComI.Execute(); 

Coms.Execute(); 

oGen=sGens.First(); 

s=oGen:c:dfrotx; 

g=1; 

for(oGen=sGens.First();oGen;oGen=sGens.Next()) 

{ 

if (oGen:s:outofstep=1) 



292 

 

{ 

 m+=1; 

 Pg1=MatPg.Get(g,1);  

} 

g+=1;  

} 

Psl1=m; 

if(m>=1) 

{ 

s+=360; 

} 

b=0; 

b=((360-s)/(360+s)); 

} 

} 

APCT=APCT1; 

MatAPCT.Set(Z,1,APCT); 

ACost=((200*Pg)+(60000*Psl)); 

R=0; 

if(B<0) 

{ 

if(aft=0) 

{ 

 R=0.05*0.000625*abs(B); 

 } 

if(aft=1) 

{ 

 R=0.15*0.000625*abs(B); 

 } 

if(aft=2) 
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{ 

 R=0.70*0.000625*abs(B); 

 } 

if(aft=3) 

{ 

 R=0.10*0.000625*abs(B); 

 } 

 } 

RTUNA1=R; 

RA1+=RTUNA1; 

d+=1; 

for(o=d;o<=d;o+=1) 

{ 

MatRUNA1.Set(d,1,RTUNA1); 

} 

MatACost.Set(Z,2,ACost);  

} 

printf('\cc--------value of Risk of angles for unstable samples is %o',MatRUNA1); 

printf('\cc--------value of RA is %f', RA1); 

} 

if(G=RA) 

{ 

printf('\cc--Matrix MatAcost %o',MatACost); 

} 

for(z=1;z<=samp;z+=1) 

{ 

if(G=RA) 

{ 

MA1=MatACost.Get(z,1); 

MA2=MatACost.Get(z,2); 
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MatF.Set(z,1,MA1); 

MatF.Set(z,2,MA2); 

} 

} 

for(z=1;z<=samp;z+=1) 

{ 

Vec=(z-1); 

FaultL=VecL.Get(Vec); 

Cr=MatF.Get(z,1); 

T1=VecFCT.Get(Vec); 

FaultT=VecFT.Get(Vec); 

Faultloc=VecFL.Get(Vec); 

if(G=RA) 

{ 

T2=MatAPCT.Get(z,1); 

} 

CB=20000+3700/(T2-1); 

BCR=Cr/2CB; 

MatFinal.Set(z,1,Cr);    !Column Matrix for Cost of Risk 

MatFinal.Set(z,2,T1);    !Column Matrix for FCT 

MatFinal.Set(z,3,T2);    !Column Matrix for CCT 

MatFinal.Set(z,4,CB);    !Column Matrix for single circuit breaker cost 

MatFinal.Set(z,5,BCR);   !Column Matrix for BCR  

MatA1.Set(z,1,FaultT); 

MatA2.Set(z,1,Faultloc); 

printf('\cc--Matrix Fault_type %o',MatA1); !Column Matrix for fault type 

printf('\cc--Matrix Fault_location %o',MatA2); !Column Matrix for fault location  

printf('\cc%o',FaultL); !Column Matrix for faulted line 

} 

printf('\cc--Matrix MatFinal %o',MatFinal); ! Final Matrix 
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APPENDIX C 

C.1 MATLAB Codes 

C.1.1 ANN Regression 

% Solve an Input-Output Fitting problem with a Neural Network 

% Script generated by Neural Fitting app 

% This script assumes these variables are defined: 

%   Reg - input data. 

%   BCR - target data. 

 x = Reg'; 

t = BCR'; 

 % Choose a Training Function 

% For a list of all training functions type: help nntrain 

% 'trainlm' is usually fastest. 

% 'trainbr' takes longer but may be better for challenging problems. 

% 'trainscg' uses less memory. Suitable in low memory situations. 

trainFcn = 'trainlm';  % Levenberg-Marquardt backpropagation. 

 % Create a Fitting Network 

hiddenLayerSize = 20; 

net = fitnet(hiddenLayerSize,trainFcn); 

 % Setup Division of Data for Training, Validation, Testing 

net.divideParam.trainRatio = 70/100; 

net.divideParam.valRatio = 15/100; 

net.divideParam.testRatio = 15/100; 

 % Train the Network 

[net,tr] = train(net,x,t); 

 % Test the Network 

y = net(x); 

e = gsubtract(t,y); 

performance = perform(net,t,y) 

 % View the Network 
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view(net) 

% Plots 

% Uncomment these lines to enable various plots. 

%figure, plotperform(tr) 

%figure, plottrainstate(tr) 

%figure, ploterrhist(e) 

%figure, plotregression(t,y) 

%figure, plotfit(net,x,t) 

  

C.1.2 ANN Classification 

% Solve a Pattern Recognition Problem with a Neural Network 

% Script generated by Neural Pattern Recognition app 

% This script assumes these variables are defined: 

%   Class - input data. 

%   Status - target data. 

 x = Class'; 

t = Status'; 

% Choose a Training Function 

% For a list of all training functions type: help nntrain 

% 'trainlm' is usually fastest. 

% 'trainbr' takes longer but may be better for challenging problems. 

% 'trainscg' uses less memory. Suitable in low memory situations. 

trainFcn = 'trainlm'; % Levenberg-Marquardt backpropagation. 

