
Sapienza University of Rome

Ph.D. program in Computer Engineering

XXV Cycle - 2012

Online Failure Prediction in Air Traffic Control
Systems

Luca Montanari

Sapienza University of Rome

Ph.D. program in Computer Engineering

XXV Cycle - 2012

Luca Montanari

Online Failure Prediction in Air Traffic Control
Systems

Thesis Committee

Prof. Roberto Baldoni (Advisor)
Prof. Luigi Laura

Reviewers

Prof. Domenico Cotroneo
Prof. Priya Narasimhan

Author’s address:
Luca Montanari
Dipartimento di Ingegneria Informatica Automatica e Gestionale
“A. Ruberti”
Sapienza Università di Roma
Via Ariosto 25, 00185 Roma, Italy
e-mail: montanari@dis.uniroma1.it
www: http://www.dis.uniroma1.it/∼montanari

mailto:montanari@dis.uniroma1.it
http://www.dis.uniroma1.it/~montanari

Contents

1 Introduction 1
1.1 Software Dependability . 2

1.1.1 Basic concepts of Dependability 4
1.1.2 Faults, Errors, Failures 5

1.2 Fault Management: reactive and proactive approaches 8
1.3 Online Failure Prediction . 10
1.4 Taking Actions and reaction methods 12
1.5 Faults and Failures in Mission Critical Systems 12
1.6 Motivation and Contribution 16

1.6.1 Motivation . 16
1.6.2 Novelty. 18
1.6.3 Contributions . 19

1.7 Outline of the Thesis . 20

2 Related Work 21
2.1 Online Failure Prediction . 21
2.2 Black Box Monitoring and Non-intrusiveness 29
2.3 Classification . 31

2.3.1 Bayesian Network Classifier 31
2.3.2 Decision Trees . 32
2.3.3 Neural Networks . 32
2.3.4 Hidden Markov Models 32

2.4 Events, Event Processing, Event Based Programming 34
2.4.1 Complex Event Processing 35
2.4.2 Complex Event Processing applications 38
2.4.3 Complex Event Processing engines 39

3 Model and Basic Techniques 43
3.1 Failure and Prediction Model 44
3.2 Data Pre-Processing . 45
3.3 Classification . 48

i

3.4 Aggregator . 54

4 Architecture 57
4.1 Assumptions . 58
4.2 CASPER Architecture . 58

4.2.1 Pre-Processing module. 59
4.2.2 Symptoms detection module. 60
4.2.3 Hidden Markov Model as a state recognizer 62
4.2.4 Hosts Activity Detection Module 64
4.2.5 Failure Prediction module 68

4.3 Training and Tuning of CASPER 68
4.3.1 Training of the model 68
4.3.2 Tuning of CASPER parameters 69

5 Evaluations and results on a real ATC system 71
5.1 Evaluation Metrics . 72
5.2 Monitored System . 73

5.2.1 Principle of FT CORBA 73
5.2.2 Testbed . 77
5.2.3 Faults Injection . 78
5.2.4 Training Data . 78

5.3 Performance Metrics . 79
5.4 Results . 81

6 Conclusion 93

Glossary 96

Bibliography 97

List of Figures

1.1 The propagation chain or “chain of threats” introduced in [72] 6
1.2 ATC Very High Level Architecture 14

2.1 A taxonomy for online failure prediction approaches found in
[97]. 22

2.2 The stages in the operation of Tiresias, [109]. 25
2.3 The [59] feature space. 26
2.4 The [104] predictive anomaly management for distributed host-

ing infrastructures. 27
2.5 The [104] anomaly prediction using triple-state decision tree

classifier. 27
2.6 The pre-component diagnosis scheme of [40]. 34
2.7 Conceptual difference between DBMS on the left and DSMS on

the right. 37
2.8 Esper architecture . 40

3.1 Online Failure Prediction chain. 43
3.2 Fault, Symptoms, Failure and Prediction 44
3.3 A graphical representation of a generic Hidden Markov Model.

The ω1, . . . , ωN vertices are the hidden states of the Markov pro-
cess. The observable symbols are σ1, . . . , σM . Some elements
of A and B matrices are represented as edges. 50

3.4 Aggregator. N input lines receive a vector of numeric values.
The output will be a symbol belonging to an ordered set of
integers. The cardinality of the set has to be given. 55

3.5 Example of square grid in R2 with D = 4. 55
3.6 Example of aggregator behavior with N = 2 and D = 4. 56

4.1 The modules of the CASPER failure prediction architecture . . 59
4.2 Performance Metrics Computation component 60
4.3 Hidden Markov Models graph used in the system state inference

component . 63
4.4 Unsafe and safe zones of a two-performance metrics square grid. 64

iii

4.5 An example of graph representing a 9-nodes ATC system. The
black nodes are inactive nodes while the white node is a source
node (with no inner edges). The dotted edges are inactive net-
work links, the number on the edges is the port number. . . . 66

4.6 An example of decreased repeatability: two near values, a circle
and a triangle, in the (a) case will corresponds to the same
symbol 11 while in the (b) case will correspond to two different
symbols, 37 and 46. 70

5.1 FT CORBA framework . 74
5.2 System decomposition in application, process, component, group

and host. 75
5.3 CCM and CORBA based middleware services. 76
5.4 3-tier architecture. 77
5.5 Symbols emitted by the performance metrics computation com-

ponent in case of a recorded trace that exhibits stress of the
memory. 82

5.6 Symptoms detection module: F-Measure varying the number of
symbols and clock period in case of a recorded trace subject to
memory stress . 83

5.7 Performance of the symptoms detection module varying the
number of possible symbols in case of a recorded trace subject
to memory stress. CASPER clock period 800 ms 84

5.8 Performance of the symptoms detection module varying the
number of possible symbols in case of a recorded trace subject
to I/O stress. CASPER clock period 800 ms 85

5.9 False positives varying the window size feeding. CASPER is fed
with a recorded trace behaving in steady-state. Its clock period
is 800 ms . 86

5.10 Failure prediction in case of memory stress starting at second
105. Window size 16s, clock period 800ms, time-to-prediction
23s, time-to-failure 207s . 87

5.11 Failure prediction in case of I/O stress starting at second 408.
Window size 16s, clock period 800ms, time-to-prediction 21s,
time-to-failure 376s. 88

5.12 Performance of CASPER in terms of time-to-failure. 88
5.13 400 seconds of a steady-state run of the ATC system in operation. 89
5.14 Hosts ranking behavior. At second 191 a memory stress starts

on host number 102. Starting from second 191 will have always
the higher mark. 90

5.15 Hosts ranking behavior. At second 230 a memory stress starts
on host number 105. After some seconds the vote of the host
105 grows rapidly, despite the host remained alive. 91

Chapter 1

Introduction

A plenty of fields in today’s life and organizations depend on the correct func-
tioning of the computer systems. The dependability, defined as the trustwor-
thiness of a computing system which allows reliance to be justifiably placed
on the service it delivers, is nowadays crucial also in terms of safety, accord-
ing to the kind of applications that are treated. Despite the cruciality of the
dependability and the safety of the actual computer systems, the complex-
ity level reached by those precludes the possibility to develop a system that
is completely correct. Complexity means that the systems are built starting
by several commercial Off The Shelf (OTS) components (i.e. hardware and
software), each of those needs to be correctly integrated to create the sys-
tem. Millions of lines of code and millions of transistors imply millions of
fault sources. The occurrence of failures cannot be completely avoided but its
likelihood should be always minimized.

Over the last years, computers are enabling crucial human everyday activ-
ities, such as public economy, large scale critical infrastructures management
(e.g., for water and power supply plants and energy production), and air traf-
fic control. Given the growing dependence on computers in these life- and
cost-critical applications, dependability becomes an essential demand: a fail-
ure, indeed, can be catastrophic in terms of business or, even worse, human
losses. Business critical systems, e.g., for e-commerce or e-government appli-
cations, have to maximize system availability and service reliability in order
to maximize customers’ satisfaction and survive today’s competition. Since
these systems are widely distributed to users with different and unknown us-
age patterns, developing dependability strategies becomes quite complicated.
This holds also for everyday critical systems, e.g., hospitals or banks, which
rely on databases management systems whose failures would deeply affect in-

1

2 CHAPTER 1. INTRODUCTION

dividuals or groups. Conversely, mission and safety critical systems have a
narrow set of target users, and usage patterns are predictable in many cases.
For these systems, the dependability level is regulated by standard specifica-
tions, carried out by international bodies, to which commercial products have
to be compliant (e.g., the DO-178B standard for avionics software certifica-
tion 1). The availability of those systems, for these reasons, is typically at
least five-nines2, meaning that on average the system must not be down for
more then 5.26 minutes per year. In the worst case a failure occurs once a
year: a human being should analyze, diagnose and repair the complex system
having less then six minutes. This is impossible even if we consider a failure
every three years! This yields to the need for the system to react to a failure
in a nearly automated way. Several times, react means restart the system.
Even if the reaction is completely automated, complex systems like Air Traf-
fic Control systems, rarely restart themselves within 5 minutes. A broader
approach to the classical detection-diagnosis-reaction is required in order to
try the possible to completely avoid the failure. This requires some short-term
anticipation of upcoming failure, based on a continuous evaluation of the state
of the system, followed in certain conditions, by a proactive mechanism that
tries to avoid the upcoming failure or to alert the human operators timely to
minimize their effect. The proactive failure management approach has to live
parallel to the classic approach.

This thesis focuses on online failure prediction for complex distributed sys-
tems in order to achieve a proactive fault management. In literature can be
found several typology of failure prediction, here we consider short-term failure
prediction. The need for a short-term failure prediction for computer systems
has been demonstrated by Liang et al. [74].

1.1 Software Dependability

Dependability is a complex attribute whose definition changed several times
in the last decade. Indeed, the increasing complexity of systems has caused
dependability to become a major concern, encompassing several aspects, from
safety to security. Focus is on software dependability into which current re-
search efforts are striven to face the problem of transient manifestation of
software faults. In this section particular attention is devoted to the classifica-
tion of software faults and the ways they can manifest. Software and hardware
behave differently in term of their dependability. Hardware reliability is dom-
inated by random physical factors affecting the components on which there is

1http://www.lynuxworks.com/solutions/milaero/do-178b.php3
2“five nines” equals 0.99999 (or 99.999%) availability

1.1. SOFTWARE DEPENDABILITY 3

engineering knowledge enough to prevent failures. This is demonstrated by the
several reliability theories that have been developed so far for the realization of
highly dependable hardware systems, as well as for hardware reliability eval-
uation and assessment. Note that the discipline of failure prediction is born
in the hardware failure management. Software unreliability is only due to de-
sign faults, i.e., to the consequences of human failures. The modern systems
show a replacement in the fields of safety and mission critical applications of
the older hardware-based technologies by software modules. Examples are air
traffic control, railroad interlocking, nuclear plants management, that gains
also more efficiency and capability by integrating software system (modern
traffic control systems and railroad control systems handle much more traffic
than in the past). Additionally, software is being used to solve novel problems
for which there is a lack of evidence from the past history as well as to per-
form novel actions otherwise impossible (think about stability systems for the
modern aircrafts control, speed controls for the trains, cars bricking systems
or cruise control). The advantages of the introduction of software is straight-
forward in reducing human efforts but in the other hand the introduction of a
novel kind of faults i.e. software faults, led to a greater probability of mistakes
which can even results on catastrophes: several examples are given from the
space industry which has always been pioneer in the introduction of software
systems e.g.:

• 1962 - Mariner I space probe: A bug in the flight control software causes
the Mariner I rocket to calculate the incorrect trajectory. The rocket
was destroyed by Mission Control over the Atlantic.

• 1996 - Ariane 5 Flight 501: the rocket self-destructing 37 seconds after
launch because of a malfunction in the control software. A data con-
version from 64-bit floating point value to 16-bit signed integer value to
be stored in a variable representing horizontal bias caused a processor
trap because the floating point value was too large to be represented by
a 16-bit signed integer.

• 1999 - Mars Polar Lander: the probe hit the Mars ground destroying
itself. A software error that incorrectly identified vibrations, caused by
the deployment of the stowed legs, as surface touchdown. The resulting
action by the spacecraft was the shutdown of the descent engines, while
still likely 40 meters above the surface. Although it was known that
leg deployment could create the false indication, the software’s design
instructions did not account for that eventuality.

• 1999 - Mars Climate Orbiter: the spacecraft encountered Mars at an
improperly low altitude, causing it to incorrectly enter the upper atmo-

4 CHAPTER 1. INTRODUCTION

sphere and disintegrate. The flight system software on the Mars Cli-
mate Orbiter was written to take thrust instructions using the metric
unit newtons (N), while the software on the ground that generated those
instructions used the Imperial measure pound-force (lbf).

Other examples can be made in civil applications:

• 1982 - Soviet gas pipeline: a bug in the Soviet gas pipeline software
controls caused the largest non-nuclear, man-made explosion in history

• 1985-1987- Therac-25 medical accelerator: a therapeutic device that uti-
lizes radiation has a bug which can lead to a race condition. If that con-
dition occurs then the patient receives multiple times the recommend
dosage of radiation. The failure directly caused the deaths of five pa-
tients and harmed many more.

• 1990 - AT&T Network Outage. A bug in a new release of code causes
the switches of AT&T to crash. Over 60 thousand New Yorkers were
left without phone service for nine hours.

• 2000 - National Cancer Institute, Panama City: the software of a ther-
apeutic device that utilizes radiation for treatment delivers twice the
recommended dosage. Eight patients die and 20 more will undoubtedly
be permanently disabled.

• 2004 Mercedes-Benz - “Sensotronic” braking system - Mercedes-Benz
has to recall 680,000 cars due to a failure of its Sensotronic breaking
system.

1.1.1 Basic concepts of Dependability

Even if the effort on the definition of the basic concepts and terminology for
computer systems dependability dates back to 1980s, the milestone paper in
the field of dependable systems is [71] which was published in 1985. Here de-
pendability was defined as the quality of the delivered service such that reliance
can justifiably be placed on this service, but the notion has evolved over the
years. Recent efforts from the same community define the dependability as the
ability to avoid service failures that are more frequent and more severe than
is acceptable [72]. This last definition has been introduced since it does not
stress the need for justification of reliance. The dependability is a composed
quality attribute, that encompasses the following sub-attributes:

• Availability: readiness for correct service;

1.1. SOFTWARE DEPENDABILITY 5

• Reliability: continuity of correct service;

• Safety: absence of catastrophic consequences on the user(s) and the
environment;

• Confidentiality: absence of improper system alterations;

• Maintainability: ability to undergo modifications and repairs.

1.1.2 Faults, Errors, Failures

The causes that lead a system to deliver an incorrect service, i.e., a service
deviating from its function, are manifold and can manifest at any phase of
its life-cycle. Hardware faults and design errors are just an example of the
possible sources of failure. These causes, along with the manifestation of
incorrect service, are recognized in the literature as dependability threats,
and are commonly categorized as failures, errors, and faults [72].

A failure is an event that occurs when the delivered service deviates from
correct service. A service fails either because it does not comply with the func-
tional specification, or because this specification did not adequately describe
the system function. A service failure is a transition from correct service to
incorrect service, i.e., to not implementing the system function. The period of
delivery of incorrect service is a service outage. The transition from incorrect
service to correct service is a service recovery or repair. The deviation from
correct service may assume different forms that are called service failure modes
and are ranked according to failure severities.

An error can be regarded as the part of a system’s total state that may
lead to a failure. In other words, a failure occurs when the error causes the
delivered service to deviate from the correct service. The adjudged or hy-
pothesized cause of an error is called a fault. Faults can be either internal or
external of a system, and they can be classified in several ways (e.g., basing
on their nature, or the way they manifest in errors).
Failures, errors, and faults are related each other in the form of a chain of
threats [72], as sketched in figure 1.1. A fault is active when it produces an
error; otherwise, it is dormant. An active fault is either i) an internal fault
that was previously dormant and that has been activated, or ii) an external
fault. A failure occurs when an error is propagated to the service interface and
causes the service delivered by the system to deviate from correct service. An
error which does not lead the system to failure is said to be a latent error.
A failure of a system component causes an internal fault of the system that
contains such a component, or causes an external fault for the other system(s)
that receive service from the given system.
The dependability attributes can be formalized mathematically, and basic

6 CHAPTER 1. INTRODUCTION

Correct Behavior FAILURE

Fault Activation Error Propagation

Error

Detected
and Processed

not
activated

not
activated

Dormant Faults Latent Errors

Figure 1.1: The propagation chain or “chain of threats” introduced in [72]

measures have been introduced in charge of quantifying them.
The reliability, R(t), was the only dependability measure of interest to early

designers of dependable computer systems. It is the the conditional probabil-
ity of delivering a correct service in the interval [0, t], given that the service
was correct at the reference time 0 [95]:

R(0 , t) = P(no failures in [0 , t]|correct service in 0)

Let us call F (t) the unreliability function, i.e., the cumulative distribution
function of the failure time. The reliability function can thus be written as:

R(t)=1-F(t)

Since reliability is a function of the mission duration T , mean time to failure
(MTTF) is often used as a single numeric indicator of system reliability [84].
In particular, the time to failure (TTF) of a system is defined as the interval
of time between a system recovery and the consecutive failure.

As for availability, they say a system to be available at a the time t if it is
able to provide a correct service at that instant of time. The availability can
thus be thought as the expected value E(A(t)) of the following A(t) function:

A(t) =
{

1 if proper service at t
0 otherwise

In other terms, the availability is the fraction of time that the system is oper-
ational. The measuring of the availability became important with the advent
of time-sharing systems. These systems brought with it an issue for the con-
tinuity of computer service and thus minimizing the “down time” became a
prime concern. Availability is a function not only of how rarely a system fails
but also of how soon it can be repaired upon failure. Clearly, a synthetic
availability indicator can be computed as:

1.1. SOFTWARE DEPENDABILITY 7

Av =
MTTF

MTTF +MTTR
=
MTTF

MTBF

where MTBF = MTTF + MTTR is the mean time between failures. The
time between failures (TBF) is the time interval between two consecutive fail-
ures. Obviously, this measure makes sense only for the so-called repairable
systems. A complete dissertation about dependability fundamentals can be
found in [72], along with a description of dependability measures. Again ac-
cording to [72], the means of the dependability can be grouped into four major
categories:

• Fault prevention, to prevent the occurrence or introduction of faults.
It is enforced during the design phase of a system, both for software (e.g.,
information hiding, modularization, use of strongly-typed programming
languages) and hardware (e.g., design rules).

• Fault tolerance, to avoid service failures in the presence of faults. It
takes place during the operational life of the system. A widely used
method of achieving fault tolerance is redundancy, either temporal or
spatial. Temporal redundancy attempts to reestablish proper operation
by bringing the system in a error-free state and by repeating the op-
eration which caused the failure, while spatial redundancy exploits the
computation performed by multiple system’s replicas. The former is ad-
equate for transient faults, whereas the latter can be effective only under
the assumption that the replicas are not affected by the same permanent
faults. This can be achieved through design diversity [21].
Both temporal and spatial redundancy requires error detection and re-
covery techniques to be in place: upon error detection (i.e., the ability
to identify that an error occurred in the system), a recovery action is
performed.

• Fault removal, to reduce the number and severity of faults. The re-
moval activity is usually performed during the verification and validation
phases of the system development, by means of testing and/or fault injec-
tion [23]. However, fault removal can also be done during the operational
phase, in terms of corrective and perfective maintenance.

• Fault forecasting3, to estimate the present number, the future inci-
dence, and the likely consequences of faults. Fault forecasting is con-
ducted by evaluating the system behavior with respect to fault occur-
rence or activation. Evaluation can be (i) qualitative, aiming at iden-

3Not to be confused with failure forecasting!

8 CHAPTER 1. INTRODUCTION

tifying, classifying, and ranking the failure modes that would lead to
system failures and (ii), quantitative evaluation, aiming at evaluating
the extent to which some of the attributes are satisfied in terms of prob-
abilities; those attributes are then viewed as measures. The quantitative
evaluation can be performed at different phases of the system’s life cycle:
the design phase, the prototype phase and the operational phase [92]. In
the design phase, the dependability can be evaluated via modeling and
simulation, including simulated fault injection. During the operational
phase, field failure data analysis (FFDA) can be performed, aiming at
measuring the dependability attributes of a system according to the
failures that naturally manifest during system operation. When using
FFDA, several issues arise related to data collection, filtering and anal-
ysis, which are extensively addressed in [92].

The Online Failure Prediction that this thesis investigates is a discipline be-
longing to the Fault tolerance which aim is to provide a short-term assess-
ments that allow to decide if the current situation is going to bring the system
to a failure.

1.2 Fault Management: reactive and proactive ap-

proaches

Fault Management consists of a set of functions that enable the detection,
isolation, and correction of anomalous behavior in a monitored system trying
to prevent system failures. An effective fault management should monitor the
system looking for errors and faults that could end up in a failure and overcome
such issues when they arise. Fault management techniques are reactive in
nature: the faults have to be detected before of taking actions. In order to do
this, a reactive fault manager needs some capabilities identified in [67], and
particularly interesting:

• Symptom monitoring : Symptoms are manifestations of underlying faults
and must be monitored to detect the occurrence of problems as soon as
they happen. A fault manager quality is its response time to symptoms.
The quicker this reaction occurs, the higher the probability to recover
the system error is. This in turn raise the probability that the fault will
not end up into a failure.

• Diagnosis: identifies the root causes of “known” symptoms. A fault
may originate on one component and then it could manifest on some

1.2. FAULT MANAGEMENT: REACTIVE AND PROACTIVE
APPROACHES 9

other component. In large scale systems, there is no one-to-one mapping
between faults, errors, failures. Studies on such systems have shown that
typically up to 80% of the fault management effort is spent in identifying
root causes after the manifestation of symptoms [101].

• Correlation: a correlation capability provides knowledge about root
causes of “known” symptoms to the diagnosis modules. Modern sys-
tems are often richly instrumented with a large number of sensors that
provide large amounts of information in the form of messages and alarms.
This flow of information cannot be handled by humans in real-time as
a small number of roots causes results in a huge number of messages
and alarms. Therefore it is necessary to provide them with concise and
aggregate notifications of underlying root causes. Correlation is the pro-
cess of recognizing and organizing groups of events that are related each
other.

• Testing : in large software systems, it is impractical (and sometime im-
possible) to monitor every variable. Instead key observable variables are
monitored to generate symptom events. Diagnostic inference typically
identifies a set of suspected root causes. A test planning facility is needed
to select additional variables to be examined to isolate the root causes.
The fault management application then needs to request or run these
tests, and utilizes their results to complete the diagnosis. A test, as
originally defined in [100], can incorporate arbitrarily complex analysis
and actions, as long as it returns a true or false value.

• Automated recovery : identifying and automating recovery procedures
facilitate rapid response to problems and allow for growth in equipment,
processes, and services, without increasing the supervisory burden on
system operators. The automation in recovery decreases the response
time to an error and thus decreasing the probability that it may cause
a proper system failure.

• Notification: system operators require notifications of all critical fault
management activity, especially the identification of root causes, and
causal explanations for alarms, tests, and repair actions in a manner that
they can follow easily. Sometimes they need to distinguish between what
is observed by system sensors versus what is inferred by the underlying
fault management application.

• Postmortem: information from diagnostic problem solving is fed back to
the fault management system for historic record keeping in order pro-
viding enough data for offline failure analysis to discover some of the

10 CHAPTER 1. INTRODUCTION

mappings between failures and their root cause. It is important to un-
derline that this analysis is different than the offline analysis to discover
failure patterns. Failure patterns and relationships between failures and
the root cause are orthogonal concepts even if some relationships between
failures and faults can form a failure pattern. That’s because failures are
not caused just by errors or faults but also by system configurations and
human interaction patterns.

• Online system topology update: the reactive fault manager should sup-
port expert systems for effective diagnosis of root causes of system errors
and that the expert system uses a knowledge base to infer the right diag-
nosis. The knowledge base as a module can be replaced or connected to
another knowledge base. Other components can be completely removed
or added. All this dynamic changes need to be done at run-time. It may
not be feasible indeed to take the fault management system off-line each
time that there is a change in the system topology.

In order to overcome the limitations that reactive approaches have, the
fault management start to investigate the so called proactive approaches: tech-
niques that trigger suitable corrective actions to prevent a fault before the
system experiences a failure. Check-pointing [51] and Software rejuvenation
[64, 106] are examples: specific forms of proactive fault management that can
be performed at suitable times, such as when there is no load on the sys-
tem, and thus typically results in less downtime and cost than the reactive
approaches [36]. The proactive scheme anticipates the formation of erroneous
system states before it actually materializes into a fault and to a failure by
consequence. Since proactive fault management incurs some overhead, the
question remains: when we should apply check-pointing and rejuvenation tech-
niques? To answer this question we need a way to tell if the current state of
the system is going to evolve into a failure state, i.e. a prediction mecha-
nism to predict failure occurrences and thus trigger the system state recovery.
Proactive fault management can be greatly enhanced by the ability to predict
the failure enough in advance that one can take actions to avoid or mitigate
its effects. The online failure prediction aim is exactly this.

1.3 Online Failure Prediction

The term “failure prediction” is widely used, e.g., for reliability prediction
where the goal is to assess future reliability of a system from its design or
specification [97]. Examples of reliability prediction can be found in [78], [32],
[43], [31]. Reliability prediction is concerned with long-term prediction, based
on input data evinced by architectural properties or the number of bugs that

1.3. ONLINE FAILURE PREDICTION 11

have been fixed. In [65] can be found a survey on reliability and availability
prediction methods. Although architectural properties such as software and
hardware interdependencies play a role in some online failure prediction meth-
ods, online failure prediction aim is to provide a short-term assessments that
allow to decide if the current situation is going to bring the system to a failure
or not. The goals of online failure prediction, as intended in this work, is to
identify such failure-prone situations. The evaluation is based on the results
of a runtime monitoring process. Note that the output of online failure pre-
diction can either be (i) an alert to allow some (human or automatic) recovery
mechanism to timely trigger or (ii) continuous measures in order to allow the
prediction mechanism to tune its judgment on the current situation. In [97]
can be found the following definition, characterizing Online Failure Prediction:

Online Failure Prediction is the task to identify during runtime whether a
failure will occur in the near future based on an assessment of the

monitored current system state.

