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Abstract

Our main purpose in this dissertation is to develop a system to diagnose and

indicate solutions to financial health problems of small and medium firms (SMF).

Although monitoring and adjusting financial problems play a central role in the firm’s

performance, usually SMF face difficulties in these tasks for lacking human

resources and for having incapacity to afford a consultant.

The closest types of systems available in the literature are the bankruptcy

prediction, the credit analysis and the auditing models. Bankruptcy models do not

work for the purpose of financial health evaluation because, rather than looking for

causes and corrections to deviations, they intend to foresee the death or life of the

firm. Credit analysis models are developed to creditors interested only in the safety

of their investments. Auditing systems are limited to ratio analysis with general

comments about the financial condition of a firm. After all, the critical aspect of

offering practical solutions to the firm remains open. There is need for a financial

advisor that helps the manager to make financial decisions that lead to a long-run

profitability and success of the firm.

A study of financial statement analysis shown that there are two different

reasoning processes participating of the solution: inductive and deductive. We

implemented a hybrid intelligent (neuro-fuzzy-symbolic) system to combine the

inductive and deductive reasoning processes. The inductive reasoning was modeled

by the connectionist module while the deduction was implemented through a fuzzy

expert system.



 1 

Introduction
In 1991, the Artificial Intelligence group of the Production Engineering

Department of the Federal University of Santa Catarina started to work on a project

of building intelligent systems capable of helping small and medium firms (SMF) on

their most critical tasks. The relevance of this kind of businesses to the Brazilian

economy can be understood by a report which states that small business activity is

responsible for 40% of the total Brazilian Gross National Product (GMT) [CHER90].

Particularly in the state of Santa Catarina a research done by the Production

Engineering department indicated that financial management and production

planning were considered the most critical areas by the small businesses consulted

[BATA90].

The work has resulted in five graduate thesis and seven doctorate

dissertations related to different aspects of the financial management and the

production planning of firms.

In this broader picture, this dissertation is concerned with the evaluation and

correction of financial problems of SMFs through computational models. This task

requires an adequate modeling and representation of the financial knowledge. The

knowledge modeling has to be accurate without loosing the possibility of being

represented computationally. On the other hand, once the knowledge has been

elucidated, one has to identify an adequate computational model that represents the

different aspects of the problem. Our main purpose is concerned with the last task.

 1.1.  Importance

The overall performance of a firm depends on the balance between liquidity

and profitability. Monitoring financial problems must be a continuous task. Even a

very profitable firm can hide factors that undermine its insolvency. The monitoring

task identifies factors that deviate from the trend in time for making adjustments.

Usually a firm has two alternatives when monitoring and solving problematic

activities: do it by itself or hire a consultant. While the first choice requires human

resources, hiring a consultant can be a solution only if the firm can afford it.

Generally both choices can be a problem to small companies. Besides, even when
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one of these alternatives is available, the solution may be arrived only after a slow

process rendering it to be useless.

One approach for this problem is the development of intelligent systems that

not only analyze financial problems but also suggest solutions. The aggregation of

both tasks involves deductive and intuitive reasoning which justifies the use of more

than one Artificial Intelligence technologies, that is, a hybrid intelligent system. One

type of integration involves Fuzzy Expert Systems and Neural Networks (neuro-fuzzy

systems). The aim is achieve improvements in the implementation of each and

increase the scope of application [MEDS94b].

A bibliographical research revealed that there are three kinds of intelligent

systems dedicated to financial health analysis: bankruptcy prediction (e.g. [LACH91]

and [WILS94]), credit analysis (e.g., [BARK90a]) and auditing (e.g., [BLOC90] and

[MUI90]).

Bankruptcy models do not work for the purpose of financial health evaluation.

Rather than looking for causes and corrections to deviations, they intend to foresee

the death or life of the firm. Credit analysis models are developed to creditors

interested only in the safety of their investments. Auditing systems are limited to ratio

analysis with general comments about the financial condition of a firm. After all, the

critical aspect of offering practical solutions to the firm remains open. There is need

for a financial advisor that helps the manager to make financial decisions that lead to

a long-run profitability and success of the firm.

We propose a hybrid intelligent system that diagnoses and indicates solutions

to financial problems of small firms. The system integrates a Neural Network (during

the diagnostic phase) and a Fuzzy Expert System (during the solution phase).

 1.2.  Organization of the Work

This work is organized in four chapters. Chapters 2 and 3 are related to the

technologies involved in the application of this dissertation. Both chapters bring the

foundations and applications of the technologies used in this work. In Chapter 4 we

focus on the application of hybrid technologies proposed in this work. The

organization is the following:
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Chapter 2 - Hybrid Intelligent Systems

In this chapter we describe the technology of hybrid intelligent systems.

Particularly, we concentrate on the most common form of hybrid systems: the

integration between neuron networks and expert systems. We analyze both

technologies from a historical point of view. We also compare the advantages and

shortcomings of each technology. Finally, we present the definition and architectures

of hybrid intelligent system as well as their application in several areas of

Engineering and Finance.

Chapter 3 - Artificial Intelligence Technologies

In this chapter we discuss the foundations of the Artificial Intelligence

technologies used in the work. The goal here is to establish the theoretical grounds

for the neural network architectures implemented in the diagnosis phase of the

system (RBF and Backpropagation) and for the fuzzy expert system implemented in

the financial decision module. First, we address the foundations of classical expert

systems, Fuzzy Set Theory and Fuzzy Logic related to the deductive module of the

application. Then we discuss both neural models, RBF and Backpropagation, which

appear as alternatives to the inductive module in our application.

Chapter 4 - Application: Financial Health of Small Retail Firms

In this chapter we discuss the definition and relevance of the problem in the

field of Finance. We explain the basis for the choice and generation of the financial

variables involved in the problem. The discussion is based on the findings of Martins

about the more suitable tools in Finance to diagnose and indicate solutions to

financial problems [MART96]. After analyzing the problem under a financial point of

view, we discuss the architecture and component parts of the system, concluding

with a complete example of application, from the ratio analysis (diagnosis) to the

indication of actions to be taken by the firm regarding the problems identified.

Chapter 5 - Conclusions and Future Work

We believe that this dissertation is an opening field for future work regarding

both intelligent financial systems and hybrid techniques. In the last Chapter we

discuss several further developments to this work as well as its main conclusions

regarding computational financial consulting and hybrid system implementation.



 2 

Hybrid Systems

 2.1.  Introduction

Artificial Intelligence (AI) began in 1956 with a historical conference in

Dartmouth, New Hampshire. John McCarthy (who later invented LISP) defined AI as

the field of Computer Science dedicated to the study and modeling of human

intelligence. The researchers at the Dartmouth Conference (Marvin Minsky, Allen

Newell, Herbert Simon, among others) believed that intelligent behavior should be

modeled at functional rather than physiological level. This paradigm is called the

macro view of intelligence according to which the human brain can be thought of a

black box whose interior is not relevant to its intelligent behavior. Philosophers,

logicians, decision analysts and psychologists are among the researchers of this

paradigm. The main concern is the study of the thinking process and the mechanism

of deduction of hypothesis from confirmed evidences. Expert Systems are the most

significant technique developed under the macro view of intelligence.

At the same time that the Dartmouth delegates were developing the grounds

to the macro view, another group of researchers was following a different approach

to model intelligence. Neurologists and physicians among others analyzed

intelligence according to a micro view. They investigated intelligent behavior by

describing chemical and physical events taking place at the brain during the thinking

process. Rather than describing intelligence according to a functional view, they

modeled intelligent behavior by studying it at the neuro-physiological level. The main

concerns were to understand the brain operations, how information is stored and

transferred, how humans remember or forget facts and mainly, how humans learn

[ZAHE93]. Neural Networks are the principal technique developed according to this

paradigm.

During almost thirty years these two distinct paradigms were developed

independently or, sometimes, competitively (e.g., [MINS69]). The remaining question

is: which approach should be chosen? Like many others, Marvin Minsky, an AI

pioneer, believes that both paradigms should be applied. While symbolic models

have indicated how to make machines solve problems by resembling



reasoning, neural models have enlightened the role of brain cells in the

process. The problem is that both models are very far from the complete

understanding of the thinking process and the neural system. The two approaches

form the extremes in our gap of knowledge [MINS88]. The solution seems to lie in

reducing this gap by integrating both visions of intelligence modeling.

If the aim is to model natural intelligence, by choosing either symbolic AI or

neural networks, one becomes a reductionist. Callataÿ has described reductionists

as scientists with a common background of knowledge and whose findings are bricks

to a robust science. Reductionists face difficulties in observing the aspects of a

problem that are outside their domain. Natural intelligence is a result of a such

complex system that it is probably a misconception to assume that it can be

described by any unified theory [CALL92].

In the last years, researchers from both views decided to take a different

direction. New models have been proposed based not on a single paradigm but on

the combination of both. While symbolic systems indicated how to implement

deductive reasoning, connectionist models showed the role of neural cells in other

aspects of intelligent behavior. The main goal became to combine both paradigms in

search of a more accurate model of intelligence.

In this work, we assume the general and new concept of Artificial Intelligence

rather than the one adopted by the Dartmouth Conference. In the old view, although

defined as the field of Computer Science dedicated to model human intelligence, AI

was associated exclusively to the symbolic approach. According to the modern

definition, any method that models some aspect of human intelligence is considered

an AI tool (e.g., neural systems, evolutionary computation, genetic algorithms, etc.).

 2.2.  Definition and Hybrid System Architectures

 2.2.1.   Definition

Intelligent Hybrid Systems are defined as models and computational

programs based on more than one Artificial Intelligence technology. In Figure 2-1 we

represent a schematic view of the integration of some AI techniques that can be

combined in hybrid architectures. Different aspects of intelligent behavior can be

modeled. Machine Learning and Neural Networks model intuitive and inductive

reasoning; Evolutionary Systems model the adaptive behavior; Fuzzy and traditional

Expert Systems model deductive reasoning; and Case Based Reasoning combine

deduction and experience. The input data in a hybrid system may be treated for
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some procedural preprocessing method and then passed to the system modules.

These modules interact during the solving process or prepare the data to future

processing by other module. The result can be sent to another procedural

processing to prepare the system output. Depending upon the problem complexity,

this output may be entrance to another hybrid system which works in a similar way.

Figure 2-1: Components of Intelligent Hybrid Systems (adapted from [SCHW91]
e [KAND92b]).

In this dissertation, the integration model involves the combination of a fuzzy

expert system with a neural network module. In the following section, we discuss the

comparisons between these two AI technologies and the benefits of their integration.

 2.2.2.   Expert Systems x Neural Networks

Hybrid Systems integrating neural and symbolic models (neuro-symbolic

systems) aim two goals: conciliate the advantages of both techniques in an

integrated model more powerful than its parts alone; and to overcome the

deficiencies of one approach with the strengths of the other. Hence, one has to know

the advantages and disadvantages of each technique before integrating them.  Table

2-1 depicts some advantages of each technology expected to be simultaneously in

the neuro-symbolic hybrid system.

