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Abstract—Worldwide, sewer networks are designed to 

transport wastewater to a centralized treatment plant to be 

treated and returned to the environment. This is a critical 

process for preventing waterborne illnesses, providing safe 

drinking water and enhancing general sanitation in society. 

To keep a perfectly operational sewer network several 

inspections are manually performed by a Closed-Circuit 

Television system to report the obstruction level which may 

trigger a cleaning operative. In this work, we design a 

methodology to train a Convolutional Neural Network (CNN) 

for identifying the level of obstruction in pipes. We gathered 

a database of videos to generate useful frames to fed into the 

model. Our resulting classifier obtains deployment ready 

performances. To validate the consistency of the approach 

and its industrial applicability, we integrate the Layer-wise 

Relevance Propagation (LPR) algorithm, which endows a 

further understanding of the neural network behavior. The 

proposed system provides higher speed, accuracy, and 

consistency in the sewer process examination. 

 

Index Terms—artificial intelligence, computer vision, 

pattern recognition, video recognition, deep learning, 

convolutional neural networks, explainability, sewers  

I. INTRODUCTION 

In the US, there are roughly 1,200,000 kilometers of 

sewer lines [1]. That is more than three times the distance 

between the Earth and the Moon, considering only 4% of 

world population. The maintenance of such vast networks 

of pipes is thus a real challenge world-wide. As of now, 

the most common approach is to have operators 

executing sampling inspections, trying to find 

obstructions before they can cause severe failures that 

would require urgent and expensive actions. 

The current approach is hardly scalable, as it is 

expensive and requires lots of human hours. Companies 

in charge of large wastewater networks face massive 

                                                           
 Manuscript received June 21, 2021; revised July 28, 2021; accepted 

August 5, 2021. 

operational costs related to inspection and maintenance. 

The current environmental context brings added pressure 

to the topic since episodes of heavy rainfall are becoming 

more common because of climate change [2]. Within 

these episodes, obstructed wastewater networks may 

become the origin of sewer overflows and floods with an 

impact on urban environments and population. 

To increase the quality and efficiency of sewer 

maintenance, the industry is now looking into recent 

technological advancements in fields such as image 

recognition and unmanned aerial vehicles. In this paper, 

we tackle one of the challenges necessary for new 

methods to be functional: the automatic identification of 

obstructions in sewer pipes from image data. For this 

purpose, we use real data from 6,590 inspection videos 

(samples shown in Fig. 1), recorded and evaluated by 

operators.  

 

Figure 1. Sample frames from the videos database. 
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We post-process the videos to dissect and simplify the 

problem. With this data we devise, train, and evaluate a 

convolutional neural network (CNN) for predicting the 

level of obstruction of a sewer segment. The performance 

obtained in this work makes this technology suitable to 

the industrial challenge, increasing efficiency and 

enabling more extensive maintenance. In this case, this is 

already in progress through CETaqua, industrial partner 

of this project, and part of the SUEZ group. 

II.  CURRENT SEWER MAINTENCE  

Regular sewer inspections are made for the operation 

and maintenance of the network. During inspections, the 

inside of sewers is recorded using a camera attached to a 

pole. Each video is carefully reviewed by an operator, 

who must fill a report and deliver it to the inspection site 

or to the central offices. The report must include the level 

of obstruction of the sewer, categorized into five classes: 

clean; slightly dirty; dirty; very dirty; and obstructed. 

Cleaning operations prioritize their interventions based 

on these reports. 

Reviewing videos requires a significant amount of time 

from operators. This task is a major barrier for 

productivity because of its duration and repetitive nature; 

if the same operator dedicates too much time to this task, 

their performance will be affected. To avoid that, in 

practice, many different operators end up reviewing the 

same videos. While this is desirable for several reasons, it 

entails a significant variance in the evaluation criteria. 

Meanwhile, a reliable and consistent evaluation is critical 

for the efficient planning of maintenance. 

Our goal is to define and implement a system to 

automatically assess the obstruction on sewers from 

videos. This system must provide a status on the volume 

of sedimentation to justify the cleaning needs. The 

deployment of this system in production will enable a 

more productive use of human resources and will provide 

a unified model for guiding cleaning operations. 

