153 research outputs found

    Estimating the concentration of physico chemical parameters in hydroelectric power plant reservoir

    Get PDF
    The United Nations Educational, Scientific and Cultural Organization (UNESCO) defines the amazon region and adjacent areas, such as the Pantanal, as world heritage territories, since they possess unique flora and fauna and great biodiversity. Unfortunately, these regions have increasingly been suffering from anthropogenic impacts. One of the main anthropogenic impacts in the last decades has been the construction of hydroelectric power plants. As a result, dramatic altering of these ecosystems has been observed, including changes in water levels, decreased oxygenation and loss of downstream organic matter, with consequent intense land use and population influxes after the filling and operation of these reservoirs. This, in turn, leads to extreme loss of biodiversity in these areas, due to the large-scale deforestation. The fishing industry in place before construction of dams and reservoirs, for example, has become much more intense, attracting large populations in search of work, employment and income. Environmental monitoring is fundamental for reservoir management, and several studies around the world have been performed in order to evaluate the water quality of these ecosystems. The Brazilian Amazon, in particular, goes through well defined annual hydrological cycles, which are very importante since their study aids in monitoring anthropogenic environmental impacts and can lead to policy and decision making with regard to environmental management of this area. The water quality of amazon reservoirs is greatly influenced by this defined hydrological cycle, which, in turn, causes variations of microbiological, physical and chemical characteristics. Eutrophication, one of the main processes leading to water deterioration in lentic environments, is mostly caused by anthropogenic activities, such as the releases of industrial and domestic effluents into water bodies. Physico-chemical water parameters typically related to eutrophication are, among others, chlorophyll-a levels, transparency and total suspended solids, which can, thus, be used to assess the eutrophic state of water bodies. Usually, these parameters must be investigated by going out to the field and manually measuring water transparency with the use of a Secchi disk, and taking water samples to the laboratory in order to obtain chlorophyll-a and total suspended solid concentrations. These processes are time- consuming and require trained personnel. However, we have proposed other techniques to environmental monitoring studies which do not require fieldwork, such as remote sensing and computational intelligence. Simulations in different reservoirs were performed to determine a relationship between these physico-chemical parameters and the spectral response. Based on the in situ measurements, empirical models were established to relate the reflectance of the reservoir measured by the satellites. The images were calibrated and corrected atmospherically. Statistical analysis using error estimation was used to evaluate the most accurate methodology. The Neural Networks were trained by hydrological cycle, and were useful to estimate the physicalchemical parameters of the water from the reflectance of visible bands and NIR of satellite images, with better results for the period with few clouds in the regions analyzed. The present study shows the application of wavelet neural network to estimate water quality parameters using concentration of the water samples collected in the Amazon reservoir and Cefni reservoir, UK. Sattelite imagens from Landsats and Sentinel-2 were used to train the ANN by hydrological cycle. The trained ANNs demonstrated good results between observed and estimated after Atmospheric corrections in satellites images. The ANNs showed in the results are useful to estimate these concentrations using remote sensing and wavelet transform for image processing. Therefore, the techniques proposed and applied in the present study are noteworthy since they can aid in evaluating important physico-chemical parameters, which, in turn, allows for identification of possible anthropogenic impacts, being relevant in environmental management and policy decision-making processes. The tests results showed that the predicted values have good accurate. Improving efficiency to monitor water quality parameters and confirm the reliability and accuracy of the approaches proposed for monitoring water reservoirs. This thesis contributes to the evaluation of the accuracy of different methods in the estimation of physical-chemical parameters, from satellite images and artificial neural networks. For future work, the accuracy of the results can be improved by adding more satellite images and testing new neural networks with applications in new water reservoirs

    A Hybrid intelligent system for diagnosing and solving financial problems

    Get PDF
    Tese (doutorado) - Universidade Federal de Santa Catarina, Centro Tecnologico. Programa de Pós-Graduação em Engenharia de Produção2012-10-16T09:55:39

    Understanding the Role of Dynamics in Brain Networks: Methods, Theory and Application

    Get PDF
    The brain is inherently a dynamical system whose networks interact at multiple spatial and temporal scales. Understanding the functional role of these dynamic interactions is a fundamental question in neuroscience. In this research, we approach this question through the development of new methods for characterizing brain dynamics from real data and new theories for linking dynamics to function. We perform our study at two scales: macro (at the level of brain regions) and micro (at the level of individual neurons). In the first part of this dissertation, we develop methods to identify the underlying dynamics at macro-scale that govern brain networks during states of health and disease in humans. First, we establish an optimization framework to actively probe connections in brain networks when the underlying network dynamics are changing over time. Then, we extend this framework to develop a data-driven approach for analyzing neurophysiological recordings without active stimulation, to describe the spatiotemporal structure of neural activity at different timescales. The overall goal is to detect how the dynamics of brain networks may change within and between particular cognitive states. We present the efficacy of this approach in characterizing spatiotemporal motifs of correlated neural activity during the transition from wakefulness to general anesthesia in functional magnetic resonance imaging (fMRI) data. Moreover, we demonstrate how such an approach can be utilized to construct an automatic classifier for detecting different levels of coma in electroencephalogram (EEG) data. In the second part, we study how ongoing function can constraint dynamics at micro-scale in recurrent neural networks, with particular application to sensory systems. Specifically, we develop theoretical conditions in a linear recurrent network in the presence of both disturbance and noise for exact and stable recovery of dynamic sparse stimuli applied to the network. We show how network dynamics can affect the decoding performance in such systems. Moreover, we formulate the problem of efficient encoding of an afferent input and its history in a nonlinear recurrent network. We show that a linear neural network architecture with a thresholding activation function is emergent if we assume that neurons optimize their activity based on a particular cost function. Such an architecture can enable the production of lightweight, history-sensitive encoding schemes

