1,192 research outputs found

    Recent progress of fabrication, characterization, and applications of anodic aluminum oxide (AAO) membrane: A review

    Full text link
    The progress of membrane technology with the development of membranes with controlled parameters led to porous membranes. These membranes can be formed using different methods and have numerous applications in science and technology. Anodization of aluminum in this aspect is an electro-synthetic process that changes the surface of the metal through oxidation to deliver an anodic oxide layer. This process results in a self-coordinated, exceptional cluster of round and hollow formed pores with controllable pore widths, periodicity, and thickness. After the initial introduction, the paper proceeds with a brief overview of anodizing process. That engages anodic aluminum oxide (AAO) layers to be used as formats in various nanotechnology applications without the necessity for expensive lithographical systems. This review article surveys the current status of the investigation on AAO membranes. A comprehensive analysis is performed on AAO membranes in applications; filtration, sensors, drug delivery, template-assisted growth of various nanostructures. Their multiple usages in nanotechnology have also been discussed to gather nanomaterials and devices or unite them into specific applications, such as nano-electronic gadgets, channel layers, and clinical platforms tissue designing. From this review, the fact that the specified enhancement of properties of AAO can be done by varying geometric parameters of AAO has been highlighted. No review paper focused on a detailed discussion of applications of AAO with prospects and challenges. This review paper represents the formation, properties, applications with objective consideration of the prospects and challenges of AAO applications. The prospects may appeal to researchers to promote the development of unique membranes with functionalization and controlled geometric parameters and check the feasibility of the AAO membranes in nano-devices.Comment: 36 pages, 19 figures, 8 table

    Electrochemically engineered anodic alumina Nanotubes: physico-chemical properties and Applications

