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Abstract—The internal inspection of large pipeline infrastruc-
tures, such as sewers and waterworks, is a fundamental task for
the prevention of possible failures. In particular, visual inspection
is typically performed by human operators on the basis of video
sequences either acquired on-line or recorded for further off-
line analysis. In this work, we propose a vision-based software
approach to assist the human operator by conveniently showing
the acquired data and by automatically detecting and highlighting
the pipeline sections where relevant anomalies could occur.

I. INTRODUCTION

The regular internal inspection of pipelines is a fundamental

maintenance task to guarantee the correct functionality of the

infrastructure and to prevent incidents. Even if the pipeline is

designed to last for a long period of time, it can be affected by

a wide range of problems, such as cracks, collapses, defective

junctions, obstructions, etc. Ignoring such defects could lead

to system inefficiency, economic losses, environmental issues,

or even potential dangers for human beings. As an example,

Figure 1 was taken in downtown Florence, Italy, on May 25,

2016. In this case, an undetected waterworks leakage weak-

ened the soil structure, causing a ground collapse, roughly

200×7 meters wide, and damaging dozens of parked vehicles.

Subsequent investigations showed that the leakage was due

to an old underground pipe, dated back to the 1950s, whose

conditions were not regularly monitored [1].

Fig. 1. A ground collapse due to a waterworks leakage.

Visual inspection of the internal surface of pipelines is

usually done by means of robotic rovers or floating platforms,

mounting proper camera sensors and lights. The inspection can

be done either on-line or off-line. In the first case, a human

operator can see the acquired video as the inspection is being

executed, and he can monitor the internal surface by means of

a motorized camera head, which can be manually oriented. The

advantage of on-line approaches is that defects can be detected

in real-time, however it is often unpractical in long pipelines
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Fig. 2. System architecture.

because of the lack of a reliable communication between the

sensor and the display base. In the off-line approaches, a

video sequence is recorded on-board, and it is later retrieved

when the sensor is extracted from the pipe. These approaches

are more common for long pipelines, however the camera

cannot be oriented toward the relevant areas to be monitored.

To overcome this issue, wide-angle sensors (e.g. hemispheric

cameras) could be employed, in order to acquire images of the

whole internal pipe surface surrounding the camera. However,

the final video sequence must still be analyzed off-line by a

human operator. This is an extremely long and tedious task,

since on average a trained operator can approximately inspect

100 meters per hour, as reported by the company funding this

project.

The aim of the proposed work is to define the computer

vision and machine learning algorithms that can be employed

to ease the task of human operators. The system acquires video

sequences with a hemispheric camera, unfolds them to ease the

visual inspection, and automatically highlights the zones where

a potential defect could be detected (Figure 2). We assume that

a proper support to move the camera inside the pipeline exists,

and it can keep the camera with its optical axis parallel to the

pipe axis. We also assume a circular pipe section. The optimal

scenario involves empty pipes, where the internal surface is

fully visible. If this is not the case, as in many real-world

applications like waterworks, the system can perform visual

inspection only on the off-water surface.

In section II we give a brief review on the state of the art

on pipeline inspection systems. Sections III and IV discuss

how the images acquired by a hemispheric camera can be

used to create unfolded views of the pipe internal surface,

while in section V these images are automatically analyzed to

detect anomalous image portions. In section VI experimental

results are shown and discussed. Finally, section VII reports

conclusions and a possible idea for future developments.
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II. RELATED WORK

Most of the recent works in literature concerning pipeline

inspection are focused on hardware specifically designed for

this task, in particular inspection robots [2]–[4]. Several works

also deal with the different inspection technologies that could

be adopted. As discussed in [5], [6], there are two main

categories of inspection methods: direct methods and indirect

methods. Direct methods include all the automated and manual

visual inspection approaches, such as closed-circuit televi-

sion (CCTV) [7], laser approaches [8], [9], as well as non-

destructive testing approaches such electromagnetic methods

[10], [11], acoustic methods [12], [13] and ultrasound methods

[14]–[16]. Indirect methods, instead, include all the approaches

concerning water audit, flow testing and measurement of soil

resistivity [17]–[19] to determine the risk of deterioration.

CCTV systems are slow, costly and have limited accuracy

usually caused by human or environmental factors, while laser,

acoustic and ultrasound methods suffer from lack of resolution

and an inability to detect water inflow [20].

The research on automated vision-based approaches is more

limited. Some works focus on finding the position of the

inspection robot inside the pipe. This is achieved through

Visual Simultaneous Localization and Mapping (VSLAM)

[21] or visual odometry [22] algorithms, which are also used to

perform a 3D reconstruction of the pipe [23]. Usually, these

systems combine RGB cameras with other sensors such as

Time of Flight cameras and lasers in order to obtain more

accurate measurements.

