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Abstract—Solenoid valves (SV) are essential compo-5
nents of industrial systems and therefore widely used. As6
they suffer from high failure rates in the field, fault progno-7
sis of these assets plays a major role for improving their8
maintenance and reliability. In this work, Bayesian convo-9
lutional neural networks are used to predict the remaining10
useful life (RUL) of SV, by training them on the valve’s cur-11
rent signatures. Predictive performance is further improved12
upon by using salient physical features obtained from an13
electromechanical model as the network’s training input.14
Results show that our designed network architecture pro-15
duces well-calibrated uncertainty estimations of the RUL16
predictive distributions, which is an important concern in17
prognostic decision-making.18

Index Terms—Artificial neural networks, Bayes methods,19
machine learning, predictive maintenance, prognostics and20
health management, remaining life assessment, solenoid21
valve, occlusion, uncertainty.22

I. INTRODUCTION23

THE purpose of prognostics and health management (PHM)24

is to enable optimal maintenance strategies, as to prevent25

machine failure, extend the lifetime of machines and reduce26

operational costs. This is achieved by detecting incipient faults,27

fault isolation, identification of different fault types (fault diag-28

nostics), and fault prognosis. These techniques typically imply29

the analysis of healthy and/or faulty conditions indicated by30

process measurements.31

Two main approaches exist for estimating the remaining32

useful life (RUL). Physics-based approaches rely on physical33
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domain knowledge, which describe normal operation and 34

physical degradation laws. Data-driven approaches are based 35

on condition monitoring data, which are used for constructing 36

statistical or machine learning models [1]. The term “hybrid 37

approaches” is commonly used for approaches that combine 38

physics-based and data-driven techniques. 39

Deep learning (DL) techniques are an important subcategory 40

of data-driven approaches. Features are learned automatically 41

at multiple levels of feature representations, which allows DL 42

to learn complex relations mapping the input to the output di- 43

rectly. This contrasts DL with feature-based approaches such as 44

decision tree ensembles or Gaussian process regression, which 45

rely on the construction of features [2]. DL is particularly well 46

positioned to solve the following issues in prognostics [3]. 47

1) Automatic processing of massive amounts of data. 48

2) Automatic extraction of useful features from high- 49

dimensional, heterogeneous data sources. 50

3) Learning temporal and functional relationships between 51

and within time series. 52

4) Transfer knowledge between different units and operat- 53

ing conditions. 54

Despite advancements in DL-based prognostics, most works 55

only provide deterministic RUL predictions, without capturing 56

uncertainties [4]. When predicting the future behavior of systems 57

in prognostics, various sources of uncertainty are involved, such 58

as noisy sensor data and predictive uncertainty associated with 59

randomness in future operating conditions. Predictive uncer- 60

tainty quantification (UQ) thus has an important role in esti- 61

mating the RUL of engineering systems. Pointwise predictions 62

without UQ do not indicate how much confidence a DL method 63

has in its predictions, which is a critical issue in prognostic 64

decision-making. 65

Bayesian modeling is an effective framework for dealing 66

with uncertainty in machine learning, including complex neu- 67

ral network models. Bayesian hypothesis reasoning is used to 68

improve generalization performance, and to construct credible 69

intervals for statistical inference. Modern Bayesian neural net- 70

works (BNNs) can be trained effectively through techniques 71

such as Monte Carlo dropout or mean field variational inference 72

(VI) [5]. Bayesian convolutional neural networks (BCNNs) have 73

been successfully used for large-scale image classification tasks 74

with UQ [6]. 75

In this work, BCNNs are applied to predict the RUL of 76

solenoid valves (SV), trained on image representations of its 77
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current signals. SVs are essential components of many industrial78

