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ABSTRACT 

The maintenance of a healthy sewer infrastructure is a major challenge due to the root damages 

from nearby plants that grow through pipe cracks or loose joints, which may lead to serious pipe 

blockages and collapse. Traditional inspections based on video surveillance to identify and localize 

root damages within such complex sewer networks are inefficient, laborious, and error-prone. 

Therefore, this study aims to develop a robust and efficient approach to automatically detect root 

damages and localize their circumferential and longitudinal positions in CCTV inspection videos 

by applying deep neural networks and computer vision techniques. With twenty inspection videos 

collected from various resources, keyframes were extracted from each video according to the 

difference in a LUV color space with certain selections of local maxima. To recognize distance 

information from video subtitles, OCR models such as Tesseract and CRNN-CTC were 

implemented and led to a 90% of recognition accuracy. In addition, a pre-trained segmentation 

model was applied to detect root damages, but it also found many false positive predictions. By 

applying a well-tuned YoloV3 model on the detection of pipe joints leveraging the Convex Hull 

Overlap (CHO) feature, we were able to achieve a 20% improvement on the reliability and 

accuracy of damage identifications. Moreover, an end-to-end deep learning pipeline that involved 

Triangle Similarity Theorem (TST) was successfully designed to predict the longitudinal position 

of each identified root damage. The prediction error was less than 1.0 feet.  
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 INTRODUCTION 

Underground sewer pipelines are utilized for the collection and transportation of wastewater and 

stormwater. The maintenance of the sewer system is a major challenge partly due to the roots 

penetration from nearby plants which are hard to notice. These roots would grow through pipe 

cracks or loose joints to reach the moisture, which may eventually cause serious pipe blockages 

and collapse without taking actions. According to the EPA (2014), pipe cracks and blocks often 

deteriorate wastewater pipelines with the conditions of inflow and infiltration (I&I), problematic 

overflows, or sinkholes thus may cause an extra treatment expense of up to $1.3 per 1,000 L 

sewage. Therefore, periodical inspections of the sewer pipelines are crucial to detect defects and 

discover failures for the maintenance of a healthy sewer infrastructure (Cheng & Wang, 2018).  

 

Due to the hidden conditions and complex structures of the underground sewer networks, human 

access to inspect the sewer pipelines would be difficult and dangerous. Presently, the application 

of Closed-Circuit Television (CCTV) in sewer systems is considered as the most widespread 

practice for visual pipeline inspections, which mounts a television camera on a robot that can be 

navigated through the inner pipelines (Figure 1). During the inspection process, a trained operator 

is capable of remotely controlling the robot to stop, return left or right for a close look at any 

suspicious pipe defects, and eventually generate a recorded video for further defect examination 

and interpretation. Thus, CCTV inspection videos can be reviewed either in operation or offline, 

to let the operator manually assess and mark the defect conditions as a digital inspection record for 

each inspected sewer network. Once the defect is identified and localized, the ground at a certain 

location would be dug to let the operators access and repair/replace the defect pipelines (Abhinaya, 

2021). However, manually reviewing hours of inspection videos is time-consuming and labor-

intensive (Cheng & Wang, 2018). Other factors such as the operator’s skill, experiences, 

exhaustion, and concentration would also significantly affect the reliability and consistency of 

inspection interpretation, which may lead to further structural defects in the sewer pipeline system. 

According to the research from Dirksen et al (2013), operators overlooked approximately 25% of 

sewer defects in the inspection process. Therefore, a faster, more efficient, and more reliable 

technique to automatically identify root damages and their positions in the sewer systems would 

be critical to avoid pipe collapse and emergency repair costs. All the time-consuming and tedious 
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tasks of manually detecting damages in hours of inspection videos can be empowered by computer 

processing to save a considerable amount of time. 

 

 

Figure 1. An example of CCTV inspection in sewer pipelines. 
 

In accordance with the requirements of the National Association of Sewer Service Companies 

(NASSCO, 2018), it is mandatory to comprise the location information of sewer damages within 

the report of sewer inspection in the United States. The specific damage locations include the 

circumferential position relative to the pipe’s cross-section, and the longitudinal position away 

from the pipeline entrance. For the circumferential position of sewer damages, many studies have 

demonstrated that their machine learning-based models perform excellently not only on the 

detection and classification of sewer damages but also on the capability to accurately identify the 

circumferential location of the damages (Kumar et al., 2020, Cheng and Wang, 2018) (Figure 2). 

In addition, for CCTV inspection videos there is a piece of specific equipment attached to the 

moving robot to measure the distance traveled, thus the longitudinal position of each sewer damage 

could be achieved by reading the traveling distance from video subtitles using text recognition 

techniques (Jahanshahi, M. R. 2011, Hassan et al. 2019, Dang et al. 2018).  
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Figure 2. An example of detecting and localizing root damage in sewer pipelines is where the 
bounding box (b-box) identifies the circumferential position of each damage (Kumar et al., 2020). 
 

Figure 3 indicates how the given root damage (Figure 3a) goes from in the distance to closer 

(Figure 3b) and finally passes by the robot camera (Figure 3c). Note that in this example, the 

information of traveling distance appears on the right image corner representing how far the robot 

traveling forward (in feet). Accordingly, when the robot camera first detects the damage, the 

camera-damage distance (CDD) might be up to 5 ft depending on the camera’s intrinsic parameters, 

then the value of CDD would gradually decrease to 0 as the robot travels toward the damage and 

eventually passing it. However, to determine the longitudinal position of each sewer damage, it is 

not reliable to simply report the traveling distance recognized from the video subtitle in the last 

frame (LF) where the camera captures the last bit of the root damage. Different factors such as 

camera shot angles, size of pipe diameters, uneven traveling surface, and other unpredictable 

conditions within the sewer pipeline would significantly affect the accuracy of localizing the 

longitudinal position of sewer damages using the LF approach. For instance, if the robot must stop 

before reaching the damage (due to out of battery, pipe blockage, trapped, etc.), it’s impossible to 

achieve the actual longitudinal position of the sewer damage recognized from the LF, and it would 

be also difficult to predict the damage position since there is still some distance ahead of the camera 

to reach the damage. Under this situation, the distance value recognized from the video frame 

where the robot stops would be smaller than the actual damage position in the sewer pipeline, 

leading to inappropriate decision-making for damage localization. Therefore, a new approach 

based on Triangle Similarity Theorem (TST) was proposed in this study, along with the benefits 

of deep learning-based models to predict the longitudinal position of each sewer damage when the 

robot first sees it. Although many researchers such as Ahrary, A. et al. (2005) and Draelos et al. 

(2015) have studied how to localize sewer damages based on the stereo camera which would be 
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more efficient and accurate, it should be noticed that in this study all of the CCTV inspection 

videos were collected from different resources and they were recorded by monocular cameras 

(instead of stereo/depth camera) without knowing camera’s intrinsic and extrinsic parameters. 

Hence, TST is a robust and efficient way to estimate CDDs in this application, and it further leads 

to the determination of the longitudinal position of each root damage within the sewer pipelines. 

More details will be discussed in the following sections. 
 

 
(a)                                               (b)                                                    (c) 

Figure 3. Inspection images with a certain root damage. (a) when the camera first sees it; (b) when 
the robot moves closer, and (c) when the robot just passed by the point of the condition. 
 

Overall, this study proposes an end-to-end deep learning (DL) pipeline that first supports damage 

detection and text recognition in CCTV inspection videos, and later predicts the longitudinal 

position of each identified root damage in the sewer pipelines. Four main modules were developed 

to process and train such DL pipelines. The first module was to extract representative keyframes 

that preserve visual features in each video. Such selected keyframes were combined as a video 

summarization to eliminate redundant frames to decrease the computational time of video analysis. 

The second module was applied to recognize the subtitle texts that contain distance values in 

keyframes, thus generating a detailed distance map for each inspected sewer system; The third 

model was designed to identify root damages and localize their circumferential positions from 

keyframes; The last module was used to predict the longitudinal position of each identified sewer 

damage. In general, this pipeline has the potential to assist existing CCTV systems to improve 

inspection procedures and notify operators in advance to avoid any missing defects from the 

extensive sewer networks.  

