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Abstract: Derailment is one of the main hazards during train passes through railway turnouts (RTs) 17 
in classification yards. The complexity of the train-turnout system (TTS) and unfavorable operating 18 
conditions frequently cause freight wagons to derail at RTs. Secondary damages such as hazardous 19 
material spillage and train collisions can result in loss of life and property. Therefore, the primary goal 20 
is to assess the derailment risk and identify the root causes when trains pass through RTs in 21 
classification yards. To address this problem, this paper proposes a failure probability assessment 22 
approach that integrates intuitionistic fuzzy fault tree analysis (IFFTA) and Noisy or gate Bayesian 23 
network (NGBN) for quantifying the derailment risk at RTs. This method can handle the fact that the 24 
available information on the components of the TTS is imprecise, incomplete, and vague. The proposed 25 
methodology was tested through data analysis at Taiyuan North classification yard in China. The results 26 
demonstrate that the method can efficiently evaluate the derailment risk and identify key risk factors. 27 
To reduce the derailment risk at RTs and prevent secondary damage and injuries, measures such as 28 
optimizing turnout alignment, controlling impact between wagons, lubricating the rails, and regularly 29 
inspecting the turnout geometries can be implemented. By developing a risk-based model, this study 30 
connects theory with practice and provides insights that can help railway authorities better understand 31 
the impact of poor TTS conditions on train safety in classification yards. 32 
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1 Introduction 37 

The transportation of goods across the world heavily relies on rail freight transport. A 38 
classification yard is used to separate railway vehicles onto one of several tracks. The railway turnout 39 
(RT) is a vital element in a classification yard that guides trains from one track to another. Ensuring 40 
train safety, especially at RTs in a classification yard, is currently facing significant challenges due to 41 
increased transport demand, and the long-term service of the equipment [1, 2]. The derailments related 42 
to infrastructure in the UK account for approximately 39% [3]. Over the past 15 years, maintenance 43 
costs have constituted half of the total. By investigating the impact of infrastructure on derailments, 44 
more than 50% of train derailments are caused by switch defects, as shown in Fig. 1 (a). In China, 45 
where more than 250,000 turnouts are in use, there have been over 100 derailments at low-speed 46 
turnouts in the past five years. Ensuring train safety and reducing secondary damage and injuries is the 47 
primary goal of railway authorities. Although operators strictly adhere to safety standards and weather 48 
conditions are not extreme, train derailments and corresponding damages can still occur at RTs due to 49 
other factors such as track defects, poor alignments, as well as vehicle conditions [4]. These incidents 50 
can lead to serious consequences, including disruptions to railway lines and the potential for loss of 51 
life and property. 52 

As shown in Fig. 1 (b), train derailments can cause extensive secondary damage to infrastructure 53 
and the surrounding environment. For instance, when a train derails, it can damage the tracks [5], 54 
vehicles [6], and other equipment along the railway line [7], potentially disrupting train services for 55 
days or even weeks. In addition, a derailed train can spill hazardous materials, such as fuel, chemicals, 56 
or even radioactive materials, which can pose a serious threat to nearby communities and the 57 
environment [8]. 58 

  59 
Fig. 1. (a) Distribution of train derailments caused by infrastructure in [3], and (b) statistics 60 

of secondary damage caused by derailed vehicles. 61 

The TTS is a complex system comprising multiple sub-systems [9]. The risk of train derailment 62 
depends on the quality of both railway vehicles and turnouts [10, 11]. The wheels are constrained by 63 
the wheel flange, and typically derail in the form of wheel climbing or wheel jumping. To reduce the 64 
likelihood of derailment during its service life, wheel load reduction rate and derailment coefficient 65 
should be controlled [12]. Previous studies have individually assessed the derailment risk based on 66 
examining the effect of each parameter on passive safety. For example, Ge et al. [13] developed a 67 
dynamic simulation model for the TTS and revealed the effect of coupler forces and wheel-rail friction 68 
coefficients on dynamic derailment risk at RTs. Burgelman et al. [14] performed a multi-body dynamic 69 
simulation and examined the passive safety in a #1:9 turnout based on dynamic derailment coefficients. 70 
The results showed that the lateral contact force increases significantly when braking forces are applied 71 
to the front wheels, thereby increasing the risk of derailment. Lai et al. [15, 16] investigated the 72 
mechanism of wheel climbing derailment and wheel jumping derailment during a vehicle passes over 73 
a turnout. However, few studies have attempted to investigate the causal relationship between the 74 
conditions of the TTS and the risk of derailment at RTs. Therefore, for such high derailment risk areas 75 
as turnouts, there is an urgent need to quantitatively assess the derailment and develop safety 76 
enhancement measures to prevent secondary damage from hazardous materials and vehicle collisions. 77 

To address this gap, the objective of this study is to propose a failure probability assessment 78 
method to systematically analyse derailment risk in classification yards with the uncertainty of the TTS. 79 
The approach can be used to evaluate the safety of trains passing through RTs and suggest preventive 80 
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measures to reduce derailment risk in classification yards. The development of the proposed model 81 
was based on IFFTA, and NGBN. Intuitionistic fuzzy sets (IFS) are employed to handle linguistic terms 82 
obtained from different experts, which cannot be accurately expressed using probability distribution 83 
functions. By utilizing the updated probabilities of input variables derived from current inspection data, 84 
the Bayesian inference is capable of producing probabilities that reflect the risk of derailment at RTs. 85 

The remainder of this paper is structured as follows: Section 2 provides a comprehensive review 86 
of the relevant literature. Section 3 introduces the TTS and freight train derailment mechanism at RTs. 87 
Section 4 presents the fundamentals of intuitionistic fuzzy Bayesian network (IFBN) and Noisy or gate 88 
model. The data analysis, model verification and preventive measures are presented in Section 5. 89 
Finally, conclusions, contributions, and future work are briefly summarized. 90 

2 Literature review 91 

2.1 Fault tree analysis 92 

Various probabilistic risk assessment methods such as Fault tree analysis (FTA) [17], Event tree 93 
analysis (FTA) [18], failure mode and effects analysis (FMEA) [19], Markov chains [20], Bayesian 94 
network (BN) [21], and Petri nets [22] have been proposed. Among these methods, FTA is commonly 95 
used for root cause analysis in multiple industries [17]. The method involves converting a physical 96 
system into a structured logical graph where a sequence of basic events (BEs) leads to a specified top 97 
event [17]. FTA includes both qualitative and quantitative analysis [23]. It helps assess potential failure 98 
modes and causes for complex systems such as the electronics, transportation, nuclear industry, and 99 
chemical industry. FTA has found valuable applications in the field of rail safety. Nguyen et al. [24] 100 
employed the FTA method to assess the failure probabilities associated with potential accidents, 101 
including train collisions. Huang et al. [25] introduced a combined approach that incorporated FTA and 102 
fuzzy D-S evidential reasoning to investigate the risks associated with the transportation of hazardous 103 
goods by rail. Jafarian et al. [26] presents a comprehensive study on the evaluation of the railway safety 104 
risks using the fuzzy FTA. To assess adjacent-track accidents, Lin et al. [27] used an event tree and a 105 
fault tree to identify basic events that contribute to the accidents. Esmaeeli et al. [28] used FTA and 106 
event tree to evaluate the accident risk for railway transportation in Canada. Although FTA allows for 107 
the identification of risk factors in railway system, they still have limitations in expressing the 108 
uncertainty of event logical relations and probability updates since they are unable to capture the 109 
unpredictability of risk events. Relying solely on FTA for evaluating the risk of train derailment at the 110 
marshalling yard is inadequate. 111 