Case Based
Reasoning

Expert
System

Evolutionary
Computing

Fuzzy Logic
System

Neural
 Network

Machine
Learning

Procedural
Preprocessing

Expert
Systems

Fuzzy
Systems

Data Input* Procedural
Postprocessing

Neural
Networks

Output

Bi-directional Data Bus

* with or without expected outcome
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Table 2-1: Expected Advantages of Hybrid Systems Integrating NN e SE

Feature Description Found in

Learning
The system can learn from its own experiences. Neural

Networks
Integration of

different sources of
knowledge

Different sources of knowledge may be combined
(e.g., vision, hearing, touch, etc.). Neural

Networks

Fault
Tolerance

Failures in individual parts of the system do not
affect its overall performance.

Neural
Networks

Generalization
An output is guaranteed even when the system was
not prepared to deal problems as the one being
treated.

Neural
Networks

Explanation
The system is able to explain its answers or the
need for the data being required.

Expert
Systems

Symbolic
Reasoning

The system accepts, processes and presents
symbolic data (natural language).

Expert
Systems

Parallel
Processing

It can be implemented in parallel processing
architectures.

Neural
Networks

In the next section we discuss different forms of integration between ES and

NN.

 2.2.3.   Hybrid System Architectures

There are several architectures for integrating neural and symbolic models.

They have been classified according to the task executed by each module [RICH90],

to the functionality, processing architecture and communication requirements

[GOON95], or according to the architecture used to implement the system

([MEDS92] and [MEDS94]).

In Table 2-2 we summarize the Medsker and Bailey's architecture

classification [MEDS92]. Based on the implementation architecture, the classification

goes from the total independence to the complete synergy between the modules.

Medsker describes this models as the following:
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Table 2-2: Architectures for ES and NN Integration [MEDS94].

Architecture Description Example

Stand Alone
There is no integration or
communication between the
modules. They are implemented
independently and used to solve
the same problem.

Comparison of different
diagnostics in computer repair.

Transformational
Independent modules that do not
interact. The system is built as
one model and rebuild as the
other.

Model marketing decision aid. A
NN is built to identify trends and
relationships within the data and
it used as the basis to build an
expert system to assist
marketing researchers in
allocating advertising

Loose Coupling
ES and NN form independent
modules that interact via data
files.

Forecasting of workforce
utilization. The NN predicts the
workforce and the ES allocates
the tasks.

Tight Coupling
ES and NN are separate
modules that communicate via
memory resident data structures.

Forecasting stock prices (NN)
and consequent definition of
appropriate strategy (ES).

Full Integration ES and NN form a single
structure, sharing data and
knowledge representation.

Object identification based on
feature data received from
sensors (NN) and environmental
data (ES).

a)    Stand-Alone

Stand-Alone architectures are composed by independent modules without

any integration between the parts. Although these models are not an alternative to

hybrid solutions, they have some advantages. First, they are a direct means of

comparing solutions offered by both techniques for a same problem. Second, the

implementation of a module after the other allows the validation of the first system.

Finally, running the modules simultaneously allows a loose approximation of the

integration.

b)   Transformational

Transformational models are similar to stand-alone architectures regarding

the independence between the modules. In transformational models the system

begins as one model (ES or NN) and ends up as the other. There are two types of

transformational models: expert systems that became neural networks and vice

versa. The choice for one or the other is based on the features of each technique

(Table 2-1) and on the final solution required. For instance, certain system may

require real time response (e.g., control systems) but the solution may be based on

RNSE

SE RN

RNSE

RNSE

RNSE
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deductive reasoning. The knowledge engineer may develop an expert system and

transform it to a neural network in order to use a parallel architecture in the final

solution. The limitations of transformational models include the absence of

automated means of transforming one technique to the other and the difficulty in

maintain both modules when new features are added to the solution.

Medsker and Bailey [MEDS92] present the architectures of neuro-symbolic

systems as a pyramid with the stand-alone and transformation models as the basis.

Rather than hybrid architectures the authors consider these models two forms of

relating the two intelligent techniques. In these models there is no integration

between the modules. They are alternative solutions to the same problem.

c)   Loosely-coupled

The first hybrid architecture is called loosely-coupled. In these models expert

system and neural network are independent and separate modules that

communicate via data files. Both modules can be pre, pos or co-processors in

relation to the other. In this dissertation we implement the neuro-pre-processing

model. In this model the solution begins with the NN that processes the data (fusion,

error reduction, object identification, pattern recognition, etc.) and stores the solution

in file. This is the input to the expert system module to the task of classification,

problem solving, scenario analysis, etc. The major advantage of loosely-coupled is

that they are easy to implement (each module can be developed separately in

several shells available commercially) and maintain (due to the simple interface

between the modules). On the other hand, this architecture is slower in the operation

and may have redundancy in the independent developments of each module

(identical data may be considered independently).

d)   Tightly-Coupled

The next level of integration is the tight coupling model. The only difference is

how the communication between the modules takes place. In this modules, NN and

ES communicate through memory resident data structures. Although the solution in

the user point of view is the same as in loosely-coupled models, there are several

functional consequences due to the communication in the main memory. Due to this

functional feature, tightly-coupled architectures are more adequate to embedded

systems, blackboard architectures and real time cooperative systems. On the other

hand, these systems have the same problems of redundancy and maintenance of

loosely-coupled systems.
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e)   Fully Integrated

The last level of integration is the fully-integrated architecture. NN and ES

share data and knowledge representation and the communication between them is

accomplished due to the dual nature (neuro-symbolic) of the structures. The

reasoning mechanism is implemented according to a cooperative scheme or with

one module playing the role of the inference controller. There are many forms of full

integration, including the connectionist systems [GALL88], utilization of I/O neurons,

subsymbolic to symbolic connectivity and integrated control mechanisms.

The key to the choice of the hybrid architecture is the problem to be solved.

As a general rule, the integration is suitable whenever the solution involves both

deductive and inductive reasoning. The choice for a specific architecture depends

upon the way the intelligent agents cooperate in the process, upon the computational

resources available and upon the kind of solution required.

 2.3.  Applications of Hybrid Systems

Even being relatively new, hybrid neuro-symbolic systems have several

applications, some in commercial environments. These include systems that require

fault tolerance, generalization, implicit and explicit reasoning, incremental learning

and flexible architectures [LIEB93]. Table 2-3 has some examples of applications of

neuro-symbolic systems in several areas of engineering, medical and company

diagnostic. Hybrid systems are a current trend in Artificial Intelligence ([HAYE94],

[MEDS94], [MEDS95], [GOON95], [MUNA94] and [ZAHE93]). Particularly regarding

neuro-symbolic systems, one can expect the dissemination in several areas,

especially with the development of hybrid shells that integrating different AI

technologies under the same environment. Nevertheless, the commercial application

of hybrid systems in large scale depends on research in several topics, including the

study of unified architectures rather than hybrid solutions and the development of

formal knowledge representation models for neural networks [HUAN95]. The

increasing number of publications in this area (e.g., [KAND92b], [HONA94],

[SUN95], [MEDS95]) reveals that several researchers are working in hybrid systems

and one can expect solutions to these and other open issues.
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Table 2-3: Examples of Applications of Hybrid Systems Involving NN e ES.

Year Application Author

1988 Medical Diagnostic Gallant [GALL88]
1988 Work force forecasting in maintenance of

workstations.
Hanson and Brekke

[HANS88]
1990 Dispatching delivery trucks weight and volume

constraints to minimize the number of trucks
required and the total miles traveled.

Bigus and Goolsbey
[BIGU90]

1990 Preclassification of DNA samples in HIV
studies.

Benachenhou et al.
[BENA90]

1990 Financial diagnostic of firms to evaluate the
probability of loan.

Barker [BARK90a] and
[BARK90b]

1991 Mapping of acoustic signals to symbols
(allowing symbolic reasoning).

Hendler and Dickens
[HEND91]

1991 Financial Diagnostic of Firms. Nottola et. al. [NOTT91]
1991 Evaluation of hypotheses in problem solving. Gutknecht et al. [GUTK91]
1992 Production Planning in manufacturing flexible

systems.
Rabelo and

Alptekin[RABE92]
1992 Quality Control (corrosion prediction) Rosen and Silverman

[ROSE92]
1993 Diagnostic of faults and performance control in

telecommunication systems.
Senjen, et al. [SENJ93]

1993 Modeling and monitoring of industrial
processes.

Markos et al. [MARK93]

1994 Forecasting performance of stock prices. Yoon et. al. [YOON94]
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Artificial Intelligence Technologies

 3.1.  Introduction

In this chapter we present a review of the two Artificial Intelligence

technologies considered in this dissertation: fuzzy expert systems and neural

networks. First, we present the main concepts of expert systems and the issue of

uncertainty treatment in these systems. Among various alternatives available for

dealing with uncertainty, the technique chosen is based on Fuzzy Models. The

essential elements of Fuzzy Set Theory related to uncertainty treatment and the two

models of reasoning in Fuzzy Logic (Approximate and Possibilistic) are described.

The fourth section is dedicated to issues related to artificial neural networks. In this

section there is a more detailed description of the Backpropagation and Radial Basis

Function algorithms, the models applied in the hybrid system implemented.

 3.2.  Expert Systems

An expert system is an intelligent computer program developed to emulate

the reasoning process of an expert in a specific domain. An expert is someone who

can solve a problem which most of the people can not for lack of training or

knowledge. More than knowledge, an expert system encodes expertise. Knowledge

can also be acquired from other sources such as books, periodicals or other media.

When the knowledge in the system is not acquired from a human, the system is

called knowledge-based system. More recently, expert systems and knowledge-

based systems have become synonymous. They also became a paradigm to

conventional algorithmic programming [GIAR94].

Contrary to traditional systems (based on algorithmic programming), experts

systems have built-in facilities that increase flexibility and efficiency. The most

important are the possibilities of creating rules, gathering facts, and making logical

decisions under  imprecision or even in absence of information. In a standard

program, the search is a procedural method based on the previous knowledge

codified in the system. When new knowledge emerges, it is necessary to rewrite the
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code. On the other hand, an expert system can retrieve new facts and rules and use

them without changes in the search strategy.

 3.2.1.   The Building Process of Expert Systems

The process of designing and building expert systems is iterative and it is

called Knowledge Engineering. Figure 3-1 gives an overview of the entire process of

building an expert system. The design starts with the Knowledge Acquisition, the

process of obtaining the knowledge required. The knowledge engineer gathers the

information by consulting the expert and references. This is a critical activity in the

process (known as the “bottleneck”) and involves mainly the identification,

assessment, and familiarization with the problem [SCOT91]. The knowledge

codification phase is called Knowledge Representation. Several methods are

available [RING88] and the most important knowledge representation techniques

are: semantic networks [QUIL68], [SOWA91], rules [BUCH84], [JACO86], and

frames [MINS75] (and more recently its derivation: object-oriented methods

[STEF86], [BONC93], [KAIN94]).

Knowledge Acquisition

↓ Expert System

Expert

References

Knowledge Engineer

↑
Knowledge

Representation

Figure 3-1: Buiding Process of an Expert System

 3.2.2.   Rule-Based Systems

Rules are the most common form of representing knowledge. An expert

system whose knowledge is codified in rules is called Rule-Based System. The

knowledge in this kind of system is represented by production rules in the following

form:

IF antecedent(s) THEN consequent(s)

where both antecedent (or “premise”) and consequent (or “conclusion”) are logical

propositions or clauses. For example: “IF the temperature exceeds 120oF THEN turn off
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the engine”. Multiple antecedents (or consequents) are connected by the logical

connectives “AND” or “OR”. For instance: “IF (the temperature exceeds 120oF) OR (the

oil level is below the minimum) THEN turn off the engine”.

