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ABSTRACT The vehicle sideslip angle or lateral velocity is a measure both for driving stability and for
occupant’s subjective perception of safety. With the introduction of vehicle dynamics control systems and
automated driving functions, knowledge of this vehicle motion state is required for many control strategies.
This article gives an overview on the state of the art on sideslip angle estimation. In contrast to other literature
studies on this topic, it focuses on vehicle dynamics based algorithms. The following types of observers are
discussed: Kalman Filter-type, recursive least squares (RLS), sliding mode observers (SMO) or nonlinear
observers (NLO). Eventually, cascaded observers are used that first estimate some states, which then act
as input to the sideslip angle estimator. Since the choice of an observer strategy always depends on the
application, this article provides a brief insight into the work of selected research groups that have studied
the topic. These examples will help to clarify the presence of many different approaches in the literature.
A detailed discussion on vehicle and tire models is not included but referenced to other sources. Finally, this
article provides recommendations for two main target groups: First, researchers and engineers that plan to
design an algorithm for sideslip angle estimation using deterministic vehicle dynamics based approaches.
Second, researchers and engineers planning to include an existing algorithm in an automated driving function
that want to learn about advantages and limitations of these types of algorithms.

INDEX TERMS Lateral velocity estimation, literature survey, slip angle estimation, side-slip angle
estimation, sideslip angle estimation, state estimation, vehicle motion state estimation, vehicle state
estimation.

I. INTRODUCTION
Driving functions of all SAE automation levels require
information on vehicle and environment states. Some of the
required states are already measured in series-production
vehicles, for example vehicles with Electronic Stability
Control use measured information on the vehicle yaw rate,
lateral acceleration and wheel speeds, see e.g. [1]. Not all
relevant states like the vehicle sideslip angle are measured
directly, either because it is too costly or existing sensors are
not robust and reliable enough. The authors in [2] identified
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vehiclemotion state estimation as one of themost challenging
areas in automated driving concerning the topic of vehicle
dynamics. According to the authors, main requirements are
availability of estimates with high confidence, robustness and
fault tolerance over the whole operation range of the vehicle.

The aim of this article is to give an overview on the state of
the art on the estimation of the vehicle sideslip angle and the
lateral velocity in the vehicle center of gravity (COG). This
research area has a considerable size and can be viewed from
different angles, many state of the art articles are available.
The present article is an extension of the following articles:

• Grip et al. 2009, [3] discuss design, implementation
and experimental validation of longitudinal velocity and
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sideslip angle estimation. In the course of their paper,
they discuss the state of the art and challenges in sideslip
angle estimation, such as influence of road inclination,
body orientation and unknown surface conditions.

• Chindamo et al. 2018, [4] present a literature review
on sideslip angle estimation and distinguish between
observer-based methods and neural network-based
approaches. Concerning observer-based methods, Luen-
berger observer, sliding-mode observer, and different
variants of Kalman filters are discussed. Furthermore,
methods using GPS measurements in addition to vehicle
dynamics sensors are discussed.

• Guo et al. 2018, [5] show a literature review on
vehicle dynamic state estimation and focus on the states
vehicle velocity, sideslip angle, yaw rate and roll angle.
Typical vehicle models, observer structures and sensor
configurations are discussed.

• Singh et al. 2018, [6] The authors show a literature
review on dynamic state estimation and focus on the
following vehicle and tire states: tire forces, road profile
and slope, vehicle velocity, roll angle, tire cornering
stiffness, friction coefficient, and vertical states for
active suspension controls such as the motion of sprung
and unsprung masses, as well as wheel speed signal
analysis. Intelligent tires and wheel bearing for load
sensing are touched upon.

• Jin et al. 2019, [7] show literature review on dynamic
state estimation and distinguish in model-based estima-
tion and in data-driven based estimation, which include
neural network approaches. Model-based estimation is
distinguished between filter-based and observer-based
methods. In that article, most cited literature treats
sideslip angle estimation, but also literature on friction
coefficient, longitudinal force, horizontal tire forces,
cornering stiffness, and the roll motion of the vehicle is
also included. Vehicle models, sensor configuration and
estimation techniques are discussed.

Unlike the articles mentioned above, this article distin-
guishes as follows: first, it classifies based on the types
of observers used. Second, only vehicle dynamics based
approaches are considered, meaning that methods e.g. only
relying on optical sensors are not included because they
are too expensive for series application and/or not accurate
and reliable enough for safety-critical applications. Third,
artificial intelligence or neural networks are not considered
as the main observer strategy. While the excluded approaches
show a lot of potential, the remaining state of the art
is still very large. In addition, it is assumed that future
observer strategies using sensor fusion will include a vehicle
dynamics-based method. Unlike the aforementioned articles,
this article will not go into detail about typical vehicle and
tire models. While the choice of these models is important
for the further observer strategy, the state of the art on its
description is comprehensive. Concerning tire models for
online estimation purposes, the interested reader is referred to
[8], [9], [10], and [11]. Concerning vehicle models, see e.g.

