1,229 research outputs found

    A New Phase Current Profiling with FLC f or Torque Optimization of 12/8 SRM

    Get PDF
    The switched reluctance machine against its several merits such as simplicity, robustness, less cost manufacturing and large speed still suffers from its undesirable torque ripple and acoustic noise. Compared to different candidates of hybrid and electric vehicle engine, the frequency of use of SRM in traction drives is improved with the different optimizing torque oscillation solutions. Most of studies used the generic or specific model of switched reluctance machine in the Simulink library (6/4,8/6 and 10/8). Despite, a new non linear model simply implemented in Simulink tool usinga static finite element analysis a previous study is used in this work. Hence, a 12/8 non linear SRM drive system is simulated using MATLAB toolbox tested with an intelligent controller (FLC) in order to minimize the torque ripple of an oriented starter –alternator application of a hybrid vehicle

    Design and Development of Low Torque Ripple Variable-Speed Drive System With Six-Phase Switched Reluctance Motors

    Get PDF
    Switched reluctance motor (SRM) drives conventionally use current control techniques at low speed and voltage control techniques at high speed. However, these conventional methods usually fail to restrain the torque ripple, which is normally associated with this type of machine. Compared with conventional three-phase SRMs, higher phase SRMs have the advantage of lower torque ripple: To further reduce their torque ripple, this paper presents a control method for torque ripple reduction in six-phase SRM drives. A constant instantaneous torque is obtained by regulating the rotational speed of the stator flux linkage. This torque control method is subsequently developed for a conventional converter and a proposed novel converter with fewer switching devices. Moreover, modeling and simulation of this six-phase SRM drive system has been conducted in detail and validated experimentally using a 4.0-kW six-phase SRM drive system. Test results demonstrate that the proposed torque control method has outstanding performance of restraining the torque ripple with both converters for the six-phase SRM, showing superior performance to the conventional control techniques

    A Novel Technique for Tuning PI -controller In Switched Reluctance Motor Drive for Transportation Systems

    Get PDF
    This paper presents, an optimal basic speed controller for switched reluctance motor (SRM) based on ant colony optimization (ACO) with the presence of good accuracies and performances. The control mechanism consists of proportional-integral (PI) speed controller in the outer loop and hysteresis current controller in the inner loop for the three phases, 6/4 switched reluctance motor. Because of nonlinear characteristics of a SRM, ACO algorithm is employed to tune coefficients of PI speed controller by minimizing the time domain objective function. Simulations of ACO based control of SRM are carried out using MATLAB /SIMULINK software. The behavior of the proposed ACO has been estimated with the classical Ziegler- Nichols (ZN) method in order to prove the proposed approach is able to improve the parameters of PI chosen by ZN method. Simulations results confirm the better behavior of the optimized PI controller based on ACO compared with optimized PI controller based on classical Ziegler-Nichols method

    Torque Ripple Minimization of a Switched Reluctance Motor using Fuzzy Logic Control

    Get PDF
    Switched Reluctance Motors (SRMs) are attractive for industrial applications because of their simple construction and low cost, ruggedness, the capability to cover a wide speed range and relatively high torque-to-mass ratio. The primary disadvantage of an SRM is the higher torque ripple compared with conventional machines, which contributes to acoustic noise & vibration. The origin of torque pulsations in an SRM is due to the highly nonlinear & discrete nature of torque production mechanism. The total torque in an SRM is the sum of torques generated by each of the stator phases, which are controlled independently. Torque-ripple reduction in switched reluctance motors (SRM) has become a major research theme. In servo control applications or when smooth control is required at low speeds, reduction of the torque ripple becomes the main issue in an acceptable control strategy. In this paper intelligent controller such as Fuzzy Logic Controller current compensating technique is employed for minimizing the torque ripples in switched reluctance motor. For the purpose of comparison, the performance of conventional Proportional- Integral (PI) controller and PID controller are also considered. The statistical parameters like minimum, maximum, mean of total torque and torque ripple coefficient are reported. DOI: 10.17762/ijritcc2321-8169.15070

    Critical Aspects of Electric Motor Drive Controllers and Mitigation of Torque Ripple - Review

    Get PDF
    Electric vehicles (EVs) are playing a vital role in sustainable transportation. It is estimated that by 2030, Battery EVs will become mainstream for passenger car transportation. Even though EVs are gaining interest in sustainable transportation, the future of EV power transmission is facing vital concerns and open research challenges. Considering the case of torque ripple mitigation and improved reliability control techniques in motors, many motor drive control algorithms fail to provide efficient control. To efficiently address this issue, control techniques such as Field Orientation Control (FOC), Direct Torque Control (DTC), Model Predictive Control (MPC), Sliding Mode Control (SMC), and Intelligent Control (IC) techniques are used in the motor drive control algorithms. This literature survey exclusively compares the various advanced control techniques for conventionally used EV motors such as Permanent Magnet Synchronous Motor (PMSM), Brushless Direct Current Motor (BLDC), Switched Reluctance Motor (SRM), and Induction Motors (IM). Furthermore, this paper discusses the EV-motors history, types of EVmotors, EV-motor drives powertrain mathematical modelling, and design procedure of EV-motors. The hardware results have also been compared with different control techniques for BLDC and SRM hub motors. Future direction towards the design of EV by critical selection of motors and their control techniques to minimize the torque ripple and other research opportunities to enhance the performance of EVs are also presented.publishedVersio

