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Heavy articulated transport vehicles have a poor reputation

associated with dramatic road accidents with frequent fatalities for

those in automobiles. The result of this work is a formal data flow

structure to enhance real-time decision-making in complex mechan-

ical systems to increase performance capability and responsiveness

to human commands. This structure recognizes the multiple layers

of highly non-linear mechanical components (actuators, wheel tire

& ground surfaces, controllers, power supplies, human/machine in-

terfaces, etc.) that must operate in unison (i.e., reduce conflicts) in

real-time (in milli-seconds) to enhance operator (driver) control to

maximize human choice. This work contains a discussion on depend-

able sensor data is vital in complex systems that rely on a suite of

sensors for both control as well as condition monitoring purposes as

v



well as discussion on real-time energy distribution analysis in high

momentum mechanical systems. The focus will be on tractor trucks

of class 7 & 8 that are outfitted with an array of low-cost redundant

sensors leveraging advances in intelligent robotic systems.

This work details many topics including:

• Most relevant sensor types and their technologies,

• Designing, implementing, and maintaining a multi-sensor sys-

tem using feasible industry standards,

• Sensor signal integrity and data flow processing for decision

making,

• Asynchronous data flow methods for operating decision making

schemes in real-time,

• Multiple applications to enhance tractor trucks systems with

multi-sensor systems for real-time decision making.
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Chapter 1

Introduction

Heavy articulated transport vehicles have a poor reputation

associated with dramatic road accidents with frequent fatalities for

those in automobiles. These vehicles (class 3-8) represent 60% of the

freight in the U.S. as part of a $1 trillion per year economic activity

labeled land transport. The federal government is funding research

grants (DOE, DOT) associated with autonomy and fuel efficiency.

Both are helpful. However, without a similar emphasis to make

the trucks smarter, much of that investment will have very little

impact. For example, articulated trucks frequently jackknife when

in poor weather (low surface friction) especially when lightly loaded

with almost no warning to the driver. Further, rollovers are about

50% of truck accidents caused by wind, poor traction, emergency

maneuvers or rapid lane changes. The published literature clearly

describes all these conditions with elegant mathematical simulations

and architectural concepts to control trailer roll, fifth wheel rotation,

or lateral trailer acceleration. Only one paper properly describes

the need for articulated responsive steering of the trailer axles by

using hydraulic actuators which are notorious for being sluggish,
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fail unexpectedly, require excessive maintenance, and are difficult

to make fault tolerant ((Tesar, 2016c)).

This report deals primarily with the acquisition and manage-

ment of real-time sensor data from heavily loaded cross country

transport vehicles (semi-trailer trucks). An extensive literature sur-

vey was performed by D. Tesar in Technical Description of A Smart

Truck in 2016. This survey yields many conclusion and recommen-

dations, which are necessarily excerpted here to make this report

more complete as to its relevance to the land transport industry.

These excerpts can be found in chapters 1 and 2.

This work contains the framework to argue for why modern

intelligence-based decision making is now possible for moving trac-

tor truck management and is a critical step in modernizing this type

of transportation. Due to ever lowering costs in sensor technology,

the real-time operation of tractor trucks can be monitored using

a varied and low cost sensor suite to characterize a wide range of

physical phenomena (vibrations, bearing temperature, truck/trailer

oscillations, noise, cargo parameters, door/hatch positions, etc.) to

provide local and system wide awareness of key conditions influenc-

ing timelines, efficiency, potential for bearing failures, road crash,

and overall safety and to transmit this awareness to necessary hu-

man operators and decision makers using prioritized criteria and

visual operational performance maps. All of this must be done in
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real-time (1 to 10 m-sec.) to allow for decision development and

actuation response to rapidly enhance system performance.

This framework uses decision structures that use updated data

from sensor fusion, process awareness (performance maps based de-

cisions for enhanced efficiency, speed, braking, needed repairs or re-

maining useful life, human oversight, human-system interface, etc.)

to constantly enhance performance and as a consequence combine

Sensor/Process/Fault (SPF) decisions in a new level of truck effec-

tiveness, security, availability, and safety. Elements of such a system

are:

Energy harvester SPF for truck components
Sensor suite Truck CBM

LAN and truck CPU Truck system criteria
Sensor data management software Operator criteria

Truck operating software Truck/Network operating decisions

1.1 Revolution in Efficient Commercial Transportation
Vehicles

The dominate idea recently developing to greatly increase sys-

tem performance in commercial transport vehicles is to actively

manage in real-time all unwanted system energy such as inertia,

spring, tire, trailer swing, etc., by using responsive actuators to ac-

tively remove such oscillating stored energy before larger oscillations

results. Large oscillations tend to develop into common tractor truck
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failures such as rollover and jackkniffing, which cause tremendous

damage and delays. To prevent such disasters, incipient oscillations

must be measured and cancelled in real-time (near 10 m-sec.) and

it is proposed in this work to develop and demonstrate a number

of intelligent trailer options as the basis for a new class of versatile

smart trucks.

The primary source of feedback for these responsive actua-

tors will be a redundant network of low-cost sensors measuring all

necessary physical aspects of a target vehicle. Of primary interest

is the wheel-ground surface interaction where traction results in a

linear force driving the connected vehicle body. Traction, a highly

nonlinear phenomena, is the only active control for a vehicle driver

and should be a high priority when dealing with vehicle control.

However much of U.S. technical development in vehicles is ex-

tensively concentrated on the front end power generation segment

of the more-electric vehicle (tuned engine/generator, batteries, su-

per cap, etc.) with limited development of the back end power

utilization segment (powered drive wheels, active suspension and

camber, etc.). While traction is a highly nonlinear component that

can change rapidly over time, minimal attempts have been made to

improve capability in this aspect of real-time vehicle control.

Further justifying the need for data development are the pro-

posals for added actuation to tractor trucks and the expected actu-
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ation enhancements. Such developments are now feasible and will

require a developed information flow for feedback in order to operate

at full potential.

The feedback will occur by means of high performance, cost

effective actuators to enhance command control primarily of the

truck trailer by means of improved braking, steering, suspensions,

and coupling among serial trailer modules. Further, as stressed in

this document, fault tolerance in data handling and command sig-

nals must be matched by fault tolerance in the control system and

the actuators in the multi-input, multi-output system with ever in-

creasing complexity and lower cost.

1.2 Intelligent Systems

Vehicles are complex systems under human command. Whether

for light (automobiles) or heavy (commercial) systems, there is a

constant need to enhance performance (fuel efficiency, safety, re-

sponsiveness, cost, availability, etc.) and to increase effective in-

teraction between machine and operator. To improve performance,

sensors must become more intelligent – distributed in function and

in location – to enable a decision structure to provide more oper-

ating choices (or recommended options) to effectively respond to

operator command(s) (for example operation in poor weather or

heavy traffic), to prevent failure (no single point failures and safely
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escaping dangerous scenarios/conditions), and to enhance efficiency

(combined power sources in hybrids and reduce mundane operator

tasks to minimize fatigue). Operational choices can be useful only if

real-time awareness of the benefits of a selected set of choices meets

performance objectives under a given set of conditions. This real-

time situational awareness can only be assessed by accurate data

on all component and system conditions, which means a widely dis-

tributed set of sensors, generating useful data in real-time. To justify

outfitting large systems with various sensors, each sensor module

must be low cost and effective, including minimal maintenance.

The majority of work on vehicle sensor development has con-

centrated on performance and safety in terms of internal devices to

measure physical phenomena such as velocity, acceleration, vibra-

tion, noise, temperature, kinetic energy measures, roll/inclination,

braking/throttle, torque, etc. D. Tesar has a liturature survey of

sensor for possible use in tractor trucks in Development of Internal

Vehicle Sensors in 2016. These internal sensors provide assistance

to the driver in decision making, enable prediction of component fail-

ures (condition based maintenance), and data archiving for off-line

analysis with the goal to improve component design and better/more

efficient route planning. Recent vehicle sensor developments have

concentrated on external devices to support autonomy (driverless

cars) and connectivity (inter-vehicle communication in heavy traf-
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fic). This move towards autonomy demands exceptional precision

(sensor accuracy and signal quality). Unfortunately the sensors of

today do not provide this level of exceptionalism at a near real-time

frequency (refresh rate). This weakness will be difficult to elimi-

nate, as demonstrated by the recent accident by a Tesla car where

the autonomous vehicle crashed and killed the passenger due to a

computer vision failure.

Clearly, the need for intelligent vehicles is a broad array of in-

ternal sensors to manage all the physical choices the operator or cus-

tomer wants or needs, especially in heavy transport vehicles where

high momentum occurs with greater value in goods at risk. Heavy

land transport vehicles carry 60% of the freight in the U.S. These are

mostly diesel powered semi-trailer trucks which have a good accident

record. However the economic and human cost is high when they

are involved in a crash. The ultimate goal of this work is to reduce

driver cost and increase payload while improving safety. This, then,

suggests the use of road trains (3 to 5 modules) as done in Australia.

This requires a central power source at the tractor with distributed

power to each module, which can only be done with full intelligence

at each module. Safety implies full awareness of the kinetic motion

of each module and the effective traction control of energy oscilla-

tions or sudden roll effects from wind. This entire forecast becomes

feasible only with real-time data collection for complete situational
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awareness of each train module and components in real-time.

Some outstanding vehicle sensor development has occurred by

Rockwell (self-organizing wireless networks) and by Honeywell (spe-

cific transducer classes). This review does show that sufficient data

quality and cost are continuing issues to improve. The data needs

to be available in 1 m-sec. from lower power demand modules (to

preserve on-board battery energy). It now appears necessary that

node standardization be pursued by the vehicle industry to further

enhance performance/cost ratios, with increasing emphasis on re-

liability. Some sensor suppliers are integrating several transducers

into a single node (gyro, acceleration, inclinometer, as the basis for a

kinetic node) to further reduce network complexity, cost, and main-

tenance. Networking that is continuously configuration-managed

to maximize data fusion and to avoid single points of failure re-

quires sophisticated and ever-evolving algorithms. It now appears

necessary to develop a manual battery recharging system to enable

long-duration operation of these internal sensor networks. Finally,

network security should be considered to ensure the safety of the

vehicle and the collected data to prevent unwanted intervention by

third parties.

Intelligence implies three major technical activities:

• Real-time data acquisition,
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• Data reduction leading to command decisions,

• Action response using distributed actuators.

To summarize, developing intelligence in machines is emerg-

ing to principally impact the technology spectrum associated with

satisfying human needs and human commands in real-time.

Figure 1.1: Overview of intelligent systems

1.3 Intelligent Decision Making in Real-Time

The difference between risk and uncertainty is the knowledge

of the associated probability of an unknown outcome. Uncertainty

is the absence of a known probability distribution of outcomes. Un-

derstanding the amount and quality of object features in an oper-

ation environment reduces the uncertainty in a robotic system and

improves clarity in system risk or predictable failure. Such clarity
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provides a framework for anticipating the impact for new tasks and

operation protocols.

The underlying focus of this work is to design systems away

from uncertainty towards allowable risk management. This work is

an in-depth science work for developing real-time intelligent decision

making in tractor truck systems using common low-cost sensors and

structured data flow and control tasks. The framework developed in

this work would minimize uncertainty in complex operations - com-

plicated (multiple dimensions or degrees of freedom) and adapting

(changing over time or not time-invariant) - throughout truck op-

eration and provide a framework for implementing new tasks or

operation protocol more effectively. Such an intelligent system will

allow an operator to be free of dangerous environments and of mun-

dane tasks, enabling the operator to perform duties at an enhanced

capability. This will be done by adding more automation and de-

cision making to the system, in real-time, adding more operational

capability to the system compared to a pure teleoperation, which is

costly in operator time.

Sensor fusion is a intelligent combination of mathematics

and the interpretation of the physical meaning from multiple signal

sources so that the target information can be resolved/merged into

useful information to enhance system and sub-system performance

(Krishnamoorthy, 2010). Each signal must be properly scaled, fil-
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tered, and interpreted. Combinations of signals must be created

to indicate overall resource management (losses, efficiency, acceler-

ation, torque level, lost motion, stiffness, etc.). All the information

is used to inform the local status of components or the overall sys-

tem as it moves along embedded performance maps/envelopes that

describe performance. Having 10(+) distinct measurands creates a

level of robustness to ensure reliable decision information. Useful

questions for multi-sensor system design to enhance operational de-

cisions and performance include: how volatile are the performance

maps, what norms best describe their physical meaning, how accu-

rate is the measured data, what update rates are necessary, etc.

In the case of a sensor fault – no signal generation or unre-

liable/noisy signals – the remainder of the sensor network will be

used to infer lost data. This capability will derive from the per-

formance envelopes which are generated in various combinations of

the component performance maps, all using distinct sensor signal

sources. A strategy can also be developed for sensor maintenance

as a component of Condition Based Maintenance (CBM).

Developing embedded software is essential to provide func-

tionality like communication, data processing, and implementation

of various features that collectively contribute to intelligence, namely,

criteria-based decision-making algorithms, Condition-Based Main-

tenance (CBM) routines, etc. Information from sensors has to be
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analyzed, interpreted and manipulated systematically in software

in real-time or 1 to 10 m-sec. to produce information of value to

the higher levels of the control hierarchy. This includes control mod-

ules that support error-handling, mathematical functions, storage of

system/actuator-related data, abstraction of input-output devices,

inter-process and network communications, algorithms for sensor

data validation and fusion, CBM, fault tolerance, performance en-

velope generation, criteria fusion, etc., which are used in decision

making processes. Higher level system commands are then pro-

cessed; along with a combination of the stored performance maps

and envelopes, the measured sensor reference, parametric models

and user-specified criteria, to yield appropriate control signals for

operation.

Autonomy is always a popular desired goal of control and de-

cision making. To no surprise, autonomy is being considered for

cross-country tractor truck operation to reduce the cost of opera-

tion (less dependence on on-board drivers), improved safety (more

rapid and accurate response to unsafe conditions) and improved

fuel efficiency (better balanced wheel traction control). In most

trucking operations today, the two largest cost elements are labor

(largely the driver) and fuel. A distributed intelligent system en-

hances these features by enhancing engine operation, control of each

wheel’s torque/traction for safety and fuel conservation and also for

12



accurate (m-sec.) responses to rapidly changing road conditions, if

such systems were in place.

Present truck tractors require 100% of the truck driver’s at-

tention for their on-road operation. This is an expense that has been

a high burden for truck transport. Further, railroad freight trains

will also go through a revolution for cost effectiveness, timely de-

livery, and safety. To remain competitive, the truck industry must

not only reduce expenses, it must also improve its level of safety to

maintain the public’s acceptance of its use of the national highways.

Autonomy is not going to be a simplistic superposition of sensor-

based decision making to replace human operator decisions. Auton-

omy has a greater productivity potential if the truck tractor (and

also the trailer) is made responsive to much higher levels of com-

mand. Doing so will create an enhancing technology that provides

decision making, sensors for real-time operational data, distributed

choices throughout the truck system, and no single point failures,

all combined for a revolution in truck tractors.

1.4 Multi-Sensor Approach

Using multiple means to collect desired data is a crucial aspect

to consider when designing a system for intelligent control in real-

time using multi-criteria decision making. Mechanical systems are

getting more complex to respond to human demands of increasing
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output functionalities and increasing performance. Non-linearity in

a system will provide for complex and changing output functions

(a multi-input multi-output system), but classical control methods

cannot manage this complexity and deal with the inherent uncer-

tainty in the system’s operation. A system equipped with multiple

sensors will provide better awareness about its state and the operat-

ing conditions reducing uncertainty and guesswork from the system

control. Then there is a question about uncertainty in the data pro-

vided by these sensors but sensor data uncertainty can be reduced in

a multi-sensor environment using sensor fusion techniques and fault

tolerance. A multi-sensor system will enable intelligent control in

real-time to extract the best possible performance from the system

to match ever changing objectives.

1.5 Design Philosophy for Smart Trucks

This selection of actuator based solutions for smart trucks is

remarkably different from that represented by Nikola Motor Com-

pany, a hybrid tractor truck design company, or that funded by U.S.

federal agencies, such as DOT, DOE and DARPA, yet it represents

a means to dramatically and cost-effectively improve safety, enhance

driver decisions, reduce fuel consumption and enhance payloads.

This work leverages the Next Wave of Technology (Tesar,

2016b) technology base to modernize transportation systems (freight
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trains, cross-country trucks, urban fleet vehicles, buses, and con-

tainer transporters) to maximize their availability (no single (point

failures), their fuel efficiency (to meet 2025 U.S. fuel standards),

their open architecture (plug-and-play for rapid repair and refresh-

ment) and reduced life cycle cost (OEM control of a competitive

supply chain for assembly, updating by the customer, and repair).

Most transport vehicles have a closed and passive architec-

ture, which is designed and assembled as one-off systems whose

outdated components represent single point failures and virtually

no active response to command. Generally, these systems have a

decision latency of 1 to 2 seconds which represents a travel distance

of 100 to 200 ft, at 70 mph. This latency diminishes the poten-

tial benefits of autonomy and active response to bad weather (road

conditions), traffic conditions (safety) or GPS-based embedded road

plans (curves, hills, speed limits, etc.) (Tesar, 2015).

These transport systems are all wheeled to maximize dexterity

and reduce rolling friction on presumed well-maintained road sur-

faces. Their travel routes today can be planned (embedded motion

parameters) for maximum safety, efficiency, timeliness, etc., with

differences of the actual travel (weather, traffic, wheel contact un-

certainty traction, etc.) as the basis for uncertainty/differences to

govern real-time decision making under the command judgment of

the operator (who sets priorities, criteria, and visually interprets
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good/poor operation). In every case, sensors inform the decision

process, actuators respond to command, the operator judges the

overall response, and predictive analytics evaluates archived perfor-

mance data to improve route planning and structure system com-

ponent design and operational criteria. Figure 1.2 illustrates the

overall Smart Truck system.

Figure 1.2: Prescribed intelligent system for tractor trucks.
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Chapter 2

Brief Tractor-Truck Crash Dynamics

This chapter contains a brief overview of tractor truck dy-

namics with a focus on common crash scenarios and develop the

parameter framework for developing sensor synthesis and data flow

control. The purpose of this chapter is not to replace leading litera-

ture on tractor truck dynamics, such as dated but well cited sources

(Dorion, Pickard and Vespa, 1989; Liu, Rakheja and Ahmed, 1997;

Winkler and Ervin, 1999) but to provide a relevant dynamics back-

ground for the scope of this work.

2.1 Shortcomings in Current Truck Operations

Current tractor truck vehicles have many obvious mechanical

issues at high speed operation, namely: high load mass,high center

of mass, high air drag (exposure to wind disturbance), long body,

and typically passive trailer (lagging vehicle bodies). Mass issues get

worse when loaded, which is the primary function of the transport

vehicle.
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Table 2.1: Crash statistics vehicle class 7-8

2.1.1 Crash Statistics

Due to their massive sizes and heavy weights, trucks can cause

serious damage and death, should they be involved in an accident.

To inform the public about traffic safety and to bring the dangers

of truck collisions to light, various agencies throughout the U.S. –

including the U.S. Department of Transportation (USDOT), the Na-

tional Center for Statistics and Analysis (NCSA) and the National

Highway Traffic Safety Administration (NHTSA) – have compiled

the following statistics regarding the incidence of different types of

truck accidents in the U.S.

Information from NHTSA in Table 2.1 indicates that in 2014

over three thousand people were killed in tractor truck crashes and

over seventy thousand incidents involved a towaway, which nearly

always involve significant vehicle damage (usually multiple vehicles)

and significant time disruptions.
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2.1.2 Rollover Case

Many factors related to heavy vehicle operation, as well as

factors related to roadway design and road surface properties, can

cause heavy vehicles to become yaw unstable resulting in a roll. (Liu,

Rakheja and Ahmed, 1997) indicates that rollovers are due to ex-

cess lateral accelerations storing potential energy in the suspension

springs and exceeding lateral tire sliding forces; and, this can oc-

cur without the driver’s knowledge (the driver’s reaction time is too

long). Listed below are several real-world situations where stability

control systems may prevent or lessen the severity of such crashes.

• Speed too high to handle a curve — The entry speed of vehi-

cle is too high to safely negotiate a curve. When the lateral

acceleration of a vehicle during a steering maneuver exceeds

the vehicle’s roll or yaw stability threshold, a rollover or loss of

control is initiated. Curves can present both roll and yaw in-

stability issues to these types of vehicles due to varying heights

of loads (low versus high, empty versus full) and road surface

friction levels (e.g., wet, dry, icy, snowy) (Dunn et al., 2003c).

• Road design configuration — Drivers can misjudge the curva-

ture of ramps and not brake sufficiently to negotiate the curve

safely. This includes driving on ramps with decreasing radius

curves as well as operating on curves and ramps with improper
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signage. A vehicle traveling on a curve with a decrease in super-

elevation (banking) at the end of a ramp where it merges with

the roadway causes an increase in vehicle lateral acceleration,

which may increase even more if the driver accelerates the ve-

hicle in preparation to merge (Jujnovic and Cebon, 2002).

• Sudden steering maneuvers to avoid a crash — The driver

makes an abrupt steering maneuver, such as a single- or double-

lane-change maneuver, or attempts to perform an off-road re-

covery maneuver, generating a lateral acceleration that is suf-

ficiently high to cause roll or yaw instability. Maneuvering a

vehicle on off-road, unpaved surfaces such as grass or gravel

may require a larger steering input (larger wheel slip angle) to

achieve a given vehicle response, and this can lead to a large

increase in lateral acceleration once the vehicle returns to the

paved surface. This increase in lateral acceleration can cause

the vehicle to exceed its roll or yaw stability threshold (Liu,

Rakheja and Ahmed, 1997; Ma and Peng, 1999; Jujnovic and

Cebon, 2002; Rangavajhula and Tsao, 2008; Cheng and Cebon,

2008; Odhams et al., 2008; Islam, He and Webster, 2010; Kim

et al., 2016). This method type is the most recommended and

researched.