[5], [7], and [11]. With few exceptions, this article focuses on
the literature since 2011.

Sideslip angle estimation is also often linked to tire-road
friction estimation, as its influence on vehicle dynamics
cannot be separated. Further investigations show that this
also applies to the road banking angle, see [12]. Existing
approaches therefore make assumptions about road condi-
tions and therefore apply, for example, only to dry roads
with high grip. Others estimate these influencing conditions,
mostly with cascaded observer strategies, where several non-
measurable driving conditions are estimated step by step.
This article does not go into detail about maximum tire-road
friction and road slope estimation because of the large scope,
but mentions where sideslip angle estimation methods are
affected.

The remainder of this article is structured as follows:
Section I-A discusses the relevance of the sideslip angle
for vehicle dynamics and how the sideslip angle depends
on other quantities that are often not measured or unknown
during the operation. Then, an overview of the evolution
of states is given for selected research groups in the
field of sideslip angle estimation. It shows the variety of
approaches existing and gives an indication on the application
field of the sideslip estimates aimed by the respective
authors. In Section II, an overview on lateral velocity and
sideslip angle estimation using model-based observers is
given. The majority of published methods use a Kalman
Filter-type observer. Alternatively, recursive least squares
(RLS), sliding mode observers (SMO), nonlinear observers
(NLO) or cascaded observer strategies are used. Finally,
this article concludes with recommendations for two main
target groups of readers: Researchers and engineers that
plan to design an algorithm for sideslip angle estimation
using deterministic vehicle dynamics based approaches;
Researchers and engineers planning to include an existing
algorithm in an automated driving function that want to learn
about advantages and limitations of these types of algorithms.

A. RELEVANCE OF SIDESLIP ANGLE AND INFLUENCING
FACTORS
The sideslip angle β for the vehicle is defined as the angle
between the vehicle center plane and the velocity vector and
shown positive in Fig. 1 according to ISO 8855. The sideslip
angle can be expressed as a function of the longitudinal
velocity vx and the lateral velocity vy by

β = arctan
vy
vx
. (1)

Taking this into account, sideslip angle estimation is equiva-
lent to lateral velocity estimation.

Reference [1] shows how vehicle stability in lateral
direction depends on β by using the β-method that was
developed by [13]. To drive a vehicle around a curve, the
steering system is usually actuated, which generates lateral
tire forces and thus a yaw moment on the vehicle. At large
slip angles, however, the steering angle can hardly change
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FIGURE 1. Definition of the sideslip angle β and the wheel slip angles αi . All angles
defined positive in accordance to ISO 8855 and figure based on [124].

the yaw moment anymore. According to [1], the ability to
steer a vehicle is almost lost at the physical limits, which
is about β = ±12◦ on dry asphalt roads and β = ±2◦

on ice, depending on the vehicle velocity, e.g. previous
considerations are not valid in low speed maneuvers like in
parking conditions. The range of the stable vehicle motion
not only depends on β, but also on the maximum friction
coefficientµmax between tire and road. [14, p. 81-82] showed
that both when using the

(
β, ψ̇

)
-phase plane and the

(
β, β̇

)
-

phase plane for determining the stable vehicle motion, the
stable area reduces with decreasing µmax. With β being
an important indicator for vehicle stability, it is extremely
important to measure or estimate it to properly control the
car to avoid instability.

Strategies to estimate β often rely on knowledge or
estimation of other states, or make simplifications for their
conditions. Typical examples are the kinematic states: road
slope, road banking angle as well as pitch and roll motion of
the chassis. These quantities can affect β states estimation,
especially when the estimation strategy depends on either of
the following effects:

• Maximum tire-road friction coefficient µmax: The
transmissible force of a tire depends on both µmax and
the slip angle. The same force can be achieved with dif-
ferent combinations of these two quantities. Separating
these two influences is challenging but necessary when
using the measured lateral acceleration and a tire model
for sideslip estimation. Some approaches therefore use
a constant road condition, typically dry and high grip
roads, or assume to get the road condition as an input to
the sideslip angle estimation algorithm. Approaches to
separate both quantities exist, for example, see e.g. [15],
where both quantities are estimated simultaneously:
while at small slip angles the influence of µmax is
negligible, at very high slip angles the force depends
more on µmax and less on the slip angle.