 

 

 

 



 
 

15 

 RELATED WORK 

2.1 Vision-based Defect Detection using Deep Learning Approach 

Conventional computer vision methods were commonly applied to extract complex features of 

underground pipelines, to automatically interpret CCTV inspection videos for various damages in 

the sewer systems. For example, morphological operation and segmentation were proposed to 

detect different pipeline defects such as pipe joints and fractures, cracked and damaged pipes 

(Yang &Su, 2009). In addition, Halfawy & Hengmeechai (2014) confirmed that morphological 

operations can be successfully used to enhance pipeline cracks with the benefits of applying sober 

operator and Hough transform as the image pre-processing step, then crack segments would be 

extracted with a customized filter. Also, with the advantages of video sequences, many techniques 

were proposed to automatically detect faults from videos based on frame differences combined 

with various image processing and shape analysis (Guo et al., 2009, Hawari et al., 2018).  

 

However, with the advent of ML/DL approaches applied in various computer vision tasks (object 

detection and segmentation), there were many vision-based models to detect root damages from 

the underground sewer systems (Moselhi et al., 2000, Meijer et al. 2019, Jack et al., 2018, Li et al., 

2019, Cheng and Wang 2018; Kumar et al. 2020). For instance, the study by Hassan et al. (2019) 

applied CNNs on the extracted frames of CCTV inspection videos for the classification of sewer 

defects, and the accuracy can reach up to 90%+. CNNs have also been widely used for object 

detection to learn abstract features from different images. There are a set of layer components that 

build up the deep neural network, including convolutional layers, pooling layers as well as fully 

connected layers with the application of activation functions. A rectangular receptive field slides 

through input image dimensions to calculate kernel weights, and the generated feature map will be 

fed directly to the next layer. In addition, the pooling layers (e.g., average pooling, max pooling, 

and L2-norm pooling, etc.) down-samples the extracted features from the previous layers to reduce 

total model parameters, accelerate computational speed, and prevent the network from overfitting. 

Moreover, the fully connected layer is applied as the final layer, to transform the feature map into 

vectors, thus computing class probabilities with appropriate active functions (e.g., sigmoid, tanh, 

softmax, and relu) (Moradi, S., 2020). These activation functions provide nonlinearities to the 
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neural network, to update weights and losses with gradient backpropagation within the network. 

Therefore, the capability of automatic feature extraction during the training stage leads to new 

insights into deep neural networks over traditional ML algorithms (Moradi, S., 2020). The input 

images are fed into the DL algorithms leading the deeper layers of the neural network to extract 

more complex features of the input images.  

 

The DL-based object detection models can be categorized into three approaches, including sliding-

window detection, two-stage object detection as well as single-stage detectors. The sliding-

window approach benefits from CNNs over multiple sub-windows of an image and aggregates the 

classifications (Lee, J., Bang, J., & Yang, S. I., 2017, Sudowe, P., & Leibe, B., 2011). In addition, 

the two-stage object detector increased the computation speed with the benefit of a CNN-based 

region proposal (e.g., the R-CNN, Fast R-CNN, and Faster R-CNN) (Ren et al., 2015, Kumar, S. 

S, 2020). Commonly two-stage detectors of most DL-based techniques are applied for less 

complex image datasets, which may lead to some restrictions for practical applications within 

inspection systems. However, single-stage detection approaches such as SSD and YOLO could 

significantly increase computational speed as compared to two-stage detectors, due to the 

elimination of the region proposal step. The most common technique YOLO was introduced by 

Redmon et al. (2016), to detect objects by passing the image once. Applied with such a detection 

module, the input image can be divided into N x N grid and the object b-boxes and associated 

confidence scores are predicted in each cell (Moradi, S., 2020). Compared with an older version 

of YOLO modules, the YOLOv3-based single-stage detector represents a faster and more accurate 

approach to real-time object detections (Redmon & Farhadi, 2018, Zhang et al., 2020). Studies 

from Kumar et al. (2020) and Yin et al. (2020) applied YOLOv3 to prove that this technique is 

efficient to detect various pipeline defects in sewer systems. However, the acquisition of manual 

annotations for the Yolov3 model is labor-intensive, thus many studies have investigated the 

detection of sewer defects based on anomaly detection algorithms, which can reduce the workload 

for manual labeling (Myrans et al., 2018, Fang et al., 2020) since most of the frames from each 

CCTV inspection video stream don’t contain any sewer defects. In 2020, Fang et al. proposed a 

defect detection approach based on unsupervised anomaly detection algorithms with feature 

extraction to videos, in which the overall detection accuracy of sewer defects was above 90%. 
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Moreover, the detection of pipe joints should be considered as a significant step since the majority 

of root damages grow through the joints causing misalignments and infiltrations. The most robust 

algorithm that Jahanshahi (2011) evaluated to extract joint features was by applying the 

morphological operation on the original image without preprocessing and postprocessing needed. 

This operation is useful since the sewer joints from Jahanshahi’s study have brighter intensities 

than the background (Figure 4). However, the CCTV inspection videos collected in this study have 

more complex pipe structures, where using the conventional computer vision technique with 

morphological operation is not robust enough to extract sewer joints.   

 

 

 

 

 

 

 

 

(a)        (b) 

 

To identify sewer defects, there are also many state-of-art models for semantic segmentation based 

on DL methods which localize and distinguish different objects by classifying every pixel. The 

study of Ronneberger et al (2015) proposed a method for image segmentation called U-net (Figure 

5). This model has a symmetric U-shaped architecture that includes encoder and decoder parts 

where the encoder path using a convolutional neural network aims to extract features and patterns 

from the image, and the decoder path using transposed 2D convolutional layers to re-create a full 

binary image. This U-net approach takes the advantage of data augmentation techniques to make 

more efficient use of the dataset without adding more labeled data in the training process. Also, 

the architecture contains links between the encoder and decoder paths to combine features from 

different spatial regions of the image that enables precise localization. Many researchers such as 

 Figure 4. a) Original CCTV video frame that contains a sewer joint on a Vitrified Clay Pipe, b) 
joint extraction using morphological operation on the original frame (Jahanshahi, M. R., 2011). 
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Pan, G et al (2020) have widely applied the U-net segmentation model for detecting sewer defects 

with good results. 

 

Figure 5. Semantic Segmentation Model U-net Architecture. 
 
Commonly, text subtitles of CCTV inspection videos contain many details regarding the condition 

of each underground sewer system, such as the traveling distance of inspected robot, pipe diameter, 

pipe material, etc. Hence, the recognition of text subtitles is crucial to extract valuable information 

for further video analysis. Most of the applications of deep neural networks such as CNNs are 

devoted to object detection and classification (Girshick, R. et al., 2014, Krizhevsky, A. et al., 2012). 

However, visual objects such as scene text and handing writing tend to occur in the form of 

sequence thus would be better to recognize a series of text characters instead of detecting isolated 

characters (Shi, B., Bai, X., & Yao, C., 2016). Also, text length usually varies drastically thus some 

DL techniques that operate on fixed dimensional datasets such as deep convolutional neural 

network (DCNN) (Ptucha, R. et al., 2019, Krizhevsky, A. et al., 2012) are not capable to apply on 

these variable-length sequence predictions. The algorithm of DCNN is a character detector trained 

with labeled character images, which is required to segment each character individually from the 

original word image precisely and correctly. However, for a more efficient approach to handle 

such sequence problems, recurrent neural networks (RNNs) were designed and developed with the 

major advantage of not relying on the character positions in a sequence-like object image. 

Moreover, some traditional text recognitions outperformed as compared with the previous neural 

network-based modules. For example, some research applied multi-scale representation and mid-
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level features for the recognition of scene text (Yao et al.,2014, Gordo et al, 2015). Others like 

Rodriguez-Serrano, J. A., Gordo, A., & Perronnin, F. (2015) proposed learning a Euclidean space 

where word images and text labels are embedded, then treat the text recognition problem to a 

retrieval problem which is to find the closest word label in this space.  

 

For CCTV inspection videos collected in this study, there were many limitations such as varying 

illumination, poor lighting conditions, complex natural background, or damaged video clips. For 

image-based sequence recognition, reading unstructured text is also challenging since these texts 

are sparse, and usually appear at random places in a natural scene without standard text font, color, 

and size. Thus, a text recognition engine was utilized to extract the subtitle which is treated as a 

sequence-like object. The algorithm includes two phases: a) text localization by applying the 

YOLOv3 module to identify the text lines, with the benefits of text quality enhancement beyond 

the background. b). text recognition using optical character recognition (OCR) modules to 

recognize the distance value that indicates how far the robot traveling along the sewer pipelines. 