Origin of Online Failure Prediction

Proactive fault management and online failure prediction belongs to the Fault
Tolerance research discipline. Fault tolerance was born together the comput-
ing itself, where the methods developed have had to deal with the problem of
the unreliability of the hardware components. Various variants of fault tol-
erance mechanisms, employing static and dynamic fault tolerance techniques,
have been developed (see [98] for an overview). As the complexity of the com-
puting systems increased over the years, fault tolerance became more dynamic.
Examples are the Self-Testing And Repairing computer, otherwise known as
STAR computer [20]. As the software became more and more complex, the
software became also the principal point of failure, hence, the software failures
management and software fault management have gained more interest in lit-
erature. The N-version programming [19] or recovery block [91] are examples
of this. In the early 1990’s the software failures are predominant with respect
to hardware failures [103]. Until the 1990s, however, fault tolerance were in-
tended as a passive and static technique, the problems had to be detected
before any kind of reaction and the reaction had to be well defined during the
system design. In the 1995 a new approach was introduced and rapidly became
well-known in the community. This approach was introduced by Huang et. al.
[64] and is called Software Rejuvenation (see [106] for a survey), a proactive
fault management method. It consists in restarting part of the system even
if there are still no faults. The objective is to deal with another well-known
problem: software-aging [85]. Software aging refers to progressive performance
degradation or a sudden hang/crash of a software system due to exhaustion of

12 CHAPTER 1. INTRODUCTION

operating system resources, fragmentation and accumulation of errors. Once
that the proactive techniques were introduced, quickly several ways to cope the
software failures and fault proactively were presented: Horn introduced the
concept of autonomic computing [62]; Munfie et al. introduced the trustworthy
computing [42]; Coleman et al. [39] introduced the adaptive enterprise; Brown
et al. [33] the recovery-oriented computing and so on. Particular importance
deserves the well-known technique of checkpointing (see [51] for a survey and
[94] for a scalable solution combined with failure prediction techniques). All
these techniques belong to the proactive fault management.

1.4 Taking Actions and reaction methods

There are several kind of actions that can be undertaken if a failure is predicted
reasonably in advance. The objectives, ordered by importance, are:

• avoid the failure;

• control the shut down;

• minimize the downtime;

The reaction methods can be (i)automated, some recovery mechanism is trig-
gered after the prediction and the diagnosis of the fault (e.g. a checkpoint is
triggered), or (ii)performed by humans, an operator takes actions as soon as
is alerted. Note that a downtime avoidance improves Mean Time To Failure
while a downtime minimization reduces Mean Time To Repair. However, In
case of frequent false positive and false negative predictions, proactive fault
management can also reduce availability since the system has to restore itself
without any necessity. The recovery can assume the form of rollback (the
system is brought back to a saved state that existed prior the occurrence of
the error; it needs to periodically save the system state, via checkpointing
techniques [51, 107]), rollforward (the system is brought to a new, error-free
state), and compensation (a deep knowledge of the erroneous state is available
to enable error to be masked).

The actions and the reaction methods, the recovery mechanisms and the
smooth shut-down techniques are out of the scope of this dissertation.

1.5 Faults and Failures in Mission Critical Systems

Distributed mission critical systems such Air Traffic Control, battlefield or
naval command and control systems consist of several applications distributed

1.5. FAULTS AND FAILURES IN MISSION CRITICAL SYSTEMS 13

over a number of nodes connected through a LAN or WAN. The applications
are constructed out of communicating software components that are deployed
on those nodes and may change over time. The dynamic nature of applications
is mainly due to (i) adopted policies to cope with software or hardware fail-
ures, (ii) load balancing strategies and (iii) the management of new software
components joining the system. Additionally such systems have to react to
input in a soft real time way, i.e., an output has to be provided after a few
seconds from the input the generated it. In such complex real time systems,
failures may happen with potentially catastrophic consequences for their en-
tire functioning. The industrial trend is to face failures by using appropriate
software engineering techniques at the design phase. However these techniques
cannot reduce to zero the probability of failures during the operational phase
due to the unpredictability and uncertainty behind a distributed system [54],
thus there is the need of supervising services that are not only capable of
detecting a failure, but also predicting and preventing it through an analysis
of the overall system behavior. The Air Traffic Control (ATC) mission criti-
cal systems are large and complex systems supervising the aircraft trajectories
from departure to destination. Having an effective failure management in such
kind of critical systems is a must for safety and security reasons. Due to the
complexity and the strong requirements, current ATC systems adopt both the
reactive and proactive fault management approaches. In this work an online
failure prediction framework has been designed, developed and the tested over
a real ATC system. A real implementation of the reactive paradigm is also
presented. This implementation is already deployed in the real ATC System
while the online failure prediction framework developed is going to be deployed
in the same system.

The next section specializes the faults and failures in the ATC domain
with their relationship with safety regulation 482/2008.

Faults and failures in ATC systems and relationship with safety

regulation 482/2008

An ATC system is a large and complex system with several interrelated func-
tions. It receives inputs from several heterogeneous actors like: messages from
external lines (e.g. AFTN), radar information, radio communications with
aircraft etc. All these information need to be integrated, processed, corre-
lated and finally presented to an ATC system as a global operational picture
of the sky. A controller looks at this picture and, according to the adopted
procedures, addresses the aircraft pilot in the safest way ensuring to select the
most efficient trajectory for reaching the final destination. A very high level
architecture of an ATCs is shown in Fig. 1.2. The Figure highlights the needs

14 CHAPTER 1. INTRODUCTION

Figure 1.2: ATC Very High Level Architecture

for an ATCs in term of hardware, software and human factors. The number of
components involved can change depending on the vendor, size of the system
and requirements from the customers, still to give a rough idea of the order of
magnitude of the size of the system, an ATC system is several million lines of
code.

ATCs do not require strict real-time time of responses (the separation
criteria can be around seconds) but the availability of the system should be
greater than 99,99%. An ATCs architecture requires at least the following
capabilities:

• discovering a fault in a predictable time;

• sharing the same data among all the components forming the system;

• maintaining the service or restore it in a predictable time.

According to the previous criteria we can identify some class of faults:

• misalignment in time (not all the system is aware of its processing ca-
pacity);

• misalignment in data (not all the system shares the same information);

• misalignment in functionalities (not all the capabilities are available).

The first class of faults implies failures related to delay in communications
(inside and outside the system) and, human factor (wrong order). Faults
related to the hardware are minimized by a proper configuration and tuning

1.5. FAULTS AND FAILURES IN MISSION CRITICAL SYSTEMS 15

of the ATC system. In the worst case the entire ATC system can be replaced
by a different one using a separate network and possibly employing different
hardware and software components to exploit diversity argument (sometimes
the previous version of the ATC system is used as fallback).

The second class of faults implies failures related to the mismatch between
the output of processing server in the system; part of the system could process
data no longer relevant with respect to the real status of ATC system. This
impacts ATC systems as they cannot rely anymore on the information provided
by the system.

The third class of faults implies failures related to degraded system usabil-
ity, part of the system cannot be used and its functionality cannot be accessed
by ATC systems or software components.

Safety is an essential characteristic of AirTrafficManagement/ATC func-
tional systems. It has a dominant impact upon operational effectiveness.
ATM/ATC functional systems are now evolving in a continuously growing
integrated environment including automation of operational functions, for-
merly performed through manual procedures and massive and systematic use
of software. All this has a prominent impact for the achievement of safety
[52]. Moreover, regulatory compliance has become a legal and necessary ex-
tension of business continuity with an increasingly complex set of laws and
regulations relating to data integrity and availability. Ensuring the integrity
and availability for ATC systems brings bad and good news on regulatory
compliance. The bad news is the regulations do not provide a “blueprint”
for protection. The good news is high availability and continuous availability
protection strategies will help you meet these regulatory requirements, mini-
mizing the risk that under-protected systems will create breaks in the “chain
of data”. It is important to note that compliance is a moving target; both
government and industry leaders will continue to move toward more specific
regulations and standards [75]. The issue of regulatory compliance has be-
came more acute on 1st January 2009 when the Regulation (EC) 482/2008
“establishing a software safety assurance system to be implemented by air
navigation service providers” went into effect [49]. Still, laws or regulations
do not set a specific process or specific requirements for an ATC system, they
just describe expected outcomes. The Software Fault Management System
supports business continuity and Regulation (EC) 482/2008 compliance, by
identifying a set of “risk-mitigation means”, defined from the risk-mitigation
strategy achieving a particular safety objective. Moreover, it provides:

• “cutover or hot swapping”, that is the approach of replacing European
air traffic management network (EATMN) system components while the
system is operational;

• “software robustness”, that is the robusteness of the software in the event

16 CHAPTER 1. INTRODUCTION

of unexpected inputs, hardware faults and power supply interruptions,
either in the computer system itself or in connected devices; and

• “overload tolerance”, that is the tolerance of the system to, inputs oc-
curring at a greater rate than expected during normal operation of the
system.

1.6 Motivation and Contribution

1.6.1 Motivation

The work is born thanks to a collaboration between University of Rome
“Sapienza” and Selex - Sistemi Integrati, a Finmeccanica company. The com-
pany presented to our research team a complex problem regarding their com-
plex Air Traffic and Naval control systems. We classified this problem in the
research fields of pattern recognition, Complex Event Processing and online
failure prediction. The final objective was identified in developing an online
failure prediction framework that triggers alerts as soon as dangerous condi-
tions are recognized in the observed system. The alerts should trigger proactive
actions on the observed system in order to improve the dependability. The
actions to be undertaken/triggered were beyond the scope of the work.

Among the requirements obtained and identified, one deserves particu-
lar attention: the observed system has to be leaved “as is”. This led to a
completely non-intrusive approach: one of the key points of the work. The
observation has to be performed only using network data, without install any
kind of software on the hosts involved in the computations of the ATC sys-
tem. This has been one of the most challenging task but at the end it led to a
framework that is “ready-to-use” in almost all middleware-based distributed
systems. Non-intrusiveness also differentiates our work from other approaches,
that require applications or middleware modifications. The works in literature
usually use nodes functional data (e.g. cpu consumption, free memory, number
of context switches), errors and failures logs and so on. Collecting this kind of
information requires to log-in to the hosts of the system and install software
on it 4. Many mission-critical distributed systems do not allow this approach,
hence a non-intrusive monitoring is mandatory and result very attractive for
industrial purposes.

4In this thesis this kind of approach will be called intrusive.

1.6. MOTIVATION AND CONTRIBUTION 17

Non-Instrusive and Black-Box monitoring

The motivations to adopt a non-intrusive and black-box approach is twofold.
Firstly, applications change and evolve over time: grounding failure predic-
tion on the semantic of the applications’ communications would require a
deep knowledge of the specific system design, a proven field experience, and a
non-negligible effort to keep the supervision service aligned to the controlled
system. Secondly, interactions between the service and system to be monitored
might lead to unexpected behaviors, hardly manageable as fully unknown and
unpredictable. Mission critical distributed systems are system with strong re-
quirements of availability and stringent Quality of Service (QoS) requirements,
providing a variety of services. The monitoring services shall have a minimum
impact on the supervised system and possibly no interaction with the opera-
tional applications. Such complex distributed environments are composed of
several software components of several different vendors. Administrators and
operators very often don’t know every component and don’t have access to
source code of these. Another very common situation is the restricted access
to the hosts due to policy of the companies and due to technical issues: oper-
ators and administrators access the system using consoles and graphical user
interfaces (GUIs) and do not have privileges to log-in directly to the hosts
of the network or, nonetheless, access to files or file system proc5. In these
circumstances think about installing software in an already-deployed system
becomes difficult or impossible when not forbidden. In such an environment,
with these strict requirements, is born the architecture presented in this dis-
sertation, which must be as non-intrusive as possible. The idea comes after
a feasibility study conducted in cooperation with the administrators of a real
ATC system to be monitored, and consists in using only sniffed network traffic
to evince the state of the system. The goal is to plug-in a “ready-to-use ob-
server” that acts at run time and can also be used in several contexts without
particular modifications.

How to observe in a non-intrusive way

In physics, the term observer effect refers to changes that the act of observation
will make on the phenomenon being observed. In information technology, the
observer effect is the potential impact of the act of observing a process output
while the process is running. Even if theoretically impossible, we tried to
find a way to observe complex mission critical distributed systems without
changing them. The idea reached is to consider the network hosts as black-

5The great part of the monitoring mechanism are based on the analysis of the file system

proc.

18 CHAPTER 1. INTRODUCTION

boxes and monitor the network traffic produced by the boxes. In a system
composed by nodes exchanging information, a software failure inside one of
the nodes, or a critical condition like a bottleneck, changes the way in which
the node behaves: this misbehavior can be discovered observing the network
traffic related to the node. Think about a simple web-browser accessing to
a remote streaming: the message rate exchanged between the computer and
the server varies depending on the load of the server, if the server is busy
the message rate during the streaming will decrease, sometimes halting the
stream. This is only an example, there are several information that can be
captured from the network. The task is also aided by the fact that these
mission critical systems are middleware-based (more precisely Fault-Tolerant
middleware-based) and the middleware uses, almost always, standard network
protocols. We quickly discovered that by analyzing the network packed sniffed
from the network, and dissecting the headers belonging to standard protocols
(e.g. TCP/IP, UDP, GIOP, SOAP), without any software installation on the
monitored hosts, a plenty of information can be captured. Very predictably
situations can be recognized in advance. Among the motivating works found,
[47] presents an empirical evidence that the unpredictability inherent in such
systems arises from merely 1% of the remote invocations: by filtering the 1% of
the raw observations (i.e. the outliers) of metrics like end-to-end latency and
throughput, the performance can be bounded, easy to understand and control.
Such kind of metrics can be easily computed at run-time using network data.
The observation remains completely application-agnostic i.e. (i)considering
all the network hosts as black-box and (ii) without recognizing causal paths
(i.e. the difference between this work and the Aguilera et al. [10] black-box
definition);

During these years a number of prototypes have been designed, developed
and tested over several environments and over a real Air Traffic Control testing
environment. Important results have been obtained for both industrial and
academic purposes. Several lessons have been learnt, a nowadays complex ar-
chitecture for this target has been designed which has strength and weaknesses
points. A version of this architecture is going to be deployed in a real ATC
supervision system.

1.6.2 Novelty.

The approach proposed in this dissertation differs from the other work pre-
sented for some important aspects. Firstly, this approach is both black-box
and non-intrusive. In contrast, other works do not seem to satisfy these char-
acteristics together for failure prediction purposes. Secondly, the techniques
we employ to the monitoring are different from those used by them. We

1.6. MOTIVATION AND CONTRIBUTION 19

combine in a novel fashion both Complex Event Processing for network per-
formance metrics computation and Hidden Markov Models to infer the system
state. Note that typically Hidden Markov Models are widely used in failure
detection, to build a components’ state diagnosis [40]. In the other hand the
architecture introduced in this work models the entire system state (not the
individual components state) as a hidden state, thus inferred using an Hidden
Markov Model classifier. Consider the whole set of components as a unique
coherent system has several pros and cons, but is an approach that is rarely
present in literature. In the field of online failure prediction, the Markov Mod-
els, Hidden Markov Models and Hidden Semi-Markov Models have been used
in error detection based techniques but not in the symptoms-based techniques
as we have done. At the best of our knowledge, the non-intrusive monitoring
is also a novelty for Air Traffic Control systems which usually rely on con-
solidated fault-tolerant middleware and on complex monitoring subsystems
designed ad-hoc. The non-intrusiveness and black-box approach followed im-
plies a certain degree of interoperability of the monitoring system and this is
a clear novelty in the field of mission critical fault management.

1.6.3 Contributions

The main contribution of this work is the development of a novel approach
to symptoms-based failure prediction that is able to satisfy together the non-
intrusiveness, black-box and online properties required by mission critical con-
texts. Other contributions can be grouped in:

• the design, implementation and experimental evaluation of a novel on-
line, non-intrusive and black-box failure prediction architecture named
CASPER, that can be used for monitoring mission critical distributed
systems.

• the idea of using only information concerning the network to build a
real-time representation of the system state. This allows (i)to consider
the hosts as black-box, (ii)to not incur in privacy problems and (iii) to
leave the system untouched (no new software is installed on the hosts).

• the combination of Complex Event Processing techniques and Hidden
Markov Models in order to represent a complex system state via real-
time performance metrics and to recognize the dangerous system states
i.e. states the usually lead to services failure.

• the introduction of an interoperable approach to monitor Air Traffic
Control systems. The interoperability comes from the fact that each
component is considered as a black box and analyzed at network level,

20 CHAPTER 1. INTRODUCTION

without trying to infer the relation among the hosts and ignoring any
application level logic.

• the introduction of a tunable aggregation mechanism to simplify the
representation of the system state.

1.7 Outline of the Thesis

The proposed thesis is organized as follows. Chapter 2 reports the related
work with particular emphasis on the on-line failure prediction state of the
art with some interesting systems, it defines Black Box Monitoring and Non-
intrusiveness and it presents the classification problem, with particular interest
given to the Hidden Markov Model applications. After, it reports some basic
concepts and definition on Event Computing, Event Processing and Complex
Event Processing in particular, with some implementations.

Chapter 3 introduces the failure and prediction model followed in this
dissertation, defining important concepts: time-to-failure, time-to-prediction
and limit time. It presents Esper [3] as Complex Event Processing engine
with some useful details about its paradigms and presents the Hidden Markov
Model used with important algorithms defined on it. It introduces also the
Aggregator, a component that allows to simplify the representation of the
system state.

Chapter 4 presents the architecture of the framework devised, namely
CASPER. A description of each component is provided and details on the
training and tuning of the CASPER parameters are given. It also presents the
performance metrics identified to monitor middleware based systems.

Chapter 5 presents the air traffic control system over which the experimen-
tal evaluation has been conducted: the principle of FT-CORBA[81] and the
specialization of FT-CORBA for safety critical system, i.e. the CARDAMOM
[35] middleware. The chapter also presents the queries to compute at runtime
the performance metrics used in the campaign of experiments in the native
event processing language. After that, the results obtained during the experi-
mental evaluation is presented: the characterization of the training and tuning
of the CASPER parameters and the results of the failure prediction task when
the system is suffering stress conditions.

Chapter 6 concludes the thesis describing the future work and some weak-
ness and open problems discovered during the work.

Chapter 2

Related Work

The Related Work is organized as follows: The first section investigates the on-
line failure prediction state of the art and it presents some interesting systems.
The second section defines Black Box Monitoring and Non-intrusiveness. The
third section is dedicated to the classification with particular interest to the
Hidden Markov Model applications. The last section is about Event Comput-
ing, Event Processing and Complex Event Processing in particular with some
implementations.

2.1 Online Failure Prediction

A significant amount of work can be found in the online failure prediction
area; Salfer [97] shows a taxonomy that structures the manifold of approaches
(see Figure 2.1).

This taxonomy differentiates two different approaches: one that rely on the
current system state which is data-driven and another approach that is based
on quantitative and qualitative mathematical description of the system model
that is called analytical approach to online failure prediction. Salfner [97]
collected all different methods developed in the data-driven modeling field,
broad disciplines like econo-physics, artificial intelligence and game theory are
the main producers of these approaches to prediction. Although this taxonomy
has been introduced in 2008, it is still very valid. Three main branches can be
found: Failure Observation, Symptoms Monitoring and Error Detection.

21

22 CHAPTER 2. RELATED WORK3.1 A Taxonomy and Survey of Online Failure Prediction Methods 31

Figure 3.1: A taxonomy for online failure prediction approaches
Figure 2.1: A taxonomy for online failure prediction approaches found in [97].

2.1. ONLINE FAILURE PREDICTION 23

Failure Observation, Symptoms Monitoring and Error Detection

Literature on online failure prediction is broadly divided by these three ap-
proaches. The idea of the first one, Failure Observation, is to extract in-
formation from past failure occurrences. The information extracted can be
qualitative or quantitative. Quantitative information would for example be
given by a statistical analysis as the probability distribution of failures and
can be used to directly predict the probability of a particular failure occur-
rence or given as prior knowledge for Bayesian predictors. On the other hand
qualitative information can lead to custom heuristics to particular failures pre-
diction. Among failure observation techniques, [7] apply a Bayesian predictive
approach [11] to the Jelinski-Moranda software reliability model [66] in order
to yield an improved estimate of the next time to failure probability distri-
bution. A Bayesian predictive approach is exploited also to the some Italian
underground trains system to check the actual reliability of the door opening
systems [8]. They carry out a Bayesian inference via a Monte Carlo simula-
tion, obtaining prediction intervals for the expected number of failures during
periods of desired length. [56] analyzes the correlation in time and space of
failure events and implements a long-term failure prediction framework named
hPrefects for such a purpose. hPrefects, based on the correlations among fail-
ures, forecasts the time-between-failure of future instances. The approach of
[56] is based on long-term prediction (from week to years). In this work the
system is analyzed in realtime predicting failures from minutes to seconds be-
fore. We also not observe failures since we perform symptoms monitoring (see
later). Among the Failure Observation approaches, Zhang & Fu, [115] pro-
pose a framework for autonomic failure management with hierarchical failure
prediction functionality for coalition clusters and compute grids. It analyzes
node, cluster and system wide failure behaviors and forecasts the prospective
failure occurrences based on quantified failure dynamics. Failure correlations
are inspected by the predictor: in a compute node, an event sensor scrutinizes
local event logs, extracts failure records and creates formatted failure reports
for the failure predictor. The failure predictor calculates the estimations of
future failure occurrences based on information collected by the event sensor.

Manifestation of faults is not necessary a crisp situation, it can influence the
system gradually in time and space. The Symptoms Monitoring aim it to
recognize this type of service degradation and it is in contrast with the Error
Monitoring. Some examples for such types of faults can be done. Memory
leaks, for instance, imply that some part of the system consume more and more
memory. As long as there is still memory available, there will be neither failure
or errors. In case of distributed systems, if one host suffers for a bottleneck,
the services involved will endure some degradation but the failure can be also
remote. Symptoms monitoring has to recognize these conditions in order to

24 CHAPTER 2. RELATED WORK

timely trigger actions to avoid the failure.
Among the symptoms monitoring based works, Berenji et al. [30] build a

system model in a hierarchical two step approach: First, they build component
simulation models that try to mimic the input/output behavior of system
components. These models are used to train component diagnostic models by
combining input data with component outputs obtained from the component
simulation models. The target output values of the diagnostic models are
binary where a value of one corresponds to faulty component behavior and
zero to non-faulty behavior. The same approach is then applied on the next
hierarchical level to obtain a system-wide diagnostic models. The authors use
a clustering method to obtain a radial basis function rule base. In the context
of symptoms monitoring mechanisms, there exist also research works that use
black-box approaches, i.e., no knowledge of the applications of the system
is required. Narasimhan et. all [109] introduce Tiresias, a black-box failure
prediction system that considers symptoms generated by faults in distributed
systems. There is a terminology difference between [109] and this work: Black
Box Monitoring in this work case means that we don’t access not even nodes
functional data while [109] is Black Box in terms that applications running
in the hosting infrastructure are opaque to the infrastructure provider. In
order to identify symptoms, Tiresias uses a set of performance metrics that
are system-level metrics, (e.g., file system proc metrics) and network traffic
metrics. In addition, Tiresias uses specific heuristics in order to predict the
failure. Figure 2.2 depict clearly the collected time-series data on the system’s
actors. The framework presented in this dissertation uses only one of them
i.e. “network traffic” by means of the libpcap library. [58] uses the online
failure prediction to achieve an efficient proactive failure management in the
field of distributed stream processing systems. System-level and application-
level metrics (e.g., available memory, free CPU time, virtual memory page-
in/page-out rates, tuple processing time, buffer queue length) are periodically
collected and classified using decision trees. It perform just-in-time failure
prevention (short-term) of the faulty components only. It has a similarity
with our work that is the tuning mechanism: a desired tradeoff between failure
penalty reduction and prevention cost based on a user-defined reward function.
In our work the user can define the desired accuracy of the failure prediction
but loosing prediction time.

Gu et. all [59] present a stream-based mining algorithm for online anomaly
prediction. The field of application is the large-scale cluster systems, vulner-
able to various software and hardware problems. The objective of [59] is to
diagnose bottleneck anomalies. In order to do this, the work achieves classi-
fication on future data by employing Markov models to capture the changing
patterns of different measurement metrics that are used as features by the
Bayesian classifiers. They predict the values of each metric for the next time

2.1. ONLINE FAILURE PREDICTION 25

protocol
metrics

co
ll

ec
te

d
ti

m
e-

se
ri

es
d

at
a

o
n

th
e

cl
ie

n
t,

fa
u

lt
y

re
p

li
ca

an
d

g
o

o
d

re
p

li
ca

n
o

d
es

application
metrics

/proc
metrics

libpcap
metrics

template upper
and lower thresholds

for metric

,

each

lookahead time
based on

metric’s behavior
each

Anomaly
Detector

Anomaly
Detector

Anomaly
Detector

Anomaly
Detector

Anomaly
Detector

Anomaly
Detector

Tiresias’
Forecast

Prediction
Heuristics

(DFT)

Prediction
Heuristics

(DFT)

Prediction
Heuristics

(DFT)

Prediction
Heuristics

(DFT)

Prediction
Heuristics

(DFT)

Prediction
Heuristics

(DFT)

anomaly vectors

100101....