A rule-based system reaches its conclusions either by inferring the

consequents whose antecedents have been proved (forward chaining) or by

assuming consequents and proving them by confirming the antecedents (backward

chaining) [WATE78]. These inference mechanisms where answers are drawn based

on rules and facts form the deductive reasoning, an inferential system based on

methods of Classical Logic.

Originally, deductive reasoning was implemented without uncertainty in the

clauses or in the validity of the rules. Unfortunately, human reasoning often does not

follow this deterministic approach. Indeed, dealing with uncertainty is a must to an

accurate representation of  human reasoning.

 3.2.3.   Uncertainty in Expert Systems

During the knowledge acquisition, the knowledge engineer must also check

whether the problem requires inexact reasoning in its inference or in the treatment of

the information. In other words, the knowledge engineer must check how the expert

system should make inexact conclusions and how it should use these conclusions

[SCOT91]. This is usually called Uncertainty Treatment [SHOR76], [KANA86],

[BOUC93].

While the first Knowledge Acquisition and Knowledge Representation studies

emerged during the early developments of expert systems [FEIG92], the

management of uncertainty came only in the seventies. The AI scientists realized

that as long as an expert system intended to emulate the human reasoning, it should

be able to deal with uncertainty. The sources of uncertainty include:

• vagueness of human concepts,

• incomplete or unreliable information,

• disagreement between different sources of knowledge (experts), and

• partial matching between facts and evidences.
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The challenge to AI researchers has been to empower the systems with the

capability of dealing with this variety of uncertainty1. In the last decades several

theories have been proposed as alternatives to implement this task, including:

• Probabilistic methods (e.g., [DUDA76], [PEAR86], [PEAR88], [NEAP90],

[HECK95]);

• Certainty Factors (e.g., [SHOR76], [BUCH84], [HECK86]);

• Dempster-Shafer Theory (e.g., [SHAF76], [YAGE94b]);

• Fuzzy Models (e.g., [ZADE83], [KAND92], [KAND96]).

The first three models address only uncertainty and ignorance while Fuzzy

Models can deal with vagueness of natural language terms. In this dissertation, the

modeling of imprecision is accomplished by fuzzy models. The reasons lie in the

nature of Financial Statement Analysis, where rules are vague (described by vague

terms) and uncertain (dependent on the financial environment). Hence, there is need

to address Fuzzy Expert Systems.

 3.3.  Fuzzy Expert Systems

Fuzzy Expert Systems (FES) have the same components of classical ES but

use Fuzzy Set Theory to model uncertainty of attributes and Fuzzy Logic to

implement the inference. Fuzzy Set Theory and Fuzzy Logic provide a theoretical

ground to FES where the uncertainty management by strength of belief (modeled by

other methods) is a subcase. Fuzzy expert systems admit fuzziness to express

uncertainty in antecedents, consequents or even in the logical relation between them

(rule). By fuzziness we mean the imprecision of grouping elements into classes that

do not have sharp boundaries.

There are two theoretical frameworks in Fuzzy Set theory to model the logical

mechanism of inference of fuzzy expert systems: Approximate Reasoning [ZADE79]

(or Fuzzy Reasoning [GAIN76]) and Possibilistic Reasoning ([ZADE78] and

[DUBO88]). These theories are based on Fuzzy Logic whose foundations lie on

Fuzzy Set Theory  [ZADE75].

                                               

1 Although the term uncertainty has coined this discipline, it should be noticed that a more appropriate
name would be imprecision  as the general term for describing the variety. Uncertainty is also the
specific kind of imprecision where the degree of true in the information is not totally certain. This does
not include imprecisions such as vagueness of natural language terms, ignorance and ambiguity of
information [KAND96].
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In Approximate Reasoning, the semantic of fuzzy sets is related to the

concept of the linguistic term described by the set. Vague terms such as “medium”

and “moderate” are modeled by fuzzy sets and can be related by fuzzy rules. Fuzzy

Set Theory is the foundation for representing these elements while the inference

mechanism is based on Fuzzy Logic. This forms the essence of Approximate

Reasoning. In this theory, several forms of inference systems can be identified,

according to the conception of a fuzzy rule (conjunction or implication) and the

definition of union and intersection operators. Particularly, when the answer has to

be a real number, there is need for defuzzification process which translates the fuzzy

set deduced from the inference. Defuzzification is typical in Fuzzy Control (e.g.,

[KAND94] and [YAGE95]), one of the principal areas where Approximate Reasoning

is applied successfully [KAND96].

When uncertainty is involved, the fuzzy sets are seen as constraints to the

actual values of variables (i.e., descriptions of imprecise knowledge). In this

framework, fuzzy sets are possibility distributions. Possibility Theory and Fuzzy Logic

establish the elements of Possibilistic Reasoning, the theoretical basis for fuzzy

systems whose inference admits uncertainty. The relationship between Fuzzy Set

Theory and Probability Theory can be done only within the Possibilistic view of a

fuzzy set.

For the reasons explained in Chapter 4, in this dissertation only Approximate

Reasoning is applied. In the remaining sections we revise the basic concepts of

these theories in the context of fuzzy rule-based systems used in the application of

this dissertation.

 3.3.1.   Fuzzy Set Theory

In Classical Set Theory, an element x either belongs to or does not belong to

a set A. The notion of membership is crisp (dichotomic). A membership value (i.e.,

characteristic function value) is either 0 or 1 (within the set {0,1}). Consequently,

there is a lack of means to represent fuzziness. In other words, an ordinary set is

inappropriate to translate into computational form concepts such as “small,” “hot” and

“tall” because elements match these classifications with different grades rather than

the single pair of full (1) and null (0) memberships.

For example, a concept such as “small file” in computers, could be

represented by the crisp set: {x = “small file” iff x ≤ 100K}. But how about 101K files?

Are they so different from 100K files? Despite our intuition, the previous
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representation would classify this two similar kinds of files in different categories.

This is what happens when the classifications have sharp boundaries. Somehow,

one has to differentiate the degree with which the elements belong to a set. An 1K

file is much more smaller than a 99K file and such distinction can not be ignored in a

computational representation of the concept “small files”. Fuzzy Set Theory was

created with the purpose of overcoming the misrepresentation of human concepts as

crisp sets.

 3.3.2.    Fuzzy Set

In 1965, Lotfi A. Zadeh coined the notion of a Fuzzy Set as a “class of objects

with a continuum of grades of membership” [ZADE65]. Zadeh generalized the idea of

a crisp set by extending the interval of values of the characteristic function from the

set {1,0} to the range [0,1]. Given a space of objects (elements) X = {x}, a fuzzy set

A is a set of ordered pairs defined by:

A = {x, µA(x) | x ∈ X  and µA(x) → [0,1]}  (3-1)

where µA(x) is called membership grade. Every fuzzy set establishes a mapping from

the universe of discourse to the interval [0,1] called membership function. This

mapping represents the notion of partial belonging of an element to a class.

Therefore, the class has non-rigid boundaries and it is defined not only by its

elements but also by the associated membership grades.

When defining a fuzzy set, it is common to use a normalized fuzzy set, that is:
∃w, µA(w)=1.

A membership function can be either discrete or continuos. The notation of

the fuzzy set in each case is the following:

discrete: A = ΣU µA(u)  ⁄ u (3-2)

continuos: A = ∫U µA(u)  ⁄ u (3-3)

Notice that both symbols ‘Σ’ and ‘∫’ stand for the union of all elements in the

set. They do not represent algebraic sums as in Calculus. In most cases, the

membership function appears in the continuos form. There are several alternatives:

triangular, trapezoidal, gaussian, bell and sigmoidal membership functions are the

most commonly used. Table 3-1 presents them as parametric functions [JANG95].
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Table 3-1: Parametric formulas of Common Continuos Membership
Functions.

Function Formula Graphic

triangular µA(x) = max [min{(x-a)/(b-a);(c-x)/(c-b)};0]
ba c

trapezoidal µA(x) = max [min{(x-a)/(b-a);1;(d-x)/(d-c)};0]
ba c d

gaussian
µA(x) = ( )e− −( )x c σ 2

c

bell µA(x) = (1 + (x-c)/a2b)-1

c+ac-a c

0.5

sigmoidal µA(x) =  (1 + exp(-a(x-c))-1 1

 3.3.3.   Essential Operations on Fuzzy Sets

In the classical theory of ordinary sets, an operation is a relation between sets

that yields another set. Operations on sets are relevant to expert systems because

the inference process is based on the processing of logical connectives

(propositional calculus) which have equivalent quantifiers in  Classical Set Theory.

For instance, given the rule IF (A AND B) THEN C, the true value of C is the true

value of the conjunction (A AND B), that is, the value of the intersection (A ∩ B).

For the same reason, operations on fuzzy sets are crucial to the fuzzy expert system

inference. The extension of set operations to fuzzy sets is not obvious. The three

basic operations, union, intersection, and complement of fuzzy sets were originally

defined by Zadeh as [ZADE65]:

union: A or B ⇒ A ∪ B = {x, max (µA(x); µB(x))} (3-4)
intersection: A and B ⇒ A ∩ B = {x, min (µA(x); µB(x))} (3-5)
complement: not A ⇒ ¬A = {x, µ¬A(x) |  µ¬A(x) = 1- µA(x)} (3-6)

where x ∈ U  (universe of discourse)

When the membership grades µA(x) and µB(x) are confined to the set {1,0}

(i.e., when A and B are ordinary sets), (3-4), (3-5) and (3-6) become the classic

notions of union, intersection, and complement, respectively. These basic definitions

of fuzzy set operations are not only natural but also quite reasonable regarding some

desirable assumptions to their behavior [BELL73]. Indeed, maximum and minimum

have been extensively and successfully used in practical applications of Fuzzy Set

Theory ([TERA94] and [HIRO93]). Nevertheless, they are not the only alternatives to

extend the classical operations. Many operators have been proposed to model fuzzy

union and fuzzy intersection and different definitions will yield different fuzzy expert

system models [KAND96].
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The relevance of the investigation of fuzzy set operators is not restricted to

the mathematical ground of Fuzzy Set Theory [DUBO85]. In practical situations the

choice of appropriate operators depends upon the knowledge about the features of

the problem, the alternative operators available and their distinct properties. For

instance, in decision-making process, max-min operators are not appropriate if the

decision criteria are compensable, i.e., the appropriateness of one can balance the

inadequacy of the other. In such situations, a better choice would be a compensatory

operator such as average or geometric mean [DUBO80]. The choice for max and min

operators in this work is due to the following facts: first, there was explicit intention of

meeting the axiomatic framework in which fuzzy unions and fuzzy intersections have

been described (i.e., using t-conorms and t-norms); second, we did not find any

reason for adopting more restricted in intersections (i.e., for not using the largest

fuzzy set produced by the intersection) and more for using more relaxed operator in

unions (i.e., for using any other fuzzy union greater than the standard operator).