There are increasing researchers studied on text recognition, but presently the most popular 

techniques are Tesseract Engine and CRNN-CTC network. 

 

Tesseract, an open-source OCR engine, was implemented to recognize subtitle text that adapts to 

over 100 languages. This engine was originally developed by HP and recently taken over by 

Google. Dang et al. (2018) indicated that Tesseract performs impressively on the text recognition 

tasks for sewer imaging, but the performance might be poor in the unstructured text that containing 

with significant noises since Tesseract was initially created to recognize structured text data. In 

addition, the CRNN-CTC network is a combination of CNN, RNN, and CTC loss (Connectionist 

Temporal Classification). Not like traditional OCR models, the application of the CRNN network 

does not perform operations like character segmentation and can recognize text sequences of 

arbitrary length. Accordingly, CNN is applied to extract visual features from text lines such as 

color, font, stroke, etc., while deep bidirectional RNN along with LSTM structure is implemented 

to extract contextual features of texts thus predicting sequential output with some relation between 

the characters (Chen, L., & Li, S., 2018). Additionally, as shown in Figure 6, the transcription 

layer attempts to convert the per-frame predictions generated from RNN layers into a label 

sequence; while the CTC loss function applied in the transcription layer aims to prevent a single 
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character that spans multiple time-step which needs further processing if without CTC, which is 

useful in sequence-to-sequence OCR models. This CRNN model performs fast because of the less 

total number of parameters (8.3 million) as compared with other DCNN models, which is suitable 

to be deployed on edge devices (Shi, B., Bai, X., & Yao, C., 2016).  

 

 
 

 

2.2 Longitudinal Position of Sewer Damages  

In each CCTV inspection video, the distance values shown in the subtitles changed when the robot 

moved along the sewer pipeline. In this study, the length of sewer pipelines could be up to 300 ft. 

The distance value recognized from the last frame where the robot camera captures the last bit of 

the root damage was usually considered as the actual damage location by other studies. For 

example, Hassan, S. I., (2019) applied a text recognition model using the last frame approach to 

identify the longitudinal position of each sewer defect after classifying the defects based on CNN 

models. Moradi et al. (2020) also used the distance information that was recognized from video 

subtitles in the last frame to locate the identified anomaly in sewer pipelines. From another 

perspective, the distance or depth estimation of an object in a sewer pipeline system can also be 

estimated based on stereo vision with two cameras, which are widely used in the application of 

intelligent transportation systems, robotics, location identification, and object tracking, etc., 

(Megalingam et al, 2016). Like the stereo/depth camera, the camera-to-object distance using a 

Figure 6. CRNN+CTC network. 
(Shi, B., Bai, X., & Yao, C., 2016). 
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single camera can be estimated by applying two convex mirrors that imitate the use of two cameras 

to create a disparity map (Murmu, N.; Nandi, D., 2014). Later, In-Sub Yoo and Seung-Woo Seo 

(2015) proposed a frequency domain analysis-based algorithm for distance estimation, and Kumar 

M.S.S., et al, (2013) computed the distance based on inverse perspective mapping for face distance 

estimation (Bharade, A., 2014). Furthermore, Triangle Similarity Theorem (TST) was also widely 

applied for distance estimation. For instance, Megalingam et al (2016) used TST to accurately 

estimate the camera-object distance with the actual object width and calibrated camera focal length 

(Nienaber, S., et al., 2015). Some common ways to obtain focal length are based on camera 

calibration (using an image such as a chessboard) or checking camera specifications/EXIF data 

from the image that the camera captured. But Megalingam’s study was based on a calibration phase 

that taking three pictures at different distances from the camera, then the focal length (F) would be 

calculated with the known pixel width of the object obtained from the image (Wp), known distance 

values (D), as well as the known width of the object (Equation 1). Therefore, after the calibration 

with the calculated focal length, camera-object distance can be achieved using the traditional TST 

equation. However, with the advantage of video sequences, this study proposed a more 

straightforward algorithm without knowing the object’s actual width and the camera’s focal length. 

Details will be brought in Section 3.2.2.5.   

 

𝐹𝐹 = 𝑊𝑊𝑊𝑊∗𝐷𝐷
𝑊𝑊

                     (1) 

 

Therefore, building upon previous applications and algorithms, this study provided a deep neural 

network-based approach to predict the longitudinal and circumferential positions of each identified 

root damage within the sewer pipelines. Transfer learning models such as fine-tuning CNNs, 

Tesseract, as well as CRNN modules were applied with various computer vision techniques.  
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 METHODOLOGY OVERVIEW 

3.1 Proposed Framework 

This proposed framework intends to improve sewer inspection by detecting the root damages and 

identifying their circumferential and longitudinal positions from CCTV inspection videos. To 

reach this goal, there are three phases included: a) keyframe extraction; b) subtitle recognition; c) 

root damage identification; d) damage position prediction. Specifically speaking, based on the sum 

of absolute differences in a LUV color space between two consecutive video frames, a certain 

number of local maxima would be first extracted as keyframes (Schanda, J., 2007, Amanpreet 

Walia, 2018). As a result, a large image dataset was constructed from each inspection video, and 

a single-shot detector YOLOv3 was implemented to localize the text region of interest (ROI) in 

every keyframe. Once the text region was founded, the OCR model was applied to recognize the 

subtitle text that indicates distance values (in ft), to track the distance covered by the inspection 

video to reconstruct a detailed map of the sewer pipeline. Moreover, a pre-trained segmentation 

module was implemented to identify root damages and their circumferential positions. By applying 

another YOLOv3 module for the detection of pipe joints leveraging the Convex Hull Overlap 

(CHO) feature, lots of false positive predictions generated from the segmentation model were 

significantly reduced thus improving the accuracy of the identification for sewer damages. At the 

last, the longitudinal position of each identified root damage was mathematically derived based on 

the concept of the Triangle Similarity Theorem (TST) and validated with the ground truth value 

using the LF method.  

 

Thus, specific requirements in this study include: 

1) The DL pipeline should be run automatically to decrease the inference time with the input of 

raw CCTV inspection videos. 

2) All proposed models and algorithms should have the capability to analyze CCTV inspection 

videos with various illumination, size, and quality.   

3) This system should detect and localize root damages as well as recognize subtitle text from 

CCTV inspection videos, with high consistency and accuracy.  
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4) The DL pipeline should predict the longitudinal position for each identified root damage (in 

ft) with errors in an accepted range.  

3.2 Methodology and Model Description 

3.2.1 Keyframe Extraction 

Keyframes decrease the total number of video frames, which are defined as the frames in the video 

sequence where a sudden change occurs. In this study, the inspection robot usually moves quite 

slowly through the sewer pipes, causing too many redundant and repeated scenes recorded in 

consecutive frames. Many CCTV inspection videos also contain irrelevant content (sky, human, 

manhole cover, etc.), especially at the beginning or end of the videos. To reduce the computation 

cost for future model development, it’s significant to select a set of keyframes that can purely 

represent the inspection sequences in the sewer networks. In this study, color features of the video 

frames that used absolute differences in LUV colorspace were applied to check the similarity 

between consecutive frames. The colorspace “LUV” is a CIE-derived color space that was adopted 

by the International Lighting Commission on Illumination (CIE) in 1976 (Schanda, J., 2007, 

Burger, W., & Burge, M. J., 2010). Unlike the most common Red, Green, and Blue (“RGB”) 

colorspace, LUV decouples the “color” (chromaticity values represented by U and V) and 

“lightness” (illuminance represented by L) from color images and describes the image in a way 

that is much more perceptual uniform. Thus, LUV colorspace is more suitable for image difference 

comparisons, and better to represent objects for the applications of object detection (Dollár, P., etc. 

al., 2014, Rahimzadeganasl, A., & Sertel, E., 2017). Also, it’s significant to extract representative 

keyframes from each inspection video for further object annotations, as well as create training 

datasets to accelerate and optimize the object detection process in images (Toledo Ferraz, C., 2021).  