• Measurements of vehicle horizontal accelerations:
On a horizontal road surface, the dominant forces acting
on a vehicle in lateral direction are the tire forces while
other forces, such as wind and air resistance, can often

be neglected. Thus, using Newton’s second law and
having an assumption on the vehicle mass, the tire forces
can be determined directly from horizontal acceleration
measurements [3]. However, a gravitational component
is added to the horizontal acceleration measurements
both due to road slope/banking and chassis pitch/roll
relative to the road plane. The difficulty of separating
the influence of a low friction surface and road banking
angle is discussed in [1] for the application of sideslip
angle estimation within ESC. These findings were
confirmed by [3] who could show that the estimation
problem is poorly conditioned when mainly relying
on vehicle accelerations as measurement input. Thus,
estimator stability cannot be guaranteed for combined
estimation of sideslip angle, maximum tire-road friction
coefficient and road banking angle. For a detailed
discussion on this topic, interested readers are referred
to [12].

• Dynamic wheel loads: The change in wheel load is
influenced by vehicle accelerations, pitch and roll, road
inclinations or road irregularities. For an overview on
estimation techniques for vertical forces see [10] and
typical models used see [11].

Whether and to which these states influence β estimation,
however, strongly depends on the specific estimation strategy.
Different strategies from different research groups will be
discussed in the next section.

B. EVOLUTION OF RESEARCH FOCUS IN SIDESLIP ANGLE
ESTIMATION
In the following paragraph an overview of the research
activities of selected research groups in the field of sideslip
angle estimation and related topics will be given. In addition
to the estimated states, sensor configurations, models, and
observer strategies used will be discussed. This section
will show the evolution of researcher’s strategies over time,
especially on the observers used and the assumptions made
on the vehicle and the tires.

The research group gathered around Charara from
Université de Technologie de Compiégne, France, has its
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main focus on sideslip angle estimation (see [16], [18],
[20], [21], [22], [23], [77], [80]), on longitudinal and lateral
tire-road forces ([17], [18], [20], [21], [22], [23], [77],
[80]), on vertical forces ([19], [20], [21]) and on friction
coefficient estimation ([18], [22], [77]). According to these
articles, more accurate estimation is obtained with precise
knowledge of quantities like vehicle mass, load transfer, and
tire cornering stiffness. To achieve this, most articles use so-
called cascading observers as in [18], [19], [20], [21], and
[23]. Cascading observers aremulti-step estimation processes
where there are multiple states estimated beforehand to make
the final estimate as accurate as possible. The authors use
both single track and four wheel vehicle models and explored
several different tire models in the observer strategies: linear,
Dugoff, Burckhardt, Pacejka, adaptive linear, and adaptive
Bruckhardt/Kiencke model. Various types of observers are
implemented and tested: linear Kalman filter (KF), extended
Kalman filter (EKF), unscented Kalman filter (UKF), particle
filter (PF), linear Luenberger observer (LO), extended
Luenberger observer and sliding mode observer (SMO).

Similar to Charara, the research group around Cheli
and Sabbioni from Politecnico di Milano, Italy, focuses
on sideslip angle estimation. In contrast to the cascaded
observers with many individual unmeasured quantities,
a simple and robust model seems to be the choice here.
The researchers combine a kinematic and a model-based
approach using fuzzy logic [24]. While the previous research
group used only sensors from series production vehicles, the
addition of GPS measurements for sideslip angle estimation
is explored here [25], [26]. In [27], authors use tires equipped
with sensors (smart tires) to improve the performance of the
EKF-based observer.

Gerdes from Stanford University, USA, and his group
based their research on improving simple sideslip angle
observers that use KF via additional measurements. Said
measurements are either GPS-obtained velocities in [28],
[29], and [30] or steering torque in [30] and [31]. Similar
to Cheli and Sabbioni, in [30] authors combine simple
kinematic and physical model approaches. However, in this
case, the measurements are reinforced with GPS data. The
use of steering torque information is proposed to improve
estimation, considering that the signal is never lost and is
inexpensive contrary to GPS [31], [32]. Findings show that
the combination of steering angle, yaw rate, and steering
torque measurements is comparable to GPS while estimating
sideslip angle.

Gadola and Chindamo, from University of Brescia in
Italy, proposed an EKF to estimate vehicle sideslip angle
and lateral tire forces [91]. Instead of a mathematical tire
model, the authors use a two-dimensional lookup table based
on Pacejka curves. In [33], a neural network is proposed
for sideslip angle estimation. Furthermore, a comparison
between EKF and neural network approach was done in [34].
The neural network approach demands rigorous training
and it might not work well in unpredicted and untrained
situations. On the other hand, the EKF requires accurate

models and knowledge on several constantly changing
vehicle parameters.