Nevertheless, any other operator could be used based on axiomatic frameworks of

Fuzzy Logic (described, for instance, in [KLIR95], Ch. 3)

 3.3.4.   Approximate Reasoning

Approximate Reasoning [ZADE79] (or Fuzzy Reasoning [GAIN76]) can be

understood as the process of  inferring imprecise conclusions from imprecise

premises. This deduction process is “approximate” rather than “exact” because data

and implications are described by fuzzy concepts. Fuzzy Logic in the narrow sense

(i.e., a logical system extended from multi-valued logic [ZADE94]) is the ground

theory to Approximate Reasoning. In the following sections, we present the essential

elements of Fuzzy Logic in the management of uncertainty in expert systems and the

logical framework that underlines the inference process in Approximate Reasoning.

a)   Fuzzy Rules

A Fuzzy Rule is an implication between fuzzy propositions (clauses with fuzzy

predicates). Examples of such implications are common in natural language: “if the

car is noisy, there is a chance for mechanical problems,” “if the apartment is

spacious and affordable, let’s buy it,” etc. The first step in modeling fuzzy rules is to

identify its logical framework, that is, to specify how a fuzzy implication is logically

represented. In fuzzy systems, rules are conceived in two distinct ways: (a) as a

logical implication between antecedent and consequent; (b) or as the conjunction

between them. Each view underlies a different method for pursuing the inference in
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fuzzy systems. In this dissertation (and in the majority of practical applications

[MEND95]), fuzzy rules are evaluated as conjunctions of fuzzy predicates. For this

reason, this is the only method of fuzzy rule evaluation we discuss here2.

The rule “IF x is A THEN y is B,” where A and B are fuzzy sets, describes a

universe of domain delimited by the Cartesian Product of the sets A and B. The

calculus of the truth value of a rule conceived as a conjunction is done by:

A → B = A ∩ B, where the intersection is determined by a t-norm.

Originally proposed by Menger [MENG42], t-norms and t-conorms became

suitable concepts for representing pointwise fuzzy-theoretic intersection and union,

respectively [YAGE85]. Minimum and maximum are examples of these operators and

are the only t-norm and t-conorm that meet the property of idempotency, that is,

when applied to identical elements they yield this same element. This can be

advantageous when the sets being conjuncted (or disjuncted) include repetitions.

Pattern recognition and multi-criteria decision making are examples of such

environments, where identical categories can be displayed with different names

[YAGE94].

b)   Generalized Modus Ponens

In Fuzzy Logic, the classic rule of inference has to be modified, since facts

and implication between them can be fuzzy. A fuzzy rule-based system underlies its

deduction mechanism through the so called generalized modus ponens:

R: x is A → y is B
x is A*

∴y is B* = A ο R

(3-7)

where A, B, A*, and B* are fuzzy sets (or, equivalently, fuzzy predicates), x and y are

fuzzy variables, R is the fuzzy relation formalizing the fuzzy rule, and ‘ο‘ stands for

the composition.

There are two main differences between the generalized modus ponens and

its classical version: A* and A are not necessarily identical (e.g., A*  is “close” to A);

and the predicates A, B,  and A* are not required to be crisp. In Fuzzy Logic, crisp

                                               

2 Detailed discussions about the logical framework of fuzzy rules can be found in [KANDE95],
[DUBO84] and [YAGE83].
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predicates are only subcases. When A and A* are crisp and identical, B* is equal to

B, that is, the generalized becomes the classical modus ponens [ZADE73].

In rules with multiple antecedents, the inference includes the operations of

conjunction (for connective AND) or disjunction (for connective OR) before the

conclusion of B*. In the general case, the inference mechanism is applied to several

rules, generating many conclusions Bi
*. The final conclusion of the system is the

disjunction of all Bi
* .

The inference process based on the generalized modus ponens is not unique.

It depends upon the representation of the fuzzy rule and on the operations over the

fuzzy sets. Therefore, the generalized modus ponens describes the general

syllogism that supports the inference in fuzzy systems but does not establish a

unique calculus for the inference. In our application we decided to adopt the most

used representation of fuzzy rules (fuzzy conjunction) and t-norm/t-conorm

definitions (min and max).

 3.4.  Neural Networks

Neural networks are computational structures based on parallel distributed

processing units (neurons) organized as directed graphs with a learning algorithm

that implements knowledge (stored in the connections) from a set of sample data.

Therefore, neural networks are inductive information processing models, that is, they

form general patterns and rules from raw data and experience. In the literature,

neural networks are also referred to as connectionist networks (models), parallel

distributed processors, and neurocomputers [HAYK94]. The neural network design is

inspired in the way the human brain physically works, that is, as a net of neurons

distributed in parallel whose electronic activations are responsible for the recovery of

specific knowledge. Regarding the two abstractions of natural intelligence discussed

in Chapter 2, neural networks are micro view models.

In the following sections we describe briefly the neural network elements

related to this dissertation. In the following, we review the kinds of cells, architectures

and learning methods of neural networks. The aim is to specify how the models

implemented in the application described in Chapter 4 are classified in connectionist

theory.
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 3.4.1.   Artificial Neurons

The most basic element of a neural network is the artificial neuron (cell). An

artificial neuron can be seen as a logical structure of a natural neuron [AMIT89].

Figure 3-2 is a schematic view of an artificial neuron uk.

yk

vk=Σj yj.wjk

yk = ϕ(vk)

w0k ... ...wjk

wnk

k
n
yj

wjk

w0k

vk

ϕ
yk

- index of the artificial neuron being activated
- total of connections to uk

- output of the jth artificial neuron connected to uk

- weight of the connection between neurons j and k.
- bias
- weighted sum of the input signals in k
- activation function or neuron k’s output.
- neuron k’s output

Figure 3-2: Artificial Neuron - Basic Processing.

Three basic elements describe an artificial neuron [HAYK94]:

1. the arrows represent the synapses or connecting links to preceding neurons in the
net. Each connection has a weight wjk representing the strength of the signal sent
by neuron uj to the neuron uk. The weight wjk is positive if the synapse is excitatory
and negative if the synapse is inhibitory. Usually, the bias (an increase in the
neuron output) is represented by a pseudo-connection w0k and by a virtual neuron
uo whose activation level is constant and equal to +1. This value can appear
alternatively as a threshold  θk in the activation level. In this case, uo is constant
and equal to -1 while the weight w0k is equal to θk.

2. the shadowed circle represents the cell body (soma) of the neuron uk. The
electrical reactions in a natural neuron are emulated by a linear combiner or
adder, the sum of the inputs weighted by the strength of the correspondent
connections.

3. the activation level of a neuron is determined by an activation function ϕ(.). This
function is also called squashing function because it limits the amplitude of the
neuron output into an interval (usually either [-1,1] or [0,1]).

In Table 3-2 we present four basic forms of activation function. The threshold

function models the “all-or-nothing” activation property described by the seminal work

of Mculloch and Pitts [MCCU43]. Usually, the linear function has an amplitude of 1

which, when made infinitely large, leads the linear to the threshold function. The

sigmoid function might assume different forms and it is the most used in neural net

algorithms. Sigmoid yields a continuous output and it is differentiable (an important

feature in neural networks models). The gaussian function is used by the Radial

Basis Function algorithm and it is the only one that does not calculate the weighted

sum vk. Rather than weights, the connections describe j coordinates of a vector ck
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(called center). The norm Ek of the vector (uj - ck) and its standard deviation σ are the

independent variables of the gaussian function and its result is the activation level of

the neuron uk.

Table 3-2: Types of Activation Function.
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 3.4.2.   Neural Network Architectures

Artificial neural cells are organized as graphs whose structure defines the

neural network architecture. There are four types of network architectures: single-

layer feedforward networks, multilayer feedforward networks, recurrent networks,

and lattice structures. The modules developed in this dissertation are multilayer

feedforward networks. Feedforward networks are processed from the input to the

output layer (Figure ). The outputs signals of a layer are used as inputs by the

adjacent layer. Neural networks cane be either fully connected (the cells in all layers

are connected to all cells in the adjacent layer) or partially connected (otherwise).
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Figure 3-3: Feedforward Multilayer Network

The “knowledge” of a neural network is stored at the connection level in the

weight vectors. When trained according to supervised learning, a neural network will

change its connections following some error-correction rule, that is an algorithm that

searches for minimizing the network error (difference between target and network

response).

The algorithms studied and applied in this dissertation are supervised

methods. Both Radial Basis Function and Backpropagation have algorithms derived

from the error-correction rule and are trained in a supervised manner. On the other

hand, while the Backpropagation architectures are determined before the training

(fixed-network), the number of hidden neurons in Radial Basis Function can be a

step of the learning process (free-network).

 3.4.3.   Neural Network Algorithms

It became almost impossible to identify the entire list of neural net algorithms

available. Constantly, publications have either suggested modifications in known

models or presented alternative algorithms. In this work, only the two neural network

models developed are discussed.

a)   Roots of Error-correction Learning

A neuron network might be described mathematically as a mapping between

two spaces. Given the input space Xm, in the iteration p (p-th pattern), a neural

network maps every vector x(p) onto a correspondent vector y(p) in the output space

Yn. In supervised learning, there is the additional information that the mapping y(p)

has to be as close as possible to the desired response (target) t(p). Then, for each

input vector x(p) the error e(p) is given by the difference: e(p) = t(p) - y(p). This

difference forms a vectorial function of the error and describes the error vector for

Input Layer
(source nodes)

Hidden Layers
(hidden nodes)

Output Layer



&KDSWHU �� $UWLILFLDO ,QWHOOLJHFH 7HFKQRORJLHV 31

the pattern p, given the target vector t(p) and the output vector y(p). Rather than

correcting the error at the layer level, however, the learning algorithms are neuron-

oriented models. Given an output neuron k, the error ek(p) in this neuron is given by:

ek(p) = tk(p) - yk(p) (3-8)

The global minimum of Eq. (3-8) is the point where the number of errors in the

classifications of the training set is the smallest as possible. The network learning

consists in the procedure of adjusting the network reaching this minimum. This

adjustment is the correction in the weight vector wk of each output neuron uk such as

Eq. (3-8) is minimized. The strategy consists in establishing a cost function based on

the errors ek(p) (k = 1,m) which, when minimized, leads to the minimum of Eq. (3-8).

In 1960, Widrow and Hoff developed a cost function as the approximate

solution with instantaneous values of the squared errors [WIDR60]:

E(p)  =  
1

2
2e pk

k

( )∑ (3-9)

where k is the index of the output neuron uk and p is the p-th pattern presented to the
net. The error function in the weight space is then a hyperparaboloid. The
optimization consists in adjusting the weight vector wk towards the minimum error
direction, that is ∆wk is in the opposite orientation to the gradient vector of the cost
function in Eq. (3-9):

∆wjk(p) = -η j = 1,...,m and k = 1,...,n (3-10)

where:

a) j is the j-th connection of uk and η is called learning-rate parameter and is
responsible for establishing the width of a step. This is essentially a problem-
dependent parameter. A learning rate excessively large can lead the algorithm to
the instability and far from the convergence while a too small η will drastically
increase the convergence time; and

b) the derivative in (3-10) is given by the following product:

= -ek(p).ϕk‘(vk(p)).yi(p) (3-11)

where ek(p) is the error associated to the p-th pattern given by Eq. (3-8); vk(p) is the

weighted sum of the input signals in the output cell uk; ϕk‘(vk(p)) is the derivative of

the activation function ϕk(.), and yi(n) is the output of the neuron ui in the input layer.