    Application of Improved PID Controller in Motor Drive System

    Get PDF

    An Adaptive PID Speed Controller for an 8/6 Switched Reluctance Machine

    Get PDF
    This paper presents a classical controller with parameters adaptation capability, in an automatic way. This controller is based on a PID where a parameters adaptation algorithm is used and applied to the switched reluctance motor (SRM) speed control. This PID design do not require any kind of adjustment or calibration from the operator. The parameters adaptation algorithm implemented is based on one fuzzy system with a Takagi-Sugeno inference mechanism with some simplifications. These simplifications had the goal to select the parameters adaptation algorithm contributing for a fast controller response. The developed adaptive PID algorithm was modelled and simulated

    Optimum performances for non-linear finite elements model of 8/6 switched reluctance motor based on intelligent routing algorithms

    Get PDF
    This paper presents torque ripple reduction with speed control of 8/6 Switched Reluctance Motor (SRM) by the determination of the optimal parameters of the turn on, turn off angles Theta_(on), Theta_(off), and the supply voltage using Particle Swarm Optimization (PSO) algorithm and steady state Genetic Algorithm (ssGA). With SRM model, there is difficulty in the control relapsed into highly non-linear static characteristics. For this, the Finite Elements Method (FEM) has been used because it is a powerful tool to get a model closer to reality. The mechanism used in this kind of machine control consists of a speed controller in order to determine current reference which must be produced to get the desired speed, hence, hysteresis controller is used to compare current reference with current measured up to achieve switching signals needed in the inverter. Depending on this control, the intelligent routing algorithms get the fitness equation from torque ripple and speed response so as to give the optimal parameters for better results. Obtained results from the proposed strategy based on metaheuristic methods are compared with the basic case without considering the adjustment of specific parameters. Optimized results found clearly confirmed the ability and the efficiency of the proposed strategy based on metaheuristic methods in improving the performances of the SRM control considering different torque loads

    Intelligent Control of Switched Reluctance Motor Using Fuzzy Logic and SMC Controller for EV Applications

    Get PDF
    Switched Reluctance Motors have expanded their field of application in recent years, from a control system stepping motor to high torque e-vehicle applications. High-speed operation and a light-weight driving motor are critical elements for an effective electric vehicle design. SRM's low torque-to-weight ratio and magnetless rotor design make it ideal for use in electric vehicles with less weight and low cost. The only limitation with switched reluctance motors is torque ripple and vibrations. There have been a variety of techniques to reducing torque pulsations in the SRM, by which vibration and noise can be reduced. In this paper, an optimization technique is used in switching controllers in and a comparison is done between a sliding mode controller (SMC) with a modified reaching law and by using  Fuzzy Logic Controller (FLC). By using matlab Simulink the magnitude of torque ripple is simulated and compared for 8/6 pole  SRM. The results shows that the torque ripple is reduced in fuzzy compared to SMC  significantly

    Intelligent Control of Switched Reluctance Motor for Electrical Vehicle Applications with Different Controller

    Get PDF
    تستخدم محركات المعاوقي المفتاحي لإنتاج الكثير من  عزم الدوران والتي تعمل عند التشبع المغناطيسي العالي. وبالنظر إلى التشبع المغناطيسي العالي، فإن العلاقة بين تيار الطور، وموقع الدوار هي علاقة غير خطية. لذلك فان  الضجيج، الاضطرابات، وعزم القصور الذاتي  عند  التحميل يمكن أن يكون لها جميعا تأثير سلبي على أداء المحرك المعاوقي المفتاحي. في هذه الدراسة تم تطوير وحدة التحكم الانزلاقي. وقد استخدم وحدة التحكم الانزلاقي في تنظيم السرع على مدى واسع  بما في ذلك المحرك المعاوقي المفتاحي في السرع العالية والسرع الواطئة وتقارن هذه الدراسة وحدة التحكم الانزلاقي مع وحدة التحكم التناسبي المتكامل التفاضلي في المحرك المعاوقي المفتاحي ذو 4/6 اقطاب باستعمال  الطرق الامثل للتحكم . ومقارنة  سرعة الجزء الدوار مع السرعة المضبوطة .فان وحدة التحكم الانزلاقي المتسارع هو الافضل من حيث الاداء والمتانة في  تطبيق السيارات الكهربائية  تبعا لنظام السيمولنك المستخدم Switched reluctance motors (SRM) are used to produce a lot of torque when they are operating at high magnetic saturation. Due to the high magnetic saturation, the relationship between phase current, rotor position, and the flux linkage of SRM is nonlinear. Noise, disturbances, and inertia of load torque can all have a negative impact on the SRM driver system's speed controller performance. In this study, the SRM driver system's sliding mode controller was developed .The sliding mode controller( SMC) speed controller was used to regulate speeds of the SRM throughout a wide range speeds, including high and low speeds. This study compares (SMC) with a modified reaching law and a Proportional Integral Divertive Control (PID) controller for a 6/4 pole SRM using an optimization technique for switching controllers. Furthermore, the rotor speed was simulated and compared to the reference speed. The Exponential Sliding Mode Controller (ExpSMC) is the best in terms of performance and robustness for an electric vehicle application, depending on a simulation of an established test bench using the two controllers
    corecore