The detection of anomalies in traditional systems is typically

left to human operators. However, some works exist trying to

extract visual information about specific anomalies such as

cracks, corrosion, holes, obstructions or gaps. For example,

Huynh et al. [20] use stereo vision to reconstruct a depth map

of the observed pipe section. The map allows to detect all those

defects that can be identified by means of their discrepancy

with the 3D model of the pipe, such as the presence of debris

or roots. Ting et al. [24] instead use a catadioptric omnidirec-

tional sensor to acquire images that are then unfolded using an

approach similar to the one proposed here. They also propose

a set of geometric image properties to explicitly identify pipe

cracks. More generally, image features can be combined with

pattern recognition or machine learning approaches in order to

explicitly recognize specific defects [25]. For example, Wu et

al. [26] use Maximum Response filter banks to train ensemble

classifiers, while Mashford et al. [27] use Support Vector

Machines for the classification task.

All the mentioned works try to detect and recognize pipe

defects using an explicit labeling approach: visual features

are used to train a classifier to recognize cracks, holes, etc.

This approach however is generally prone to errors because of

the large intra-class variability: for example, there are many

variables that influence the visual aspect of a crack (e.g. shape,

length, depth, pipe material, etc.) and thus it is non-trivial

to train a classifier to recognize all the possible cracks. At

the same time, the nature of anomalies is extremely wide,

ranging from surface defects to the presence of occlusions or

misaligned joints. It is thus difficult to take in consideration

all the possibilities. The method proposed in this work tries

to overcome all these limitations by adopting an anomaly

detection strategy. By analyzing the visual aspect of the pipe

internal surface, a normality model is built, allowing the

detection of any image patch that is discordant with the model.

The system thus renounces to give an explicit label to each

defect, focusing on the detection of visual anomalies that are

later submitted to human evaluation. The system can thus

bypass intra-class variance, and it can actually handle any type

of unknown defects, as long as they are visually detectable.

To the best of our knowledge, no other works adopted this

approach yet in the field of pipeline inspection.

III. IMAGE UNFOLDING

The first module of the proposed system is the image

unfolding block. This module acquires a video sequence and

unfolds it to show the internal surface of the pipe on a

planar view, as shown in Figure 3. The unfolding equations

highly depend on the type of camera used, thus a comment

on the hardware architecture is needed. As mentioned in

section I, the system requires a simultaneous view of the

entire internal surface of the pipe surrounding the camera. This

can be achieved by either catadioptric optics or wide-angle

(hemispheric) optics. Catadioptric optics are composed of a

standard lens set and a frontal mirror, they can achieve good

resolution on the side areas, but on the other hand the image

unfolding is complex and highly dependent on mirror shape

(parabolic, ellipsoid, etc. [28]). Catadioptric systems are also

typically less widespread and more expensive than traditional

systems. Hemispheric optics, on the other hand, can have

lower spatial resolution near image borders, but their market

availability is higher and are typically cheaper. Moreover, to

the best of our knowledge, the image unfolding procedure is

the same for almost all the optics currently available, thus

allowing an higher flexibility in system design. The following

sections describe how image unfolding can be achieved using

hemispheric optics.

A. Camera calibration

Figure 4 shows a typical image acquired by a hemispheric

camera. The optic acquires a circular image, however the

imaging sensor has a rectangular shape, resulting in a final

image with black areas on the sides. Hemispheric image

unfolding requires the knowledge of some basic image prop-

erties, such as the center of the circular region (which not

necessarily coincides with the image center) and its radius. The

process of camera calibration aims at identifying the required

parameters.

In order to calibrate the camera, we require that a uniform,

white, bright area is observed, so that the circular region

can be segmented from the side black patches. An image

thresholding is then performed, in order to transform a single-

channel acquired image I in a binary image B defined as:

B(x, y) =

{

1 if I(x, y) ≥ t

0 if I(x, y) < t
(1)
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Fig. 3. The process of pipe unfolding.

Fig. 4. Image acquired by a hemispheric camera inside a pipe whose internal
surface has been covered by a checkerboard test pattern.

where t is a threshold, defined as t = (minx,y I(x, y) +
maxx,y I(x, y))/2. The image center (xc, yc) can now be

defined as the mean position of pixels set to 1 in the binary

image:

xc =
∑

x

∑

y

xB(x, y)/
∑

x

∑

y

B(x, y)

yc =
∑

x

∑

y

yB(x, y)/
∑

x

∑

y

B(x, y).
(2)

The radius R is defined as the minimum distance of a black

pixel from the center:

R = min
(x,y)|B(x,y)=0

√

(x− xc)2 + (y − yc)2. (3)

B. Unfolding

Here we assume that the camera is placed at the center of

the pipe, the off-center case is described in the next subsection.