When the activation function ϕk(.) is linear, the adjustment ∆wjk(p) is given by:

∆wjk(p) = η.ek(p). yi(p) (3-12)

which is the Perceptron rule to adapt the weight vector [ROSE58]. Eq. (3-11) is more

general and includes the local gradient, defined as:

∂E(p)
∂wik(p)

∂E(p)
∂wik(p)
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δk(p) = ek(p).ϕk‘(vk(p)) (3-13)

Then, the learning rule can be stated by:

∆wik(p) = η.δk(p).yi(p) (3-14)

Widrow and Hoff applied their Least-mean-square algorithm on a net with an

input and an output layer (ADALINE) [WIDR60]. The error correction could not be

applied to hidden layers since the target is not known at this level. Nevertheless, the

generalization of Widrow-Hoff rule led to the development of the multilayer

Perceptron algorithm called Backpropagation.

b)   Backpropagation

The delta rule in Eq. (3-10) can be applied only if the correct target is

previously known. For this reason, the delta rule was originally applied only to

double-layer nets, since, in the hidden layers, the neurons do not have a target. The

absence of hidden layers implies in the inability of learning to map simple input-

output relationships (such as the XOR problem or nonlinear mappings). Although the

necessity of hidden layers was acknowledged for a long time (e.g., [MINS69]), the

problem was to develop a powerful learning rule to the hidden units.

Backpropagation was the first model to accomplish such difficult task. First described

by Paul Werbos in 1974 ([WERB74] and [WERB94]), the model was later developed

by Rumelhart, Hinton and Williams [RUME86b]. Neural networks that use the

Backpropagation algorithm are also called Multi-layer perceptrons (MLP) which

means a generalization of the Perceptron network [HAYK94].

The main concept behind the Backpropagation algorithm is that the error

calculated in the output layer can be “back-propagated” to the net so that the internal

layers can use this information to correct their weights. The adjustments follow the

delta rule based on the backpropagated error and on the contribution that each

internal cell does to the final error of the network. The implementation of the

Backpropagation algorithm involves a forward pass to estimate the current error and

a backward step to adjust the weights.

As usual, there is no processing in the input layer. In the output layer, the

processing is identical to the optimization process of the least-mean-square error

algorithm, described before. The first step is to calculate the error ek(p) given by Eq.

(3-8). The weights of the last layer are then adjusted according to the delta rule given

by Eq. (3-14).
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It is in the middle layers that the real power of the Backpropagation model

lies. Since the actual targets to hidden cells are unknown, the algorithm attributes

“responsibilities” to these units regarding the error in the output layer. This is done by

“backpropagating” the error in the output layer and using this value in the calculus of

the local gradient δj(p) for each hidden cell uj, given the p-th pattern. To derive the

local gradient δj(p) for a hidden cell j, one has to start from the following definition

(which can be derived from Eq. (3-13)):

δj(p)  = -
(3-15)

where the error E(p) is the sum of the errors (ek(p))2 at the output layer. The local

gradient in Eq. (3-15) is calculated by the chain rule of derivatives and the result is:

  δj(p)  =  ϕj
’(vj(p)).( (3-16)

Eq. (3-16) defines the local gradient to be applied in each hidden cell uj in

order to update the weight vector in the middle layers. This equation reflects the fact

the hidden cells uj are “sharing responsibility” for the errors in the output layer

proportionally to their importance (weight wjk) and signal (activation level vj) to each

output cell uk.

The convergence time is one of the problems of Eq. (3-16) because the local

gradient can lead to slow passes to the minimum. Also, a major problem is finding a

local minimum that can be recognized by the local gradient as the optimal solution.

The last issue is still unsolved in Backpropagation models, but some methods and

network conditions (e.g., [GORI92], [FRAS93]) have improved the chances of

skipping local minimum (e.g., momentum) and reduced the training time (e.g.,

adaptive learning rate). Rumelhart, Hinton, and Williams [RUME86b] suggested the

inclusion of a momentum to adapt the learning rate after one iteration such as the

convergence can be accelerated without affecting the stability of the delta rule. This

inclusion changes Eq. (3-14) into the so-called generalized delta rule:

∆wik(p) = α.∆wik(p -1) + η.δk(p).yi(p) (3-17)

where α is called momentum. This constant allows the network to take into account

not only the local gradient but also the last changes in the error surface. When it is

zero, the generalized delta rule becomes Eq. (3-14). For the sake of convergence of

the weighted time series ∆wik, the values of the momentum must be restricted into

the range 0 ≤ |α| < 1.

∂E(p)
∂vi(p)

∑k=1,m δk(p).wkj )
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  The Backpropagation Network

Figure 3-4 depicts the architecture of the Backpropagation network. The input

layer has p neurons given by the dimension of the input space. There is no

processing at this level of the network. The inputs signals are passed to the hidden

layer composed by M neurons. Each neuron receives a weighted sum of the input

signals and a bias signal (which can be seen an “extra” input x0 with full connection -

w0i = 1). This sum is the neuron activation level which is the parameter to the

activation function ϕi whose value is the neuron output. The same process occurs at

the output layer. This layer then compares the target answers with the networks

responses, “backpropagating”  the errors to the previous layer which applied the

generalized delta rule (i.e., Eq. (3-17)) to update the weights.

Figure 3-4: Architecture of a Three-layer Backpropagation Networks
(MLP).

  The Levenberg-Marquardt Method

A different approach is the Levenberg-Marquardt method ([LEVE44] and

[MARQ63]) which considers the curvature of the function to establish the step size

along the its slope. The strategy consists in expanding the function f(x,w) = t into a

Taylor series.  The purpose is to minimize a cost function J(w) with respect to the

weight w. The Newton’s method for this procedure is [HAGA94]:

∆w = [ ]− ∇ ∇
−2 1

J J( ) ( )w w (3-18)

where ∇ 2 J( )w is the Hessian matrix and ∇J( )w  is the gradient. Particularly, when

the cost function is the square sum of the individual errors, that is, when the cost

function is given by Eq. (3-8), it can be shown that

w1-p+1

wp→p+1

w1→p+M

wp→p+M
wp+M→q

wp+1→1

wp+M→1

wp+1→1

xi1

xip

ϕp+1bp+1

bp+2

ϕp+2

bp+M-1

ϕp+M-

bp+M

ϕp+M

yi1

b1

bq

yiq
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∇J( )w = Jt.(w).e(w) (3-19)

∇ 2 J( )w = Jt.(w).J(w) + S(w) (3-20)

where e is the error vector and J  is the Jacobian matrix of derivatives of each error

to each weight:

∂
∂
e

w
1

1

( )w ... ∂
∂
e

w
1 ( )w

n

J(w) = ... ... ... (3-21)

∂
∂
e

w
N ( )w

1

... ∂
∂
e

w
N

n

( )w

and

S(w) = e e
N

i
i 1

i
=
∑ ∇( ) ( )w w2

(3-22)

The Gauss-Newton method assumes that S(w) ≈ 0, and the weight updation

rule becomes:

∆w = (Jt.J)-1 Jte (3-23)
The Marquardt-Levenberg modification to the Gaussian-Newton method is:

∆w = (Jt.J + µI)-1 Jte (3-24)

where µ is a scalar multiplied by some factor (β) whenever a step would result in an

increased cost function J(w). A very large µ turns the searching method into the

gradient steepest descent with step 1/µ. On the other hand, a small factor µ turns the

method into Gauss-Newton. The algorithm searches the global minimum by

decreasing µ after each iteration. Factor µ is increased only if the error became

greater.

  The Levenberg-Marquardt Algorithm

The Levenberg-Marquardt algorithm can be described by the following
procedures:

1. Initialize the network (i.e., define architecture and random distribution of
weights), and present all inputs xi and targets ti;

2. calculate the network response y;

3. compute the sum of the squares of the errors ek = yk-tk (cost function J(w)).

4. compute the Jacobian matrix.

5. solve Eq. (3-24) to obtain ∆w.

6. recompute the sum of the squares of errors using w + ∆w. If this new sum of
squares is smaller than the previous (step iii), reduce factor µ by β, let w = w +
∆w, and return to step I. Otherwise, increase µ by β and return to step v.
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7. stop when reach the convergence (the norm of the gradient - Eq. (3-19) - is less
than some predetermined value, or when the sum of the squares has been
reduced to some error goal).

Although the Levenberg-Marquardt method requires too much memory to

adapt the Jacobian matrix, when the network has a few hundred weights, it is very

efficient compared to conjugate gradient techniques [HAGA94].

c)   Radial Basis Function

Given a set of N points pi(xi,yi), Backpropagation searches for a function f(.)

such as f(xi) = yi (for i = 1 to N). This characterizes Backpropagation as a curve-fitting

algorithm based on a given optimization criterion (e.g., gradient descent). Curve-

fitting has been a relevant problem for a long time (e.g., [GUES61]). Stated

according to Interpolation theory, curve-fitting is the following multivariate

interpolation problem [DAVI63]:

Given a set of N different points {xi ∈ �p  i = 1,...,N} and a

corresponding set of N real points {ti ∈ �q  i = 1,...,N}, find a function

F: �p → �q that satisfies the interpolation condition:

F(xi) = ti, i = 1,...N (3-25)

There are two forms of interpreting Eq. (3-25): on one hand, F(x) can be

conceived as a (linear or non-linear) transformation of the input space �p onto the

output space �q; on the other hand, F(x) can be interpreted as the multidimensional

surface that divides the hyperspace �p x �q 
 into regions. While the latter view

classifies the search for F(x) as a Pattern Recognition problem, the former

description is related to Linear Algebra. Both theories help to understand the

principles of RBF networks. In the next sections, we follow Haykin’s description

[HAYK94], Poggio and Girossi’s [POGG90], and Broomhead and Lowe [BROO88]

developments to describe the theoretical framework of radial basis function

networks.

The first step to identify the function F(x) that solves Eq. (3-25) was done by

Cover in his theorem of separability of patterns [COVE65]. This theorem defines a

separating surface in the ϕ space by:

wT.ϕ(x) = 0 (3-26)

where ϕ(x) = [ϕ1(x),...,ϕM(x)]T

and w = [w1,...,wM]T
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In Pattern Recognition, the surface described by Eq. (3-26) is called decision

(or descriminant) function since, given a pattern xi with unknown classification, one

can identify xi either as a X- pattern (if wT.ϕ(x) ≤ 0) or a X+ pattern (if wT.ϕ(x) > 0)

[TOU74].

Although Eq. (3-26) does not solve the interpolation problem expressed by

Eq. (3-25), it is a rule to the process of classifying the patterns xi. The patterns can

now be separated into an M-dimensional space and associated to the output space.

This describes the theoretical framework of the first layer of connections in a RBF

network. The problem is the following:

• identify the dimension M (total of hidden neurons);

• the patterns (centers) cj (j=1,...,M) that form a basis of an M-dimensional space;

and

• the function ϕ(.) that describes the separability of the patterns xi.