2.2 Intuitionistic fuzzy set theory 112 

When the necessary data, such as failure rates and probabilities, is available, the probability of the 113 
undesired event can be quantified. Obtaining accurate failure probability for large and complex systems 114 
is challenging because of inadequate observations and insufficient historical data. Fuzzy set theory was 115 
developed by Zadeh in 1965 to deal with imprecise information and uncertainty for system safety [29]. 116 
This theory is an extension of the classical set that only has two states. A combination of expert 117 
elicitation method and fuzzy set theory is able to be used to calculate the prior probability of BEs when 118 
historical data is not available [30]. For instance, Huang et al. [25] proposed a combined approach of 119 
FT and Fuzzy D-S evidential reasoning to analyse risk of railway dangerous goods transportation, 120 
which addresses the issues of uncertainty modeling and information fusion during accident analysis. 121 
Cheliyan et al. [31] used fuzzy FTA to analysis the failure probability of oil and gas leaks in subsea 122 
production system. However, in complex decision environments, traditional fuzzy sets that only rely 123 
on membership functions may result in a loss of information. In order to overcome the limitations, 124 
Atanassov [32] extended conventional fuzzy sets and proposed IFS in 1986. This theory can use the 125 
membership, non-membership, and degrees of hesitate to better express the uncertainty and fuzziness 126 
[33]. When compared with classical fuzzy set, IFS is more effective in dealing with realistic situations 127 
and modeling human thinking when compared to classical fuzzy sets [34]. The combination of the 128 
expert elicitation method and IFS has been effectively utilized in various industries for risk assessment 129 
[34-36]. 130 
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2.3 Bayesian network 131 

BN is one of the most efficient methods for dealing with uncertainty in complex systems. It allows 132 
for easy expression of variable relationships using graphics and conditional probability tables (CPTs). 133 
BN can also predict system safety with high accuracy from small data sets and update the dynamic risk 134 
with new information [37]. Previous studies have shown the applicability of BN model in various fields, 135 
such as chemical industry [38], ocean engineering [39], medical diagnosis [40], and civil engineering 136 
[41, 42]. BN models have also been applied to fault diagnosis and failure prediction in road and railway 137 
systems [43, 44]. However, there are so many risk factors for the TTS and the existing derailment 138 
databases at RTs are insufficient for the BN analysis. As a result, the failure data of root nodes and 139 
CPTs required for the BN parameter learning are difficult to be obtained. To overcome this shortcoming, 140 
the Delphi method and Noisy-or gate model were integrated into BN approach to assist identifying 141 
joint probability distribution (JPD) of a system [44, 45]. 142 

2.4 Risk analysis in railway classification yards 143 

Cozzani et al. [46] examined three distinct types of accidents that can occur in railway yards: (i) 144 
“in-transit-accident-induced” releases; (ii) “shunting-accident-induced” spills; and (iii) “non-accident-145 
induced” leaks. They developed a comprehensive risk assessment framework that combined Hazard 146 
and Operability analysis with Fault Tree Analysis (FTA). Zhang et al. [47] introduced a set of three 147 
control measures to enhance operational safety in classification yards. These measures encompass 148 
preventive control, process control, and result control perspectives. Ye et al. [48] developed an 149 
acoustic-based technology to detect the unreleased braking of freight wagons during the uncoupling 150 
operation at a railway yard. Lai et al. [49] assessed the dynamic derailment risk associated with vehicle 151 
retarders through numerical simulation and 3D quasi-static analysis. Chang et al. [50] observed that 152 
the risk of accidents in classification yards tends to be higher due to the intricate track layout and semi-153 
automated traffic control systems. These studies have significantly contributed to enhancing safety 154 
within railway yards by analyzing and evaluating various accident risks. However, it is noteworthy that 155 
none of these studies have delved into the assessment of train derailments at railway turnouts (RTs) 156 
within classification yards, especially considering the uncertainties associated with the TTS. Therefore, 157 
there is a clear need to establish a comprehensive research framework dedicated to analyzing the risk 158 
of derailments as trains pass through RTs within railway yards. 159 

2.5 Application of BN and fuzzy sets in rail transportation system 160 

The failure analysis for the rail transport system has been a topic of interest for researchers who 161 
have tried to assess the safety of railroads from different perspectives. For instance, Liu et al. [51] 162 
investigated the causal relationship between the frequency of ultrasonic rail defect inspections and the 163 
risk associated with the transportation of hazardous materials on railroads. Wang et al. [52] studied the 164 
risk of broken rail in freight railroads using machine learning. Ishak et al. [53] proposed a maintenance 165 
strategy for turnout geometry based on risk analysis that takes into account various types of failures in 166 
order to reduce the risk of derailments. Dindar et al. [44] proposed a BN-based probabilistic risk analysis 167 
method for quantifying the derailment risk at RTs, particularly under extreme weather conditions. They 168 
employed Buckley's confidence interval-based method to derive both marginal and conditional 169 
probabilities for Bayesian Network inference. In addition, their study also provides new insights into 170 
human errors, which result in derailments at RTs [54]. Inspired by their work, we have developed an 171 
enhanced methodology. This approach effectively converts qualitative linguistic assessments provided 172 
by experts into more reliable estimates of failure probabilities when historical data is insufficient. It is 173 
designed to assess derailment risks within railway classification yards, further contributing to the 174 
enhancement of railway safety. 175 

Table 1 176 

Examples of the use of BN and fuzzy sets in the area of railroad transportation safety. 177 

Authors Area of focus Approaches Key findings/marks 
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Dindar et 

al. [44] 

Train safety under 

extreme weather 

condition 

Fuzzy set theory, BN BN and Fuzzy Sets were employed to 

assess the risk of train derailment when 

faced with uncertain climate conditions. 

Liu et al. 

[55] 

High-speed 

railway accidents 

IFS theory and FTA An IFFTA model is proposed and used to 

quantify the risk of high-speed railway 

system due to the incompleteness of prior 

information. 

Wang et al. 

[56] 

Turnout failure 

prediction 

Entropy 

Minimization, Causal 

noisy Max model, BN 

A BN was established to forecast the 

weather-related failure of turnouts. The 

Causal Noisy Max model was utilized to 

handle the CPTs based on limited data sets. 

Liang et al. 

[57] 

Risk analysis on 

railway level 

crossings 

BN A new BN framework is proposed to 

quantify the risk associated with railway 

level crossings. 

Castillo et 

al. [58] 

Risk analysis of 

railway lines 

Markovian-BN A Markovian-BN model has been created to 

assess the likelihood of accidents occurring 

when trains pass over conventional or high-

speed railway lines, considering the 

possibility of human error. 

Huang et al. 