• Loading conditions — A loss of yaw stability due to severe over-

steering is more likely to occur when a vehicle is in a lightly
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loaded condition and has a lower center-of-gravity height than

it would have when fully loaded. Heavy vehicle rollovers are

much more likely to occur when the vehicle is in a fully loaded

condition, which results in a high center of gravity for the ve-

hicle. Cargo placed off-center in the trailer may result in the

vehicle being less stable in one direction than in the other. It

is also possible that improperly secured cargo can shift while

the vehicle is negotiating a curve, thereby reducing roll or yaw

stability. Sloshing can occur in tankers transporting liquid bulk

cargoes, which is of particular concern when the tank is par-

tially full because the vehicle may experience significantly re-

duced roll stability during certain maneuvers (Chen and Peng,

2005).

• Road surface conditions — The road surface condition can also

play a role in the loss of control a vehicle experiences. On a dry,

high-friction asphalt or concrete surface, a tractor trailer com-

bination vehicle executing a severe turning maneuver is likely

to experience a high lateral acceleration, which may lead to roll

or yaw instability. However, a similar maneuver performed on

a wet or slippery road surface is not as likely to experience the

high lateral acceleration because of less available tire traction.

Hence, the vehicle is more likely to be yaw unstable than roll

unstable (Jujnovic and Cebon, 2002).
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Articulated heavy vehicles with their increased dimensions

and weights are known to be high rollover risk vehicles. A num-

ber of studies have established that the dynamic roll instabilities

are most frequently initiated at the rearmost of articulated freight

vehicles and the driver often remains unaware of the impending in-

stability. It has been recognized that some form of early warning to

the driver on the onset of potential vehicle rollover is extremely vital

to ensure road safety. The probability of heavy vehicle rollover ac-

cidents can be considerably reduced through on-line detection and

early warning of impending roll instability, such that a corrective

maneuver could be performed by the driver to avert the occurrence

of a potential instability. Early detection of potential roll instabil-

ity involves the establishment of a dynamic rollover criterion, and

the identification of motion response parameters which are directly

related to onset of vehicle rollover. Such vital parameters, however,

must be directly measurable and relatively insensitive to variations

in vehicle design and operating conditions to realize a reliable early

warning system. Furthermore, the warning signals for impending

rollover should be generated early enough such that the driver can

perform the corrective maneuvers in a reasonable time. The design

of a dynamic rollover warning device thus necessitates the identi-

fication of impending dynamic rollover indicators with high degree

of measurability, reliability and available time margin for corrective
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maneuvers.

Figure 2.1: Lumped roll plane model of heavy vehicles

2.1.3 Jackknife Case

Jackknifing is a detrimental condition where a tractor (semi)

truck becomes unstable and results in a large uncontrollable mo-

tion with high energy that almost always produces a crash with

loss of life and significant collateral damage. Primary jackknifing

causes are a combination of weather and high speed maneuvers such

as a high velocity turn on a curve or a sharp braking impulse or
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turn to avoid collision. Both of these primary causes are essentially

due to low tire surface friction conditions where the driver rapidly

loses control when the vehicle is at a high speed. (Dorion, Pickard

and Vespa, 1989) generally specifies jackknifing as where the trailer

maintains a straight linear path while the tractor rotates while under

braking (perhaps excessive due to poor traction conditions) or un-

der “power” braking when the tractor’s rear wheels spin out when

going downhill or on very low friction surfaces. These events oc-

cur most often in a rapid lane change or on a constant radius turn.

Jackknifing occurs very suddenly around <0.5 seconds, leaving little

warning to the driver.

A common truck driver response to an emergency is to brake

significantly and rapidly. These are normal and natural human re-

actions. However such braking leads to a wheel lockup causing any

truck imbalance to be exacerbated where tires lose more traction

and the kinetic energy of the two connected bodies (tractor truck

and trailer) become more unstable (less guided) (Dunn et al., 2003b).

These problematic conditions can be properly handled with

real-time decision making that uses real-time data from a network of

reconfigurable sensors distributed throughout the two vehicle bod-

ies. Tracking kinetic energy flow in the two bodies is paramount to

not only further understanding jackknifing but also for predicting

and preventing jackknifing. Of primary sensing interest is where the
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heading angle of both bodies begins to diverge while at high speeds

(unlike a 90◦ turn after a stop sign/light). By definition, the phys-

ical meaning of jackknifing is a small time interval where the two

linked bodies begin to diverge (become non-uniform) in direction or

sense at high momentum, due primarily to high velocity. Measuring

vehicle speed in tandem with body-to-body rotation or relative yaw

provides a check for jackknifing potential (Bouteldja et al., 2006;

Bouteldja and Cerezo, 2011).

The physical phenomena resulting from the primarily jack-

knifing conditions are sliding and trailer slewing or swinging.In the

sliding case, which is common when a truck begins to decelerate

without the trailer being aligned in heading (non-zero relative yaw)

and an effective moment arm is formed that causes the trailer to

skid outward causing a greater moment arm from the greater yaw

angle. The driver needs to reduce the deceleration and steer the

tractor into the skid or in a manner that reduces the relative yaw.

Further braking will cause the relative yaw angle to increase and

increase the moment arm that will lead to a worsening skid (Dunn

et al., 2003b).

The trailer swinging case is primarily caused by high winds

coupled with the high side surface area to catch drag on the trailer

and the typical high center of gravity of the trailer. These factors

cause the trailer to not be aligned with the tractor even when in
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cruising conditions. These oscillations can grow to cause jackknifing

(Dunn et al., 2003b; Azad, Khajepour and McPhee, 2005).

Once a jackknife is detected, real-time sensor data will be used

to aid the truck driver in returning the vehicle to more stable condi-

tions. The primary sensors of interest for this are: individual wheel

traction and rotation speed, tractor and trailer planar accelerations

(yaw and linear), tractor steering angle, and the throttle and brake

state of the tractor.

Wheel measurements are especially useful because they pro-

vide information for traction management, since traction is at the

root cause of jackknifing. Determining varying wheel rotations di-

rectly indicates unstable conditions while the driver still has an abil-

ity to take action. For the active wheel on the tractor, the differ-

ential in wheel torque provides insight to the actual ground surface

condition (Odhams et al., 2008; Kim et al., 2016).

Determining when either vehicle body begins to have lateral

kinetic energy is a primary indicator of general instability. Know-

ing the states of individual wheels, heading (steering angle), wind

intensity, throttle, braking, an relative yaw will provide a means to

develop a solution to the driver for reaching a safer condition (Kim

et al., 2016). Driver fatigue in addition to mundane tasks such as

determining the trailer oscillation can lead to lack of proper knowl-

edge when a critical state materializes (Plchl and Edelmann, 2007).
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Predicting and providing solutions to dangerous, fast response sit-

uations is the essence of a distributed real-time sensor network for

smart truck driveltrains. Once such a system is in place, many pos-

sibilities for control systems emerge where the driver and operations

managers can expand the scope of predictions and solution genera-

tions. Archiving for future enhancements will be possible with these

systems, leading to deeper analysis of crashes and future insight on

sensor tracking and control as well as vehicle and task modeling(Kim

et al., 2016).

2.2 Smart Truck Operational Criteria

2.2.1 Wheel Force Management

The critical parameter to determine the maneuver capability

of a modern open architecture vehicle is the wheel-surface friction

coefficient µ for a wide range of surface and weather conditions.

Here is outlined not only how to accurately obtain µ but also to

manage all wheel forces to best control the motion of the vehicle in

all motion commands (6 DOF in space) and in all classes of on and

off-road terrains.

One of the most important parameters associated with the

intelligent corner of open architecture commercial vehicles is real

time awareness of the maximum tire contact force that is available

to drive and maneuver the vehicle. This force is directly depen-
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dent on the coefficient of friction, µ. Decades of research by the

vehicle community to create estimators for µ for tires on various

surfaces show that they work both in simulation and experiment

but with the severe penalty of deteriorating the wheel traction by

using force disturbance functions that generate (otherwise unavail-

able) data in real-time for tire slip ratio/slip angle evaluation (Wong,

2008). Then, using known parameters such as wheel steer angle,

camber, caster, angular velocity, tire pressure, etc., one could es-

timate the available longitudinal driving force (fx) and the lateral

sliding force (fy) based on known tire performance maps (usually on

a flat surface). Maps are frequently available for surface conditions

such as moisture, water, snow, ice, gravel, etc. It is widely accepted

today that in maneuvers (turns), GPS and INS (Inertial Navigation

System) sensor data can measure the vehicle’s dynamics, use that

to calculate the expected slip ratio and slip angles and then knowing

the expected inertia drift forces on the tires (to maintain the vehicle

dynamics), and obtain an estimate for the associated friction coef-

ficient µ. This approach demands full awareness in real time of the

necessary maps (Wong, 2008) embedded in a local decision struc-

ture. Also, this approach presently works only with planar body

motion which does not give us data on body pitch and roll (i.e., the

real inertia force shift which requires 100 to 300 m-sec. to occur

from the inside tires to the outside tires). Finally, none of this fric-
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tion estimation works for vehicles operating at speed on the open

road (to prepare for braking, to climb a hill, etc.) or off-road rough

terrain.

In other words, there has to be a better way of knowing what

tire forces really occur, and how close those forces are to being

saturated (maxed out). This means what force margins are available

to either increase or decrease our commanded speed or maneuver

plan must known. Accurately obtaining friction coefficient µ is not

only desirable, it is at the core of intelligent vehicle management

(Ma and Peng, 1999).

An elementary representation of the tire contact force sug-

gests that it creates a friction circle of forces which can be used to

estimate the available driving force fx and the lateral sliding force fy,

all depending on the coefficient of friction µ. Given an independently

powered and steered wheel, the direction of that friction force fw to

best satisfy the commanded maneuver (i.e., generate the necessary

global vehicle forces) can be arbitrarily chosen. But this depends

on the knowledge of µ and the normal contact force fN to generate

fw = µfN . Given appropriate force sensors (in the suspension link-

age or actuator motor current), the value of fN can be commanded

as needed depending on the capability (peak torque) of the active

suspension actuator.

Given GPS and inertial sensors (INS), given tire performance
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maps for all expected road conditions, and given fN (by the active

suspension); then it is possible to estimate slip ratio and slip angle to

best estimate fw, and at the same time a good estimate of µ (Jujnovic

and Cebon, 2002). Knowing fw, the vehicle controller will best select

the wheel torque (to not exceed µfN) and select the direction of the

longitudinal tire force fx and the lateral (sliding) force fy.
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Chapter 3

Smart Truck Sensor Synthesis

In this work for real-time data development for smart truck

drivetrains, physical phenomena related to tractor truck control is

identified and is the central focus for designing a sensing system.

This chapter details the design of such a system given the detailed

needs for the control of a complex mechanical system such as the

smart tractor truck.

Chapter 1 presented why there is an immediate need to modify

all the existing complex mechanical systems in favor of more intelli-

gent systems, equipped with multiple sensors for informed decision

making and intelligent operation to meet increasing performance de-

mands. A goal of this document is to develop an argument to create

a multi-sensor environment for complex mechanical systems such as

tractor trucks.

3.1 Multi-Sensor Architecture Development

The advantages of multi-sensor systems are innumerable. Be-

low is a list of relavent advantages:
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• Intelligent control in real-time using multi-criteria decision

making: Mechanical systems are becoming more complex in

operation and in response to human demands. System non-

linearity is nearly impossible to control with classical control

methods and is only marginally controllable with multivariable

nonlinear or optimal control techniqes for a few degrees of free-

dom, which is not the case in the multibody tractor truck sys-

tem. Such a system equipped with multiple sensors can deter-

mine the real-time state awareness and the operating conditions

reducing uncertainty and predictive approximation (guessing)

by the system controller. Further, sensor data uncertainty can

be reduced with sensor fusion techniques. A multi-sensor sys-

tem will enable intelligent control in real-time(≈ 10 m-sec.)

to extract the best possible performance from the system to

match constantly changing objectives and tasks (Tesar, 2016b).

• Condition based maintenance (CBM): A multi-sensor environ-

ment will allow continuous monitoring of system components,

enabling detection of component degradation and signs of im-

pending failures. CBM can, through design, assist in preemp-

tive maintenance be relating historical system performance and

component failures.

• Performance maps: A multi-sensor system provides a frame-

work to enhance the characterization of effects of operating
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conditions on the system under operation. Performance maps

highlight a mapping between measured data, indicating empiri-

cal relationships between parameters and operating conditions.

More recent or improved (resolution) measurement data is used

to update the performance maps previously obtained through

analytical relationships or experimentation. Over time this ap-

proach refines parametric modeling of components and system.

• Expanding safe operating regions to improve performance:

Typically system operation specifications are conservatively es-

timated because of a lack of real-time awareness about the

states and the internal parameters during the system opera-

tion. This minimal information approach results in an under-

utilized system with imposed limits on system performance. A

multi-sensor system with an extensive sensor suite and perfor-

mance maps will provide a better awareness about the system

during the operation, enhancing performance.

• Distributed control: A distributed control architecture gives

advantages of flexibility and modularity/reconfigurability at

the system level. This is achieved with control at the com-

ponent or subcomponent level can be changed without affect-

ing or making changes in the system level controller. The local

controller has full knowledge of its connected component’s real-

time operating conditions.
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• Operational fault tolerance: Multiple sensors will provide re-

dundant information, which is used to reduce data uncertainty

data and provide system fault tolerance. For example failure

in a drivetrain bearing equipped with a vibration sensor (ac-

celerometer), a temperature sensor and a microphone can be

corroborated from the data from all three sensors. For sensor

failures, the remaining sensors verify component operation to

eliminates single point failures.

The first step in designing such a multi-sensor system is to

determine the critical parameters of interest for desired system op-

eration, such as tractor truck rollover or jack. Chapter 1 and 2 have

defined a list of high interest operating conditions and their associ-

ated parameters along with and possible failure modes. In general,

a nonlinear system will have various coupled parameters influencing

the system operation where direct and real-time measurement is im-

portant for intelligent control and enhanced performance. To design

a sensor network to produce a needed data flow, a review of how

nonlinear phenomena affect the overall system behavior is needed

to determine sensing requirements. Some parameters are essential

to make informed judgments in intelligent control where as others

are supplementary, but useful for redundant information (fault tol-

erance) and developing a better understanding of the system and

components (performance maps).
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Once sensing requirements are established, suitable sensor

specifications need to be defined in a manner that balances, in the

correct relative proportion, cost and benefit. Specifications include

hardware parameters such as size (volume), weight, housing rugged-

ness and interface, etc. and sensing attributes such as resolution,

accuracy, sensitivity, etc. Sensor capability should match the im-

portance of a parameter.

One major point of interest should be the wide spectrum of

sensing technologies. Various sensing technologies can sense phys-

ical phenomenon with comparable performance. For example the

output angular position for an electro-mechanical rotary actuator

can be sensed using hall effect sensors or optical encoders. A partic-

ular technology may be more effective than others in the required

sensing environment. A comprehensive list of all the feasible sensing

technologies with their pros and cons in the required application can

make the evaluation and selection process more approachable (see

Chapter 4).

3.2 Sensor Attributes

The selection of a particular sensor for the system depends

upon the functional requirement, and the constraints on the sensing

technology. For example, Time-of-Flight (TOF) technology is revo-

lutionizing the machine vision industry by providing 3D imaging us-
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ing a low-cost CMOS pixel array together with an active modulated

light source. Compact construction, easy-of-use, together with high

accuracy and frame-rate makes TOF cameras an attractive solution

for a wide range of applications. However TOF technology does not

work well outdoors unless advanced scientific sensors are used that

will cost hundreds of dollars per sensor and are not yet mature for

significant field use (Foix, Alenya and Torras, 2011). Proximity and

laser based sensors provide equivalent information for low-cost and

many commercial options. While these sensors may not have the

resolution of TOF technology, these sensors are a better solution for

the smart truck system.

Sensing requirements and desired sensor attributes change

from application to application. In general, there are some basic

characteristics desired in all the sensors. These attributes, include

hardware features, sensing/measurement principles and data pro-

cessing, data transmission properties, are used to evaluate sensors

and sensor technologies. The following list details certain sensor

characteristics used from selection criteria.

3.2.1 Sensing and Measurement Attributes

• Accuracy: A very important characteristic of a sensor is accu-

racy, which really means inaccuracy. Inaccuracy is measured as

a highest deviation of a value represented by the sensor from
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the ideal or true value of a stimulus at its input. The true

value is attributed to the input stimulus and accepted as hav-

ing a specified uncertainty because one never can be absolutely

sure what the true value is.

– Directly in terms of measured value of a stimulus.

– In percentage of the input span (full scale).

– In percentage of the measured signal.

– In terms of the output signal. This is useful for sensors

with a digital output format so the error can be expressed,

for example, in units of LSB (least significant bit).

Which particular method to use? The answer often depends on

the application. In modern sensors, specification of accuracy

often is replaced by a more comprehensive value of uncertainty

because uncertainty is comprised of all distorting effects both

systematic and random and is not limited to inaccuracy of a

sensor alone.

• Precision: Accuracy and precision are often confused with pre-

cision being misunderstood. As defined above, measurement

accuracy is the degree of closeness to the true value. Measure-

ment precision is the degree of scatter of results (sensor read-

ings) under the same conditions. This definition is equivalent
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to the degree of measurement reproducibility or repeatability.

Accuracy and precision are not interchangeable.

• Calibration: The process of comparing instrument measure-

ments against standard references with much greater uncer-

tainty and condition control. Correction factors are deter-

mined from such comparisons. The reference source for cal-

ibration should be well maintained and periodically checked

against other established references, preferably traceable to a

national standard, for example a reference maintained by NIST

(National Institute of Standards and Technology) in the U.S.A.

• Hysteresis: A hysteresis error is a deviation of the sensor mea-

surement at a specified point of the input signal when the mea-

surement is approached from the opposite or alternative direc-

tions. For example, a displacement sensor when the object

moves from left to right at a certain point produces voltage,

which differs from that when the object moves from right to

left or at varying velocities. The typical cause for hysteresis is

varying energy dissipation rates. This issue can be addressed

in design geometry, friction, and structural changes in the ma-

terials, especially in elastic (soft) materials. In general, high

quality machine design requires significant design in all three

aspects.
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• Nonlinearity: It denotes extent to which the actual measured

curve of the sensor deviates from the ideal curve. Nonlinearity

error is specified for sensors whose transfer functions may be

approximated by straight lines, the simplest possible model. A

nonlinearity is a maximum deviation of a real transfer function

from the approximation straight line.

One important design consideration is “trimming” or specify-

ing by design where a minimum nonlinearity error occurs in

the most important target range. For example, a vehicle ac-

celerometer should be designed for only motions for a target

vehicle and not the entire spectrum of acceleration readings.

• Sensitivity: In modern sensors, the relationship between input

physical signal and output electrical signal. Sensitivity is ex-

pressed as the ratio of change in output signal to a small change

in the input signal. It can also be defined as the minimum in-

put of a physical parameter that will create a detectable output

change, essentially the transfer function derivative with respect

to the physical signal. High sensitivity is desired for sensors to

minimize sensor power and space requirements. Additionally,

high sensitivity results in a high signal-to-noise ratio provid-

ing greater immunity to electromagnetic noise (interference or

transmission noise) than with a low-sensitivity device.
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• Dead Band: Essentially the opposite of a trimmed measure-

ment range or point. Dead band is the insensitivity of a sensor

in a specific range of the input signals. In this range, the out-

put may remain at a constant value incorrectly over an entire

dead-band zone.

• Saturation: Every sensor has its operating limits. Even if it is

considered linear, at some levels of the input stimuli, its output

signal no longer will be responsive. Further increase in stimulus

does not produce a desirable output. It is said that the sensor

exhibits a span-end nonlinearity or saturation.

• Resolution: The minimum detectable signal/stimulus fluctua-

tion that can be detected. The resolution of a sensor with a

digital output format is given by the number of bits, such as

8- or 16-bit resolution. In such cases the LSB is of interest.

Sensor resolution is, in general, a direct trade off with cost.

• Measurement Range: The range of input physical signals that

can be converted to a readable output signal. This range must

match or exceed the expected operation variation.

• Response Time (Bandwidth): Sensors have finite response times

to instantaneous changes in physical signals. In addition, many

sensors have decay time, which is time after a step change in

physical signal for the sensor output to decay to its original
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value. The reciprocal of these times represent the upper and

the lower cutoff frequencies respectively. The bandwidth is the

frequency range between these frequencies that can be cap-

tured and presented in the output when measuring a varying

signal.

• Inherent Noise: An internal and substantial error source that

is never eliminated but should be accounted for to minimize or

prevent. Such error can occur from discretizing resolution (see

Resolution), value drift, and low-quality circuitry generating

unwanted electromagnetic effects. Interference (Transmission)

noise will be discussed later.

• Sampling Rate: Refers to how fast the data acquisition system

can sample for new measurement data. This is related to re-

sponse time and bandwidth. A high sampling rate is highly

desired and usually required in sensors for real-time/online

monitoring and control (1 to 10 m-sec.). The simple Nyquist

theorem requires a measurement frequency double the rate of

system operation. The case for greater multiples in decision

making applications will be discussed in Chapter 7.