Given an image I acquired by a hemispheric camera and the

desired unfolded image U , the unfolding procedure requires

the knowledge of the function f : (x′, y′) ∈ I 7→ (x, y) ∈ U .

Actual unfolding however uses f−1 : U 7→ I since it allows

to find a (possibly interpolated) value for each pixel of the

unfolded image. The mapping can be split in three main steps:

• map pixel coordinates in the unfolded image to cylindri-

cal coordinates representing points on the pipe surface;

• convert cylindrical coordinates to spherical coordinates

centered on the hemispheric optics;

• map spherical coordinates to pixel coordinates in the

hemispheric image.

Fig. 5. The unfolded image U , the hemispheric image I and the correspon-
dence between cylindrical and polar reference systems.

The reference systems are shown in Figure 5. Here, (θ, z)
are the cylindrical coordinates, while (θ, ϕ) are the spherical

ones. Without loss of generality, the cylindrical radius is

arbitrarily set to 1. In the spherical system, the distance

from the origin is ignored, since (θ, ϕ) alone are sufficient

to uniquely define a point on the pipe surface.

As a first step, cylindrical coordinates (θ, z) must be defined

starting from the pixel coordinates (x, y) in the unfolded image

Uw×h. The azimuth angle θ is obtained by rescaling the x
coordinate, from the range [0, w] to [0, 2π]:

θ =
2πx

w
. (4)

To define the coordinate z, we assume that the region depicted

in U lies between two boundary elevation angles ϕmin and

ϕmax, such that 0 ≤ ϕmin < ϕmax < π/2, and thus:

z = tanϕmin +
y

h
(tanϕmax − tanϕmin). (5)

Moving from the cylindrical system to the spherical one is

straightforward, since they share the same azimuth value θ,

and the elevation angle is defined as:

ϕ = arctan z. (6)

For the final step, let us consider the polar coordinate

system in the hemispheric image, as shown in Figure 5.

Here, the azimuth angle θ is the same of the spherical and

cylindrical systems, while the definition of ρ ∈ [0, 1] depends

on the camera architecture. In the vast majority of hemispheric

cameras, there is a linear correspondence between ρ and

ϕ, however it is possible that some optics acquire distorted
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images to give higher resolution to specific image regions.

Assuming that the linear correspondence hypothesis holds, it

follows that:

ρ = 1−
2ϕ

π
. (7)

The polar coordinates (θ, ρ) can be transformed to Cartesian

coordinates in the [−1, 1]× [−1, 1] range:

u = ρ cos θ

v = ρ sin θ
(8)

which can be converted to real pixel coordinates:

x′ = uR+ xc

y′ = vR+ yc
(9)

where R, xc, yc are the parameters obtained by camera cali-

bration with equations (2) and (3).

C. Off-center case

The equations given in section III-B work for the ideal

case of a camera placed at the center of the pipe. In practical

applications, this requirement could not be satisfied, especially

if the pipe is partially filled with liquid. We thus provide

corrective equations to compensate for the off-center displace-

ment of the camera, which give the true (θr, ϕr) camera

spherical coordinates to observe the same point that would

be observed by an ideal camera, placed at pipe center, at

coordinates (θi, ϕi). The equations are defined as:

θr = arctan

(

A sinβ − sin θi
A cosβ − cos θi

)

(10)

ϕr = arctan

(

tanϕi

sin(β − θr)

sin(β − θi)

)

. (11)

Full proof and definition for A and β are given in Appendix.

The unfolding procedure in the off-center case is thus

computed by the following steps:

1) Use eq. (4)–(6) to get the ideal spherical coordinates

(θi, ϕi);
2) Use eq. (10), (11) to get the real spherical coordinates

(θr, ϕr);
3) Use eq. (7)–(9) to get the pixel coordinates (x′, y′).

IV. MOSAICKING

The second module of the proposed system is the image

mosaicking block. It acquires the unfolded video frames com-

ing from the previous module and provides a comprehensive

planar view of the whole internal surface of the pipe, as shown

in Figure 6. Mosaicking can be considered a main prerequisite

of many systems dealing with the automatic analysis of planar

video sequences. In fact, on one side, it allows us to obtain

a single image representing the entire area of interest, thus

facilitating the application of proper analysis algorithms. On

the other side, the use of a mosaic prevents multiple processing

of overlapping areas in adjacent frames.