systems in process industry. For example, approximately 2–4%79

of SVs in a chemical plant are used in critical safety instrumented80

functions, often forming the most important components in the81

safety loop [7]. Hence, reliable monitoring of these components82

is needed. In this work, an accelerated lifetime setup is used83

to obtain SV life time data under realistic cycling conditions.84

Physical domain knowledge is used to improve the predictive85

performance of a BCNN trained on the SV’s current signals. Two86

physical forces obtained as features from the current signals are87

included to the BCNN input, since they contain salient informa-88

tion on the degradation state of the valve [8]. Feature attribution89

methods [9] are applied to the trained BCNN, highlighting which90

aspects of its input are important for its predictions. For the91

BCNN model, we design an architecture that is able to infer92

uncertainty in a flexible way. The standard deviation of the93

predictive RUL distribution is predicted as a separate output94

parameter of the network architecture. We study the reliability95

of these UQs by evaluating calibration curves of the RUL test96

predictions.97

The remainder of this article is organized as follows. Section II98

discusses related work. In Section III, the setup used to create99

the data and the dataset itself are discussed. In Section IV, a100

brief overview of BNNs is provided, and the proposed RUL pre-101

diction methodology. In Section V, the results of the presented102

methodology on our dataset is discussed. Section VI concludes103

this article.104

II. RELATED WORK105

A. Deep Learning in PHM106

A recent review on DL PHM applications for sensor condition107

monitoring data [3] by Fink et al., presents an overview of108

current developments, challenges, potential solutions, and future109

research. Considering the large amount of work in this field, we110

focus on recent applications of 1) convolutional neural networks111

(CNNs) and 2) BNNs for RUL prognostics. Convolutional archi-112

tectures are most relevant for our work, since SV sensor signals113

are represented as training data in the form of images.114

1) CNNs: Aydemir et al. [10] designed a neural network115

architecture consisting of convolutional layers for extracting116

spatial features, an long short-term memory (LSTM) layer for117

tracking temporal information, and another architecture, where118

the dimension of images was reduced by a deep autoencoder.119

These models were applied to simulation data and a dataset of120

infrared image streams from rotating machinery. Yuan et al.121

propose a CNN-based, data-driven end-to-end framework for122

monitoring manufacturing systems, which is evaluated on ten123

representative datasets [11]. Yang et al. [12] integrated two CNN124

architectures into one framework: A first CNN for incipient125

failure threshold identification, and a second CNN for RUL126

prediction. This framework was applied to vibration data of127

bearings. Liu et al. [13] propose a joint-loss CNN architecture,128

which can implement bearing fault recognition and RUL pre-129

diction in parallel. Li et al. [14] use a multiscale CNN, applied130

to modular aeropropulsion system simulation data (C-MAPSS131

dataset) from NASA. Kim et al. [15] also study the C-MAPSS132

Fig. 1. (a) Experimental accelerated lifetime setup. 48 SVs (direct
acting, 3/2 way, normally closed) are switched at a rate of 1 Hz for a total
duration of 6 weeks, until EOL. Electrical current signals, the pressure
of the air supplied to the valves, leakage, and temperature signals are
measured. (b) CAD model of the internals of the SV.