3.2.2 Data Processing & Data Transmission Attributes

Signal from a sensor may be transmitted to a receiving end of

the system either in a digital format or analog. In most cases, a dig-
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ital format essentially requires use of an analog-to-digital converter

at the sensor’s site. Transmission in a digital format has several

advantages, the most important is a noise immunity. In many cases,

digital transmission cannot be performed or should not be, in the

case of high quality demands. Then, the sensor output signal is

transmitted to the receiving site in an analog form across various

cable connect methods. Here are noise considerations to consider:

• Embedded Processing: Modern sensors are much more than

simple transducers. Modern sensors have many embedded pro-

cesses such as multiple sensing capability (temperature & pres-

sure), signal processing and communication embedded in a sin-

gle hardware package. Some higher capability sensors contain

desired features such as signal conditioning and accuracy or

sensitivity trimming.

• Interference (Transmission) Noise: External noise sources such

as: power supply transients, electromagnetic, radio frequency,

thermal, vibration, and humidity can cause significant or detri-

mental sensor operation. Interface circuits and built-in noise

filtering circuits/algorithms should be used to mitigate these

problems. This type of noise can be further reduced with cable

and circuit enclosure shielding.

• Electric Shielding: Interferences attributed to electric fields
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can be significantly reduced by appropriate sensor and circuit

shielding. Shielding serves to confine noise to a small region,

preventing noise from spreading into nearby circuits. Shielding

also serves to prevent noise from getting into sensitive portions

of the detectors and circuits. These shields may consist of metal

boxes around circuit regions or cables with shields around the

center conductors. Standard shielding practices are detailed

in Noise reduction techniques in electronic systems by Henry

Ott.

• Communication Interface: Sensors with multiple standard com-

munication interfaces/protocols are desired. Automatic detec-

tion in a network (plug and play, hot plugging) to ease main-

tenance effort should be considered.

3.3 Practical Approach for Multi-Sensor System Devel-
opment

There are many solutions (sets of selected sensors) to sat-

isfy multi-sensor system requirements. This should be treated as a

constrained optimization problem where solutions that best match

sensing and performance requirements and have the best benefit to

cost ratio are selected.

Once the optimal sensor suite is selected, the sensors or sensor

data flow needs to be integrated. Integration here refers to both, the
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physical sensor placement and the integration the different sensor

measurement and ultimately various sensor operating time frames

(see Chapter 7).

Physical integration also refers to connecting all the sensors

to a controller or a network of distributed controllers using stan-

dard communication protocols. The idea is to use standardize in-

terfaces and utilize common wires for multiple sensors to minimize

communication complexity. This design work should include noise

elimination, optimized data flow, and easy hardware debugging and

calibration.

Once all the selected sensors are optimally placed and con-

nected to respective controller(s), the next task is sensor data inte-

gration. This is the use of data from multiple sources to achieve the

proposed goals of intelligent control, condition based maintenance,

and fault tolerance. Integration of multiple sensory data sources

can increase the confidence in actual state information and ensure

robustness. This requires resolution of conflicting data for the same

measurand obtained from different sources. Fault tolerance requires

inference of lost data from other available resources. Various meth-

ods exist in information and estimation theory (Kalman filter, parti-

cle filters, Bayes reasoning etc.) towards integrating data from mul-

tiple sensors and inferring the lost data. (Ashok, Krishnamoorthy

and Tesar, 2010) provided guidelines for managing multiple sensors
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by forming a network of sensors and taking advantage of relational

nature (analytical relationships) of the diverse measurands.

All the functionalities and algorithms have to be encapsulated

into a single software framework which will be the brain of the in-

telligent system. See Chapters 5 and 7 for more detail and for

asynchronous data flow topics.

3.4 Examples of Multi-Sensor Systems

Development of a multi-sensor intelligent system is not a new

field. A systematic approach for the design of instrumentation ar-

chitecture and sensor data fusion concepts are shown to enable the

robust control of complex electromechanical systems in flexible space

robots (Stieber et al., 1998). Incorporation of multiple sensors in a

complex system is evident in many fields, from nuclear reactors to

air crafts. Although in many systems, real-time sensor data was not

used in a manner to achieve direct intelligent control, primarily due

to minimal sensor options and high sensor costs. Today, with en-

hanced computational capabilities and availability of low-cost sens-

ing, multi-sensor intelligent systems can thrive because of feasibility

to add more sensors into a dynamic system to improve real-time

decision making. Recent developments of this are found in mobile

robotics where platforms contain sensor suite including inertial mea-

surement unit, range finder, cameras, multi-axis accelerometers, etc.
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for navigation. Another field is the automobile industry where ve-

hicles are equipped with an array of sensors to improve ride quality

and safety.

Two detailed examples that design at the component level to

get increased awareness, intelligent control are presented:

A multi-sensor architecture for electro-mechanical actuators

was developed (Krishnamoorthy, 2005) with ten sensors embedded

in an actuator, shown in Figure 3.1. These include angular position,

velocity and acceleration sensors, torque sensor, temperature sen-

sor, microphone, vibration sensor, magnetic flux density sensor, and

current and voltage sensors. Inclusion of these sensors enabled in-

telligent control based on operating conditions and user set criteria.

This system resulted in condition based monitoring of the actuators

for incipient faults.

McFarland evaluated multi-sensor environment for monitor-

ing (combat) soldier performance in real-time. The study assessed

ten potential physiological indicators (sensors), termed biomarkers

that correlate with human task performance condition (response to

select set of stressors). These biomarkers include heartbeat, mus-

cle activity, blood pressure, facial stresses, pupillometry, eye move-

ments, skin response, temperature, and oxygen saturation. The

focus was to monitor soldier performance in real-time by means of

visual 3D performance maps supported by Bayesian network model
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Figure 3.1: Electromechanical actuator with multiple sensors (Krishnamoor-
thy, 2005).

of soldier performance (McFarland, 2011).
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Chapter 4

Sensors for Smart Truck Systems

Sensors form the foundation of any intelligent control scheme

and determine the quality/extent of information available to levels

higher in the hierarchy. Recognizing this significance, an analysis

of the actuator sensing needs resulted in identification of ten prin-

cipal sensing domains to initiate the creation of a multi-sensor ar-

chitecture. This chapter details sensing requirements and possible

relevant evaluation information such as appropriate technology and

integration/synthesis.

4.1 Sensor Evaluation & Selection

A sensor, whether passive or active, establishes an interface

between the physical environment of interest and a control system.

Most sensors are no longer limited to being simple transducers and

combine sensing, signal processing and communication hardware in

a single unit. This provides a conditioned output, less susceptible to

corruption by noise from transmission media or other sources. Their

functionality is enhanced through such synergy by capabilities like
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compensation (for cross sensitivity, temperature effects etc.), auto-

calibration etc. Sensor requirements refer to attributes desirable

from an application standpoint. (Nettle, Tesar, 1991) established

performance requirements for an array of robotic tasks and defined

numerous attributes under four categories: global issues, perfor-

mance issues, design/interface issues, fusion/software issues. How-

ever, there are no universal standards and various interpretations

of performance parameters exist, which are specific to each sensor

type. Acceptable values for each parameter depend on the physical

principle the sensor is based on as well as the task requirements but

there are certain basic characteristics that all sensors can be judged

on.

4.2 Acceleration

4.2.1 Linear

Accelerometers and vibration sensors can be mounted at mul-

tiple locations on a trailer to measure motion amplitude and fre-

quency. It is desired that the operating range spans the accelerom-

eter’s measurement range to get maximum sensitivity to target mo-

tion acceleration range (frequency).

A three axis accelerometer on the trailer body can capture

the response of the trailer as a rigid body due to decelerations,

braking and road curvatures. This accelerometer should be operat-
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ing at ±2g range to sense low frequency oscillations such as lateral

sliding – the primary cause of rollover and an initial condition for

jack-knifing – and oscillations due to road irregularities along with

truck suspension degradation. Extensive modeling, empirical data

and simulation results from these works (Liu, Rakheja and Ahmed,

1997; Winkler and Ervin, 1999; Cheng and Cebon, 2008) indicate

the importance of lateral linear acceleration in this range. An ac-

celerometer on the trailer body can also complement an onboard

gyroscope to measure tilt or inclination of the trailer.

An accelerometer on the bearing adapter or near wheel/axle

should be able measure high frequency vertical vibrations and im-

pact forces 300g coming from wheel and road interaction. This

accelerometer can monitor for bearing defects and irregularities in

the ground interface (wheel components), etc (Matzan, 2007).

Conceptually an accelerometer behaves as a damped mass

spring system. The mass is displaced relative to the accelerom-

eter mounting, causing deflection in the internal spring element.

Piezoelectric, piezoresistive or capacitive elements convert mechan-

ical motion into an electrical signal. Modern accelerometers are low

cost sensors based on MEMS technology. These accelerometers pro-

vide user selectable measuring range and bandwidth (user set filter

components) with very little power consumption. They are small

size (a few millimeters) and can be integrated on a circuit board
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with other sensors, a micro-processor and data transmission circuit.

Linear accelerometers are inertial sensors, which do not re-

quire referencing to a stationary coordinate system. They are at-

tached to moving platforms. In navigational devices, accelerometers

work together with gyroscopes, typically containing three orthogo-

nal rate-gyroscopes and three orthogonal accelerometers, measuring

angular velocity and linear acceleration, respectively.

4.2.2 Rotational

A gyroscope measures rate of angular rotation. A gyroscope

on the trailer can provide yaw, pitch and roll rate of the trailer

body. The angular velocity data can be integrated to get the angular

position which can give a measure of tilt or inclination of the trailer.

GPS is not reliable for safe distance measurement between other

vehicles (even if other vehicles are tracked with GPS) as the GPS

information is not accurate enough, at least in real-time, to realistic

relative distances closing rapidly (Bouteldja et al., 2006; Cheng and

Cebon, 2008). GPS has especially insufficient accuracy in complex

terrain such as by city buildings and in tunnels. Location sensors

are used on the truck body for this purpose but they do not give

real-time information about truck speed and acceleration. Thus an

onboard gyroscope can be useful in augmenting the GPS data for

accurate position awareness of the truck.
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Modern day gyroscopes are tiny low-cost sensors based on a

vibrating structure manufactured with MEMS technology. Similar

to MEMS accelerometers, these are small (few millimeters) packaged

like integrated circuits and provide an analog or digital output. They

can typically be integrated with linear accelerometers.

4.3 Inertial Measurement

An Inertial Measurement Unit (IMU) integrates a multi-axis

accelerometer, a single or multi axis gyroscope and optionally a mag-

netometer to track the motion of a rigid body. An IMU on a vehicle

platform can give position, orientation, velocity and acceleration of

the vehicle. The control input to the vehicle actuators and the wheel

terrain interaction directly governs the motion of the vehicle. The

IMU data indicating the actual motion of the vehicle can be used

(as a feedback) to compute new control input to meet the desired

trajectory and required vehicle performance. The IMU data is im-

portant in stability control and evaluation of ride quality. IMUs on

vehicles can complement GPS or can work stand-alone when the

GPS signals are unavailable.

Low-cost MEMS based IMUs are available from a variety of

manufacturers such as SBG Systems, VectorNav Technologies, Glad-

iator Technologies, Rockwell, Honeywell, Fairchild, Texas Instru-

ments (TI), and Analog Devices (ADI). They include a processor
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chip and a signal conditioning unit which can filter raw data from

individual sensors and combine data using sensor fusion techniques

to give final position, velocity and acceleration in 6 degrees of free-

dom. This embedded processing capability reduces computational

load on the central computer.

4.4 GPS

The Global Positioning System (GPS) is a satellite-based nav-

igation system that works in any weather condition, anywhere in

the world, 24 hours a day. There are no subscription fees or setup

charges to use GPS and commercial systems can be accurate up to

less than 3 meters on average (Bouteldja et al., 2006; Cheng and

Cebon, 2008).

4.5 Steering Angle

The Steering Angle Sensor (SAS) is intended to be used in

making adjustments and corrections for vehicle stability by counting

the revolutions that the steering wheel is making and how fast and

compares those numbers to a set of standards.

Here is an example of how an SAS is used in vehicle stability:

As a driver steers a vehicle, the steering angle sensor will send signals

to the ECU (Electronic Control Unit). The ECU will determine
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the vehicle heading and the speed the steering wheel is turning.

Remember that as a vehicle enters a curve, all tires move at different

rates where the inside tire rotates at slower speed than the outside

tires. In an understeer condition, traction is lost on the front wheels,

causing the vehicle to make a wider turn and that causes a speed

difference to decrease between the right and left front wheels. In an

oversteer condition, the rear wheels loose traction and the vehicle

begins to spin and the speed difference between the right and left

tires to increase. The SAS will continuously send real-time data to

the stability control software (located in the ABS Control Module)

that will begin to apply brake pressure to the appropriate wheels to

counter the forces involved. Furthermore, the engine power can be

reduced and the vehicle should regain stability.

Unfortunately, as discussed previously, common commercial

vehicle control systems solely rely on passive or energy removal

methods so alternative, active control or energy input in synchro-

nized pulses are not considered.

4.6 Grade Inclination

An inclinometer is an instrument for measuring slope angle

(or tilt), elevation or depression of an object with respect to gravity.

An inclinometer is also known as a tilt meter/sensor, tilt indicator,

slope alert, slope gauge, gradient meter, gradiometer, level gauge,
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level meter, declinometer, and pitch & roll indicator.

4.7 Wheel Torque

Wheel torque sensor measures torque applied to the wheel or

the reaction torque on the wheel. The wheel torque data can be

of great interest during off-road driving, braking and speed coast

down. It can give an idea about the required (or actual) energy

the vehicle/actuator has to provide to overcome the tire rolling re-

sistance. The difference between the motor output torque and the

wheel torque gives an estimate of driveline resistance and mechani-

cal efficiency. Wheel torque sensors are used during vehicle dynamic

testing. It is now suggested to use them during the normal vehicle

operation and get real-time torque data from each wheel. Wheel

torque is one of the primary input parameters in traction control.

Real-time wheel torque feedback is essential for intelligent control of

the vehicle based on operating conditions (minimize wheel slippage

for higher efficiency).

Wheel torque sensors are typically rotating strain gages on an

adapter plate mounted to the wheel rim or bolted to the brake drum

or spindle of a truck trailer. Temperature compensation is provided

in most commercial sensors. A careful design can provide immunity

to radial and cornering loads and reduce vulnerability to impact load

from wheel terrain interaction. Electrical signals are transmitted
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either through slip rings or via non-contact rotary transformer. Slip

rings are more prone to wear due to friction contact and are subject

to intermittent connections and limitations on the rotational speed.

Some sensors also provide non-contact telemetry signal transmission

to the data acquisition instrument inside the vehicle.

4.8 Wheel Speed

A wheel speed sensor is used to measure the rotational speed

of a vehicle’s wheel. A wheel speed sensor is a hub-mounted sensor

and typically uses a toothed wheel on the axle drive shaft. Vari-

able reluctance wheel speed sensors use a magnet and a coil of wire

(magnet pickup) to generate an analog (alternating) signal. The

voltage level is dependent upon the rotational speed of the wheel.

A Hall effect wheel speed sensor uses a toothed wheel and generates

a square wave signal with frequency proportional to the speed of the

wheel. Hall effect sensors need excitation power.

Wheel speed sensors are used in almost all modern vehicles

now as a part of the Anti-Lock Braking System (ABS). In ABS, for

four wheeled vehicles, four speed sensors monitor the wheel speeds

and check for possible wheel lockups and uncontrolled skidding (one

wheel rotating significantly slower or faster than other wheels). The

brake hydraulic valves are actuated to reduce or increase the pres-

sure controlling the braking force on the affected wheel.

56



The ABS is proven to be extremely useful improving vehicle

control and decreasing stopping distances on dry and slippery sur-

faces. The proposed use of the wheel speed sensor is not only during

braking but it can be used continuously to evaluate the wheel-surface

interaction. Wheel rotational speed is used to calculate the linear

speed of the surface contact point or contact patch (Rω) . The ve-

hicle ground speed and the wheel contact point linear speed gives

data to compute wheel slip - an important parameter in traction

control.

4.9 Wheel Force

The multi-axis wheel force sensor is used to measure all dy-

namic forces and moments on a wheel in real time. The wheel force

sensor will provide independent output signals for vertical, lateral

and longitudinal load on the wheel as well as camber, steer and

torque moments acting on the wheel. Vehicles can be analogous to

robotic systems with each wheel corner interpreted as a four degree

of freedom robotic arm providing active steering, camber, active sus-

pension and drive torque. In an intelligent vehicle, it is desired to

know individual control of forces at all wheels at all times. From this

analogy, a wheel load sensor provides useful information about the

wheel’s interaction with the terrain, quite similar to a force-torque

sensor at the end-effector of a robotic arm that measures interaction
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forces with the environment. The wheel force transducer data can

be used in stability control, active suspension, traction improvement

(traction torque component) and impact load measurements.

Wheel force transducers are strain gage bridge modules which

typically mount between vehicle hub and the wheel rim. The sens-

ing elements rotate with the wheel and slip rings or a non-contact

rotary transformer is used to transmit signals to a stationary signal

conditioning unit. The forces are required with reference to a coor-

dinate system fixed to the vehicle. The rotating electronics package

also measures angular position required to transform the force and

torque vectors into a non-rotating frame of reference (vehicle’s co-

ordinate frame). The six components of the total wheel load are

structurally decoupled to provide independent outputs. National

Highway Traffic Safety Administration (NHTSA) uses wheel force

transducers are used in vehicle testing and for road load measure-

ment. It is now recommended to use them on all wheels at all times

for intelligent vehicle control (Dunn et al., 2003c).

Wheel force and torque transducers primarily use strain gage

bridges to measure torques and forces acting on the wheel. Strain

gages are low cost sensing elements but proprietary hardware, signal

conditioning, and communication and data acquisition units make all

current commercial wheel torque transducers too expensive or too

unreliable for wide use (Stefanescu, 2011). There is a pressing need
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to standardize these sensors and make a unifying open platform to

connect analog and digital sensor output signals to a modular DAQ

device on the vehicle. This will drive the sensor cost down and make

a multi-sensor system feasible in all complex mechanical systems like

vehicles.

4.9.1 Tire Pressure

Pressure sensors can be used to monitor the tire pressure

in real-time. Tires lose air pressure due to leakage and seasonal

temperature variations. Most modern vehicles now have a direct

tire pressure monitoring system (TPMS). But in the current system

tire pressures are gauged infrequently and the vehicle operator is

given no real-time visual information until the pressure in the tire

has become critically low. It is recommended to measure the tire

pressure in real-time and use it actively in traction control.

As the generality of vehicles expand, intelligent vehicle op-

eration necessitates active control of tire pressure based on road

surface characteristics to get maximum available traction. The op-

timum tire pressure is different for on-road and off-road conditions.

Real-time tire pressure information can be used in intelligent con-

trol of the driving actuator to get optimum performance in given

conditions. Active tire pressure control improves traction perfor-

mance, increases tread life, reduces vibration and shock loading in
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off-road conditions, increases fuel economy, improves vehicle safety

and reduces downtimes associated with tire maintenance.

Pressure sensors are typically located on each wheel’s valve

stems (typically screwed) to directly measure the pressure in each

tire. Modern MEMS pressure sensors based on capacitive technol-

ogy also integrate a temperature sensor, accelerometers to detect

motion, a microcontroller (MCU), a radio frequency (RF) transmit-

ter all in one package.

4.9.2 Tempurature

Temperature sensors can be used at multiple locations on a

trailer. Defects in the moving components typically result in a rise

in their temperature as the mechanical energy is converted to the

heat energy because of friction losses and impact forces. In truck

operation, bearing defects increase the temperature in the bearing

cup and on the adapter surface. Temperature sensors can be used

to monitor the condition of these components in real-time and raise

a precautionary alarm for any signs of overheating and degrada-

tion. Moreover, some goods (food, chemicals) require controlled

temperature during their storage and transportation. A low cost

temperature sensor can be used to monitor the condition inside the

trailer.

The most critical use of the temperature sensor is for real-time
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monitoring of trailer bearing health. The bearing temperature is al-

most equal to the ambient temperature during normal operation.

Defects in the bearing induce vibrations and friction losses which

heat up the bearing cone raising its temperature. The bearing tem-

perature can go as high as 150◦C above the ambient temperature

indicating the risk of complete failure (Hayes, 2004; Matzan, 2007).

4.10 Throttle

A throttle position sensor (TPS) is a sensor used to monitor

the throttle position of a vehicle (Markyvech, 2006). The sensor is

usually located on the butterfly spindle/shaft so that it can directly

monitor the position of the throttle. More advanced forms of the

sensor are also used, for example an extra closed throttle position

sensor (CTPS) may be employed to indicate that the throttle is

completely closed. Some engine control units (ECUs) also control

the throttle position electronic throttle control (ETC) or “drive by

wire” systems and if that is done the position sensor is used in a

feedback loop to enable that control.

Modern day sensors are non-contact type. These modern non

contact TPS include Hall effect sensors, inductive sensors, magne-

toresistive and others (Hiligsmann and Riendeau, 2003). In the

potentiometric type sensors, a multi-finger metal brush/rake is in

contact with a resistive strip, while the butterfly valve is turned
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from the lower mechanical stop (minimum air position) to wide open

throttle (WOT), there is a change in the resistance and this change

in resistance is given as the input to the ECU.

Non-contact type TPS works on the principle of Hall effect

or inductive sensors, or magnetoresistive technologies, wherein gen-

erally the magnet or inductive loop is the dynamic part which is

mounted on the butterfly valve throttle spindle/shaft gear and the

sensor & signal processing circuit board is mounted within the ETC

gear box cover and is stationary. When the magnet/inductive loop

mounted on the spindle which is rotated from the lower mechanical

stop to WOT, there is a change in the magnetic field for the sensor.

The change in the magnetic field is sensed by the sensor and the

voltage generated is given as the input to the ECU.