In this paper, the implementation of the mosaicking is based

on the architecture presented in [29]. The following sections

describe how unfolded images can be used to build the mosaic.

Fig. 6. A mosaic of the internal surface of a pipe. The dashed rectangle
highlights one of the unfolded images used to build the mosaic.

Fig. 7. Mosaic for the same sequence of Figure 6, created with Microsoft
Image Composite Editor.

A. Feature extraction and matching

Without loss of generality, let Mt be the mosaic built up to

time t, and let Ut+1 represent the next image, at time t + 1,

that must be added to it. The main stages to build the new

mosaic, Mt ∪ Ut+1, are the feature extraction and matching

processes. Notice that initially the mosaic is composed of the

first unfolded image acquired at time t = 1, i.e., M1 ≡ U1.

During the first step, a set of local image features (i.e.

keypoints) is extracted from both Mt and Ut+1. The set

provides a limited collection of well-localised anchor points,

which can be consistently identified even in presence of

illumination changes or noise. In the second step, the keypoints

are used to compute the overlapping region between Mt and

Ut+1. The latter is a crucial aspect for mosaicking process,

since only images with a certain degree of overlapping can be

stitched together to form a mosaic.

Following the results presented in [30], the proposed mo-

saicking approach uses the SURF [31] algorithm to extract the

features and the Brute Force Matcher (BFM) algorithm [32]

to perform the matching process. Formally, the two sets

of features extracted from Mt and Ut+1 are defined as

XMt
= {α1, . . . , αh} and XUt+1

= {β1, . . . , βs}, where

h, s ∈ N. The BFM algorithm generates two sub-sets X̂Mt
=

{αh1
, . . . , αhm

} ⊆ XMt
and X̂Ut+1

= {βs1 , . . . , βsm} ⊆
XUt+1

, where for each k ∈ {h1, . . . , hm} a single j ∈
{s1, . . . , sm} exists such that αk matches βj . The two sub-
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sets have the same cardinality.

Feature matching performance could be degraded by visu-

ally uniform surfaces, where no anchor points can be robustly

detected. In order to mitigate this effect, a contrast-enhancing

preprocessing step is applied. It works by mapping the inten-

sity values of each image to new values such that, by default,

1% of the data is saturated at low and high intensities of

the input data (inspired by MATLAB function imadjust).

Moreover, the SURF feature detector has a tunable parameter

(the Hessian threshold) which controls the sensitivity of feature

detection process. This parameter is dynamically adapted so

that the number of detected features is always more than 200

and less than 400. Despite the preprocessing being just a

heuristic (no features can be detected if the pipe surface is

perfectly uniform), it worked extremely well with all the real

pipes it was tested on, even if the pipe was never used before

such as the one shown in Figure 6 (before the insertion of

debris).

B. Homography and stitching

Once the corresponding features X̂Mt
and X̂Ut+1

are com-

puted, the mosaicking approach evaluates the geometrical

transformation by which the features of the current image

Ut+1 are fitted with those of the present mosaic, Mt, within

the reference system of the latter. The transformation is

subsequently applied to each pixel of the image to stitch it

over the mosaic. The standard practice to perform this task is

through a homographic matrix H whose elements are defined

as follows [29], [30]:

H =





Ra Rb Tx

Rc Rd Ty

Wa Wb 1



 (12)

where HR =

[

Ra Rb

Rc Rd

]

is the Rotation Matrix, MT =
[

Tx Ty

]T
is the Translation Vector, and MW =

[

Wa Wb

]

is the Warping Vector. However, in the proposed case, the

warping vector is null, since unwarping has already been

performed by the image unfolding module. Moreover, in

section I, we assumed that the camera optical axis coincides

with the pipe central axis, thus no rotations are expected. The

problem is thus reduced to the estimation of the translation

part only, where Ty is due to the camera moving along the

pipe and Tx is due to camera roll, if present.

The problem can theoretically be solved by finding just one

correspondence between X̂Mt
and X̂Ut+1

, however the results

could be unreliable because of noise or matching errors. For

this reason, after the feature matching process, a step to distin-

guish the inlier points (i.e., keypoints correctly matched) from

the outlier ones (i.e., keypoints wrongly matched) is necessary.

The RANSAC algorithm is one of the most used methods for

distinguishing these points, it provides robust estimations even

with a high number of outliers [29], [30]. Once the outliers

are removed, the translation vector is estimated as the mean

of all the translations between matching features, and a new

mosaic Mt+1 is obtained.