III. STATE OF THE ART/RELATED WORK 

The use of computer vision techniques in civil 

engineering applications has grown exponentially, as 

visual inspections are necessary to maintain the safety 

and functionality of basic infrastructures. To mitigate the 

costs derived from the manual interpretation of images or 

videos, diverse studies explore the use of computer vision 

techniques. Methods like feature extraction, edge 

detection, image segmentation, and object recognition 

have been considered to assess the condition of bridges, 

asphalt pavement, tunnels, underground concrete pipes, 

etc., [3 4 5 6]. Moreover, noise reduction [7], and 

reconstruction and 3D visualization [8 9 10 11] were also 

used. In the most similar scenario to the one tackled in 

this paper, the automatic detection of cracks in sewers has 

been explored through image processing and 

segmentation methods [12 13]. 

Most of these related works are mainly focused on a 

single task, to detect cracks. Segmentation and 

classifications of pipe cracks, holes, laterals, joints, and 

collapse surfaces are explored through mathematical 

morphology techniques [14]. A most recent study uses 

these morphological operations and other pre-processing 

techniques, like edge detection and binarization, to 

identify the sewer defects by recognizing text displayed 

on the sewer video recording [15]. Even though computer 

vision techniques have provided a significant 

improvement in the analysis of civil infrastructure, there 

are still several difficulties to overcome, such as the 

extensive pre-processing of the data that must be carried 

out, a high degree of expert knowledge in the design of 

complex features extractors, the treatment of noisy and 

low-quality data, among others.  

In this regard, CNNs require little image pre-

processing, and more importantly, the feature extraction 

processes are learned automatically from the data through 

an optimization process. The performance of CNN 

models has been tested in several computer vision tasks, 

such as object detection or image classification. For 

instance, in the work of Y.-J. Cha et al. [16], an 

automated civil infrastructure damage system is presented, 

which is insensitive to the quality of the data and to 

camera specifications. Furthermore, CNNs use has 

demonstrated its efficiency in tunnel inspections [17], 

revealing how the deep learning approach outperforms 

conventional methods. 

In the case of sewer inspections, the use of neural 

networks has been limited to defect detection. S.S. Kumar 

et al. proposes a convolutional neural network to identify 

root intrusions, deposits, and cracks in a set of sewer 

videos [18]. This database is transformed into a sequence 

of RGB images and fed them to the model. The training 

methodology is very straightforward, all images 

comprising a particular defect are feed to the CNN so that 

discriminative features can be learned. To enhance the 

performance of its model they used data augmentation, 

simulating a variety of conditions, and mitigating over-

fitting. By doing so, the size of the dataset increases to 

millions of training samples for the model. However, and 

despite the good results, the model could not identify sub-

classes, e.g., fine roots from medium roots. 

J. Cheng and M. Wang use a fast regional 

convolutional neural network (fast R-CNN) to detect 

different classes of sewer defects and to identify the 

coarse category to which they belong [19]. Their model is 

comprised of a set of images gathered from video sewer 

inspections which are fed to the model to generate both 

classification and bounding box regression of the defect. 

Despite is implemented data augmentation, the 

similarities in the geometry of the sewers and color 

gradients and intensity, penalized the model performance. 

So far, there are no studies that discuss the automated 

classification of sewer obstruction level using CNNs. 

Previous works focus on more general faulty elements in 

the sewer structure, e.g., roots, cracks, or deposits. 

However, due to the nature of the sewer system we work 

with (Barcelona area), it is crucial to assess if the sewer is 

free from obstacles, so that wastewater can flow through 

it ordinarily [20]. That being said, we can still use some 

of the insights found when tackling similar tasks. 
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IV. SEWER DATA 

CETaqua is a public-private research institution 

dedicated to the design of more sustainable water 

management services. Along the years, CETaqua has 

gathered a database of videos from 6,590 human-made 

inspections in the sewers of Barcelona area. Each video 

has an associated label, obtained from the operator’s 

report which distribution is shown in Table I. 

TABLE I. ORIGINAL VIDEO DISTRIBUTION. 

Label # samples 

clean 4720 

slightly dirty 1146 

dirty 235 

very dirty 50 

obstructed 98 

Total: 6249 

Sewer videos were obtained by different operators 

following a shared set of guidelines: the operator brings 

the camera down into the sewer and starts recording the 

pipe from a static position. After a few seconds, the 

operator zooms in to look further into the end of the 

sewer, followed by a zoom out to the starting position. At 

that point, the video ends. Videos are mostly shot at 

360x640 resolution, and 10Fps (frames per second). 

Prototypical sample frames for every obstruction level are 

shown in Fig. 1. Since videos are recorded by different 

operators, there is a significant variance in their length. 