The research group gathered around Fujimoto and Hori
from The University of Tokyo, Japan, employs Recursive
Least Squares (RLS) method to estimate sideslip angle,
tire-road forces, and cornering stiffnesses [35], [36]. Non-
standard sensors are used for the improvement of estimation
accuracy. For example, in [83] authors use sensors for lateral
tire forces. Also, they introduce a combination of linear single
track and camera-based vision models. Furthermore, the
Multirate Kalman filter is introduced, which is useful when
there is a mismatch (disparity) between sampling frequencies
between measurements [37], [38], for example, when GPS
measurements are combined with sensor measurements from
the vehicle.

A research group around Diaz and Boada from Uni-
versidad Carlos III de Madrid, Spain, based their work
on combining neural networks with traditional observers.
The benefits of both neural networks and fuzzy logic
are incorporated in ANFIS (adaptive neuro-fuzzy inference
system) [39], which authors use extensively. Specifically,
they explore a combination of neural network and unscented
Kalman filter for sideslip angle estimation [110], and linear
Kalman filter for roll angle estimation [40]. Furthermore,
authors propose a fuzzy logic method that uses smart tires
to estimate slip angle and tire working conditions [41].

II. LATERAL VELOCITY AND SIDESLIP ANGLE
ESTIMATION
Over the last few decades, different techniques have been
developed to tackle the problem of sideslip angle estimation.
In the following, a review of observer-based methods
frequently used for sideslip angle estimation is given. These
include Luenberger observer (LO), recursive least squares
(RLS) estimation, sliding mode observer (SMO), different
variants of Kalman filter (KF) and cascaded observers. In this
publication, the methods are referred to as cascaded observer,
which consider multi-step observation schemes with several
secondary states being estimated before a primary state
is finally determined. Besides traditional state observers,
Artificial neural networks (ANN) are also often utilized in
cascading structures. Othermethods, like first-order Stirling’s
interpolation filter (DD1), also appear in the literature.

Used vehicle models are usually categorized as either
dynamic (physical) or kinematic. Both groups have certain
drawbacks. Dynamicmodels depend on knowledge of vehicle
and tire parameters as well as road conditions. Some of
these parameters are time-varying and dependent on external
factors. This makes it hard to predict their values. The
kinematic model works independently of said parameters but
is sensitive to sensor noise and bias and generally produces
a noisier estimate as shown by [78], [79], and [98]. Dynamic
approaches often use single track (or bicycle) model and four
wheel (or two track) model, with many variants of both.

Most methods use measurements available in series
production cars such as steering angle, yaw rate, longitudinal
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acceleration, lateral acceleration, and wheel speeds. Longi-
tudinal velocity is often calculated using wheel speeds or
also estimated. Some researchers utilize GPS to improve
estimation. The most used GPS measurements are course
angle, velocities, and position. Some approaches estimate tire
forces to improve primary states, see [10], and some use
force sensors from smart tires (sensor-equipped tires), see
e.g. [123].
Researchers in [78], [79], [81], [98], and [105] have shown

that observability problems occur when there is no lateral
excitation. To avoid this problem, authors in [82] proposed
heuristic scheduling that combines the kinematic model and
empirical information. Researchers in [78] merge a kinematic
approach and dynamic formulationwhen observability is lost.
In [105], lateral forces and sideslip angle are set to zero either
when the steering angle or when vx is zero. Authors of [98]
use a measure of the degree of nonlinearity to provide a
smooth transition between operating conditions.

A. LUENBERGER OBSERVER
Luenberger state observer (LO) [44] is a deterministic, closed
feedback loop observer that uses the error between predicted
and measured states to improve estimation quality. In the
linear case, it can show fast convergence, [45], but exhibits
a strong dependency on the used mathematical model and is
sensitive to variations in vehicle parameters, nonlinearities,
and uncertainties. This limits its application to parameter-
invariant systems according to [45] and [46]. Eigenvalue
assignment is used to tune the observer gain. The linear form
of LO applies to linear, time-invariant systems [44], but can be
extended for time-variant and nonlinear systems, [47]. An LO
variant is the extended Luenberger observer (ELO), which
is based on an extended Jacobian linearization of the error
dynamics, [48].
LO is often used for systemmonitoring and regulation [46].

The authors of [50] did a comparative study of observers
for sensorless vector control of induction motor drives. They
found that LO is ideal for steady-state performance and low-
speed operation. Concerning sideslip angle estimation, the
few applications are shown in Table 1. This table compares
the observer models used with regard to estimated states,
model inputs, measurements and type of vehicle model (VM)
and tire model (TM) used. The sideslip angle is either
estimated together with the longitudinal velocity vx or the
yaw rate ψ̇ . Typical inputs and/or measurements are the
steering angle δ, ψ̇ , vx and horizontal accelerations ax and
ay are used. Simple single track vehicle models or kinematic
approaches are applied. The last column in Table 1 provides
information on whether the authors validated their method
with measurements (M) or simulations (S).