001100....

111001....

000011....

000011....

111111....

network
traffic

memory
usage

CPU
usage

context
switch

rate

token
arrival

rate

response
time

Figure 1. Stages in the operation of Tiresias.

value, thereby signaling an anomaly (i.e., “statistically un-
usual performance” [3]) that might be indicative of a poten-
tial problem in the system.

Tiresias learns of the normal state of the distributed sys-
tem through the trends of the various performance metrics
that it gathers. Note that the system could be multi-modal,
e.g., there could be off-peak and peak workloads on the sys-
tem. In this case, Tiresias builds multi-modal templates of
the system’s performance behavior. This allows Tiresias to
keep up with the system’s evolving behavior and to modify
its conclusions according to workload changes.

In this anomaly-detection phase, we process all of the
time-series data of the performance metrics using a rela-
tively straightforward threshold-based anomaly detector [3]
to determine when performance degradations occur. For
each performance metric, the anomaly detector outputs an
anomaly vector that indicates whether each data-point of the
metric’s time-series is deemed anomalous or normal. Basi-
cally, each metric’s anomaly vector is a time-series consist-
ing of a binary sequence of 1s and 0s to indicate the anoma-
lous or normal state of that metric over time. The anomaly
vector captures the state of the metric while allowing us to
reduce the raw metric values into a simple binary represen-
tation.

We then apply the Dispersion Frame Technique (DFT)
prediction heuristics [8] to the anomaly-vectors that we gen-
erate in the anomaly-detection phase. The DFT stage exam-
ines the anomaly vector for each metric, looking for specific
clustering patterns of anomaly points. We exploit the DFT
heuristic rules to seek patterns of behavior that might in-
dicate escalating instability in a metric’s behavior. If we

observe such patterns of behavior, we fire warnings of im-
pending failure. The rules do not distinguish between dif-
ferent kinds of failure and do not have access to application
or fault-type information. Thus, the predictions can be use-
ful to system administrators as advance indicators of system
failure.

We note that the predictions do not reveal the root cause
and do not guarantee that the failure will occur; they merely
indicate escalating instability in the specific metric under
examination. We also note that our system does not depend
on the anomaly detection algorithm. Any anomaly detector
would serve our purpose equally. The point of this paper
is not to showcase either the anomaly-detection algorithm
or the failure-prediction heuristics, nor even to highlight
the combined power of both. Instead, the idea is to study
Tiresias’ synergistic usage of these existing techniques, and
to evaluate the feasibility of its black-box failure-prediction
strategy that is driven off performance metrics alone.

3.1 Data Collection

We identify which performance metrics are affected by a
failure, and how they are affected, through collecting em-
pirical data from our test-bed. We collected this data under
non-faulty experimental runs, as well as under the injection
of a variety of faults.

We monitored node-level resource usage on every node
in our system by retrieving the resource-usage statistics
from the /proc pseudo-filesystem [2] every five seconds.
The /proc pseudo-filesystem contains a hierarchy of spe-
cial files that represent the current state of every running
process on the Linux operating system. By periodically
examining /proc/meminfo and /proc/stat, we ob-
tained information about the combined resource usage of
all of the running processes on that node. We could opt to
examine individual process-level resource behavior in ad-
dition to node-level aggregate behavior – however, for the
purposes of this paper, the granularity of failure prediction
is the node, and thus, the node-level aggregate performance
metrics suffice for our purposes. Tiresias monitors the fol-
lowing system metrics for every node through that node’s
/proc filesystem.

• CPU usage (%) - The percentage of time that the CPU
on the node is busy executing user and kernel tasks.

• Available memory (bytes) - This is the sum of both
the free and the cached memory on a node. Cached
memory is the amount of memory that Linux uses for
the disk cache, and can be replaced quickly if a running
(or new) program needs memory.

• Context-switch rate (per second) - This represents the
number of context switches that the node undergoes in
one second.

Figure 2.2: The stages in the operation of Tiresias, [109].

units. The Bayesian classifier is then used to predict the probability of dif-
ferent anomaly symptoms by combining the metric values. The combination
of the metrics values is interesting and is similar to the approach used in this
thesis. A feature space is created (see Figure 2.3), in order to create a bot-
tleneck classifier that incorporates multiple metrics, called features, that can
collectively capture the distinctive symptoms of different bottlenecks. Figure
2.3 shows a two-dimensional feature space where anomaly symptoms of three
different causes (bottlenecks caused by insufficient CPU, insufficient memory,
or both insufficient CPU and insufficient memory) form three clusters.

26 CHAPTER 2. RELATED WORK

Fig. 2. Online anomaly prediction.

clusters. If we have enough labeled data in this feature space,
we can learn a model to classify unlabeled points in the feature
space.

However, in order to foresee bottlenecks, we need to apply
the classifier on future data. Thus, the first task is to predict
the future data. In Figure 2, we predict the position of a
point in the feature space in one, two and three time steps1.
As it shows in the figure, one possible outcome is that,
in three time steps, the measurement point falls into the
cluster representing anomaly symptom B. If that outcome
has a large probability, the system should raise alert that an
anomaly with symptom B will occur after three time steps. To
predict feature values, the system needs to model the statistical
changing patterns of different feature values. Combining both
anomaly symptom classification and feature value prediction,
the system can perform online anomaly prediction, that is,
performing anomaly symptom classification on future data.

B. Overview of Our Approach

First, we learn different anomaly symptoms from historical
data (training data), which consists of records of a fixed
set of attributes. For system monitoring, the feature space
X consists of a set of system-level and application-level
measurements. Table I shows the feature metrics collected
in our system. We consider both i) host-level metrics such
as available memory, free CPU time, and free disk space,
and ii) component-level metrics such as input data rate,
output data rate, data processing time, and component memory
usage values. We train naive Bayesian classifiers from the
data, because i) a Bayesian classifier can be trained very
efficiently, and ii) it produces posterior probabilities that can
be combined with feature predictions to perform predictive
anomaly classification.

The classifier enables us to tell whether data x indicates an
anomaly situation. However, the goal is tell whether the system
will have bottleneck situation in the future. Since the data of
the future is not available, we need to predict future data before

1Each step represents a certain time interval, say 10 seconds.

Host Metrics Description
AVAILCPU percentage of free CPU cycles
FREEMEM available memory

PAGEIN virtual page in rate
PAGEOUT virtual page out rate

MYFREEDISK free disk space
Component Metrics Description

RXSDOS num. of received data objects
TXSDOS num. of transmitted data objects
DPSDOS num. of dropped data objects

RXBYTES num. of received bytes
TXBYTES num. of transmitted bytes

UTIME process time spent in user mode.
STIME process time spent in kernel mode

ROUTING system data handling time
VMSIZE address space used by a component
VMLCK VM locked by the component
VMRSS VM resident set size

VMDATA VM usage of the heap
VMSTK VM usage of the stack
VMEXE VM executable
VMLIB VM libraries

TABLE I
MONITORING METRICS.

we apply the classifier on the predicted data. To this end, we
employ Markov models to capture feature transition patterns.

This is indicated by Figure 3. Markov models have
been used extensively in many fields to model stochastic
processes [20]. In this study, we model each feature using one
discrete-time Markov-chain of a finite number of states, where
each state represents a feature value (continuous values are
discretized into finite number of bins). The result of Markov
simulation is a region in the feature space, where each point in
the region is associated with a value, indicating the probability
reaching that feature point.

Finally, we apply Bayesian classifier over data in the region.
This requires us to compute posterior probability for every
point in the region, and then find the expected probability.
To reduce computation complexity, we rely on the assumption
that feature values are independent. Although the assumption
is naive, it has been shown that naive Bayesian classifier is
very effective in many situations.

III. SYSTEM DESIGN

In this section, we present the design details of our stream-
based mining algorithms for online anomaly prediction. We
first describe a Bayesian classification approach to learning
different anomaly symptoms. Second, we present a scheme
of using discrete-time Markov chain models to capture the
changing patterns of different metric values. Finally, we
describe how to combine the above two schemes to predict
the cause and pending time for an anomaly.

A. Anomaly Learning

Given system measurements at the current time, our goal
is to find out whether and when an anomaly condition will

10021002

Figure 2.3: The [59] feature space.

In Figure 2.3, the position of a point in the feature space is predicted in
one, two and three time steps. As it shows in the figure, one possible outcome
is that, in three time steps, the measurement point falls into the cluster rep-
resenting anomaly symptom B. If that outcome has a large probability, the
system should raise alert that an anomaly with symptom B will occur after
three time steps. To predict feature values, the system needs to model the sta-
tistical changing patterns of different feature values. Combining both anomaly
symptom classification and feature value prediction, the system can perform
online anomaly prediction, that is, performing anomaly symptom classification
on future data.

[104] presents ALERT an anomaly prediction system that considers the
hosts of the monitored system as black-boxes, given the applications running
in the hosting infrastructure are opaque to infrastructure provider. ALERT
embodies a fully decentralized monitoring and learning architecture, in order
to cope with large-scale hosting infrastructures (see Figure 2.4). Specifically,
it uses sensors deployed in all the hosts of the controlled infrastructure to
continuously monitor a set of metrics concerning CPU consumption, memory
usage, input/output data rate. Note that the use of sensor deployed in the
hosts makes this work intrusive and not feasible for mission critical distributed
systems. A set of pre-defined anomaly predicates based on user’s service level
objective (SLO), allows to detect the symptoms of anomalies. To classify
component states ALERT uses triple-state decision tree classifier that can
produce rules with direct, intuitive interpretation by non-experts (see Figure
2.5). Figure 2.5 illustrates a simple case of classification using two metrics. For
state classification, the decision tree essentially applies a sequence of threshold

2.1. ONLINE FAILURE PREDICTION 27

Distr ibuted
moni tor ing

sensors

Anomaly
predictors

anomaly
alerts

Anomaly alerts,
diagnosis report

Distr ibuted Hosting Infrastructure

M
Monitor

P

M

M PM P
P

M

P
Predictors

Just-in-time
Anomaly

prevention

Anomaly
diagnosis

Anomaly detectors
 based on pre-defined

anomaly predicates
training

data

system administrator

Figure 1: Predictive anomaly management for distributed hosting infrastructures.

tion scheme [23] to capture a special alert state in addition to the
normal and anomaly state. The alert state corresponds to a set
of measurements preceding the anomaly state, which allows the
prediction model to capture pre-anomaly symptoms. Thus, the
prediction model can raise advance alert when the monitored com-
ponent enters the alert state rather than wait until the component is
already in the anomaly state. We can adjust the scope of the alert
state to tune the sensitivity of the prediction model (i.e., tradeoff
between the accurate predictions and false alarms).
To adapt to dynamic execution environments, one simple ap-

proach is to continuously update the prediction model with new
training data. However, this simple incremental approach has two
fundamental problems. First, the anomaly prediction system may
incur large overhead to the monitored infrastructure due to frequent
model re-training. Second, the accuracy of such prediction model
may be low when the execution context fluctuates a lot (e.g., al-
ternating between high and low input workloads or high and low
resource availability). Third, the execution contexts are unknown
a priori and exhibit evolving behavior. To address the challenge,
ALERT employs self-evolving, context-aware prediction models.
Under a specific execution context, the prediction model gives con-
sistent state labels for the same measurement. Our scheme first
employs a clustering scheme to automatically discover different
execution contexts. We then train a set of prediction models, each
of which captures anomaly behavior under a specific execution
context. During runtime, ALERT dynamically switches between
different prediction models based on context evolving patterns to
achieve high quality anomaly prediction for dynamic systems. Our
approach differs from previous model ensemble approaches (e.g.,
[45]) in several aspects. First, unlike previous ensemble approach,
wherein each classifier is learned from a fixed window of data that
might span multiple execution contexts, in our approach, we cluster
data that belongs to one context and learn a model from the conflict-
free data. Second, we establish explicit mapping from prediction
models to different execution contexts, which can improve predic-
tion accuracy as well as avoid repetitive learning.
We have implemented a prototype of the ALERT system. To

make the ALERT system practical for large-scale hosting infras-
tructures, we employ fully decentralized monitoring, learning, and
prediction architectures, which is illustrated by Figure 1. We have
tested the ALERT system on IBM System S stream processing
cluster [21,22] and PlanetLab wide-area network system testbed [5].
Our experimental results using real system performance anomalies
and host failures show that: 1) a range of system anomalies indeed
exhibit predictability; 2) ALERT achieves much higher prediction
accuracy than exiting alternative algorithms (e.g. 50% higher true
positive rate and 80% lower false alarm rate); and 3) ALERT im-
poses low overhead for large-scale hosting infrastructures with real-
time prediction performance (e.g., a few milliseconds training time
and a few microseconds prediction time).
The rest of the paper is organized as follows. Section 2 presents

the design details of our approach. Section 3 presents the prototype
implementation and experimental results. Section 4 compares our
work with related work. Finally, the paper concludes in Section 5.

2. SYSTEM DESIGN
In this section, we present the design details of the ALERT sys-

tem. We first present the basic anomaly prediction model. Then,
we describe the context discovery scheme. Third, we describe our
adaptive anomaly prediction algorithm.

2.1 Baseline Anomaly Prediction Model
To perform runtime system anomaly prediction, we deploy mon-

itoring sensors on all hosts in the hosting infrastructure, which
continuously monitor a set of metrics {x1, ..., xk}, such as CPU
consumption, memory usage, input/output data rate, buffer queue
length, for each running host and application component. For ex-
ample, we collect about 20 metrics on each host in IBM System
S [23, 24] and about 66 metrics on each host in PlanetLab [4].
The monitoring sensor periodically samples each metric value at a
certain rate (e.g., one sample every 10 seconds) to form a measure-
ment stream. To achieve online anomaly prediction, we employ
a triple-state stream classifier that can continuously classify each
measurement sample into normal, alert, or anomaly state. The
prediction model will raise alert when the component enters the
alert state that precedes the anomaly state.
To train the prediction model, we first employ an anomaly de-

tection module to label all measurements with either normal or
anomaly states. A simple anomaly detection module can use anomaly
predicates [20] based on the user’s service level objective (SLO)
requirements. For example, we can use an anomaly predicate “pro-
cessing time > 50ms" to check whether a system is in an anomaly
state in terms of performance. Previous work also provided more
advanced anomaly detection schemes that can accurately distin-
guish anomaly from application change [15] and infer anomaly
labels using similarity clustering [17]. Note that the focus of our
work is on anomaly prediction rather than anomaly detection. For
prediction, we introduce a special alert state to capture pre-anomaly
symptoms. In the feature space, the alert state corresponds to a
region “preceding” the anomaly points, illustrated by Figure 2.
Different from the normal and abnormal measurements that are

labeled by the anomaly detector, whether a set of measurements
are labeled as alert is controlled by an alert interval (I), which
denotes a time interval (e.g., 30 seconds) before the anomaly in-
cident. Suppose the anomaly incident happens at time t, all the
measurement points sampled between t − I and t will be labeled
as alert. For example, we use a larger alert interval (I = 3) in
Figure 2(a) than that (I = 1) in Figure 2(b). Thus, the alert
regions in Figure 2(a) include more measurement points than those
in Figure 2(b). As a result, the prediction models in Figure 2(a)
will classify more measurement samples as alert state than those

Figure 2.4: The [104] predictive anomaly management for distributed hosting

infrastructures.

x2

x1

Anomaly A

Anomaly B

(a) Alert interval I = 3

Normal Alert Anomaly

t
t+1

t+2

alert

x2

x1

Anomaly A

Anomaly B

(b) Alert interval I = 1

Normal Alert Anomaly

t
t+1alert

Figure 2: Tunable anomaly predictor with different alert inter-
vals.

x1 < m?

x2 < p? Normal

Alert Anomaly

Anomaly
Region

Alert
Region

Normal
Region

p

m

xxx xx

+
+
+

+
+ +

+ +
+

+ Normal Alert x Anomaly

x2

x1

Yes No

Yes No

Figure 3: Anomaly prediction using triple-state decision tree
classifier.

in Figure 2(b). Intuitively, the larger the alert interval, the more
measurement points will be classified as alert, the more likely the
predictor is to raise anomaly alerts. Thus, we can use the alert
interval I as a tuning knob to control the predictor’s true positive
rate AT and false-alarm rate AF . The anomaly predictor is said
to raise a correct alert if the predicted anomaly indeed happens
shortly after the anomaly alert is issued. Let Ntp, Nfn, Nfp, and
Ntn denote the true positive number, false negative number, false
positive number, and true negative number, respectively. The true
positive rate AT and false alarm rate AF of the anomaly predictor
are defined in a standard way as

AT =
Ntp

Ntp + Nfn
, AF =

Nfp

Nfp + Ntn
(1)

At one extreme, if we set I = 0, ALERT becomes conventional
reactive approach where the alert state is always empty and no
alarm will be generated before anomaly happens (i.e., AT = 0,
AF = 0). At the other extreme, if we set I =∞, ALERT becomes
traditional proactive approach that performs preventive actions on
all components unconditionally (i.e., AT = 1, AF = 1). The
optimal solution often lies in-between the two extremes in practice,
which motivates us to develop tunable prediction models. As we
will show later in our experimental results, the alert interval can
indeed be used to tune the tradeoff between true positive rate and
false alarm rate.
We chose decision trees [27] to classify component states in this

paper since the decision tree classifier can produce rules with direct,
intuitive interpretation by non-experts. Thus, the predictor can not
only raise anomaly alert but also provide cues for possible anomaly
causes1. Figure 3 illustrates a simple case of classification using
two metrics. For state classification, the decision tree essentially
applies a sequence of threshold tests on the metrics. The predicate
1However, our adaptive anomaly prediction scheme is not re-
stricted to the decision tree classification method, which can be
applied to other classification methods as well.

that corresponds to the alert region is “x1 < m and x2 < p”, and
can be determined by following the path in the tree which leads
to the leaf labeled alert. The decision tree classifier is trained
using labeled measurement data from all three states. In order
to effectively and automatically discover the appropriate features
from the monitored metrics for prediction, the classifier has to in-
corporate multiple features in the training phase. An additional
benefit of decision trees is that they can inherently select those
metrics appropriate for state classification by seeking the shortest
possible tree that explains the data. In our case, the feature se-
lection occurs whenever we induce a new decision tree classifier
under a specific execution context. We train every new classifier by
incorporating all monitoring metrics, and rely on the decision tree
classifier training algorithm to perform feature selection.

2.2 Context-Aware Anomaly PredictionModel
We now present the context-aware anomaly prediction model

training algorithm, illustrated by Figure 4. We first employ a clus-
tering algorithm to discover different execution contexts in dynamic
systems. We then train a set of prediction models described in
Section 2.1, each of which is responsible for predicting anomalies
under a specific context. In contrast to common online learning
algorithm that frequently updates models with new training data,
our scheme induces a set of prediction models over a long period of
training data to avoid unnecessary repetitive learning. More impor-
tantly, we induce models from conflict-free data, which produces
high quality prediction models.
Our approach is based on two observations. First, once a system

component enters a certain execution context, it will stay in the
context for a period of time, until a certain event occurs which leads
the system into another context. Second, the system may operate
under similar execution contexts repetitively over a long period of
time. For example, a web server often receives higher workload
in the morning and lower workload in the evening and such exe-
cution context switching repeats. In Figure 4, we show a stream
of measurement samples (divided into stream data blocks). Each
stream data block di contains a small fixed length of measurement
samples. Data blocks with the same color belong to the same ex-
ecution context. Here, the system component operates under three
different execution contexts. Context C1, for instance, has three
(non-contiguous) occurrences at time 0, 8, and 18. The system
component switches from Context C1 to C2 at time t = 6.
To achieve context-aware anomaly prediction, one big challenge

is that system contexts are hard to identify and characterize as they
evolve over time. Our goal is to group measurement samples that
correspond to the same context, and then learn models or classifiers
from the grouped measurements. Grouping is essential because
each individual instance or occurrence of the context often contains
too little information to fully characterize the context. A classifier
trained from insufficient data will have large overfitting error and
will generalize badly for future testing data. On the other hand,
by grouping together measurement samples belonging to the same
context, we will be able to learn high quality prediction models as
we minimize overfitting error. We employ a clustering algorithm to
discover different contexts. The goal of the algorithm is to partition
a measurement stream into a set of stream segments, , denoted by
Di. Each stream segment contains several continuous data blocks:

P = {D1, D2, · · · , Dk} (2)

that minimizes the global error:

E(P) =
1

|D|
X

Di � P

1

|Di|Err(Di) (3)

where Err(Di) denotes the error of the predictor learned from

Figure 2.5: The [104] anomaly prediction using triple-state decision tree clas-

sifier.

tests on the metrics. Similar to the approach used in this dissertation, the
combination of performance metrics form a space. According to the values of
the metrics, the regions represent normal or anomaly conditions.

Guan et al. [88] apply proactive failure management techniques in Cloud
Computing Systems. In particular present a (symptoms monitoring) failure
prediction mechanism exploiting both unsupervised and semi-supervised learn-
ing techniques for building dependable cloud computing systems. Unsuper-
vised failure detection method uses an ensemble of Bayesian models, it char-
acterizes normal execution states of the system and detects anomalous behav-
iors. After the anomalies are verified by system administrators, labeled data
are available, then apply supervised learning based on decision tree classifiers
to predict future failure occurrences in the cloud. The data are collected by
health monitoring tools when cloud servers perform normally. At the best of
my knowledge this is the only failure prediction work that uses unsupervised

28 CHAPTER 2. RELATED WORK

learning.
Rood et. all in [94] cope the problem of failure prediction and scalable

checkpointing in large-scale grid computing. They state that the primary
weapons against the problem of node unavailability and cluster failure i.e.
checkpointing, migration, replication, and effective scheduling, do not scale
well enough to be effective for the largest, most important grid and cluster
applications. They propose to address this issue at a variety of levels, includ-
ing: (i) low level mechanisms that will predict individual processor failures by
observing and reacting to low-level indicators in their chip state; (ii) scalable
cluster-level checkpointing solutions that do not require centralized storage for
replicated checkpoints; (iii) grid-level efforts to differentiate between different
node unavailability states, to characterize the behavior of nodes, to predict
their near-future unavailability, and to make better grid scheduling decisions
based on this information, and on characteristics and capabilities of applica-
tions.

The Error Detection approach has several differences with the symp-
toms monitoring. The main difference between them is that symptoms are
the observation of system state over time; a symptom is a behavior that de-
viates from the “average” behavior. While error is something actually goes
wrong. The fault at this stage did not develop in service failure yet but would.
A good question based on detecting an error is: how probable this error will
develop in a failure? for which time window since occurrence this probability
is high? The Rule-Based systems Rules are logic expression that represents
knowledge representation. A very common rule pattern is the IF-THEN pat-
tern where condition can be any logical expression that represent the premise
and expression any logical expression to represent the conclusion.

Malek et. all in [97] present an error monitoring-based failure prediction
technique that uses Hidden Semi-Markov Model (HSMM) in order to recognize
error patterns that can lead to failures. The idea of HSMM approach is to
predict failures by recognizing specific patterns of error events that report an
imminent failure. The approach in [97] is event-driven as no time intervals are
defined: the errors are events that can be triggered anytime.

[60] describes two non-intrusive data driven modeling approaches to error
monitoring (it uses error logs and logs of the operating system): the first ap-
proach relies on a Discrete Time Markov Model and the second approach is
based on function approximation. In general [60] performs short-term predic-
tions in order to anticipate failures. This work uses existing error logs served
as source for event and logs of the operating system level monitoring tools.
The difference between this thesis approach and these works is twofold: firstly
we propose a symptoms monitoring system in contrast to error monitoring for
predicting software failures. In addition, our approach is not event-based as
proposed in [97]; rather, our solution can be defined period-based [73] as we

2.2. BLACK BOX MONITORING AND NON-INTRUSIVENESS 29

use Hidden Markov Models (discrete time) to recognize, in the short term,
patterns of specific performance metrics that show the evidence of symptoms
of failures.

[34] comes up with an optimal checkpointing algorithm that reduces over-
head caused due to checkpointing, using failure prediction algorithm. The
proposed system uses Job replication to ensure completion of work and dy-
namic load balancing is used to avoid overload in any resources and to achieve
maximum resource utilization and maximize throughput. The system is ap-
plied in a Grid computing infrastructure prone to failures.

An important problem affect both traditional reactive approaches and pro-
active approach that is based on continuous application performance evalua-
tion. The problem is the fact that a workload change can be recognized as
an anomaly, since the performance of the observed system can strongly vary
when applications change. It is important to distinguish between performance
anomaly and workload change. A performance anomaly is indicative of abnor-
mal situation that needs to be investigated and resolved. On the contrary, a
workload change (i.e., variations in transaction mix and load) is typical for sev-
eral applications. Therefore, it is highly desirable to avoid false alarms raised
by the algorithm due to workload changes, though information on observed
workload changes can be made available to the service provider. The issue
is highlighted and analyzed by Cherkasova et. all in [38] that also propose a
new integrated framework of measurement and system modeling techniques
for anomaly detection and analysis of essential performance changes in appli-
cation behavior.

This dissertation copes the online failure prediction problem using a symp-
toms monitoring approach. In order to recognize the system state a Hidden
Markov Model classifier is implemented. The performance metrics represent-
ing the runtime system state are computed using Complex Event Processing
techniques, considering as input data only network data in a completely non-
intrusive fashion. According to the taxonomy introduced by [97] (see Figure
2.1) should be positioned in the “1.2.3” set: we use HMM as a classifier in
order to discover if the inferred state is failure-prone or not.

2.2 Black Box Monitoring and Non-intrusiveness

There are several definitions that can be found in literature about non-intrusiveness
and black-box monitoring. In order to clarify these concepts, we report our
definitions.