[59] 

Hazardous goods 

transportation 

BN, Interpretive 

Structural Modeling 

(ISM) 

An approach based on ISM and BN was 

utilized to analyse the degree of interaction 

between various risk factors involved in the 

transportation of hazardous goods by 

railway. 

Panrawee et 

al. [60] 

Railway accidents BN, decision tree, 

petri-net 

A Bayesian approach has been adopted to 

cope with uncertainties of railway accident 

and the model is validated using petri-net 

and decision tree 

Table 1 presents some typical examples of research results related to the application of BN and 178 
fuzzy sets in the field of railroad transportation safety. These studies have shown that BN model has 179 
good capability for the risk quantification in the field of railway transportation, such as track failure 180 
estimation, dangerous goods transportation and collision accident analysis. There are also some gaps 181 
need to be filled. In the process of expert judgement, uncertainties and hesitations can arise when 182 
determining the membership of classical fuzzy sets. Using IFS can better express the fuzziness and 183 
uncertainty from expert opinions. Furthermore, for a complex BN structure with too many nodes and 184 
directed arcs in this study, there may be inadequate accident data in railway yards for the CPT 185 
estimation. To address this limitation, we integrated BN with the Noisy-or gate model to reveal the 186 
causal relationship and derailment risk when railway vehicles run in railway yards under uncertainties. 187 

3 Material and background 188 

3.1 Brief introduction of TTS 189 

The TTS is composed of several crucial sub-systems that work in conjunction to guarantee the 190 
secure operation of trains. The TTS comprises of three main sub-systems: the train sub-system, the 191 
turnout sub-system, and the wheel-rail contact module. The train sub-system primarily consists of 192 
multiple wagons, bogies, wheelsets, and couplers. The turnout sub-system, on the other hand, guides 193 
and supports vehicles. It is a complex system comprised of a variety of track components, including 194 
rails, fasteners, ballast, switches, crossings, and other related components. This paper has taken into 195 
account the switch section, closure section, and frog section in risk analysis. In addition, as the turnout 196 
is a combination of multiple rails, the wheel-rail relationship at RTs is complex and random. The 197 
vehicle retarders are installed in front of turnouts at classification yards in China as a measure to reduce 198 
train speed, as illustrated in Fig. 2. The presence of sharp curves and vehicle retarders before the turnout 199 
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can also decrease train running safety. The contact between the wheels and rails can significantly 200 
impact the safety [61]. For instance, when contact points shift to the wheel flange, wheels may climb 201 
up to railhead and cause a derailment [11]. Furthermore, intense impacts between the wheels and 202 
turnouts are very common due to the discontinuities of the track, which can result in the wheel jumping 203 
to the railhead. 204 

 205 

Fig. 2. Schematic diagram of the track alignment at classification yard in China. 206 

3.2 Derailment mechanism at RTs 207 

When a wheel passes over a RT, it needs to pass over a split rail in order to follow the correct 208 
track. However, if the relationship of the wheel-rail contact is abnormal, it can cause the wheel to derail. 209 
Fig. 3 illustrates a diagram of derailment processes when railway vehicles pass through the railway 210 
switch. The process of a wheel derailing on a switch typically involves the wheel climbing up the 211 
switch rail instead of following the intended path. This can cause the wheel to lose contact with the rail 212 
and potentially cause damage to the switch and surrounding tracks. As the wheel continues to move 213 
forward, it can then fall off the rail completely or get stuck in a position where it cannot move any 214 
further. This can cause a delay in train traffic as crews work to remove the derailed wheel and repair 215 
any damage caused. It is noted that when vehicles are traveling at high speeds, it may cause the carriage 216 
to overturn, leading to the spread of hazardous materials. Overall, derailments at turnouts can be caused 217 
by different factors, such as mechanical issues with the rail switch, poor maintenance of the track, or 218 
vehicle component failure. The occurrence of any abnormal states between them may cause the railway 219 
vehicle to derail at turnouts. 220 

 221 
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Fig. 3. A simplified diagram of wheel derailment processes at RTs. 222 

4 Proposed IFFTA and NGBN methodology 223 

The approach for derailment risk analysis is based on the IFFTA model, the Noisy or gate, and the 224 
BN model. Fig. 4 illustrates the research framework for the proposed methodology. Firstly, a fault tree 225 
is constructed. Secondly, opinions from different experts are collected and corresponding linguistic 226 
terms for BEs are quantified as TIFNs. An improved aggregation method is then introduced to 227 
aggregate the TIFNs, which has considered the effect of experts’ weight degree of consensus. Thirdly, 228 
the fuzzy failure probability of BEs can be calculated and the fault tree is mapped into the BN structure. 229 
The Noisy-or gate modeling is then introduced and integrated into the naïve BN model to derive the 230 
CPTs. Finally, Bayesian inference, sensitivity analysis, model verification, and preventive measures 231 
are presented. The details are presented as follows. 232 

 233 

Fig. 4. Flowchart of proposed methodology. 234 

4.1 Derailment cause identification and FT construction 235 

Identifying risk factors for TTS is a critical step in analysing the risk of the train derailment at 236 
RTs. It represents the first step in conducting a reliability analysis. Typically, hazards and operability 237 
analysis [62] and FMEA [63] are two common methodologies used for identifying potential hazards in 238 
industrial processes and systems. In this paper, the risk factors are determined by analysing historical 239 
data from 27 derailment cases that occurred at RTs from 2014 and 2019. Besides, literature [3, 4, 64], 240 
and expert judgment are also utilized to identify the risk factors. 241 

A fault tree for the train derailment at RTs is shown in Fig. 5. The diagram is divided into three 242 
levels: (1) BEs are at the lowest level, (2) intermediate events (IEs) are at the middle level, and (3) top-243 
level event (TE) is at the top level. The connections between various events are represented by logical 244 
symbols. In this study, the derailment risk at RTs is designated as the top event for the risk analysis of 245 
derailment. The full name of each abbreviation in the fault tree is provided in Section 5.2. 246 
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 247 

Fig. 5. The fault tree for the train derailment at RTs. 248 

4.2 Introduce IFS to obtain probability of BEs 249 

For the quantification analysis of derailment risk at RTs, the accurate prior probability of root 250 
nodes should be obtained. The probability of an event occurring can be determined using various 251 
methods such as statistical analysis, historical data, and expert elicitation. Note that accurate historical 252 
data for the TTS in this study is insufficient. Thus, the combined approach of expert elicitation and IFS 253 
is a good choice for identifying the failure probability of the BEs. The detailed procedures for 254 
determining the fuzzy failure probability of BEs are presented as follows. 255 

4.2.1 Concept of IFS theory 256 

Definition 1: Intuitionistic fuzzy set. 257 

If X is a universe of discourse, the IFS A in X can be expressed as [32]: 258 

 , ( ), ( )
A A

A x u x v x x X=   (1) 259 

where: ( ) : [0,1]
A

u x X → and ( ) : [0,1]
A

v x X → represent the membership function and non-membership 260 

function of A . The functions satisfy the following two conditions: 261 

( ) ( ) [0,1],  
A A

u x v x x X+     (2) 262 

( ) 1 ( ) ( )
A A A

x u x v x = − −  (3) 263 

where ( )
A

x represents the IF index of x A , also referred to as the degree of uncertainty or level of 264 
hesitation. 265 