ELO shows problems with convergence with initial states
that are not optimal, [80]. States are unobservable when there
is no lateral excitation, that is when the yaw rate is zero as
shown by [79] and [81]. In [82], heuristic scheduling is used
to prevent this.

B. RECURSIVE LEAST SQUARES ESTIMATION
Recursive Least Squares is an adaptive parameter estimation
technique that minimizes a quadratic cost function. The
algorithm is updated at each step with new data points [42].
RLS converges fast, however, its computational complexity
is high [43]. Table 2 shows the application of RLS for
sideslip angle estimation and compares estimated states,
measurements, as well as vehicle and tire models used
in the observer. Only the article [83] used RLS for vy
estimation. The measurements and models used are similar
to LO. More often it is used to estimate secondary states
or parameters needed for sideslip angle estimation, like
cornering stiffness [107], [108] or vehicle mass, [117].

C. SLIDING MODE OBSERVER
The sliding mode observer is also a deterministic, closed loop
feedback observer. Different from other observers, the SMO
has a sign function of error in the correction term or gain. This
discontinuous element forces the convergence of the observer
in finite time which represents an advantage in comparison
with other observers, see [49], [50], and [53]. A high level
of robustness against parameter variations, modeling errors,
uncertainties, and disturbances is one of the main advantages
of SMO, see [46], [49], [52], [54], and [55]. SMO has weaker
observability demands in comparison with other observers,
[49]. SMO exhibits high sensitivity to a choice of observer
gain as a consequence of the so-called chattering phenomena,
see [46] and [55]. Adequate gain must be chosen, so that
trade-off between the stability and robustness of the observer
is taken into account, [55]. SMO has linear and nonlinear
forms.

Considering its property of robustness, it is no surprise
that the sliding mode observer is often used in fault detection
and fault reconstruction, see [49] and [56]. In a comparative
study of observers concerning the sensorless vector control
of induction motor drives in [50], the authors concluded
that the general performance of a SMO is similar to the
performance of a Luenberger observer. In the field of sideslip
angle estimation, the advantages of sliding mode observer
hold. An overview of approaches is given in Table 2.
Estimated states, measurements, vehicle and tire models,
as well as validation with simulations or measurements are
again compared in this table. Compared to LO and RLS,
it has to be mentioned that the vehicle models are more
complex and show a higher degree of freedom; Dugoff tire
model is often applied because of its simpler equation and
low computational load compared to Pacejka MF tire model.
Estimated states and measurements used are typically similar
to LO and RLS methods we have seen so far.

The observer is shown to be robust and to have a fast
convergence according to [58], [59], and [57]. However,
a chattering (oscillation) problem occurs as shown by [57].

D. KALMAN FILTER AND VARIANTS
Kalman filter is a widely used method with application in
almost all engineering fields according to [61]. It is an
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TABLE 1. Luenberger observers used for sideslip angle estimation. Abbreviations: VM: Vehicle model, TM: Tire model, S: Simulations, M: Measurements.

TABLE 2. Sideslip angle estimation approaches using recursive least square estimation (RLS), sliding mode observers (SMO) and nonlinear observer
(NLO). Abbreviations: VM: Vehicle model, TM: Tire model, S: Simulations, M: Measurements.

algorithm based on recursive Bayesian estimation framework
that estimates the states using propagation of mean and
covariance through time and was developed originally
by [60]. A detailed description is given by [61] and [62].
In contrast to deterministic LO and SMO, the Kalman filter
utilizes system and measurement noise and uncertainties,
see also [61]. In [50], a comparison of LO, SMO, and KF
in the application of sensorless vector control of induction
motor drives is analyzed. They concluded that while the KF is
superior in its robustness to noise, it is also the most complex
observer to implement and tune.

The most popular extensions of the Kalman filter for
nonlinear systems are the extended Kalman filter (EKF) and
the unscented Kalman filter (UKF). EKF is based on the
linearization of nonlinear models around the current estimate,
see [61] and [63]. Despite being simple and computationally
efficient for nonlinear systems as shown by [64], problems
appear if the linearizations are not a good approximation of
a nonlinear model or if the Jacobian matrix does not exist.
Furthermore, even if Jacobian exists, it can be difficult and
computationally expensive to calculate, see [63] and [65].
Unscented Kalman filter (UKF) represents another extension
of KF created to avoid the limitations of the extended
Kalman filter as discussed by [63]. It is based on unscented
transformation, which uses a set of sample points (called
sigma points) that can appropriately capture real means and
covariances of probability distributions. UKF improves the
performance of EKF in a variety of applications as shown

by [61], [66], and [67]. Sometimes, however, EKF is shown to
be superior to UKF concerning speed and thus computational
time, see [68], [69], [70], and [71].

