216 research outputs found

    Anomaly detection in urban drainage with stereovision

    Get PDF
    This work introduces RADIUS, a framework for anomaly detection in sewer pipes using stereovision. The framework employs three-dimensional geometry reconstruction from stereo vision, followed by statistical modeling of the geometry with a generic pipe model. The framework is designed to be compatible with existing workflows for sewer pipe defect detection, as well as to provide opportunities for machine learning implementations in the future. We test the framework on 48 image sets of 26 sewer pipes in different conditions collected in the lab. Of these 48 image sets, 5 could not be properly reconstructed in three dimensions due to insufficient stereo matching. The surface fitting and anomaly detection performed well: a human-graded defect severity score had a moderate, positive Pearson correlation of 0.65 with our calculated anomaly scores, making this a promising approach to automated defect detection in urban drainage

    Capturing 3D textured inner pipe surfaces for sewer inspection

    Get PDF
    Inspection robots equipped with TV camera technology are commonly used to detect defects in sewer systems. Currently, these defects are predominantly identified by human assessors, a process that is not only time-consuming and costly but also susceptible to errors. Furthermore, existing systems primarily offer only information from 2D imaging for damage assessment, limiting the accurate identification of certain types of damage due to the absence of 3D information. Thus, the necessary solid quantification and characterisation of damage, which is needed to evaluate remediation measures and the associated costs, is limited from the sensory side. In this paper, we introduce an innovative system designed for acquiring multimodal image data using a camera measuring head capable of capturing both color and 3D images with high accuracy and temporal availability based on the single-shot principle. This sensor head, affixed to a carriage, continuously captures the sewer's inner wall during transit. The collected data serves as the basis for an AI-based automatic analysis of pipe damages as part of the further assessment and monitoring of sewers. Moreover, this paper is focused on the fundamental considerations about the design of the multimodal measuring head and elaborates on some application-specific implementation details. These include data pre-processing, 3D reconstruction, registration of texture and depth images, as well as 2D-3D registration and 3D image fusion

    A vision-based system for internal pipeline inspection

    Get PDF
    The internal inspection of large pipeline infrastructures, such as sewers and waterworks, is a fundamental task for the prevention of possible failures. In particular, visual inspection is typically performed by human operators on the basis of video sequences either acquired on-line or recorded for further off-line analysis. In this work, we propose a vision-based software approach to assist the human operator by conveniently showing the acquired data and by automatically detecting and highlighting the pipeline sections where relevant anomalies could occur

    A Systematic Review of Convolutional Neural Network-Based Structural Condition Assessment Techniques

    Get PDF
    With recent advances in non-contact sensing technology such as cameras, unmanned aerial and ground vehicles, the structural health monitoring (SHM) community has witnessed a prominent growth in deep learning-based condition assessment techniques of structural systems. These deep learning methods rely primarily on convolutional neural networks (CNNs). The CNN networks are trained using a large number of datasets for various types of damage and anomaly detection and post-disaster reconnaissance. The trained networks are then utilized to analyze newer data to detect the type and severity of the damage, enhancing the capabilities of non-contact sensors in developing autonomous SHM systems. In recent years, a broad range of CNN architectures has been developed by researchers to accommodate the extent of lighting and weather conditions, the quality of images, the amount of background and foreground noise, and multiclass damage in the structures. This paper presents a detailed literature review of existing CNN-based techniques in the context of infrastructure monitoring and maintenance. The review is categorized into multiple classes depending on the specific application and development of CNNs applied to data obtained from a wide range of structures. The challenges and limitations of the existing literature are discussed in detail at the end, followed by a brief conclusion on potential future research directions of CNN in structural condition assessment