These range from ~18 to ~120 seconds. The distribution 

of video lengths is shown in Fig. 2. No video is excluded 

from this study because of its length. 

Notice the difference in number of samples between 

the most frequent and the least frequent classes is of two 

orders of magnitude. Such large class imbalance may 

handicap the learning process of many machine learning 

algorithms, including CNNs. To tackle this issue, and 

following the advice of use case industrial experts, we 

merge the two classes with less samples per class, very 

dirty and obstructed, which are very close in meaning. 

We can do that without affecting the performance of the 

system because both classes imply the same industrial 

response once they are identified (i.e., prioritize cleaning 

of that sewer segment).  

 

Figure. 2. Distribution of the video’s length. 

After the merging, the number of elements in the 

minority class has increased (to 148), but the uneven data 

distribution remains relevant, which could lead to a 

severe bias in the model performance. To avoid that we 

balance the distribution of the data by randomly under-

sampling them to the minority class. Before data is fed 

into the model, we will still need to perform some pre-

processing, to enable the learning process. 

V. DATASET ENGINEERING 

The original task, as defined by the industrial 

requirements, is a video classification problem: Assign a 

given label to a given set of videos. However, we reduce 

this to an aggregated image classification problem to 

simplify it, as the inherent temporal aspect of videos is 

mostly irrelevant for our case. Working with images also 

increases the number of training samples, we can 

generate, as several frames from the same video become 

different (although not independent) training samples. 

With a larger training set we can improve the 

regularization and generalization of the CNN model. 

Before transforming videos into images, we need to 

specify our dataset splits to avoid having images from the 

same video on both the training and test partitions. This 

would introduce a significant bias into the model, and 

significantly affect the relevance of our evaluation. After 

the under-sampling process, the distribution of the videos 

is shown in Table II. We have split the videos in two 

subsets: 70% for the training process and the remaining 

30% for validation. 

TABLE II.  VIDEOS DISTRIBUTION PER DATASET SPLIT. 

Label Train samples Validation samples 

clean 103 45 

slightly_dirty 103 45 

dirty 104 44 

very_dirty 104 44 

Total: 414 178 

A. Frame Selection 

Of the full length of the video only a small portion of 

frames are usable for training. The zooming is digital on 

all cases, which means resolution is never increased, and 

some parts of the image are lost. For this reason, we 

gather the frames of the video where the camera is 

unzoomed. That is, from the beginning of the recording 

until the zooming in begins. To automatically locate this 

segment of interest we used the VidStab video 

stabilization algorithm from the OpenCV library [21]. 

This algorithm produces a smoothed trajectory of pixels 

using key point detectors like the examples in Fig. 3.  

The top row examples of Fig. 3 are prototypical videos, 

where the zoom in and zoom out stages form a clear 'V'. 

Unfortunately, not all videos are like that. There is a 

significant variance and noise in the extracted trajectories, 

as shown in the bottom row of Fig. 3. Our analysis of 

trajectories shows that most videos have at least three 

seconds of image stability. Thus, we capture 30 

consecutive frames for all videos. We do not extract a 

variable number of frames per video to avoid biasing the 

dataset. 
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Figure 3. Samples of pixels trajectories. The blue line shows a change in 
pixel values. The red lines show a smoothed version of the same 

function. Notice the significant scale variations in the vertical axis. 

We are using several frames per video which results in 

the distribution of Table III. Even though the number of 

images per class seems remarkable, this is deceptive. All 

images come from a hundred videos per class, which 

constrains the variance of our training set significantly. 

This also makes unproductive the use of generalization 

techniques like data augmentation, since there are already 

plenty of similar images with small variations in our 

dataset. 

TABLE III. IMAGES DISTRIBUTION PER DATASET SPLIT. 

Label Train samples Validation samples 

clean 3090 1350 

slightly_dirty 3090 1350 

dirty 3120 1320 

very_dirty 3120 1320 

Total: 12420 5340 

B. Input Pipeline 

Most frames have a resolution of 360x640. They also 

have a vertical border, as seen in Fig. 1. After removing it, 

images are at 360x480 resolution. For those few images 

that had a slightly higher resolution, we applied a central 

crop. During our experimentation, we noticed that models 

had the same performance if the 360x480 resolution was 

scaled down to 150x150. This is coherent with the task: 

since no specific object must be identified, fine-grained 

detail is unnecessary. For this reason, our final training 

dataset is composed of 150x150 images. Resizing the 

images also reduced the number of parameters needed 

and the training costs (i.e., time, power and money). 