    Get PDF
    Des del seu descobriment, l'alúmina anòdica porosa s’ha utilitzat com a recobriment protector. El descobriment de la seva estructura porosa va animar els investigadors a desenvolupar nous mètodes de fabricació d'alúmina, obtenint així geometries complexes de propietats diverses. En aquesta tesi es desenvolupen nanotubs d'alúmina anòdica (AANTs) mitjançant un procés d’anodització que es coneix com anodització per polsos. El procés consisteix a entrellaçar polsos de corrent de baixa (~6 mA/cm2) i alta (~290-390 mA/cm2) densitat. Un flux de corrent prou alt produeix un estrenyiment vertical dels porus i unions entre cel·les més febles. L'atac electroquímic selectiu i la sonicació en aigua de l'estructura resultant permeten produir col·loides de nanotubs. El primer objectiu d'aquesta tesi és una anàlisi exhaustiva del procés per comprendre millor el mecanisme de formació dels AANTs i relacionar les condicions d’anodització amb la seva geometria resultant. El segon objectiu és avaluar i optimitzar el seu postprocessat, investigant nous mètodes d'alteració de les seves propietats fisicoquímiques. L'últim objectiu és dissenyar i fabricar nanotubs i proposar les seves aplicacions. Aquest treball investiga l'evolució del perfil de l'alúmina en funció dels paràmetres d’anodització. A més, el corrent i el potencial del procés s'associen amb la geometria i les propietats dels nanotubs obtinguts: longitud, diàmetre intern i extern, potencial Z i tamany. En resum, un corrent més alt condueix a nanotubs més llargs i estrets amb menor càrrega superficial. S'avaluen i optimitzen les condicions de sonicació. Es demostra que el recuit a alta temperatura dels nanotubs té un impacte en la seva estructura cristal·lina i composició elemental. Posteriorment, els nanotubs es decoren electrostàticament amb nanopartícules magnètiques i es modifica el seu interior amb una proteïna marcada amb fluoròfor. Aquests col·loides magnètics han demostrat ser útils per a la detecció de la catepsina B, el que demostra la seva utilitat com a sensors.La anodización del aluminio tiene casi un siglo de historia. La alúmina anódica se utilizó inicialmente como recubrimiento protector, pero el desarrollo de la microscopía electrónica reveló la morfología porosa de este óxido. Este descubrimiento animó a los investigadores a desarrollar nuevos métodos de fabricación de la alúmina porosa, obteniendo así geometrías complejas con diversas propiedades. En esta tesis se desarrollan nanotubos de alúmina anódica (AANTs) a través de un proceso de anodización que se conoce como anodización por pulsos. El proceso consiste en entrelazar pulsos de corriente de baja (~ 6 mA / cm2) y alta (~ 290-390 mA / cm2) densidad. Un flujo de corriente suficientemente alto afecta a la formación de la estructura, resultando en un estrechamiento vertical de los poros y uniones entre celdas más débiles. El ataque electroquímico selectivo y la sonicación en agua de la estructura resultante permiten producir coloides de nanotubos. El primer objetivo de esta tesis es un análisis exhaustivo del proceso para comprender mejor el mecanismo de formación de los AANTs y conectar con precisión las condiciones de anodización con la geometría resultante de la estructura. El segundo objetivo es evaluar y optimizar su posprocesado, investigando nuevas posibilidades de alterar las propiedades fisicoquímicas de los AANT. El último objetivo es diseñar y fabricar nanotubos funcionales y proponer sus aplicaciones. Este trabajo investiga la evolución del perfil de anodización en función de las condiciones del proceso de anodización. Además, la corriente y el potencial del proceso se asocian con la geometría y las propiedades de los nanotubos obtenidos: longitud, diámetro interno y externo, potencial Z y dispersión de tamaño. En resumen, una corriente más alta conduce a nanotubos más largos y estrechos con una carga superficial más baja. Se evalúan las condiciones de sonicación proponiendo un conjunto de parámetros más óptimo. Se demuestra que el recocido a alta temperatura de los nanotubos tiene un impacto en su estructura cristalina y composición elemental: el aumento de temperatura produce una fracción cristalina más alta y disminuye su contenido de azufre. Posteriormente, los nanotubos se decoran electrostáticamente con nanopartículas de maghemita y se modifica su interior con una proteína marcada conMost of the time since its discovery, nanoporous anodic alumina was used as a protective coating. The intrinsic property revealed by the electron microscope – porosity – encouraged researchers to investigate new methods of porous alumina fabrication, obtaining complex geometries with various properties. In this thesis, anodic alumina nanotubes (AANTs) are developed through a carefully adjusted anodization process defined as pulse anodization. The process consists of interlacing current pulses of low (~6 mA/cm2) and high (~290-390 mA/cm2) density. Sufficiently high current flow affects the formation of the structure, resulting in vertical pore narrowings and weaker cell junctions. Selective acid etching and sonication in water enables to yield colloids of nanotubes. First aim of this thesis is a thorough analysis of the process to better understand the formation mechanism of AANTs and precisely connect anodization conditions with the resultant geometry of the structure. Second goal is to evaluate and optimize post-processing investigating further possibilities to alter physio-chemical properties of AANTs. Last objective is to design and fabricate functional nanotubes and propose their applications. This work reports the evolution of the anodization profile depending on the process conditions. Further, current and potential of the process are associated with the geometry and the properties of the obtained nanotubes: length, inner and outer diameter, z-potential and size dispersity. In brief, higher current leads to longer and narrower nanotubes with lower surface charge. Sonication conditions are evaluated leading to the proposal of a more optimal set of parameters. Annealing of the nanotubes is demonstrated to impact on their crystalline structure and elemental composition: temperature increase leads to higher crystalline fraction and decrease their sulfur content. Nanotubes are later electrostatically-decorated with maghemite nanoparticles and modified inside with a fluorophore labelled protein. These magnetically responsive colloids demonstrate stimuli-responsive detection of cathepsin B, supporting its utility as a sensor

    Nano-estructuras tridimensionales funcionales (alúmina 3D y redes de nanohilos interconectados en las 3 direcciones del espacio)

    Get PDF
    Tesis inédita de la Universidad Complutense de Madrid, Facultad de Ciencias Físicas, leída el 09-03-2022This Thesis has been focused on the development of functional nanostructures for a variety of applications, from structural coloring to magnetic nanostructures with tailored properties and highly efficient thermoelectric metamaterials. In all cases, the fabrication of such nanostructures has been based on two processes: aluminum anodization and electrochemical growth. Both are chemical processes, which need no vacuum and that are well known at the industrial level. The results that are presented in this manuscript represent the state of the art of both techniques, which is well endorsed by the publications that have resulted from it.In brief, the main objective pursued in this Ph.D. Thesis has been to prove the versatility of a recent kind of alumina membranes, consisting of longitudinal pores that are transversely perforated by smaller pore channels, in the development of future nanotechnology applications. These 3D-Anodic alumina templates (3D AAO) have been studied by themselves, but also used as templates to grow different materials and tune their properties...Este trabajo de tesis se centra en el desarrollo de nanoestructuras funcionales interconectadas para diversas aplicaciones, desde la obtención de color estructural a la fabricación de metamateriales magnéticos con propiedades modificadas, así como metamateriales termoeléctricos de alta eficiencia. En todos estos casos, la fabricación de estas nanoestructuras se ha basado en dos procesos: anodización de aluminio y crecimiento electroquímico. Ambos son procesos químicos que no requieren de vacío y que son muy conocidos a nivel industrial. Los resultados que se presentan en este manuscrito muestran el estado del arte en ambas técnicas, lo que queda patente por las publicaciones científicas a las que este trabajo ha dado lugar. Brevemente, el objetivo principal de esta Tesis ha sido probar la versatilidad de un tipo de membranas de alúmina desarrolladas recientemente para el desarrollo de futuras aplicaciones nanotecnológicas. Estas membranas consisten en poros longitudinales que están unidos por poros transversales más pequeños que forman canales que los conectan. Estas membranas de alúmina tridimensionales (3D-AAO, del inglés 3D Anodic Aluminum Oxide) se han estudiado, por un lado, como plataformas para la generación de dispositivos en sí mismas, y, por otro lado, como plantillas para crecer en su estructura porosa distintos materiales y nanoestructurarlos, modificando de este modo sus propiedades...Fac. de Ciencias FísicasTRUEunpu