    Obstruction level detection of sewers videos using convolutional neural networks

    Get PDF
    Worldwide, sewer networks are designed to transport wastewater to a centralized treatment plant to be treated and returned to the environment. This is a critical process for preventing waterborne illnesses, providing safe drinking water and enhancing general sanitation in society. To keep a perfectly operational sewer network several inspections are manually performed by a Closed-Circuit Television system to report the obstruction level which may trigger a cleaning operative. In this work, we design a methodology to train a Convolutional Neural Network (CNN) for identifying the level of obstruction in pipes. We gathered a database of videos to generate useful frames to fed into the model. Our resulting classifier obtains deployment ready performances. To validate the consistency of the approach and its industrial applicability, we integrate the Layer-wise Relevance Propagation (LPR) algorithm, which endows a further understanding of the neural network behavior. The proposed system provides higher speed, accuracy, and consistency in the sewer process examination.This work is partially supported by the Consejo Nacional de Ciencia y Tecnologia (CONACYT), Estudiante No. CVU: 630716, by the RIS3CAT Utilities 4.0 SENIX project (COMRDI16-1-0055), cofounded by the European Regional Development Fund (FEDER) under the FEDER Catalonia Operative Programme 2014- 2020. It is also partially supported by the Spanish Government through Programa Severo Ochoa (SEV2015-0493), by the Spanish Ministry of Science and Technology through TIN2015-65316-P project, and by the Generalitat de Catalunya (contracts 2017-SGR-1414).Peer ReviewedPostprint (published version

    Detection and Localization of Root Damages in Underground Sewer Systems using Deep Neural Networks and Computer Vision Techniques

    Get PDF
    Indiana University-Purdue University Indianapolis (IUPUI)The maintenance of a healthy sewer infrastructure is a major challenge due to the root damages from nearby plants that grow through pipe cracks or loose joints, which may lead to serious pipe blockages and collapse. Traditional inspections based on video surveillance to identify and localize root damages within such complex sewer networks are inefficient, laborious, and error-prone. Therefore, this study aims to develop a robust and efficient approach to automatically detect root damages and localize their circumferential and longitudinal positions in CCTV inspection videos by applying deep neural networks and computer vision techniques. With twenty inspection videos collected from various resources, keyframes were extracted from each video according to the difference in a LUV color space with certain selections of local maxima. To recognize distance information from video subtitles, OCR models such as Tesseract and CRNN-CTC were implemented and led to a 90% of recognition accuracy. In addition, a pre-trained segmentation model was applied to detect root damages, but it also found many false positive predictions. By applying a well-tuned YoloV3 model on the detection of pipe joints leveraging the Convex Hull Overlap (CHO) feature, we were able to achieve a 20% improvement on the reliability and accuracy of damage identifications. Moreover, an end-to-end deep learning pipeline that involved Triangle Similarity Theorem (TST) was successfully designed to predict the longitudinal position of each identified root damage. The prediction error was less than 1.0 feet

    A Robust Localization System for Inspection Robots in Sewer Networks †

    Get PDF
    Sewers represent a very important infrastructure of cities whose state should be monitored periodically. However, the length of such infrastructure prevents sensor networks from being applicable. In this paper, we present a mobile platform (SIAR) designed to inspect the sewer network. It is capable of sensing gas concentrations and detecting failures in the network such as cracks and holes in the floor and walls or zones were the water is not flowing. These alarms should be precisely geo-localized to allow the operators performing the required correcting measures. To this end, this paper presents a robust localization system for global pose estimation on sewers. It makes use of prior information of the sewer network, including its topology, the different cross sections traversed and the position of some elements such as manholes. The system is based on a Monte Carlo Localization system that fuses wheel and RGB-D odometry for the prediction stage. The update step takes into account the sewer network topology for discarding wrong hypotheses. Additionally, the localization is further refined with novel updating steps proposed in this paper which are activated whenever a discrete element in the sewer network is detected or the relative orientation of the robot over the sewer gallery could be estimated. Each part of the system has been validated with real data obtained from the sewers of Barcelona. The whole system is able to obtain median localization errors in the order of one meter in all cases. Finally, the paper also includes comparisons with state-of-the-art Simultaneous Localization and Mapping (SLAM) systems that demonstrate the convenience of the approach.Unión Europea ECHORD ++ 601116Ministerio de Ciencia, Innovación y Universidades de España RTI2018-100847-B-C2
    corecore