 

Converting the image color space from RGB to CIE LUV was considered as the first step, The 

luminance and chromaticity values in LUV are useful to detect image features with a remarkable 

precision (Rahimzadeganasl, A., & Sertel, E., 2017). For each CCTV inspection video, a certain 

number of keyframes were extracted according to the sum of absolute differences in LUV 

colorspace and local maxima for the nearest frames (Toledo Ferraz, C.,2021). For preserving the 

information of subtitle text, the dimension of the smoothing window was 5 frames. Therefore, 



 
 

24 

keyframes acquired from the videos were later applied to recognize the subtitle text, as well as 

identify the root damages and predict their longitudinal positions within the sewer network.  

3.2.2 Dataset Preparation 

A total of 200+ CCTV inspection videos were collected from different resources and can be 

accessed from the Google Cloud Platform (GCP) provided by the company. The dataset applied 

in this study contains 20 random videos, and the lengths of these videos vary between 10 to 20 

minutes, and the diameters of sewer pipelines range from 3 to 5 feet. The frame rate of each video 

is usually 30 frames per second (fps), and the subtitles embedded in videos typically contain details 

such as date/time, project ID, sewer address, pipe size, circumference size, traveling distance (in 

feet), operator’s information and so on (Table 1). For different video types, subtitles may appear 

at different locations with various text fonts, sizes, and colors. All the training and validation from 

different models were carried out with a GPU using NVIDIA Tesla T4 with TensorFlow 2.7 

environment. 

 

Table 1. Subtitle information in CCTV inspection videos. 

Subtitle Information Details 
Traveling distance Distance from the pipe entry 
Traveling direction Forward or backward 

Inspection date Date of the pipe inspection 
Inspection time Time of the pipe inspection 

Pipe type Pipe material and type 
Pipe number Pipe id from start to end 

Pipe circumference Pipe size 
 

 

All color images were first converted from RGB to grayscale to accelerate the computational time. 

Due to the natural characteristics of internal sewer pipelines, the image pre-processing stage is 

essential in recorded videos to remove various artifacts and noises for image enhancement. 

Especially for sewer inspection videos, there are attempts to have noise due to the illumination 

variation and camera movement. These noises might be random or generated by the camera system 

to become coherent noises. Thus, the application of the Gaussian filter in this study is considered 

as an effective algorithm to reduce such noises and blur images without affecting the brightness of 
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the image. This filter performs excellent, especially for text recognition since the noise present in 

video subtitles is similar to gaussian noise (Moradi et al. 2020), and usually filter size of [3,3] with 

σ = 1.1 was applied in this study. The median filter is another effective way to enhance image 

quality, but it works better for salt and pepper noises and more edge preserving as compared to the 

Gaussian filter. However, for the application of object detection using deep neural networks such 

as CNNs, the steps of image pre-processing and feature extraction are excluded, as compared with 

conventional machine learning approaches (Figure 7) (Moradi et al. 2020). 

 

 

Figure 7. The comparison of conventional ML and DL techniques (Moradi et al. 2019a). 

3.2.2.1. Data augmentation 

The accuracy of object detection models can be significantly increased due to the application of 

data augmentation by artificially creating a large training dataset, which could reduce overfitting 

and improve the generalization capability for the developed models. Various augmentation 

methods were applied to considerably increase the size of provided dataset, including horizontal 

flipping, contrast enhancement, sharping, blurring, raising hue values, resizing, shifting, adding 

Gaussian noises, and so on.  

3.2.2.2. Text ROI localization and recognition 

To recognize text subtitles in a keyframe, the region of interest (ROI) that contains traveling 

distance values were required to be identified. In most inspection videos, text regions provide 
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consistent pixel intensity, scale, and illumination variations, thus having a substantial difference 

as compared with the background. But several video observations tell that the text varied in sizes, 

font colors among different videos, and even the location of text ROI may change in a single video 

which might be due to the camera’s internal error when recording. Hence CNN-based model such 

as YOLOv3 was applied to localize text ROIs and thus prepared for further text recognition. About 

5000+ frames from these 20 inspection videos were randomly selected, and these images were 

annotated with bounding box (b-box) coordinates that indicate the ROI in the image. Accordingly, 

500 images were labeled from these 20 videos and then saved in .txt files required by the YOLOv3 

module. Among the dataset, 80%, 10%, and 10% were randomly selected for training, validation, 

and testing process, respectively, with training epochs of 10000. To be more specific, the numbers 

of batches and subdivisions for the training process are 16, and 4 respectively in the darknet 

YOLOv3 network. Also, the network would keep learning until reaching max batch times, and the 

value of max batch is usually equal to the number of classes multiplied by 2000, thus setting it to 

4000 in this study. The detection object is one so class = 1 for all the detection tasks using the 

YOLOv3 network, hence total filters would be 18 which is equal to (classes + 5) * 3 where 3 

represents the number of masks. Moreover, the learning rate determines how fast the model 

converges, according to the weight updates in neural networks or coefficient changes in 

linear/logistic regression (Ray Smith, 2007, Martin Thoma, 2018). In this study, the learning rate 

was set to 0.01. With 10000 epochs, the total computational time lasted about 2 hours and the 

highest accuracies reached from the training and validation process were 99% and 96%, 

respectively.  

 

For further testing on every new video, about 10 random keyframes in each video were selected 

for the application of text ROI localization using the YOLOv3 model, and the median b-box 

prediction returned as the actual position of the text region in case sometimes the ROIs (even in a 

single video) varies at different locations in images. Then the detected ROI was fed into different 

OCR modules to recognize the distance value from keyframe subtitles. For the application of 

Tesseract Engine, it can be directly run on the ROI in keyframes to extract coarse words for each 

character without taking the extra effort of manual annotations. The main image-preprocessing 

steps in this recognition phase include interpolation, resizing, and applying gaussian blur along 

with OTSU binarization. Also, Tesseract has the benefit of a whitelist function that only reads 
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numbers without other characters to increase recognition accuracy. With a certain number of 

keyframes extracted from each video, there were 5000+ images (after data augmentation) were 

applied as the input dataset. For another recognition module, CRNN-CTC, it needs to crop the 

identified ROI first and prepare the cropped sub-image for the text annotation. There were 250 

sub-images, and their ground truth labels were created manually which include English numbers 

and alphabets. The size of the dataset was enlarged considerably to 1250 images by applying data 

augmentation techniques such as scaling, adding noise, adjusting brightness, sharing, blurring, etc. 

Also, this CRNN model was implemented using Keras high-level API (https://keras-

ocr.readthedocs.io/en/latest/index.html) with Tensorflow backend and ran on GCP. 

3.2.2.3. Root damage segmentation 

For the pixel-wised detection of root damages in the sewer system, a pre-trained segmentation 

model was provided by the company, and it was kept updated with an increasing training dataset 

(Figure 8). The dataset only contains root damages which were annotated with closed polygons. 

However, this segmentation model generated lots of false positive predictions that consist of non-

damage pixels which are incorrectly identified as damage pixels, mainly due to the presence of 

similar damage patterns on the pavement surface.  

 

 

Figure 8. Pixel-wised segmentation for root damages in a CCTV inspection video. 

3.2.2.4. Pipe joint detection and the Convex Hull Overlap (CHO) feature 

To reduce false positive occurrences of damage segmentation in CCTV inspection videos, 

leveraging the location advantage of pipe joints for better detecting these damages would be 

significant. The reason is that the majority of root damages are grown through the pipe joints.  

https://keras-ocr.readthedocs.io/en/latest/index.html
https://keras-ocr.readthedocs.io/en/latest/index.html
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Accordingly, the YOLOv3 module can be first applied to localize and detect pipe joints. However, 

since CNN-based detection models such as YOLOv3 is supervised learning algorithm which 

depends on defect labels that are considered as the ground truth for the training stage, thus the 

biggest limitation is to manually annotate the samples which are considered labor intensive. 

However, most of the joint shapes are fixed-size circles, thus Hough Circle Transformation (HCT) 

technique can assist to identify and annotate these circular joints as shown in Figure 9. The reason 

why HCT cannot be used for direct joint detection is firstly due to the complex structure of various 

pipeline systems. Some of them have a very noisy nature background with vague joints thus HCT 

is not robust enough to successfully detect such pipe joints. Another reason is due to the difficulties 

in automatically adjusting HCT parameters (such as minimum circle distance, minimum and 

maximum radius, etc.) under various types of pipelines or illumination conditions.  