Powell proved that a function ϕ(.) can solve Eq. (3-25) as an exact

interpolation problem (i.e., M is equal to N in Eq. (3-26)) if its argument is a measure

of distance between the centers cj and the patterns xi. In this case, ϕ(||.||) is called

radial basis function [POWE87].

Micchelli [MICC86] proved that, if the radial basis function ϕ(||.||) is positive

definite and completely monotonic, the Powell's exact interpolation problem has a

solution [POGG89]. These findings allow the proposal of a series of radial basis

functions to solve the interpolation problem. Table 3-3 there are some examples of

radial basis functions that meet Micchelli’s theorem.

Table 3-3 - Examples of Radial Basis Functions.

Function Gaussian Multiquadratic
Inverse

Multiquadratic
Cubic

Splines
Linear
Splines

Equation ( )ϕ( ) =  exp -r
c

2

2r ϕ( ) =  r 2r c+ 2 ( )ϕ( ) = r +c2 2r
−1

ϕ( ) =  r3r ϕ( ) =  rr

Graphic
1

0 1
0

-1 0

0.5

1

c = 0.2

c = 0.7
c = 0.5

0

0.5

1

-1 0

c = 1
c = 1.5

c = 2

0

1

-1 0 1

0

1

-1 0 1

Powell and Micchelli's findings help to define the kind of function and

parameter that can be used to separate the input patterns in the interpolation

problem of Eq. (3-25). The next step in the construction of the RBF theory is the
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definition of the dimension and basis of the M-space of the hyperplane defined by

Eq. (3-26).  Rather than solve the exact interpolation problem, a suitable neural

model has to address its approximate version. Hence, the interpolation is described

as a hypersurface reconstruction problem [POGG90], an ill-posed problem of

learning from a set of training data [HAYK94]. Regularization theory [POGG89]

transforms this ill-posed to a well-posed problem by minimizing a cost function E(F)

involving two terms: one regarding the uniqueness (generalization error) and other to

the continuity (regularization error) of the solution F(x). The unique solution derived

by Regularization Theory is the following:

w = (G + λI)-1.t (3-27)

where λ is the regularization parameter that controls the compromise between the

degree of smoothness of F and its closeness to the sample data; t is the target

vector; G is a matrix where a cell i,j is the Green’s function value G(xi,xj) (i=j=1...N);

and xi in G(x,xi) is called center.

Eq. (3-27) represents the fact that the solution of the regularization problem is

in an N-dimensional subspace of smooth functions whose the basis is given by N

functions G(x,xi). In terms of neural network theory, Eq. (3-27) is still not suitable

because it solves the exact interpolation problem, that is, the total of centers in the

second layer is equal to the number of samples in the training set.

The next step on the derivation of the theory of Radial Basis Functions

consists in reducing the dimension of the basis described by the hidden layer of the

regularization network. Assuming that the mapping between input and output spaces

is not random, there must be a number of samples sufficiently representative to

describe this mapping. The dimension reduction is accomplished by approximating

the exact solution by the following function:

F*(x) = w Gi i. ( ; )
i 1=
∑
M

x c or, equivalently: F* = G.w
(3-28)

where the vectors ci (centers) and the weights wi (i=1,...M) are unknown, the total of

centers M is usually lower (and never greater) than the number of samples (M ≤ N),

and the parameter of the Green’s function G is a norm operator ||x - ci||. When the

Green’s function is a radial basis function, Eq. (3-28) represents the approximate

solution to the so-called Generalized Radial Basis Functions (GRBF) Networks. The

learning rule is derived from minimizing the cost function with respect to the weight
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vector w, taking the approximate function F* as the parameter. The solution is given

by ([POGG90], [HAYK94]):

w = (GTG + λG0)
-1. GT t (3-29)

where G is an NxM matrix and G0 is an MxM matrix where a cell G0(i,j) is the Green’s

function value of the distance between the centers ci and cj. When the regularization

parameter is zero (i.e., F(x) is assumed to be completely determined by the sample

data), the learning rule becomes the approximation method proposed by Broomhead

and Lowe [BROO88]:

w = G+. t (3-30)

where G+ is the pseudoinverse of the matrix G given by:

G+ = (GTG + λG0)
-1. GT (3-31)

At this point, it is important to address the estimation of the parameter λ. As

described before, λ represents the regularization parameter, a measure of the

degree to which the prior knowledge about the problem (constraints) should

dominate the data. This parameter can be either fixed (according to prior knowledge)

or determined by simulations. For instance, Lowe adopted the variance of the noise

distribution estimated from the data as a measure of the factor λ) [LOWE94].

Recently, Girosi, Jones and Poggio [GIRO95] presented a Bayesian interpretation of

GRBF. The authors describe the interpolation problem as a procedure that

maximizes the conditional probability P(fg), where f(.) is the interpolation function

and g the training pattern. By analyzing the probabilities related to P(fg) and

assuming that the individual errors in Eq. () are normally distributed, the authors

show that the regularization parameter is equal to:

λ = 2σ2α (3-32)

where α is a positive real number and σ2 is the variance of the individual errors. This

equation expresses the trade-off between the level of noise and the strength of the

priori assumptions about the interpolation solution. It controls the compromise

between the degree of smoothness of the solution and its closeness to the data

[GIRO95]. Although Eq. (3-32) gives a hint about the estimation of the regularization

parameter, its best value remains problem dependent and even this equation might

not work if the error function is not normally distributed (as it happened in the RBF

network developed in Chapter 4).
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  Weighted Norm

Contrary to Regularization Networks, the centers in GRBFs are previously

unknown and must be calculated as a step of the learning process. Given a set of N

training patterns xi ∈ �N, the centers must be a set of M vectors cj ∈ �p that

reasonably describes the sample patterns. They can be interpreted as “prototypes”

of the patterns xi (i=1,...N) [WETT92]. Hence, a key issue in the determination of the

centers is the similarity criterion adopted, that is, the norm operator ||.|| chosen.

Indeed, without a proper choice of the norm operator, the GRBF can lead to poor

generalizations [BOTR91]. For instance, the Euclidean distance takes all individual

coordinates xj (j=1,...,p) of an input vector x with the original units. This can lead to a

poor representation of the input space when some features are more important than

others or when scaling factors are not properly considered. Poggio and Girossi

[POGG90] proposed a weighted norm defined by:

||x|| W
2  = (Kx)T.(Kx) = xTKTKx (3-33)

where ||x|| K
2 stands for the square of weighted norm with respect to the p-by-p norm

weight matrix K. The Euclidean norm is a particular case of the weighted norm

derived from Eq. (3-33) when the weight matrix is the identity Ipxp. Usually the matrix

K is diagonal whose non-null elements kii represent the weight of each input

coordinate xi. These relative weights can be derived either from prior information

about the problem or by statistical analysis of the input coordinates of the training

patterns.

Particularly, if matrix K is unknown but all coordinates xi have the same

strength, and ϕ is the gaussian function, Poggio and Girossi proved that the best

choice (regarding the minimization of the cost function) is a diagonal matrix with

each element kii equal to the inverse of the variance σi of each component of the

multi-dimensional Gaussian [POGG90]. This is called Equal Variance Distance,

generally used to overcome scaling and dimension problems of each coordinate

[HART75].

Specifically in financial problems, the input features have different grades of

importance to the outputs. In this cases, the weighted norm seems to be the more

appropriated choice (as we will discuss in Chapter 4). The key issue is then how to

translate the weights given by the expert into coefficients of the matrix K without

loosing the self-contained property (i.e., keeping the property that, when all weights
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are the same, the weighted norm is the Euclidean distance). We started by requiring

that the weights attributed by the expert have to add up 1:

Given the vector x = [x1,...,xp]
t ∈ �p, each coordinate xi  has a weight wi  such as:

w
=

i
i

p

1

1∑ =
(3-34)

In the limit, when all coordinates xi have equal weight in the distance, the weight

values are :

w = [1/p,...,1/p]t (3-35)

Given the coordinate weights (determined according to prior knowledge) and

Eq. (3-33), the problem is to establish the coefficients kii of the matrix K (assumed

here as a diagonal matrix) such as they reflect the strengths represented by w and,

in the limit, turn the matrix K into the identity Ipxp. Furthermore, matrix K has to keep

the self-contained property also when it is applied to a radial basis function, that is, in

the limit, the square of matrix K has to be the identity Ipxp. This last requirement leads

to the following equation:

k
=

ii
i

p
2

1

 =  p∑
(3-36)

Combining the conditions in Eq. (3-35) and Eq. (3-36) it is possible to relate

the coefficients kii with the weights wi  by:

w
=

i
i

p

 =  
1

∑ k
=

ii
i

p
2

1

p  =  1∑
hence:

kii = p i.w (3-37)

In Chapter 4, we discuss how the weights wi were established for financial

ratios describing the input vectors in the network developed for diagnosing financial

health problems.

  The RBF Network

A Generalized Radial Basis Function Network is a subcase of a regularization

network where the mapping X → Y is approximated by two space transformations.

First, a basis of the input space composed by M centers cj is identified. Then, for

each pattern xi presented to the net, a norm ||xi - cj|| is passed as a parameter to the

radial basis function associated to the center cj (e.g, a gaussian function with
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variance σj
2). The outputs of the hidden layer form the matrix G and the weight vector

w (connections to the output layer) is then calculated according to Eq. (3-30). In the

last step, the output is calculated as a weighted sum of the hidden layer activations.

Figure 3-5 is a schematic view of RBF networks.

Figure 3-5: Architecture of the Generalized Radial Basis Function (GRBF)
Network.

  Learning in RBF

From the discussion in the previous sections, one can conceive an RBF

network as a special two-layer net that becomes linear in its parameters by fixing all

nonlinearities in the first layer of connections. This characterizes the first set of

weights as a nonlinear transformation without adjustable parameters and responsible

for transforming the input space onto a new space. The transformed space is then

linearly combined through adjustable weights [CHEN91]. This identifies two learning

processes in an RBF network, one in the first layer of connections and other in the

output connections.

Regarding the first connections, it has been showed that the type of the

nonlinearity is not as crucial as the chosen centers are [POWE88]. The first phase

consists in setting the amount of hidden neurons and the value of their connections

to the input layer (i.e., the centers). The aim is to classify the training data into M (≤

N) categories (clusters). Both learning strategies can be used: supervised or

unsupervised [MOOD89]; and the number of centers is either determined by an

algorithm (e.g., Batchelor and Wilkins’ method [BATC69]) or it is given as an input

data (e.g., the K-means Clustering algorithm [HUSH93]). Several algorithms have
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been proposed to this task varying from simple random selection of input data to

sophisticated pattern recognition strategies.

The first issue is whether apply supervised or unsupervised methods to

determine the centers. In one of the first works in this area, Moody and Darken

suggested a hybrid learning strategy where the weights in the second layer are

determined supervisely (through the gradient descent) and the connections in the

first layer (the centers) are self-organized [MOOD89]. The authors proposed the use

of the well-known k-means clustering algorithm for determining the k centers and a

p-nearest neighbor interpolation method [DASA91] to adjust the widths of these

centers. The following criticisms have been made against this approach: (a) the

network has a fixed topology which requires a prior determination of the number of

centers [BERT95], that is, RBF shares the “number-of-hidden-units” dilemma of

multilayer perceptrons [FRIT94]; (b) p-nearest neighbor methods neglect the

importance of the similarity measure between the patterns; (c) and the method

presents a slow run-time and increased memory requirements [LOWE95].