4.11 Braking

Pedal-force load cells are commonly used in cars and trucks

to measure brake-pedal force measurement and as a high-precision

trigger for brake-testing equipment. Though specifically designed

to measure the force needed to operate a vehicle’s brake, clutch,

or floor-mounted emergency brake pedals, Pedal-force load cells are

adaptable to measure any pedal-based pressure.

Such a measurement is useful in determining a solution to

recommend to the driver involving the brakes. For example, infor-
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mation to determine if the driver should brake more or less cannot

be determined solely from linear acceleration.

4.12 Yaw Rotation

The Yaw rate sensor measures the rotation rate of the car

probably using a rotating accelerometer or a 3 DOF gyroscope. In

other words, the sensor determines how far off-axis a car is “tilting”

in a turn. This information is then fed into a control system that

compares the data with wheel speed, steering angle and accelerator

position, and, if the system senses too much yaw, the appropriate

braking force is applied (again, not the passive approach). The

lateral acceleration sensor (accelerometer) measures the g-force from

a turn and sends that information also to the ECU.

4.13 Strain

When force is applied to a compressible resilient component,

the component is deformed or strained. The degree of strain (defor-

mation) can be used as measure of displacement under influence of

force. Thus, a strain gauge serves as a transducer that measures a

displacement of one section of a deformable component with respect

to its other part. Strain gages are widely used as primary sensing

elements for force and pressure measurements. They are typically

based on the principle of change in resistance of the gage material
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(conductor) due to deformation.

Strain gages can be used at multiple locations on a truck

trailer to give information about dynamic loading and impact forces

on the trailer body and the trailer components. The tractor truck

fifth wheel can be outfitted with strain gages to measure longitu-

dinal forces resulting from braking, acceleration, and jerks in the

train consist in the longitudinal direction. Shear gages mounted on

the sides of the fifth wheel can measure vertical coupler forces aris-

ing from road irregularities. Wheels can also be instrumented with

strain gages to measure vertical, lateral and longitudinal forces at

the wheel/road interface. These forces indicate impact/shocks on

the truck due to road irregularities.

Typical strain gages are slender (wire like) metallic resistive

elements which change resistance, on compression, or elongation

(resistance is directly proportional to the length and inversely pro-

portional to the area of the element). A typical piezoresistive strain

gauge is an elastic sensor whose resistance is function of the applied

strain. Since all materials resist to deformation, applied force deter-

mined from deformation. Hence, electrical resistance can be related

to the applied force.
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4.14 Sound

A microphone is a pressure transducer adapted for transduc-

tion of sound waves over a broad spectral range that generally au-

dible. Microphones differ by their sensitivity, directional character-

istics, frequency bandwidth, dynamic range, sizes, etc., and can be

used for monitoring a bearing’s health based on the acoustic signa-

ture of the bearing during operation. Acoustic signals from defective

bearings have peaks at frequencies higher than the rotational rate

of the bearing, hence, continuous condition monitoring is possible.

An acoustic sensor near the brake may also be very useful.

The dynamic range and frequency response are two of the

most important parameters in the selection of an appropriate micro-

phone for a given application. Dynamic range is the range of sound

pressure levels (dB) for which a microphone meets its performance

specifications. Higher dynamic range (∼150 dB) is required in the

continually loud road environment (Smith, 2013; Norton, 1989).

A microphone near a bearing will experience a wide range

of acoustic frequencies. Low frequency components from an aerody-

namic bow wave can be rejected with a high pass filter (rejecting less

than 8 Hz but still allowing low frequency audible signals ∼20Hz).

Acoustic signals from defective bearings show peaks at frequencies

corresponding to the defect repetition rate (30 Hz to 100 Hz). High

frequency sounds (>15 kHz) were also distinctly observed in acous-

65



tic signals coming from defective bearings (Smith, 2013; Practical

Design Techniques for Sensor Signal Conditioning, 1998; Matzan,

2007). A microphone with high frequency range (dc to 40 kHz) is

most desirable (as used in wayside inspection). A low-cost micro-

phone in the audible range (20 Hz to 20 kHz) may also be sufficient

for bearing condition monitoring. High sample rate (>80 kHz) is

required to fully support high frequency content. A good signal

to noise ratio (>40dB) and a wide operating temperature range is

desired (Matzan, 2007).

4.15 Proximity

A proximity sensor detects the presence of an object in the

’vicinity’ of the sensor. A position sensor measures distance to the

object from a certain reference point, while a proximity sensor gener-

ates output signals when a certain distance to the object has reached.

Vicinity is defined as the distance from the sensor to where a target

object is detectable.

A proximity distance sensor can be used to evaluate the brake

piston travel in real-time. Currently the truck industry does not

have a mechanism to determine whether brakes are applied effec-

tively in real-time, a serious safety concern. A simple low-cost prox-

imity sensor can measure the brake piston stroke and relay the infor-

mation to the truck driver in real-time. The sensor can also indicate

66



potential wear on a brake shoe for preventive maintenance.

Proximity sensors are based on variety of operating principles.

Inductive proximity sensors are based on electro-magnetic induction

and are best suitable for metallic objects. Capacitive proximity sen-

sors use variation in capacitance between the sensor and the object.

They can be used for non-metallic objects like plastic or wooden ma-

terials. Infrared proximity sensors use beam reflection and changes

in ambient conditions to allow sensing of the objects and measure ob-

ject distance. Ultrasonic range finders emit sound waves (ultrasonic)

and measure time of flight to estimate the object distance. Infrared

and ultrasonic proximity sensors typically have larger range.

For the truck’s pneumatic brakes, piston travel must provide

brake shoe clearance when brakes are released. A low-cost infrared

or ultrasonic based proximity sensor with suitable range can be cho-

sen for real-time monitoring of brake piston travel and brake effec-

tiveness. These sensors are placed under the trailer and are sub-

jected to debris, wide range of temperature and contact with snow,

dust, water and oil. The system design should be rugged and useful

in all weather conditions.

4.16 Onboard Sensor Power Requirements

In general, a multi-sensor system should be designed to use as

many sensors as possible to enable as much system awareness about
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a truck trailer’s operational conditions as possible. However, this

sensor array will require a continuous and reliable source of electric

power for operation. Current tractor trucks do not run such a local

power grid through the truck so a primary concern is to have a

local power source on each trailer and possibly an onboard low-cost

energy harvester to energize an onboard battery pack to assist high

demanding power tasks such as data transmission (Mickle, Capelli

and Swift, 2006). The onboard energy harvester should be low-cost,

reliable and be able to retrofit into existing systems and should be

an add-on module to the desired sensors.

Most energy harvester designs convert kinetic energy of the

axle/wheel or trailer to electric energy. Dana Corp., a tractor truck

manufacturer, is developing a special generator bearings (wheelset

generators), which integrate into the existing axle box housing.

They consist of a modified axle cover acting as a rotor and the

housing acting as a stator. This class of harvester tends to be ex-

pensive and hard to maintain. Some bearings are also equipped with

a temperature sensor and an accelerometer and transmit data over

radio frequency to a receiver on the trailer.

Solar energy and wind energy are also potential options. They

can keep the onboard accumulator (batteries) charged even when

the truck is stopped and no kinetic energy is available. Alternative

energy sources are unreliable (night time, city driving, etc.) and

68



should only be considered as a supplemental source.

To reduce the power requirements, self-energizing or low power

consuming sensors are preferred. Many sensors have an idle state

or sleep mode where the power consumption is minimal when no

measurements are taken. In addition to the sensors which measure

raw data, data processing and data transmission units may require

additional (20 to 30) watts of power. Wireless transmission (WiFi,

Bluetooth, ZigBee, etc.) units are power hungry. Wireless power

transmission should be considered (Le, Flez and Mayaram, 2009;

Butler, 2012; Safak, 2014). Appropriate sampling frequency, effi-

cient information flow and data management (from individual sen-

sors to a microchip on the trailer to the truck) can greatly reduce

power consumption.
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Chapter 5

Sensor Data Monitoring & Fusion

Multiple sensors deployed onboard a tractor truck provide a

wide variety and large amount of data that is crucial to manage

correctly in real-time to convert into useful decision making infor-

mation. Embedded sensors can be grouped based on the information

they give on a specific component or domain in a tractor truck sys-

tem. Obviously sensors are inherently noisy and data from multiple

sensors can be integrated or correlated to increase confidence in the

measurements so various data filtering/processing methods, such as

information and estimation theory (Kalman filter, Bayes reasoning,

etc.), should be implemented. This ensures proper data integration

from multiple sensors and enables inferring the lost data resulting

to provide fault tolerance and eliminate single point failures. This

chapter details this information and provides references and exam-

ples for the foundation of system intelligence for tractor trucks.
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5.1 System Intelligence

Sensor management typically refers to scheduling and acti-

vating the appropriate distributed sensor(s) to address issues like

power usage, limited bandwidth, data mismatch or in the context of

target tracking where it refers to the process of selecting appropriate

sensors, to optimize their effectiveness in characterizing the prob-

ability of a target occurring in a region under consideration. The

common thread in the examples below is that application specific

criteria are used to make decisions on what sensors to use, when,

and for what purpose.

• For continuous condition monitoring for a bearing, an accelerom-

eter, a microphone and a temperature sensor are used where

each sensor can individually detect bearing defects. The bear-

ing condition can be estimated by weighing data from each

sensor based on their accuracy and sensitivity to the bearing

defects. For example, temperature may be normal at an early

stage of the defect. But acoustic and vibration signals can in-

dicate impending bearing failures. Similarly some defects may

not result in distinct vibration pattern but the bearing cup

temperature may rise. A Kalman filter can be used to fuse all

sensor data. Note that the measurements from the three sen-

sors can be asynchronous and at different sampling frequencies.
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Analytical or empirical relationships among sensor data can be

used to generate a Bayesian network of all bearing sensors.

Historical data can be used to discard outlier measurements to

reduce false alarms.

• Onboard gyroscope and accelerometer data can be integrated

to determine turn curvature. Angle/tilt estimation by inte-

grating gyroscope output accumulates null bias error as the

integration period is increased. The gravity signal from an ac-

celerometer can be used to correct the inclination measured

using a gyroscope. The gyroscope and the accelerometer to-

gether can accurately over time sense truck orientation and

the flow of kinetic and potential energy through the tractor

truck system.

• Similar to the bearing setup, the brake sensor system can con-

sist of a proximity sensor, a microphone and a pressure sensor.

The proximity sensor can measure the brake piston travel. The

microphone may indicate braking performance via acoustic sig-

nature. The pressure sensor can monitor cylinder and valve

pressure with low pressure meaning poor braking force. Ex-

perimental data from all three sensors during normal braking

operation and in tests with induced faults can help correlate

sensor information. Lost data due to a sensor fault can be
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inferred using these correlations; thus providing multiple ways

to assess the condition of the braking system (Krishnamoorthy,

2010).

• Trailer load on the can be directly measured using a load sensor

placed on suspension springs on trailer axles. Proximity sensors

on the bolster can measure suspension coil compression to give

an estimate of the load. Proximity sensors on both sides of the

trailer can give information about load distribution and can

corroborate dynamic response measurements (roll and pitch)

from onboard accelerometers and gyroscopes.

• Trailer component condition and behavior depend significantly

upon trailer speed and loading. A defective bearing will heat

up faster for a fully loaded trailer than for an unloaded one.

Impact forces due to wheel and road irregularities are higher

at higher vehicle speeds. An intelligent system should take all

these factors into consideration (temperature, speed compensa-

tion) during condition monitoring of a trailer and the potential

for raising an alarm for faults.

Many of these applications use criteria/norms derived from

the field of information theory in combination with some form of esti-

mation theory such as Kalman filter (Wang and Qin, 2016; Xing and

Xia, 2016). Alternative approaches include Bayes reasoning, neural
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networks, fuzzy logic techniques and a rules/knowledge database to

estimate the reliability of sensor readings (Khaleghi et al., 2013).

Although each method has its own advantages (speed, ac-

curacy, ease of implementation, etc.) and weaknesses (need for a

system of mathematical models/equations, inability to detect mul-

tiple sensor faults, inability to distinguish between sensor and sys-

tem faults, need to integrate different approaches together in the

same application in order to accomplish different tasks like mod-

eling, fault detection, fault isolation, etc.) (Khaleghi et al., 2013;

Krishnamoorthy, 2010) the focus of this work is to use the Bayesian

causal network framework to accomplish these goals. This approach

can provide a unified, data-driven framework for correlating the

system variables in a physically meaningful manner (that can also

be represented graphically for intuitive understanding) as well as

perform fault detection, isolation, and fault accommodation using

the same framework. In addition, the existence of a well-developed

mathematical formalism based on probability theory helps account

for the nonlinearities and uncertainties associated with the system

under consideration.

The primary objective in creating the network is to combine

information from distinct, nonredundant measurements and provide

information fault tolerance. An example system with multiple sen-

sors is an electromechanical actuator (EMA), shown back in Fig-

74



ure 3.1, fitted with sensors measuring eleven different phenomena:

current, voltage, acoustic noise, torque, angular acceleration, out-

put speed, output position, vibration, temperature, magnetic field,

and motor position encoder (Krishnamoorthy, 2005). This example

work resulted in all eleven phenomena measured are linked directly

or indirectly to all other sensors, illustrated in Figure 5.1. Another

possible sensor network is shown in Figure 5.2.

Figure 5.1: An arbitrary network that uses 10 analytical relationships (Krish-
namoorthy, 2005).

There can be many different ways in which the sensors may be

linked to provide for fault tolerance. There is currently no unified

set of guidelines to aid in the selection of one network configuration

over another.
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Figure 5.2: Another network that satisfies the same functions (Krishnamoor-
thy, 2005).

In this chapter, the following two questions are addressed for

such a intelligent multi-sensors system:

• What is the best way to relate various sensors information?

• How can human decision makers use a network for maximizing

system performance in real-time?

The inclusion of sensors in a system provides many advantages

as discussed, but it comes with a separate set of issues such as: phys-

ical integration, cabling complexities, sensor noise, communication,

data management, maintenance, and integration cost.

A major issue is interfacing the sensors with an embedded con-

troller. The associated wiring complication is an important factor in

the selection of network architecture for the system. Although wire-

less sensors are an improved option, they require additional hard-

ware and typically are power hungry. In a multi-sensor system,
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connecting every sensor individually to the central processor results

in large number of cables, unacceptable in most commercial appli-

cations. Long running cables in a noisy environment makes data

susceptible to corruption.

A distributed or decentralized structure greatly reduces com-

munication (and cabling) complication and offloads computational

demands from the central processor for increased response time.

Local processors handle raw data from sensors and transmit only

useful information to the central processor. The sensor network ar-

chitecture (hardware, communication and software) must be modu-

lar, provide easy access to data and should require minimum effort

for augmenting capabilities for future task demands.

This chapter contains methods on developing proper data flow

for decision making logic structures, which are discussed in Chapter

7.

5.2 Advances in Sensor Technology

A sensor converts the physical quantity of measurement inter-

est into a readable (electrical) signal for data processing. Tradition-

ally sensors were just transducers, which sensed (interfaced with)

a physical phenomenon and output raw streams of data. A central

processor needed to perform tasks such as amplification, filtering,

bias correction and A/D conversion to interpret signals and obtain
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meaningful information. To do the same for all the sensors demands

significant processing capabilities on the central processor.

Modern sensors embedded into various systems today gener-

ate different types of electronic signals such as analog voltage, ana-

log current, frequency modulated or digital signals. Modern con-

trol systems require digital information, which is typically acquired

by converting analog signals into digital information using standard

quantization processes (Kester, 2010).

Today’s engineer faces a challenge in selecting the proper mix

of analog and digital techniques to solve the needed signal processing

task at hand. It is impossible to process real-world analog signals

using purely digital techniques, since all sensors, including micro-

phones, thermocouples, strain gages, piezoelectric crystals, and disk

drive heads are analog sensors. Therefore, some sort of signal condi-

tioning circuitry is required to prepare the sensor output for further

signal processing, whether it be analog or digital.

Signal conditioning circuits are analog signal processors, per-

forming such functions as multiplication (gain), isolation (instru-

mentation amplifiers and isolation amplifiers), detection in the pres-

ence of noise, dynamic range compression, and filtering (both passive

and active). Several methods of accomplishing signal processing are

shown in Figure 5.3. The top portion of the figure shows the purely

analog approach. The latter parts of the figure show the DSP ap-
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proach. Note that once the decision has been made to use DSP

techniques, the next decision must be where to place the ADC in

the signal path.

Once analog signals have been conditioned, the next step is

digitization. Analog to digital converters (ADC or A/D converter)

are a critical part of a data acquisition system because this step

primarily determines the initial data accuracy and precision before

any data filtering/processing algorithms perform. Aside from sensor

sensitivity and accuracy, these converters essentially determine the

overall data quality (poor converters means poor data extracted).

Figure 5.3: Analog and digital signal processing options (Bensky, 2004).

An intelligent or smart sensor should include (have embedded

or built-in) computational capability and communication hardware

in a single package in addition to the sensing capability. Raw analog
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signals are processed and their digital representation is transmitted

via standardized communication protocols by the sensor itself in-

stead of a distributed system of individual components performing

these tasks individually. Recently, manufacturers are also providing

additional functionalities such as self-testing, multiple sensing chan-

nels (variable ranges), auto-calibration (no additional references or

effort required), fault detection (see next section) and the possibil-

ity to program embedded computational resources (to handle new

tasks), as now common with field programmable gate-array (FPGA)

based chips (Santos and Block, 2012). The fundamental smart sen-

sor architecture is shown in Figure 5.4.

Figure 5.4: General architecture of a smart sensor (Krishnamoorthy, 2005)
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5.3 Sensor Issues

Even though the sensor technology has advanced significantly

over the years, sensors are inherently noisy. There are uncertain-

ties involved in the measurements and sensor data can also degrade

over time. An electrically noisy environment can further corrupt the

data. It is important to ensure the integrity of the signal along the

transmission path. Using shielded cables and twisted pairs for sig-

nal transmission, minimizing the number of components along the

path, and standardizing connectors and communication interfaces

can help alleviate the noise issues (Ott, 1988). It is desired to get as

much accurate and reliable information about the system as possi-

ble. Hence real-time sensor data validation and multiple sensor data

fusion at a higher level are vital for good system performance. This

section will detail some of the most common sensor issues, sugges-

tions on alleviating sensor problems and techniques for sensor data

validation and sensor fusion.

5.3.1 Signal Degradation

Sensor signals can degrade due to internal or external factors.

The change in characteristics of the primary sensing element causes

sensor output to deviate from the ideal behavior. Various factors

(environmental sensitivity, handling, over usage etc.) can affect the

sensing element or the physics behind the sensing process (Kester,
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2010; Ott, 1988).

Faulty sensors, when not detected, can give wrong information

about the system status which can be disastrous for system perfor-

mance and safety. Faulty sensors can cause false alarms and affect

system diagnosis. Multiple sensors and sensor-process fault detec-

tion and management algorithms can help identifying and dealing

with a sensor fault with minimum system interruption.

An external factor responsible for sensor signal degradation is

noise. Noise is high frequency variations in the measurement signal

over its true value. Signal to Noise Ratio (SNR) is a measure of

noise level in the signal. It is expressed in decibels as the ratio

of signal power to the noise power. Power is proportional to the

square of the amplitude. The focus here should be to have a high

SNR, reduce the noise component and maximize the signal. Noise

could be added to the signal at different levels. It can originate

from the sensing process itself, can be picked up during the signal

transmission (electrical noise through EMI in cables), can add at

the connection to the measurement device, or during sampling and

quantization process.

5.3.2 Noise

To reduce the noise level it is important to understand the

sources of noise. Noise can be added at the sensor itself or during
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transmission of the sensor signal (Ott, 1988; Norton, 1989; Shein-

gold, 1972). Noise generated due to sensor components and interfac-

ing circuits is called internal noise. For example, pink noise or 1/f

noise is due to invariable slow fluctuation of the properties of the

materials inside sensors such as fluctuating defect configurations in

metal, fluctuating trap density and trap location in semiconductors

etc. The power spectral density of pink noise is inversely propor-

tional to the frequency (1/f). White noise is a random signal with

flat power spectral density meaning the signal contains equal power

for any frequency band. In electronics, the white noise component

becomes stronger than pink noise above a threshold (corner) fre-

quency. External noise is added in communication wiring during

transmission of the sensor signal. The following are some common

sources of noise and their characteristics.

• Electromagnetic Noise (EMI): Electrostatic field due to voltage

on an adjacent cable/circuit can cause unintended/parasitic ca-

pacitive coupling between the signal line and the adjacent cir-

cuitry(Degauque and J.Hamelin, 1993; Paul, 1992). This un-

wanted capacitive coupling causes noise by developing charges

on the signal line. Changing magnetic fields or moving sig-

nal lines in a magnetic field can induce noise in the signal line

through electro-magnetic induction. Cables carrying alternat-

ing current such as power lines adjacent to the signal cable are
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a typical source of electro-magnetic noise. The noise level is

dependent on the degree of coupling between the source and

sensor wiring. In general, the higher the current or closer the

sensor circuit to the electrical device, the greater will be the

induced noise. This type of noise is minimized by circuit layout

and shielding and by keeping the operating bandwidth low.

• Mechanical Noise: Vibration and acceleration effects are also

sources of transmitted noise in sensors which otherwise should

be immune to them (Webster and Eren, 2016). These effects

may alter transfer characteristics (multiplicative noise), or the

sensor may generate spurious signals (additive noise). If a sen-

sor incorporates certain mechanical elements, vibration along

some axes with a given frequency and amplitude may cause

resonant effects. For some sensors, acceleration is a source of

noise. For instance, pyroelectric detectors possess piezoelectric

properties. The main function of a pyroelectric detector is to

respond to thermal radiation. However, such environmental

mechanical factors as fast changing air pressure, strong wind,

or structural vibrations cause the sensor to respond with out-

put signals which often are indistinguishable from responses to

normal stimuli. If this is the case, a differential noise cancella-

tion may be quite efficient.