A non-intrusive monitoring system is a monitoring mechanism that
does not require to install software nor to log in on the monitored system’s

30 CHAPTER 2. RELATED WORK

hosts.

At the best of our knowledge, no pre-existent online failure prediction mech-
anism respect this definition.

Our definition of black-box monitoring follows:

A monitoring can be considered as Black-Box if considers the monitored
system components as black box (i.e. no knowledge of the application’s

internals and of the application logic of the system is analyzed) and if does
not try to recognize causality paths among the boxes.

The non-intrusiveness and black-box approach yields to the following ad-
vantages:

• privacy and policy issues are avoided;

• reusability of the framework requires only few implementation modifies;

• a Plug and Play framework can be obtained.

While the drawbacks are:

• Network performance can be varied by several factors that can trick the
monitoring;

• A (application-level) workload change can heavily affect the hosts (network-
level) behavior ([38] analyzes this problem);

• A network-level observer cannot distinguish from the several possible
kind of inactivities, while a monitoring software installed on the host
can easily do.

Some works in literature consider the problem of non-intrusiveness and of
black-box monitoring. Among these, is particularly important Aguilera et.
all [10] that considers the problem of discovering performance bottlenecks in
large scale distributed systems consisting of black-box software components:
systems usually without source code available and not accessible due to ven-
dors restrictions. The system introduced in [10] solves the problem by using
message-level traces related to the activity of the monitored system in a non-
intrusive fashion (passively and without any knowledge of node internals or
semantics of messages). In [10] the tools developed are aimed at the debugging
phase, not providing real-time results, hence their willing to use offline analy-
sis. It is an interesting work because has requirements near to mission critical
system analyzed in this dissertation. It also uses network traffic in order to
infer the dominant causal paths through the distributed system violating our
Black Box Monitoring definition.

2.3. CLASSIFICATION 31

2.3 Classification

Classification is one of the most frequently encountered decision making tasks
of human activity. A classification problem occurs when an object needs to
be assigned into a predefined group or class based on a number of observed
attributes related to that object [113]. Many problems in business, science,
industry, and medicine can be treated as classification problems. Examples in-
clude bankruptcy prediction, credit scoring, medical diagnosis, quality control,
handwritten character recognition, and speech recognition. The classification
is a particularly known problem in machine learning and statistics. It is a
basic task in data analysis and pattern recognition that requires the construc-
tion of a classifier : a function that assigns a class label to instances described
by a set of attributes [55]. In general each algorithm that implements classifi-
cation is known as classifier. The term classifier sometimes also refers to the
mathematical function, implemented by a classification algorithm, that maps
input data to a category. In the machine learning terminology, classification
is considered an instance of supervised learning, i.e. learning where a train-
ing set of correctly-identified observations is available. Several classifiers can
be found in literature, from the naive Bayes classifier to more complex ap-
proaches like neural networks. Particular interesting are a set of classifier that
automatically build their ruleset, called Learning Classifier Systems (see [99]
for a survey). More details on classifiers are out the scope of this dissertation,
but some details on some of the classification methods are provided below.

2.3.1 Bayesian Network Classifier

Bayesian networks are directed acyclic graphs whose nodes represent random
variables in the Bayesian sense: they may be observable quantities, latent
variables, unknown parameters or hypotheses. Edges represent conditional
dependencies; nodes which are not connected represent variables which are
conditionally independent of each other. Each node is associated with a prob-
ability function that takes as input a particular set of values for the node’s
parent variables and gives the probability of the variable represented by the
node. Similar ideas may be applied to undirected, and possibly cyclic, graphs;
such are called Markov networks. Several efficient algorithms are present that
perform inference and learning in Bayesian Networks, see [55] and [77] for a
comprehensive survey. A generalization of Bayesian networks that can repre-
sent and solve decision problems under uncertainty are called influence dia-
grams while Bayesian networks that model sequences of variables (e.g. speech
signals or protein sequences) are called dynamic Bayesian networks. The hid-
den Markov model can be considered as a simple dynamic Bayesian network.

32 CHAPTER 2. RELATED WORK

2.3.2 Decision Trees

The Decision Trees is a decision support tool that uses a tree graph and is
famous as a understandable way to graphically represent an algorithm. Are
used to identify the strategy to more likely reach a goal. The scope is to trans-
form a complex decision-making process into a collection of simpler decisions.
A decision tree is a graph that consists of 3 types of nodes: Decision nodes
commonly represented by squares; Chance nodes represented by circles; End
nodes represented by triangles. Please refer to[96] for a survey on Decision
Tree Classifiers.

2.3.3 Neural Networks

Artificial Neural Networks usually called neural network is a mathematical
model or computational model that is inspired by the structure and the func-
tional aspects of biological neural networks. A neural network consists of an
interconnected group of artificial neurons, and it processes information using
a connectionist approach to computation. In most cases an Artificial Neural
Networks is an adaptive system that changes its structure based on external or
internal information that flows through the network during the learning phase.
Modern neural networks are non-linear statistical data modeling tools. They
are usually used to model complex relationships between inputs and outputs or
to find patterns in data. There are three major learning paradigms on neural
networks, each corresponding to a particular abstract learning task. These are
supervised learning, unsupervised learning and reinforcement learning. Tasks
that fall within the paradigm of supervised learning are pattern recognition
(i.e. the classification) and regression (also known as function approximation).
The supervised learning paradigm is also applicable to sequential data (e.g.,
for speech and gesture recognition). See [113] for a survey on neural networks
classifiers.

2.3.4 Hidden Markov Models

A hidden markov models is a statistical model (i.e. a formalization of rela-
tionships between variables in the form of mathematical equations) in which
the system modeled is assumed to be a Markov process with hidden states.
Can be consider as the simplest dynamic Bayesian network. While in a reg-
ular Markov model the state is known to the observer, in a hidden Markov
Model the state is not visible but the output of the states, according to a given
probability, is visible. The sequences of output can hence gives information
about the sequences of hidden states. This model allow to recognize the state
of the modeled system starting from observation of it output, building in this

2.3. CLASSIFICATION 33

way a classification of the output symbols. This is the approach we followed.
Mathematical details of this model are given in section 3.3.

Hidden Markov Models applications

The first work in voice recognition [89], has launched the very large number of
today’s applications like clustering in time-series data [13], intrusion detection
[68] and many others in temporal pattern recognition such as, handwriting,
gesture recognition, part-of-speech tagging, speech recognition, musical score
following, partial discharges. A good number of works can be found in the
field of computational biology e.g.[50] and [70]. In [110] is presented a hu-
man action recognition method based on a Hidden Markov Models. To apply
HMMs, one set of time-sequential images is transformed into an image fea-
ture vector sequence, and the sequence is converted into a symbol sequence by
vector quantization. The predicting capabilities of the HMMs are also used
by Dockstader et. all in [44]: the problem of the detection and prediction of
motion tracking failures with application in human motion and gait analysis
is presented. The approach defines a failure as an event and uses the output
probability of a trained HMM to detect and a logarithmically transformed
probability to predict such events. The vector observations for the model
are derived from the time-varying noise covariance matrices of a Kalman fil-
ter that tracks the parameters of a structural model of the human body. A
medical application of HMM is presented in [69] where the hidden Markov
models are used to model ECG signals, [18] presents an original HMM ap-
proach for online beat segmentation and classification of electrocardiograms.
The HMM framework has been visited because of its ability of beat detec-
tion, segmentation and classification, highly suitable to the electrocardiogram
problem. The same author published [15] which originally combines HMM
and wavelets providing new insights on the ECG segmentation problem. A
P2P-TV traffic has been modeled using HMM in [57], by proposing a simple
traffic model that can be representative of P2P- TV applications. HMM is
often used for deviation detection and state diagnosis; [40] uses the Hidden
Markov Model formalism considering three aspects involved in component’s
state diagnosis: the monitored component, the deviation detection mechanism
and the state diagnosis mechanism. In [40] the use of hidden Markov models
is similar to this work: the monitored components’ state cannot be detected,
hence an estimation of these have to be done. Using a monitoring mechanism
and the forward algorithm of the HMM (see later) the components state can
be inferred. A deviation detection mechanism is also included in the model.
This approach can also be used for failure prediction as if a component state
is detected as faulty, a failure prone situation is present. Figure 2.6 depicts

34 CHAPTER 2. RELATED WORK

ponent is useful and contributes to the system activities or
it is better to keep it out. Actually, this more general fra-
mework allows to capture several possible scenarios, such
as: i) the component QoS decreases because of malfunc-
tions affecting the component itself, ii) the application using
the component changes the QoS requirements in such a way
that they do not match anymore with the specification of the
component under utilization, or iii) changes in the environ-
ment (e.g., system load) may lead to a change in the QoS
provided. Component obsolescence is a typical example of
case ii), while classical examples of case i) can be taken
from the system fault tolerance area.

Current and future systems and infrastructures are going
to be more and more characterized by heterogeneous com-
ponents, used for disparate applications which may change
their requirements during the lifetime, thus posing the pro-
blem of monitoring system components to assess when ser-
vices with unsatisfactory QoS is going to be released, and
for how long. Again, an over-time diagnosis is required,
to cautiously understand when a component is no more be-
neficial against withdrawing still useful ones. Several dia-
gnosis methods have been proposed, especially for what
concerns discrimination between transient and permanent
faults, which are mainly based on heuristic approaches.

This paper proposes a general framework and a forma-
lism to model over-time diagnosis scenarios, and to find ap-
propriate solutions to employ in specific systems. As such,
it is very beneficial to system designers to support design
choices. To this aim, we explore the suitability of the hidden
Markov models (HMM) formalism to represent in an intui-
tive but formal way the diagnosis problem. In fact, HMMs,
widely used in the pattern recognition field, are well suited
to represent problems where the internal state of a certain
entity is not known and has to be guessed from the exter-
nal observations of what this entity emits. Our framework
accounts for the full chain Monitored Component, Devia-
tion Detection and State Diagnosis (MC-DD-SD), by deve-
loping individual models for the three aspects involved, so
as to gain in generality.

The contribution of the newly developed formalization
is twofold. First, a new diagnosis mechanism is provided,
which is highly accurate being based on probabilistic in-
formation rather than on merely intuitive criteria like many
heuristics are based on. Second, because of its high gene-
rality and accuracy, the proposed approach may be usefully
employed: i) to evaluate the accuracy of cheaper on-line
heuristics to be employed as appropriate and effective dia-
gnostic means in real system applications; ii) for those dia-
gnostic mechanisms equipped with internal tunable parame-
ters, to assist the choice of the most appropriate parameters
setting to enhance effectiveness of diagnosis; and iii) to al-
low direct comparison of alternative solutions.

The rest of this paper is organized as follows. Section 2

presents the main entities involved in the diagnosis scheme,
and refers some related work. Section 3 briefly exposes the
theory of hidden Markov models, while the next Section
4 shows how to formalize the diagnosis problem using the
HMM theory. Section 5 elaborates on the comparison of our
approach with Bayesian inference. Section 6 shows how the
new HMM-based formalization allows to set up a probabi-
listic state diagnosis mechanism and presents the results of
a numerical analysis devoted to evaluate the proposed dia-
gnostic mechanism and its usage to asses the goodness of
less costly heuristics. Finally, conclusions and future work
are drawn in Section 7.

2 The diagnosis problem

To tackle the diagnosis problem, all the involved system
aspects need to be properly addressed. There are three main
entities taking part in the diagnosis picture (Figure 1):

SDDDMC
state

(hidden)

deviation
detections

diagnostic
judgement

results of
DD checks

on component
behavior

judgement
on the component

state

interpretation
of component

behavior

Figure 1. Architectural view of the diagnosis
scheme

• The Monitored Component - MC. The first aspect con-
cerns the system component under monitoring, which
is properly working when first introduced in the system
and that may change its healthy state because of faults
it is exposed to during the lifetime. The internal state
of the component is of course not visible to other com-
ponents/systems it interacts with, but what these last
perceive is the external behavior of the former through
its emitted outputs.

• The Deviation Detection mechanism - DD. Deviation
detection mechanisms are in charge of understanding
whether the monitored component is properly working
or is manifesting an unsuitable behavior. In general
terms, an unsuitable behavior could be the result of:
i) the manifestation of a fault affecting the component
which leads such component to depart from its func-
tional specification, or ii) it could be determined by
a change in the requirements of the application using
the service provided by the component itself, or iii) by
changes in the environment (e.g., system load) which
leads to a change in the QoS provided. In the literature
on fault tolerance, a wide variety of error detection me-
chanisms are available, which are classified in different
categories according to several criteria, among which
the type of checks they perform, the implementation

Figure 2.6: The pre-component diagnosis scheme of [40].

the per-component diagnosis scheme. The approach used in this dissertation
is the same, with some important differences: in this thesis we model the state
of the entire system as a hidden state that is unknown, not considering the
components independently for the prediction purposes. Our approach embod-
ies the deviation detection of the state of the system and use it to predict
future failures, using the same forward algorithm.

2.4 Events, Event Processing, Event Based Program-

ming

There are several definition of “event”: Mani Chandy [37] defines an event as
“a significant change in a state” where a significant state change is a change
in the “real” state that deviates from the “expected” state and a “deviation”
is significant enough when it causes a change in plans. Opher Etzion (IBM,
[53]) defines an event as:

• An occurrence within a particular system or domain; that is something
that has happened or is contemplated as having happened in that do-
main.

• In a computing system, event means a programming entity that repre-
sents such an occurrence.

Opher Etzion also defines event processing as follows:

Event Processing is computing that performs operations on events.
Common Event Processing operations include reading, creating, transforming

and deleting events.

and event based programming as follows:

Designing and coding applications that make use of events, directly or
indirectly.

2.4. EVENTS, EVENT PROCESSING, EVENT BASED
PROGRAMMING 35

Note that according to this definition, it is possible to write event-based pro-
grams without using Event Processing. In [53] can be found the following
“reasons for using event-driven computing”:

• real-Time operational behavior: a common reason for using event-driven
computing systems is to be able to change the behavior of the system
dynamically in order react to react to incoming events. Matching auction
buyers and sellers is an example of this type, the result of the match
then determines the subsequent flow of the system. Another example is
automatic re-routing of luggage when a passenger’s itinerary changes.

• Observation: another reason to use event-driven computing systems is
to look for exceptional behavior and generate alerts when such behavior
occurs. In such cases the reaction, if any, is left to the consumer. The
job of the event processing application is just to produce the alerts.
Examples of observation are regulation compliance systems, as well as
the patient monitoring system described above.

• Information dissemination:a third reason for using event-driven comput-
ing systems is to deliver the right information to the right consumer in
the right granularity at the right time in other words personalized in-
formation delivery. Examples of this type are personalized alerts from
banking systems, and the emergency system sending alerts to first re-
sponders.

• Active diagnostics: here the goal of the event processing application is
to diagnose a problem, based on observed symptoms. The mechanical
failure case is such an example; a help-desk system is another example.

• Predictive processing: Here the goal is to identify events before they
have happened, so that they can be eliminated or at least have their
affects mitigated. The fraud detection example is of this kind.

2.4.1 Complex Event Processing

Complex Event Processing (CEP) is important to this work as well as Hidden
Markov Models. CEP is an active research field recently used for the develop-
ment of monitoring and sense-and-respond applications [76]. It addresses two
crucial prerequisites in building highly scalable and dynamic systems: medi-
ation of the information in the form of events and detection of relationships
among them, i.e. temporal relationships that can be identified by defining
correlation rules (often called Event Patterns). In CEP, three fundamental
concepts are defined: event streams, correlation rules, and event engine. An

36 CHAPTER 2. RELATED WORK

event is a representation of a set of conditions in a given time instant. Events
belong to streams: events of the same type are in the same event stream
[53]. Correlation rules are commonly SQL-like queries (but also other types of
queries are possible [45]) used by the event engine in order to correlate events:
i.e.,in order to discover temporal and spatial relationships between events of
possibly different streams (to filter only the relevant ones, or to perform cal-
culation among them). The engine takes in input the streams and correlates
events belonging to both different streams and the same stream, according to
the correlation rules. The concept of correlation can be very articulated since
events can be correlated spatially and temporarily; it can be joined and fil-
tered; new streams can be created at runtime; also new events can be created
composing other events, creating in this way what is called complex events.

Common Complex Event Processing application fields are:

• Business: process management and automation (process monitoring,
BAM, reporting exceptions, operational intelligence)

• Finance : algorithmic trading, fraud detection, risk management.

• Distributed systems: Network and application monitoring (intrusion de-
tection, SLA monitoring;

• Sensor network applications: RFID reading, scheduling and control of
fabrication lines, air traffic.

The reason for which it is being adopted in all the previous fields is that it
takes much of the complexity out of developing applications that detect pat-
terns among events, filter events, aggregate time or length windows of events,
join event streams, trigger based on absence of events etc. A primary difference
with system relying on classical SQL databases is that CEP engines do not
query a repository for events matching some conditions, but instead trigger
customized actions as the flow of events come in matching event conditions -
hence drastically reducing the latency. Technically there are other important
differences between the way in which the data are processed in the classical
DBMS and the Data Stream Management Systems. Figure 2.7 and Table 2.1
emphasize these differences.

There are several commercial products that implement the CEP paradigm
(e.g. Esper [3], JBoss Drools Fusion [87], IBM System-S [4], Sec. 2.4.3 de-
scribes some of these). Among those currently available, in the experimental
evaluation and in the prototype developed in this work, has been chosen the
well-known open source event engine Esper [3]. The use of Esper is motivated
by both its low cost of ownership compared to other similar systems (e.g. IBM
System S [4]), its offered usability, and the ability of dynamically adapting the
complex event processing logic by adding at run time new queries.

2.4. EVENTS, EVENT PROCESSING, EVENT BASED
PROGRAMMING 37

DISK

Main Memory

Query Processing

Main Memory

SQL query Result

Data Stream(s) Data Stream(s)

Knowledge
Base

Result

Query Processing

Continuous Queries

Figure 2.7: Conceptual difference between DBMS on the left and DSMS on

the right.

Table 2.1: Main differences between DBMS and DSMS.

DBMS DSMS

Persistent relations Transient streams

One-time queries Continuos queries

Random access Sequential access

“Unbounded” disk store Bounded main memory

Only current state matters Historical data counts

No real-time services Real time requirements

Relatively low update rate Multi arrival and variable rate

Data at any granularity Data at fine granularity

Assume precise data Data imprecise

38 CHAPTER 2. RELATED WORK

2.4.2 Complex Event Processing applications

Detecting event patterns, sometime referred to as situations, and reacting to
them are in the core of Complex Event Processing (CEP) and Stream Process-
ing (SP), both of which play an important role in the IT technologies. Business
intelligence, air traffic control, collaborative security, complex system software
management are examples of such applications. A very interesting work is
[53] where the major concepts of event-driven architectures are introduced
and how to use, design, and build event processing systems and applications
is shown. A definition of CEP follows:

Complex Event Processing is an event processing that combines data
from multiple sources to infer events or patterns that suggest more

complicated circumstances

Several uses of the CEP paradigm can be found in literature, applications
can be found in the fields. In particular, IBM System S[4] has been used by
market makers in processing high-volume market data and obtaining low la-
tency results as reported in [14, 114]. In the financial sector, as overviewed
in [9], several patterns can be recognized. IBM System S as other CEP/SP
systems, e.g. [12, 86], are based on event detection across distributed event
sources. Detection of particular cyber attacks and cyber security in general
is a recent application of the CEP concept as overviewed in [17]. A recent
application of CEP is in CoMiFin European Project. The aim of CoMiFin
is to develop a middleware for the protection of networked financial players
from cyber attacks by analyzing network data sources coming from several
financial institutions. In [16] and [93] the idea of the project and the Seman-
tic Room abstraction is presented. Treating events introduces the problem of
data dissemination supporting complex event processing: basic events, poten-
tially occurred at different sites, are correlated in order to detect complex event
patterns formed by basic events that could have temporal and spatial relation-
ships among them. A fundamental functionality is the data dissemination that
brings events from event producers to event consumers where complex event
patterns are detected. In [25] the characteristics that a Data Dissemination
service should have in order to support complex event pattern detection are
discussed. The issue of using massive complex event processing among hetero-
geneous organizations for detecting network anomalies and failures has been
suggested and evaluated in [63], who proposes using network-wide analysis of
routing information to diagnose (i.e., detect and identify) network disruptions.

2.4. EVENTS, EVENT PROCESSING, EVENT BASED
PROGRAMMING 39

2.4.3 Complex Event Processing engines

Almost all the research centers of the major companies have developed their
CEP implementation. From IBM to Google inc., several CEP systems are
available in the market. In general, these systems are quite complex and ex-
pensive systems and sometimes hard to test. There are no several differences
between the various implementations. However, all of them share the same
concept: the data flow through the system; the system consists of a princi-
pal engine which detects temporal and spatial relationships between the data.
These relationships are identified by means of long running queries issued by
the engine on the data. The queries are generally specified in SQL-like lan-
guages or by means of ad-hoc mechanisms. Each implementation has their
programming language in order to define the set of the rules, in [53] can be
found a brief description of the languages used by ALERI, APAMA, Esper,
ETAILS, RULECORE, STREAMBASE. All of this are Complex Event Pro-
cessing engine, or Stream Event Processing engine. The CEP systems are also
equipped with a number of adapters: the adapters analyze miscellaneous infor-
mation, coming from heterogeneous human and computer-generated sources
(e.g., audio and video data, sensors data, text, e-mail, IM, web logs). The
adapter takes the raw data generated by those sources and transforms the
data in a format that can be read by the main correlation engine. To this end,
standard adapters that come with the main CEP technologies can be used for
such purposes. However, for complex specialized systems, ad-hoc adapters can
be created that take in input the specific data that are to be analyzed.

Esper

As a case study we consider Esper (Event Stream and Complex Event Pro-
cessing). Esper is an Event Stream Processing (ESP) and Complex Event
Processing engine written in Java. It provides an event stream processing
module, including event representations and event pattern matching, support-
ing the extraction of meaningful information from the large amount of data
within a stream. In ESPER, while the events pass through memory, the query
engine continuously sieves for the relevant events that may satisfy one of the
correlation queries; it performs calculations and it trigger a listener if a query
is satisfied. This technique is also known as continuous query. Figure 2.8
depicts the archi tecture of esper. The queries are defined using an SQL-like
query language named Event Processing Language (EPL). EPL can thus sup-
port all SQL’s conventional constructs such as Group By, Having, Order By,
Sum, etc. However it adds further constructs (e.g., the pattern) that allows
it to perform complex correlations among events. The main difference and
addition to SQL is the ability of EPL to detect Patterns among events (i.e.,

40 CHAPTER 2. RELATED WORK

Figure 2.8: Esper architecture

the ability to perform event correlations). A pattern may appear anywhere in
the from clause of an EPL statement including joins and subqueries. The per-
formance of this CEP engine are very interesting since can easily process more
than 100.000 events per seconds even over an off-the-shelf laptop. This means
that can easily cope with the real time requirements that we have. In section
3.2 provide some details about EPL and how has been used to represent the
system state.

System S

The IBM System S [4] is the CEP engine developed by the IBM and is inter-
esting in several ways. Define a new abstraction of Processing Element(PE),
a computing node that can be a single node, a process or more in general
an entity that performs their functionality. The event streams or the streams
(having a adapting phase supports several kinds of data) is constricted to pass
through a given set of these PE and depending on this set the wanted result
can be achieved. Has event several other properties, some of them are:

• Supports structured and unstructured datastream processing;

• Can be scaled from one to thousands of computer nodes;

• At runtime can execute a large number of jobs

While all the CEP implementations found uses a SQL-like or, more generally,
a logical language in order to specify the rules, System S uses a language that
allows to create the rules only specifying which are the interconnection among

2.4. EVENTS, EVENT PROCESSING, EVENT BASED
PROGRAMMING 41

the several available processing elements. So, what we have is a graph for each
query (just to remain in a SQL-like fashion), and not a statement. Obviously
allows the users to create their processing element. Since is thought for all
kind of user, a processing element can be created in several ways: using a
programming language, if the users has computer science skills or even using
quasi-natural language, starting from ontologies [45]. System S is one of the
more complex and powerful system of this family but is not affordable and
this limit their use for research purpose.

Drools Fusion

JBoss Drools Fusion [87] is a module responsible for enabling event processing
capabilities in unified behavioral modeling platform. Support asynchronous
multi-thread streams: Events may arrive at any time and from multiple sources
(or streams). They can also be stored in cloud-like structures. Drools Fusion
supports both work with streams and clouds of events. In case of streams it
supports asynchronous, multi-thread feeding of events. Support for temporal
reasoning: events usually have strong temporal relationships and constraints.
Drools Fusion adds a complete set of temporal operators to allow modelling
and reasoning over temporal relationships between events. Support events
garbage collection: events grow old, quickly or slow, but they do grow old.
Drools Fusion is able to identify the events that are no longer needed and dis-
pose them as a way of freeing resources and scaling well on growing volumes.
Support reasoning over absence of events: the same way in that it is necessary
to model rules and processes that react to the presence of events, it is necessary
to model rules and processes that react to the absence of events. Example: ”If
the temperature goes over the threshold and no contention measure is taken
within 10 seconds, then sound the alarm”. Drools Fusion leverages on the
capabilities of the Drools Expert engine, allowing it complete and flexible rea-
soning over the absence of events, including the transparent delaying of rules
in case of events that require a waiting period before firing the absence. Sup-
port to Sliding Windows: a especially common scenario on Event Processing
applications is the requirement of doing calculations on moving windows of
interest, be it temporal or length-based windows. Drools Fusion has complete
support for Sliding Windows, providing out of the box aggregation functions
as well as leveraging the plugable function framework to allow for the use of
users defined custom functions.