VI.  MODELS  

NNs models are composed by a sequence of stacked 

layers which learn increasingly complex representations 

from the data. For image inputs, these representations are 

visual abstractions of shape, patterns, colors etc. which 

are used as building blocks for perception. In the context 

of our problem, where the goal is to identify the amount 

of obstruction, complex patterns are irrelevant for CNN.  

In other words, we do not care if the obstruction is caused 

by a bicycle or by a pile of cement. 

 What is essential to learn for the CNN is what a clean 

pipe looks like, and how different alterations to that 

normality correspond to different levels of obstruction. 

Clearly, spatial information is essential for the task, as 

sediment may be distributed along the channel, or it may 

form an obstruction at the bottom of the sewer. A sense 

of depth is also desirable, to assess obstructions 

proportions (and thus size) correctly. While we will not 

enforce these priors into the CNN, we will take them into 

account in our architectural designs, and we will validate 

them in our later interpretability study. 

A. Transfer Learning 

Fitting the many parameters found in deep CNNs to 

solve a task on high-dimensional inputs (i.e., images) 

requires many data samples. To mitigate this need, one 

can use transfer learning: Initializing the parameters from 

a state optimized for a different problem, instead of 

initializing from a random state. Transfer learning is 

based on the assumption that most image challenges 

share a given set of visual properties which can be reused, 

instead of re-learnt. This is particularly true for low-level 

descriptors (e.g., lines, angles etc.). Nevertheless, the 

transferability of features depends on the similarity 

between tasks. And in the variety and size of the data for 

which the pre-trained model was optimized [22]. For this 

reason, the most popular source models for transfer 

learning are those containing a wide variety of patterns 

(e.g., VGG16 [23]) for a wide variety of goals (e.g., 

ImageNet [24]). 

Considering the limited number of samples available in 

our task, we considered transfer learning as a potentially 

useful approach. We explore this hypothesis by using a 

VGG16 architecture trained on the ImageNet dataset. To 

adjust the VGG16 model to our needs, we start by 

removing the parameters of the original classifier (i.e., the 

two fully-connected layers), since these are too optimized 

for the original problem and adapting the output of the 

network to fit our task. With this setting in place, we can 

now train the network through fine-tuning. 

When fine-tuning, one must decide which layers to 

freeze (i.e., fixing the weights), which to re-train (i.e., 

fine-tuning the weights) and which to replace (i.e., 

randomly initialized) or delete. The more layers we freeze, 

the more similar both tasks should be. Unfortunately, our 

case is a unique one, even when compared with a broad 

classification task like ImageNet. In our experiments, we 

gradually tried freezing a variable number of 

convolutional layers bottom-up. Significantly, none of 

these experiments was successful. In all experiments, the 

model either overfitted to the data or failed to learn 

meaningful representations. We hypothesize that the 

particularity of our problem makes it hard to reusing 

patterns learned on general-purpose datasets. Indeed, 

there is little in common between discriminating dog 

breeds and computing the level of obstruction of a sewer. 

On the other hand, the large number of parameters in 

networks trained for large tasks like ImageNet is 

inadequate for our small problem. 
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B.  Architecture Proposed 

Since transfer learning was unsuccessful, we defined 

an architecture design top to bottom for our problem. We 

started from a shallow architecture and increased its size 

until underfitting was no longer an issue. At that point, 

we optimized the hyper-parameters to get the best model. 

The Table IV shows the final CNN design. Notice the 

relatively small size of the architecture.  

Increasing the number of filters and the kernel size 

provided no improvement, mostly because the variety of 

patterns to learn is small: the model does not have to 

recognize all possible objects and shapes that may 

obstruct the sewer. It must limit itself to learn what a 

clean sewer looks like, and what obstructions represent 

visually in that regard. Coherently, our experiments show 

that a CNN with only three convolutional layers and a 

fully-connected layer yields the best results. In our 

experiments, we used the cross-entropy loss function, 

ADAM optimizer with a 1e-6 learning rate, and 0.5 

dropout value. 

TABLE IV. CNN ARCHITECTURE PROPOSED. 