Definition 2: Intuitionistic fuzzy number. 266 

Convex intuitionistic fuzzy set [32]: 267 
Membership functions of ( ) of 

A
u x A is fuzzy-convex i.e. 268 

 1 2 1 2 1 2( (1 ) ) min ( ),  ( )    , ,  0 1
A A A

u x x u x u x x x X  + −       (4) 269 

Non-membership functions of ( ) of 
A

v x A is fuzzy-concave i.e. 270 

 1 2 1 2 1 2( (1 ) ) max ( ),  ( )    , ,  0 1
A A A

v x x v x v x x x X  + −       (5) 271 

A triangular-shaped intuitionistic fuzzy number (TIFN) can be denoted as Eqs. (6) and (7). The 272 
shape of TIFN is shown in Fig. 6. 273 
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where the TIFN is expressed by ( ,  ,  ;  ',  ,  ')A a b c a b c= . 276 

4.2.2 Expert elicitation and IF-fuzzification 277 

Expert elicitation can be used as an alternative statistical method when data is not available or 278 
unreliable, and it relies on expert knowledge and judgment to estimate probabilities. It is also one of 279 
the efficient methods for supporting system reliability analysis. In this study, the knowledge from 280 
multi-experts is utilized to obtain fuzzy failure probabilities (FFP) of BEs. The expert judgment method 281 
describes the probability of BEs by dividing the probability range into k regions and matching the 282 
corresponding linguistic terms. In this work, it is divided into 7 levels of linguistic terms, which consist 283 
of very low (VL), low (L), reasonably low (RL), moderate (M), reasonably high (RH), high (H), and 284 
very high (VH). Besides, based on the historical derailment data in classification yards, we have 285 
categorized the derailment risk into seven levels based on the frequency of train derailments. 286 
The probability range is from 6.61e-6 to 1.10e-1, as shown in Table 2. The annual frequency is 287 
determined by the fuzzy possibility score and fuzzy failure probability in Eqs. (16-18). Fig. 6 288 
illustrates the graphical representation of all the potential failure scenarios. 289 

Table 2 290 

Risk level for derailment at RTs in classification yards. 291 

Risk level Description Annual frequency 

Very high ≥1 derailment accident per month during operations >1.10e-01 

High ≥1 derailment accident per quarter of a year during operations 2.60e-02~1.10e-01 

Reasonably high ≥1 derailment accident per half-year during operations 5.20e-03~2.60e-02 

Moderate ≥1 derailment accident per year during operations 1.00e-03~5.20e-03 

Reasonably low ≥1 derailment accident in 2 years during operations 1.92e-04~1.00e-03 

Low ≥1 derailment accident in 5 years during operations 4.71e-05~1.92e-04 

Very low ≥1 derailment accident in 10 years during operations 6.61e-06~4.71e-05 

 292 
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Fig. 6. TIFNs corresponding to linguistic terms. 293 

4.2.3 Aggregation of expert opinions 294 

Given that the selected experts possess diverse backgrounds, experiences, and levels of expertise, 295 
their judgments on the risk level of BEs may be different. In order to obtain a unique intuitionistic 296 
fuzzy failure possibility, their opinions should be aggregated. In this study, we utilize the Similarity 297 
Aggregation method (SAM) [65] to aggregate the linguistic terms of a group of experts. Table 3 is 298 
used to determine the weighting scores (WS) of experts in this study. It should be noted that the term 299 
"worker" refers to a young employee who has just joined the railroad company and lacks sufficient 300 
work experience. The details for the aggregation method are presented as follows: 301 

Step 1. The similar degree of opinions iA and jA from experts Ei and Ej can be expressed as ( , )i jS A A , 302 
and it can be calculated by Eq. (8): 303 

( ) / ( ),     ( ) ( )
( , )

( ) / ( ),     ( ) ( )

i j i j

i j

j i i j

KW A KW A if KW A KW A
S A A

KW A KW A if KW A KW A


= 


 (8) 304 

' '( ) 4 ( )
( )

8

i i ii i
i

a a b c c
KW A

+ + + +
=  (9) 305 

where KW(Ai) and KW(Aj) denote the expectancy evaluation for TIFNs Ãi and Ãj respectively. 306 
The similarity matrix (SM) can be obtained in the following form when there are m experts: 307 

12 13 1

21 23 2

1 2 3

1

1
=

1

m

m

m m m

S S S

S S S
SM

S S S

 
 
 
 
 
 

 (10) 308 

A larger value of Sij represents a higher degree of consistency between the opinions of the experts. 309 
Conversely, if Sij = 0, it means that there is no overlap or intersection between the opinions of the 310 
experts. 311 

Step 2. The average agreement degree of each expert Ei is obtained as 312 

1

1
( ) ,  1,2,...,

1

m

i ij

j
j i

AA E s i m
m =



= =
−
  (11) 313 

Step 3. The relative agreement degree (RAD) for each expert Ei can be calculated as 314 

1

( )
( ) ,  1,2,...,

( )

i
i

m
i

i

AA E
RAD E i m

AA E
=

= =


 (12) 315 

Step 4. Weighting factor (WF) 316 
The WF for each expert is calculated based on four criteria, including professional position, years 317 

of work experience, educational level, and age. This approach improves the credibility of the data by 318 
assigning different weights to each expert, instead of treating all experts as equal. Thus, five experts 319 
are selected from the field of railway engineering, who come from universities, maintenance 320 
departments, safety management, each expert has a distinct WS. Firstly, entropy technology is utilized 321 
to determine the importance weights of the four criteria [66]. And then, the WF of expert Ei is calculated 322 
based on Eq. (13). 323 

1

( )
( ) ,  1,2,...,

( )

i
i

m
i

i

WS E
WF E i m

WS E
=

= =


 (13) 324 
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Step 5. Aggregated weight calculation. 325 
The weight of the aggregated opinions is calculated by combining the WF(Ei) and RAD(Ei) of 326 

each expert Ei, as shown in Eq. (14). 327 

( ) ( ) (1 ) ( )i i iCC E WF E RAD E =  + −   (14) 328 

where  (0 1)   denotes the relaxation factor, which represents the importance expert weight and 329 
relative degree of agreement. 330 

Step 6. Aggregated results. 331 
The intuitionistic fuzzy aggregation results of expert opinions can be calculated by Eq. (15) [67]. 332 

1

( ) ( )
m

AG i i

i

R T CC E A

=

=    (15) 333 

Table 3 334 

Weighting score for experts. 335 

Attributes    Score 
Professional position Service time Education level Age  
Senior academic, Chief 
Engineer, Director 

>20 years PhD >60 5 

Junior academic, Manager 15-20 Master 50-60 4 
Engineer 10-14 Bachelor 40-49 3 
Technician 5-9 HND 30-39 2 
Worker <5 School-level <30 1 