dataset, using a CNN-based multitask learning method to reflect 133

the relatedness of RUL estimation with a health status detection 134

process. Ma et al. [16] propose a convolution-based LSTM that 135

conducts convolutional operations on both the input-to-state and 136

state-to-state transitions of an LSTM, applied to vibration data 137

of rotating machinery. 138

2) BNNs: In contrast to the frequentist CNN (FCNN) models 139

above, earlier work on BNNs for prognostics is now described. 140

Peng et al. [4] use a Bayesian multiscale CNN and Bayesian 141

bidirectional LSTM trained by VI, applied to a ball bearing 142

dataset and the C-MAPPS dataset. Li et al. [5] propose recurrent 143

NNs with gated recurrent units and a sequential Bayesian boost- 144

ing algorithm applied to high-voltage circuit breakers, where 145

epistemic and aleatoric uncertainty are considered separately. 146

Kraus et al. [17] propose a Bayesian structured-effect neural 147

network, evaluated on the C-MAPPS dataset. Gao et al. [6] also 148

study this dataset, proposing a joint prognostic model, where 149

Bayesian linear models are used in conjunction with an NN. 150

Wang et al. [18] use VI to quantify the uncertainty of recurrent 151

convolutional NNs in RUL prediction. The method is evaluated 152

on vibration data from accelerated degradation tests of rolling 153

element bearings and sensor data from life testing of milling 154

cutters. 155

The above methodologies using BNNs all focus on purely 156

data-driven prediction performance. In this work, we adopt a 157

hybrid approach by adding salient physical features from a 158

physical model [8] to the input of the BCNN, with the aim to 159

lower RUL errors. Moreover, an important aspect not included 160

in these works is that uncertainty estimations should show good 161

calibration performance. Credible predictive intervals can only 162

be relied on when they faithfully represent uncertainty. 163

B. Solenoid Valves 164

To the best of our knowledge, there exists no earlier work on 165

UQ for SV diagnostics or prognostics. Previous work without 166

UQ is now described. Jo et al. [19] propose a model-based 167

fault detection method for SVs taken from real braking systems 168

of urban railway vehicles. Guo et al. [20] use a data-driven 169

fault diagnosis method for SVs using multikernel support vector 170



MAZAEV et al.: BCNNS FOR RUL PROGNOSTICS OF SVS WITH UNCERTAINTY ESTIMATIONS 3

Fig. 2. Evolution of a SV current signal over the course of its lifetime. (a)–(c) Current of a valve deteriorating from healthy to faulty and EOL. In (d)
and (e), temperature and leakage sensor measurements are shown respectively. In (f), a piece-wise linear function for modeling the RUL of the SV
is shown.

machines. Liniger et al. [21] propose a model-based scheme for171

detecting the early signs of coil failure in SVs. The method em-172

ploys a thermal model of the solenoid and an extended Kalman173

filter for generating coil current residuals. Sarwar et al. [22]174

developed an algorithm for fault isolation and diagnosis of175

high-pressure fuel pump SVs using current feedback. Mazaev176

et al. [23] proposed data-driven RUL prediction approaches177

using shallow feature-based approaches and an ensemble of178

CNNs to construct a health index of SVs, which are used to179

extrapolate RUL. This work directly compares the performance180

of the presented methodology with these results.181

III. DATA182

A. Setup183

An experimental endurance test setup, as shown in Fig. 1(a),184

was used for monitoring the degradation of 48 SVs. These are185

direct acting 3/2 way normally closed SVs (Burkert Type 6014).186

By switching the valves at a rate of 1 Hz for a total duration of187

6 weeks, accelerated life testing was achieved. One acquisition188

of the valves switching ON and OFFwas captured every hour.189

Each valve was switched by an input voltage of 110-V ac at190

50 Hz. Compressed air at 8 bar (g) was supplied to the valves191

at an ambient temperature of 25 ◦C. The current signal through192

the SV was monitored, as well as the temperature and pressure193

of the air being supplied to the valves. Supplementary sensors194

measured the surface temperatures of and the ambient temper-195

atures around the valves. Thermal mass flow was measured for196

TABLE I
SENSOR USED FOR EACH DATA MEASUREMENT

IN THE EXPERIMENTAL SETUP

detecting leakage at the outlet ports and ventholes (blow-off 197

holes) of the valves. The sensor type used for each measurement 198

is summarized in Table I. The internals of the SV, such as the 199

plunger and return spring, are shown in Fig. 1(b). 200

B. Dataset 201

Physical models derived from first principles couple the cur- 202

rent signal of the SV to dynamical states such as the magnetic 203

flux and the plunger position [8]. When energizing or deener- 204

gizing the valve, its mechanical deterioration is visible through 205

this current signal. 206

Three classes of current signals can be distinguished over 207

the lifetime of a solenoid when it is being energized, as shown 208

in Fig. 2. These classes are very distinct from another, as Tod 209

et al. [8] have shown that a CNN is able to classify them with 210

99% accuracy. In its 1) healthy state, closing the valve results in 211

one isolated hit of the plunger. Following this healthy period, a 212
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2) faulty regime begins that is distinguished by several hits of213