 

 
(a)                                          (b)                                                (c) 

Figure 9. Hough Circle Transformation (HCT) to identify pipe joints. (a) original image; (b) after 
image pre-processing, and (c) detected pipe joint using the HCT technique.  
 

 

In total, 13,580 images with corresponding joint annotations were generated by applying the HCT 

approach. After manually removing incorrect HCT detections for the circular joints, 11,472 

outputs were used as the dataset prepared for the YOLOv3 detection model. However, if the 

application of HCT was not robust enough to correctly detect the joints such as in the example 

shown in Figure 10, then manual annotations are necessary for this certain scenario. In addition, 

80% and 10% of the dataset were used for training and validation purposes, respectively, while 

another 10% was used for the testing stage. Due to the various resolutions of CCTV inspection 

videos, all images need to be resized to 416 x 416 pixels which is the standard input resolution for 

a balanced Yolov3 model. Later, to improve the accuracy for the identification of root damages, a 

Convex Hull Overlap (CHO) feature, which reflects the overlap relationship between the detected 
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pipe joints and the segmented root damage, was applied to increase the accuracy for the 

identification of sewer damages. This feature aims to reduce the false positive predictions 

generated from the previous segmentation model. To be more concrete, a Convex Hull represents 

the smallest convex set that involves all the pixels of a region in the Euclidean plane (Liang, Y., 

2018), which can be applied to segmented root damage. Also, after achieving the b-box coordinate 

of the pipe join returned by the YOLOv3 module, the segmented pixels of the circular joints can 

be determined by drawing with the radius (half-length of the b-box width/height) from the center 

pixel of the b-box detected. Therefore, the CHO feature was computed as the overlapped pixels 

between the segmentations of the detected pipe joint and root damage. Any segmentation outputs 

located out of the pipe joints without a CHO feature were considered as false positives and need 

to be excluded. More results regarding the CHO feature are well demonstrated in Figure 20 of 

Section 4.2.   

 

Figure 10. The HCT limitations to detect pipe joints with complex pipe structures. 

3.2.2.5. Camera-damage Distance (CDD) 

This section describes how to estimate the camera-damage distance (CDD) using monocular vision 

in each CCTV inspection video. First, input keyframes should undergo different detection models 

along with a series of image processing steps for identifying desired root damages and pipe joints 

that were mentioned in earlier sections. Then the Triangle Similarity Theorem (TST) was proposed, 

and Figure 11 demonstrates how to apply this projective geometry approach to estimate the 

distance between the root damage and the camera in the sewer pipeline. The assumption of this 

geometric concept is to consider the robot camera as an ideal pinhole camera, and the camera’s 

optical axis and the pipe walls are parallel. 
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Figure 11. Triangle Similarity Theorem of a Pinhole Camera.  
 

Based on the TST approach, a relationship between the following parameters could be derived. F 

is considered as the camera’s focal length (in pixels), P is the object width (in pixels) from the 

image, CDD is the camera-to-damage distance when the camera first sees the damage (in feet), 

and W is the actual width of the target object (in feet). P is known by applying the object detection 

model to the image. Thus, these parameters created two similar triangles shown in Figure 11 for a 

pinhole camera, and it applies that:  

 
𝐹𝐹
𝑃𝑃

= 𝐶𝐶𝐷𝐷𝐷𝐷
𝑊𝑊

                         (2) 

 

Where P was acquired from the object detection module and returned as the pixel width of the 

detected root damage. The target object in this work was the pipe joint that has root damage grown 

on, hence its actual width (W) is assumed to be constant in each inspection video (same-sized 

pipeline). F was unknown for this practical work due to the unknown camera types thus not being 

able to calibrate the camera. However, with the sequential advantage of each inspection video, the 

focal length (F) is considered the same for consecutive frames for a single camera (no zoom-in or 

zoom-out within the same-sized pipeline). Thus Equation 3 derives the perceived F of the camera 

by applying the triangle similarity concept. When the robot first sees the damage and moves closer, 

F can be eliminated and the parameters that only changed are the pixel width of the object (Pfirst to 

Psub) and camera-to-object distance (CDDfirst to CDDsub) from the frame where the camera first 

seen the damage to the subsequent frame when the camera continues to move closer to the damage. 

Pfirst and Psub can be attained in images by applying the YOLOv3 detection model; While CDDsub 

CDD 
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is equal to (CDDfirst – M) where M indicates how far the robot camera moving forward thus it can 

be obtained by calculating the difference of OCR readouts between the subsequent frame and the 

first frame when the camera first sees the damage (OCRsub - OCRfirst) (Equation 4). M is considered 

as a positive value because the camera continues traveling further in the sewer pipeline, thus 

leading to a larger distance value (OCRsub) as compared to the starting distance value (OCRfirst) 

when the camera first sees the damage. Accordingly, the CDDfirst is derived with these known 

parameters in Equation 5, resulting in a final calculation of the longitudinal position (LP) for root 

damages. Therefore, Equation 6 determines the LP value by directly adding OCRfirst readout on 

the CDDfirst.  

 

𝐹𝐹 =  𝑃𝑃𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 × 𝐶𝐶𝐷𝐷𝐷𝐷𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓
𝑊𝑊

=  𝑃𝑃𝑓𝑓𝑠𝑠𝑠𝑠×  𝐶𝐶𝐷𝐷𝐷𝐷𝑓𝑓𝑠𝑠𝑠𝑠
𝑊𝑊

=  𝑃𝑃𝑓𝑓𝑠𝑠𝑠𝑠×  (𝐶𝐶𝐷𝐷𝐷𝐷𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓−𝑀𝑀)

𝑊𝑊
               (3) 

 

𝑀𝑀 =  𝑂𝑂𝑂𝑂𝑂𝑂𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 − 𝑂𝑂𝑂𝑂𝑂𝑂𝑓𝑓𝑠𝑠𝑠𝑠                                                       (4) 

 

𝑂𝑂𝐶𝐶𝐶𝐶𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 =  𝑃𝑃𝑓𝑓𝑠𝑠𝑠𝑠 × 𝑀𝑀
𝑃𝑃𝑓𝑓𝑠𝑠𝑠𝑠− 𝑃𝑃𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓

                                                    (5) 

 

𝐿𝐿𝐿𝐿𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 =  𝑂𝑂𝐶𝐶𝐶𝐶𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 + 𝑂𝑂𝑂𝑂𝑂𝑂𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓                          (6) 

 

In this study, no ground truth distances were labeled to tell the precise longitudinal position of 

sewer damages in each inspection video. Thus, the OCR readout using the LF method was 

considered as the ground-truth value which is also the most widely used approach to localize the 

longitudinal position of each identified root damage by other researchers.  

3.2.3. Evaluation Metrics 

As for detecting text ROI and pipe joints using Yolov3 models, four metrics including confusion 

matrix, intersection over Union (IoU), recall, and precision as well as F score were used to evaluate 

the model performances. Specifically, the confusion matrix has four attributes: 

- True Positive (TP) represents the number of real objects that are correctly detected as an object.  
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- True Negative (TN) represents the number of non-object images that are predicted as non-

object images. 

- False Positives (FP) represents the number of non-object images that are predicted as has-

object images (Type I Error). 

- False Negatives (FN) represents the number of real objects that are detected as non-object 

(Type II Error).  