RTM Analyzer One of the problems that you find approaching the develop
of a CEP engine is that the costumer wants to use it, taking advantage of all
the functionalities offered, without ”adapt” the events that already travel in

42 CHAPTER 2. RELATED WORK

his existing system. One of the CEP systems that cope this problem is RTM
Anayzer [1]. This offer their services having two important adapting modules,
one for the input data and one for the output. It use SQL as rules programming
language and can do

• filtering

• correlation

• aggregation

and continuous detection of

• trends

• patterns

Even if RTM comes with an explicit adapter module, the others systems sup-
port and implement this concept of adapter in a more implicit fashion.

TIBCO Business events

The TIBCO develops Business Events [2]. The key features are about the
modeling, the rule engine and the way in witch it captures the events. Busi-
ness Event requires an UML-based state model to describe how applications
and services interact as part of activities and processes. Regarding the Rule
Engine, in this system is based on the industry-standard RETE protocol for
familiarity and stability, the BusinessEvents rules engine has been recompiled
and tuned to support simultaneous application of thousands of rules to millions
of events. The events are routed across TIBCO’s integration and messaging
infrastructure as well as other vendors’ implementations of JMS and other in-
tegration platforms including IBM’s MQSeries messaging software. Actually
the modeling portion is not required from the others systems and this leads
TIBCO to be one of the less scalable and usable CEP engine in an existing
system.

PROGRESS—APAMA

Relevant differences between this approach and the others is for sure the sev-
eral IDE available, as well as an integration framework (works like the adapters
in RTM Analyzer). But is interesting even the tools dedicated to a sophis-
ticated backtesting and analysis for the Progress Apama environment, called
APAMA Data Player. They enable Apama users to investigate the likely be-
havior of Apama Scenarios prior to deployment, as well as analyze the actual
performance of those Scenarios already in production.

Chapter 3

Model and Basic Techniques

Symptoms based Online Failure Prediction requires a monitoring phase in
which the system is observed. In this phase are identified which are the basic
information used to represent the runtime system state. We call them input
data and must capture the symptoms of faults. The input data need to pass
through a pre-processing: a computation phase which aim is to provide, start-
ing from basic information, complex informations representing the state of the
system. The representation of the system has to be classified as failure-prone
(i.e. symptoms of faults have been recognized and an upcoming failure is
likely occurring) or safe. The classification phase, starting from a representa-
tion of the state, provides an estimation about its safety. An adaptation of the
state representation, in order to make it feasible for the mathematical model
used by the classification phase, is often required. As soon as a failure-prone
estimation is recognized, a failure prediction has to be triggered by means of
alerts. We call this sequence of steps Online Failure Prediction chain, depicted
in Figure 3.1.

Input Data

Classification

State
Estimation

Pre-Processing

State
Representation

Failure
Prediction

Alerts

Monitoring

Input Data

Figure 3.1: Online Failure Prediction chain.

43

44 CHAPTER 3. MODEL AND BASIC TECHNIQUES

Time

Failure

Symptom

Fault

Prediction Limit

time-to-prediction time-to-failure

Figure 3.2: Fault, Symptoms, Failure and Prediction

In this chapter is presented how we characterized these phases using Com-
plex Event Processing in the pre-processing phase and Hidden Markov Mod-
els as classifier of the system state, bonded by means of an aggregator; This
chapter also introduces the failure and prediction model followed in this dis-
sertation.

3.1 Failure and Prediction Model

We model the distributed system to be monitored as a set of nodes that run one
or more services. Nodes exchange messages over a communication network.
Nodes or services can be subject to failures. A failure is an event for which
the service delivered by a system deviates from its specification [22]. A failure
is always preceded by a fault (e.g., I/O error, memory misusage); however,
the vice versa might not be always true. i.e., a fault inside a system could not
always bring to a failure as the system could tolerate, for example by design,
such fault.

Faults that lead to failures, independently of the fault’s root cause (e.g.,
an application-level problem or a network-level fault), affect the system in
an observable and identifiable way. Thus, faults can generate side-effects in
the monitored systems till the failure occurs. This work is based on the as-
sumptions that a fault generates increasingly unstable performance-related
symptoms indicating a possible future presence of a failure, and that the sys-
tem exhibits a steady-state performance behavior with a few variations when

3.2. DATA PRE-PROCESSING 45

a non-faulty situation is observed. This assumptions are not new in literature,
[61, 105, 109] use similar ones.

A failure prediction mechanism consists in monitoring the behavior of the
distributed system looking for possible symptoms generated by faults, and
in raising timely alerts regarding software failures if symptoms become se-
vere. Proper countermeasures can be set before the failure to either mitigate
damages or enable recovery actions. The following definitions introduce some
important aspects in the task of prediction that are also represented in Fig-
ure 3.2.

The time to prediction is the time from the instant of the fault and the
instant in which a prediction is triggered.

The time to failure the distance in time between the occurrence of the
prediction and the software failure event (i.e. a deviation from a correct

behavior).

The prediction has to be raised before a limit time, beyond which the pre-
diction is not sufficiently in advance to take some effective actions before the
failure occurs.

The limit time is the time beyond which a failure prediction is not
sufficiently in advance to take effective actions.

As a matter of fact, an ideal failure prediction mechanism should produce zero
false positives, i.e., zero errors in raising alerts regarding failures, and exhibit
the maximum prediction time (i.e., it is able to produce an alert indicating
the prediction of a failure when the first symptom is observed).

3.2 Data Pre-Processing

We modeled the input data as events which are correlated and combined in
order to achieve complex information representing the state of the observed
system. In order to do this, we used a Complex Event Processing engine
called ESPER. Input data in real time are information that can be modeled
as events. The event streams representing the input data need to be correlated,
aggregated, and used to compute values representing metrics of performance.
Since the criticality of the speed in which a failure-prone situation needs to be
recognized (in order to maximize the time-to-failure) these calculation among
events have to be performed in real time, as soon as the information arrive.
Continuous queries techniques, and complex event processing in general, aim
is exactly this. Here we explain how a representation of the system state can
be built using a Complex Event Processing engine called ESPER, along with
its language to specify rules, called Event Processing Language.

46 CHAPTER 3. MODEL AND BASIC TECHNIQUES

ESPER

The CEP engine chosen is ESPER that implements the CEP paradigms and
provide a specific Event Processig Language in order to specify the continuous
queries.

Event Processing Language In the 1980’s, active databases technology
were implemented to satisfy the real-time processing need, stimulating the
creation and developing of languages to express rules and event patterns [46].
Today, we can find many computer languages dedicated to event processing
well-founded in some kind of a SQL-like language, such as Event Processing
Language from Esper project [3]. EPL was inspired by many of the ideas that
have come out of the research and industrial CEP communities [3, 24, 102,
108]. An example of an EPL query is the following one:

INSERT INTO replies

SELECT *

FROM events

WHERE

events.type == ‘reply’

The example demonstrates a number of the basic features of EPL. The From
clause references the input stream of a given event type. Event types are
mapped to Java classes. In the example, each event in the events stream
has type, size, timestamp and other properties which must also be present
on the associated Java class. The Where clause contains a simple expression
that evaluates to true whenever the property type is “reply”. The Select clause
selects all the properties from the events stream that satisfy the Where clause.
The ‘Insert Into’ clauses is an example of EPL extension to the SQL language.
The Insert Into clause references a second event type, “replies”, which defines
the type of the events that are output by the example query. Actually a new
stream of this event type is created at runtime. In the example, the mapping
is very simple, but EPL does allow for much more complex mapping between
event types. Another important EPL extension w.r.t. SQL is the possibility
to define input windows. An input window is conceptually near to a table in
a relational database. An input window can be temporal or spatial depending
on the fact that the number of events inside the window is decided secondly a
time-based rule or on a rule based on the number of events. In particular can
be defined four types of window:

• batch-space: wait for n events, calculate among the n events arrived in

3.2. DATA PRE-PROCESSING 47

a given stream. This kind of window is fixed in size and variable in time.
There is one calculation each n events, among exactly n events.

• batch-time: wait for n seconds, calculate among the events arrived within
the n seconds. This kind of window is fixed in time but variable in size.
There is one calculation each n seconds.

• sliding-space: wait for the firsts n events and after calculate among the
last n events as soon a new event arrives. Moving, fixed size window.
There is one calculation per event, among the last n events.

• sliding-time: when a new event arrives, calculate among the events ar-
rived in the last n seconds. Moving window, fixed time. There is one
calculation per event among a variable number of events.

The windows are needed to the event processing languages in order to embody
the concept of time, that is actually lacking in the SQL language. Among the
most useful constructs present in EPL, pattern allow to capture the causality
relation among events. Examples are:

• an A event followed by an A event;

• every A event followed by a B event;

• every A event followed by a B event which is followed by a C event.

Below we report an example of the use of the pattern.

INSERT INTO correlated_stream

SELECT *

FROM pattern(every A-> B).win:length(10)

In this example, the engine will detect an A event followed by a B event.
When B occurs the pattern matches; after the match, the engine will look for
the next event A that is followed by a B event. The pattern matcher restarts
and looks for the next A event. The Pattern clause is very powerful and can
be used in very different manner in order to cover practically all kinds of event
correlation. Note that according to the window defined, the relations among
events captured can be spatial or temporal: e.g. an event A followed by a
B event may not satisfy the query if the B event is not inside the window,
in the example inside 10 events batch-window. The “every” operator is very
important: the logic of the query varies according to the brackets and of the
position of it. Examples are:

• every (A→ B) detects an A event followed by a B event.

48 CHAPTER 3. MODEL AND BASIC TECHNIQUES

• every A→ B the pattern fires every A event followed by a B event.

• (A →every B) the pattern fires for an A event followed by every B
event.

• every A→ every B the pattern fires every A event followed by every B
event.

Patterns may be used in combination with the where clause, group by clause,
having clause as well as output rate limiting and insert into.

In any case a query is satisfied Esper allows three possible way to handle
the events that have satisfied it. In particular those events can be inserted
into another event stream (via the insert into operator), can be given to a java
method executed as soon as the query is satisfied (listeners and subscribers)
or both of the them. insert into is very powerful since can be used to create
a network of streams separating and joining them.

3.3 Classification

The classification is the heart of the online failure prediction. Given a repre-
sentation of the state of the system, a classifier has to provide, according to its
knowledge about the system, an estimation about the safety of the state. This
classification yields to a straightforward decision: if the system is recognized
as unsafe, trigger a failure prediction, don’t trigger it otherwise. As stated
before we chosen Hidden Markov Models to classify and recognize the state of
the system. Here we report the mathematical formulation of it and the clas-
sical algorithms defined on the HMM. Also details about the training of the
model are provided, which allow to build the knowledge base of the classifier.

Hidden Markov Models

Rabiner [89] with “An Introduction to Hidden Markov Model” illustrates very
well the model and how this model can be used in several way. Interested
readers can refer to [89] for further details on the model. Here some basic
concepts are reported.

HMM consists of a hidden stochastic process, i.e. a Markov chain whose
state is not observable (hidden) and a set of symbols. The hidden process emits
an observable symbol each time it changes state according to a probability dis-
tribution. In particular, the HMM is identified by the transition probabilities
of the hidden process and by the emission probabilities: the probability to
emit a specific observable symbol being the Markov process in a given state.
Formally an HMM consist of four elements:

3.3. CLASSIFICATION 49

1. a homogeneous first order Markov chain: a set {s0, s1, . . . , st, . . . } of
the process states at time t ≥ 0. The elements st assume values in
Ω = {ω1, . . . , ωN} where Ω is the set of the N possible states of the
model. The Markov chain is characterized by a N ×N matrix A, whose
elements are

ai,j := p(st = ωj |st−1 = ωi), ∀i, j = 1, . . . , N

and represent the probabilities to transit from the state ωi to ωj at time
t ≥ 2. Moreover the following property holds:

N∑
j=1

aij = 1, ∀i = 1, . . . , N

2. a set {o0, o1, . . . , ot, . . . } of the observable symbols at time t ≥ 0. This
is an identically distributed and discrete time stochastic process assum-
ing values in Σ = {σ1, . . . , σM}, where Σ is the set of the M possible
observable symbols, namely, the alphabet of the model.

3. a N ×M matrix B whose elements are

bk(σj) := p(ot = σj |st = ωk), ∀k = 1, . . . , N, ∀j = 1, . . . ,M

and represent the probabilities to emit a symbol σj at time t, given that
the state of the Markov chain is ωk. Each symbol of the alphabet Σ can
be emitted according to a given probability if the Markov model is in
state ωk.

4. a vector π(0) having the generic element πi(0) defined as follows:

πi(0) := p(s0 = ωi), ∀i = 1, . . . , N.

πi(0) represents the probability that the Markov chain is in the state
s0 = ωi at the initial time t = 0. The following property holds:

N∑
i=1

πi(0) = 1.

A generic HMM results completely defined by λ := (A,B, π(0)). Figure
3.3 is a graphical representation of a generic HMM.

50 CHAPTER 3. MODEL AND BASIC TECHNIQUES

ωN

Hidden Process

ω2

b1,1

a2,2

a2,3

bN,2 bN,Mb2,3b2,1

Symbols

a1,1
a3,N

ω3
a3,2

ω1

a1,3

σ1 σ2 σ3 σM

b2,2

Figure 3.3: A graphical representation of a generic Hidden Markov Model.

The ω1, . . . , ωN vertices are the hidden states of the Markov process. The

observable symbols are σ1, . . . , σM . Some elements of A and B matrices are

represented as edges.

In literature [89] three fundamental problems on HMM are defined:

• evaluation problem: consider a sequence of observable symbols O =
{o0, o1, . . . , oL} and a HMM . What is the probability that the given
sequence O can be generated by the HMM? This probability is called se-
quence likelihood. The Forward algorithm (sec. 3.3) provides an efficient
solution to this problem: given a sequence of observations, it computes
the probability that the HMM could emit the sequence O.

• decoding problem: given a sequence and a HMM, what is the most prob-
able sequence of hidden states the process has travelled through while
producing the given observation sequence? The Forward-Backward and
Viterbi algorithms (described later) provide solutions to this problem.
Formally given a sequence of observations O = {o0, o1, . . . , oL}, discover
the most probable hidden state sequence P? = {s0, s1, . . . , sL} able to
generate the observed sequence O.

• training problem: given a set of sequences of observations {Oi}{i=1,...,n},
what are the optimal HMM parameters (i.e. A, B, π(0)) to maximize the
probability of emitting each Oi? The Baum-Welch training algorithm
(described later) yields a solution by iteratively converging to at least a

3.3. CLASSIFICATION 51

local maximum.

Forward-Backward Algorithm

The Forward-Backward Algorithm is composed by two parts. The forward
part provides a solution for the computation of sequence likelihood (evaluation
problem), while the combination of the two part solves the decoding problem.
Given an observation sequence O = {ot}{t=0,...,L} and a HMM with parameters
λ = (A,B, π(0)), the likelihood of O is denoted with P (O|λ). If we assume
that the sequence S = {st}{t=0,...,L} of hidden states is known, P can be
computed by:

P (O|λ) = π(0)bs0(o0)
L∏

t=1

ast−1,stbst(ot),

Since only O is known, all the possible state sequences S have to be considered
and summed:

P (O|λ) =
∑
S

π(0)bs0(o0)
L∏

t=1

ast−1,stbst(ot).

Starting from this, an efficient reformulation exploiting the Markov condi-
tion (transition probabilities are time homogeneous and depend only on the
current state) yields to theForward algorithm.

Forward Algorithm. Assuming that the stochastic process is in state i at
time t, the “forward variable” αt(i) is defined:

αt(i) = P (ooo1 . . . ot, st = ωi|λ).

αt(i) can be computed recursively:{
α0(i) = πi(0)bsi(o0)
αt(j) =

∑N
i=1 αt−1(i)aijbsj (ot) 1 < t ≤ L

(3.1)

As αL(i) is the probability of the entire sequence having the stochastic
process in the state i at the end of the sequence, we can compute the sequence
likelyhood i.e. the solution of the evaluation problem:

P (O|λ) =
N∑

i=1

αL(i).

52 CHAPTER 3. MODEL AND BASIC TECHNIQUES

Backward Algorithm. The backward variable is defined as:

βt(i) = P (ot+1 . . . oL|st = ωi, λ)

and denotes the probability of the rest of the sequence ot+1 . . . oL having the
process in the state ωi at time t. βt(i) can be computed recursively in a similar
way: {

βL(i) = 1
βt(i) =

∑N
j=1 aijbsj (ot+1)βt+1(j) 1 < t ≤ L− 1.

(3.2)

Forward-Backward Algorithm. Combining the forward and backward
variables can be obtained the probability that the process is in the state ωi at
time t given an observation sequence O:

γt(i) = P (st = ωi|O, λ).

after some computation (please refer to [97] or [89]), can be obtained:

γt(i) =
αt(i)βt(i)
P (O|λ)

=
αt(i)βt(i)∑N
i=1 αt(i)βt(i)

.

Note that the implementation of this algorithms is not straightforward due
to some underflow problems. [112] and [111] cope this and several other prac-
tical problems in implementing a forward-backward algorithm for an explicit-
duration hidden Markov model.

Viterbi Algorithm

Viterbi Algorithm slightly modify the Forward-Backward algorithm by intro-
ducing the probability of the most probable state sequence for the sub-sequence
of observations o0 . . . ot that ends in the state ωi. Defined modifying the αt(i)
variable, that probability is the following:

δt(i) = max
s0...st−1

P (o0 . . . ot, s0 . . . st−1, st = ωi|λ).

δt(i) can be computed by substituting the sum in the 3.1 with the maximum
operator: {

δ0(i) = πibsi(o0)
δt(j) = max1≤i≤N δt−1(i)aijbsj (ot) 1 < t ≤ L

(3.3)

3.3. CLASSIFICATION 53

Training of Hidden Markov Model

Among the features of HMMs, the possibility to estimates the λ parameters is
of paramount relevance. The solution of training problem allows to estimates
the parameters, training in this way the model, using for instance recorded
sample data. In terms of HMMs, the goal of training is to maximize sequence
likelihood for training sequences. More precisely, the λ parameters have to
be set such that P (O|λ) is maximized. This is the approach followed in the
experimental evaluation in order to tune the HMM parameters of the archi-
tecture designed. The most important HMM training algorithm is known as
the Baum-Welch Algorithm.

The Baum-Welch Algorithm. In the forward-backward algorithm, the
HMM parameters (A and B matrices) were assumed to be fixed and known.
For convenience of explanation consider a simpler case where the sequence of
hidden states is known. The parameters of the HMM can be optimized by
maximum likelihood estimates:

• The probabilities π̂i are determined by the relative frequency of se-
quences starting in state ωi

π̂i =
number sequences starting in ωi

total number of sequences

• The elements of the A matrix i.e. transition probabilities are determined
by the number of transitions from ωi to ωj divided by the total number
of transition from the ωi state:

âij =
number of transitions(ωi, ωj)

number of transitions(ωi, ωk)∀ωk ∈ Σ

• The elements of the B matrix i.e. emission probabilities are determined
by the number of times the process has generated symbol σj (i.e. an
emission of σj) being in the state ωi divided by the number of time the
process has been in the state ωi:

b̂i(oj) =
number of σj emissions

number of times the process has been in state ωi

Note that if the training is “supervised”, the sequences of states is known
and what described is sufficient to build the A and B matrices and the πi

as well. This is the approach followed in this work. However, a description
of the Baum-Welch algorithm follows. The objective of the algorithm is to

54 CHAPTER 3. MODEL AND BASIC TECHNIQUES

provide expectation values for the unknown quantities and consist in a two-
step procedure. Based on an existing model λ′ (possibly obtained randomly),
the first step transforms the objective function P (O|λ) into a new function
Q(λ′, λ) that essentially measures a divergence between the initial model λ′

and the updated model λ. The second step consist in the maximization of the
Q(λ′, λ), since that Q(λ′, λ) ≥ Q(λ′, λ) implies that P (O|λ) ≥ P (O|λ′). The
algorithms continues by replacing λ′ and , λ and repeating the two steps until
some stopping criterion is met. The algorithm is of a general hill-climbing type
and is only guaranteed to produce fixed-point solutions, although in practice
the lack of global optimality does not seem to cause serious problems in recog-
nition performance [41]. More details regarding this algorithm can be found
in [90]. The Baum-Welch algorithm is not the only one solving the estimation
problem. Interested reader can refer to [90] to have other alternatives offering
different modeling perspectives.

3.4 Aggregator

Often the information required by mathematical or probabilistic models are
very simple, while a representation of a system state is something quite com-
plex. A software component that simplifies complex information may be useful
if not mandatory in such kind of application. This component can be partic-
ularly useful between the pre-processing phase and the classification phase
(see Figure 3.4) of the Online Failure Prediction chain. This section intro-
duce the Aggregator, a software component that simplifies the information by
aggregating them.

The aggregator is a software component that takes in input a vector V ∈
RN and gives in output a single value in an interval A ⊂ N, with |A| =
M (see Figure 3.4). The aggregator works using a fix square grid of RN

constituted by M = DN N−dimensional intervals, where D is the number
of 1-dimensional intervals per each component of RN . The N-dimensional
intervals are numbered from 1 to M . Figure 3.5 represents an example of the
defined square grid in R2 with M = 16.

In order to perform its task, the aggregator needs to know a-priori estima-
tions of the input vectors. In particular a maximum and a minimum values of
their components have to be provided during a configuration phase:

vi ∈ [vMin
i , vMax

i], ∀i = 1, . . . , N,

for each component vi of the input vectors V. Starting from V = (v1, v2, . . . , vN)
the aggregator defines a new vector Vnormalized = (v′1, v

′
2, . . . , v

′
N) as follows:

v′i :=
D(vi − vMin

i)
vMax
i − vMin

i

, ∀i = 1, . . . , N. (3.4)

3.4. AGGREGATOR 55

Pre-Processing

State
Representation

Aggregator

1
2
3
4

N

|A| = M

a∊A
Classification

Simplified State
Representation

O

Failure
Prediction

Alerts

Monitoring

Input Data

Classification

State
Estimation

Pre-Processing

State
Representation

Figure 3.4: Aggregator. N input lines receive a vector of numeric values.

The output will be a symbol belonging to an ordered set of integers. The

cardinality of the set has to be given.

ℝ1 2 3 40

1

2

3

4

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

ℝ

Figure 3.5: Example of square grid in R2 with D = 4.

56 CHAPTER 3. MODEL AND BASIC TECHNIQUES

The 3.4 simply normalizes each component vi (according to its maximum
and minimum values) in order to have v′i ∈ [0, D], for all i. This means
that Vnormalized identifies a point in the square grid defined before. Each
component of Vnormalized is now compared with the intervals of the grid in
order to identify the N−dimensional interval Vnormalized belongs to. Consider
the following example to clarify the aggregator behavior.

Example

Assume an aggregator in R2 tuned with a square grid of M = 16 2-dimensional
intervals. This means that there are D = 4 1-dimensional intervals per com-
ponent. Assume also that vMin

1 = vMin
2 = 0 and vMax

1 = vMax
2 = 100 Consider

for instance an input vector V = [51.34, 58.22]. Applying the 3.4 formula, the
normalized vector Vnormalized can be computed:

Vnormalized = (
4(51.34− 0)

(100− 0)
,
4(58.22− 0)

100− 0
) = (2.05, 2.034).

The vector Vnormalized obtained can be represented in the square grid, see
Figure 3.6. A comparison with the intervals boundary can easily identify the

1 2 3 40

1

2

3

4

(v’1,v’2)

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

ℝ

ℝ

Figure 3.6: Example of aggregator behavior with N = 2 and D = 4.

2-dimensional interval which the point belongs to. In this case the interval is
the number 11.

Chapter 4

Architecture

In this chapter the architecture designed for monitoring mission critical dis-
tributed systems, e.g. Air Traffic Control Systems, is presented. The architec-
ture has been named CASPER and implements all the techniques presented
in chapter 3. CASPER is characterized by the following features:

• online, as the failure prediction is carried out during the normal func-
tioning of the monitored system,

• non-intrusive, as the failure prediction does not use any kind of informa-
tion on the status of the nodes (e.g., CPU, memory) of the monitored
system; only information concerning the network to which the nodes
are connected is exploited as well as that regarding the specific network
protocol used by the system to exchange information among the nodes
(e.g., SOAP, GIOP); and

• black-box, as no knowledge of the application’s internals and of the ap-
plication logic of the system is analyzed.

Before introducing the architecture, some assumptions has to be done.

57

58 CHAPTER 4. ARCHITECTURE

4.1 Assumptions

Not every failure can be predicted efficiently, some can not be predicted at all.
The architecture presented has been developed using a strong assumption:
faults that lead to failures, independently of the fault’s root cause (e.g., an
application-level problem or a network-level fault), affect the system in an
observable and identifiable way. Thus, faults can generate side-effects in the
monitored systems till the failure occurs. Other assumptions are:

• A fault generates increasingly unstable performance-related symptoms
indicating a possible future presence of a failure.

• The system exhibits a steady-state performance behavior with a few
variations when a non-faulty situation is observed.

These assumptions are not new in literature ([61, 105, 109]) and are represen-
tative of a number of real situations experienced in real systems. We also recall
that faults that are dormant cannot be identified since, by definition [72], have
not been activated (see Figure 1.1). Errors that instantly lead the system to
a failure cannot be detected by the architecture presented. Instant failures
caused by hardware misbehaviors (e.g. power issues) cannot be predicted for
obvious reasons.

