41 research outputs found

    An implementation of rotor speed observer for sensorless induction motor drive in case of machine parameter uncertainty

    Get PDF
    The paper describes observers using model reference adaptive system for sensorless induction motor drive with the pulse width modulator and the direct torque control under the circumstances of incorrect information of induction motor parameters. An approximation based on the definition of the Laplace transformation is used to obtain initial values of the parameters. These values are utilized to simulate sensorless control structures of the induction motor drive in Matlab-Simulink environment. Performance comparison of two typical observers is carried out at different speed areas and in presence of parameter uncertainty. A laboratory stand with the induction motor drive and load unit is set up to verify the properties of observers. Experimental results confirm the expected dynamic properties of selected observer

    Neural-Network Vector Controller for Permanent-Magnet Synchronous Motor Drives: Simulated and Hardware-Validated Results

    Get PDF
    This paper focuses on current control in a permanentmagnet synchronous motor (PMSM). The paper has two main objectives: The first objective is to develop a neural-network (NN) vector controller to overcome the decoupling inaccuracy problem associated with conventional PI-based vector-control methods. The NN is developed using the full dynamic equation of a PMSM, and trained to implement optimal control based on approximate dynamic programming. The second objective is to evaluate the robust and adaptive performance of the NN controller against that of the conventional standard vector controller under motor parameter variation and dynamic control conditions by (a) simulating the behavior of a PMSM typically used in realistic electric vehicle applications and (b) building an experimental system for hardware validation as well as combined hardware and simulation evaluation. The results demonstrate that the NN controller outperforms conventional vector controllers in both simulation and hardware implementation

    Modeling, Analysis, and Neural Network Control of an EV Electrical Differential

    No full text
    International audienceThis paper presents system modeling, analysis, and simulation of an electric vehicle (EV) with two independent rear wheel drives. The traction control system is designed to guarantee the EV dynamics and stability when there are no differential gears. Using two in-wheel electricmotorsmakes it possible to have torque and speed control in each wheel. This control level improves EV stability and safety. The proposed traction control system uses the vehicle speed, which is different from wheel speed characterized by a slip in the driving mode, as an input. In this case, a generalized neural network algorithm is proposed to estimate the vehicle speed. The analysis and simulations lead to the conclusion that the proposed system is feasible. Simulation results on a test vehicle propelled by two 37-kW induction motors showed that the proposed control approach operates satisfactorily

    A Robust Bearing Fault Detection and Diagnosis Technique for Brushless DC Motors Under Non-stationary Operating Conditions

    Get PDF
    Rolling element bearing defects are among the main reasons for the breakdown of electrical machines, and therefore, early diagnosis of these is necessary to avoid more catastrophic failure consequences. This paper presents a novel approach for identifying rolling element bearing defects in brushless DC motors under non-stationary operating conditions. Stator current and lateral vibration measurements are selected as fault indicators to extract meaningful features, using a discrete wavelet transform. These features are further reduced via the application of orthogonal fuzzy neighbourhood discriminative analysis. A recurrent neural network is then used to detect and classify the presence of bearing faults. The proposed system is implemented and tested in simulation on data collected from an experimental setup, to verify its effectiveness and reliability in accurately detecting and classifying the various faults

    Mechatronics of systems with undetermined configurations

    Get PDF
    This work is submitted for the award of a PhD by published works. It deals with some of the efforts of the author over the last ten years in the field of Mechatronics. Mechatronics is a new area invented by the Japanese in the late 1970's, it consists of a synthesis of computers and electronics to improve mechanical systems. To control any mechanical event three fundamental features must be brought together: the sensors used to observe the process, the control software, including the control algorithm used and thirdly the actuator that provides the stimulus to achieve the end result. Simulation, which plays such an important part in the Mechatronics process, is used in both in continuous and discrete forms. The author has spent some considerable time developing skills in all these areas. The author was certainly the first at Middlesex to appreciate the new developments in Mechatronics and their significance for manufacturing. The author was one of the first mechanical engineers to recognise the significance of the new transputer chip. This was applied to the LQG optimal control of a cinefilm copying process. A 300% improvement in operating speed was achieved, together with tension control. To make more efficient use of robots they have to be made both faster and cheaper. The author found extremely low natural frequencies of vibration, ranging from 3 to 25 Hz. This limits the speed of response of existing robots. The vibration data was some of the earliest available in this field, certainly in the UK. Several schemes have been devised to control the flexible robot and maintain the required precision. Actuator technology is one area where mechatronic systems have been the subject of intense development. At Middlesex we have improved on the Aexator pneumatic muscle actuator, enabling it to be used with a precision of about 2 mm. New control challenges have been undertaken now in the field of machine tool chatter and the prevention of slip. A variety of novel and traditional control algorithms have been investigated in order to find out the best approach to solve this problem

    Development of Motion Control Systems for Hydraulically Actuated Cranes with Hanging Loads