 % Create a Pattern Recognition Network 

hiddenLayerSize = 20; 

net = patternnet(hiddenLayerSize, trainFcn); 

 % Setup Division of Data for Training, Validation, Testing 

net.divideParam.trainRatio = 70/100; 

net.divideParam.valRatio = 15/100; 

net.divideParam.testRatio = 15/100; 
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 % Train the Network 

[net,tr] = train(net,x,t); 

 % Test the Network 

y = net(x); 

e = gsubtract(t,y); 

performance = perform(net,t,y) 

tind = vec2ind(t); 

yind = vec2ind(y); 

percentErrors = sum(tind ~= yind)/numel(tind); 

 % View the Network 

view(net) 

% Plots 

% Uncomment these lines to enable various plots. 

%figure, plotperform(tr) 

%figure, plottrainstate(tr) 

%figure, ploterrhist(e) 

%figure, plotconfusion(t,y) 

%figure, plotroc(t,y) 

  

 C.1.3 SVM Classification 

function [trainedClassifier, validationAccuracy] = trainClassifier(trainingData) 

% [trainedClassifier, validationAccuracy] = trainClassifier(trainingData) 

% Returns a trained classifier and its accuracy. This code recreates the 

% classification model trained in Classification Learner app. Use the 

% generated code to automate training the same model with new data, or to 

% learn how to programmatically train models. 

%  Input 

% 

%      trainingData: A table containing the same predictor and response 

%       columns as those imported into the app. 
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% 

%  Output: 

%      trainedClassifier: A struct containing the trained classifier. The 

%       struct contains various fields with information about the trained 

%       classifier. 

% 

%      trainedClassifier.predictFcn: A function to make predictions on new 

%       data. 

% 

%      validationAccuracy: A double containing the accuracy in percent. In 

%       the app, the History list displays this overall accuracy score for 

%       each model. 

% 

% Use the code to train the model with new data. To retrain your 

% classifier, call the function from the command line with your original 

% data or new data as the input argument trainingData. 

% 

% For example, to retrain a classifier trained with the original data set 

% T, enter: 

%   [trainedClassifier, validationAccuracy] = trainClassifier(T) 

% 

% To make predictions with the returned 'trainedClassifier' on new data T2, 

% use 

%   yfit = trainedClassifier.predictFcn(T2) 

% 

% T2 must be a table containing at least the same predictor columns as used 

% during training. For details, enter: 

%   trainedClassifier.HowToPredict 

  % Extract predictors and response 

% This code processes the data into the right shape for training the 
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% model. 

inputTable = trainingData; 

predictorNames = {'type', 'loc', 'T1', 'load', 'LineNum'}; 

predictors = inputTable(:, predictorNames); 

response = inputTable.Status; 

isCategoricalPredictor = [false, false, false, false, false]; 

 % Train a classifier 

% This code specifies all the classifier options and trains the classifier. 

classificationSVM = fitcsvm(... 

    predictors, ... 

    response, ... 

    'KernelFunction', 'gaussian', ... 

    'PolynomialOrder', [], ... 

    'KernelScale', 2.46297857551967, ... 

    'BoxConstraint', 479.1629420174838, ... 

    'Standardize', false, ... 

    'ClassNames', [0; 1]); 

 % Create the result struct with predict function 

predictorExtractionFcn = @(t) t(:, predictorNames); 

svmPredictFcn = @(x) predict(classificationSVM, x); 

trainedClassifier.predictFcn = @(x) svmPredictFcn(predictorExtractionFcn(x)); 

 % Add additional fields to the result struct 

trainedClassifier.RequiredVariables = {'LineNum', 'load', 'T1', 'loc', 'type'}; 

trainedClassifier.ClassificationSVM = classificationSVM; 

trainedClassifier.About = 'This struct is a trained model exported from Classification 

Learner R2020a.'; 

trainedClassifier.HowToPredict = sprintf('To make predictions on a new table, T, use: \n  

yfit = c.predictFcn(T) \nreplacing ''c'' with the name of the variable that is this struct, e.g. 

''trainedModel''. \n \nThe table, T, must contain the variables returned by: \n  

c.RequiredVariables \nVariable formats (e.g. matrix/vector, datatype) must match the 
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original training data. \nAdditional variables are ignored. \n \nFor more information, see 

<a href="matlab:helpview(fullfile(docroot, ''stats'', ''stats.map''), 

''appclassification_exportmodeltoworkspace'')">How to predict using an exported 

model</a>.'); 

 % Extract predictors and response 

% This code processes the data into the right shape for training the 

% model. 

inputTable = trainingData; 

predictorNames = {'type', 'loc', 'T1', 'load', 'LineNum'}; 

predictors = inputTable(:, predictorNames); 

response = inputTable.Status; 

isCategoricalPredictor = [false, false, false, false, false]; 

 % Perform cross-validation 

partitionedModel = crossval(trainedClassifier.ClassificationSVM, 'KFold', 5); 

 % Compute validation predictions 

[validationPredictions, validationScores] = kfoldPredict(partitionedModel); 

 % Compute validation accuracy 

validationAccuracy = 1 - kfoldLoss(partitionedModel, 'LossFun', 'ClassifError'); 
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