 

Precision, also called positive predictive value, indicates how often the model predicts correctly, 

while Recall indicates how well all the positives can be detected. Also, prediction accuracy was 

estimated as the ratio of total correct predictions to the total number of input samples. However, 

instead of using accuracy to evaluate model performance, the F1 score is considered as a better 

way since it doesn’t involve True Negative samples, which is specifically useful for imbalanced 

datasets. All the equations are shown as follows: 

 

𝑝𝑝𝑓𝑓𝑝𝑝𝑐𝑐𝑓𝑓𝑓𝑓𝑓𝑓𝑖𝑖𝑖𝑖 =  𝑇𝑇𝑃𝑃
𝑇𝑇𝑃𝑃+𝐹𝐹𝑃𝑃

                       (7)

          

𝑓𝑓𝑝𝑝𝑐𝑐𝑟𝑟𝑟𝑟𝑟𝑟 =  𝑇𝑇𝑃𝑃
𝑇𝑇𝑃𝑃+𝐹𝐹𝐹𝐹

                                                                                                                                             (8) 

                                                                                                                                 

𝐴𝐴𝑐𝑐𝑐𝑐𝐴𝐴𝑓𝑓𝑟𝑟𝑐𝑐𝐴𝐴 =  𝑇𝑇𝑃𝑃+𝑇𝑇𝐹𝐹
𝑇𝑇𝑃𝑃+𝑇𝑇𝐹𝐹+𝐹𝐹𝐹𝐹+𝐹𝐹𝑃𝑃

                                                                                                                         (9) 

 

𝐹𝐹 =  2 x 𝑃𝑃𝑓𝑓𝑑𝑑𝑃𝑃𝑓𝑓𝑓𝑓𝑓𝑓𝑃𝑃𝑃𝑃 𝑥𝑥 𝑅𝑅𝑑𝑑𝑃𝑃𝑑𝑑𝑅𝑅𝑅𝑅
𝑃𝑃𝑓𝑓𝑑𝑑𝑃𝑃𝑓𝑓𝑓𝑓𝑓𝑓𝑃𝑃𝑃𝑃 +𝑅𝑅𝑑𝑑𝑃𝑃𝑑𝑑𝑅𝑅𝑅𝑅

                                                                                                                          (10) 

 

IoU (Intersection over Union) specifies the area ratio between the predicted and ground truth b-

box (Equation 11). A higher IoU score indicates more precise localization of the predicted b-box, 

as compared to the ground truth box coordinates.  

                                         (11) 
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To evaluate the performance of the text recognition model, the metric Text Recognition 

Performance (TRP) shown in Equation 12 was applied by calculating the number of correctly 

recognized letters (|C|) and the number of ground truth text (|T|).   

 

𝑇𝑇𝑂𝑂𝐿𝐿 =  |𝐶𝐶|
|𝑇𝑇|

                             (12) 

 

The metric Error Rate is used for the comparison of calculated longitudinal position and ground-

truth distance (Equation 13), which is presented as the mean absolute error between Lc and L. 

This way, the results would focus on the accuracy of the distance calculation, without taking into 

account whether the measurement is lower or higher as compared to the ground-truth value. 

 

𝐸𝐸𝑓𝑓𝑓𝑓𝑖𝑖𝑓𝑓 𝑂𝑂𝑟𝑟𝑓𝑓𝑝𝑝 = |𝐿𝐿𝑐𝑐 − 𝐿𝐿|                           (13) 

 

Where Lc is the calculated longitudinal position of the root damage, and L is the ground-truth 

distance using LF method.  

 

 

 

 

 

 

 

 

 

 

 

 



 
 

34 

 EXPERIMENTAL RESULTS 

Different datasets described in earlier sections were trained for different purposes which include: 

two YOLOv3 models with darknet-53 as the backbone for the tasks of text ROI localization and 

pipe joint detection; One U-net segmentation model for the damage identification; Two OCR 

modules in terms of Tesseract Engine and CRNN for the text recognition in video subtitles. Later, 

the camera-object distance (CDD) was mathematically derived using Triangle Similarity Theorem 

(TST) approach, thus further determining the longitudinal position of each identified root damage 

in the sewer pipelines. Specific evaluation metrics in the testing process include precision, recall, 

F1 score, and accuracy (Table 2). More details will be explained in each sub-section.  

 

Table 2. Prediction evaluation metrics of the proposed modules. 

 Model Precision    Recall F1 Score Accuracy 

Localization of text ROI  YOLOv3       1       0.99     0.99      99% 

Segmentation of root damages    Unet     0.36       0.98     0.53         66% 

Detection of pipe joints YOLOv3     0.98            0.96        0.97                    95%     
 

 

For a better understanding of the proposed approaches applied on video sequences to detect and 

localize root damages in sewer systems, five unseen CCTV inspection videos with over 80,000+ 

frames were used. Taking one test video (1,2478 frames) as an example. After computing the sum 

of absolute differences in LUV color space between two consecutive frames, higher spikes shown 

in Figure 12 indicate the larger dissimilarity with respect to the nearest frames. Thus, local maxima 

were selected as keyframes (2270 images in total), which were approximately 20 times less than 

the number of original frames. Figure 13 shows the selected keyframes and it can be seen that the 

changes in both sewer pipes and text subtitles were depicted well. In general, these 2270 selected 

keyframes were prepared as an input dataset for different models at different phases, such as text 

ROI localization and text recognition using Tesseract Engine and CRNN-CTC network (Section 

4.1), identification of root damages (Section 4.2), estimation of camera-damage distances (CDDs) 
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(Section 4.3) as well as the prediction of the longitudinal position for each identified root damage 

(Section 4.4).  

 

Figure 12. Sum of absolute differences in LUV colorspace between two consecutive frames in a 
test video. 

 

 

Figure 13. Example keyframes generated from the test video. 
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4.1 Text ROI Localization and Recognition. 

After training the YOLOv3 model that was introduced earlier in Section 3.2.2.2, text ROIs in each 

inspection video were localized and the b-box coordinate (highlighted in green) was returned 

(Figure 14) with a high accuracy of 99%.  

  

Figure 14. The localization of text ROI using the YOLOv3 model. The detected text region was 
highlighted in a green b-box at the bottom.  

 

After the model implementation of text ROI localization, OCR modules (Tesseract and CRNN) 

were applied to further recognize text characters with the aim of extracting the traveling distance 

information (in feet) from each keyframe. Tesseract Engine followed by image pre-processing 

performed better on the text region that has a solid background (Figure 15). This approach thus 

can successfully convert the image to text correctly followed with an ad-hoc post-processing by 

adding a decimal point if there was a space between text characters. The result indicates that the 

application of Tesseract Engine can achieve 85% of accuracy for text recognition. Take an example 

shown in Figure 15, specific text values were recognized by 0127.0 ft and 59.7 ft using the 

Tesseract Engine.  

 
Figure 15. Tesseract Engine recognizes text values from video subtitles that 

are located at the upper right corner of the keyframe.  
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However, the TesseractV3 engine was not supported on the cloud docker that was provided by the 

company, and it was also sensitive and hard to recognize the text region which had natural and 

complex backgrounds, or those low-resolution images with small text characters. Thus, the OCR 

model based on the CRNN module was alternatively applied, and this approach can obtain 81% 

accuracy for text recognition depending on the image quality (Figure 16). Among the prediction 

outcomes, negative recognitions were generated because of those characters with a complex 

background, thus the model was difficult to recognize the right characters and failed (Figure 16b). 

In order to eliminate the negative impacts of these incorrect predictions for further CDD 

estimations, a post-processing step was applied to smooth the text readouts, thus improving the 

accuracy of distance values over time in each video (Figure 17). Figure 17a shows the text readouts 

initially recognized from the test video using the CRNN model. Many unreasonable readouts were 

falling below and above the main trend line where the line represents the increasing distance values 

while the robot camera traveling further in the sewer pipelines. However, each distance readout 

can be refined by taking the median value for the nearest 15 readouts (Figure 17b), and at the last, 

all the extreme outliers were further removed by automatically setting up a threshold (Figure 17c). 

As a result, entire text readouts smoothly increased over time without any outliers, and this 

proposed refining approach could lead to a 10%-12% increase on the accuracy of text recognition.  

             
(a)                                                  (b) 

Figure 16. An example of (a) positive OCR predictions; b) negative OCR predictions. 
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(a)                                        (b)                                           (c) 

Figure 17.Refining approach for smoothing distance readouts that are recognized from 
keyframe subtitles. The x-axis indicates the frame numbers, which can also be considered as 
traveling time. The y-axis indicates represents the distance values (in feet) by applying the 
CRNN module. 