4.2.4 IF-defuzzification 336 

The aggregated TIFN ( , , ;  ', , ')A a b c a b c= of the BE can be defuzzied by the center of area method 337 
[68]. The processes of transforming TIFN into FFP through defuzzification are divided into two stages: 338 
converting the TIFN into a fuzzy possibility score (FPS), and then converting the FPS into FFP. It can 339 
be expressed as follows: 340 

2 21 ( ' ')( 2 ' 2 ') ( )( ) 3( ' ' )
=

3 ' '

c a b c a c a a b c c a
FPS

c a c a

 − − − + − + + + −
 

− + − 
 (16) 341 

4.2.5 Converting FPS into FFP 342 

In order to obtain the FFP, the IF-defuzzification procedure generates an FPS that signifies the 343 
likelihood of BEs taking place. Onisawa [69] proposed a conversion method, whereas it is not 344 
universally applicable across different industries. This work utilized an improved approach to compute 345 
the FFP using Eqs. (17) and (18), taking into account that the failure likelihood is segmented into seven 346 
distinct regions. 347 

1/10     0

0            0

K FPS
FFP

FPS

 
= 

=

 (17) 348 

0.445

0.721ln 2.839,              0 0.2

= 1/ 3 (10 14),                0.2 0.8

[(1 ) / ] 3.705,    0.8<FPS 1

FPS FPS

K FPS FPS

FPS FPS

− +  

−  −  


−  

 (18) 349 

The derivation of the coefficient K can be found in Ref. [67]. This method was originally 350 
proposed and validated to deal with the probability of failure of human-machine systems. 351 
Inspired by the method [67], the modified coefficient is determined based on the seven-level 352 
probability regions provided in Table 2. The proposed method could avoid the subjective 353 
understanding deviation that arises when converting qualitative empirical knowledge from 354 



12 

domain experts into quantitative failure probability. 355 

4.3 Bayesian modeling 356 

4.3.1 Bayesian network 357 

BN is a type of graphical model that utilizes a directed acyclic graph to depict a series of variables 358 
and their conditional dependencies. Each node in the graph represents a variable and the edges between 359 
the nodes represent the probabilistic relationships between the variables. BN can be used to represent 360 
causal relationships, represent uncertainty and perform probabilistic inference. It can be used to 361 
calculate the probability of a variable given the evidence provided by observed variables and the known 362 
relationships encoded in the network structure [70]. Besides, one can perform probabilistic inference 363 
to calculate the failure probability for the overall system. Additionally, sensitivity analysis can be 364 
conducted to understand how changes in component failure probabilities impact the system reliability. 365 
Overall, a BN model that combines IFFTA is a flexible approach for derailment risk analysis because 366 
it can handle complex systems with multiple interacting components and uncertainties in the failure 367 
probabilities. The JPD of a group of nodes can be defined as Eq. (19), taking into account the 368 
conditional dependencies and chain rules [70]. 369 

1 2

1

( ) ( , , ) ( ( ))
n

n i i

i

P X P X X X P X Parent X
=

=   =  (19) 370 

The conditional probability can be expressed as follows: 371 

( )
( )

( )

i
i

i

P AB
P A B

P B
=  (20) 372 

The BN updates the occurrence probability (prior) of root nodes based on new evidence using 373 
Bayes’ theorem. The updated probability (posterior) of the root nodes is expressed as: 374 

1

( ) ( )( )
( )

( ) ( ) ( )

i ii
i

n
i i

i

P B P A BP AB
B

P A P B P A B


=

= =


 (21) 

375 

After obtaining the prior probability and posterior probability, the critical root nodes can be 376 
determined by ratio of variation (RoV), as shown in Eq. (22). 377 

( ) ( )
( )

( )

i i
i

i

X X
RoV X

X

 



−
=  (22) 378 

Where ( )iX represents posterior probability, and ( )iX is prior probability. 379 

4.3.2 Mapping fuzzy fault tree model into BNs 380 

The process of mapping FT into BN involves two stages, which are graphical mapping and 381 
numerical mapping, as shown in Fig. 7. The root nodes in BN are equivalent to the bottom events in 382 
FT, while the leaf node in BN is equivalent to the top event in FT. In numerical mapping, the fuzzy 383 
failure probability of each bottom event in FT is assigned as the prior probability of the corresponding 384 
root node in BN. The CPT is made for the intermediate nodes and leaf node, and it is determined 385 
according to the type of gate. 386 
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 387 

Fig. 7. Mapping process from FT into BN. 388 

4.3.3 Noisy-or gate model 389 

In the FTA model, logical 'OR' and 'AND' gates are used to derive the probability of occurrence. 390 
However, logic gate analysis describes the relationship between BE and IE in a very absolute way (0 391 
or 1), in practice, it is not a simple binary. Besides, when assessing the risk of train derailment at RTs, 392 
many classification yards have not yet established a complete risk database. The use of the Noisy-or 393 
gate model allows for the derivation of CPTs with small data sets, enabling a more accurate assessment 394 
of system risk [71]. It is an interaction model used to describe the relationship between n parent nodes 395 
B1, B2, ..., Bn and child node T. The model must satisfy the two assumptions when applying Noisy-or 396 
gate model for BN inference. Then the conditional probability of node T can be calculated using Eq. 397 
(23). 398 

:
( ) 1 (1 )

i T

i i
i X X

P T Y B P


= = −  −  (23) 399 

In the actual analysis, besides the set B, there are other unknown factors that cannot be effectively 400 
identified in the risk factors that affect node T. It needs to use the extended Leaky Noisy-or gate model 401 
to attribute all risk factors that cannot be effectively identified to one factor BL, and its connection 402 
probability is the Leaky probability, which is denoted as PL. 403 

The CPT of node T can be further expressed as Eq. (24). 404 

:
( ) 1 (1 ) (1 )

i T

i L i
i X X

P T Y B P P


= = − −  −  (24) 405 

The Leaky Noisy-or gate model can also be used to determine the connection probability of the 406 
parent nodes. Assume that the network consists of two parent nodes, which could be expressed as 407 
variables Ci and Call. The probabilities of occurrence of them are Pi and Pall, respectively. Eq. (25) can 408 
be obtained based on Eq. (23). Then, substitute Eq. (26) into Eq. (25), the connection probability is 409 
calculated by Eq. (27). 410 

( ) 1 (1 )(1 )i i all i all i allP Y C P P P P P P= − − − = + −  (25) 411 

( )i allP Y C P=  (26) 412 

( ) ( )