It is not surprising that KF is the most used in vehicle
sideslip angle estimation. A linear Kalman filter is used
for lateral velocity estimation in [76] and [79]. Authors in
[51] tested four different observers (KF, EKF, SUKF, and
SCKF) with three tire models (linear, Dugoff, and Magic
Formula). They found that even though nonlinear observers
outperform the linear one, there is no significant difference
between nonlinear observers themselves. Tables 3 and 4 show
a recent development of sideslip angle estimation based on
KF approaches. The estimated states often include lateral tire
forces or cornering stiffnesses, and sometimes vertical tire
forces. Inputs and measurements are similar to LO, RLS and
SMO. Very often, wheel speeds are additionally used and in
some cases information on the wheel torques. The vehicle
models used vary from kinematic over single track to different
four wheel vehicle models with up to 8 degrees of freedom.
Tire models used range from linear over random walk force
models to Dugoff and Magic Formula.

Further adaptations and extensions of the KF are used.
Adaptive EKF (AEKF) represents EKF that is modified in
some way. For example, in [98] covariance matrices are
adaptive and depend on the current behavior of the vehicle.
Multirate Kalman filter (MRKF) is used when there is a
disparity between sampling frequencies between measure-
ments, see [38]. If vehicle model adaptation with disturbance
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accommodation is added to MRKF, the disturbance accom-
modating multirate Kalman filter (DAMRKF) is achieved,
see [89]. Interacting multiple model (IMM) combines two
models of vehicle-road interaction to enhance accuracy.
IMM-EKF/UKF filter combines IMM with EKF/UKF,
see [99]. Cubature Kalman filter (CKF) works on a prin-
ciple of spherical-radial cubature rule, that provides easier
calculation of integrals in the nonlinear Bayesian filter. There
are different variations of CKF. Square-root cubature Kalman
filter (SCKF) represents a square-root extension of the regular
cubature Kalman filter. Square-root cubature based receding
horizon Kalman filter (SCHRKF) estimates are based on a
finite number of measurements over a moving horizon. This
filter has an FIR structure as shown by [74]. Fuzzy Adaptive
Robust Cubature Kalman Filter (RCKF) combines fuzzy
logic with cubature Kalman filter, see [117]. Double Cubature
Kalman filter (DCKF) utilizes single-value decomposition
to improve the standard cubature Kalman filter, see [75].
UKF filter that takes into account constraints on states is
called Constrained UKF (CUKF), see [103]. Event-triggered
Kalman filter (ETKF) utilizes an event-triggered mechanism
and Kalman filter to eliminate integration errors caused by
noise and sensor bias during straight-line driving as shown
by [119].
Strong tracking Kalman filter (STKF) represents a of the

Kalman filter that utilizes time-varying suboptimal fading
factors to predict covariance. To predict these factors, fuzzy
adaptive strong tracking Kalman filter (FASTKF) can utilize
fuzzy logic, as shown by [73].

Tables 3 and 4 show a recent development of sideslip angle
estimation based on KF approaches.

E. PARTICLE FILTER AND OTHER NONLINEAR OBSERVERS
The particle filter (PF) is a probability-based, nonlinear state
estimation method. Similar to the Kalman filter, it is based
on Bayesian state estimators, see e.g. [61, p. 462-466]. A
random set of points is generated, which are called particles
and fromwhich the filter takes its name. These point represent
a posterior distribution. Similarly to UKF, these points are
transformed to obtain the mean and the covariance of the
estimate. PFworks better than aKalman filter for systems that
are highly nonlinear. Its downside is that it is computationally
expensive. For a more detailed description of particle filters,
see [61]. Publication [96] examines application of particle
filter on the sideslip angle estimation problem. Detailed
description can be found in Table 3.
In some cases, researchers propose an estimation scheme

constructed to directly deal with nonlinear vehicle models.
These observers do not fit the other observer types discussed
and are referred to as nonlinear observers (NLO), see e.g.
[87]. Newer developments of nonlinear observers are shown
in Table 2.

F. CASCADED OBSERVERS
Previously mentioned methods require knowledge of
observer and vehicle parameters that are often hard to obtain

in real time. Also, it is sometimesmore convenient to estimate
some unmeasurable states and treat them as a measurement
to a sideslip angle estimator. Even if the state is measured,
sensor noise can present a problem for some observers.
Consequently, researchers developed several techniques that
estimatementioned parameters or states and use them as input
for sideslip angle estimation. The most commonly estimated
variables are cornering stiffnesses, and lateral and vertical
forces. In this paper, methods that contain multiple observers
are called cascaded. Tables 5 and 6 provide insight into the
recent work based on cascaded techniques. Different to the
methods discussed so far, the observer strategies involve
several steps. Often, cornering stiffnesses or lateral tire forces
are estimated in a prior step. Some methods also require
the vertical tire force prior. In some cases, the longitudinal
velocity is also estimated a priori. Different steps require
different measurements or estimates from the prior step.
Tire and vehicle models are similar to those for LO, RLS
and SMO. In comparison to KF-type observers, the vehicle
models show a lower number of degrees of freedom. This
can be explained by the fact that the different steps in the
cascade use different model assumptions, not requiring one
model to account for all relevant effects. Unfortunately, a high
number of articles only showed simulations to validate their
methodology, thus not allowing to analyze their applicability
to the operation with real measurements.