Layer (type) Output Shape # Parameters  

conv1 (Conv2D) (150, 150, 32) 896 

pool1 (MaxPooling2D) (75, 75, 32) 0 

conv2 (Conv2D) (75, 75, 32) 9248 

pool2 (MaxPooling2D) (38, 38, 32) 0 

conv3 (Conv2D) (38, 38, 64) 18496 

pool3 (MaxPooling2D) (19, 19, 64) 0 

flatten (Flatten) (23104) 0 

fc1 (Dense) (1024) 23659520 

dropout1 (Dropout) (1024) 0 

logits (Dense) (4) 4100 

Total params: 23,692,260 

Trainable params: 23,692,260 

VII. EVALUATION AND RESULTS 

To evaluate the performance of the trained model, we 

got the confusion matrix. So, we can understand the 

frequency and severity of the mistakes made by the 

model. As shown in Fig. 4, 53.7% of images are 

classified in the correct class. 34.7% of images are 

classified in a neighboring class (e.g., slightly dirty as 

dirty). The fact that mistakes are centered around the 

diagonal indicates that the model is properly learning the 

nature of the problem.  

 

Figure 4. Normalized image-wise confusion matrix for validation set 

 

Figure 5. Normalized video-wise confusion matrix on the validation set. 
From the voting of classified images. 

It is also worth noticing how the most relevant classes 

for the industrial application (the dirty and the filthy ones) 

are the ones classified with the highest accuracy. The last 

metric was computed image-wise, in the context of an 

image classification task. However, our ultimate purpose 

is to provide a video classification tool. 

 Based on the CNN image predictions, we generate a 

video classifier using a voting strategy, where each image 

from a video contributes with one vote towards the 

classification of the video itself. The confusion matrix of 

Fig. 5 shows the video-wise classification results. In this 

case, 55.7% of images are classified in the correct class, 

2% more than the image classifier. The images classified 

in a neighboring class decrease from 0.7%, to 34.0%. The 

performance of this model fits the requirements of the 

industrial task. 

Beyond the numeric analysis of the classifier outcome, 

we also explore in Fig. 6 some representative examples of 

failed predictions.  

 

Figure 6. Samples of miss-predictions. true indicates ground truth. pred 
indicates model prediction. 
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The first two rows contain examples of videos where 

the labeling seems to be erroneous, which we attribute to 

human error. These samples could be re-labeled to 

improve the training dataset quality and the model 

performance.  

The third row shows examples where the labeling 

criteria seems to be inconsistent because of having 

multiple operators labeling videos. Although the model 

predictions in these cases count as miss-classifications, its 

criteria seem adequately coherent. Another complicating 

factor we found in our analysis is rain like in the 

examples of the fourth row of Figure 6. Rain introduces 

lots of noise in the images, which handicaps perception 

and model prediction. Finally, the last row shows cases 

where the perspective of the camera is not normative (i.e., 

centered in the pipe and looking towards the end of it). 

These variations confuse the model. To bypass this 

limitation more training data is needed. 

A.  Interpretability 

So far, we have gathered evidence that the model is 

learning properly. Nevertheless, trusting the predictions 

of a black-box is never ideal. Explainability of the model 

is crucial for industrial risk assessment and regulation 

compliance. Thus, we take one more step into the 

validation of the model by looking at the visual patterns 

learned and used by the model to classify the data. This 

will provide interpretability to our system. 

We integrate to our trained model the Layer-wise 

Relevance Propagation (LRP) algorithm to explore its 

decision-making process [25]. This algorithm tries to 

identify which features of the image input have the 

highest relevance for the prediction. Relevance is 

backpropagated from the output layer, assigning scores to 

the application of features, layer by layer until reaching 

the input. Each layer stores an equal amount of relevance, 

which is variably distributed among its features. The 

relevance of pixels in the input can be visualized through 

heatmaps as can be seen in the samples of the Figure 7. 

For visibility reasons, LRP values are not normalized 

among all plots (i.e., the same color on different LRP 

may indicate different relevance). The reference value for 

each LRP plot is shown above it (score relevance), and it 

depends on the confidence of that prediction. If all colors 

were normalized, colors from predictions with lower 

confidence would be barely visible. For this reason, plots 

of low probability predictions should not be over-

interpreted. 

 Let us first consider what evidence is used to predict 

obstructions. As shown in the second column of Figure 7, 

the main evidence used for justifying a high level of 

obstruction (i.e., dirty, or very dirty) is located at the 

ground along the pipe. This seems adequate since this 

center canal will be naturally occupied by most 

obstructions. The LRP plots also indicate that changes in 

illumination are taken as evidence of obstruction (e.g., 

third row, third column). Coherently, in a clean pipe light 

is smoothly distributed, while obstructed pipes contain 

segments of extreme illumination contrast. 