    Get PDF
    Automation has been used in industrial processes for several decades to increase efficiency and safety. Tasks that are either dull, dangerous, or dirty can often be performed by machines in a reliable manner. This may provide a reduced risk to human life, and will typically give a lower economic cost. Industrial robots are a prime example of this, and have seen extensive use in the automotive industry and manufacturing plants. While these machines have been employed in a wide variety of industries, heavy duty lifting and handling equipment such as hydraulic cranes have typically been manually operated. This provides an opportunity to investigate and develop control systems to push lifting equipment towards the same level of automation found in the aforementioned industries. The use of winches and hanging loads on cranes give a set of challenges not typically found on robots, which requires careful consideration of both the safety aspect and precision of the pendulum-like motion. Another difference from industrial robots is the type of actuation systems used. While robots use electric motors, the cranes discussed in this thesis use hydraulic cylinders. As such, the dynamics of the machines and the control system designmay differ significantly. In addition, hydraulic cranes may experience significant deflection when lifting heavy loads, arising from both structural flexibility and the compressibility of the hydraulic fluid. The work presented in this thesis focuses on motion control of hydraulically actuated cranes. Motion control is an important topic when developing automation systems, as moving from one position to another is a common requirement for automated lifting operations. A novel path controller operating in actuator space is developed, which takes advantage of the load-independent flow control valves typically found on hydraulically actuated cranes. By operating in actuator space the motion of each cylinder is inherently minimized. To counteract the pendulum-like motion of the hanging payload, a novel anti-swing controller is developed and experimentally verified. The anti-swing controller is able to suppress the motion from the hanging load to increase safety and precision. To tackle the challenges associated with the flexibility of the crane, a deflection compensator is developed and experimentally verified. The deflection compensator is able to counteract both the static deflection due to gravity and dynamic de ection due to motion. Further, the topic of adaptive feedforward control of pressure compensated cylinders has been investigated. A novel adaptive differential controller has been developed and experimentally verified, which adapts to system uncertainties in both directions of motion. Finally, the use of electro-hydrostatic actuators for motion control of cranes has been investigated using numerical time domain simulations. A novel concept is proposed and investigated using simulations.publishedVersio

    Multimodal human machine interactions in industrial environments

    Get PDF
    This chapter will present a review of Human Machine Interaction techniques for industrial applications. A set of recent HMI techniques will be provided with emphasis on multimodal interaction with industrial machines and robots. This list will include Natural Language Processing techniques and others that make use of various complementary interfaces: audio, visual, haptic or gestural, to achieve a more natural human-machine interaction. This chapter will also focus on providing examples and use cases in fields related to multimodal interaction in manufacturing, such as augmented reality. Accordingly, the chapter will present the use of Artificial Intelligence and Multimodal Human Machine Interaction in the context of STAR applications

    Overview of permanent-magnet brushless drives for electric and hybrid electric vehicles

    Get PDF
    With ever-increasing concerns on our environment, there is a fast growing interest in electric vehicles (EVs) and hybrid EVs (HEVs) from automakers, governments, and customers. As electric drives are the core of both EVs and HEVs, it is a pressing need for researchers to develop advanced electric-drive systems. In this paper, an overview of permanent-magnet (PM) brushless (BL) drives for EVs and HEVs is presented, with emphasis on machine topologies, drive operations, and control strategies. Then, three major research directions of the PM BL drive systems are elaborated, namely, the magnetic-geared outer-rotor PM BL drive system, the PM BL integrated starter-generator system, and the PM BL electric variable-transmission system. © 2008 IEEE.published_or_final_versio

    A literature survey on sideslip angle estimation using vehicle dynamics based methods

    Get PDF
    The vehicle sideslip angle or lateral velocity is a measure both for driving stability and for occupant’s subjective perception of safety. With the introduction of vehicle dynamics control systems and automated driving functions, knowledge of this vehicle motion state is required for many control strategies. This article gives an overview on the state of the art on sideslip angle estimation. In contrast to other literature studies on this topic, it focuses on vehicle dynamics based algorithms. The following types of observers are discussed: Kalman Filter-type, recursive least squares (RLS), sliding mode observers (SMO) or nonlinear observers (NLO). Eventually, cascaded observers are used that first estimate some states, which then act as input to the sideslip angle estimator. Since the choice of an observer strategy always depends on the application, this article provides a brief insight into the work of selected research groups that have studied the topic. These examples will help to clarify the presence of many different approaches in the literature. A detailed discussion on vehicle and tire models is not included but referenced to other sources. Finally, this article provides recommendations for two main target groups: First, researchers and engineers that plan to design an algorithm for sideslip angle estimation using deterministic vehicle dynamics based approaches. Second, researchers and engineers planning to include an existing algorithm in an automated driving function that want to learn about advantages and limitations of these types of algorithms. Author
    corecore