Data-efficient deep representation learning

Abstract

Current deep learning methods succeed in many data-intensive applications, but they are still not able to produce robust performance due to the lack of training samples. To investigate how to improve the performance of deep learning paradigms when training samples are limited, data-efficient deep representation learning (DDRL) is proposed in this study. DDRL as a sub area of representation learning mainly addresses the following problem: How can the performance of a deep learning method be maintained when the number of training samples is significantly reduced? This is vital for many applications where collecting data is highly costly, such as medical image analysis. Incorporating a certain kind of prior knowledge into the learning paradigm is key to achieving data efficiency. Deep learning as a sub-area of machine learning can be divided into three parts (locations) in its learning process, namely Data, Optimisation and Model. Integrating prior knowledge into these three locations is expected to bring data efficiency into a learning paradigm, which can dramatically increase the model performance under the condition of limited training data. In this thesis, we aim to develop novel deep learning methods for achieving data-efficient training, each of which integrates a certain kind of prior knowledge into three different locations respectively. We make the following contributions. First, we propose an iterative solution based on deep learning for medical image segmentation tasks, where dynamical systems are integrated into the segmentation labels in order to improve both performance and data efficiency. The proposed method not only shows a superior performance and better data efficiency compared to the state-of-the-art methods, but also has better interpretability and rotational invariance which are desired for medical imagining applications. Second, we propose a novel training framework which adaptively selects more informative samples for training during the optimization process. The adaptive selection or sampling is performed based on a hardness-aware strategy in the latent space constructed by a generative model. We show that the proposed framework outperforms a random sampling method, which demonstrates effectiveness of the proposed framework. Thirdly, we propose a deep neural network model which produces the segmentation maps in a coarse-to-fine manner. The proposed architecture is a sequence of computational blocks containing a number of convolutional layers in which each block provides its successive block with a coarser segmentation map as a reference. Such mechanisms enable us to train the network with limited training samples and produce more interpretable results.Open Acces

    Similar works