 

Figure 7. Each row shows an independent example. First column 

contains the original image. Second and third columns show the LRP of 

clean and dirty labels, together with the confidence of the prediction 
(score relevance). Red pixels indicate evidence in favor of prediction, 

blue pixels indicate evidence against it.  

The use of both the ground path and illumination 

contrast as features for prediction explains the difficulties 

of the model for predicting images where there is either 

rain or changes in perspective. As shown in the bottom 

three rows of Fig. 7, the model still focuses on these 

features, even though in these cases such features 

characterize noise instead of obstructions.  

NDUSTRIAL DEPLOYMENT 

In this section, we outline the components for the 

implementation of the automated system for the 

evaluation of sewer conditions in the real environment. 

We design it so that the system keeps learning once 
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deployed. The two main system components: a labeler 

API and a training pipeline. 

The labeler API can be integrated into the maintenance 

department. It provides both automatic classification of 

videos, as well as a labeling interface for humans. Once a 

new video inspection is uploaded, the API is 

automatically requested for a classification. This will be 

done on a random number of frames from the static part 

of the video. The result, both classification and 

confidence, is processed by a rule-based system which 

determines what to do with the video. If the classification 

is dirty or very dirty and the confidence is high, send it to 

the cleaning team with urgency. If the confidence is low, 

send it to the queue for human labeling. If classification is 

slightly dirty or clean with high confidence, send it to the 

queue with low priority. All video labeled by humans 

through the interface are automatically used in the 

training pipeline. 

The training pipeline is defined in a continuous 

integration server. When new videos arrive, these are fed 

into an object storage server. The storage server can 

trigger a series of jobs, after a minimum number of new 

samples are received. These jobs execute the following 

pipeline: 1. Dataset balancing and split; 2. Video 

stabilization and frame selection; 3. Frame resizing; 4. 

Model training; and 5. Model evaluation. The result of 

this pipeline is a model in TensorFlow along with a PDF 

document containing a sample of automatically labeled 

frames that are to be reviewed by an expert. If the results 

are good, the model is automatically deployed to the 

production API server, replacing the previous version. 

Every pipeline that generated every version of the model 

is stored along with the data used in it.  

The system is designed for low-degree maintenance 

and for re-usability. The same pipeline could be 

potentially applied to any sewer system that shares strong 

similarities --both structural and sedimental-- with the 

one we have worked with. If differences were significant 

the CNN model architecture should be reassessed. It is 

therefore our assumption that this solution could be 

deployed internationally to any sewer management that 

uses video sampling inspections. 

IX. CONCLUSIONS 

The proper operation and the efficient and scalable 

identification of obstructions in sewer infrastructure is 

critical for current societies. In this context, operators are 

under pressure to record, evaluate, and perform 

inspections daily. In this work, we seek to alleviate this 

stressful task through a CNN model trained to identify the 

level of obstruction of a sewer. 

We reduced the problem to an image classification one, 

as this is a more scalable and constrained approach. A 

pixel motion analysis allows us to measure the degree of 

noise in the dataset (which is high), and to define a 

unified frame extraction policy. Given a significant 

imbalance among target classes, we merge two similar 

classes and to down-sample the rest. In this setting we 

perform our experiments. Due to the limited data 

availability, we use transfer learning which failed, most 

likely, due to the dissimilarities between tasks. It remains 

to be seen if would be feasible a more flexible transfer 

learning mechanisms, like feature extraction where it is 

not needed to re-train the CNN [26].  

In our experiments the best results are obtained by a 

rather small and shallow architecture, consistently with 

the nature of the task: There is no need to learn any 

specific pattern, just an overall sense of space and 

obstruction. The evaluation indicates this model learns to 

solve the task satisfactorily and illustrates the main 

reasons behind the failed predictions. Most frequently, 

inconsistent human labeling, variations in perspective and 

environmental noise like rain. We explore the behavior of 

the model by looking at the relevance of input pixels for 

output classification. This allows us to validate the visual 

features used by the model to make predictions. We 

notice how the center canal of the sewer is essential for 

the assessment of obstructions, how the visibility of 

circles around the pipe speaks for cleanness, and how 

changes in illumination and perspective can complicate 

the resolution of the problem.  

Two more complicating factors were identified in the 

data during the development work. First, human mistakes 

when labeling videos. These are unfortunately frequent 

and bias the model performance. Second, the variability 

in labeling criteria. This is one of the motivating factors 

of this work, as an unstable policy reduces the quality and 

efficiency of maintenance interventions. Finally, beyond 

the visual model, we propose an integral system design to 

deploy all desirable functionalities.  
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