4.2 CASPER Architecture

The aim of CASPER is to recognize any deviation from normal behaviors of
the monitored system by analyzing symptoms of failures that might occur in
the form of anomalous conditions of specific performance metrics. In doing
so, CASPER combines, in a novel fashion, Complex Event Processing (CEP)
[76] and Hidden Markov Models (HMM) [89]. The CEP engine computes at
run time the performance metrics. These are then passed to the HMM in
order to recognize symptoms of an upcoming failure. Finally, the symptoms
are evaluated by a failure prediction module that filters out as many false pos-
itives as possible and provides at the same time a failure prediction as early
as possible. CASPER also provides hints about the identity of the faulty
hosts, using a regularity-based activity detection mechanism, along with the
prediction. Note that we use HMM rather than other more complex dynamic
bayesian networks [77] since it provides us with high accuracy, with respect
to the problem we wish to address, through simple and low complexity algo-
rithms. Figure 4.1 shows the principal modules of CASPER that are described
in isolation as follows.

4.2. CASPER ARCHITECTURE 59

CASPER

Symptoms Detection
Performance

Metrics
Computation

System State
Inference

Pre-
Processing

Symbols

Events

Network Packets

Inferred
System
State

Failure Prediction

Host N

Monitored System

Host 1 Host 2 Host 3

Communication Network

Actions

Hosts Activity Detection

Knowledge Base

Graph
Hosts

Ranking

Failure
PredictionEvents

Topology
Detection

Services
Ranker

Hosts
Ranker

Figure 4.1: The modules of the CASPER failure prediction architecture

4.2.1 Pre-Processing module.

It is mainly responsible for capturing and decoding network data required
to recognize symptoms of failures and for producing streams of events. The
streams of events carry a large amount of information that is obtained from
the entire set of network packets exchanged among the interconnected nodes
of the monitored distributed system (see Figure 4.1). Considering all the
packets allows CASPER to own a larger view of what is happening on the
network, thus augmenting the chance of discovering specific performance pat-
terns that show the evidence of possible symptoms of failures. The network
data the Pre-Processing module receives as input are properly manipulated.
Data manipulation consists in firstly decoding data included in the headers of
network packets. The module manages TCP/UDP headers and the headers
of the specific inter-process communication protocol used in the monitored
system (e.g., SOAP, GIOP, etc) so as extract from them only the information
that is relevant in the detection of specific symptoms (e,g., the timestamp of
a request and reply, destination and source IP addresses of two communicat-
ing nodes). Finally, the Pre-Processing module adapts the extracted network
information in the form of events to produce streams for the use by the two
main CASPER’s modules (see below).

60 CHAPTER 4. ARCHITECTURE

Performance Metrics
Computation

Aggregator

1

4

N

2

O
3

Event
Stream Symbols

CEP engine
σm∈Σ

Figure 4.2: Performance Metrics Computation component

Events in CASPER

As a completely non-intrusive framework, CASPER considers as input event
the fact that a network packet has been captured. Each network packet em-
bodies a plenty of information and, if the system to observe is middleware-
based, standard communication protocols are used. Each event will contain
application-agnostic information such as timestamp, source and destination
host and port number, and middleware information captured using a dissec-
tor, as state of the services, exceptions, requests and replies id. CASPER uses
all these information to build an event for each network packet. All these
events will be processed and correlated using Complex Event Processing tech-
niques. The objective is to represent the system state using only network data
captured at runtime from the system’s infrastructure.

4.2.2 Symptoms detection module.

The streams of events are taken as input by the Symptoms detection mod-
ule and used to discover specific performance patterns through complex event
processing (i.e., event correlations and aggregations). The result of this pro-
cessing is a system state that must be evaluated in order to detect whether it
is a safe or unsafe state. To this end, we divided this module into two differ-
ent components, namely a performance metrics computation component and
a system state inference component.

The performance metrics computation component

A CEP engine and an Aggregator (defined in sec 3.4) compose in the per-
formance metric computation component (see Figure 4.2). The module pe-
riodically produces as output a representation of the system behavior in the
form of symbols (see Figure 4.1). Note that, CASPER requires a clock mech-

4.2. CASPER ARCHITECTURE 61

anism in order to carry out this activity at each CASPER clock cycle. The
clock in CASPER allows it to model the system state using a discrete time
Markov chain and let the performance metrics computation component coor-
dinate with the system state inference one (see below). The representation
of the system behavior at run time is obtained by computing P performance
metrics, i.e., a set of time-changing metrics whose value indicates how the
system actually works (see later). The output of this module is a symbol σm,
where m = 1, . . . ,M per each clock cycle. Each symbol is built by the Ag-
gregator starting from a vector V of RP . The generic entry vi of V is the
mean value the performance metric i assumes during the past time interval.
The aggregator takes in input this vector of RP and returns an integer value
σm belonging to the finite alphabet Σ i.e. the alphabet of the observations of
HMM.

Real-time performance metrics

After long time of observations of several metrics of a real mission critical
distributed systems, we identified the following set of metrics that well char-
acterize the system, showing a steady behavior in case of absence of faults,
and an unstable behavior in presence of faults:

• Round Trip Time: elapsed time between a request and the relative reply;

• Rate of the messages carrying an exception: the number of replies mes-
sages with exception over the number of caught messages;

• Average message size: the mean of the messages size in a given spatial
or temporal window;

• Percentage of Replies: the number of replies over the number of requests
in a given spatial or temporal window;

• Number of Requests without Reply: the number of requests that, in a
given temporal window, do not receive a reply;

• Messages Rate: the number of messages exchanged in a given spatial or
temporal window.

All of these metrics are computed by the CEP engine starting from a stream
of events. The basic event considered is the the fact that a network packet
has been captured from the network. The motivation of this are the non-
intrusiveness and the black box observation we performed.

62 CHAPTER 4. ARCHITECTURE

The system state inference component

This module receives a symbol from the previous component at each CASPER
clock cycle and recognizes whether it is a correct or an incorrect behavior of the
monitored system. To this end, the component uses Hidden Markov Models.

We recall that HMM consists of a hidden stochastic process, a set of symbols
Σ and two probability matrices A and B as defined in Section 3.3. Figure 4.3
shows how we instantiated HMM in our architecture. The knowledge about
the possible systems state is embodied in the two matrices A and B. Each time
interval, one of the M symbols (i.e. σm,∀m = 1 . . .M) composing the alphabet
Σ, will be emitted by the performance metric computation component (more
precisely by the aggregator). CASPER uses the forward algorithm (3.3) to
recognize the most likely hidden state. If we examine the recursive formulation
of the forward probability calculation, we can see that it is assumed to have
an observation O = (o0, . . . oL) of L symbols when the algorithm begins. The
base step of the recursive formula starts from the first symbol o0 and all the
involved operations are commutative. Therefore, we modify the algorithm
in order to have an online version where a new instance of the vector αt(i)
is computed for each new symbol, using only αt−1(i). The main advantage
of this approach is that we can use an arbitrary, even infinite, length of the
observation L since we do not need to store all the L − 1 symbols but only
the last one. The computational complexity of the online version saves an L
multiplicative factor with respect to the recursive formulation on each run.
Each clock cycle this module produces in output the most likely hidden state.

4.2.3 Hidden Markov Model as a state recognizer

We model the state of the system to be monitored by means of the hidden
process. We define the states of the system (see Figure 4.3) as:

• Safe: the system behavior is correct as no “active fault” [22] is present;

• Unsafe: some faults, and then symptoms of faults, are present. There
will be an unsafe state per each kind of possible fault. We assume a
finite number of k typologies of faults (e.g., memory stress, disk stress).

The number of states N is the sum of the k unsafe states and the safe state:
N = k+ 1. We assume that initially the system is in the safe state: if we call
it ω1, then

π1(0) = p(s0 = ω1) = 1

Since the state of the system is not known a priori, we can observe it only
looking at the emissions of symbols. Figure 4.3 represents the emitted sym-
bols as the set of {σ1, σ2, σ3, . . . , σM}. In addition, Figure 4.3 shows labeled

4.2. CASPER ARCHITECTURE 63

Unsafe2 Unsafek

Hidden Process

0.8

0.2 0.6 0.4 0.2 0.9

0.2 0.7

0.3

σ1 σ2 σ3 σM

Symbols

Unsafe1Safe

Figure 4.3: Hidden Markov Models graph used in the system state inference

component

edges among the vertices of the hidden process; these represent the values
of the A matrix, i.e., the matrix of the transition probabilities. In contrast,
the edges that connect the states of the hidden process to the symbols are
the probabilities to emit a given symbol σm, that is, the B matrix of HMM.
CASPER considers as emissions a combination of the performance metrics
described before, that the aggregator gives in output periodically. The idea
of the aggregation is similar to the approach found in [104] and [59] presented
in Chapter 2 (Figure 2.5 and Figure 2.3 respectively), but with several dif-
ferences. The HMM classifies each observable symbol σm in one of the N
hidden states. According to our definition of σm, HMM actually classifies
each N-dimensional interval created by the aggregator. Figure 4.4 clarifies the
concept representing a situation with 2 performance metrics p1 and p2 using
the aggregator configured with M = 16. Each of the 2-dimensional intervals is
classified as unsafe or safe by the HMM. The red circle in Figure 4.4 represent
a symbol σ11 = 11.

The aggregator mechanism, combined with the HMM, allows to classify
each N-Dimensional interval produced by the aggregator as safe or unsafe1

in a completely automated way. The system can build its knowledge base
(actually constituted by the A & B matrices) without knowing in advance the
critical values (i.e. values assumed if symptoms of fault are present) for the

1Anyone of the states of the Hidden Markov Process.

64 CHAPTER 4. ARCHITECTURE

p1

p2

1 2 3 40

1

2

3

4

Unsafe Zones

Safe Zone

p1

p2

1 2 3 40

1

2

3

4

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

Figure 4.4: Unsafe and safe zones of a two-performance metrics square grid.

performance metrics. With respect to other classification mechanisms that
require human intervention in order to recognized the thresholds, to build the
decision tree, to build the bayesian network and so on, this is an advantage.
Another advantages that comes from the use of the HMM is the lightweight of
the knowledge base. The whole architecture can be trained building the A&B
matrices and tuning the parameters in a testing environment and after sent
via mail to the field where has to be used. The drawbacks are (i) that and the
choice of the number of symbols M is critical and (ii) the maximum values of
the performance metrics has to be known in advance2.

4.2.4 Hosts Activity Detection Module

The symptoms detection module analyzes the observed distributed system
behavior as a single component. Therefore the inferred system state represents
the state of the whole distributed system: nothing can be stated regarding the
single hosts. The Host Activity Detection Module (HADM) aim is to cope
this problem, providing a periodic snapshot of the hosts status. In particular
the HADM allows to:

• disclose the network topology of the observed system in a completely
non-intrusive fashion;

2Know in advance e.g. the maximum Round Trip Time that will arrive can be a problem

but some automated solutions have been developed.

4.2. CASPER ARCHITECTURE 65

• create a ranking of the network level services based on their regularity
in term of network activity, i.e. the mean number of message produced
in a given temporal window;

• create a ranking of the network hosts based on the per-host services
ranking.

In order to perform these actions, the HADM uses exactly the same event
stream produced by the pre-processing module. The HADM architecture
embodies three components namely Topology Detector Component, Service
Ranker and Hosts Ranker. A description of these components is now pro-
vided.

Topology Detector Component

Since each event received by HADM represents a network packet exchanged by
two hosts in a given port, it is easy to represent all the interactions among the
hosts using a graph. The aim of this submodule is to provide a representation
of the network topology of the system observed that is updated in real time.
Each hosts is represented as a vertex of a graph. Each logical link between
two hosts is represented as a directed edge between two vertices. A logical
link (edge) represents a connection between two hosts using a source port and
a destination port. If there are more connections among two hosts there are
more edges, obtaining in this way a directed multi-graph, otherwise known as
pseudograph (see Figure 4.5). The idea behind this submodule is not only to
represent the topology, but also to provide some real-time information about
the hosts and about the links among them. In order to do this, among the
several off-the-shelf libraries, we chose JUNG [6]. JUNG allows to graphically
represents the topology in real time, but also to use vertices/edges colors and
shapes to represent several information in a quick and understandable way:
e.g. if the message rate of a given link is too high, the relative edge can be
drawn thicker, if an host is inactive i.e. it does not send messages, the relative
vertex can be drawn black and so on. Figure 4.5 shows an example of JUNG
output. We also invite to view a video3 to have an idea of the output produced
in real time by this module and of the whole framework during its functioning.

3link to the video: www.cis.uniroma1.it/projects/casper.php

66 CHAPTER 4. ARCHITECTURE

Figure 4.5: An example of graph representing a 9-nodes ATC system. The

black nodes are inactive nodes while the white node is a source node (with no

inner edges). The dotted edges are inactive network links, the number on the

edges is the port number.

4.2. CASPER ARCHITECTURE 67

Services Ranker component

The Service Ranker Component takes in input a live updated graph and assign
to each service a vote based on its regularity. A host is the source of at least
one but usually several services. The Services Ranker component provides a
ranking among all the services of the hosts. This ranking is used twice: is pro-
vided to the operator and is given in input to the Host Ranker Component (see
Figure 4.1). The ranking is calculated using the vote assigned (and updated)
to each service periodically, basing on a mathematical function of the service
outer message rate. Simply spoken, if the average message rate of a service
is near its historical rate then the vote is decreased otherwise is augmented.
To compute the historical rate we used the exponential moving average, also
known as exponentially weighted moving average (E.M.A.) defined as follows:

E.M.A. :=

{
S1 = Y1

St = αYt + (1− α)St−1 t > 1.

where the coefficient α represents the degree of weighted decrease, a constant
smoothing factor between 0 and 1. A higher α discounts older observations
faster. Yt is the observation at a time period t. St is the value of the E.M.A.
at any time period t. Given that any service has its own vote, it is easy to
compute a ranking among all the services of one host. This ranking can be
used to point out the services with higher vote i.e. a worse behavior. There are
two adjustable parameters in this ranking feature: (i) the deviation between
the average (how much the Yt is far from the average) and (ii) α. Both the
parameters can be tuned in real time using the CASPER GUI 4.

Hosts Ranker Component

The output of the previous Services Ranker component is used to compute
a ranking among the hosts. This ranking is provided to the operator and is
combined with the output of the Symptoms Detection module by the Failure
Prediction Module. The hosts ranking submodule uses two information to
compute its output: (i) the per-host ranking of the services and (ii) a perfor-
mance metric already used in CASPER, the request over replies (the number
of messages whose type is request over the number of messages whose type is
reply). Each host will be equipped with a vote, as did with the services. The
host ranking is computed by multiplying the sum of all the votes of its services
and its ratio request over reply. The ratio will be 1 if the host received the
same number of requests and replies. If it receives more requests this means

4CASPER GUI can be seen in the video linked in the previous footnote.

68 CHAPTER 4. ARCHITECTURE

that the host is overloaded, the ratio will be major than 1 and their vote will
be higher (worse). If otherwise the host sends more replies w.r.t. the requests,
the ratio will be less than 1 and the vote will be lower (better).

4.2.5 Failure Prediction module

It is mainly responsible for correlating the information about the state received
from the System State Inference component and from Host Ranker component.
It takes in input the inferred state of the system at each CASPER clock-
cycle and the host ranking. The inferred state can be a safe state or one of
the possible unsafe states unsafe1 . . . unsafek. Using the CEP engine, this
module counts the number of consecutive unsafei states and produces a failure
prediction alert when that number reaches a tunable threshold (see below).
We call this threshold window size, a parameter that is strictly related to the
time-to-prediction shown in Figure 3.2. The alert will also contain the ranking
of the hosts so the operator can have an overview of the single hosts, in the
moment of the prediction.

4.3 Training and Tuning of CASPER

4.3.1 Training of the model

The knowledge base (see Figure 4.1) concerning the possible safe and unsafe
system states of the monitored system is composed by the matrices A and B
(defined before, sec. 3.3) of the system state inference module. This knowledge
is built during an initial training phase. If the A matrix represents how the
system behaves, the B matrix represents what we can see about the system
behavior. To adjust the entries of these matrices is the solution to the training
problem defined before. It is the most difficult of the three problems: there is
no known way to solve for a maximum likelihood model analytically; moreover
solve this problem without knowledge about the path of system states is a NP
Complete problem and can only be approximate using heuristics and complex
algorithms (e.g. Baum-Welch algorithm, see 3.3). If the path of hidden states
that generates the observations is known, the parameters of the matrices can be
calculated using the maximum likelihood re-estimation technique [89]. This
architecture contains the latter technique: during the training, CASPER is
fed concurrently by both recorded network traces and a sequence of pairs
<system-state,time> that represents the state of the monitored system (i.e.,

4.3. TRAINING AND TUNING OF CASPER 69

safe, unsafe1, . . . , unsafek) at a specific time5. No training is required for
the other parts of the architecture.

4.3.2 Tuning of CASPER parameters

CASPER architecture has three parameters to be tuned whose values influence
the quality of the whole failure prediction mechanism in terms of false positives
and time-to-prediction. These values are:

• length of the CASPER clock period ;

• number of symbols output by the performance metrics computation mod-
ule, i.e. the parameter M of the aggregator;

• length of the failure prediction module window size.

The length of the clock period influences the performance metrics computation
and the system state inference: the shorter the clock period is, the higher the
frequency of produced symbols is. A longer clock period allows CASPER to
minimize the effects of outliers. The number of symbols M influences the sys-
tem state inference: if a high number of symbols are chosen, a higher precision
for each performance metrics can be obtained but also a lower repeatability
of the symbols emitted. The repeatability is fundamental since the knowl-
edge base is built according to the frequency of symbols being the system in a
given hidden state (see The Baum-Welch Algorithm, sec. 3.3) and likely two
“near values” represent the same system state. Too many symbols imply less
repeatability as clarified in Figure 4.6 example.

The failure prediction window size corresponds to the minimum number of
CASPER clock cycles required for raising a prediction alert. The greater the
window size, the more the accuracy of the prediction, i.e., the probability that
the prediction actually is followed by a failure (i.e. a true positive prediction).
The tradeoff is that the time-to-prediction increases linearly with the windows
size causing shorter time-to-failure (see Figure 3.2);

During the training phase, CASPER automatically chooses the best values
for both clock period and number of symbols, leaving to the operator the
responsibility to select the windows size according to the criticality of the
system to be monitored.

5As the training is offline, the sequence of pairs <system-state,time> can be created

offline by the operator using network traces and system log files.

70 CHAPTER 4. ARCHITECTURE

1 2 3 40

1

2

3

4

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

ℝ

ℝ
(a) M = 16

1

ℝ

ℝ

2 3 4 5 6 7 8

9 10 11 12 13 14 15 16

17 18 19 20 21 22 23 24

1 2 3 4 5 6 7 8

25 26 27 28 29 30 31 32

33 34 35 36 37 38 39 40

49 50 51 52 53 54 55 56

57 58 59 60 61 62 63 64

41 42 43 44 45 46 47 48

1

2

3

4

5

6

7

8

(b) M = 64

Figure 4.6: An example of decreased repeatability: two near values, a circle

and a triangle, in the (a) case will corresponds to the same symbol 11 while

in the (b) case will correspond to two different symbols, 37 and 46.

Chapter 5

Evaluations and results on a

real ATC system

We deployed and tested CASPER failure prediction capabilities in several test
environments: a CORBA-based distributed system, a CARDAMOM based
virtual machines cluster and finally a real Air Traffic Control system. In this
chapter we present the results obtained in the real Air Traffic Control testing
environment owned by Selex Sistemi Integrati, a Finmeccanica company that
develops and maintains ATC systems of the European and Italian market.

The first part of the work on the field has been to collect a number of
network traces from the ATC underlying communication network when in
operation. These traces represented steady state performance behaviors. Ad-
ditionally, on the testing environment of the ATC system we stressed some
of the nodes till achieving software failures conditions, and we collected the
relative traces. In our test field, we consider one of the nodes of the ATC
system be affected by either Memory or I/O stress. After the collection of
all these traces, we trained CASPER and once the training phase was over
we deployed CASPER again on the testing environment of the ATC system
in order to conduct experiments in operative conditions. The results in a
real environment like ATC confirmed the results obtained in the other studied
environments, mainly showing (i) the CASPER accuracy in detection of the
state of the monitored system and (ii) the CASPER capability to predict a
failure caused by these conditions.

71

72
CHAPTER 5. EVALUATIONS AND RESULTS ON A REAL ATC

SYSTEM

5.1 Evaluation Metrics

Our evaluation assesses the system state inference component accuracy and
the failure prediction module accuracy (see Figure 4.1). In particular, we
evaluate the former in terms of

• Ntp (number of true positives) the system state is unsafe and the inferred
state is “system unsafe”;

• Ntn (number of true negatives): the system state is safe and the inferred
state is “system safe”;

• Nfp (number of false positive): the system state is safe but the inferred
state is “system unsafe”;

• and Nfn (number of false negatives): the system state is unsafe but the
inferred state is “system safe”.

Using these parameters, we compute the Table 5.1 metrics that define the
accuracy of CASPER.

Table 5.1: Accuracy metrics.

Precision: p = Ntp

Ntp+Nfp
Recall (TP rate): r = Ntp

Ntp+Nfn

F-measure: F = 2× p×r
p+r FP Rate: f.p.r. = Nfp

Nfp+Ntn

We evaluate the failure prediction module in terms of:

• Nfp (number of false positive): the module predicts a failure that is not
actually coming and

• Nfn (number of false negatives): the module does not predict a failure
that is coming.

5.2. MONITORED SYSTEM 73

5.2 Monitored System

“There shall be no single point of failure”, this is one of the basic requirements
for any ATC system. It drives alone many choices about the design, the used
technologies, the verification strategies of a complex distributed system which
has to provide a very high service availability : at least 99,99% i.e. downtime
of about 5 minutes per month. The complexity of such systems is more and
more stored in the software, which is error prone to problems injected at design
or coding time as well as to unexpected scenarios due to runtime concurrency
and other factors, like for example upgrading activities. Then software fault
tolerance stands beside the traditional hardware based solutions and often
replaces them, considering also that these systems are maintained and can
evolve over a 25 years lifecycle: any chosen solution must support changes. In
this context FT CORBA [26, 27, 28, 29] is widely used in ATC, but also in
Naval Combat Management and other Command and Control systems. FT
CORBA provides both replication and failure transparencies to the application
and moreover it is standardized by the Object Management Group [5, 81].

5.2.1 Principle of FT CORBA

The FT CORBA specification defines an architecture and a framework for re-
silient, highly-available, distributed software systems suitable for a wide range
of applications, from business enterprise applications to distributed, embed-
ded, real-time applications. The basic concepts of FT CORBA are entity
redundancy, fault detection and fault recovery; replicated entities are several
instances of CORBA objects that implement a common interface and thus are
referenced by an object group (Interoperable Object Group Reference, IOGR).
IOGRs lifecycle and update are totally managed by the FT CORBA infras-
tructure; client applications are unaware of object replication and changes
in the object group due to replica failure are transparent since their request
are forwarded to the right replica. The infrastructure (see Fig. 5.1) provides
means to monitor the replicated objects and to communicate the faults, as
well as to notify the fault to other interested parties, which could contribute
to recover the application. Beyond replication, object groups and complete
transparency, FT CORBA relies also on infrastructure-controlled consistency.
Strong replica consistency is enforced in order to guaranty that the sequence
of requests invoked on the object group passes unaltered across the fault of
one or more replicas.

74
CHAPTER 5. EVALUATIONS AND RESULTS ON A REAL ATC

SYSTEM

Replica-on	 Manager	
(Object	 Group	 Manager)	

Fault	
No-fier	

Fault	
Detector	

Figure	 1	 –	 FT	 CORBA	 framework	 	

Fault	
Detector	

Client	
CORBA
Object	

Host	 1	

Server	
Replica	

Host	 2	

Server	
Replica	

Host	 3	

Fault	
Detector	

Fault	
Detector	

Fault	
No-fier	

Replica-on	 Manager	
(Object	 Group	 Manager)	

Factory	 Factory	

no-fica-ons	

fault	 reports	 is_alive()	 is_alive()	

request	

create_object()	

create_object()	 	 	 	 	 invoked	 by	 Applica-on	

Figure 5.1: FT CORBA framework

Specialization of FT CORBA for safety critical systems: CAR-

DAMOM use case

In the following we are going to focus on the design choices made for a sig-
nificant piece of a real ATC system, namely CARDAMOM [35], and that is
implemented in a CORBA based middleware.

Among the different replication styles, CARDAMOM adopts the warm
passive approach to replicate statefull servers: during normal operation, only
one member of the object group, the primary replica, executes the methods
invoked on the group. The backup replicas are warm because they receive the
status updates at the end of each request from the primary; this way they
are always ready to process the next request, in case the primary fails. The
FT infrastructure is in charge of detecting such failure and of triggering the
switch to a new primary. Transferring to the backup replicas the updated
status and the list of processed request ids, it is guaranteed that requests are
always served exactly once as long as there are available replicas.