    Boosting solar energy harvesting with ordered nanostructures fabricated by anodic aluminum oxide templates

    Get PDF
    To date, technical development has boosted the efficiencies of solar energy conversion devices with conventional planar architectures to be close to the respective theoretical values, which are hard to be further improved without reforming the device structures. Alternatively, ordered nanostructure arrays have recently emerged as efficacious scaffolds to construct devices for converting energy more efficiently due to their advantageous optical effects. To meet the global energy requirements for producing renewable energy efficiently, a general approach is needed to fabricate diverse ordered nanostructure arrays. In the meantime, the approach should allow for fine tuning in every set of nanounits towards obtaining desired properties. Herein, we utilized anodic aluminum oxide (AAO) templates to provide a versatile method for constructing ordered nanostructure arrays from one to two dimensions. Firstly, arrays of one-dimensional Au nanowires comprising two components of pillar and truncated pyramid were fabricated. Then, periodic one-dimensional Janus hetero-nanostructures with programmable morphologies, compositions, dimensions, and interfacial junctions were realized. Finally, two-dimensional superlattice photonic crystals with two sets of nanopores were constructed via a combination of the AAO template and the structural replication technique. Subsequently, these as-obtained nanostructures were integrated into photoelectrochemical water-splitting cells and solar-to-thermal conversion systems, which significantly boosted solar energy harvesting performance. In conjunction with theoretical simulations, we further elucidated that the enhanced light harvesting ability can be ascribed to twofold facts: photonic effects and surface plasmon resonance which thus provide a route to manipulate light at the nanoscale.In dieser Dissertation habe ich drei Arten von hochgeordneten Nanostrukturen realisiert, einschließlich 1D-PTP-Au-Core / CdS-Shell-Array, Au-NW / TiO2-NT-Janus-Hetero-Nanostruktur-Array und 2D-Metall-SPhCs. Diese fortschrittlichen Architekturen könnten als vielseitige Gerüste zum Aufbau energiebezogener Geräte eingesetzt werden und haben ein großes Potenzial, die Gesamtleistung drastisch zu verbessern und die durch die planare Konfiguration auferlegten Grenzen zu durchbrechen. Insbesondere die geordneten Nanostruktur-Arrays mit mehreren Komponenten sind von großer Bedeutung, und die entsprechenden Geräte können die Vorteile dieser nanostrukturierten Komponenten kombinieren, wodurch die relevante Leistung systematisch verbessert wird. Darüber hinaus ermöglichen die hohe Regelmäßigkeit der Nanostrukturverteilung, die Gleichmäßigkeit der Nanounits sowie die steuerbaren Größen und Profile der Nanostruktur die resultierenden Architekturen als leistungsfähige Plattform, um die spezifischen Energieumwandlungsreaktionen mikroskopisch zu untersuchen. Diese Ergebnisse könnten wiederum die weitere Entwicklung der relevanten Geräte leiten

    Fabrication of Polymeric Materials via Anodic Aluminum Oxide Templating

    Get PDF

    The sealing step in aluminum anodizing: a focus on sustainable strategies for enhancing both energy efficiency and corrosion resistance