4.2 Root Damages Identification 

A pre-trained segmentation model using U-net for detecting root damages was provided by the 

company. The IoU score was approximately 85% by comparing the predicted output and the 

ground-truth mask. A threshold value of 0.7 was applied which means the segmentation with a 

confidence score of 0.7 or above would be considered as the correct detection. However, due to 

the video limitation such as illumination variation, nature noises, and light conditions in CCTV 

inspection videos, this segmentation model generated lots of false positive predictions resulting in 

a low precision score of 0.36 with an accuracy of 66% and an F1 score of 0.53 (Table 2) after 

applying this model on a new test video. A low precision indicates that the model incorrectly 

identified non-damage pixels as root damages (Figure 18). The reason is due to the presence of 

similar damage patterns on the pavement surface, which might be caused by the constructional 

noises on the inner environments of the pipe.  
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Therefore, using the pipe joint as a reference aims to reduce false positives detected in the previous 

step, since the majority of root damages grew through the joints. Thus, the detection of pipe joints 

using the YOLOv3 model combined with the convex hull overlap (CHO) feature was applied to 

improve the accuracy of root damage identification. Table 2 shows the detection scores of recalls, 

precision, and F1 for detecting sewer joints were 0.98, 0.96, and 0.97, respectively, which confirms 

the model’s capability in detecting the joints correctly (Figure 19). Also, Figure 20 shows how the 

CHO captures the existence and position of the root damage. As the results illustrated, the sewer 

damage was truly grown on the pipe joint (Figure 20e) due to a convex hull overlap (Figure 20d) 

between the detected pipe joint (Figure 20c) and the segmented damage (Figure 20b). Thus, such 

CHO feature is considered as an effective approach to significantly reduce false positive samples 

that generated from the segmentation model, with the aim of increasing the accuracy of damage 

identification in the noisy pipeline environment.   

 

Figure 19. Detection of sewer joints using the YOLOv3 model. 
(Highlighted in a green b-box with a confidence level of 100% in this example) 

Figure 18. An example of false positive predictions by applying the 
segmentation model on the root damage. 
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(a)                       (b)                         (c)                        (d)                           (e)  

Figure 20. An illustration of the Convex Hull Overlap (CHO) feature for the identification of root 
damage. a) the original image, b) the segmented root damage, c) the segmented pipe joint 
segmentation, d) the CHO feature between the root damage and pipe joint, e) the actual root 
damage on the original image (highlighted in orange) determined by the CHO feature. 
 

By applying the pre-trained segmentation model for identifying root damages, a detailed map was 

created to illustrate different stages in that root damages appeared over time in each sewer 

inspection video (Figure 21). Since the inspection robot is controlled by an inspector thus 

whenever the robot camera stops or slows down, there is a higher probability that having root 

damage around. Each green bar represents the existence of the root damages detected by the 

segmentation model, and each separated stage indicates different root damages identified in the 

sewer pipeline. Results in Figure 21 show that damage stages in the tested video were from 

('frame474' to 'frame487'), ('frame646' to 'frame662'), ('frame1291' to 'frame1361'), ('frame1685' 

to 'frame1736'), ('frame1858' to 'frame1876'), and ('frame2228' to 'frame2267'). It can be concluded 

that the wider the damage stage was, the more keyframes it had for the time when the camera first 

saw the damage until past it. However, after leveraging the impact of pipe joints with the CHO 

feature which tends to improve the identification of root damages, results shown in Figure 22 

demonstrate a more robust and effective approach to correctly detect damages by reducing false 

positive detections generated from the previous step. This is the reason why the total stages in 

Figure 22 were fewer, and each stage was narrower as compared with the stages in Figure 21. 

However, among these damage detections that are visualized in Figure 22, there still might have 

some false positive predictions that have been discussed in Section 3.2.2.3. For example, the 

damage stages such as ('frame646' to 'frame658'), ('frame1291' to 'frame1306'), and ('frame2228' 

to 'frame2265') were still considered as false positive predictions even with the CHO feature 

(Figure 23). Therefore, re-train and improving the segmentation model for better damage detection 

is crucial and considered as a priority in further work.  
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Figure 21. Damage stages determined by the segmentation model. The x-axis indicates frame 
numbers, and the y-axis indicates whether the root damage was detected or not.  
 

 

 

Figure 22. Damage stages determined by the CHO feature. The x-axis indicates frame numbers, 
and the y-axis indicates whether the root damage was detected or not. 
 
 

 
 

Taking another test video as a representative explanation (Figure 24), if there were multiple root 

damages exist continuously in a part of the sewer pipeline, the segmentation model might 

constantly detect the pixel segmentations for such damages thus finally returning the longitudinal 

position of the last damage in such sub-pipeline using the LF approach (Figure 25a, highlighted in 

a yellow box). However, Figure 26b demonstrated that the benefits of our proposed CHO feature 

not only helped to reduce the incorrect damage detections, but also separated the entire stage of 

Figure 23. False positive detections of root damages with CHO feature. 
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the continuous damages into four different sub-stages (Figure 25b, highlighted in a yellow box) 

between keyframe1146 to keyframe1318.  

 

 

Figure 24. Multiple root damages exist continuously in the sub-pipeline of the sewer system.  
 

  
      (a) 

 
      (b) 

Figure 25. (Another test video) Damage stages determined by the segmentation model (a) and 
CHO features (b). The x-axis indicates frame numbers, and the y-axis indicates whether the root 
damage was detected or not.  

4.3 Camera-damage Distances (CDD) Estimation. 

When every time the root damage was first seen by the camera, the CDD value was then calculated 

based on the TST approach that uses the current frame and all the subsequence frames till the 

camera passed by the point of the damage condition. In theory, all the CDDs in each stage are 

supposed to be the same, since each CDD calculation in the stage represents the camera-to-damage 

distance when the camera first sees the damage. To remove outliers and reduce noises, the median 
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CDD value was selected as the actual camera-to-damage distance (in feet). An example shown in 

Figure 26b indicates that the CDD values were sensitive and thus jumped around at the beginning 

of the keyframe sequences when the camera starts to target the root damage. The reason was 

probably because the damage/joint detection was not accurate enough at the beginning of frame 

sequences, resulting in enormous variance or non-significant differences between Pfirst and Psub 

that were used in Equation 5. This result might reveal that this proposed TST approach has 

increased error when the damage is further away to estimate the CDD value. However, CDDs later 

tends to be stable around 2.42 inch which indicates that the distance of the root damage in the 

image was about 2.42 feet (Figure 26a). For a further validation of the CDD estimations using the 

TST approach, Figure 26 demonstrates that the damage distance to the camera in the image was 

0.9 ft (Figure 27a).  

 

 

 

 

 

 

 

 

(a)                                                      (b) 

 

Figure 26. (a) The sewer scene when the camera first detects the root damage; (b) Estimation of 
camera-damage distance (CDD) using the TST approach when the camera first detects the root 
damag. The x axis indicates the occurences of calculting the CDD in each damage stage, while the 
y axis indicates represents the CDD values in feet.  
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Figure 27. CDD values calculated from another damage stage using the TST approach. 

4.4 Longitudinal Position (LP) for Each Identified Root Damage 

After obtaining the camera-object distance (CDD) for each root damage in Section 4.3, the 

longitudinal position of the root damage from the manhole or point of sewer entry can be 

straightforwardly calculated by Equation 6. Take the test video as an example, Figure 28 indicates 

the comparison between the calculated LP and ground-truth value in each damage stage. There 

were 10 damage stages originally identified by using the segmentation model but reduced to 4 

stages (highlighted in the red box in Figure 28) after leveraging the advantages of the pipe joint 

detection and the CHO feature that were described earlier in Section 3.2.2.4. These four damage 

stages are considered to have actual root damages, and the results indicate that our proposed 

approach has achieved highly accurate results with 0 to 0.75 ft of error rates. Even for other stages 

that have false positive damages, most of the error rates to estimate LPs were still quite low which 

were between 0.13 to 0.87 ft. In another word, the calculated longitudinal position of each 

identified root damage has a small error (less than 1 foot) as compared to the value using the LF 

method. With these observations, such errors (less than 1 foot) are considered acceptable, 

especially for those sewer pipelines that were longer than 200 ft. In Figure 28, it can be noticed 

that there was one exception at the damage stage starting from keyframe 2044, showing an error 

rate of 2.73 ft between the calculated and ground-truth LP values. The reason might be that in such 

a stage, the segmentation model incorrectly detected a non-damage object as root damage (Figure 

29a). Another reason might be due to the insufficient occurrences (only four) applied to the CDD 

calculations (Figure 29b), resulting in a large error rate to predict the longitudinal position of the 

root damage. Commonly, about 10 keyframes were at least required to ensure sufficient 

occurrences for the CDD estimation, like the stages in Figure 26 and Figure 27. Therefore, 
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increasing the accuracy of the segmentation model along with increased occurrences involved 

would be significant to improve the performance on the estimation of longitudinal positions for 

each sewer damage. 