The software architecture is based on CORBA Component Model (see Fig.
5.2) and then the natural unit of redundancy is a component of the CCM; This
Component is a unit of design, development and deployment realized through
a collection of CORBA Objects which define attributes and interfaces, called

5.2. MONITORED SYSTEM 75

Figure	 2	 -‐	 System	 decomposi-on	 in	 applica-on,	 process,	 component,	 group	 and	 host	

1	 1	

n	 n	

1	

1	 1	

n	 n	

n	
1	

n	

1	

n	
Reference	 	

Composi/on	

Figure 5.2: System decomposition in application, process, component, group

and host.

ports [80]. In this context, the exposed ports (facets) of the server components
are defined as objects of FT CORBA groups. This approach suits well with
FT CORBA specification but put in evidence an operative need: in Operating
Systems that manage the process as unit of memory space and failure (e.g.
POSIX process in Linux/Unix), monitoring and recovery should be done at
process level. Then CARDAMOM restricts FT CORBA entity redundancy by
enforcing that within the same process all replicated components play the same
role, that is all primaries or all backups. This need is also tackled by an exten-
sion of FT CORBA specification, the beta OMG specification “Lightweight
Fault Tolerance for Distributed RT Systems” [83]. A very important aspect
of CARDAMOM is the fault detection; since the framework is tuned to re-
act and recover from failures, namely a process crash, mechanisms are put
in place to detect malfunctions like for example deadlocks or endless loops
which do not lead necessarily to a crash. After the detection, most of the
times the safest action to recover normal behavior is to stop or kill the faulty
process in order to trigger a switch to a new replica. Normally fault detec-
tors work with several patterns at the same time: they can use a pull model,
e.g. “is alive” call, or push model, e.g. by handling OS signals to detect the
death of processes or even be signaled by the application itself after a fatal
error. FT CORBA with warm-passive replication style fits well the need of

76
CHAPTER 5. EVALUATIONS AND RESULTS ON A REAL ATC

SYSTEM

statefull servers which must guarantee the processing of sequenced requests.
However, an ATC system needs other components to be resilient to failures
act as stateless components. Generally speaking, stateless components have
to provide their services with high availability but do not need to check for
“exactly once” semantics of client requests either to support the state transfer.
In this case it is used the Load Balancing framework, specified at OMG by the
Lightweight Load Balancing specification [82]. It reuses the object group def-
inition of FT CORBA and allows to transparently redirect the client requests
among a pool of server replicas according to predefined or user defined strate-
gies, for example through random or round-robin policies. In this way two
conflicting goals are achieved at the same time: distribute the computational
load among several resources and supporting fault tolerance. because fault
detectors are used to update the object group in case of failure and activate
recovery mechanism. An additional and important feature is also to prevent
that several replicas may crash because of the same implementation: by means
of fine request identification, the framework allows to stop those requests that
have caused failures, thus avoiding repetitive crashes which would result in a
complete system failure.
Middleware CARDAMOM provides all the previously mentioned services (see
Fig. 5.3): in fact it has been chosen as the foundation for a safety critical
subsystem, the core part of a next generation ATC system. In order to sep-

Support	 tools	 Business	
code	

Figure	 3	 –	 CCM	 and	 CORBA	 based	 middleware	 services	

Business	
code	

Abstrac-on	 layers	

Pluggable	 Services	

Profile	 &	
Configura-on	

Figure 5.3: CCM and CORBA based middleware services.

5.2. MONITORED SYSTEM 77

arate duties and define a clearly decoupled architecture that could support
extensibility and maintainability, a three tier model has been put in place for
the building blocks of the ATC system using CARDAMOM services. The first
tier provides the interface to the external clients and guaranties the ordered
processing of requests; it is realized by statefull components replicated with
FT CORBA and warm passive replication style. The second tier executes the
business logic; it is realized by stateless components replicated with LwLB
supporting fault containment for killer requests; the third tier tackles the data
management and persistency.

Figure	 4	 –	 Three-‐-er	 architecture	

Host	

Primary
Stateful
Server	
Replica	

Stateless
Server	
Replica	

Generic	
Client	

Data	 Writer	 Data	 Reader	

Middleware	
Data	

Distribu-on	

Middleware	
Load	

Balancing	

Middleware	
Fault	

Tolerance	

Figure 5.4: 3-tier architecture.

This architecture (see Fig. 5.4) is proven to be, at the same time, re-
silient to failures and highly scalable in terms of computational power, thus
responding to the opposite requirements coming from availability, safety and
performances. The use of FT and LB CORBA services is strongly interrelated
also with System Management services, that are informed of replica crashes
by the Fault Notifier. Automatic actions are put in place in order to stop or
restart the replicas and contribute to the overall system availability; actions
like restart and stop can be defined with different level of granularity, that
is for process, application or host according to the kind of failure. As final
consideration it is very important to underline that the design and implemen-
tation of the middleware services that provide this fault tolerant framework
have to be themselves fault tolerant.

5.2.2 Testbed

We deployed CASPER in a dedicated host located in the same LAN as the
ATC system to be monitored. This environment is actually the testing envi-
ronment of the ATC system where new solutions are tested before getting into

78
CHAPTER 5. EVALUATIONS AND RESULTS ON A REAL ATC

SYSTEM

the operational ATC system. The testing environments are composed by 8 or
4 machines, 16 cores 2.5 GHz CPU, 16 GB of RAM each one. It is important
to remark that CASPER does not know anything about the environment in
which has been placed. Neither the application nor the service logic nor the
testbed details are available to CASPER.

5.2.3 Faults Injection

Policy restrictions and privacy issues forbid the injection of faults modifying
the source code or the machine code, restrictions on installing third-part mon-
itoring software and on hosts log-in forbid techniques like G-SWIFT or fault
injection and emulation in general (see [23, 48, 79] for an overview on these
techniques). According to these restrictions, we had to apply stress conditions
rather then fault injection, in order to emulate the frequent conditions that
yield the ATC system to failures.

The ATC testbed includes two critical servers: one of the server is respon-
sible for disk operations (I/O) and another server is the manager of all the
services. In order to induce software failures in the ATC system, we apply the
following actions in such critical servers: (i)memory stress; that is, we start a
memory-bound component co-located with the manager of all ATC services,
to grab constantly increasing amount of memory resource; (ii)I/O stress; that
is, we start an I/O-bound component co-located with the server responsible
for disk operations, to grab disk resources.
In both cases we brought the system to the failure of critical services. During
the experiment campaign, we also considered the CPU stress; however, we
discovered that due to the high computational power of the ATC nodes, the
CPU stress never causes failures. For this reason we decided not to show the
results of these tests.

5.2.4 Training Data

We trained CASPER (see Section 4.3.1) using the following recorded traces:

1. between 10 and 13 minute long traces in which the ATC system is be-
having in a steady-state.

2. between 10 and 11 minute long traces (at least 3 per each kind of injected
stress, i.e., memory and I/O stress) in which al least one of the services
of the ATC system fails.

These traces are taken from the testing environment of the ATC system.

5.3. PERFORMANCE METRICS 79

5.3 Performance Metrics

To monitor a real ATC system, some performance metrics have to be identified
and coded in the EPL language used by ESPER, i.e. the CEP engine used. In
order to enhance the failure prediction accuracy we considered the subset of
the performance metrics that are more influenced by the stress condition we
injected. This is due to the fact that some of these are not influenced in the
specific case study (e.g. the percentage of exceptions since we don’t experi-
enced exceptions, message size since remained constant, percentage of replies
because this metric can be deducted from the number of requests without reply,
if the system does not use one way interactions).

EPL queries to identify performance metrics

Each of the presented performance metrics (Sec. 4.2.2) needs an EPL query
to be computed. Below are reported some of them, in particular the three
considered to monitor the real ATC system, i.e. Round Trip Time, Number
of request without reply, message rate.

Round Trip Time performance metric. The RTT performance metrics
is among the more important metric in every request-reply interaction. It
measure the time from the moment in which the request has been issued till
the relative reply has been received by the client. Variations of the mean RTT
can represent overloading situation of a servant, network link problem, several
situations on the server implying a grater processing time. In the worst case
can represent a workload change, tricking the failure prediction mechanism.
The EPL code is reported below.

select (rep.numericTimestamp - req.numericTimestamp) as RTT

from pattern[every

req=eventStream(messageType = ’REQUEST’) ->

rep=eventStream(messageType = ’REPLY’

and (requestID = req.requestID) //semantic context identifier

and (src_ip = req.dst_ip)

and (dst_ip = req.src_ip))]//network level context identifier

There is an evident happened-before relationship between a request and a
reply. The EPL query recognizes this causality by selecting the correct reply
among the cloud of the replies in the event stream (using the request id). The

80
CHAPTER 5. EVALUATIONS AND RESULTS ON A REAL ATC

SYSTEM

“pattern” operator expresses the fact that a reply is generated if and only if
the relative previous request has been issued. The main context identifier is
an identifier that is present in the event, called “requestID”. The difference
between the timestamps is clearly the wanted metric.

Rate of the messages. The messages rate is the number of messages are
traveling the network per second. It is important to monitor the behavior
of this performance metric: deviations may show a particularly overloaded
situation or situations in which the nodes are not producing their usual load.
The EPL query in order to do this is the following:

select rate(1 sec) as messageRate

from eventStream

The query is particularly simple since the predefined function of EPL rate
compute it. Only the amount of time to consider has to be specified.

Rate of the messages carrying an exception. Complex distributed sys-
tems have to deal with exceptions every time. The events we treated embody
information about exceptions in the client-server request/reply interaction.
We considered the percentage of exception in the set of the replies as a per-
formance metric: a growing number of exception can represent problems on
some servant. The EPL query in order to do this is the following:

select count(*) as percentage

from eventStream.win:length(100)

where replyStatus = ’EXCEPTION’

The query is simply a filter on the field “replyStatus”.

Number of Requests without Reply. The number of requests that, in a
given temporal window, do not receive a reply is a metric that recognize if any
server is for example, overloaded and it does not answer anymore. Considering
the mean of this value an overview on the load of the system can be obtained.
This number should always be near zero. A similar performance metric is
the rate requests over replies that represent the same information and should
always be around 1. Both of these metrics assumes that in the system there
are only request and replies, note that this is not always true (e.g. one-way
interactions). A simple way to implement this is reported in the EPL query
below. It simply counts the number of the reply events every 100 events. The
value returned is the percentage of the replies.

5.4. RESULTS 81

select count(*) as count

from eventStream.win:length(100)

where messageType=’REPLY’

5.4 Results

The results are divided in three subsections: the training of CASPER, the
tuning of the parameters, and the failure prediction evaluation (using network
traces and deploying the system).

Training of CASPER.

During the training phase, the performance metrics computation component
produces a symbol at each CASPER clock cycle. Thanks to the set of pairs
<system-state,time> we are able to represent the emitted symbols in case
of safe and unsafe system states. Figure 5.5 illustrates these symbols. Each
symbol is calculated starting from a combination of three values, using the
Aggregator presented in sec 3.4. In this case, we have D = 6 possible val-
ues per each performance metric; the number of different symbols is therefore
M = 63 = 216, being N = 3 the number of performance metrics. Observing
Figure 5.5 we can notice that the majority of the emissions belong to the
interval [0, 2] for the Round Trip Time, and [0, 1] for Number of Request With-
out Reply and Message Rate. Note that only the index of the 3-dimensional
interval will reach the System State inference component, according to the
aggregator logic. Starting from the symbols represented in Figure 5.5, the
HMM-based component builds the matrices A and B. After that CASPER
can be considered trained.

Tuning of CASPER parameters: clock period and number of sym-

bols.

After the training of HMM, CASPER requires a tuning phase to set the clock
period and number of symbols in order to maximize the accuracy (F-measure,
precision, recall and false positive rate) of the symptoms detection module out-
put. This tuning phase is done by feeding the system with a new recorded
network trace (different from the one used during the training), with the rel-
ative set of pairs <system-state,time>. CASPER will try several values of
clock period and number of symbols (the M parameter of the aggregator) and

82
CHAPTER 5. EVALUATIONS AND RESULTS ON A REAL ATC

SYSTEM

0
1

2
3

4
5

6

0
1

2
3

4
5

6
0

1

2

3

4

5

6

Number of Requests Without Reply
Round Trip Time

M
es

sa
ge

 R
at

e

System Safe Emissions
System Unsafe Emissions

Figure 5.5: Symbols emitted by the performance metrics computation compo-

nent in case of a recorded trace that exhibits stress of the memory.

5.4. RESULTS 83

will compute the F-Measure. Figure 5.6 plots the obtained F-Measure values
when varying clock period and number of symbols.

64 343 512 729 1000125 216
0

0.2

0.4

0.6

0.8

1

Number of Symbols

F−
M

ea
su

re

100ms
300ms
800ms
1000ms

Figure 5.6: Symptoms detection module: F-Measure varying the number of

symbols and clock period in case of a recorded trace subject to memory stress

We can see that the best choice of the clock period is 800 milliseconds.
This period yields a higher F-Measure value than the other clock values in
most of the number of symbols considered in the plot (note that this value of
the clock also resulted the best choice in case of I/O stress). Figure 5.6 also
shows that the accuracy of the symptoms detection module is highly influenced
by the number of symbols and less influenced by the clock period (e.g., if we
consider a number of symbols greater than 216, the F-measure values vary
of less than 10% when augmenting the clock period from 100ms to 1000ms).
Thus, CASPER set the clock period to 800 milliseconds, choosing the max
F-measure value. Once fixed this clock period, the second parameter to define
is the number of symbols. Figure 5.7 shows the precision, recall, F-measure
and false positive rate of the symptoms detection module varying the number
of symbols.

CASPER considers the maximum difference between the F-measure and
the false positive rate in order to choose the ideal number of symbols (ideally,
F-measure is equal to 1 and f.p.r. to 0). As shown in Figure 5.7, considering
216 symbols (6 values per performance metric) we obtain F = 0.82 and f.p.r. =
0.12 which is actually the best situation in case of memory stress.

Figure 5.8 shows the accuracy of the symptoms detection module in case

84
CHAPTER 5. EVALUATIONS AND RESULTS ON A REAL ATC

SYSTEM

0 64 125 216 343 512 729 1000
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Symbols

F−Measure
Precision
Recall
False Positive Rate

Figure 5.7: Performance of the symptoms detection module varying the num-

ber of possible symbols in case of a recorded trace subject to memory stress.

CASPER clock period 800 ms

5.4. RESULTS 85

of I/O stress. Best values of F-Measure and false positive rate (F = 0.86 and
fpr = 0) are obtained for 512 symbols (meaning 8 values per performance
metrics).

0 64 125 216 343 512 729 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of symbols

Precision
Recall
False Positive Rate
F−Measure

Figure 5.8: Performance of the symptoms detection module varying the num-

ber of possible symbols in case of a recorded trace subject to I/O stress.

CASPER clock period 800 ms

Tuning of CASPER parameters: window size.

The window size is the only parameter that has to be tuned by the operator
according to the tradeoff discussed in Section 4.3.2. We experimentally noticed
that during fault-free executions the system state inference still produced some
false positives. However, the probability that there exists a long sequence of
false positives in steady-state is very low. Thus, we designed the failure predic-
tion module to recognize sequences of consecutive clock cycles whose inferred
state is not safe. Only if the sequence is longer more than a certain threshold
CASPER triggers a prediction. The length of these sequences multiplied by
the clock period (set to 800ms) is the window size. The problem is then to set
up a reasonable threshold in order to avoid false positive predictions during

86
CHAPTER 5. EVALUATIONS AND RESULTS ON A REAL ATC

SYSTEM

steady-state, Figure 5.9 illustrates the number of the false positive varying the
window size.

4 8 12 16 20 24
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Window Size (Seconds)

Pe
rc

en
ta

ge
 o

f F
al

se
 P

os
iti

ve
s

Figure 5.9: False positives varying the window size feeding. CASPER is fed

with a recorded trace behaving in steady-state. Its clock period is 800 ms

From this Figure it can be noted that the window size has to be set to at least
16 seconds in order not to incur in any false positives. Let us remark that
the window size also corresponds to the minimum time-to-prediction. All the
results presented below are thus obtained using a window size of 16 seconds.

Results of CASPER failure prediction.

We run two types of experiments once CASPER was trained and tuned. In
the first type, we injected the faults described in section 5.2.3 in the ATC
testing environment and we carried out 10 tests for each type of fault1. In the
second type, we observed the accuracy of CASPER when monitoring for 24h
the ATC system in operation. These types of experiments and their related
results are discussed in order as follows.
As first test, we injected a memory stress in one of the node of the ATC system
till a service failure. Figure 5.10 shows the anatomy of this failure in one of
the tests. The ATC system runs with some false positive till the time the
memory stress starts at second 105. The sequence of false positives starting at
second 37 is not sufficiently long to create a false prediction. After the memory

1The number of tests has been limited by the physical access to the ATC testing environ-

ment. In fact, every experiment of 10 minutes takes actually 2 hours to be completed due

to the storage of the data, the stabilizing and rebooting of the ATC system after the failure.

5.4. RESULTS 87

0 37 100 200 300 335128
Safe State

Unsafe State

Time (seconds)

System State Inferred

Real System State

Prediction

Service
Failure

time−to−failuretime−to−prediction

Figure 5.10: Failure prediction in case of memory stress starting at second 105.

Window size 16s, clock period 800ms, time-to-prediction 23s, time-to-failure

207s

stress starts, the failure prediction module outputs a prediction at second 128;
thus, the time-to-prediction is 23s. The failure occurs at second 335, then
the time-to-failure is 207s, which is satisfactory with respect to ATC system
recovery requirements. We can also see a little burst of system state inference
component’s false negatives starting at second 128, successfully ignored by the
failure prediction module. Figure 5.11 shows the anatomy of the failure in case
of I/O stress in one test. A failure caused by I/O stress happens after 408
seconds from the start of the stress (at second 190) and has been predicted
at time 222 after 32 seconds of stress, with a time-to-prediction equal to 376
seconds before the failure. There is a delay due to the false negatives (from
second 190 to 205) that the system state inference component produced at
the start of the stress period. The time-to-prediction is 21s. In general, we
obtained that in the 10 tests we carried out, the time-to-failure in case of
memory stress varied in the range of [183s, 216s] and the time-to-prediction
in the range of [20.8s, 27s]. In case of I/O stress, in the 10 tests, the time-to-
failure varied in the rage of [353s, 402s] whereas the time-to-prediction in the
range of [19.2s, 24.9s]. Figure 5.12 summarizes these results.

Finally, we performed a 24h test deploying CASPER on the network of the
ATC system in operation. In these 24 hours the system exhibited steady-state

88
CHAPTER 5. EVALUATIONS AND RESULTS ON A REAL ATC

SYSTEM

0 100 300 400 500222 598
Safe State

Unsafe State

Time (seconds)

System State Inferred

Real System State

Prediction
 time−to−failuretime−to−prediction

Service
Failure

Figure 5.11: Failure prediction in case of I/O stress starting at second 408.

Window size 16s, clock period 800ms, time-to-prediction 21s, time-to-failure

376s.

1 2 3 4 5 6 7 80

50

100

150

200

250

300

350

400

450

Experiments

Ti
m

e
To

 F
ai

lu
re

 (s
ec

on
ds

)

Memory stress
I/O stress

Figure 5.12: Performance of CASPER in terms of time-to-failure.

5.4. RESULTS 89

performance behavior. CASPER did not produce any false positive along the
day. Figure 5.13 depicts a portion of 400 seconds of this run in which there are
several false positives in the system state inferred but no failure predictions
thanks to the choice of the window size.

0 50 100 150 200 250 300 350 400
Safe State

Unsafe State

Time (seconds)

System State Inferred

Figure 5.13: 400 seconds of a steady-state run of the ATC system in operation.

Results of CASPER hosts ranking.

The host ranking is a real time ranking among the hosts. Figure 5.14 and
Figure 5.15 represent the behavior of the hosts votes during two different runs.
Figure 5.14 represents a situation in which, at second 191, a memory stress
application has been run in the host named 102. The regularity of this host
is highly affected by the stress. The host ranking module recognizes this fact
and assigns, to host 102, an higher and higher vote. Also the other hosts are
affected by the misbehavior of the host 102 implying the related votes growing.
At second 270 the host 102 halted and its vote starts to grown linearly.

Figure 5.15 shows the results of the Host Activity Detection module ob-
tained observing an 8 hosts system. In this case the unsafe host, suffering a
memory stress, has not been halted by the stress. A higher and higher votes
have been assigned nonetheless.

90
CHAPTER 5. EVALUATIONS AND RESULTS ON A REAL ATC

SYSTEM

50 100 150 191 250 270 3000

500

1000

1500

2000

2500

Time (seconds)

H
os

ts
 V

ot
e

host 102 − unsafe
host 67 − safe
host 101 − safe
host 68 − safe

Figure 5.14: Hosts ranking behavior. At second 191 a memory stress starts on

host number 102. Starting from second 191 will have always the higher mark.

5.4. RESULTS 91

200 230 250 300
0

1000

2000

3000

4000

5000

6000

7000

8000

Time (seconds)

H
os

ts
 V

ot
e

101 − safe
102 − safe
103 − safe
104 − safe
105 − unsafe
106 − safe
107 − safe
108 − safe

Figure 5.15: Hosts ranking behavior. At second 230 a memory stress starts on

host number 105. After some seconds the vote of the host 105 grows rapidly,

despite the host remained alive.

92
CHAPTER 5. EVALUATIONS AND RESULTS ON A REAL ATC

SYSTEM

Chapter 6

Conclusion

In the last few years, the online failure prediction paradigm gained attention as
a good approach to enhance the dependability of complex distributed systems.
Applications can be found in several fields, but rarely this kind of techniques
are applied to mission-critical distributed systems, such as air traffic control,
battlefield applications, naval command and control systems. In such com-
plex real-time systems, the failures may happen with potentially catastrophic
consequences, hence, fault management techniques are usually at the current
state of the art. The problem is that mission-critical distributed systems are
designed and deployed in a given time and after that is not easy to equip such
systems with novel fault management subsystems. The idea to have a “plug-
and-play” mechanism that, in a completely non-intrusive manner, monitors
an already deployed mission-critical system is very attractive in the industrial
community. This interest of the community allowed us to study, design, de-
velop, apply and test state of the art and novel fault management techniques,
on the real field.

In this thesis, we proposed to apply online failure prediction techniques
in mission critical distributed systems. We devised a novel combination of
two state of the art paradigms, complex event processing and hidden Markov
models. In particular, in Chapter 3 we described how we represent the state
of complex distributed middleware-based systems by means of a set of perfor-
mance metrics, computed at runtime using complex event processing. These
metrics are influenced by the change of the conditions of the system, or by
the change of the system monitored workload. We called the critical degrad-
ing performance of the system symptoms of faults, we train the HMM-based
model to recognize these situations, that usually lead the system services to
failures. The model, properly trained, timely recognizes deviations of the cor-

93

94 CHAPTER 6. CONCLUSION

rect system behavior and thus can trigger alerts, warning the upcoming failure.
All of this is done only using application-indipendent information, captured
observing network interactions. The source of the input event-stream of the
complex event processing is composed infact by only network-captured data.
The approach is both non-intrusive and black-box as there is no need to install
any software on the observed system and the model does not infers relations
among the system components but only on the whole system behavior.

The main contribution of the thesis was to devise a framework to predict
online failures of mission critical distributed systems. The failure prediction
architecture, namely CASPER, described in Chapter 4, provides accurate pre-
dictions of failures by exploiting only the network traffic of the monitored sys-
tem. In this way, it results non-intrusive with respect to the nodes hosting
the mission critical system and it executes a black-block failure prediction as
no knowledge concerning the layout and the logic of the mission critical dis-
tributed system is used. To the best of our knowledge, this is the first failure
prediction system exhibiting all these features together. Let us remark that
the black-box characteristic has a strategic value for a company developing
such systems. Indeed from a company perspective the approach is succeeding
as long as the failure prediction architecture is loosely bound to the applica-
tion logic. Additionally there should be no direct or indirect influence between
the monitored and the monitoring system, in order not to falsify the measures
and create hidden workload transfer. The advantage that no additional load to
the monitored system is introduced is not the only one. The non-intrusiveness
also implies that the approach can be applied in all the existing middleware
based systems without modifications of the architecture. Results showed that
CASPER, after a careful training phase, achieved good accuracy in terms of
false positives when both failure conditions and steady-state behaviors were
considered. Additionally, the exhibited time-to-failure when injecting stress
conditions inside the monitored system resulted quite reasonable.

As future work, we are investigating versions of CASPER that are able
to improve automatically the knowledge base, starting training session during
the functioning of the framework. This will improve the ability of CASPER
to predict failure conditions and enhance its “plug-and-play” characteristic.
Another problem in investigation is to provide to the model the capability to
recognize workload changes never seen before, that usually yield to false posi-
tive predictions: a feature that online informs the framework that the situation
coming is a workload change and not a deviation from the correct known be-
havior. This will allow CASPER to automatically train the HMM parameters
to recognize the new behavior rather then be tricked by it. Finally, we are
working to embody the designed framework in the supervision mechanism of
a real Air Traffic Control System. We envision that in this integration several
lessons will be learnt with consequent improvements to the model.

95

Concluding, let us remark that the proposed solution presents some open
problems that we plan to address in the close future. Example of problems
is the workload change already stated. But also the training of model can
be a problematic task: even if it can be easily performed in an ATC system
(the ATC systems have a testing environment that is a copy of the deployed
system, so the training can be performed on the testing environment) it is not
easy recreate the symptoms of all possible faults that can afflict a distributed
system. The ideal solution would be the use of state of the art fault injection
techniques, but as we seen, is not always possible. We devised a partial solution
by adding an “unknown state” in the model: if no one of the known states is
recognized, safe or unsafe, an unknown state can be identified as unsafe. Each
time an unknown state is recognized can be triggered a relative alert. This
solution has partially solved the problem but suffers of the workload changes
nonetheless. It is also true that if the training session is done accurately, a
workoad change in a mission critical systems is a task extremely rare and if
unawares even rarer. Another problem is tuning of the aggregator component.
It needs as a matter of fact (i)a good choice of the D parameter (i.e. the
number of values that each performance metric can assume), and (ii)a correct
estimation of the performance metrics values ranges. Both this parameters
influence the failure prediction accuracy.