• Thermal Noise: Electron motion within electrical conductors
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emit heat (Webster and Eren, 2016). This thermal effect is

called Johnson noise is generated in the resistive component

of any circuit impedance by thermal agitation of the electrons.

All resistors around the input circuit contribute this. The RMS

voltage produced due to thermal noise in frequency bandwidth

f (Hertz) is given by the following Johnson noise equation

ν =
√

4kTR∆f

Where k is Boltzman’s constant (joules per kelvin), R is the

resistance and T is the temperature (kelvin). Since the noise

depends on temperature, sensitive circuits in potentially hot

surroundings are sometimes cooled to reduce the noise level.

• Ground Loops: Ground loops or other types of incorrect ground-

ing cause coupling from output back to input of the circuit via a

common impedance in its grounded segment (Ott, 1988). If the

resulting feedback sense gives an output component in-phase

with the input then positive feedback occurs, and if this over-

rides the intended negative feedback you will have oscillation.

The frequency will depend on the phase contribution of the

common impedance, which will normally be inductive and can

vary over a wide range.

• Cable Noise: The signal transmission phase is most prone to

noise induction (Carlson, Crilly and Rutledge, 2001). Appro-
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priate selection of signal transmission cable is important for

reducing noise level. Shielded cables have insulated conduc-

tors which are enclosed by a conductive layer (metal foil or

conductive polymer shielding). Shielding provides a Faraday

cage and reduces noise in signals due to static or non-static

electrical fields in the cable environment. It also reduces ef-

fect of electro-magnetic induction or electromagnetic radiation

from external sources. The shield can be a signal carrier and

provide a return path (in coaxial cables) or can be for screen-

ing only. Cables with a screening shield are preferred and the

shield must be grounded for maximum effectiveness. The cable

should be routed such that there is minimum motion or rub-

bing of cables against each other (or with a surface) to reduce

the triboelectric effect.

Other considerations are: sensitive cables such as signal ca-

bles may be grouped together, especially in a twisted wire pair

to drastically reduces electromagnetic noise; metal cable trays

should be implemented with low impedance for the frequencies

in use to effectively become a partial screen for the cables with

proper grounding; cable shield termination is also a key fac-

tor in controlling electromagnetic compatibility but the best

practice is often dependent on the particular circumstances.

For low frequency applications the shield may be terminated

86



at only one end to mitigate against ground noise currents but

this will reduce its effectiveness, particularly against magnetic

fields.

For cables carrying low frequency signals, cable terminations

have to be designed carefully to avoid coupling with noise cur-

rents fl owing in the ground. If the sensor is not directly con-

nected to ground as in Figure 5.5(a) above it may be possible

to terminate the screen at both ends, thus providing maximum

protection against inductively coupled disturbances. If the sen-

sor is grounded as in Figure 5.5(b), the voltage drop across the

ground impedance to noise currents in the ground will give

rise to high currents in the shield and noise voltages may be

present at the input to the amplifier. This can be overcome as

shown by terminating the cable at one end only, thus avoid-

ing the ground loop, but the performance of the shield may be

reduced. If high performance is required under all conditions,

e.g., with the sensor grounded it may be necessary to introduce

transformer coupling or opt-isolation in order to minimize un-

wanted coupling (Carlson, Crilly and Rutledge, 2001).

The above mentioned noise sources are induced during the sig-

nal transmission. Noise/errors are also induced at the measurement

device during acquisition of analog signals and their conversion to

digital form.
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Figure 5.5: Screened cable termination methods (a) Sensor not grounded; (b)
Sensor grounded (Bensky, 2004).

5.3.3 Noise Reduction Techniques

Noise can get added at different levels in the signal flow path.

Many techniques are recommended to reduce the noise level. These

include using best practices for sensing, signal transmission and mea-

surement to control unwanted noise induction and software tech-

niques to reduce/eliminate noise components from the acquired sig-

nal (Ott, 1988).

• Appropriate Measuring Configuration: Appropriate type of the

sensor signal and measuring configuration can avoid unwanted

noise in the measurement signal (Webster and Eren, 2016; Carl-

son, Crilly and Rutledge, 2001). The sensor signal can be dif-

ferential, Referenced Single Ended (RSE) or Non-Referenced

Single Ended (NRSE). In the differential configuration, each
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channel of the signal has a separate negative and positive leads

connected to the DAQ module. The DAQ measures poten-

tial difference between two leads directly thus rejecting com-

mon mode voltage. A differential signal can be measured accu-

rately since the absolute ground potential does not affect the

measurement value. A referenced single ended measurement

system measures voltage with respect to the ground pin - di-

rectly connected to the measurement system’s ground. The

sensor ground should be the same as the measurement device’s

ground to avoid ground loops. In a non-referenced single ended

system, all measurements are made with respect to a single

node which is not grounded. Hence, a single channel NRSE

system is the same as a single channel differential measure-

ment system. The single-ended configurations are susceptible

to ground loops, often showing noise corresponding to the al-

ternating voltage difference between two grounds (source and

measurement system).

• Electromagnetic Noise Reduction: Electromagnetic induction

due to changing magnetic flux surrounding the signal cable is

a common source of noise (Ott, 1988). A changing magnetic

flux can be a result of an alternating current carrying line (say

a power line) running adjacent to the signal cable or a moving

signal cable cutting the magnetic field lines. Using twisted pair
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of wires for transmitting the signal dramatically reduces elec-

tromagnetic noise. A tightly twisted pair of wires reduces the

loop size (flux area). Moreover, two consecutive loops formed

due to twisting induce current in opposite directions in each

wire thus cancelling them out. Isolation techniques are used to

separate signals from each other and from other circuitry in the

system. A high voltage carrying signal source can damage the

surrounding system circuitry and vice versa, a sensitive signal

can pick up noise from the adjacent circuitry if not properly

isolated. Common types of amplifiers use magnetic, optical, or

capacitive means to couple the signals.

• Signal Processing Techniques: Proper signal acquisition and

further processing of raw signals can eliminate the majority of

the noise introduced during signal transmission (Smith, 2013).

The measurement frequency should be within the sensor’s band-

width or dynamic range. The sampling rate must be high

enough; 4 to 8 times the highest frequency component expected

in the signal being measured to prevent aliasing. The Nyquist

rate is twice the maximum component of frequency in the sig-

nal and is the minimum sampling rate required to reconstruct

the signal.

Noise filtering can be done in hardware or software but should
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filter noise close to the noise source and before any further signal

processing or interpretation. Filters are classified based on the signal

frequency the filter is designed to allow or eliminate. For example,

low pass filters allow frequencies lower than the corner frequency

Fc and block higher frequency signals. A high pass filter will allow

signals with higher frequency components while rejecting DC and

lower frequency signals. Band-pass filters allow frequencies between

FL (lower limit) and FH (higher limit) and block all other frequency

signals. A band-stop filter is opposite of the band pass filter and it

allows signals lower than FL and higher than FH.

5.4 Sensor Data Validation

In practice, physical sensing devices usually do not operate in

accordance with their theoretical models due to various factors as

described in the previous chapter. Sensor measurements have an

element of uncertainty in them because various sources add noise to

the readings or cause a malfunction of the sensor altogether. Indi-

vidual sensors operating alone cannot present a complete picture of

the whole actuator environment and must be used in concert with

other sensors in the architecture for a more realistic assessment of

the actuator capabilities. Hence, there is a need to improve the

status of sensors from a technology with limited analytic abilities

to one with more complete analytical resources. The development

91



Figure 5.6: Filter types and responses (Nat, 2004)

of smart sensors is an initial step in this process. This must be

bolstered by the development of computer-based tools that employ

validation and fusion methods to combine information from dissim-

ilar sensors to estimate the operating status of the actuator and

provides intelligent support to diagnosis.

Some form of safeguard is needed to protect against the fail-

ure of any sensor in the architecture. The traditional approach to
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operational fault tolerance has been one of fault prevention through

over design to remove possible causes of failure. In the simplest

version, this takes the form of physical redundancy using multiple

sensors. However, in some cases, due to the sensor size, cost and

the increased complexity of the system, this scheme may not be ap-

plicable. This results in systems that are not optimal with respect

to factors like weight, compactness, cost etc.

A more modern approach is to create an architecture that

includes redundant analytical capabilities to minimize/counteract

failures by forming functional or inferential sensors (Brignell and

White, 1996). Inferential sensors replace the physical redundancy

with analytical redundancy by taking data obtained from a particu-

lar sensor and inferring quantities other than its primary measurand

by means of some mathematical models or other similar techniques

(Khaleghi et al., 2013; Xing and Xia, 2016). The effectiveness of

such techniques has been demonstrated to provide joint position

sensor fault tolerance using accelerometers and joint torque sensors;

instead of redundant position sensors. Such techniques not only

provide alternative pathways for information flow in case of sensor

failures but also greater confidence in the measured data. However,

fusion itself is not a substitution for a good data. It is obvious that

the benefits of fusion cannot be achieved if the input data is of bad

quality. Hence validation is necessary to prevent the propagation of
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erroneous data. These objectives can be achieved by implementation

of the algorithms necessary to perform the above tasks, within the

embedded sensor module. The objective of this chapter is to provide

an overview on the guiding principles, the associated terminology,

architectures and techniques of sensor validation and fusion.

Noise reduction techniques and signal conditioning improve

accuracy of the measured data. In many critical applications, just

the standard noise reduction methods are not sufficient. It is impor-

tant to detect abnormal behavior of the sensor itself. Faulty sensor

data can result in catastrophic failure of the system. It is essen-

tial to validate sensor data and have a confidence value associated

with each measurement. Sensor data validation is a technique that

evaluates measured data and flags uncertain or improbable data to

avoid their usage (Webster and Eren, 2016). Sensor data validation

techniques use system characteristics, mathematical models and pre-

vious data history to predict new value of the measurement. A qual-

ity index is assigned to the actual measurement based on its close-

ness/agreement with the predicted value. Reconciliation methods

correct inaccurate measurements and provide reconstructed signals

for degrading sensors.

Some common validation techniques include checking mea-

sured values to lie within the system expected range and flag out-

lier readings (Khaleghi et al., 2013). Maximum change and rate of
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change of sensor data can also be used to diagnose sensor degrada-

tion and failure. For sensors whose characteristics can be captured

by a model, estimation techniques such as Kalman filtering can be

used to predict an interval within which the sensor measurement

would lie (Khaleghi et al., 2013; Xing and Xia, 2016). In case of

multiple sensors, physical or analytical redundancy can be used to

validate sensor data (majority voting scheme) or reconstruct lost

data (Xing and Xia, 2016; Wang and Qin, 2016). Complete failure

of the sensors is relatively easy to identify, but it is imperative to

detect degrading sensor signals and incipient sensor failures to take

timely actions. This is done by temporal analysis of the sensor data

at regular intervals to check for sensor bias, drift and need for recal-

ibration (Denton, 2010). Transient system behavior should not be

confused with degrading or drift in sensor signals.

It is crucial to distinguish between a faulty sensor and a faulty

system. For example, if a sensor reading is 20% higher than the

predicted value, the challenge is to determine whether the reading

indicates a possible system problem or it is the sensor itself which

has drifted out of calibration. This is the principal goal of a sensor

process fault management system. Sensor redundancy (physical or

analytical) and data from multiple sensors (sensor fusion) can be

used to identify and distinguish incipient sensor or system faults.
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5.5 Sensor Fusion

The argument for using multiple sensors in all the existing

mechanical systems is presented in Chapter 1 and Chapter 2. These

sensors would generate huge amount of data that need to be eval-

uated and integrated. It becomes difficult for a system level con-

troller to analyze data from each individual sensor to make a deci-

sion. Moreover, a single sensor may not cover the entire operating

regime or it may have limited spatial and temporal coverage given

the scope of the entire system. Sensor fusion is a technique of merg-

ing/integrating data from two or more sensors to obtain meaningful

information (hopefully more accurate and reliable than using indi-

vidual sensors) about the system state. The information combined

from multiple sensors is presented in a simpler and coherent struc-

ture to ease in the decision making process.

Design and implementation of a sensor fusion algorithm is not

a trivial task. It includes selection of appropriate sensors, sensor

modeling, interpretation of diverse sensor data, and fusion process-

ing. Sensor data can be incomplete, imprecise, and inconsistent with

other sensors. Moreover, sensor data can get corrupted during the

transmission or the sensor itself may degrade over time. Different

sensors can have different working principles. The output data may

have different units (position, velocity or acceleration) and different

sampling frequency.
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A sensor fusion algorithm should carefully integrate data from

multiple sources, taking the above mentioned factors into considera-

tion, to achieve best possible estimate of the actual system state. A

poorly designed fusion approach can result in the final value worse

than the best sensor in the system. Outputs from all the sensors

to be fused must be converted into a common representation/data

structure. Consistency should be checked among data from multi-

ple sensors before integrating them. One method is to compute the

Mahalanobis distance between two sensor measurements (Jo et al.,

2017). It is a unitless measure to evaluate similarities between two

sample sets and is defined as

T =
√

(X1 −X2)C−1 (X1 −X2)

where X1 and X2 are two sensor readings and C is co-variance

related to two sensors. The Mahalanobis distance differs from Eu-

clidian distance in a sense that it takes into account the correlation

between data sets and it is scale-invariant. The lower the distance,

the more consistent are the two sensor readings.

In addition to checking consistency among sensors, it is impor-

tant to assess uncertainty of each sensor reading (confidence value)

and propagate the uncertainty in the fusion process. Uncertainty

can be characterized by probabilities and belief functions. Uncer-

tainty in sensor data is typically modeled as a Gaussian distribution.
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Each sensor reading/signal can be assigned a probability from 0 to 1

or it can be viewed as a membership function of a fuzzy set. The cen-

ter of a symmetric distribution (Gaussian or ellipsoid) is the mean

of the measurement and the uncertainty can be indicated by one

standard deviation from the mean.

Recent advancements in computational hardware and their

availability at low cost have made sensor fusion possible in real-time

(Tesar, 2016a; Webster and Eren, 2016). Combining data from mul-

tiple sensors has significant advantages than using a single sensor

(Liggins, Hall and Llinas, 2017). This approach provides a better

estimate of the actual physical state of the system by reducing over-

all uncertainty of sensor data, resulting in increased accuracy of the

final output. Multiple sensors can be used to validate the results

(readings, output) of each other and provide redundant informa-

tion, which increases robustness and operational reliability of the

system in case of a sensor failure. This increases total availability

of the system by reducing risk associated with single point failures.

Additionally, fusion algorithms can reduce noise in sensor data as

the signal components from multiple sensors are highly correlated

whereas noise measurements are random.

One of the side advantages of fusing data from multiple sensors

is that it requires sensor data to be represented in a standard format

(Liggins, Hall and Llinas, 2017). Data from sensors belonging to the
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same sub-system can be combined at a local level controller and only

useful information is passed on to the system level controller in a

standard representation. This allows flexibility in the system with

control software becoming more or less independent of the hardware.

Sensors based on different working principles and measurement at-

tributes (sampling frequency, output type etc.) can be used without

changing the control software. Similarly it is possible to re-design

control algorithms without regard to physical sensor types. Thus

it improves overall information flow and allows modularity in the

system.

Many mathematical techniques exist for fusing data from mul-

tiple sensors (Khaleghi et al., 2013; Jo et al., 2017; Hassen, 2015;

Liggins, Hall and Llinas, 2017). It can be a simple averaging of read-

ings obtained from multiple sensors or a probabilistic approach like

Bayesian inference or a least square method like Kalman filtering or

modern intelligent approaches using fuzzy logic, neural networks or

genetic algorithms. An overview of some of the common techniques

is presented in the following sections.

5.5.1 Weighted Averaging

In one of the simplest methods, combining data from multiple

sensors can just mean taking an average of readings from the sensors.

This method would work well if all the sensors have similar accuracy
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and are operating perfectly. If one of the sensor goes off (produces

bias or drift in the measurements or complete failure) then a simply

averaged output can be severely off. A variation of simple averaging

is weighted averaging where along with the measurement; quality

or confidence in the measurement/reading is also considered in the

final estimated value. If Zi is the reading from the ith sensor in an n

sensor system, the weighted average is given by

Z =
∑
i

wi · Zi

where ∑
i

wi = 1

Weights can be constant or changing based on the sensor perfor-

mance and operating regime. In probabilistic terms, sensor output

can be viewed as a Gaussian distribution with sensor reading as

the mean value and uncertainty in the measurement captured in

standard deviation of the distribution. Weight can be inversely pro-

portional to the standard deviation (or directly proportional to the

accuracy of the sensor). Sensor data validation algorithm also as-

signs a confidence value to each sensor reading. The normalized

confidence value of each sensor reading can also be chosen as the

weight in the fusion process.
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5.5.2 Kalman Filtering

Kalman filter is an inference algorithm for linear dynamical

systems where variable uncertainties have a Gaussian distribution

(Welch and Bishop, 2004). If the sensor can be modeled as a linear

system, the Kalman filter provides optimal estimates for fused data.

This filter is one of the most commonly used data fusion algorithms

today typically in global positioning system, inertial navigation unit

etc. due to its small computational requirements and simple recur-

sive estimation of states (Hassen, 2015; Liggins, Hall and Llinas,

2017; Drolet, Michaud and Cote, 2000; Wang and Qin, 2016; Xing

and Xia, 2016).

There are two main steps in Kalman filter algorithm: time

update and measurement update. In the time update, previous

system state and control input are used in a linear model to get

a priori estimate of the new current state and error covariance.

The measurement update step incorporates a new measurement of

current state into the priori estimate to obtain an improved post-

priori estimate. The Kalman filter algorithm assumes the following

linear model for the system and measurement

xt = Axt−1 +But−1 + wt

zt = Hxt + vt

The first equation is the system dynamic model where,
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xt is the state vector containing variables of interest for

the system at time t

A is the state transition matrix (non-singular)

ut is the vector containing control inputs

B is the control input matrix applying effect of inputs to

the state parameters

wt is system noise modeled as zero mean multivariate nor-

mal distribution with covariance matrix Q.

The second equation is sensor model - noisy observation of

the system where,

zt is the vector of measurements at time t

H is the transformation matrix mapping internal states to

measurement space

vt is a vector of measurement noise modeled as zero mean

multivariate Gaussian distribution with covariance ma-

trix R.
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The state transition matrix, control input matrix and mea-

surement transformation matrix are constant in most cases but they

can be functions of time (At, Bt, Ht).

The first step is the prediction step to compute an a priori

estimate x̂t|t−1 of the state xt from previous state x̄t−1 and control

input ut−1

x̂t|t−1 = Ax̄t−1 +But−1

Pt|t−1 = APt−1|t−1A
T +Q

where Pt|t−1 is the variance associated with prediction step for yet

unknown state x̄t. Pt−1|t−1 is the final covariance matrix of the pre-

vious state x̄t−1.

The second step is the measurement update to compute a

posterior (and final) estimate of state x̄t from the a priori estimate

x̂t|t−1

x̄t = x̂t|t−1 +Kt(zt −Hx̂t|t−1)

Pt|t = Pt|t−1 −KtHPt|t−1

Kt is Kalman gain and Pt|t is the covariance matrix for final state

estimation x̄t to be used in the next step. It is a recursive algorithm

and the process repeats with t = t + 1. The algorithm is initialized

with the estimated initial system state x̄0 and covariance of the initial

estimate P0|0. Once the algorithm is initialized, each step is a simple
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algebraic computation making the Kalman filter well suited for real-

time applications.

A simple one dimensional Kalman filter to integrate (fuse)

data from two sensors is demonstrated in (Drolet, Michaud and

Cote, 2000). Sensor output can be modeled as a Gaussian Proba-

bility Density Function (PDF) with the sensor reading as the mean

value (µ) and amount of uncertainty/noise indicated by the standard

deviation (σ) or variance (σ2) (Vargas-Melendez et al., 2017). If µ1,

σ1 and µ2, σ2 are the sensor readings and the standard deviations for

two sensors, their Gaussian distributions are given by the following

equations

y1(r, µ1, σ1) ≡
1√

2πσ2
1

e
− (r−µ1)

2

2σ2
1

y2(r, µ2, σ2) ≡
1√

2πσ2
2

e
− (r−µ2)

2

2σ2
2

The information from two sensors can be fused by multiplying

their Gaussian functions to give an estimate of the actual system

state. A key property of the Gaussian function is that the product

of two Gaussian functions is another Gaussian function.

yfused(r, µ1, σ1, µ2, σ2) ≡
1√

2πσ2
1

e
− (r−µ1)

2

2σ2
1 × 1√

2πσ2
2

e
− (r−µ1)×

2

2σ2
2

=
1√

2πσ2
1σ

2
2

e
−( (r−µ1)

2

2σ2
1

+
(r−µ1)

2

2σ2
2

)
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Simplifying the above equation, to get

yfused(r, µ1, σ1, µ2, σ2) =
1√

2πσ2
fused

e
−

(r−µfused)
2

2σ2
fused

where

µfused =
µ1σ

2
2 + µ2σ

2
1

σ2
1 + σ2

2

= µ1 +
σ2
1

σ2
1 + σ2

2

(µ2 − µ1)

µ2
fused =

σ2
1σ

2
2

σ2
1 + σ2

2

Thus the result of the Kalman filter can be expressed as the

weighted average where weights are optimally calculated to minimize

the squared error.

µfused = w1 ∗ µ1 + w2 ∗ µ2

µfused =

[
σ2
2

σ2
1 + σ2

2

]
∗ µ1 +

[
σ2
1

σ2
1 + σ2

2

]
∗ µ2

1

σ2
fused

=
1

σ2
1

+
1

σ2
2

Since the variance of the estimate is less than that of either

sensor, it increases the confidence in the value thus obtained.