After Moody and Darken’s work, Wettschereck and Dietterich demonstrated

the importance of supervised learning to RBF networks [WETT92]. They used

Poggio and Girosi’s supervised method [POGG89] to determine the centers

according to the gradient descent. In this method, the adjustments in the center

positions are established according to the gradient of the error function with respect

to the current centers. Although self-organized learning can be useful to skip the

local minima problem [LEE91], Wettschereck and Dietterich’s experiments show that

the supervised learning of center locations improves the network performance.

Nevertheless, when gradient descent is applied to both nonlinear and linear layers,

the network can become stuck in local minima [WETT92] and long training times

might be necessary [BERT95].

Particularly to this dissertation, the features of the financial diagnostic have

indicated the necessity of considering supervised strategies in the process of finding

the centers. As we discuss in Chapter 4, the financial diagnostic is not a pure

classification problem. The main difficulties are to find a norm that measures the

relative weights of each financial variable and to select the best set of firms (centers)

to represent the typical problematic situations.
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  The Orthogonal Least Square Algorithm

A successful supervised learning method is the Orthogonal Least Square

algorithm, developed by Chen, Cowan and Grant [CHEN91]. Their procedure

consists in a supervised selection of centers based on the orthogonal least squares

learning (OLS) strategy. The RBF network is viewed as a special case of the linear

regression model:

t c - x .wj j= +
=
∑ϕ( )i i j
i

M

ε ,  for j =  1,...,N
1

(3-38)

where t is a target vector, ϕ(.) is the radial basis function whose value is known as

regressor, ci is a center, xj is an input vector, wi is a weight vector and εj is the

regression error. Chen et all treat the problem of selecting centers as an example of

how to select a subset of significant regressors from a set of candidates [CHEN91].

Given a set of candidates to be centers, the strategy consists in transforming this set

into an orthogonal basis of the hidden layer space. This allows the calculation of the

individual contributions that each basis vector does to the desired output energy. We

show this procedure by considering Eq. (3-38) in its matrix form:

t = G.w + e (3-39)
where

t = [d1,...,dN]t  (N one-dimension output vectors) (3-40)

ϕ1(x1-c1) ... ϕM(x1-cM)
G

 =
... ... ... (3-41)

ϕ1(xN-c1) ... ϕM(xN-cM)

w = [w1,...,wN]t (3-42)

e = [ε1,...,εN]t (3-43)

Matrix G is the regression matrix and can be decomposed in :

G = O.A (3-44)

where A is an MxM triangular matrix with 1’s in the diagonal and the basis vector

coefficients αiq (i=1,..,M-1, and q=2,...,M) above the diagonal; and O is an NxM matrix

composed by orthogonal vectors oj (j=1,..,M) of the hidden layer space.  Both

matrixes A and O are obtained from the orthogonalization process. Chen et all

suggest the use of the classical or modified Gram-Schmidt to find the orthogonal

basis O and the coefficient matrix A. The Gram-Schmidt orthogonalization process

can be described by the following procedures:
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o1 = ϕ1,

for k = 2 to M:

( )α ik i
t

k i
t

i= ≤ ≤o o oϕ ,   1  i  k -1 (3-45)

o ok k ik i
i

k

= −
=

−

∑ϕ α
1

1

endfor.

This method had been applied before in the context of neural networks as a

form to increase the Backpropagation algorithm [ORFA90]. Here, however, the aim

is to measure the contribution that each basis vector does by allowing a subselection

of centers in the set of M candidates. This is accomplished by the orthogonal least

square method. Given a set of M candidates to be regressors (centers), after the

orthonormalization, the target in Eq. (3-39) can be expressed by [CHEN91]:

t = O.g + e (3-46)

where

g = [g1,...,gM] with ( )gi i
t

i
t

i= o t o o. .  , 1 ≤ i ≤ M (3-47)

Chen et all consider the energy t2 in Eq. (3-46) :

t t o o e et
i i

t
i

i

M
t= +

=
∑ g 2

1

(3-48)

With the energy Eq. (3-48), it is possible to obtain the variance of the desired

output by:

N N Nt
i i

t
i

i

M
t-1 -1 -1. t t . o o .e e= +

=
∑ g 2

1

(3-49)

the first term in the left hand of Eq. (3-49) is the contribution of the regressors to the

variance of the desired outputs. The other part can not be explained by the

regressors. In each iteration, the procedure consists in selecting the regressor with

the largest possible contribution to the energy t2, stopping when the error energy has

been reduced to the specified tolerance [SHER92]. Chen et all established the

following error reduction ratio due to the regressor oi  [CHEN91]:

[ ] ( )error
i i i

t
i

t= ≤ ≤g 2o o t t ,  1  i  M (3-50)

the search for an orthogonal basis is now based on the choice of the most significant

regressors, that is, for each iteration i, among the N-i+1 remaining vectors oi it is

chosen the one that maximizes Eq. (3-50). The algorithm is the following [CHEN91]:
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At the first step, for 1 ≤ i ≤ M, compute:

o1
i = ϕi, /* the basis begins with the M RBF values (non-orthogonal) */

( ) ( )( )g1 1 1 1
i i t i t i= o t o o

[ ] ( ) ( ) ( )error
i i

i
i t t

1 1 1 1= g
2

o o t ti /*orthogonalization error of each regressor
*/

Find [ ] [ ]{ }error error
i i

1

1

1
= ≤ ≤,  1  i  M /*find the most significant regressor */

and Select   o1 = o1
1i = ϕi1, /*select the first orthogonal basis vector */

At the k-th step, with k ≥ 2, for 1 ≤ i ≤ M, and i ≠ i1,..ik-1 (i.e., exclude the previous
selections), compute:

( )α jk
i

j
t

i j
t j k= ≤ ≤ −o o o jϕ ,  1 1 /*orthogonalization coefficient of  regressors*/

o oi
k i jk

i
j

i

k

= −
=

−

∑ϕ α
1

1 /* Gram-Schmidt orthogonalization process */
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k
i t

k
i t

k
i= o t o o

[ ] ( ) ( ) ( )error
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i

k
i

ki
i t

k
t= g

2
o o t ti  /*orthogonalization error of each regressor */

Find

[ ] [ ]{ }error error i i
k

ik

k

i

k= ≤ ≤ ≠ ≠ −, ,..., 1 i M,  i i1 1

/* find current regressor */

and Select o o o=
i

k k
k

ik jk j
i

k

jk jk
ik j k= − = ≤ ≤ −

=

−

∑ϕ α α α, , where 
1

1

1 1

Terminate the procedure after Ms regressor selections when 1
1

− <
=
∑[ ]err j
j

Ms

ρ ,where 0<ρ<1

At the end, the centers are the Ms regressors that achieved the

orthogonalization accuracy. In each iteration, the OLS algorithm increases the

dimensional of space spanned by the regressors from (k-1) to k by introducing a new

basis vector. The principal merit of the OLS algorithm is to minimize the risk of

choosing linear combinations of the chosen centers as additional centers.

 3.4.4.   Backpropagation or Radial Basis Function?

After analyzing the Backpropagation and RBF algorithms, it remains the issue

of which should be the method applied to the diagnostic of financial health problems.

Both networks have been applied successfully to financial problems and only a direct

comparison of results will define the best choice. Nevertheless, it is possible to

anticipate advantages and shortcomings of each model by comparing some general

features.

Lowe represents the difference of paradigms between the Backpropagation

and RBF models by Figure 3-6. While Backpropagation networks exploit the logistic
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nonlearity to create combinations of hyperplanes to dissect the pattern space, RBF

classify the patterns by modeling clusters of data directly and oriented to the

information distribution [LOWE95b].

Figure 3-6: Dissection of Pattern Space by Clusters (RBF) and Hyperplanes
(MLP). (in [LOWE95])

While Backpropagation may reach local minimum, RBF allows changes on

the learning strategies that avoid such situation. On the other hand, MLP performs

global approximations of nonlinear mappings �p → �q and are able to generalize

even with little data. RBF performs on local approximations based on localized

nonlinearities. This makes it less sensitive to the order of presentation of samples

but it might require a large number of RBF's in some cases. Our strategy will be to

implement and test both algorithms and check for the more adequate to the problem.

RBFMLP

Data Space



 4 

Application:

Financial Health of Small Retail Firms

 4.1.  Introduction

In this chapter we present the application of this dissertation. First, we present

the definition and relevance of the problem in the field of Finance and the choice and

generation of the financial variables. The discussion is based on the findings of

Martins about the more suitable tools in Finance to diagnose and indicate solutions

to financial problems [MART96].

After analyzing the problem according to a financial point of view, we discuss

the hybrid neuro-symbolic solution and the proposed architecture to the system

[PACH95].

 4.2.  Financial Statement Analysis

Financial Statement Analysis is an information-processing system designed to

provide data to decision makers based on financial statements and on

nonaccounting data (e.g., stock prices and aggregate economic indicators) [LEV74].

Its primary and essential function is to convert data into useful information to aid the

decision maker in the evaluation of the current and past financial positions and

results of the firm’s operations [BERN88]. The actual scope of Financial Analysis

depends on its purpose, varying from a total analysis of the firm’s strengths and

weaknesses to a much simpler analysis of its short-term liquidity [BRIG90].

The variety of purposes makes financial analysis rather than a single

information system, a flexible method of drawing conclusions about the firm. There

are three basic forms of financial reports:

• balance sheet;

• income statement; and

• statement of changes in financial position.

Balance Sheet intends to report the financial position of a firm at a particular

point in time by listing its total assets and total liabilities. Therefore, it is a measure
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based on accounting concepts fixed on a period of time, such as cash, accounts

receivable, and inventory. The problem with this accounting approach is that,

although the balance sheet may be adequate to measure activities related to short-

term financial management, financial decisions require cash flow information rather

than accounting numbers. Cash flow is connected with many elements that either do

not appear on balance sheet or appear only on its long-term portion [HILL88].

Income Statement reports the profit performance of a firm in a specific period

of time in a form of product revenues and factor costs (expenses), that is, the results

of operations [WELS77]. The most important measure of the income statement is

the Net Income. Net Income is the difference between revenues (inflows of cash and

other elements due to goods sold or services rendered) and expenses (outflow of

resources, debt payment or taxes related to goods and services used to earn the

revenues). In evaluating a firm’s performance, the income statement is more

important than the balance sheet because it gives greater emphasis upon earnings

as compared with asset book values [MCMU79]. Nevertheless, the accrual nature of

the accounting elements in the income statement hides the economic profit (i.e., the

profit considering the opportunity cost of capital) and necessary information to cash

flow (e.g., the time when services were rendered or goods were sold). Therefore,

several adjustments need to be made in order to reflect both implicit and explicit

costs [GALL91].