III. DISCUSSION AND RECOMMENDATIONS
This article aims to draw conclusions for further development
from the comprehensive and large state of the art on sideslip
angle and lateral velocity estimation. As shown in the
preceding sections, around 100 articles were published on this
topic since 2011, even when excluding those using artifical
neural networks. It is hard to keep track on the results
of these investigations. Thus, in this section, conclusions
and recommendations from previous analysis are drawn.
Findings concerning observers used, sensor configuration
and states to be included in the observer strategy are
distinguished.

A. OBSERVERS FOR SIDESLIP ANGLE ESTIMATION
The majority of published approaches for sideslip angle esti-
mation are based on Kalman Filter-type observers (statistic
estimation methods). For sideslip angle estimation, nonlinear
Kalman filter types such as EKF or UKF can be quite
accurate. In addition, to reach accurate results, Q and R
matrices have to be adaptive in dependence of the current
driving maneuver or in which range of the tire force-slip-
characteristics the tires are currently operated. This can, for
example, be done with adaptation of a (extended) Kalman
filter. Cubature Kalman filters allow a simple calculation
of nonlinear integrals, with different extensions for faster
convergence being published. The advantage of Kalman filter
and its variants is their optimal/sub-optimal performance
compared to the other algorithms while maintaining sim-
ple implementation and structure. However, they can be
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TABLE 3. Sideslip angle estimation appraoches using Kalman filter (KF) and its variants, as well as particle filter (PF). Abbreviations: VM: Vehicle model,
TM: Tire model, S: Simulations, M: Measurements.

TABLE 4. Sideslip angle estimation approaches using unscented Kalman filter (UKF) and hybrid filter. Abbreviations: VM: Vehicle model, TM: Tire model,
S: Simulations, M: Measurements.

computationally expensive and tuning process can demand
great efforts due tomodel nonlinearity andmodel uncertainty,
especially uncertainty from tire model and the position of

the center of gravity, inclination angle etc. Besides, EKF,
UKF etc. cannot mathematically guarantee stability of the
estimation results.
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TABLE 5. Part 1 of cascading observers for sideslip angle estimation. Abbreviations: VM: Vehicle model, TM: Tire model, S: Simulations, M:
Measurements. Numbers in parentheses in the Meas. column refer to the cascade step they are identified in.

Alternative methods (deterministic estimation methods)
like sliding mode observers, nonlinear adaptive observers
show similar performance like extended Luenberger
observers(ELO). Normally, sliding mode observers and
nonlinear observers can offer estimation property of stability
and robustness. But, since the gains for these observers
are usually pre-defined, optimal performance is difficult
to guarantee as the driving conditions vary. Recursive
least squares methods are seldom used for sideslip angle
estimation, because they are suitable for constant or slow
varying parameters.

Data driven based methods normally estimate sideslip
angle by utilizing measured signals such as steering angle,
IMU data etc. as input. Due to offline training with
previous data, such methods can obtain very accurate sideslip

angle estimation most of the time without necessity of an
accurate vehicle model as shown by [126]. But, these black
box methods cannot guarantee robustness and stability of
estimation. Meanwhile, it is difficult to interpret why it works
sometimes and sometimes not. Hence, some researchers
combine model-based methods with data driven methods to
enhance the estimation stability and robustness as well as
interpretability, see e.g. [127], [128], and [129].

Hence, a combination of above-mentioned observers may
be a future route for sideslip angle estimation. For example,
inspired by [130], deterministic methods such as sliding
mode observers/nonlinear adaptive observers, can be utilized
to offer a pre-estimation of sideslip angle. With such an
estimation as a measurement, Kalman filter types methods
can then be applied for a better sideslip angle estimation.
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TABLE 6. Part 2 of cascading observers for sideslip angle estimation. Abbreviations: VM: Vehicle model, TM: Tire model, S: Simulations, M:
Measurements. Numbers in parentheses in the Meas. column refer to the cascade step they are identified in.

Such strategies can guarantee estimation stability, robust-
ness as well as optimality/sub-optimality. However, model
uncertainty will still produce estimation error of sideslip
angle. Thus, in an increasing number of recent articles,
the slip angle estimation is a part of a larger estimation
strategy. These larger estimation strategies are summarized
under the term cascaded observer in this article. Besides,
such estimation strategy should also be integrated with data
driven methods, to achieve more accurate estimation results
while keep the nice property from deterministic and statistic
estimation methods, which is actually still an open question.