5.5.3 Bayesian Networks

Bayesian networks are a powerful graphical tool to combine

information from different sources in a probabilistic form. Bayesian

networks are graphical modeling tools comprising of probabilistic

graphical models to represent a set of (random) variables and their
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conditional dependencies via a directed acyclic graph. These con-

cepts are derived from graph theory, probability theory, and statis-

tics and provide a method for both modeling of complex problems

(incorporating uncertain knowledge) as well as for decision mak-

ing (performing reasoning) under uncertainty (Pearl, 1988; Subrah-

manya, Shin and Meckl, 2010).

A Bayesian network represents the interconnectedness be-

tween the different random variables that represent the parameters

of interest in a given domain (Koch, 2016). The focus in this work

are the parameters and multibody system and their relationships de-

scribed in Chapters 2 and 3. The graphical framework of Bayesian

networks provides an intuitive understanding of the domain being

modeled and allows for a compact representation of multivariate

probability distributions (by representing the joint probability as

product of local distributions).

In a Bayesian network representation of a system, illustrated

in Figure 5.7, the nodes can represent the physical variables perti-

nent to the system and its components. The links between any pair

of nodes represent the relationship between the different variables.

Thus, these links are defined here as a process that converts the

physical parameter represented by a parent node into the parame-

ter represented by its child node. For discrete variables, the strength

of this correlation is quantified by the conditional probability table
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(CPT) of the child node.

Figure 5.7: Example Bayesian network with two nodes

5.5.4 Bayesian Inferencing

In Bayesian inference, the probability estimate of the system

state (hypothesis) is updated as additional sensor data (evidence)

is measured (Koch, 2016; Liggins, Hall and Llinas, 2017). The in-

formation from each sensor is represented as a probability density

function or probability values. Bayes’ rule is central to computing

the posterior probability of the system state given data from multi-

ple sensors and is given by

p(H|E) =
p(E|H)p(H)

p(E)

where H stands for any hypothesis, p(H) is the a priori proba-

bility of hypothesis H being true (before event E is observed). Here,

p(H|E) is the posterior or updated probability of hypothesis H after

event E (sensor measurement) is observed. p(E|H) is known as the

“likelihood”. It is the probability of occurrence of event E (get-

ting sensor data) given H is true. It is usually determined based on

past experimental results. Thus Bayesian inference provides fused

information from multiple sensors or estimated value of the state
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given measurements from multiple sensors. Priory probabilities are

dependent on the sensor physical characteristics and can be deter-

mined from sensor specifications (accuracy, sensitivity etc.) and

previous experimental results. The left hand side of the equation is

the desired estimated value of the state given measurements from

multiple sensors. A comprehensive methodology for utilizing data

from multiple sensors using Bayesian Networks is discussed in (Kr-

ishnamoorthy, 2010).

Although the inclusion of sensors in a system provides many

advantages, a multi-sensor system has to deal with challenges such

as physical integration of sensors with the existing system, cabling

complexities, sensor noise, communication, data management, main-

tenance, and integration cost etc. The chapter discussed best prac-

tices to alleviate complexities in a multi-sensor system. Individual

sensors cannot be relied upon as each sensor is also a potential sin-

gle point failure. Sensor fusion techniques are used to combine data

from multiple sensors and represent useful information to the con-

troller. A multi-sensor system can take advantage of structured de-

cision making theory (Krishnamoorthy, Ashok and Tesar, 2015) and

Bayesian network based sensor and process fault management tech-

nique (Ashok, Krishnamoorthy and Tesar, 2011) to improve fault

tolerance and overall performance of the system.
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5.6 Fault Detection & Isolation

A sensor fault is a disparity between the ideal value that a

sensor is expected to output under specified operating conditions

and the actual value outputted. This disparity does not necessar-

ily indicate sensor flawed. Possible causes are a temporary drift,

bias or unexpected higher level noise in the reading. Hence, the

sensor output needs to be tracked over multiple sampling instants

to determine with certainty that the sensor itself is faulty. Good

references are (Krishnamoorthy, 2010; Krishnamoorthy, Ashok and

Tesar, 2015).
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Chapter 6

Distributed & Self-Organizing Wireless

Networks

For most engineering applications, Bayesian network nodes

represent the physical parameters of interest for sensors integrated

into a dynamic system. A network composed of these measur-

ands/variables needs to be designed model the actual system as

closely as possible since it is meant to represent the system behav-

ior for decision-making during operation. The process tends to be

iterative, as there are numerous design criteria that need to be bal-

anced simultaneously.

The information feeding such a decision logic structure derives

from a communication network that operates effectively under the

required environment and user specifications.

6.1 Communication

An important consideration for a multi-sensor architecture in

tractor trucks is connecting sensors to a central or embedded (local)

processor or controller in each trailer and relaying processed infor-
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mation to the central controller or other remote nodes (a monitoring

group at headquarters).

Modern sensor outputs are almost entirely electrical charac-

teristics that are produced by the sensor alone or by its integrated

excitation circuit and signal conditioner. These characteristics can

include voltage, current, charge, frequency, amplitude, phase, po-

larity, shape of a signal, time delay, and digital code (Smith, 2013;

Halsall, 1996).

The most popular digital communication between an inte-

grated sensor and peripheral device is a serial link (Yang, 2017;

Iyengar and Brooks, 2016). As the name implies, a serial link sends

and receives bytes of information in a serial fashion, one bit at a

time. These bytes are transmitted using either a binary format or a

text (ASCII) format. For communicating an integrated sensor with

a digital output format, the most popular formats are PWM (pulse-

width modulation) and I2C and its variations. The I2C (pronounced

I-squared-C) protocol was developed by Philips Semiconductors for

sending data between the I2C devices over two wires. It sends infor-

mation from a sensor to a peripheral device serially using two lines:

one line for data (SDA) and one for clock (SCL) to synchronize

communication. The protocol is based on a concept of the master

and slave devices. A master device is a controller (microcontroller)

that is in charge of the communication bus at the present time and
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controls the clock.

The Controller Area Network (CAN) standard was originally

developed within the automotive industry to replace the complex

electrical wiring harness with a two-wire data bus (Iyengar and

Brooks, 2016; Goswami et al., 2012). This wired communication

technology seamlessly integrates components with an onboard mon-

itoring system. It is now widely used in other industries such as

aerospace, automation, etc. The specification allows signaling rates

up to 1 MB/s, high immunity from electrical interference (twisted

pair shielded cables), and an ability to self-diagnose and repair er-

rors. It is now widespread in many sectors, including factory au-

tomation, medical, marine, aerospace and of course automotive. It

is particularly suited to applications requiring many short messages

in a short period of time with high reliability in noisy operating

environments.

Nodes (communication interfaces) can be added or removed at

any time, even while the network is operating (hotplug) (Iyengar and

Brooks, 2016; Safak, 2014). Unpowered nodes should not disturb the

network bus (network channel), so transceivers should be configured

so that their pins are in a high impedance state with the power off.

The standard specification allows a maximum cable length of 40 m

with up to 30 nodes.

The Universal Serial Bus (USB) is a cable bus that supports
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data exchange between a host computer and a wide range of simulta-

neously accessible peripherals (Iyengar and Brooks, 2016). The at-

tached peripherals share USB bandwidth through a host scheduled,

token-based protocol. The bus allows peripherals to be attached,

configured, used, and detached while the host and other peripher-

als are in operation. There is only one host in any USB system.

The USB interface to the host computer system is referred to as

the Host Controller, which may be implemented in a combination

of hardware, firmware, or software. USB devices are either hubs,

which act as wiring concentrators and provide additional attachment

points to the bus, or system functions such as mice, storage devices

or data sources or outputs. A root hub is integrated within the host

system to provide one or more attachment points.

Ethernet is a well established specification for serial data trans-

mission (Carlson, Crilly and Rutledge, 2001). In 1985 Ethernet was

standardized in IEEE 802.3, since when it has been extended a num-

ber of times with Gigabit Ethernet at 1 Gbit/s being introduced in

1999.

6.1.1 Wireless Communication Link

In the past two decades, advances in integrated circuit minia-

turization and logic circuit speed have resulted in reliable low-cost

wireless communication devices that connect or interface with es-
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sentially all modern electronics (Goswami et al., 2012). WLAN,

WiFi, Bluetooth and ZigBee have become standards for practically

all industry and commercial applications (Bensky, 2004; Santos and

Block, 2012).

Currently, the most commonly used wireless technologies are

ZigBee (based on IEEE 802.15.4) and WiFi (based on IEEE 802.11b/g

standard). ZigBee is a communication protocol that is defined by the

ZigBee Alliance (http://www.zigbee.org). It uses IEEE 802.15.4 as

a foundation establishing individual wireless links and extends upon

it to provide routing, application support, security, etc.

WiFi is the generic name associated with products that uti-

lize the IEEE 802.11 specification. WiFi Alliance (http://www.wi-

fi.org/) is the group responsible for evaluating a product and then

branding it as WiFi-capable.

IEEE 802.11 is the standard followed to deploy Wireless Local

Area Networks (WLAN) in the 2.4, 3.6 and 5 GHz frequency bands

(Molisch et al., 2004). Over the years, IEEE 802.11 has evolved

into a family of standards. It now consists of protocols from IEEE

802.11a to IEEE 802.11n, with new additions continuing to be de-

veloped. Several different characteristics like data rate, bandwidth,

communication range, etc., differ between the various 802.11 proto-

cols.
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The data rate for IEEE 802.11 standard varies from 1 Mbps

(Million bits per second) to now over 1Gbps, or over 1000Mbps,

in IEEE 802.11ac. The bandwidth of channels in the IEEE 802.11

spectrum is 20 MHz or 40 MHz wide, depending on the protocol

being used. The range of communication possible using IEEE 802.11

varies from 100 meters to over 1000 meters in outdoor environments,

depending on the protocol being used. The IEEE 802.11 offers a

higher data rate and range as compared to IEEE 802.15.4 meaning

higher control capability due to greater sensing and feedback but at

a higher cost.

The operational frequency bands of IEEE 802.15.4 operation

are 868 868.6 MHz, 902 928 MHz and 2.4 2.4835 GHz (Molisch

et al., 2004). The maximum channel data rates for data communica-

tion specified by IEEE 802.15.4 are of 250 kbps at 2.4 GHz, 40 kbps

at 915 MHz and 20 kbps at 868 MHz. The corresponding channels

allocated are 1 channel in the 868 868.6 MHz band, 10 channels

in 902 928 MHz band and 16 channels in 2.4 2.4835 GHz. It is

designed for short-range communication with ranges up to 100 feet,

ideal for local communication.

ZigBee has been extensively used in home automation (Call-

away et al. 2002), embedded sensing, industrial control etc. Zig-

bee is the name of a standards-based wireless network technology

that addresses remote monitoring and control applications. In wire-
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less sensor networking, available technologies like MEMSIC MICAz,

TelosB, Iris, etc. all use ZigBee as the communication protocol. An

overview of IEEE 802.15.4 and ZigBee can be found in (Rakshit, et

al. 2012). ZigBee is a low-power simple protocol with typically the

lowest cost to setup.

Bluetooth is an example of a wireless personal area network

(WPAN), as opposed to a wireless local area network (WLAN)

(Iyengar and Brooks, 2016). It is based on the creation of ad hoc,

or temporary, on-the-fly connections between digital devices associ-

ated with an individual person and located in the vicinity of around

ten meters from him. Bluetooth devices in a network have the func-

tion of a master or a slave, and all communication is between a

master and one or more slaves, never directly between slaves. The

basic Bluetooth network is called a piconet. It has one master and

from one to seven slaves. A scatternet is an interrelated network of

piconets where any member of a piconet may also belong to an ad-

jacent piconet. Thus, conceptually, a Bluetooth network is infinitely

expandable, although a device may be a master in one piconet only.

Bluetooth operates at data transfer speed of 1 MBPS, much

greater than ZigBee but is still no as common and easy to implement

in industrial applications.

While the advantage of a wireless versus wired LAN is ob-

vious, there are still three primary disadvantages to wireless net-
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works as compared to wired: range limitation, susceptibility to elec-

tromagnetic interference (EMI), and security (Iyengar and Brooks,

2016; Monks et al., 2016). While the first two issues are practical

concerns, security is becoming the dominant issue, especially with

intellectual property is involved (transmitting valuable data or im-

plementing/operating a proprietary scheme). Range capabilities is

dependent on the network system implemented and EMI prevention

has been discussed in Chapter 3 and 5. Wireless communication se-

curity is a large and constantly evolving field, due to the high rate

of new technology obsoleting older. This topic is briefly detailed at

the end of the Communication section.

6.1.2 Implementing Communication

The selected network topology and communication protocol

on a truck trailer should reduce cable complication or eliminate if

feasible and make information flow efficient to reduce overall power

consumption. Connecting all onboard sensors individually to a cen-

tral processor would require many cables and increase the cable

lengths. Other than cabling complexity, long running cables carry-

ing analog signals are susceptible to signal degradation. Addition-

ally, such an arrangement (Star to point topology, centralized) in-

creases computational load on the central processor (Bensky, 2004).

A computer program that simply executes a (logic) loop indef-
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initely has a limited practical application. In most microcontroller

systems (especially for industrial use) the primary focus should be

to be able to interrupt the normal sequence of program flow to alert

the microprocessor to the need to do something. This is achieved

with a signal known as an interrupt.

If the network is centralized as mentioned above, more inter-

rupts are needed to manage all the sensors individually, resulting in

more power consumption (greater “switching” power) and greater

demand on the overall system logic (controller scheme). Because of

this, the sensor network should be as distributed as possible (decen-

tralized), by grouping sensors in a sub-system and a low power local

processing unit dedicated to each sub-system.

In the previous sensor example, a bearing system is being

monitored by an accelerometer, a microphone and a temperature

sensor. Accelerometer and microphone measurements are sampled

at a (∼50 kHz) rate. It is inefficient to sample at such a high rate

from the central processor, which has to deal with multiple bearings

per vehicle (possibly multiple vehicle bodies) and other onboard

sensors. A better practice is to use a (microcontroller-based) local

or sub-system on the bearing system with digital I/O (input/output)

and ADC.

The microcontroller sub-system (commercially available at ∼

$1.50 in volume) can be connected to all of the mentioned net-
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work protocols to send information to a controller or processor

(Tesar, 2011, 2012). This sub-system handles raw data coming from

all three bearing sensors and performs necessary signal processing

(ADC/DSP), and classifies any potential bearing defects. Only the

results of the classification of possible defects and the alarms for

impending defects should be transmitted to high level controllers.

To further reduce the power consumption, network modules

(transceivers) typically have various power saving operation modes

typically comprising of a scheme based on standby mode and trans-

mit only at an specified times or conditions.

Essentially, a multi-sensor system should be comprised of mod-

ular components distributed throughout a tractor truck system (a

trailer or a wheel diagnostic subsystem) and be able to send informa-

tion to a central controller about individual component states and

that of sub-components over a network. Each component should

have a unique identification in the local tractor truck network. The

wireless link information is received on a central controller computer

which can be running a visualization software to display the state of

the critical components to the driver or out of vehicle (remote) op-

erator/supervisor. With this, the driver is always aware of the truck

condition in near real-time and can make informed and timely deci-

sions with a sophisticated controller software. Alarms are triggered

for any impending faults and performance data can be reported to a
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web server over the internet to get access from a remote monitoring

facility. Chapter 8 details more on potential applications.

6.1.3 Smart Truck Communication

Conventional active safety systems for Articulated Heavy Ve-

hicles (AHVs) are based on wired networks connecting sensors, con-

trollers, actuators, power-packs, etc. mounted on different vehicle

units. Such wiring systems require that multiple vehicle units be

connected through a large number of cables and sockets. While

deploying such a large amount of wiring in a single-unit vehicle is

straightforward, it becomes quite difficult to handle and manage

in a multi-unit vehicle, such as an AHV with a tractor and multi-

ple trailers. Each time the tractor switches its trailers, the driver

needs to properly reconnect or switch cables. Furthermore, articu-

lation angles between adjacent vehicle units are continuously vary-

ing, which increase the probability of disconnection or damage in

the connecting wires/sockets. Alternatively, wireless communica-

tion equipment can be embedded in an AHV to connect different

units through wireless links. Adopting a wireless communication

has several advantages, e.g., flexibility, cost efficiency, ease of main-

tenance, road safety enhancement, connectivity with neighboring

vehicles, and traffic reduction. With a wireless communication sys-

tem, there will be no ports or physical connections between the vehi-
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cle units. Some applications, e.g., anti-lock braking systems (ABS),

on heavy vehicles have been implemented with a networking pro-

tocol named controller area network bus (CAN-bus) for real-time

communication. Replacing CAN-bus with a wireless network will

decrease the cost, installation complexity, and weight of wiring.

On the other hand, utilizing a shared wireless network results

in new challenges. A conventional control system generally involves

multiple dynamical systems, which are linked through ideal chan-

nels. However, wireless communication is often implemented under

the condition of transmitting data through imperfect channels that

are band-limited and delayed. Network Control Systems (NCSs)

were born to close controller loops over a wireless network (Zhang,

Han and Yu, 2016). NCSs are distributed systems, in which the

communication among sensors, actuators and controllers is imple-

mented through a shared network. The goal of introducing a wireless

NCS into an active safety system for AHVs is to produce proper in-

puts for each controller to ensure the stability of the overall dynamic

system.

Latency is defined as the time used for a receiver to success-

fully receive a message from a transmitter (Smith, 2013; Halsall,

1996; Carlson, Crilly and Rutledge, 2001). Delay can occur in state

measurement and control actuation. Pack-loss, where data packs or

packets (data units being transferred or communicated) have been
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lost in transmission, generally occurs due to transmission errors in

physical networks links or buffer over-flows in congestion case. Long

delays is one of the causes of packet reordering, and consequently

results in packet-loss when the receiver discard the outdated ar-

rivals. Interpreting the network as a communication channel with

time varying delay is one of the simplest ways to hide the system

complexity.

Presently, the automotive industry is producing intelligent ve-

hicles to reduce traffic, pollution, and fatal accidents around the

world. These achievements add more complexity and require larger

amounts of processing power and communication hardware to ex-

change data inside each vehicle and among neighboring vehicles.

Typically, vehicles usually include hundreds of sensors and numerous

Electronic Control Units (ECUs) that communicate over a shared

network (Tesar, 2012). The goal of such structures is to produce

proper input for each controller to ensure the high performance of

the overall dynamic system. A list of new approaches in different

areas of NCS like estimation, analysis, and controller synthesis for

packet-rates, sampling, delays and dropout are reviewed in (Hes-

panha, Naghshtabrizi and Xu, 2007). Different elements of NCS

like sensors, actuators, and controllers can communicate through a

shared band-limited digital communication network. Most of NCS

studies have been conducted to improve performance of the con-
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troller by eliminating effects of these issues in presence of a given

shared lossy wireless network. However, the network design based

on control requirements results in a high-performance controller.

The different classes of applications require improvement in some

of communication challenges, such as delay, fading, interference and

etc. In all networked control systems, a major challenge is network

delay, which may degrade the overall system performance, but this

is more significant in wireless communications (Santos and Block,

2012).

In NCS designs for the automotive applications, configuring

a synchronous time-triggered scheduling network plays an impor-

tant role in delay reduction and signal-interfering avoidance. A

proper configuration requires a proper communication scheduling

for ECUs and communication framework. In such systems, schedul-

ing configuration should consider constraints of all communication

networks and system dynamics to properly introduce commence

time for each action and message assignment to slots. A desirable

scheduling framework utilizes combinations of computational solvers

to reach an efficient and modular configuration for the entire system

(Goswami et al., 2012).
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6.2 Design Criteria

6.2.1 Relative Sensor Importance

The benefits of embedding multiple sensors for redundant

monitoring of a phenomina have been presented many times with ex-

amples for tractor truck operation. In these examples, there are es-

sential sensors that provide critical primary information (feedback)

needed to successfully manage system operation, and there are or

may be secondary or optional sensors that are used to monitor ei-

ther secondary parameters or to enhance the reliability (e.g. fault

tolerance) of primary sensor systems.

An example case involving these two classes to sensor impor-

tance is where the sensor(s) indicating critical parameters may be

too fragile and prone to frequent failure or degradation (ex. non-

linear temperature effects). Any vital sensor being significantly de-

graded or losing output (data) may cause catastrophic system fail-

ure. In such situations, if the sensors are too expensive to replace

or are located in an inaccessible location within the system and it

is not possible to replace or repair them when the system is in op-

eration without other consequences (altering the system, downtime

costs incurred as a result of shutting down the system for repair,

etc.), it is desirable to provide some failsafe provision for obtaining

these critical measurands, in case of a loss of information from their

corresponding sensors.
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With the use of a Bayesian network to provide functional re-

dundancy, data from one or more of the other operational sensors

can be used to send evidence to the network, and the value of the

node corresponding to the sensor of interest. Condition based main-

tenance can be aided from this approach by defining high consum-

able and high priority sensors. This analysis would shape the basis

for a commercial maintenance program.

6.2.2 Causality

Bayesian networks are highly influenced by node ordering

(Nadkarni and Shenoy, 2004). Bayesian network links only represent

conditional independencies and not necessarily represent causal re-

lationships among those nodes. Using causal relations to represent

the Bayesian links between the nodes can help attribute physical

meaning – essential for engineering design – to the values that are

obtained using the network, resulting in a more intuitive setup for

users to comprehend those values for a better decision-making pro-

cess.

For instance, consider a network with two nodes, current and

torque, representing a motor. Assume that comprehensive exper-

imental data regarding both the variables is available over the en-

tire operating range in an application where the motor is used and

can be used to create the required Conditional Probability Tables
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(CPTs). The relation between them can be represented as two

possible network structures as shown in Figures 6.1(a) and (b).