1 ( )

i i

i

i

P Y C P Y C
P

P Y C

−
=

−
 (27) 413 

5 Engineering application: A case study in China 414 

5.1 Derailment scenario description 415 

The appendix A provides examples of ten derailment incidents that occurred at low-speed RTs 416 
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from March 2014 to March 2019. Fig. 8 shows a freight wagon carrying hazardous materials derailed 417 
in the turnout area at Taiyuan North marshalling station. A derailment scenario depicted in Fig. 8 (IV) 418 
shows that when the rear freight wagon passes through the turnout, the leading wheelset of the wagon 419 
begins to climb the rail at the front of the switch rail and then drops down on the sleepers at the heel 420 
of the switch rail. Based on the field investigation, the leading wheel eventually fell off the top of the 421 
rail 6.2 m from the toe of the rail switch and the wagon stopped after traveling 12 m on the sleepers, 422 
as shown in Fig. 8 (IV). The turnout is located at the front of a sharp curve with a radius of 180 m. 423 
When inspecting the condition of the track, it was found that the workers did not maintain the geometry 424 
of the turnout in time. Besides, the combination of the new switch rail and the worn stock rail results 425 
in poor wheel-rail relationships between the wheel and the rail, which increases the risk of derailment. 426 
These indicate that the poor conditions of both the vehicles and the tracks can increase the risk of 427 
derailment. Based on this analysis, it is recommended to consider factors such as vehicle abnormal 428 
responses, track alignments, train formation types, turnout defects, inappropriate wheel-rail contact 429 
interface, and track maintenance in risk assessment of derailment. 430 

 431 

Fig. 8. A freight wagon carrying hazardous materials derailed in the turnout area. 432 

5.2 Construction of BN model 433 

The potential factors that contribute to derailment risk at RTs have been analysed through expert 434 
judgment, literature review and accident reports. The identified risk factors were grouped into seven 435 
categories, including poor vehicle conditions (M1), train formation risk (M2), abnormal wheel-rail 436 
contact (M3), turnout defects (M4), track alignment risk (M5), high rail stiffness at RT (M6), and lack 437 
of track maintenance (M7). To evaluate the derailment probability, a BN model was developed, with 438 
28 root nodes, 7 intermediate nodes, and one target node. The complete BN model was constructed 439 
adopting GeNIe software, and is presented in Fig. 9. The details of each root node are listed in 440 
Appendix B. 441 

 442 

(I) (II) (III) (IV)

Derailment
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Fig. 9. BN model for derailment risk analysis based on IFFTA. 443 

5.3 Parameters determination 444 

Before beginning Bayesian analysis, it is necessary to determine the accurate prior probability of 445 
root nodes. Expert judgments for the BEs are provided in Appendix B. Based on the calculation 446 
procedure in section 4.2.3, the aggregation results from multi-experts and corresponding FFP of the 447 
BEs are presented in Appendix B. In addition, an example of calculation results for CPT of node M5 448 
can be derived using Noisy or gate model, as shown in Table 5. If we define (M5 X18) 0.92P = ,449 

(M5 X18) 0.82P =  , (M5 X19) 0.96P =  , (M5 X18) 0.70P =  , (M5 X20) 0.95P =  , (M5 X18) 0.83P =  ,450 
(M5 X21) 0.63P = , (M5 X18) 0.30P = . The connection probability between parent node M5 and child 451 

nodes X18, X19, X20, and X21 can be calculated by Eq. (27). The variable xi, which is not known, 452 
follows a Gaussian probability distribution with a confidence level of 99%. 453 

Table 4 454 

Connection probability of M5. 455 

Node State 

X18 Y N N N 

X19 N Y N N 

X20 N N Y N 

X21 N N N Y 

P(M5=Y|Xi) 0.56 0.87 0.71 0.47 

Table 5 456 

The CPT of Node M5. 457 

X18 X19 X20 X21 P(M5=Y|Xi) P(M5=N|Xi) 

Y Y Y Y 0.99 0.01 

Y Y Y N 0.98 0.02 

Y Y N Y 0.97 0.03 

Y Y N N 0.94 0.06 

Y N Y Y 0.93 0.07 

Y N Y N 0.87 0.13 

Y N N Y 0.77 0.23 

Y N N N 0.56 0.44 

N Y Y Y 0.98 0.02 

N Y Y N 0.96 0.04 

N Y N Y 0.93 0.07 

N Y N N 0.87 0.13 

N N Y Y 0.85 0.15 

N N Y N 0.71 0.29 

N N N Y 0.48 0.52 

N N N N 0.01 0.99 

5.4 Bayesian network inference 458 

Once the IFBN structure and parameters were determined, the prediction of derailment risk at RTs 459 
was carried out using an academic version of GeNIe. The derailment probability is estimated to be 460 
2.52%, as shown in Fig. 10. In other words, this indicates that the risk level at Taiyuan North yard is 461 
high risk. To obtain the posterior probabilities of the root nodes and identify key events, probability 462 
updates are performed by introducing evidence into the BN. When the occurrence probability of 463 
‘derailment risk at RTs’ is set to 100%, the updated probabilities of root nodes could be calculated. Fig. 464 
11 illustrates the comparison between the prior and posterior probability of the root nodes. It is 465 
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observed the posterior probabilities of some root nodes increase significantly, which represent the 466 
critical role in causing derailment risk. 467 

 468 

Fig. 10. The prediction result of derailment probability at RTs based on IFBN. 469 

The RoV can be further calculated based on Eq. (22). As shown in Fig. 12, the critical basic events 470 
include node X2 (intense impact between adjacent wagons), node X10 (severe rail wear), node X11 471 
(twist of track), node X5 (train overspeed), node X1 (failure of vehicle components), node X12 472 
(deviation of relative height between switch and stock rail), and node X4 (lateral deviation of vehicle 473 
center of gravity). Thus, all of these factors need to be given more attention when trains pass through 474 
RTs. 475 

 476 

Fig. 11. Comparison of prior probability and posterior probability of root nodes. 477 

 478 
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Fig. 12. RoV of root nodes. 479 

5.5 Sensitive analysis 480 

Sensitivity analysis measures the sensitivity, or responsiveness, of model results to changes in 481 
inputs. The nodes that have a significant effect on the derailment risk at RTs are shown in Fig. 12. By 482 
changing the probability of the nodes of X2, X10, X11, and X5, we obtained the sensitivity value of 483 
each node. Fig. 13 depicts the sensitivity of various variables to derailment risk at RTs. As seen in Fig. 484 
13, a slight increase or decrease in the prior probability of the parent nodes, and intense longitudinal 485 
impact load between adjacent wagons, leads to a relative increase or decrease in the child node 486 
(derailment probability at RTs). Thus, the longitudinal impacts caused by the vehicle retarder should 487 
be controlled. 488 

 489 

Fig. 13. Sensitivity for derailment probability at RTs against other variables. 490 

To obtain the influence of the risk factors on derailment risk at RTs, we further utilized the GeNIe 491 
software to conduct a sensitivity analysis of the TTS by using backward reasoning for the IFBN model. 492 
Fig. 14 shows the tornado graph in GeNIe and the target node is set to ‘derailment risk at RTs’. The 493 
length of the bar indicates the extent of variation in the target state when the probabilities of all other 494 
nodes change by 100%. In addition, the green bar expresses the positive influence and the red bar 495 
reflects the negative impact. The longer the bar, the greater the influence of the cause on the result. The 496 
20 most influential factors are presented. As illustrated in Fig. 14, it is observed that the state of 497 
‘Derailment risk at RTs’ being Y can be changed from 0.0185 to 0.517. We can notice that 498 
P(Derailment=Y|M1=N, M2=N, M3=N, M4=N, M5=N, M6=N, M7=N) impacts P(Derailment=Y) 499 
most. Namely, P(Derailment=Y) decreases from 0.517 to 0.0185 as M1 to M7 are checked as N. The 500 
results indicate that node M1, node X2, node M3, node X5, node X10, node X11, and node X6 have a 501 
great influence on the derailment risk at RTs. This is in agreement with historical statistics in Taiyuan 502 
North marshalling station. 503 