The entire mosaicking is thus explicitly tuned for the special

case of pipe internals, especially because of the constraints

on the expected motion. As a proof of the goodness of the

proposed approach, compare the results from the proposed

system (Figure 6) with one obtained with Microsoft Image

Composite Editor (Figure 7), a state-of-the-art general-purpose

mosaicking software based on DAISY image features [33]

and Interactive Digital Photomontage algorithm [34]. Despite

ICE was fed with several hints on the nature of the mosaic

(planar motion, relative image positions, estimated overlap)

the absence of specific constraints led to an incorrect result.

V. ANOMALY DETECTION

Explicit defect recognition is a complex task, because of

the large number of possible defects and their wide intra-

class variance. In the proposed work, rather than explicitly

classifying image regions as defects, we adopt an anomaly

detection approach: image regions are given an anomaly score

based on their dissimilarity from surrounding areas, thus

highlighting the parts which do not look like the “regular”

pipe internal surface.

Fig. 8. Mosaic images are divided in stripes along the y axis. Anomaly
detection is performed independently on each stripe by cutting it in patches
where the LBP feature descriptor is computed.

Anomaly detection is thus based on visual similarity. Within

a pipe section, no similarity is expected between different

radial sectors (e.g. the top surface will probably be very

different from the bottom surface, where water flows). Mosaic

images are thus divided in stripes along the direction of the

pipe symmetry axis, and each stripe is analyzed independently

from the other ones.

In order to measure visual similarity, each stripe is cut in

patches as shown in Figure 8, and on each patch a Local

Binary Pattern (LBP) texture feature is computed [35]. LBP are

visual features that describe the appearance of an image patch

based on local intensity differences, and have been widely

adopted in many application fields [36], [37].

The proposed approach to automatically detect image

patches with anomalous LBP descriptors is inspired by one-

class Support Vector Machines (SVM) theory [38] and it is

a variant of the method described in [39], [40]. Let X =
{x1, . . . , xn} be a set of n LBP descriptors, so that each

xi ∈ R
m is a vector with pre-defined, fixed size. We define a

kernel k such that:

k(xi, xj) = Φ(xi) · Φ(xj) (13)
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where Φ : X 7→ H is a function mapping the descriptors to a

new feature space H. According to kernel methods theory,

there is no need to explicitly know Φ, as any function k
satisfying the Mercer’s theorem is a dot product in some

feature space [41]. We adopted the popular Radial Basis

Function kernel, defined as:

k(xi, xj) = exp

(

‖xi − xj‖
2

2σ2

)

(14)

which is a normalized kernel since k(x, x) = 1 ∀x ∈ X . It

follows that ‖Φ(x)‖2 = Φ(x) · Φ(x) = k(x, x) = 1, thus all

the vectors Φ(xi) lie on the surface of an hypersphere with

radius 1 in H.

Fig. 9. The angle between an element Φ(xo) and the normalized data mean
µ̂ can be interpreted as an anomaly measure.

One-class SVMs identify outliers by proving that the “nor-

mal” data all lie on a hyperspherical cap in H, and use proper

optimization techniques to identify the best hyperplane that

separates this cap from the rest of the hypersphere where

anomalous data (the outliers) reside [38]. However, this relies

on a tunable parameter (e.g. ν in [38]) dependent on the

number of expected outliers, which is generally unknown.

We thus propose a technique to automatically identify outliers

without knowing their amount. Let µ be the mean of all the

data projected in H:

µ =
1

n

n
∑

i=1

Φ(xi) (15)

and µ̂ be the mean normalized to unitary length:

µ̂ =
µ

‖µ‖
=

∑n

i=1 Φ(xi)

‖
∑n

i=1 Φ(xi)‖
. (16)

Given a generic candidate outlier Φ(xo), we can define its dot

product with µ̂ as:

µ̂ · Φ(xo) =

∑n

i=1 Φ(xi) · Φ(xo)

‖
∑n

i=1 Φ(xi)‖
(17)

=

∑n

i=1 k(xi, xo)
√

∑n

i=1

∑n

j=1 k(xi, xo)
. (18)

The dot product of two unitary vectors is the cosine of the

angle between the two vectors, thus we can compute the angle

θo between a generic element Φ(xo) and the normalized data

mean µ̂ as:

θo = arccos





∑n

i=1 k(xi, xo)
√

∑n

i=1

∑n

j=1 k(xi, xo)



 . (19)

In their seminal paper on one-class ν-SVM [38], Schölkopf

et al. prove that the non-outlier data reside in a spherical cap

whose center converges to µ̂ as ν → 1. It is thus safe to assume

that the non-outlier data are close to each other around the data

mean, thus having a small θo, while outliers will lie far from it.