From a mathematical perspective, both of the above networks are

equally valid since both forward and inverse probabilistic reason-

ing based on available information, that is, P(Torque |Current) or

P(Current |Torque), are possible by simply using the CPT or Bayes’

theorem, as the case may be. But for both experts (who are in-

volved in designing the system and its Bayesian network represen-

tation) and nonexperts (who may be the end users making the final

decisions for operating the system), the structure shown in Figure

6.1(a) will provide a greater intuition in decision-making since it

represents what actually happens in a motor, that is, the current

applied across the motor windings results in torque generated by

the motor (due to the air-gap magnetic field) and not the other way

around, with the torque generated being directly proportional to

the magnitude of the supplied current.

Figure 6.1: Causality can be a powerful tool for system configuration and must
be considered when designing the information flow network.
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6.2.3 Sensor Reliability

Sensors are affected by numerous factors in their operational

environment and from their demands (that change over time in most

production systems). Factors like duty cycle, heat/temperature,

mechanical shock/vibrations, humidity, power-on/power-off cycling,

and so forth, can detrimentally affect sensor components, especially

electronic ones (Denton, 2010). In most setups, sensor data is ac-

quired by a Data Acquisition Device (DAQ) computer system and

processed into useful information (performance maps) that may be

used for decision-making. In this process, data from sensors may

become unavailable due to a sensor fault (such as a sensor contact

wear or degrading communication capability) output signal to the

processor. These factors or possible scenarios must be considered in

evaluating how reliable a sensor is.

Reliability is often expressed as the probability that the sensor

will function without significant failure over a certain time or a spec-

ified number of cycles of use (similar to material strength methods).

A common metric for specifying reliability indirectly is in terms of

Mean Time Between Failure (MTBF), which is the average expected

time between failures of like units under like conditions. It is typi-

cally calculated based on installed equipment (MTBF = total time

exposure for all installed units/number of failures). Such informa-

tion is rarely provided in the sensor specifications from manufactur-
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ers due to factors like the lack of a standard measure for reliability,

the need for accelerated life testing under extreme environmental

conditions, and so forth. This information is generally expensive

and is difficult to collect and expedite.

However, if such data is available for any system, based on

the system operational history and the various sensors integrated

into it, the knowledge may be used to refine the structure of the

Bayesian network for future versions of the system. The nodes cor-

responding to sensors traditionally found to be highly significantly

reliable should be connected to as many other nodes as possible to

distribute high quality information flow throughout the network.

6.2.4 Computational Complexity

With the development of a variety of inferencing algorithms

and advances in computational power, the use of Bayesian networks

as a tool for both modeling and decision-making has been increasing

in many domains for objectives like diagnosis, fault detection, classi-

fication, and so forth. The extent a system is accurately represented

by the model and the quality of results obtained using the model are

direct functions of the network structure. (Nadkarni and Shenoy,

2004) demonstrated that inferencing algorithms are as sensitive to

the network structure as the probability values encoded in the dif-

ferent node CPTs. From the demonstration, the most effective net-
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works seem to be those that combine sound expert knowledge to

define the network structure (qualitative) and use extensive data to

identify/refine the probability values of the variables represented by

the nodes in the network (quantitative). However, despite the value

of such a knowledge-based approach (Nadkarni and Shenoy, 2004),

there is no prescribed method to construct the network structure

when done by domain experts.

The process of creating the network structure based on ex-

pert opinion is iterative. A basic structure is first created and then

refined based on feedback from other experts (often the direction

of links that result from this process imply causality). Then, using

the preliminary structure, the network may be implemented under

real-world conditions (with components like a graphical user inter-

face, visualization tools, etc., added) to carry out a particular task.

This is done to verify its ease of use and intuitiveness in conveying

the system characteristics to the end user. Based on user feedback,

the network may once again be modified, if necessary, for better us-

ability. If it is found that the results obtained using the network are

not satisfactory (or worse, contradictory to those expected based

on expert opinion or user experience), its structure may need fur-

ther refinement. At each iteration, links or nodes may be added

to the network or they may be pruned, the direction of some links

may be reversed, and so forth. These small changes may or may
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not always be beneficial. In some cases, they may possibly diminish

the efficacy of the network in achieving its intended purpose (since

each change may affect factors like the size of node CPTs, type

of data/experimentation needed to estimate the CPT parameters,

etc.).

Consider a case where a domain expert creates a network for

a system with a set X of critical variables and a set Y of variables

of secondary importance. In such a case, it would be imperative to

represent all the variables in X as nodes in the network, but the

expert has to make subjective choices regarding how many/which

specific variables from Y also need to be included in the network, if

these variables are measurable, their relevance to the variables in X

as well as to the goals of creating the network, and so forth. If such

a network is intended to be used for real-time operation, then the

insertion of numerous additional nodes into the network or a high de-

gree of interlinking between the nodes in X and Y may render it too

intractable to satisfy the real-time operation criterion (large CPTs

can prove to be a computational hindrance in such cases due to the

longer times needed to parse and extract values from the CPTs in

inferencing algorithms, especially if the CPT is sparsely populated,

or individual state probabilities are low and widely spread, etc.).

Designers should note that while more nodes in a network can

result in a greater confidence in the sensors and the system, they
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come with a computational overload. The network structure has to

be matched to the computation power available.

6.2.5 Redundant Sensors

In general, adding nodes to a network increases effectiveness

in achieving the application objectives in regards to proper fault

identification, (Subrahmanya, Shin and Meckl, 2010). Consider the

network in Figure 6.2(a) designed for decision making in a condi-

tion monitoring application. Assume each network node represents

a sensor corresponding to a domain variable of interest and each

link represents a physical process that transforms the variable rep-

resented by the parent node to the one represented by the child

node. With any unexpected deviations in sensor readings, the chal-

lenge facing the decision maker who operates the system is to decide

if the variations indicate a potential fault in one or more sensors or

whether they are indicative of a fault in the monitored system. If

the variations are inadvertently attributed to faulty sensors when in

reality, they may be the result of degradation in one of the system’s

subcomponents, it can result in a false alarm from the condition-

monitoring algorithm that utilizes this network.

(Krishnamoorthy, 2010) presents a novel Bayesian network-

based algorithm to detect and isolate the cause of such deviations.

The developed algorithm required additional nodes (sensor redun-
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dancy) to distinguish between sensor and system (component) faults.

Redundancy increases network size, increasing computation resources

and complication, however, the redundant nodes enable superior

fault detection. The intended network use must always be taken into

consideration while designing and before finalizing network struc-

ture.

Figure 6.2: Use of redundant nodes.
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Chapter 7

Data Flow for Complex Real-Time Decision

Making

Nearly all productive (real) mechanical systems are inherently

nonlinear. This nonlinearity enables their wide flexibility in task

performance in the form of their multiple distinct output functions

but also creates modeling and control challenges. Traditional meth-

ods for controlling mechanical systems involve developing a theoret-

ical mathematic system model where the system behavior response

is characterized by a set of differential or partial differential equa-

tions. Such an approach is successful for simple systems but rapidly

unravels for inherently nonlinear, more complex, multi-input multi-

output systems. Complexity in this sense means a complicated sys-

tem that varies with time, such as wear and environment variation

in mechanical systems.

Direct analytical relationships between the environment pa-

rameters and the system output are difficult to realize and the un-

modeled effects will ultimately dominate the quality of the system’s

performance or control. Even when the analytical relationship ex-
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ists, their inclusion in the mathematical model results in a highly

complex coupled formulation unsolvable by continuum mathematics.

For example, a tractor truck can be sufficiently modeled with

dozens of parameters to provide a highly nonlinear description of

the actual physical response of the vehicle to a wide variety of ex-

pected conditions (Kim et al., 2016). However, this nonlinearity

means there is no general solution using classical control methods

and useful approximations will be difficult to produce in near real-

time. Classical controllers tend to neglect these important nonlinear

parameters in favor of simpler linearized formulations (Tesar, 2011).

Optimal, multi-variable, or multi-input multi-output control

methods in addition to adaptive and nonlinear approaches always

tend to establish working models of the system that impose conser-

vative (sometimes very conservative, typically due to system stabil-

ity concerns induced by the control method) ranges on the opera-

tional domain limiting performance capability of the system. For

example an electro-mechanical actuator (EMA) in practice operates

under the manufacturer’s rated specifications. These specifications

are conservatively estimated as there is little working knowledge

about the actual operating condition (temperature, magnetic field

saturation etc.). Lack of this needed awareness is because none or

minimal sensors are or have been used to assess performance infor-

mation about the machine under expected demand. An intelligent
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actuator embedded with sensors can push the conservative perfor-

mance limits during short periods of demand and thus be able to

respond to a wider range of operating conditions and duty cycles as

well as document performance to establish empirical relationships

to characterize the machine for future optimization.

A more direct approach and awareness about the system is

needed from that available from mere analytical methods. Numer-

ous sensors are needed to obtain in real-time the physical operating

conditions, to monitor actual parameters and develop a more com-

plete view in real-time. In the past, the ability of the system to

respond intelligently to unstructured environments was restricted

by its capability to accurately sense and interpret the operating

condition (Stieber, Petriu and Vukovih, 2006). The sensing tech-

nology either did not exist, was immature, or was not available in

a small physical volume feasible to integrate into the system. Cus-

tom sensors were developed catering only to a particular system

but these were expensive and did not allow use in multiple systems.

Multi-sensor systems also add complexity to the system which re-

quires data management and selection of the best possible options

in real-time. Computational capabilities to deal with multi-sensor

data were not sufficient or were not available at low cost (Khaleghi

et al., 2013).

But in the last decade, sensor technology has increased re-
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markably such that sensors are available with embedded computa-

tional capabilities in low cost and small size (Khaleghi et al., 2013).

This surge in technology and manufacturing has made cost effec-

tive sensing and processing a wide range of phenomenon possible

in real-time. Hence a new approach to intelligent control is needed

where the use of actual data from the deployed sensors in real-time

is properly used and caters to the performance requirement of the

user. The roots of this criteria type and sensor based control ap-

proach can be found in the research of redundant robot manipula-

tors where kinematic redundancy (extra resources) is exploited to

achieve tasks like obstacle avoidance, increased dexterity, etc. Cri-

teria can also be used to measure system performance.

A sensor model based on real-time data is essential in the cri-

teria based control of an intelligent system as it accounts for unmod-

eled effects and drift in the parametric model of the tractor truck

system. This system model is currently obtained through kinematic

formulation with nonlinear aspects, such as tires and suspension,

being modeled through metrology and emperical data. Merging the

sensor model and the literature models can result in greater perfor-

mance with understanding of how to further increase performance.

One of the arguments against using multiple sensors is that

the addition of each sensor is a possible single point failure. But sin-

gle point failures are avoided with the use of redundant sensors. The
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extra sensors either directly measure the same physical phenomenon

or measure a different phenomenon having an established relation-

ship with the desired phenomenon. These information networks,

like a Bayesian Network, can be used to infer lost data, resulting

in fault tolerance, detection and management by intelligent decision

making.

7.1 Computational Intelligence

Computational intelligence is a generalization of machine sys-

tem intelligence to enable decision making and conflict resolution for

all complex systems under human command. Physics based systems

are generally described by continuum mathematics, typically in the

form of differential equations. This process of developing differential

equation based models and solving them requires the specification

of an initial and final condition, which is generally not known or

is continuously modified by human intervention via operator com-

mands.

Further, today’s systems are constantly becoming more com-

plex with concern for partial or complete failures making the use of

sensor-based data acquisition necessary in real time (m-sec. or less).

As mentioned before, true complexities of value refers to systems

varying with time meaning a real-time control system has to con-

stantly resolve the differential equation base model or, even worse,
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re-derive the entire system model as a critical relationship has been

significantly changed over time, as is the case with mechanical defor-

mations or wear in serial robot arms or vehicle tire-ground interface

and with electrical chip burn-in where resistance levels change in an

integrated environment.

The primary focus in developing intelligence in a machine is

real-time decision making under human command/oversight of ever-

more complex systems. This problem is compounded further with

the allotted decision making time frame becoming smaller to in-

crease performance. A framework is needed to provide an intelli-

gent system designer the means to interpret and set system oper-

ational criteria, rank them, obtain detailed subsystem parametric

descriptions via a metrology-type method, organize and interpret

the system architecture, set up a task planner, create a configu-

ration manager, and structure and evolve a domain-specific opera-

tional software. All of this has been fulfilled for computers. This

work should encourage the use of intelligence in machines to a large

scale.

Unfortunately, as presented before, this vast amount of oper-

ational choices and system operational criteria must be resolved in

10 to 100 m-sec. Performance maps must be combined into perfor-

mance envelopes (for torque, efficiency, responsiveness, durability,

etc.) which, then, become decision surfaces to drastically reduce
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“guess work” or time-consuming hunting for a best-choice in per-

formance. This is called structuring the decision process. Lessons

learned can also create decision surfaces for a range of vehicle op-

erational criteria. Choices on brake/throttle levels, actuator output

levels, steering angle, and suspension or tire /wheel design can all

be prioritized relative to some operating regimes proven under ex-

tensive testing.

What is clear is that a huge number of resources and criteria

are now available to maximize vehicle performance relative to op-

erator commands. These subsystems are primarily parallel, which

permits subsystem optimum performance choices, which then can

algebraically be summed to best meet system-level performance ob-

jectives. These objectives must be set by the vehicle operator by

means of visual performance maps in real time. The operator also

represents a distinct set of performance maps (obtained by direct

measurement) which should be in balance with the vehicle’s perfor-

mance maps. This is the opposite of autonomy where all decisions

are made by computers with preset criteria and operational margins.

The full benefit of this power utilization complexity as described

here will not permit a simple open-loop set of autonomous deci-

sions without continuous human oversight and corrective command

decisions.
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7.2 Operational Criteria

Once the intelligent system design is completed and a repre-

sentative Bayesian network has been designed for it (see Chapter

5), suitable criteria must be determined for managing information

from all sensors during system operation. This process ensures the

best use of the data from the finite set of sensors and the network in

conjunction with the available computational resources at any given

time. These operational criteria may be used to make decisions re-

garding how the available sensors may be prioritized to adapt to

varying task demands, determine the best options for sensors that

may serve as alternatives used to infer the correct value of failed or

degraded sensors, determine what sort of information can be gleaned

from the sensor network, account for constraints that may arise dur-

ing operation like reduced bandwidth/power, decide on algorithms

that are best suited to meet the on-demand application constraints

such as maximum performance verses economic operation.

7.2.1 Bayesian Nodes

Relating all the target system variables using a Bayesian net-

work allows the use of any variable to infer the value of any other

variable in the network (by setting the former as evidence and using

probabilistic propagation to infer the desired value). However, the

inferred value (and the uncertainty in it) can be heavily influenced
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by the number of intermediate links between the evidence node and

the query node.

As an operational criterion, node distance may be used to

determine the sensor that is most likely to give a best estimate of

another measurand. The smaller the node distance, the better the

estimate (mechanical stiffness and numerical accuracy in computa-

tion may be a suitable analogies).

7.2.2 Sensor Health Status

The primary goal of integrating sensors into any system is to

provide real-time feedback on the measurands of interest for control

purposes and enable the system to successfully accomplish its task.

An equally important task for both the essential and secondary or

optional sensors in intelligent systems is to enable correct monitor-

ing of parameter variations by providing reliable and accurate data,

eventually leading to updated relevant performance maps over time.

The goal for this topic is to track the overall health of the system

using condition-based maintenance algorithms to ensure a contin-

ued availability of the system as well as to assist the human decision

maker in determining the ability of the system to accomplish the

required tasks.

A sensor can be considered “healthy” if it produces an output

signal proportionally and correctly to the input stimulus. Correctly
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means within an acceptable amount of deviation as dictated by the

sensor physics, resolution, accuracy, application requirements, and

so forth (see Chapter 4 & 5). However, as mentioned earlier, the

output from the sensors can be affected during regular operation

by a number of factors that can be considered as faults in a sensor

that occur intermittently or they may occur consistently over an ex-

tended period indicating the development of gradual sensor faults.

In the extreme case, there may be a complete loss of information

from a sensor due to an abrupt failure of the sensing element or its

peripherals like power/signal transmission lines, connectors, faults

in the onboard signal processing circuits, and so forth. When the re-

quired sensor readings become unavailable or when erroneous sensor

readings are used for control purposes, it may lead to undesirable

system behavior.

Furthermore, using data from faulty sensors to update per-

formance maps, without checking for their validity will result in

corruption of the stored maps. This, in turn, may lead to false

alarms and missed detection of system faults from the system-level

CBM algorithms. In each situation, the health of all the sensors

must therefore be taken into account by the system operator in de-

ciding whether or not to utilize the data from a particular sensor.

To this end, (Krishnamoorthy, Ashok and Tesar, 2015) presents the

development of a novel Sensor and Process Fault (SPF) detection
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and isolation algorithm that can help quantify the trustworthiness of

the information from a sensor. Belief values are assigned to the var-

ious sensors and processes in the system which is represented using

a Bayesian network. Analytical estimates for the various physical

quantities represented by the nodes in the network are calculated

using standard Bayesian network inferencing algorithms. By com-

paring these values against the actual values indicated by the sensors

corresponding to those quantities and modifying the belief values

based on the results of the comparison, the algorithm provides an

indication of the potential source of the fault (i.e., a specific sensor

or a group of sensors or a specific process). These belief values pro-

vide an intuitive metric representing the health of each sensor that

the decision makers can then use in their assessment.

Sensor health status is an important criterion that the Hu-

man Decision Maker (HDM) could use to disable a failed sensor,

so decisions and control are not based on faulty sensor readings.

It is very important that sensor failure is distinguished from pro-

cess degradation and this is enabled by the algorithm presented in

(Krishnamoorthy, Ashok and Tesar, 2015). Additional background

and more detailed application can be found (Denton, 2010) and (Jo

et al., 2017), receptively.
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7.2.3 Resource Availability

In most applications, following some preliminary processing

at the sensor-level, the signals from all the sensors monitoring the

system are sent to a central location for further processing or for use

in deriving higher level information. This configuration is commonly

observed in PC-based data acquisition and control of systems like

Electromechanical Actuators (EMAs), mobile robots, and so forth

(Krishnamoorthy, Ashok and Tesar, 2015). With a limited num-

ber of sensors, a point-to- point connection technique is sufficient

to connect the sensors directly to the PC without significant de-

sign or hardware overhead. However, such an arrangement requires

complex cabling arrangements. Hence a bus topology is often uti-

lized wherein all the sensors use a common set of resources for data

transmission. In a digital field bus system, multiple sensors are con-

nected via shared digital communication lines (reducing the number

of cables) to transmit/receive data more efficiently on an as needed

basis. When such an arrangement is utilized, the cumulative data

bandwidth and latency required for all the sensors being considered

play a significant role in the selection of the appropriate bus. The

bus design is a function of sensor output type, quantity of output

data generated in a specific time period, sampling rate for differ-

ent sensors, mode of acquisition from multiple sensors (simultane-

ous/multiplexed), and so forth.

144



With fewer sensors, the total bandwidth requirements are

moderate, and it may be possible to sample all the sensors simultane-

ously with the available data bus and acquisition hardware resources.

However, if the system has a large number of sensors which also need

to be sampled at high rates, the number of high-speed data acqui-

sition channels required increases (to accommodate the increased

bandwidth/sampling requirements) which typically leads to higher

overall costs. Often, as a compromise between cost and performance

requirements, a limited number of data acquisition channels are used

(capable of handling large amounts of data at high frequencies) and

the available resources are distributed across all the sensor chan-

nels, by using a lower sampling rate, polling the sensors periodically

instead of continuous acquisition, and so forth.

The use of a Bayesian network to model the system allows the

flexibility of inferring the value of any node/ variable in the network

(query) using the value of any other node/variable (evidence) in an

inferencing process. This capability can be exploited for managing

the available resources (bandwidth/sampling rate capability) in cer-

tain operating regimes of the system, where it may not be possible

to accurately acquire data from sensors with demanding require-

ments (i.e., those that require a high bandwidth/ sampling rate).

For instance, in the actuator example cited earlier, if the motor ro-

tates at 6000 rpm, the output frequency from the encoder rises to
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1MHz. If the associated data bus and acquisition hardware are ca-

pable of accommodating only 0.5MHz, it might be more prudent

to allocate the available resources to sensors with modest resource

requirements the voltage sensors which need to be sampled at only

1 kHz to acquire their output data with the best possible resolu-

tion/sampling rates. This data may then be used to infer the values

of other variables that have higher bandwidth/sampling rate needs

such as motor speed (within reasonable accuracy) using a Bayesian

network that includes the motor voltage and speed as nodes.

Different operational regimes utilize different hardware re-

sources. Resource availability is a criterion that can be used in

real-time to determine the set of sensors that can be enabled or

disabled in real-time as the situation demands.

7.3 Asynchronous Data Flow

A significant practical problem in collecting sensor data in a

multi-sensor system is that the target data reported by the sensors

are usually not time-coincident or synchronous due to the different

data rates and deriving a common reference time for bias estima-

tion is often difficult. Most literature solely focuses on synchronous

systems where there is no need to develop common reference timing

to implement a controller. Essentially this requires time-varying (as

opposed to invarying) measurement models.
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A hierarchical programming language for modal multi-rate

real-time stream processing applications (such as our smart truck

case) was developed in (Geuns, Hausmans and Bekooij, 2014) to ad-

dress the concerns in sequential programming languages of handling

multi-rate behavior or asynchronous dependence and with paral-

lel programming languages where deadlock-freedom and sufficient

throughput cannot be guaranteed. The crucial aspect of this ap-

proach is the ability to sequentially specify application behavior in a

manner that can be nested in a concurrent specification. Multi-rate

behavior can be conveniently expressed using concurrent modules

which have well-defined, but restricted interfaces.