the plunger, which is visible in the current signal. The transition214

from 1) to 2) cannot be detected with flow or temperature mea-215

surements, but can be detected using the CNN in [8]. Lastly, 3)216

EOL is reached when the plunger remains stuck in the armature217

tube, and no hits appear anymore. It can be observed that the EOL218

of the valve is characterized with a steep increase of its 4) surface219

temperature. The EOL is also characterized with a steep drop of220

the flow at the outlet port right before the valve is 5) switched OFF.221

When the valve is still operating as intended, a flow is expected222

through the outlet port since the valve is normally closed. This223

flow being blocked validates that the plunger remains stuck. The224

flow and temperature measurements can thus be used jointly to225

clearly mark the EOL of the system.226

These observations are characteristics for all valves reaching227

EOL. 40 out of the 48 valves monitored reached EOL at the228

termination of the accelerated lifetime test.229

IV. METHODOLOGY230

A. RUL Model231

Since the current signals of the SV of the healthy class232

[Fig. 2(a)] show little change over the valve’s lifetime, degrada-233

tion is modeled starting from the first faulty signal [Fig. 2(f)].234

From that point onward, RUL predictions are made until EOL.235

B. Current Signals as Images236

As described in Section III, temperature and flow measure-237

ments are needed to validate the exact moment of EOL of the238

SVs. However, we aim to limit the amount of expensive sensors239

needed. Our RUL model thus relies on current signals, which240

only require access to the circuit that carries the input power241

of the valve. Hence, the valve’s degradation is detected in a242

noninvasive manner, and no extra sensors are required once the243

solenoid is deployed. For PHM in general, this is recognized as244

an important benefit of current signature analysis [24].245

As described in the works on CNNs summarized in Section II,246

a highly effective way to perform fault diagnostics and prognos-247

tics on CBM sensor data, is to train CNN models on time-series248

sensor data represented as images. In Fig. 3(a), it is shown249

how images are constructed from the valve’s current signals.250

Every column of the image corresponds to a signal from one251

data acquisition. These are combined into an image by concate-252

nating them horizontally. Each acquisition is spaced one hour253

of accelerated life time testing apart, and every image consists254

of 30 signals in total. As a result, every image encompasses255

30 h of accelerated lifetime testing, still representing the current256

signals in the time domain. Every current signal is a time series257

of 200 values, so the image has a dimension of [200 × 30].258

By taking this sliding window of 30 h over a valve’s lifetime,259

these images were constructed for every valve. The step size used260

between every subsequent image is 17 acquisitions (=17 h). The261

two parameters with values 30 and 17 were chosen as heuristic262

values, by manually looking at the evolution of the current263

signals. These have been found to have a negligible effect on264

RUL prediction results (including uncertainties). Every image is265

Fig. 3. (a) Image representation of the valve current signals. 30 sub-
sequent current acquisitions of one valve, spaced 1 h of accelerated
lifetime testing apart, are combined in an image. Every column (=1
current signal) is extended with two physical features computed from
the corresponding current signal (a different color scale in red for the
features is used for clarity). Every image is labeled with the RUL value
corresponding to the last current acquisition in the image. (b) Evolution
of shading ring force and Coulomb friction over the lifetime of a valve. It
is shown how the force values can be represented as pixel values in an
image. Larger force values correspond to darker pixel values.

labeled with the RUL value corresponding to the last acquisition 266

in the image. The total dataset consists of 1487 labeled images. 267

The image is extended from a [200 × 30] matrix to a [202 × 268

30] matrix, by extending every column (= 1 acquisition) with 269

two physical features computed from the current signal corre- 270

sponding to that acquisition. All current signals are multiplied 271

with a factor 5, such that they have similar magnitudes compared 272

to the physical features. These physical features are described 273

in the subsection below. 274

C. Addition of Physical Features 275

In the work of Tod et al. [8], two physical forces were 276

identified based on the current signals of the SVs used in our 277

study. The first force is a shading ring force. Next to the main 278

coil of the SV, this is a secondary source of electromagnetic force 279

originating from a shading ring, which is modeled as periodic 280

function delayed from the main coil force. The purpose of the 281

shading ring is to avoid a zero electromagnetic force when the 282

control current is zero. The second force is a kinetic Coulomb 283

friction force, including a static and dynamic term, for which the 284

need was revealed by visual and manual actuation of damaged 285

valves. Both the shading ring and Coulomb force were used 286

by Tod et al. to extend a classical SV physics model. We refer 287

to [8] for a full discussion of the complete model. An important 288

consideration is that the variations of these two forces over 289

the lifetime of the valve are found to be sufficient to explain 290

the occurrence of the different current signal classes, enabling 291

model-based fault diagnostics. 292

The evolution of the two forces in a single example valve is 293

shown in Fig. 3(b). The correspondence between the force values 294

and their representation as pixels in an image is also shown. 295

In Section IV-E below, it is explained how these images are 296

used as CNN training data for the hybrid models presented. The 297

performance of all CNN models is compared for the case when 298
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only the current signals are used (images of dimension [200 ×299