96 CHAPTER 6. CONCLUSION

Bibliography

[1] Rtm analyzer web site. http://www.realtime-monitoring.de/index.
php/en/productsaservices/rtm-analyzer. 42

[2] Tibco business event web site. http://www.tibco.com/
products/business-optimization/complex-event-processing/
businessevents/default.jsp. 42

[3] Esper project web page, 2011. http://esper.codehaus.org/. 20, 36,
46

[4] IBM’s System S Web Site, 2011. http://domino.research.ibm.com/
comm/research_projects.nsf/pages/esps.index.html. 36, 38, 40

[5] Object management group webpage, 2011. http://www.omg.org/. 73

[6] JUNG - Java Universal Network / Graph Framework, 2012. http://
jung.sourceforge.net/. 65

[7] C. A. Bayes predictive analysis of a fundamental software reliability
model. In IEEE Transactions on Reliability, 39(3):177–183, 1990. 23

[8] P. A., R. F., and A. R. Bayesian analysis and prediction of failures in
underground trains. Quality and Reliability Engineering International,
19(4):327–366, 2003. 23

[9] A. Adi and O. Etzion. Amit - the situation manager. VLDB J.,
13(2):177–203, 2004. 38

[10] M. K. Aguilera, J. C. Mogul, J. L. Wiener, P. Reynolds, and A. Muthi-
tacharoen. Performance debugging for distributed systems of black
boxes. In SIGOPS Oper. Syst. Rev., 37:74–89, October 2003. 18, 30

[11] J. Aitchison and I. Dunsmore. Statistical Prediction Analysis. Cambridge
University Press, 1980. 23

97

http://www.realtime-monitoring.de/index.php/en/productsaservices/rtm-analyzer
http://www.realtime-monitoring.de/index.php/en/productsaservices/rtm-analyzer
http://www.tibco.com/products/business-optimization/complex-event-processing/businessevents/default.jsp
http://www.tibco.com/products/business-optimization/complex-event-processing/businessevents/default.jsp
http://www.tibco.com/products/business-optimization/complex-event-processing/businessevents/default.jsp
http://esper.codehaus.org/
http://domino.research.ibm.com/comm/research_projects.nsf/pages/esps.index.html
http://domino.research.ibm.com/comm/research_projects.nsf/pages/esps.index.html
http://www.omg.org/
http://jung.sourceforge.net/
http://jung.sourceforge.net/

98 BIBLIOGRAPHY

[12] M. Akdere, U. Çetintemel, and N. Tatbul. Plan-based complex event
detection across distributed sources. Proc. VLDB Endow., 1(1):66–77,
Aug. 2008. 38

[13] J. Alon, S. Sclaroff, G. Kollios, and V. Pavlovic. Discovering clusters in
motion time-series data. In In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages 375–381, 2003. 33

[14] L. Amini, N. Jain, A. Sehgal, J. Silber, and O. Verscheure. Adaptive
control of extreme-scale stream processing systems. In In ICDCS 2006,
pages 71–79, 2006. 38

[15] R. V. a. Andreão and J. Boudy. Combining wavelet transform and
hidden markov models for ecg segmentation. EURASIP J. Appl. Signal
Process., 2007(1):95–95, Jan. 2007. 33

[16] E. Angori, R. Baldoni, V. Bortnikov, G. Chockler, E. Dekel, G. Lavent-
man, and G. Lodi. A Collaborative Environment for Customizable Com-
plex Event Processing in Financial Information Systems. Technical re-
port, MIDLAB 5/10, 2010. 38

[17] L. Aniello, R. Baldoni, G. D. Luna, and G. Lodi. A Collaborative Event
Processing System for Protection of Critical Infrastructures From Cyber
Attacks. In The 30th International Conference on Computer Safety,
Reliability and Security (SAFECOMP 2011), 9 2011. 38

[18] R. Anreão, B. Dorizzi, and J. Boudy. Ecg signal analysis through hidden
markov models. In IEEE Transactions on Biomed. Eng., 53(8):1541–9,
August 2006. 33

[19] A. Avizienis. The n-version approach to fault-tolerant software. IEEE
Trans. Softw. Eng., 11(12):1491–1501, 1985. 11

[20] A. Avizienis, G. C. Gilley, F. P. Mathur, D. A. Rennels, J. A. Rohr,
and D. K. Rubin. The star (self-testing and repairing) computer: An in-
vestigation of the theory and practice of fault-tolerant computer design.
IEEE Trans. Comput., 20(11):1312–1321, 1971. 11

[21] A. Avizienis and J. Kelly. Fault Tolerance by Design Diversity: Concepts
and Experiments. IEEE Computer, 17(8):67–80, August 1984. 7

[22] A. Avizienis, J. Laprie, B.Randell, and C. Landwehr. Basic concepts and
taxonomy of dependable and secure computing. IEEE Trans. Dependable
Sec. Comput., 1(1):11–33, 2004. 44, 62

BIBLIOGRAPHY 99

[23] D. Avresky, J. Arlat, J. C. Laprie, and Y. Crouzet. Fault injection
for formal testing of fault tolerance. Reliability, IEEE Transactions on,
45(3):443–455, 1996. 7, 78

[24] S. Babu and J. Widom. Continuous queries over data streams. SIGMOD
Rec., 30:109–120, September 2001. 46

[25] R. Baldoni, S. Bonomi, G. Lodi, and L. Querzoni. Data Dissemination
supporting collaborative complex event processing: characteristics and
open issues. In A. press, editor, Workshop on Data Distribution for
Large-Scale Complex Critical Infrastructures, 4 2010. 38

[26] R. Baldoni and C. Marchetti. Three-tier replication for FT-CORBA
infrastructures. Software Practice & Experience, 2003, 6 2003. 73

[27] R. Baldoni, C. Marchetti, and A. Termini. Active Software Replication
through a Three-tier Approach. In Proceedings of the 21st Symposium
on Reliable Distributed Systems (SRDS’02), October 13-16, 2002 Osaka,
Japan., pages 109–118, 10 2002. 73

[28] R. Baldoni, C. Marchetti, and A. Virgillito. Design of an Interoperable
FT-CORBA Compliant Infrastructure. In Proceedings of the 4th Eu-
ropean Research Seminar on Advances in Distributed Systems Systems
(ERSADS’01), 5 2001. 73

[29] R. Baldoni, C. Marchetti, A. Virgillito, and F. Zito. Failure Manage-
ment for FT-CORBA Applications. In Proceedings of the 6th IEEE In-
ternational Workshop on Object Oriented Real-time Dependable Systems
(WORDS’01), 1 2001. 73

[30] H. Berenji, J. Ametha, and D. Vengerov. Inductive learning for fault
diagnosis. In Proceeding of IEEE International Conference on Fuzzy
Systems, 2003. 24

[31] W. Blischke and D. Murthy. Reliability: Modeling, Prediction, and Op-
timization. Wiley Series in Probability and Statistics. John Wiley &
Sons, 2000. 10

[32] J. Bowles. Basic concepts and taxonomy of dependable and secure com-
puting. IEEE Trans. Reliability., 41(1):2–12, 1992. 10

[33] A. B. Brown and D. A. Patterson. Embracing failure: A case for
recovery-oriented computing (roc), 2001. 12

[34] D. C and S. J. Efficient failure handling in grid computing using failure
prediction algorithm. In proceeding of ICCCI 2012, 2012. 29

100 BIBLIOGRAPHY

[35] CARDAMOM. Cardamom middleware website, website. http://www.
cardamom.eu/. 20, 74

[36] V. Castelli, R. E. Harper, P. Heidelberger, S. W. Hunter, K. S. Trivedi,
K. Vaidyanathan, and W. P. Zeggert. Proactive management of software
aging, 2001. 10

[37] K. M. Chandy. Event-driven applications: Costs, benefits and design ap-
proaches. In Gartner Application Integration and Web Services Summit,
2006. 34

[38] L. Cherkasova, K. M. Ozonat, N. Mi, J. Symons, and E. Smirni.
Anomaly? application change? or workload change? towards auto-
mated detection of application performance anomaly and change. In
Proceedings o IEEE International Conference on Dependable Systems
and Networks (DSN 2008), pages 452–461, 2008. 29, 30

[39] D. Coleman and C. Thompson. Model based automation and man-
agement for the adaptive enterprise. In 12th Annual Workshop of HP
OpenView University Association,, pages 171–184, Porto, Portugal, July
2005. 12

[40] A. Daidone, F. Di Giandomenico, A. Bondavalli, and S. Chiaradonna.
Hidden Markov models as a support for diagnosis: Formalization of the
problem and synthesis of the solution. In Proceedings of 25th IEEE
Symposium on Reliable Distributed Systems (SRDS 2006), pages 245–
256, Leeds, UK, October 2006. iii, 19, 33, 34

[41] P. D.B. Training of hmm recognizers by simulated annealing. Proceed-
ings of IEEE international conference on Acoustic, Speech and Signal
Processing, pages 13–16, 1985. 54

[42] M. C. de Vries P. Haynes P. Corwine M. Trustworthy computing. Tech-
nical report, Microsoft Corp., 2002. 12

[43] W. Denson. The history of reliability prediction. IEEE Trans. Reliabil-
ity., 47(3):321–328, 1998. 10

[44] S. L. Dockstader, N. S. Imennov, and A. M. Tekalp. Markov-based failure
prediction for human motion analysis. In Proceedings of the Ninth IEEE
International Conference on Computer Vision - Volume 2, ICCV ’03,
pages 1283–, Washington, DC, USA, 2003. IEEE Computer Society. 33

[45] B. G. H. A. K.-L. W. P. S. Y. M. Doo. Spade: The system s declara-
tive stream processing engine. In Proceedings of ACM SIGMOD inter-

http://www.cardamom.eu/
http://www.cardamom.eu/

BIBLIOGRAPHY 101

national conference on Management of data, Vancouver, BC, Canada,
June 9–12 2008. 36, 41

[46] P. H. dos Santos Teixeira, R. Clemente, R. A. Kaiser, and D. A. V.
Jr. Holmes: an event-driven solution to monitor data centers through
continuous queries and machine learning. In DEBS, pages 216–221, 2010.
46

[47] T. Dumitraş and P. Narasimhan. P.: Fault-tolerant middleware and
the magical 1. In In: ACM/IEEE/IFIP Middleware Conference, pages
431–441, 2005. 18

[48] J. A. Duraes and H. S. Madeira. Emulation of software faults: A
field data study and a practical approach. IEEE Trans. Softw. Eng.,
32(11):849–867, Nov. 2006. 78

[49] EC482. Commission regulation (ec) no 482/2008. Official Journal of the
European Union, pages 5–9, 2008. 15

[50] S. R. Eddy. Profile hidden markov models. Bioinformatics, 14(9):755–
763, 1998. 33

[51] E. N. Elnozahy, L. Alvisi, Y.-M. Wang, and D. B. Johnson. A survey of
rollback-recovery protocols in message-passing systems. ACM Comput.
Surv., 34(3):375–408, 2002. 10, 12

[52] ESARR6. ESARR 6. EUROCONTROL Safety Regulatory Requirement.
Software in ATM Systems. European Organisation for the Safety of Air
Navigation, 2.0 edition, 2010. 15

[53] O. Etzion and P. Niblett. Event Processing in Action. Manning Pub-
lications Co., Greenwich, CT, USA, 1st edition, 2010. 34, 35, 36, 38,
39

[54] M. J. Fischer, N. A. Lynch, and M. Paterson. Impossibility of distributed
consensus with one faulty process. J. ACM, 32(2):374–382, 1985. 13

[55] N. Friedman, D. Geiger, and M. Goldszmidt. Bayesian network classi-
fiers. Machine Learning, 29:131–163, 1997. 10.1023/A:1007465528199.
31

[56] S. Fu and C. zhong Xu. Exploring event correlation for failure prediction
in coalitions of clusters. In Proceedings of the International Conference
for High Performance Computing, Networking, Storage, and Analysis
(SCÕ07), 2007. 23

102 BIBLIOGRAPHY

[57] M. A. Garcia, A. P. C. da Silva, and M. Meo. Using hidden markov
chains for modeling p2p-tv traffic. In GLOBECOM, pages 1–6, 2010. 33

[58] X. Gu, S. Papadimitrioul, P. S. Yu, and S. P. Chang. Online failure fore-
cast for fault-tolerant data stream processing. In Proceedings of IEEE
24th International Conference on Data Engineering (ICDE 2008), pages
1388 – 1390, 2008. 24

[59] X. Gu and H. Wang. Online anomaly prediction for robust cluster sys-
tems. In Proceedings of the 2009 IEEE International Conference on Data
Engineering, ICDE ’09, pages 1000–1011, Washington, DC, USA, 2009.
IEEE Computer Society. iii, 24, 26, 63

[60] G. A. Hoffmann, F. Salfner, and M. Malek. Advanced Failure Prediction
in Complex Software Systems. Technical Report 172, Berlin, Germany,
2004. 28

[61] C. Hood and C. Ji. Proactive network-fault detection [telecommunica-
tions]. In IEEE Transactions on Reliability, 46(3):333 –341, september
1997. 45, 58

[62] P. Horn. Autonomic computing: Ibm’s perspective on the state of infor-
mation technology. 2001. 12

[63] Y. Huang, N. Feamster, A. Lakhina, and J. (jim Xu. Diagnosing network
disruptions with network-wide analysis. In In Sigmetrics, pages 61–72,
2007. 38

[64] Y. Huang, C. Kintala, N. Kolettis, and N. D. Fulton. Software rejuve-
nation: Analysis, module and applications. Fault-Tolerant Computing,
International Symposium on, 0:0381, 1995. 10, 11

[65] A. Immonen and E. Niemelä. Survey of reliability and availability pre-
diction methods from the viewpoint of software architecture. Software
and Systems Modeling, 7:49–65, 2008. 11

[66] Z. Jelinski and P. Moranda. Statistical computer performance evaluation.
Freiberger, W. (ed.), Academic Press, 1972. 23

[67] R. Kapadia, G. Stanley, and M. Walker. Real world model-based fault
management. In 18th International Workshop on the Principles of Di-
agnosis Nashville TN, 2007. 8

[68] R. Khanna and H. Liu. Control theoretic approach to intrusion detection
using a distributed hidden markov model. Wireless Commun., 15(4):24–
33, Aug. 2008. 33

BIBLIOGRAPHY 103

[69] A. Koski. Modelling ecg signals with hidden markov models. Artif.
Intell. Med., 8(5):453–471, Oct. 1996. 33

[70] A. Krogh, M. Brown, I. S. Mian, K. Sjölander, and D. Haussler. Hid-
den markov models in computational biology: applications to protein
modeling. Journal of Molecular Biology, 235:1501–1531, 1994. 33

[71] J. Laprie. Dependable Computing and Fault Tolerance: Concepts and
Terminology. Proc. of the 15th IEEE International Symposium on Fault-
Tolerant Computing (FTCS-15), June 1985. 4

[72] J.-C. Laprie and B. Randell. Basic concepts and taxonomy of depend-
able and secure computing. IEEE Trans. Dependable Secur. Comput.,
1(1):11–33, 2004. Fellow-Algirdas Avizienis and Senior Member-Carl
Landwehr. iii, 4, 5, 6, 7, 58

[73] Z. L. Li Yu, Ziming Zheng and S. Coghlan. Practical Online Failure
Prediction for Blue Gene/P: Period-based vs Event-driven. In Proceeding
of 41st IEEE/IFIP International Conference on Dependable Systems and
Networks Workshops (DSN-W 2011), pages 259 – 264, 2011. 28

[74] Y. Liang, Y. Zhang, A. Sivasubramaniam, M. Jette, and R. Sahoo. Blue-
gene/l failure analysis and prediction models. In Proceedings of the In-
ternational Conference on Dependable Systems and Networks, DSN ’06,
pages 425–434, Washington, DC, USA, 2006. IEEE Computer Society.
2

[75] Liebert. Regulatory Compliance and Critical System Protection. Liebert
Corporation, 2005. 15

[76] D. C. Luckham. The Power of Events: An Introduction to Complex
Event Processing in Distributed Enterprise Systems. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA, 2001. 35, 58

[77] K. Murphy. Dynamic Bayesian Networks: Representation, Inference and
Learning. PhD thesis, UC Berkeley, Computer Science Division, 2002.
31, 58

[78] J. Musa, A. Iannino, and K. Okumoto. Software reliability: measure-
ment, prediction, application. Software engineering series. McGraw-Hill,
1990. 10

[79] R. Natella, D. Cotroneo, J. Durães, and H. Madeira. Representativeness
analysis of injected software faults in complex software. In DSN, pages
437–446, 2010. 78

104 BIBLIOGRAPHY

[80] OMG. Corba component model (ccm), omg specification, formal/2011-
11-03, part 3 - components, CCM. http://www.omg.org/spec/CORBA/
3.2/Components/PDF. 75

[81] OMG. Fault tolerant corba (ft), omg specification, formal/2010-05-07 ,
v1.0, FT-CORBA. http://www.omg.org/spec/FT/1.0/PDF. 20, 73

[82] OMG. Lightweight load balancing service (ltload), omg specifica-
tion, formal/2010-02-04, v1.0, LTLOAD. http://www.omg.org/spec/
LtLOAD/1.0/PDF. 76

[83] OMG. Lightweight fault tolerance for distributed rt systems (lwft),
ptc/2011-06-05, beta 2, LWFT. http://www.omg.org/spec/LWFT/1.
0/Beta2/PDF. 75

[84] B. Parhami. From defects to failures: a view of dependable computing.
SIGARCH Comput. Archit. News, 16(4):157–168, 1988. 6

[85] D. L. Parnas. Software aging. In ICSE ’94: Proceedings of the 16th
international conference on Software engineering, pages 279–287, Los
Alamitos, CA, USA, 1994. IEEE Computer Society Press. 11

[86] P. R. Pietzuch and J. Bacon. Hermes: A distributed event-based mid-
dleware architecture. In ICDCS Workshops, pages 611–618, 2002. 38

[87] M. Proctor, M. Neale, B. McWhirter, K. Verlaenen, E. Tirelli, A. Bager-
man, M. Frandsen, F. Meyer, G. D. Smet, T. Rikkola, S. Williams,
and B. Truit. JBoss Drools Fusion. http://www.jboss.org/drools/
drools-fusion.html, 2010. 36, 41

[88] Z. Z. Qiang Guan and S. Fu. Proactive failure management by inte-
grated unsupervised and semi-supervised learning for dependable cloud
systems. Availability, Reliability and Security (ARES), 2011 Sixth In-
ternational Conference on, pages 83 – 90, 2011. 27

[89] L. Rabiner and B. Juang. An introduction to hidden markov models.
ASSP Magazine, IEEE, 3(1):4 – 16, jan 1986. 33, 48, 50, 52, 58, 68

[90] L. Rabiner and B. Juang. Hidden markov models for speech recognition.
Technometrics, 33(3):251–272, Aug. 1991. 54

[91] B. Randell. System structure for software fault tolerance. IEEE Trans.
Software Eng., 1(2):221–232, 1975. 11

[92] M. K. R.K. Iyer, Z. Kalbarczyk. Measurement-Based Analysis of Net-
worked System Availability. Performance Evaluation Origins and Di-
rections, 2000. 8

http://www.omg.org/spec/CORBA/3.2/Components/PDF
http://www.omg.org/spec/CORBA/3.2/Components/PDF
http://www.omg.org/spec/FT/1.0/PDF
http://www.omg.org/spec/LtLOAD/1.0/PDF
http://www.omg.org/spec/LtLOAD/1.0/PDF
http://www.omg.org/spec/LWFT/1.0/Beta2/PDF
http://www.omg.org/spec/LWFT/1.0/Beta2/PDF
http://www.jboss.org/drools/drools-fusion.html
http://www.jboss.org/drools/drools-fusion.html

BIBLIOGRAPHY 105

[93] G. C. E. D. G. L. G. L. L. M. Roberto Baldoni, Vita Bortnikov. Col-
laborative Financial Infrastructure Protection: Tools, Abstractions and
Middleware, chapter 4: CoMiFin Architecture and Semantic Rooms.
Springer-Verlag, Berlin, Germany, 2011. 38

[94] B. Rood, J. P. Walters, V. Chaudhary, and M. J. Lewis. Failure predic-
tion and scalable checkpointing for reliable large-scale grid computing.
In The 16th IEEE International Symposium on High Performance Dis-
tributed Computing, Monterey, CA, June 2007, 2007. 12, 28

[95] D. S. R.S. Swarz. Reliable Computer Systems (3rd ed.): Design and
Evaluation. A.K. Peters, 1998. 6

[96] S. R. Safavian and D. Landgrebe. A survey of decision tree classifier
methodology. Systems, Man and Cybernetics, IEEE Transactions on,
21(3):660–674, 1991. 32

[97] F. Salfner. Event-based Failure Prediction: An Extended Hidden
Markov Model Approach. PhD thesis, Department of Computer Sci-
ence, Humboldt-Universität zu Berlin, Germany, 2008. iii, 10, 11, 21,
22, 28, 29, 52

[98] R. S. Siewiorek, D. P. Swarz. Reliable Computer Systems, volume 2nd
edition. Digital Press, Bedford, MA, 1992. 11

[99] O. Sigaud and S. W. Wilson. Learning classifier systems: a survey. Soft
Comput., 11(11):1065–1078, 2007. 31

[100] W. Simpson and J. Sheppard. System test and diagnosis. Kluwer Aca-
demic, 1994. 9

[101] G. M. Stanley and R. Vaidhyanathan. A generic fault propagation mod-
eling approach to on-line diagnosis and event correlation. In 3rd IFAC
Workshop on On-line Fault Detection and Supervision in the Chemical
Process Industries,, 1998. 9

[102] Streambase Systems. StreamBase product documentation, 2010. Release
6.3. 46

[103] M. Sullivan and R. Chillarege. Software defects and their impact on
system availability - a study of field failures in operating systems, 1991.
11

[104] Y. Tan, X. Gu, and H. Wang. Adaptive system anomaly prediction
for large-scale hosting infrastructures. In Proceeding of the 29th ACM
SIGACT-SIGOPS symposium on Principles of distributed computing,

106 BIBLIOGRAPHY

PODC ’10, pages 173–182, New York, NY, USA, 2010. ACM. iii, 26, 27,
63

[105] M. Thottan and C. Ji. Properties of network faults. In Proceeding of
IEEE/IFIP Network Operation and Management Symposium (NOMS
2000), pages 941–942, 2000. 45, 58

[106] K. S. Trivedi and K. Vaidyanathan. Software aging and rejuvenation.
In Wiley Encyclopedia of Computer Science and Engineering. 2008. 10,
11

[107] Y. Wang, Y. Huang, K.-P. Vo, P. Chung, and C. Kintala. Checkpointing
and its Applications. Proc. of the 25th IEEE Fault-Tolerant Computing
Symposium (FTCS-25), June 1995. 12

[108] S. White, A. Alves, and D. Rorke. Weblogic event server: a lightweight,
modular application server for event processing. In Proceedings of
the second international conference on Distributed event-based systems,
DEBS ’08, pages 193–200, New York, NY, USA, 2008. ACM. 46

[109] A. W. Williams, S. M. Pertet, and P. Narasimhan. Tiresias: Black-
box failure prediction in distributed systems. In Proceedings of IEEE
International Parallel and Distributed Processing Symposium (IPDPS
2007), Los Alamitos, CA, USA, 2007. iii, 24, 25, 45, 58

[110] J. Yamato, J. Ohya, and K. Ishii. Recognizing human action in time-
sequential images using hidden Markov model. Proceedings 1992 IEEE
Computer Society Conference on Computer Vision and Pattern Recog-
nition, pages 379–385, 1992. 33

[111] S.-Z. Yu and H. Kobayashi. An efficient forward-backward algorithm
for an explicit-duration hidden markov model. IEEE Signal Processing
Letters, 10(1):11–14, 2003. 52

[112] S.-Z. Yu and H. Kobayashi. Practical implementation of an efficient
forward-backward algorithm for an explicit-duration hidden markov
model. Trans. Sig. Proc., 54(5):1947–1951, Oct. 2006. 52

[113] G. P. Zhang. Neural networks for classification: a survey. IEEE Trans-
actions on Systems, Man and Cybernetics, Part C (Applications and
Reviews), 30(4):451–462, Nov. 2000. 31, 32

[114] X. J. Zhang, H. Andrade, B. Gedik, R. King, J. Morar, S. Nathan,
Y. Park, R. Pavuluri, E. Pring, R. Schnier, P. Selo, M. Spicer, V. Uhlig,
and C. Venkatramani. Implementing a high-volume, low-latency market

BIBLIOGRAPHY 107

data processing system on commodity hardware using ibm middleware.
In Proceedings of the 2nd Workshop on High Performance Computa-
tional Finance, WHPCF ’09, pages 7:1–7:8, New York, NY, USA, 2009.
ACM. 38

[115] Z. Zhang and S. Fu. Failure prediction for autonomic management of
networked computer systems with availability assurance. In Symposium
on Parallel and Distributed Processing, pages 1–8, 2010. 23

	Introduction
	Software Dependability
	Basic concepts of Dependability
	Faults, Errors, Failures

	Fault Management: reactive and proactive approaches
	Online Failure Prediction
	Taking Actions and reaction methods
	Faults and Failures in Mission Critical Systems
	Motivation and Contribution
	Motivation
	Novelty.
	Contributions

	Outline of the Thesis

	Related Work
	Online Failure Prediction
	Black Box Monitoring and Non-intrusiveness
	Classification
	Bayesian Network Classifier
	Decision Trees
	Neural Networks
	Hidden Markov Models

	Events, Event Processing, Event Based Programming
	Complex Event Processing
	Complex Event Processing applications
	Complex Event Processing engines

	Model and Basic Techniques
	Failure and Prediction Model
	Data Pre-Processing
	Classification
	Aggregator

	Architecture
	Assumptions
	CASPER Architecture
	Pre-Processing module.
	Symptoms detection module.
	Hidden Markov Model as a state recognizer
	Hosts Activity Detection Module
	Failure Prediction module

	Training and Tuning of CASPER
	Training of the model
	Tuning of CASPER parameters

	Evaluations and results on a real ATC system
	Evaluation Metrics
	Monitored System
	Principle of FT CORBA
	Testbed
	Faults Injection
	Training Data

	Performance Metrics
	Results

	Conclusion
	Glossary
	Bibliography