In this approach, a system monitoring or control program con-

tains multi-rate behavior if the sample rate of data is changed. The

task graph in Figure 7.1 shows an example, from (Geuns, Hausmans

and Bekooij, 2014), of such multi-rate behavior where task tf first

reads three values and T time later writes three values and task tg

reads only two values and writes two values T time later. Both tasks

execute data-driven, meaning they execute when sufficient data is

available at their inputs. Because both tasks read a different num-

ber of values, task tg must execute 3/2 as often as task tf . The dot

labeled 4 indicates that four initial values are available for task tf to

read.

Writing such a cyclic application as a sequential program can
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Figure 7.1: Task graph for multi-rate behavior (Geuns, Hausmans and Bekooij,
2014).

be difficult as often the only option is to specify the complete sched-

ule until the initial state is reached again. This is illustrated by

the sequential program in the Figure 7.2 below where a schedule is

shown for the task graph in Figure 7.1.

Figure 7.2: Sequential program for multi-rate behavior (Geuns, Hausmans and
Bekooij, 2014).

A Compositional Temporal Analysis (CTA) model, from (Ge-

uns, Hausmans and Bekooij, 2014),is used for verifying if the real-

time constraints of a program are met and to determine sufficient

buffer capacities (for significant rate differences). The CTA model

consists of components, depicted as rectangles on the right in Figure

7.3 and connections, depicted as arrows. Data is transferred peri-

odically between components over connections at a given rate. A
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connection can delay a transfer by a pre-defined amount of time.

Figure 7.3: Refinement of temporal analysis (Geuns, Hausmans and Bekooij,
2014).

In Figure 7.3, data is produced by a source src at a rate f1, is

processed by a module, depicted by the outer rectangle, and trans-

ferred to a sink snk, which consumes data at a rate f1. Processing

is done in two while-loops, represented by the inner rectangles. The

number of iterations of these loops is given by the parameters p and

q respectively.

Figure 7.3 illustrates the corresponding CTA model, which is

constructed from a program such that for every module and every

while-loop a CTA component is extracted from modules nest CTA

components corresponding to while-loops. Essentially, the topology

of a CTA model is equivalent to a program. However, a CTA com-

ponent is not parameterized and is always active at a given periodic

rate. Therefore, while-loops cannot be directly modeled as CTA

components.

(Geuns, Hausmans and Bekooij, 2014) present the intuition

behind the abstraction made to model a while-loop as a CTA compo-

nent. They show that the abstraction of a parameterized while-loop
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to a CTA component with periodic rates is allowed, by guaranteeing

that every (electrical) source and sink can execute strictly period-

ically. To ensure a bounded time between accesses to a source or

sink, they must be accessed in every while-loop iteration. In the

CTA model this implies that every component corresponding with

a while-loop has an access to every source and sink. Thus on the

right in the Figure 7.3, the two nested components access both src

and snk as illustrated by the connections.

This work provides a logical construct to interconnect complex

(complicated interactions that vary with time) systems in a manner

that sufficiently handles asynchronous monitoring and control and

also provides a graphical means to illustrate connections. The cited

paper, (Geuns, Hausmans and Bekooij, 2014), should be reviewed

for details on implementation.

A similar work was conducted in (Wyss et al., 2012) with a

focus on aircraft control. The approach here is to avoid “overspec-

ifying” a program by developing an extension of synchronous data

flow languages where the designer can specify that he does not care

whether some communication is immediate or delayed. It is then up

to the compiler to choose where to introduce delays, in a way that

breaks causality cycles and satisfies latency requirements imposed

on the system.

In (Wyss et al., 2012), the authors consider a simplified mono-
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periodic flight control system depicted in Figure 7.4. It consists of

a set of avionics functions, which acquire information on the state

of the aircraft and on the pilot orders, with the objective to control

the position, speed and attitude of the vehicle with its control sur-

faces. The right part of the figure depicts the control of the ailerons

while the left part depicts the control of the elevators. Each ver-

tex depicts a function. Edges depict data-communications between

functions and are of two different kinds. Plain arrows stand for im-

mediate communications, which induce a precedence constraint from

the producer to the consumer. Dashed arrows stand for less con-

strained communications that do not induce precedence constraints.

Figure 7.4: A simplified flight control system (Wyss et al., 2012).

7.3.1 Multiclock Train-Control Embedded Systems

There is also much to learn about asynchronous data flows

from high speed integrated electronics for embedded real-time sys-

tems. Today’s system-on-chip (SoC) and distributed systems are

commonly equipped with multiple clocks where the key challenge in
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design is that two situations have to be captured and evaluated in

a single framework. The first is the heterogeneous control-oriented

and data-oriented behaviors within one clock domain, and the sec-

ond is the asynchronous communications between two (different)

clock domains.

In (Jiang et al., 2015a,b), the authors use timed automata and

synchronous dataflow to model the dynamic behaviors of the mul-

ticlock train-control system, and a multiprocessor architecture for

the implementation from the model to a real system. Data-oriented

behaviors are captured by synchronous dataflow, control-oriented

behaviors are captured by timed automata, and asynchronous com-

munications of the interclock domain can be modeled as an interface

timed automaton or a synchronous dataflow module. The behaviors

of synchronous dataflow are interpreted by some equivalent timed

automata to maintain the semantic consistency of the mixed model.

Then, various functional properties that are important to guarantee

the correctness of the system can be simulated and verified within

the framework.

Embedded systems are being widely used in all kinds of ap-

plications and are traditionally designed and optimized using a syn-

chronous language with a single clock. Such an assumption of global

synchronization greatly helps reduce the complexity of the design.

Very often, an embedded system contains both data-oriented and
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control-oriented parts. The control-oriented systems control large

amounts of decision logic that has to quickly produce output in re-

sponse to input events, while in data-dominated systems, intensive

computations have to be performed on samples that usually arrive in

regular intervals. For example, the cell phone contains not only the

control-oriented network communication protocols running on the

processor but also the data-dominated algorithms for dealing with

the voice signal. Furthermore, embedded systems are increasingly

adopting multiclock solutions due to the low-power requirement and

the pervasive usage of IPs from different vendors. This is particu-

larly true for the train-control system described in the standard in-

ternational electrotechnical commission (IEC) 61 375. Hence, there

has been a recent surge for methods to guarantee the functional

and sequential correctness when designing multiclock train-control

systems.

To model the multiclock train-control system with both data-

oriented behaviors and control-oriented behaviors, a set of timed

automata and synchronous dataflow modules are composed into a

network over a set of clocks and actions with parallel composition

operators. The data-oriented, control-oriented, and multiclock do-

main compositions make the proposed model closer to the real im-

plementation. (Jiang et al., 2015a,b) demonstrate that in the de-

sign process, different design models derived from requirements with
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simulation and formal verification techniques, avoid potential errors

that may lead to rework, and choose the best one. In the imple-

mentation process, (Jiang et al., 2015a,b) show that the model can

be abstracted from the implemented system and be evaluated with

simulation and formal verification techniques to validate whether

the system meets the requirements or not. The overall framework

is depicted in the Figure 7.5.

7.4 Potential Applications

7.4.1 Conditional Maintenance

Condition-Based Maintenance (CBM) is a supervisory control

algorithm that is solely dedicated to monitoring machine systems or

processes in order to detect and diagnose incipient faults at an early

stage. By providing an early warning of potential failures, preemp-

tive maintenance (fix before broken) may be carried out rather than

reactive maintenance (Chow, 1997). The underlying principle upon

which CBM operates is that machines provide advanced warning

of failure through symptomatic performance degradation. By de-

tecting and identifying these symptoms early in their onset, main-

tenance may be carried out before system safety and availability are

compromised.
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Figure 7.5: Modeling framework for multiclock embedded system with hetero-
geneous behaviors. Each local synchronous component is modeled as a timed
automaton with clock remapping and refinement of states. Each data-oriented
component is modeled as a synchronous dataflow module. The asynchronous
communication is modeled as a synchronous dataflow module or a timed au-
tomaton with input/output channels (Jiang et al., 2015a,b).

7.4.2 Creating, Updating, & Enhancing Design Maps

All intelligent systems are inherently complex (many oper-

ational tasks and goals varying over time), and they are increas-

ingly nonlinear and highly coupled with ever changing criteria for

good operation. These criteria are best presented as parametri-

cally based maps (efficiency, force level, temperature, noise, etc.)
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Figure 7.6: The real clock value is mapped to the local clock in timed automata
to ensure synchronous reaction behaviors. The real clock is redefined as some
intervals. Those intervals are defined on the basic clock of timed automata
(Jiang et al., 2015a,b).

that can be presented visually to a human operator or to become

a way to structure the decision process (moving towards envelopes

with sweet spots or danger zones) for directed computational pro-

cedures to augment the operator’s ability to make the best decision.

Hence, maintenance (updating) of the maps keeps the decision pro-

cess timely and relevant. This human supervised process is then

what is really meant by system intelligence. Updating the maps

accounts for changes in the system (wear, material changes, wiring

resistance changes, etc.) This updating can also generate lessons

learned for archiving and future system design development. None

of these objectives could be achieved without a full sensor network

generating real-time data to represent the system.

7.4.3 Driver Characterization

Characterizing an operator has many opportunities to im-

prove overall efficiency and effectiveness. The ultimate technical
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need is to develop a formal procedure to obtain basic (classical or

fundamental) performance maps for representative classes of truck

drivers. These maps, then, parametrically represent the real perfor-

mance of the driver under a wide range of conditions so that they

can be combined on demand into decision making envelopes to visu-

ally aid the driver to self-regulate his/her decision capacity and to

transmit his actual performance to a connected oversight structure

as part of an intelligent truck network.

The monitoring of real-time human performance can increas-

ingly be considered based on data generated by a wide array of

existing low cost body sensors (McFarland, 2011). Further, these

body sensors enable this real time data to be analyzed (interpreted)

by algorithms now being developed in the scientific community. For

example, heart rate may be closely related to physical activity (or

the lack of it). A sudden rise in body temperature may indicate a

limiting illness. Simple eye activity sensor data may indicate low-

ered eye motion and a lack of attention or drowsiness. Perhaps,

simple brain signal sensors (in a cap) could indicate lower or erratic

brain activity. The following is a list of available sensors that could

be used in a digital network to generate multiple assessments of a

truck driver’s performance level (McFarland, 2011):
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temperature accelerometer
skin moisture inertial sensors
glucose level blood pressure
eye activity heart rate

breathing rate oximeter (blood oxygen)
brain waves electrocardiograph (ECG)

acoustic voice photoplethryomorgraph (PPG)

Based on this collection of data, several performance measures

such as: endurance, responsiveness, cognition, fatigue, stress level,

etc., may be represented as 3-D maps describing performance over a

wide range of the measured data (parameters). These maps enable

excellent visual understanding of an individual’s level of capability.

Further, these maps are easily transmitted to other crew members

or to a truck network manager. Hence, in-depth self-awareness of

team effectiveness can be continually monitored and assessed by all

decision makers in the network. All recorded operator performance

maps would represent “sweet spots” for expected good performance

and danger zones where performance may be below essential per-

formance levels needed for good decision making. A finite number

of maps would always be on display where the data would generate

a performance indicator (a green dot) which shows where the oper-

ator is on their map so they can take corrective action if necessary

(or guidance can come from the network or the driver’s manager).

Of course, obtaining meaningful maps for truck operators, in

general, and for a given operator is a significant but essential effort
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to truly enhance the operator’s performance and to identify when

that performance begins to degrade. This degradation measure will

be one of the most difficult to achieve since the maps must be nu-

merically updated in real time. Once an updated map(s) exists, it

can be differenced with the reference map(s) and the difference(s)

would give the most accurate representation of the operator’s over-

all capability. This is actually a core capability for the assessment

of all electro-mechanical systems, as well.

Given updated maps for the operator and the system, these

can be matched (melded together) to assess the capability of the

human and machine combination. Doing so would accelerate the

development of all systems under human command (shifting away

from autonomy, which is frequently associated with robotics). This

approach for the truck driver/tractor truck combination is described

in more detail in section 8.3 – Human Interfacing.

Clearly, this performance map capability can be applied to

the assessment of drivers in training and then to show the beginning

driver how to improve their performance maps by visual represen-

tation of that improvement. Experienced drivers’ maps could also

be used to show the trainee where improvement would be desirable.

Finally, self-awareness is the ultimate goal since much of his opera-

tion as a truck driver is an isolated activity. All of this dramatically

reduces guesswork based on intuition in favor of numerical docu-
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mentation, which gives all parties a reliable basis for improvement

and oversight.
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Chapter 8

Future Development

8.1 Sensor Development

In this document potential advantages of multi-sensor sys-

tems were presented with a focus on tractor truck vehicle systems.

Articulated heavy vehicles (AHVs) are widely used cost-effective

transport vehicles for goods, however, AHVs exhibit low lateral sta-

bility in terms of unstable motion modes, including trailer swaying,

jack-knifing, and roll-over, which frequently causes fatal accidents on

highways. A framework for developing a multi-sensor architecture

for articulated trucks was established throughout this document as

well as methods and references for realistic implementation of such

a system.

An overview of relevant sensor and associated technologies

was detailed, however, as a network of body sensors to monitor

the physical condition of a driver in real-time was indicated to be

valuable. A wide variety of biofeedback sensors is available com-

mercially that can give information about physiological conditions

such as heart rate, skin temperature, perspiration, muscle tone, eye
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pupil movement, brainwave signals, respiration, etc. More survey

work needs to be conducted along this aspect.

It may be infeasible to include all the sensors at once for ac-

tual system development and implementation. Selecting a small set

of technologically mature, high priority sensors, integrating them

in a network and acquiring real-time data from these sensors for a

selected set of operations should occur first. The crucial step would

then be to analyze and interpret sensor data, show relationships

among data from different sensors, establish statistical correlation,

infer the same information from different sensors, and use the sensor

information for intelligent control. This initial effort should focus

on demonstrating the feasibility of a multi-sensor intelligent system

and should clearly illustrate its advantages to justify further develop-

ment. This kind of demonstration can take advantage of structured

decision making theory (Ashok and Tesar, 2008) and Bayesian net-

work based sensor and process fault management techniques (Ashok,

Krishnamoorthy and Tesar, 2011) to prove enhanced performance

of complex systems in a multi-sensor environment.

8.2 Sensor Integration

This document introduced and detailed the importance of

data redundancy, which is extended to sensor redundancy. Single

point failure modes already exist in the tractor truck system and
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the proposed system intelligence scheme will aid in adding greater

control to dealing with these failures. Adding single point failures

to the vehicle system by incorporating sensors is completely unac-

ceptable. In fact, fault tolerance and condition based maintainance

(CBM) are the result of system intelligence, ultimately leading to

more productive and safer truck systems that have increased main-

tainability and reconfigurablity for pivoting to new demands.

The primary technology behind system intelligence that these

benefits result from is sensor data management with Bayesian net-

works or Kalman filtering that can infer lost or poor sensor data.

Related technology on developing reliable data/network structures

that can be reconfigurable on demand were also detailed. Sensor

physical durability and ruggedness was an important topic beyond

the scope of this document but that should be considered.

8.3 Human Interfacing

Autonomy is being considered for cross-country truck oper-

ation to reduce the operation cost (less dependence on on-board

drivers), improved safety (more rapid and accurate response to un-

safe conditions) and improved fuel efficiency (better balanced wheel

traction control). Present truck tractors require 100% of the truck

driver’s attention for their on-road operation. This is an expense

that has been a high burden for truck transport. Further, railroad
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freight trains will also go through a revolution for cost effectiveness,

timely delivery, and safety. To remain competitive, the truck indus-

try must not only reduce expenses, it must also improve its level of

safety to maintain the public’s acceptance of its use of the national

highways. Autonomy is not going to be a simplistic superposition of

sensor-based decision making to replace human operator decisions.

It will obtain its real goals if the truck tractor (and also the trailer)

is made responsive to much higher levels of command in real-time

(10 m-sec.). Doing so will create a balanced technology (decision

making, sensors for real time operational data, tuned diesels for

maximum efficiency, distributed choices throughout the driveline,

and no single point failures), all combined for a revolution in truck

tractors and vehicles, in general.

Both the human operator and the system must have an “intel-

ligent” relationship to best improve human–machine interface. This

document detailed that representing both the human and truck (ma-

chine) system with performance maps created from sufficient sensor

data is an effective method for developing intelligent systems. These

maps can be related and combined to discover potential performance

envelopes to be improved, creating the basis for newer intelligent

system design.

For the truck driver, real-time data on the vehicle can be

used to enhance reaction time and options, efficiency, and reduce
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driver fatigue. Additionally, the truck network supervisor, who is

off-board, can now more effectively assist, govern, or even operate

a network of trucks, reacting to potential human or system failures.

Measures for cost effectiveness, safety, efficiency, etc. all demand in-

telligence in decision making. This begins with accurate operational

data for self-awareness and self-regulation, which requires a robust

distributed network of embedded sensors – the principal focus of

this document.

8.4 Sensors & Actuator Intelligence

Given independent torque control (including braking) of each

truck tractor wheel, it becomes possible to manage torque com-

mands to each wheel (in m-sec.) to enhance traction efficiency, im-

prove safety in rapid maneuvers, reduce tire wear, improve overall

efficiency, and respond to overlaid autonomy guidance. This torque

control involves look-up performance maps for tire traction under

various surface conditions (asphalt, concrete, rain, cold, snow, ice,

etc.), the need for criteria-based control of the tractor in less than 10

m-sec.to respond to driver commands (cold, raining, complex traf-

fic, windy, etc.) and the ability to avoid single points of failure by

rebalancing wheel torques, should one wheel degrade or fail.
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8.4.1 Highway Grade/Traffic Data To Increase Vehicle Fuel Effi-
ciency

Increasing vehicle intelligence (active traction control, hybrid

energy management, condition-based maintenance, real-time driver

assistance, etc.) now enables a real-time response to data for traffic

conditions, grade levels, weather conditions, interruptions, etc. to

maximize fuel efficiency of all surface vehicles (cars, trucks, freight

trains, etc.). This data will be available through GPS, through mile

marker registered grade levels, through broadcast weather condi-

tions, on-board sensors for influence of traffic, wind, temperature,

rain, etc.

The U.S. federal government has set very high fuel efficiency

goals for all road vehicles (including tractor trucks). This is not

simply a sensor data/decision making problem. It requires the full

integration of all technologies (sensors, embedded component and

system performance data, responsive multi-configuration drivelines,

intelligent command/response actuators, real-time decision making

software for each vehicle class, etc.). Hence, all technologies (elec-

trical, mechanical, computational, etc.) must be brought together

in balance and not treated as separate (or dominant) contributors

to the solution (Tesar, 2016c).

Further, each class of system will have to enhance the perfor-

mance levels of all component technologies. Hybrid vehicles will re-
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quire increasingly efficient engines tuned to their sweet spot (torque,

RPM, fuel/oxygen levels, etc.), efficient energy transfers to and from

batteries, distributed transmissions with in-wheel drives, etc. For

cars, this means a concentration on fuel efficiency and safety (and

less on drivability), moving towards more “electric” systems. This

certainly applies in the urban environment including fleet vehicles.

For cross-country trucks, the tuned diesel engine must increase its

efficiency by 25%, the drive line must be almost perfectly efficient,

and traction control at each wheel must be used to further reduce

losses and maintain performance levels. Diesel engines on tractor

trucks represent an early version of an efficient power source. Trac-

tor trucks could be improved further if the drivetrain was made more

active with power distributed to active wheel drives on all trailers

and in the truck. In laymen terms, improving actuator response in

a system increases the value of sensing.

To get significant (2x initial estimate) efficiency improvement

for road vehicles will require all technology domains to work to-

gether in balance. For example, clearly real-time traffic data im-

pacts each vehicle’s response commands. Wind impacts a truck’s

power demands. Intelligent in-wheel drives can monitor each wheel’s

traction to balance/minimize wheel slippage. Embedded efficiency

performance maps for all active components can be used to stay

in that component’s sweet spot (engine, generators, motor drives,
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multi-speed drive wheels, battery energy reserves, etc.).

At the system level, data must be available to fully document

(electronically define) all road conditions. This includes GPS/mile

marker referenced road geometry (local speed limits, grade levels,

curves, surface conditions, etc., if at all possible, at 1 ft. increments

(note, that at 70 mph, 1 ft. represents a 10 m-sec. decision time

span). In real-time on-board sensors must access all nearby traffic,

provide performance levels for all on-board components and the sys-

tem’s integrated response capability, etc. This 1 m-sec. data must,

then, respond to criteria continuously prioritized to maximize safety

but also meet timelines and desired efficiency levels. Here, real-time

operational decision making software with human-set priorities be-

comes dominant.

Artificial intelligence algorithms (predictive analytics) contin-

uously assess this performance to refine performance maps, com-

mand/response capability, refinement of performance criteria, etc.

All of this reflects the concentrated operational technology base al-

ready integrated in military fighter aircraft (Tesar, 2016c). Similar

systems should be developed for commercial surface vehicles with a

primary emphasis on safety (enhanced control/capability) and fuel

efficiency.
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8.4.2 Simulation with TruckSim

A future tool for developing multi-sensor decision making sys-

tems for tractor trucks could be using TruckSim along with Matlab-

Simulink or LabVIEW. Such a setup could implement a realistic

vehicle and environmental models in TruckSim and implement em-

ulated sensor data and control in Matlab-Simulink or LabVIEW

(Sulaiman et al., 2012). This simulation environment provides a

platform to develop decision making algorithms (test logic). Dupli-

cating accident conditions in TruckSim would be a fundamental step

before attempting to develop intelligence to avoid such conditions.
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