30]) versus the case when the physical features are included as300

well ([202 × 30]), or when using physical features only ([2 ×301

30]).302

D. Bayesian Neural Networks303

In the Bayesian view of statistics, unknown latent parame-304

ters (or model weights ω) are treated as random variables. A305

distribution of the latent parameters is learned conditionally on306

the training data [2]. The posterior distribution over the model307

weights can be obtained through Bayes theorem308

π(ω|D) =
p(ω)p(D|ω)∫
p(ω)p(D|ω)dω

(1)

where D denotes the training data (x,y).309

Quantities f , such as the predictive mean and variance, are310

obtained as an expectation value over the posterior distribution311

Eπ[f ] =

∫
f(ω)π(ω|D)dω. (2)

Current research in BNNs is mostly focused on VI approaches312

since training through backpropagation, which is used for fre-313

quentist NNs, can also be implemented. VI is an approximate314

inference method that casts Bayesian inference as an optimiza-315

tion problem. An approximating family of distributions qθ(ω),316

parametrized through variables θ, is used to represent the poste-317

rior distribution. An optimization objective is defined to capture318

the similarity between the approximate distribution and the true319

posterior distribution. The Kullback–Leibler (KL) divergence is320

used as the optimization objective, which can be expanded as321

follows:322

KL (qθ(ω)||π(ω|D)) =

∫
qθ(ω) log

qθ(ω)

p(ω|D)
dω

= Eq

[
log

qθ(ω)

p(ω)
− log p(D|ω)

]
+ log p(D)

= KL (qθ(ω)||p(ω))− Eq [log p(D|ω)] + log p(D)

= −F(qθ(ω)) + log p(D) (3)

where F(qθ) = −KL(qθ(ω)||p(ω)) + Eq[log p(D|ω)] is the323

evidence lower bound (ELBO). The ELBO is the only term of324

the KL-divergence that needs to be optimized through backprop-325

agation, since the log marginal likelihood of the expression does326

not depend on the model variational parameters θ.327

To deal with the large number of model weights encountered328

in deep NNs, the mean-field approximation is commonly used.329

In mean-field variational inference (MFVI), the posterior distri-330

bution is factorized through independent Gaussians331

qθ(ω) =

P∏
i=1

N (
ωi|μi, σ

2
i

)
(4)

which allows for a tractable optimization of the network.332

For the large-scale datasets typically used in DL, it is in-333

feasible to evaluate the full log likelihood for training. The334

dominant method used to train DL is minibatch gradient descent,335

a variation of the stochastic gradient descent algorithm. The336

training dataset is split into smaller batches that are used to 337

calculate model error and update model weights. For VI, the 338

variational objective becomes 339

L(ω,θ) = −N

M

N∑
i=1

Eq [log p(Di|ω))] +KL (qθ(ω||p(ω)))