In other words, the angle θo can be interpreted as a measure

of the anomaly degree of a given element (Figure 9). This

consideration motivates the following procedure to identify

outliers.

0 50 100 150 200 250 300
x

s(i)

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

s
(i
)

Sorted  angles 

T

Fig. 10. Plot of Θs and the graphical identification of the anomaly threshold
θT .

Let s be a permutation of [1 . . . n] such that Θs =
{θs(1) . . . θs(n)} is the list of all the angles θ computed with

eq. (19) and sorted by ascending values. We expect that

values in Θs will initially have a slow, constant increasing

rate, corresponding to non-outlier data which all lie close to

the data mean, while the last elements will have an abrupt

increment due to outliers lying far from the majority of the

data. This motivates a graphical way to identify the point

separating the two trends, defined as the farthest point in the

plot of Θs from the line merging the first and last element,

as shown in Figure 10. This way is possible to automatically

define a threshold value θT such that any element xi whose

corresponding θi is larger than θT is considered an outlier.

This technique does not require any initial estimation on the

amount of expected outliers, in contrast with traditional one-

class SVM classification tools.

By applying the proposed approach to LBP descriptors of

image patches within each image stripe, visually-anomalous

areas can be detected, and an anomaly score can be assigned

to each portion of the image. An anomaly map can thus be

built, helping the human operator to focus only on potentially

relevant areas and thus reducing the inspection time.

VI. EXPERIMENTAL RESULTS

In order to evaluate the performances of the proposed

system, we used an Axis M3027-PVE hemispheric color
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camera. The image resolution is 2592x1944 pixel (including

the lateral black regions, as in Figure 4) at 12 frames per

second. The camera was mounted in a waterproof enclosure,

also containing lights and a battery pack providing the required

power via PoE interface. Acquired video sequences are stored

on an internal microSD card, thus the entire system is totally

autonomous.

The calibration procedure found the circular image center

at position (1261, 960) with a radius R = 1041 pixels. It is

worth noting that the computed center is 37 pixels far from

the geometric one at (1296, 972), thus justifying the need

for a calibration routine. The angular boundaries described

in section III are set to ϕmin = 0.124 rad, ϕmax = π/6
rad. In particular, ϕmin has been chosen in order to avoid the

unfolding procedure to process non-existent image areas: the

camera in fact cuts off a small portion of the top and bottom

parts of the circular image, as it can be seen in Figure 4.

The unfolded image size, used in equations (4) and (5),

is in principle arbitrary. However, the maximum sensible

width is w = 2πR′ pixels, where R′ is the image radius

at ϕmin elevation, computed as R′ = (1 − 2ϕmin/π)R.

Larger values would be useless, since unfolded images would

have a resolution higher than any portion of the hemispheric

image. To compute the height, we consider the unitary cylinder

shown in Figure 5: here, the height of the unfolded area

is tan(ϕmax) − tan(ϕmin), while the cylinder perimeter is

2π. This allows to find the correct image ratio and thus

image height is set as h = w tan(ϕmax)−tan(ϕmin)
2π . According

to these considerations, the unfolded image size is set to

6024x434 pixels. In the following experiments, however, we

scaled the unfolded images by a factor of 2 in both width

and height to improve the processing speed: experimental

results showed that such a rescaling factor does not lead to

noticeable performance degradation, while reducing the off-

line processing time by 4 times.

In the mosaic building phase, the feature detector is au-

tomatically tuned to extract at least 200 features. Empirical

experiments showed that 200 features are enough to achieve

a correct alignment. Finally, in anomaly detection, we fixed

the cell size where to compute LBP features to 16x16, thus

obtaining 188 independent stripes.

A. Laboratory results with a test pipe

Figure 11 shows some of the laboratory results obtained on

a short pipe segment, with radius 20 cm and length 500 cm,

which was manually filled with different types of waste. The

actual tests considered 10 different scenarios, with the original

video lengths varying from 32 s to 63 s. The left column shows

the obtained mosaics, each one is 3012 pixel wide and roughly

5000 pixel high (exact mosaic height depends on the start and

stop positions where the sequence has been acquired). The

mosaics do not have stitching glitches and correctly depict

the pipe internals. The right column shows the anomaly maps

after a median filtering, where blue represents normality, while

other colors show different degrees of anomaly, with bright

yellow being the most anomalous areas. As it can be seen, the

areas with waste were correctly detected as different from the

remaining pipe appearance. In order to give a quantitative mea-

sure of the results, ground truth masks were manually created

for each mosaic, highlighting the areas with waste. This mask

was compared with the detected anomalous areas in order to

compute the precision and recall of the achieved results. The

average precision over the 10 test sequences is 0.54, while

the average recall is 0.93. The proposed algorithm is thus

efficient in detecting the real image anomalies, although it also

identifies some false positives. This behavior is acceptable if

we consider that the system aim is not to perform a fully

automated processing, but to highlight potentially relevant

image areas to a human operator for further evaluation and

classification.