    Get PDF
    Increasing demands for environmental accountability and energy efficiency in industrial practice necessitates significant modification(s) of existing technologies and development of new ones to meet the stringent sustainability demands of the future. Generally, development of required new technologies and appropriate modifications of existing ones need to be premised on in-depth appreciation of existing technologies, their limitations, and desired ideal products or processes. In the light of these, published literature mostly in the past 30 years on the sealing process; the second highest energy consuming step in aluminum anodization and a step with significant environmental impacts has been critical reviewed in this systematic review. Emphasis have been placed on the need to reduce both the energy input in the anodization process and environmental implications. The implications of the nano-porous structure of the anodic oxide on mass transport and chemical reactivity of relevant species during the sealing process is highlighted with a focus on exploiting these peculiarities, in improving the quality of sealed products. In addition, perspective is provided on plausible approaches and important factors to be considered in developing sealing procedures that can minimize the energy input and environmental impact of the sealing step, and ensure a more sustainable aluminum anodization process/industry.in publicatio

    Nanostruktuursed pinnakatted auto-, lennu- ja kosmosetööstusele

    Get PDF
    Väitekirja elektrooniline versioon ei sisalalda publikatsiooneAlumiiniumsulamid on kerged ning suurepäraste mehaaniliste omadustega, mille tõttu kasutatakse neid laialdaselt komponentide valmistamiseks lennu- ja autotööstuses. Paraku on parimad alumiiniumsulamid tundlikud korrosiooni suhtes, mida saab takistada erinevate kaitsekatete abil. Põhiliseks väljakutseks on seejuures kaitse tagamine täppisdetailidele, mille mõõtmed ei tohi palju muutuda ja mis võivad olla keeruka kolmemõõtmelise kujuga ning sisaldada ka keermetega auke. Selle probleemiga tegeleti antud uurimustöös, kus uuriti nanokatete rakendamist alumiiniumsulamite korrosioonikindluse tõstmiseks. Erinevate keraamiliste kaitsekatete valmistamiseks kasutati uurimustöös aatomkihtsadestuse meetodit, millega kaeti erineva eeltöötlusega alumiiniumdetailide. Süstemaatiliste uuringute vältel töötati välja uudne meetod et valmistada nanostruktuurseid kaitsekatteid, mis tagasid alumiiniumdetailidele suurepärase kaitse korrosiooni eest. Samuti testiti kaitsekatet energeetilise atomaarse hapnikuga, millega simuleeriti 1 aasta pikkust kokkupuudet kosmose tingimustega madalal orbiidil. Uudne nanostruktuurne kate on praeguseks kantud üle 50-le alumiiniumdetailile satelliidil WISA Woodsat, kus tema eesmärk on tagada funktsionaalsus kriitilistele liikuvatele detailidele. Samuti uuritakse peagi uudse katte käitumist kosmoses materjalide testimise mooduli abil, mis on integreeritud satelliidile ESTCube-2.Aluminum alloys are widely used for manufacturing components in aerospace and automobile industries. Aluminum alloys are favored in these applications as they have light weight and superior mechanical properties but are also easy to process. However, these alloys are vulnerable to corrosion, which can be mitigated by using various protective coatings. The primary challenge with aluminum alloys in practical applications is the protection of high precision substrates that may also have a sophisticated three-dimensional shape or contain threaded cavities. This problem was addressed in this study, where the use of nanometric protective coatings was investigated. For that purpose, atomic layer deposition technique was used to grow various ceramic materials onto the aluminum alloy substrates that had received different pre-treatments. During these systematic studies, a technique was developed for the preparation of a novel nanostructured coating which protected the aluminum alloy against corrosion in salt spray tests. The novel coating also suffered only negligible damage from energetic atomic oxygen, which was used to simulate 1 year of exposure to space in low Earth orbit. Finally, the novel nanostructured coating was successfully applied on over 50 aluminum parts of satellite WISA Woodsat and will also be tested soon in space on the materials testing module on ESTCube-2.https://www.ester.ee/record=b552641

    Surface Engineering of Biomaterials

    Get PDF
    Acceptance or rejection of implanted biomaterials is strongly dependent on an appropriate bio-interface between the biomaterial and its surrounding tissue. Given the fact that most bulk materials only provide mechanical stability for the implant and may not interact with tissues and fluids in vivo, surface modification and engineering of biomaterials plays a significant role towards addressing major clinical unmet challenges. Increasing data showed that altering surface properties including physiochemical, topographical, and mechanical characteristics, is a promising approach to tackle these problems. Surface engineering of biomaterials could influence the subsequent tissue and cellular events such as protein adsorption, cellular recolonization, adhesion, proliferation, migration, and the inflammatory response. Moreover, it could be based on mimicking the complex cell structure and environment or hierarchical nature of the bone. In this case, the design of nano/micrometer patterns and morphologies with control over their properties has been receiving the attention of biomaterial scientists due to the promising results for the relevant biomedical applications. This Special Issue presents original research papers that report on the current state-of-the-art in surface engineering of biomaterials, particularly implants and biomedical devices
    corecore