(5)
where Di ⊂ D and each minibatch is of size |M |. 340

E. Proposed Models 341

Fig. 4 shows our proposed FCNN and BCNN architectures for 342

the RUL prognosis task. The training data consists of SV current 343

signals and two physical features represented as images with 344

their corresponding RUL labels, as discussed in Section IV-B. 345

Since the CNN shown in Fig. 4(a) is a frequentist network, its 346

predictions consists of pointwise RUL values. In order to avoid 347

negative RUL predictions, which do not appear in the dataset, a 348

rectified linear unit (ReLU) is used in the last network layer. For 349

the case, where only the physical features are used as training 350

data, Conv2D kernels of size [2 × 2] are used to match the input 351

dimension of size [30 × 2]. The FCNN is trained with the Adam 352

optimizer on an mse loss, with a learning rate of 0.001, and a 353

batch size of 64. Early stopping (patience set to 8 epochs) is 354

used to prevent overfitting. The model is reset to the best model 355

evaluated on a validation set. Leave-one-out cross validation is 356

used for testing. As the CNN uses images from 35 valves for 357

training, and 4 valves for validation, the remaining valve is used 358

for testing. This is repeated for all 40 valves to cross validate. The 359

total dataset consists of 1487 images. The valve with the longest 360

lifetime contributes to 75 labeled images in the dataset, while 361

the valve with the shortest lifetime contributes to 20 images. 362

As such, the minimum amount of images used for training and 363

validation is 1412, while the maximum amount is 1467. 364

A first approach to convert the FCNN into a BCNN is shown 365

in Fig. 4(b), as proposed in earlier work by Peng et al. [4] for 366

RUL prognosis tasks. Dropout layers (dropout rate = 0.2) are 367

added just before the convolutional layers, in addition to the 368

dropout layers already used for the dense layers. Posterior RUL 369

predictions are obtained by applying stochastic forward passes 370

through the trained CNN with dropouts enabled at inference 371

time. Gal et al. have proven that this procedure approximates 372

an FCNN to its Bayesian counterpart trained through VI [6]. 373

This method is referred to as “BCNN, MC dropout.” To obtain 374

a predictive RUL distribution for every test sample, a truncated 375

Gaussian distribution is fitted to 40 RUL values obtained through 376

stochastic forward passes. This distribution is a Gaussian distri- 377

bution of which the random variables are bounded to nonnega- 378

tive values (as illustrated in Fig. 4). As a consequence, negative 379

RUL predictions are avoided, similar to the FCNN. For training, 380

the same settings are used as for the FCNN. 381

We also propose a second approach to convert the FCNN into 382

a Bayesian architecture, as shown in Fig. 4(c). A key difference 383

of this architecture concerns the dense part of the network after 384

flattening the reduced features of the convolutional and maxpool 385

layers, which is split into two parts. One dense subnetwork 386

predicts the mean μ̂RUL of a truncated Gaussian distribution 387
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Fig. 4. Comparison between the architectures of the (a) frequentist and (b), (c) Bayesian CNNs designed for the RUL prognosis task. When
training on physical features only, conv2D kernels of dimension [2 × 2] (instead of [5 × 5]) are used. The Bayesian networks are able to fit the mean
and standard deviation of a truncated normal distribution, while the frequentist network is limited to pointwise predictions. Bayesian layers trained
through MFVI in (c) are indicated in bold.

(bounded to nonnegative values), the other predicts its standard388

deviation σ̂RUL. In contrast to the MC dropout architecture, the389

mean and variance of the truncated Gaussian distribution per390

RUL test sample are learned explicitly as predictive outputs.391

The BCNN is trained through MFVI of the distributions (4),392

which allows for training through backpropagation of objective393

(5). Thereby, we refer to this architecture as “BCNN, MFVI.”394

Note that μRUL and σRUL do not need to be explicitly labeled in395

the dataset, but are optimized through the log likelihood of the396

data [in the first term of (5)]. Just as for the FCNN, we use an397

Adam optimizer on an mse loss, with a learning rate of 0.001,398

and a batch size of 64. The prior distribution [represented as399

p(ω) in (1)] set for every model weight is a standard normal400

distribution. Leave-one-out cross validation is again used for401

testing on the same dataset. We use Flipout for training the402

Bayesian layers, which is an effective method to decorrelate403

the gradients within a minibatch, as to obtain unbiased stochas-404

tic gradient estimates [25]. Flipout layers implicitly sample405

pseudoindependent weight perturbations for every update in a406

variational BNN. These layers are indicated in bold in Fig. 4(b).407

Given the relatively small size of the neural networks, offline408

training on a GPU can occur in a few minutes. Inference can409

occur in the order of seconds. Since the transition of a healthy 410

SV toward EOL needs weeks of accelerated lifetime testing and 411

training, and inference can thus be performed on timescales that 412

are in the order of magnitudes smaller. 413

In the next section, the performance of the FCNN is compared 414

to the BCNNs. We study the effect of including the physical 415

features to the input of the networks. Considering the truncation 416

of the Gaussian predictive output, we also evaluate its effect on 417

RUL prediction performance and uncertainty calibration. Well- 418

calibrated predictive credible intervals (e.g. 90% confidence) 419

should match the true observed RUL outcomes (e.g. 90% of the 420

samples fall within the interval). 421

V. RESULTS 422

A. RUL Prediction 423

An example of RUL values predicted by the CNN models 424

for test valve 10 is shown in Fig. 5. On the top of the figure, 425

results are shown when only using the SV current signals as 426

training input. In the middle, this is shown when only physical 427

features are used. The bottom figure shows the combination. In 428

contrast to the FCNNs, the BCNNs construct credible intervals, 429
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Fig. 5. Comparison of RUL test results for valve 10. Bayesian CNNs allow for the construction of a 90% credible interval on the RUL estimations.
Note that a Gaussian output without truncation allows for negative RUL predictions.