B. Results in a real waterworks pipeline

The system was tested also on real-world scenarios, in par-

ticular regarding three different public waterworks pipelines,

here called pipeline 1, 2, and 3, since full details as the exact

location or the public entity in charge of them cannot be

disclosed. Table I shows detailed data about the pipelines.

All scenarios involved concrete pipes with large diameters,

from 2325 to 3100 mm, partially filled with water. Inspection

of course can be applied only to the off-water internal pipe

surface.

In order to use the system in partially filled pipelines, the

hardware structure (camera, batteries, lights) was mounted

over a floating platform. The platform is moved by the water

flow and the speed is controlled using a retention cable. The

water flow naturally keeps the camera optical axis parallel with

the pipe axis, however the platform can oscillate sideways.

In order to avoid this horizontal drift, the platform is kept

roughly at the center of the pipe using side spacers. The

vertical offset respect to the pipe center, due to water filling the

pipes, is compensated using the off-center unfolding equations

described in section III-C by settings camera offset (xc, yc) to

(0,−0.2), (0, 0.2) and (0, 0.2) for pipelines 1, 2, and 3 re-

spectively. With the described setup, several video sequences,

listed in table II, were acquired, covering segments from 78 to

1134 meters long. In order to test the system under different

conditions, sequences have been acquired at different speeds,

for example sequence 3.2 covers only 684 meters, much less

than sequence 3.1 (1134 meters) despite the temporal length

is almost doubled.

TABLE I
INSPECTED WATERWORKS PIPELINES

Pipeline Material Diameter Fill

1 Concrete 2600 mm Water 60%
2 Concrete 3100 mm Water 40%
3 Concrete 2325 mm Water 40%

The acquired video sequences were processed to create

mosaics such as the one shown in Figure 12. In order to

limit the memory footprint of the system, each mosaic has a

maximum height of 10,000 pixels, thus each sequence is split

in several mosaics. In total, 50 mosaics were built, each one

with size 2847 × 10000 pixels, depicting roughly 50 meters

of pipeline each. The mosaicking procedure never failed since
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Fig. 11. Experimental results with pebbles (first row), leaves (second row), and cigarette butts (third row). Left column: mosaics of the pipe internal surface.
Right column: anomaly maps, yellow denotes detected anomalies.

Fig. 12. One of the mosaics obtained from sequence 1.1. Unfolding is done in order to keep the visible pipe surface in the central part of the mosaic. Vertical
darker bands are due to a defective light; they do not have an excessive impact on the system thanks to LBP texture features being invariant for intensity
changes.

TABLE II
ACQUIRED VIDEO SEQUENCES

Sequence Pipeline Length (time) Length (meters)

1.1 1 32m 24s 405
2.1 2 07m 34s 78.5
2.2 2 07m 17s 78.9
3.1 3 1h 12m 08s 1134
3.2 3 2h 22m 25s 683.9
3.3 3 19m 46s 327.6

the pipe surface has enough visual features to guarantee an

optimal feature extraction and matching. The mosaics were

then processed by the anomaly detection module, in order to

identify visually anomalous areas, such as the one shown in

Figure 13. There, an anomalous leak of external water into the

pipe left a visually evident white stripe on the pipe surface.

The Figure shows how the system clearly detected the leak as

a visual anomaly, thus allowing the human operator to perform

further investigation.

Anomaly detection performance was measured by compar-

ing the results with the output of a traditional human-based

visual inspection. Rather than creating pixel-wise ground truth

masks as in section VI-A we just filtered out the anomaly areas

smaller than a given threshold (here fixed to 1000 pixels),

and counted the remaining ones. The system detected in total

121 anomalies over all the test sequences, while the human

operator identified 17 real anomalies, see full details reported

in table III. The overall recall of the system is 0.88, meaning
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Fig. 13. Left: visual appearance of an anomalous leak, as seen from the camera. Right: unfolded view, with highlighted anomalous areas detected by the
system. The actual leak, covered by the anomaly map, is shown in the red box.