B. SENSOR CONFIGURATION FOR SIDESLIP ANGLE
ESTIMATION
With introduction of Electronic Stability Control, many
sensors are available in series-production cars that help
to reproduce the vehicle’s dynamic state. These sensor
signals include the vehicle’s steering angle, yaw rate, lateral
acceleration and wheel speeds. It is the basis for all
approaches discussed in this article. Information about forces
and motion closer at the wheel would be helpful, e.g. using
in-wheel or tire sensors. However, from today’s perspective,
it is not likely that these will be available in series production.
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TABLE 7. List of vehicle parameters with respective units.

The reasons to not use these sensors are typically the high
costs and the lack of reliability in the wide range of operating
conditions of a vehicle. However, the use of GPS and
optical sensors to improve the slip angle estimate based on
vehicle dynamics approaches are promising as shown e.g.
by [125]. Optical sensors are now also installed in vehicles
with other driving functions, such as to detect the position
within one’s own lane for active lane-keeping systems. GPS
systems are becoming less expensive, but there are large
differences in signal quality and available sampling rate.
Also, the availability depends on direct line-of-sight contact
with satellites, which is not consistently available in forested
areas or tunnels, for example. Depending on the type ofmodel
used, sideslip angle estimation is more or less affected by
the used sensor configuration as will be discussed in the next
section.

C. EFFECTS OF MEASUREMENTS, EXCITATION AND
CRITICAL PARAMETERS ON SIDESLIP ANGLE ESTIMATION
The sensitivity of a sideslip angle estimator on the measure-
ments differs for different models used. Kinematic model
based approaches depend highly on sensor configurations
and measurement quality. Based on sensors from current
production vehicles, which only consider steering angle and
IMU with wheel velocity information, it is very difficult to
obtain good sideslip angle estimation due to sensor noise, bias
and gravity influence. This type of model does not require
tire or vehicle parameters. In contrast, dynamics model
based approaches show much better results when facing
measurement problems. However, these approaches are more
sensitive with regard to sideslip angle estimation concerning
tire/vehicle parameters such as cornering stiffness, road
friction coefficient and position of the center of gravity.

TABLE 8. List of variables with their respective units.

In terms of dynamic excitation required to deliver accurate
results, dynamics based methods require persistent and
moderate/large excitation. Otherwise, different road friction
and inaccuracies of other vehicle/tire parameter have a high
influence on the accuracy of the sideslip angle estimation,
since these effects are coupled with the sideslip angle
estimation. Kinematics approaches have no requirements on
excitation. The sideslip angle can be accurately estimated
with accurate measurements.

As discussed, tire/vehicle parameters are important for
sideslip angle estimation using dynamics based models. The
main parameters are cornering stiffness, tire-road friction
coefficient and position of center of gravity. These parameters
are either roughly approximated or unknown, and they can
also change during driving. Cornering stiffness and tire-
road friction coefficient affect the lateral force against slip
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TABLE 9. List of abbreviations used in article.

angle characteristics. The accuracy of the estimated slip angle
depends on these conditions to a large extent, especially for
extreme conditions such as driving on low friction surfaces.
The maximum tire-road friction coefficient is a heavily
researched topics, but a series-production solution is not yet
in sight, see e.g. [2]. Position of center of gravity affects the
vehicle lateral states such as sideslip angle and yaw rate. Its
error strongly affects sideslip angle estimation. Apart from
these parameters, tire transient characteristics and bank angle
will also influence the estimation accuracy of sideslip angle.

IV. SUMMARY
As the degree of automation of driving functions increases,
so do the requirements for knowledge of vehicle motion
states. This article is intended to help researchers that work
on or require sideslip angle or lateral velocity estimates for
automated driving strategies of different levels to get an

overview of the state of the art, in particular what methods and
sensor configurations have been used. Although this article
focuses exclusively on observer-based methods that follow
kinematic or model-based vehicle dynamics approaches, the
number of publications in this area is enormous. Therefore,
the focus is set on observer-based estimation approaches
using on-board vehicle sensors that measure the dynamic
response of the vehicle. With few exceptions, the literature
since 2011 is considered. In the field of sideslip angle and
lateral velocity estimation, many observer types are presented
in the existing state of the art. A large number of articles use
Kalman filter-based approaches. Methods are increasingly
cascaded and require elaborate strategies for other non-
measured states that affect the sideslip angle estimates.
Finally, recommendations for sideslip angle estimation are
given as the result of the analysis of the state of the art.

A. NOMENCLATURE AND NOTATION
See Tables 7–9.
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