 

 

Figure 28. LP Comparisons between our proposed method and the LF approach among different 
damage stages in the test video. The x-axis indicates damage stages showing with the frame 
number when the camera first saw the root damage; the y-axis indicates the longitudinal position 
(in feet) of each identified root damage in the underground sewer pipeline.  
 

 

Figure 29. A false positive prediction of root damages leads to a large error in CDD estimations. 
(a) Root damage (highlighted in an orange region) detected by the segmentation model in the 
keyframe 2044; (b) CDD values calculated in such damage stage that starting with keyframe 2044 
of the test video with 4 subsequent frames (occurrences). 
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There were also another four testing videos applied to validate LP predictions, which the 

performance using our proposed approach was great for most root damages as the lowest error rate 

to the ground truth down to 0.1 ft, and up to 1.03 ft. Even for the situation with continuous root 

damages indicated in Figure 24, results show that each root damage has its longitudinal position 

in the sub-pipeline which had a high prediction accuracy of 90% after a manual validation on the 

test video. With few exceptions of large error rates, the conclusions imply that the TST approach 

with the benefits of DL-based models might not be suitable for inspection videos that have bad 

image quality. Since these images had too many noises or naturally complex backgrounds, it might 

lead to inaccurate object detection and text recognition in the images.  

 

Overall, this study achieved the following conclusions: 

(1). Implemented Optical Character Recognition (OCR) model to extract text from different 

inspection videos for identification of monocular camera moving distance using Tesseract Engine 

as well as Convolutional and Recurrent Neural Networks (CRNN), with the accuracy of 90% on 

the task of text recognition after applying the refining approach proposed in this study.  

(2). Designed a semi-automatic annotation method for keyframes of inspection videos based on 

Hough Transform techniques which significantly increased the annotation efficiency by 70%.  

(3). Built well-tuned YoloV3 models with Darknet-53 network for pipe damage recognition 

leveraging the Convex Hull Overlap (CHO) feature that led to a 20% increase on the accuracy of 

damage identification. 

(4). Successfully designed an end-to-end DL pipeline that involved Triangle Similarity Theorem 

(TST) to predict damage locations which achieved error rates that were less than 1 feet.  
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 CONCLUSION AND FUTURE WORK 

The visual inspections that rely on inspectors are time-consuming and labor-intensive, which may 

cause further deconstruction of the underground sewer systems. Among the possible techniques 

for the inspection of sewer defects, this study attempts to automatically detect root damages and 

identify their circumferential and longitudinal positions in sewer networks. This framework can 

eliminate the time-consuming tasks for sewer inspection and improves the accuracy of identifying 

the damaged locations, thus providing guidance in support of any further maintenance of the 

underground sewer networks. By applying CCTV videos from different resources, this study 

brings innovative approaches to perform complex feature extraction and pattern recognition to 

overcome the video limitations such as the variation of illumination, subtitle format, lighting 

conditions, and so on. Also, by taking advantage of the sequential nature of video frames, 

promising vision-based approaches such as YOLOv3 and OCR models along with the Theorem of 

Triangle Similarity (TST) were applied to detect and localize the root damages in the videos. An 

end-to-end DL pipeline was developed to evaluate these inspection techniques and some video 

examples were presented to demonstrate model effectiveness and efficiency, as well as the 

limitation of the leading methodologies.    

 

Text recognition integrates feature extraction and text sequence modeling to read the traveling 

distance which provides important information to the inspector about the relative location of the 

controlled robot away from the entrance of the manhole. After fully comparing the text recognition 

modules of TesseractV3 and CRNN and considering the performances of their prediction accuracy 

and cloud deployment on the recognition task, CRNN was chosen as the preliminary OCR model 

in this study. Cross-validation results indicated that after refining, both Tesseract and CRNN 

modules can considerably increase the recognition capability and achieve 90% of accuracy for 

recognizing distance values. Thus, refining operation is considered a significant improvement to 

map the detailed traveling map of the robot within the sewer system from each CCTV inspection 

video. However, even though the TesseractV3 module was easier with pre-trained weights, this 

version was difficult to be deployed on GCP. Thus, with the extra efforts to manually annotate the 

subtitle texts for the CRNN model, the result indicated that the application of the YOLOv3 

detection model on text ROI localization combined with CRNN still achieved high accuracy on 
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the task of text recognition. Overall, CRNN can take input images and generate good predictions 

with variable-length texts., and it also removes the fully connected layers that are used in CNNs 

thus becoming more compact and efficient. To further increase the accuracy of text recognition 

using CRNN, more training images should also be added which is part of our ongoing work. 

 

Also, target objects such as the root damage should have less variation in pixel segmentation in 

image sequences which may have a better result for the CDD calculations. Thus, with the aim of 

accuracy improvement, the pipe joint that has root damage grown through was considered as a 

better reference for CDD calculations due to its constant circular dimension. Moreover, this study 

aims to integrate the convex hull overlap (CHO) feature and the application of CNNs such as the 

YOLOv3 module on pipe joints to improve the performance of the current vision-based 

segmentation approach for better identifying root damages. The convexity feature is an optimal 

representation of the sewer damage, thus effectively reflecting the actual position of the damage 

by inferring the spatial relationships between detected pipe joints and segmented damage in the 

image. After increasing the accuracy of damage identification by reducing the false positive 

predictions, the assumption of a pinhole camera model with a TST approach can be applied to 

calculate the camera-damage distance (CDD) value when the root damage was first seen by the 

camera, thus further estimate the longitudinal position of each identified damage in the sewer 

system. However, the mathematical derivation of the TST approach for the CDD calculation might 

be sensitive to image quality and the lack of enough subsequent frames that described earlier in 

Section 4.3.  

 

Therefore, in different underground sewer systems, due to illumination variation and complex pipe 

features/patterns, it’s tough to define a template for detecting root damages and predicting its 

circumferential and longitudinal positions in the sewer pipes. Sewer damage patterns might be 

reshaped also because of the sudden movements, camera pose change, and poor lighting conditions. 

Hence, the generalization capability of the proposed DL-based framework needs to be improved 

for different environments and pipe materials. Accordingly, creating more comprehensive training 

samples along with more accurate models would be helpful for the generalization capability. 

Although the training process in a DL-based framework is computationally expensive, it would be 

beneficial from various data augmentation techniques and increasingly rapid computational 
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powder of graphic processing units (GPUs) (Moradi, S., 2020). In addition, the assessment of 

damage severity deserves more attention. Some studies achieved great progress to quantify the 

extent of sewer damages based on pixel intensities or saliency models, but the accomplishment is 

still not enough to generate an automated model in severity evaluation. Another limitation of this 

study is to not consider the correction of image radial distortion, which could be a significant 

component to predict the longitudinal position for sewer damages. More research needs to be 

conveyed on this part for developing a more robust DL-based assessment system. 

 

Overall, this project aims to build a DL pipeline combined with various compute vision techniques, 

as well as derive a mathematical function to identify the longitudinal position of root damages in 

sewer pipelines. Results have proved the effectiveness of the pipeline, but more work needs to be 

done to improve the robustness of entire models, such as text recognition accuracy, segmentation 

predictions, as well as pipe joint detections. Also, since the application of such a DL-based 

framework for CCTV inspection is heavily dependent upon the visual data, the image quality needs 

to be standardized for optimal detection of sewer damages, and the camera angle and position 

within the sewer pipelines are also significant to predict the longitudinal position of the root 

damage in the pipeline. To minimize the illumination fluctuation of the inspection videos, lighting 

conditions should be properly adjusted in the pipe. More future work will be devoted to developing 

algorithms and computational hardware for massive calculations. Considering all the promising 

perspectives, automated assessment of sewer damages and positions will be more robust and 

efficient resulting in a substantial decrease in inspection effort. Then such a DL pipeline will be 

considered as a guideline to accurately assess and locate root damages for further infrastructure 

maintenance.  
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