TABLE III
SYSTEM PERFORMANCES. SECOND AND THIRD COLUMNS REPORT THE

NUMBER OF ANOMALIES DETECTED BY A HUMAN OPERATOR AND THE

PROPOSED SYSTEM RESPECTIVELY. THE REMAINING COLUMNS SHOW THE

NUMBER OF TRUE POSITIVES, FALSE NEGATIVES AND FALSE POSITIVES,
WITH THE CORRESPONDING PRECISION (TP/(TP+FP)) AND RECALL

(TP/(TP+FN)).

Seq. Real Sys TP FN FP Prec Rec

1.1 3 19 3 0 16 0.15 1
2.1 1 5 1 0 4 0.20 1
2.2 0 3 0 0 3 0 n.a.
3.1 6 49 5 1 44 0.10 0.83
3.2 4 28 3 1 25 0.10 0.75
3.3 3 17 3 0 14 0.17 1

Total 17 121 15 2 106 0.12 0.88

that the majority of real anomalies were correctly detected.

The precision is 0.12, meaning that several detections were

actually false positives. This result is worse than the one

obtained in laboratory tests, mostly because a brand new pipe

has a much higher textural uniformity than a real one, and

thus detecting anomalies is easier. The high recall is anyway

a positive result, since it implies that the human operator can

focus only on the detected areas to search for real anomalies.

Considering that, in each analyzed sequence, the total area of

detected anomalies is approximately 1% of the total mosaics

area, the human effort is greatly reduced. In fact a second

human operator, focusing only on the detected areas, managed

to get the same results of the first operator in 1/10 of the time.

Regarding the computational requirements, the system was

implemented in C++ with OpenCV 3.1 libraries and tested on

a PC mounting an Intel i7-4790 CPU @ 3.60 GHz and 8 GB

RAM. On average, the process of image acquisition, unfolding

and mosaicking required 94 ms per frame. Considering that the

camera acquires at 12 fps, this means that the video processing

up to mosaicking can almost be done in real-time, provided

that a computational unit is embedded in the system. Off-line

anomaly detection required on average 19.9 s to process a

2847× 10000 mosaic with 16× 16 LBP cell size.

VII. CONCLUSIONS

In this work, we presented a novel technique to support

human operators in the task of visual pipeline inspection. The

system relies on video sequences acquired by a hemispheric

camera in order to build unfolded views of the pipe’s internal

surface. The views are then processed with a kernel-based

anomaly detector to highlight areas which are visually different

from the surroundings, and thus possibly denoting a defect that

should be reported to the human operator. The achieved results

are promising and show that the presence of anomalies inside

the pipe can be reliably detected. As a future development, we

plan to augment the system capabilities with laser and sonar

scanners. The new sensors could help both in detecting the

true position of the camera inside the pipe, thus improving

the visual processing, and in finding shape or size anomalies,

e.g. due to corrosion, which could be not visually detectable.
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APPENDIX

A. Derivation of eqs. 10 and 11

Fig. 14. Pipe section showing the pipe center at (0, 0) and the camera at
(xc, yc). The goal is to find the real azimuth angle θr given the ideal angle
θi to observe point P .

Figure 14 shows a pipe section, where the pipe center is

located at the origin and camera is positioned at (xc, yc). The

pipe radius can be arbitrarily assumed to be B = 1. The cam-

era displacement is defined as A =
√

x2
c + y2c . We also define

β = θ1+α3 = arctan(yc/xc). Basic geometric considerations

allow to find α2 = π−β+θr and α1 = π−α2−α3 = θi−θr.

According to the law of sines, we have:

A

sinα1
=

1

sinα2
(20)
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and thus:

A =
sinα1

sinα2
(21)

=
sin(θi − θr)

sin(β − θr)
(22)

=
sin θi cos θr − cos θi sin θr
sinβ cos θr − cosβ sin θr

. (23)

By rearranging terms we get

sin θr(A cosβ − cos θi) = cos θr(A sinβ − sin θi) (24)

and thus

tan θr =
A sinβ − sin θi
A cosβ − cos θi

(25)

which leads to eq. (10).

Fig. 15. Same configuration of Figure 14, but highlighting the distance H of
point P from the camera plane. The goal is to find the real elevation angle
ϕr given the ideal angle ϕi.

In order to find the equation linking ideal and real elevation

angles, let us consider Figure 15. By using again the law of

sines we get:

B

C
=

sinα2

sinα3
(26)

=
sin(β − θr)

sin(β − θi)
. (27)

Basic trigonometric considerations give that:

tanϕr =
H

C
= tanϕi

B

C
(28)

= tanϕi

sin(β − θr)

sin(β − θi)
(29)

which leads to eq. (11).
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