Railroad managers have responded to these critical events by taking targeted measures. These 504 
measures involve timely development of in-service inspections, preventive testing, and maintenance 505 
of vehicles and turnouts, as well as timely replacement of defective and degraded turnout components. 506 
Moreover, they have optimized the track parameters in the vicinity of turnouts to reduce the risk of 507 
derailment. 508 
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 509 

Fig. 14. Tornado diagram of sensitive analysis results. 510 

5.6 Model validation 511 

To verify the proposed model, the results of comparison of fuzzy failure probability between 512 
traditional FBN method and improved IFBN method are presented in Fig. 15. It is observed that the 513 
improved method generally produces smaller calculation results compared to the traditional method. 514 
This is because current approach divides the probability regions corresponding to TIFN into more 515 
reasonable intervals, leading to more accurate accident probability estimates for derailments at RTs. 516 
The traditional method was initially proposed and has been widely adopted for assessing the failure 517 
probability of human-machine systems. However, for other industries, the evaluation results are subject 518 
to inevitable objective errors. The proposed method in this study can help to mitigate the subjective 519 
understanding bias that arises when converting qualitative empirical knowledge into quantitative 520 
failure probability. 521 

 522 
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Fig. 15. Comparison of FFP of root nodes between improved IFBN and traditional method. 523 

In addition, to confirm the efficacy of the Noisy or gate model, we examined the conditional 524 
probabilities of each node to validate the effectiveness of the proposed model. The results of a 525 
comparison between the IFFTA and Noisy or gate BN method and the IFTA and BN method are 526 
presented in Fig. 16. It can be observed that there is a minimal difference between the IFFTA and Noisy 527 
or gate BN model and the IFFTA and BN model. The proposed approach incorporating the Noisy or 528 
gate model can not only meet the accuracy requirements for practical analysis but also reduce the 529 
number of parameters necessary for BN analysis. 530 

 531 

Fig. 16. Comparison of probability obtained by Noisy or gate IFBN method and IFBN method. 532 

5.7 Preventive measures 533 

By conducting a quantitative risk analysis of freight train passes through RTs, measures can be 534 
taken to mitigate the risk of derailment and reduce the secondary damages and injuries caused by 535 
derailed vehicles. 536 

(1) When freight wagons pass over the vehicle retarder in front of the turnout, an intense 537 
longitudinal impact will occur between the adjacent wagons. It is recommended to adjust the 538 
position of the vehicle retarder in order to reduce the impact of the retarder on the operation 539 
of the vehicle in the turnout area. 540 

(2) Regular inspections and maintenance should be carried out to detect and repair any damage 541 
or deviations in the geometry of turnouts in a timely manner. Due to high transportation 542 
demand, various defects are more likely to occur at turnouts during operation. Railroad 543 
operators should install track condition online monitoring and warning equipment in the 544 
turnout area to ensure train safety and prevent secondary damages. 545 

(3) Proper lubrication of the switch rail needs to be carried out to reduce friction, rail wear and 546 
derailment coefficient. This can decease the lateral force between the wheel and switch rail 547 
and reduce the risk of wheel climb derailment. 548 

(4) The track alignment and parameters before the turnout should be optimized. Small radius 549 
curves should be avoided as much as possible from being laid in front of the turnout. 550 

5 Conclusions 551 

The railway turnout area is a high-risk area for freight train derailment. It is significant to quantify 552 
the freight train derailment risk at turnouts and reduce the secondary damage to surrounding 553 
environment, buildings, and infrastructures. This paper presents a failure probability assessment 554 
method and demonstrates its application in quantifying the risk of derailment due to unfavourable 555 
operating conditions in railway vehicles and turnout systems. The approach utilized in this study is 556 
based on the IFFTA and NGBN model. The combination of expert elicitation, IFS, and improved SAM 557 
is employed to calculate the FFP of BEs due to its capability to handle incomplete information and 558 
hesitate decisions. The CPTs of the proposed IFBN model is derived using the Noisy-or gate technique 559 
to overcome the limitations of complex node computation and data dependency in this study. 560 
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The feasibility and efficacy of risk analysis method are demonstrated by analysing the empirical 561 
data from derailment incidents in the turnout area at Taiyuan North marshalling station in China. The 562 
derailment risk at RTs can be estimated using Bayesian forward analysis and the posterior probabilities 563 
and critical events can be identified by Bayesian backward analysis. The results indicate that the 564 
derailment probability at RTs is 2.52%. Additionally, intense impact between adjacent wagons, vehicle 565 
overspeed, twist of track and severe rail are assessed as the four most influential basic factors. When 566 
compared with traditional method, the results obtained from the IFFTA and Noisy or gate BN model 567 
with improved SAM method are more reasonable when considering proper division for the linguistic 568 
terms. In this paper, the IFBN model is applied to TTS, but the same method can be potentially used 569 
to other systems for failure prediction, especially for tasks involving multiple risk sources for which 570 
accurate data are difficult to obtain. 571 

The main contributions of this study can be summarized as follows: (1) An IFBN-reliability 572 
method is proposed for quantitative assessment for derailment risk at RTs. This method is capable of 573 
efficiently handling the derailment probability at RTs when prior information of the system components 574 
is incomplete and the decision environment is complex and hesitating. (2) A case study at Taiyuan 575 
North marshalling yard is presented to verify the accuracy of the proposed IFFTA and NGBN method. 576 
The comparative analysis between current method and traditional method is also carried out. The 577 
analysis results illustrate that it can meet the requirements of derailment probability assessment at RTs. 578 
(3) The critical risk factors and sensitivity analysis of the TTS are discussed, and the derailment risk at 579 
RTs can be updated by monitoring the real-time conditions of the TTS. Preventive measures for risk-580 
based design of TTS and reducing the secondary damage caused by derailed vehicles are provided. 581 

Dynamic risk assessment in the turnout area is crucial for ensuring safe and reliable railway 582 
transportation. With the continuous development of monitoring technology, we can collect more and 583 
finer monitoring data to improve the accuracy and reliability of the BN model. Besides, machine 584 
learning techniques can help us uncover potential patterns and correlations in monitoring data, thus 585 
better assessing the dynamic risk in railway switch areas. Therefore, in future work, we will apply the 586 
method of combining monitoring data and the BN model to the real-time warning system, so that the 587 
dynamic risk of derailment can be detected in advance and targeted measures can be taken to prevent 588 
accidents. 589 
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Appendix A. Derailments occurred at RTs and conditions of TTS 597 

No. 