Fig. 6. Comparison of RUL test results for valve 16. The BCNN with MC dropout severely underestimates the true RUL and empirical uncertainty
for this valve.
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Fig. 7. Comparison of predicted EOL test results for all 40 test valves. On the leftmost figures: Comparison of MAE averaged over all EOL values
predicted per valve. On the middle and rightmost figures: True versus predicted EOL at 70% degradation of each valve.

hence 90% credible intervals are shown for these CNNs. For430

illustration purposes, results for the BCNN trained by MFVI are431

shown when the Gaussian distribution is not truncated. When432

the output of the BCNN is not restricted toward nonnegative433

values, negative values can occur in the RUL predictions as can434

be seen in the figure. Another observation is that the BCNN435

trained and evaluated by MC dropout results in uncertainty436

intervals that are more narrow. However, this is not always437

justified for other test valves. For example, RUL prediction438

results for valve 16 in Fig. 6 show that the BCNN trained with439

MC dropout underestimates the RUL by a large margin. Our 440

proposed architecture, trained by MFVI, does not exhibit this 441

problem. In Section V-B, the trustworthiness of the uncertainty 442

intervals constructed by the BCNN models is compared over all 443

test valves through calibration plots. 444

By computing the mean absolute error (MAE) over the pre- 445

dicted and true RUL value over the degradation region (as shown 446

in Fig. 5), an averaged prediction error is obtained per valve. This 447

MAE is shown per valve in the left part of Fig. 7. The errors for 448

every CNN model are compared. On the middle and right part 449
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TABLE II
MAE AVERAGED PER VALVE, AND MAE AT 70% DEGRADATION PER VALVE

The mean and standard deviation of these values over all 40 test valves are given.

of the figure, the predicted versus true EOL at 70% degradation450

per valve is shown for every CNN model.451

The mean and standard deviation of the average MAE per452

valve, and MAE at 70% degradation per valve can be computed453

over all 40 test valves. These values are summarized in Table II.454

These metrics serve as an indication of the overall performance455

of the proposed CNN models for the RUL prediction task. The456

CNN models are compared with the deep and shallow learning457

methods used in [23]. In this work, health indices are computed458

up to 70% degradation, after which these health indices are459

extrapolated in order to compute the RUL. Therefore, only the460

MAE at 70% degradation can be used as a comparison.461

We compare the error distributions by using paired t-tests.462

An assumption of this statistical test, is that the underlying463

differences between two sets of values are normally distributed.464

By using the Shapiro–Wilk test, the null hypothesis of the465

distribution being normally distributed cannot be rejected for466

all error distribution comparisons (p > 0.05 for all) in Table II.467

Thus, paired t-tests can be used for comparing all methods. A468

first observation is that every CNN model proposed in our work469

performs better than AdaNet or the feature-based approaches470

(p ∼ 0 for every combination, RUL MAE is reduced by ∼40%).471

This signifies that the proposed methodology is better suited for472

the RUL prediction task than current state-of-the-art solutions.473

A second observation is that by adding the physical features474

Fig. 8. Calibration curves for the RUL test results of the BCNNs.