    Double Backpropagation with Applications to Robustness and Saliency Map Interpretability

    Get PDF
    This thesis is concerned with works in connection to double backpropagation, which is a phenomenon that arises when first-order optimization methods are applied to a neural network's loss function, if this contains derivatives. Its connection to robustness and saliency map interpretability is explained

    Advancements in Multi-temporal Remote Sensing Data Analysis Techniques for Precision Agriculture

    Get PDF
    L'abstract è presente nell'allegato / the abstract is in the attachmen

    Center for Advanced Space Propulsion Second Annual Technical Symposium Proceedings

    Get PDF
    The proceedings for the Center for Advanced Space Propulsion Second Annual Technical Symposium are divided as follows: Chemical Propulsion, CFD; Space Propulsion; Electric Propulsion; Artificial Intelligence; Low-G Fluid Management; and Rocket Engine Materials

    Sustainable Agriculture and Advances of Remote Sensing (Volume 1)

    Get PDF
    Agriculture, as the main source of alimentation and the most important economic activity globally, is being affected by the impacts of climate change. To maintain and increase our global food system production, to reduce biodiversity loss and preserve our natural ecosystem, new practices and technologies are required. This book focuses on the latest advances in remote sensing technology and agricultural engineering leading to the sustainable agriculture practices. Earth observation data, in situ and proxy-remote sensing data are the main source of information for monitoring and analyzing agriculture activities. Particular attention is given to earth observation satellites and the Internet of Things for data collection, to multispectral and hyperspectral data analysis using machine learning and deep learning, to WebGIS and the Internet of Things for sharing and publishing the results, among others

    Multiphase flow measurement using gamma-based techniques

    Get PDF
    The oil and gas industry need for high performing and low cost multiphase meters is ever more justified given the rapid depletion of conventional oil reserves. This has led oil companies to develop smaller/marginal fields and reservoirs in remote locations and deep offshore, thereby placing great demands for compact and more cost effective soluti8ons of on-line continuous multiphase flow measurement. The pattern recognition approach for clamp-on multiphase measurement employed in this research study provides one means for meeting this need. Cont/d

    Data-efficient deep representation learning

    Get PDF
    Current deep learning methods succeed in many data-intensive applications, but they are still not able to produce robust performance due to the lack of training samples. To investigate how to improve the performance of deep learning paradigms when training samples are limited, data-efficient deep representation learning (DDRL) is proposed in this study. DDRL as a sub area of representation learning mainly addresses the following problem: How can the performance of a deep learning method be maintained when the number of training samples is significantly reduced? This is vital for many applications where collecting data is highly costly, such as medical image analysis. Incorporating a certain kind of prior knowledge into the learning paradigm is key to achieving data efficiency. Deep learning as a sub-area of machine learning can be divided into three parts (locations) in its learning process, namely Data, Optimisation and Model. Integrating prior knowledge into these three locations is expected to bring data efficiency into a learning paradigm, which can dramatically increase the model performance under the condition of limited training data. In this thesis, we aim to develop novel deep learning methods for achieving data-efficient training, each of which integrates a certain kind of prior knowledge into three different locations respectively. We make the following contributions. First, we propose an iterative solution based on deep learning for medical image segmentation tasks, where dynamical systems are integrated into the segmentation labels in order to improve both performance and data efficiency. The proposed method not only shows a superior performance and better data efficiency compared to the state-of-the-art methods, but also has better interpretability and rotational invariance which are desired for medical imagining applications. Second, we propose a novel training framework which adaptively selects more informative samples for training during the optimization process. The adaptive selection or sampling is performed based on a hardness-aware strategy in the latent space constructed by a generative model. We show that the proposed framework outperforms a random sampling method, which demonstrates effectiveness of the proposed framework. Thirdly, we propose a deep neural network model which produces the segmentation maps in a coarse-to-fine manner. The proposed architecture is a sequence of computational blocks containing a number of convolutional layers in which each block provides its successive block with a coarser segmentation map as a reference. Such mechanisms enable us to train the network with limited training samples and produce more interpretable results.Open Acces
    • …
    corecore