Track 

alignments 

before turnout 

Distance 

between 

retarder 

and 

turnout 

Use of 

guard 

rails 

Lubricat

ion measure 

Climbin

g 

position 

Falling 

location 
Sleeper type  

Loading 

condition 

Track 

condition 

Longitudinal 
slope before 
turnout 

1 
Curved line 

(R=200 m) 
>14 m No 

Lack of 

lubricati

on 

Front 

zone of 

switch 

Heel of 

switch 

Concrete 

sleeper with 

rail brace 

Empty 

wagon 

Poor track 

geometry 
— 

2 
Curved line 

(R=200 m) 
>14 m No 

Lack of 

lubricati

on 

Front 

zone of 

switch 

Heel of 

switch 

Concrete 

sleeper with 

rail brace 

Empty 

wagon 

poor track 

geometry 
— 

3 Straight line <14 m Yes 

Lack of 

lubricati

on 

Front 

zone of 

switch 

Heel of 

switch 

Concrete 

sleeper with 

rail brace 

Empty 

wagon 

Good track 

geometry 
-2.6‰ 
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4 Straight line <14 m Yes 

Lack of 

lubricati

on 

Front 

zone of 

switch 

Heel of 

switch 

Concrete 

sleeper with 

rail brace 

Empty 

wagon 

Good track 

geometry 
-2.6‰ 

5 Straight line <14 m Yes 

Lack of 

lubricati

on 

Front 

zone of 

switch 

Heel of 

switch 

Concrete 

sleeper with 

rail brace 

Empty 

wagon 

Good track 

geometry 
-4.2‰ 

6 Straight line >14 m No 

Lack of 

lubricati

on 

Front 

zone of 

switch 

Heel of 

switch 

Concrete 

sleeper with 

rail brace 

Empty 

wagon 

Good track 

geometry 
-3.5‰ 

7 Straight line >14 m No 

Lack of 

lubricati

on 

Front 

zone of 

switch 

Heel of 

switch 

Concrete 

sleeper with 

rail brace 

Empty 

wagon 

Good track 

geometry 
-3.5‰ 

8 
Curved line 

(R=180 m) 

Without 

vehicle 

retarder 

Yes 

Lack of 

lubricati

on 

Front 

zone of 

switch 

Heel of 

switch 

Concrete 

sleeper with 

rail brace 

Empty 

wagon 

Good track 

geometry 

Poor 

manufactur

ing 

— 

9 
Curved line 

(R=180 m) 

Without 

vehicle 

retarder 

Yes 

Lack of 

lubricati

on 

Front 

zone of 

switch 

Heel of 

switch  

Concrete 

sleeper with 

rail brace 

Empty 

wagon 

Good track 

geometry 

Poor 

manufactur

ing 

— 

10 
Curved line 

(R=150 m) 
>14 m Yes 

Lack of 

lubricati

on 

Front 

zone of 

switch 

Heel of 

switch 

Concrete 

sleeper with 

rail brace 

Empty 

wagon 

Good track 

geometry 

Poor 

manufactur

ing 

— 

Appendix B Details of BEs and fuzzy failure probability 598 

BEs Description Aggregated intuitionistic fuzzy number FPS FFP 

X1 Failure of vehicle components 0.5496, 0.5849, 0.6201; 0.5403, 0.5849, 0.6295 0.5849 0.0019 

X2 Intense impact between adjacent wagons 0.9088, 0.9209, 0.9330; 0.9068, 0.9209, 0.9350 0.9209 0.0572 

X3 
Longitudinal deviation of vehicle center of 

gravity 
0.6557, 0.6866, 0.7175; 0.6533, 0.6866, 0.7199 0.6866 0.0042 

X4 
Lateral deviation of vehicle center of 

gravity 
0.5363, 0.5732, 0.6102; 0.5264, 0.5732, 0.6200 0.5732 0.0018 

X5 Train overspeed 0.9072, 0.9216, 0.9359; 0.9048, 0.9216, 0.9383 0.9216 0.0578 

X6 

Type of train formation: two loaded 

wagons sandwiched between an empty 

wagon 

0.9441, 0.9550, 0.9659; 0.9441, 0.9550, 0.9659 0.9550 0.1118 

X7 
Type of train formation: three consecutive 

empty wagons 
0.9441, 0.9550, 0.9659; 0.9441, 0.9550, 0.9659 0.9550 0.1118 

X8 
Type of train formation: single empty 

wagon 
0.9029, 0.9172, 0.9315; 0.9005, 0.9172, 0.9339 0.9172 0.0536 

X9 Severe wheel flange wear 0.3043, 0.3363, 0.3684; 0.2984, 0.3363, 0.3743 0.3360 0.0003 

X10 Severe rail wear 0.7305, 0.7575, 0.7845; 0.7284, 0.7575, 0.7866 0.7575 0.0072 

X11 
Combination between new switch rail and 

worn stock rail 
0.3810, 0.4176, 0.4543; 0.3712, 0.4176, 0.4640 0.4176 0.0005 

X12 
Deviation of relative height between 

switch and stock rail 
0.8303, 0.8480, 0.8657; 0.8288, 0.8480, 0.8672 0.8480 0.0189 

X13 Lateral misalignment of rail joint 0.2740, 0.3073, 0.3405; 0.2651, 0.3073, 0.3494 0.3073 0.0002 

X14 Vertical misalignment of rail joint 0.1629, 0.1868, 0.2106; 0.1610, 0.1868, 0.2125 0.1868 0.0001 

X15 Manufacturing defects 0.1609, 0.1890, 0.2171; 0.1586, 0.1890, 0.2194 0.1890 0.0001 

X16 Broken rails 0.0513, 0.0654, 0.0779; 0.0504, 0.0654, 0.0788 0.0649 0.0000 

X17 Buckled rails 0.0928, 0.1096, 0.1244; 0.0917, 0.1096, 0.1255 0.1089 0.0000 

X18 Short straight line before RT 0.9441, 0.9550, 0.9659; 0.9441, 0.9550, 0.9659 0.9550 0.1118 
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X19 Sharp curve line before RT 0.9441, 0.9550, 0.9659; 0.9441, 0.9550, 0.9659 0.9550 0.1118 

X20 Large longitudinal slope before RT 0.9030, 0.9175, 0.9319; 0.9006, 0.9175, 0.9343 0.9175 0.0539 

X21 Inappropriate super elevation 0.9135, 0.9253, 0.9371; 0.9115, 0.9253, 0.9390 0.9253 0.0618 

X22 
Wooden sleepers replaced by concrete 

sleepers 
0.1246, 0.1440, 0.1612; 0.1233, 0.1440, 0.1625 0.1433 0.0001 

X23 Use of rail brace 0.1545, 0.1764, 0.1983; 0.1528, 0.1764, 0.2000 0.1764 0.0001 

X24 Lack of lubrication for rails 0.9030, 0.9175, 0.9319; 0.9006, 0.9175, 0.9343 0.9175 0.0539 

X25 Rail gauge deviation 0.3916, 0.4267, 0.4618; 0.3822, 0.4267, 0.4712 0.4267 0.0006 

X26 Rail height deviation 0.4638, 0.5000, 0.5362; 0.4541, 0.5000, 0.5459 0.5000 0.0010 

X27 
Existing gap between stock rail and switch 

rail 
0.1548, 0.1772, 0.1996; 0.1530, 0.1772, 0.2013 0.1772 0.0001 

X28 Rail support failure 0.1914, 0.2170, 0.2425; 0.1893, 0.2170, 0.2446 0.2170 0.0001 
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