to the input of the CNN models proposed in this work, every 475

model shows improved performance at the RUL prediction task 476

(p < 0.01 for the FCNN and BCNNs, RUL MAE is reduced by 477

∼20%.). A third observation is that adding the current signals 478

to the training input (next to the physical features) brings no 479

performance gain (p > 0.05 for every network architecture). 480

A fourth observation, is that the FCNNs and BCNNs amongst 481

themselves perform similarly when they are trained by using 482

the same input (with or without physical features, p > 0.05 for 483

every comparison). Note that analogous observations can be 484

found in the field of image classification, where earlier work [26] 485

has shown that Bayesian variants of FCNNs achieve similar 486

performances on benchmark datasets. 487

B. Calibration 488

Calibration curves for the RUL predictions of the BCNNs 489

are shown in Fig. 8. The curves were constructed using all RUL 490

predictions per valve over all 40 test valves. The ideal calibration 491

curve is shown in the figure. For instance, if a credible interval 492

of 60% is considered for every RUL output prediction, ideally 493

60% of the true RUL values should fall within this interval. 494

Since it is not possible to construct these intervals for an FCNN, 495

only BCNNs are evaluated in this figure. The first observation is 496

that our proposed architecture using MFVI shows a much better 497

calibration performance than the MC dropout architecture. The 498

latter model underestimates predictive uncertainty by a large 499

margin. In contrast, the calibration curves for the MFVI archi- 500

tecture lie close to the ideal line, with only a slight tendency to 501

underestimate the uncertainty toward higher confidence levels. 502

For illustration purposes, the BCNN MFVI architecture with 503

nontruncated Gaussians is also included in the figure. It can be 504

observed that the use of nontruncated Gaussians as predictive 505

outputs, which is a less appropriate modeling choice, results 506

in underestimated uncertainty intervals. This is the case when 507

physical features are either included or excluded. 508
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Fig. 9. Feature attributions for the physical features of valve 10. On the
left: Attributions for every data acquisition are shown, from the start of
degradation up to EOL. Red indicates a positive attribution, the opposite
holds for blue. On the right: The feature attributions of the third data
acquisition (now as graphs instead of a “top down” view), together with
the corresponding physical features.

A regular finding with VI approaches is that the models are509

overconfident. Predictive means can be accurate, while variances510

are considerably underestimated. Formulating fully reliable and511

calibrated uncertainty estimates for BNNs using VI remains,512

however, unsolved [2]. With the presented BCNN MFVI ar-513

chitecture and modeling choices in this work, reliable credible514

intervals can nevertheless be obtained. Therefore, the resulting515

uncertainty estimates can be trusted, which is an important516

concern in a prognostic setting.517

C. Interpretability518

Occlusion is a perturbation-based approach to compute fea-519

ture importance in the input images of a CNN [27]. It involves520

replacing contiguous rectangular regions of the input image with521

grey pixels, and computing the difference in predictive output.522

This technique has been used to highlight areas in solenoid523

valve current signals that characterize degradation in [8]. Feature524

attributions obtained by the occlusion method are shown in Fig. 9525

for test valve 10 (the same valve as in Fig. 5) for the FCNN526

trained on the valve current signals together with the physical527

features. On the left of the figure, feature attributions are shown528

for the physical features from start of degradation until EOL.529

Every 2 × 30 rectangle corresponds to the physical features of530

one data acquisition, as indicated in red for the input data of the531

CNNs shown in Fig. 4. Red indicates features that contribute532

toward a larger RUL value, while blue indicates a lower value.533

On the right of the figure, feature attributions of the third data534

acquisition (now as graphs, instead of a “top down” view),535

together with the corresponding physical features are shown.536

The first observation, is the shift in color on the left part of the537

figure. An evolution from predominantly positive contributions,538

to predominantly negative contributions toward EOL can be539

identified. This can be interpreted as if the physical features are540

helping the network to distinguish between early and late RUL 541

values. This evolution can also be seen for the other test valves 542

in general. A second distinctive observation that applies to the 543

test set in general, is the peak in positive feature attributions as 544

shown on the right of the figure. This peak occurs at the moment 545

when the shading ring force drops to zero, which only happens 546

early in the degradation process. Thus, this event contributes 547

toward a larger RUL prediction when observed by the CNN. 548

By considering these two observations, we gain insight into 549

why the use of the physical features as training data, as described 550

in Section V-A, results in improved RUL estimations. 551

VI. CONCLUSION 552

This article proposes a BCNN-based methodology for direct 553

RUL prediction of solenoid valves using current signals as train- 554

ing data. Results from earlier work using DL and feature-based 555

approaches were improved upon, reducing RUL MAE by∼40%. 556

Predictive performance was further improved by using salient 557

physical features as the BCNN input (∼20% lower RUL MAE), 558

making it a kind of hybrid model. Two explainable insights 559

into the raised predictive performance were gained by using 560

occlusion, a feature attribution method. It was shown that hybrid 561

models outperform data-driven approaches when doing early 562

RUL prediction. In contrast to earlier work on BCNN-based 563

RUL predictions using MC dropout for training and inference, 564

our proposed BCNN MFVI architecture showed well-calibrated 565

predictive UQ. Its credible intervals for the RUL closely match 566

the empirical predictive uncertainty. As a result, the predictive 567

uncertainty allowed for reliable prognostic decision-making. 568

Future work will focus on an extensive comparative study 569

of the calibration performance of Bayesian neural networks for 570

prognostics. Further research into the fusion of physics-based 571

domain knowledge and Bayesian DL is of interest as well. 572
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