Statement of Changes in Financial Position is a report of the inflows and

outflows of cash. It lists the source of funds (cash inflows) and the use of funds (cash

outflows) in a certain period (usually a year). The utility of this statement becomes

more clear when it is converted to Statement of Cash Flows by incorporating the

changes in net working capital (current assets-current liabilities). The latter statement

is more useful in developing forecast about the amount of cash likely to be spent in

the future to satisfy obligations and to evaluate risks. Also, it is restricted to the cash

transactions during the period, disregarding other events [GALL91].

The three financial statements represent different and complementary

information systems to the financial analysis. Besides the information, the financial

analyst has to identify the best framework to the problem. Foster [FOST86] classified

the different frameworks according to the objectives of the analysis. A schematic

view of Foster’s classification is shown in Figure 4-1.
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Figure 4-1: Foster's Classification of Financial Statement Analysis
Techniques.

The first goal of Financial Statement Analysis is the Cross-sectional analysis,

that is, the study of firms in a specific economic sector. Common-Size Statements

and Financial Ratio Analysis are two techniques used to compare firms. Common-

Size Statements tend to reduce the effect of the firm size when comparing financial

statements of firms. The strategy is to describe the financial information available

(balance sheet, income statement, statement of changes in financial position or

other) in percentages. For instance, the balance sheet can be expressed as

percentages of the total assets or the income statement as percentages of total

revenues [FOST86].  The most widely used method of comparing performances of

firms is the Financial Ratio Analysis. This technique reduces the amount of

information and emphasizes the relationships between financial elements rather than

their individual values. Inter-firm differences in financial ratios represent important

distinctions in risk and profitability for investors and lenders and an accurate study of

ratios can reduce their losses [TAMA78].

Another objective of Financial Statement Analysis is the Time-Series analysis.

It consists of the study of firm’s performances over the time in order to forecast its

financial health based on current and past information. Rather than comparing firms’

performances, Time-Series uses the firm’s information to predict its future

developments.  Time-Series is accomplished either by Trend Statement or by

Financial Ratio Analysis. Trend Statements are elaborated by fixing a base period

and by expressing the financial elements of subsequent periods by their relative

values in the base period. A time-series trend can also be identified by studying

financial ratios over the time. Basically, these studies isolate individual ratios or

combinations of ratios which are observed in search for trends that may forecast

failure [GIBS89]. The third approach for time-series is the variability analysis where

Financial Statement Frameworks

Time-SeriesCross-Sectional
Combining Financial

Statements with Non-Financial
Information

Financial
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Common
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Product
Market

Capital
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ratio and other variables are also measured over the time. However, in this approach

the aim is to define relationships between the extreme values (maximum - minimum)

and the mean over the period [FOST86].

The third goal of Financial Analysis is to study firms’ performances in order to

establish strategies of investments in capital market. This involves the combination

of financial statements and non-financial information including product market and

capital market. Product market statements provide information about the market

share shifts. Capital markets give a broader range of information, including insights

about the changes in expectation of profitability trend, and dividends payout

(Dividends paid/Net Income) [FOST86]. Both information are important especially for

investors and shareholders.

Particularly to the financial problem considered here, Financial Statement

Analysis has a twofold use:

i)  to diagnose possible financial problems of small firms based on their

financial ratios (and trends) and on the corresponding average values of

the economic sector; and

ii)  to support the deductive strategy to check for causes and offer solutions to

financial problems.

Therefore, according to the classification illustrated in Figure 4-1, Financial

Statement Analysis is used in this work as a cross-sectional and time-serial

technique based on financial ratios. In the following sections we address the

classification, functional form, distribution and estimation of financial ratios. Then, the

expert’s theoretical basis [MART96] for justifying the choice and estimation of the

ratios used in the system is discussed.

 4.2.1.   Financial Ratio Analysis

Financial Ratio is a Financial Statement technique based on proportionate

relationships between financial elements X and Y described as X/Y ratios. The two

reasons for using financial ratios are: to control the size effect when financial

variables are examined; and (b) to control industry-wide factors [BARN87]. These

indexes can turn the comparison between firms of different sizes more effective and

determine the financial status of a firm from different financial perspectives.
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The choice and use of financial ratios depend on the purpose of the analysis.

Financial ratios are used and perceived differently by commercial loan departments,

corporate controllers, certified public accounts and chartered financial analysts. For

instance, while loan departments look for debt and liquidity measures, financial

executives pay more attention to indexes of profitability [GIBS89].

Salmi and Martikainen [SALM94] divided the theoretical and empirical basis of

financial ratio analysis into functional form, distributional characteristics, classification

and internal rate of return estimation of financial ratios. Based on the study of these

areas, Martins established the criteria for the choice of the financial ratios (i.e., input

information) and financial problems (output classification) that compose the neural

network module [MART96]. We first address the classification of financial problems

and financial ratios. Afterwards we address the Martins’ studies and findings

concerning the inductive financial ratio analysis applied to financial diagnosis of small

retail firms.

 4.2.2.   Financial Problem Classification

The first issue to be addressed by an expert analyzing the financial health of a

firm is the choice of an adequate set of ratios that covers its activities. With this issue

comes the classification of the financial problems to be diagnosed.

The process of analyzing financial problems based on ratios can be

understood by the metaphor shown in Figure 4-2. Financial ratios act as “flashlights”

to specific aspects of financial problems. Some ratios are more enlightening then

others like flashlights with a bigger light bulb. There are ratios of difficult

classification. They can be used as indicators of more than one problem (though

they do not give the same level of information in each case). This could be seen as a

fixed  flashlight whose moves can illuminate different rooms: the illumination would

be different but helpful in both cases.

Salmi and Martikainen [SALM94] classified the methodology for classifying

financial problems (the rectangles in Figure ) into four approaches: pragmatical-

empiric, deductive, inductive, and confirmatory.
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Figure 4-2: Relationship between Financial Ratios and Financial Problems.

 The Pragmatical-empiric approach is based on the practical experience of

the analyst. There has been no consensus in either the number or the specification

of the problem categories. The Deductive approach is based on the du Pont triangle

system (i.e., the categories profits/total assets, profits/sales, and sales/total assets).

Its practical application became limited or mixed with the Confirmatory approach.

The Inductive (or data oriented) approach is based on statistical factor analysis.

Again, there have been no consensus about the number and the definition of the

categories and, particularly in bankruptcy studies, there is instability of financial ratio

groups [MARTK94]. The last area identified by Salmi and Martikainen is the

Confirmatory approach where a priori ratio classification is hypothesized and

checked with empirical evidences built upon statistical tests such as cluster analysis

[SALM94].

The main conclusion drawn from Salmi and Martikainen’s work [SALM94] is

that the best approach for ratio classification is problem-dependent, that is, it

depends on the objective of the ratio analysis and on its application environment.

Particularly for the purpose of financial health diagnosis of small size firms through

inductive reasoning, a suitable approach identified by Martins [MART96] is the Lev’s

Pragmatic-empirical methodology [LEV74] .

Lev developed a cross-sectional analysis of financial ratios based on four

economic aspects of the firm’s operations [LEV74]:

• Profitability ratios;

• Short-term solvency (liquidity) ratios;

financial ratios

financial problems
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• Long-term solvency (debt) ratios; and

• Efficiency (turnover or activity) ratios.

Profitability ratios measure the firm’s ability to generate earnings [GIBS89].

They were designed to evaluate the firm’s efficiency in using stockholders and

lenders’ capital [LEV74] and in generating its own profits [GALL91]. Short-term

Solvency or Liquidity ratios indicate the firm’s ability to meet its short-term obligations

[LEV74] or simply the firm’s ability to meet cash demands as they appear [GALL91].

The long-run financial and operating structure of a firm is measured by Long-term

solvency (Debt or Coverage) ratios. Finally, Efficiency (Turnover or Activity) ratios

are indirect measures of cash flow [GALL91].

From the four categories above, three were chosen as representative groups

of financial problems that are likely to be warned by financial ratios in the case of

small retail businesses. The chosen categories are:

• Profitability;

• Short-term Liquidity; and

• Debt.

Profitability ratios are computed from income statement alone or combined

with balance sheet. Liquidity and Debt ratios are computed from balance sheet

information [HORN85]. There are two reasons for not assuming Activity problems

explicitly: first, when a firm presents activity problems, its operational structure will

eventually lead to one or more of the other problems; second, the problem

identification through inductive reasoning (neural network module) aims to reduce

the space solution in the deductive reasoning (expert system module) rather than

presenting the final answer [MART96].

 4.2.3.   The Financial Ratios Chosen

The number of ratios available to financial analysts increases geometrically

with the amount of financial data [HORN85]. Selecting significant ratios is even more

difficult than classifying financial problems. The purpose and environment of the

financial statement analysis are the keys to chose the ratios. Particularly in financial

diagnosis based on inductive analysis, the total of ratios should be large enough to

cover the different facets of financial problems and sufficiently small to not overload

the amount of information. The criteria for selecting and computing financial ratios

are dependent on the kind of business, firm size and homogeneity of the industry
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sector [MCMU79]. With these restrictions in mind, eight financial ratios were chosen

and further studied as measures of financial health of small retail firms [MART96].

In Table 4-1, Table 4-2 and Table 4-3 we describe briefly the financial ratios

chosen to measure Profitability, Short-term Liquidity and Debt problems,

respectively. These ratios were chosen among tens of financial indicators. Martins

justified the choice based on the features of the small retail business. A different kind

of firm would certainly require a different set of ratios [MART96]. The chosen

indicators offset some shortcomings of classical financial ratios (as the inability of

truly measuring resource flows [GALL91]). Horne, Dipchand, and Hanrahan

[HORN85] emphasize that no ratio alone can realistically assess the financial

condition and performance of a firm, but a group of them can be useful on this task.

However, the usefulness of the ratios depends on how the financial analyst

perceives their values and relations [PACH95].

Table 4-1: Financial Ratios Related to Profitability Problems.
Ratio Significance

Cash
Flow to
Sales

meaning: Cash Flow = profit before earnings and taxes + depreciation
expense + depletion expense + amortization expense. Sales = gross
operating receipts - the cost of the returned items.
relevance: it is a critical indicator of the firm’s productivity and
creditworthiness, because it measures the relative amount of funds originated
by sales and production.

Net
Income
to Sales

meaning: Net Income (profit - taxes and expenses) over Sales.
relevance: it is helpful to estimate the Net Income based on sales projection.
Particularly in the case of Brazilian retail firms, the flexibility with margin is
more restricted. An excessive increase in the margin may lead to loss of
market while intensive reductions may cause financial problems [MART96].

Working
Capital

Turnover

meaning: Sales over average Working Capital (current assets - current
liabilities).
relevance: It measures how efficiently the working capital is being used to
generate revenues. Its main use is to estimate working capital needs given
the sales projection [TYRA92].
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Table 4-2: Financial Ratios Related to Short-term Liquidity Problems.

Ratio Significance

Cash
Conversion

Cycle

meaning: net time interval (in days) between actual cash
expenditures on productive resources and the ultimate recovery of
cash [PINC90] or, simply: the operating cycle cash-to-inventory-to-
receivable-to-cash.
relevance: it measures (a) how capable the firm has been in
covering the obligations with cash flows from an employment of
inventory and receivable; and (b) how sensible is the cash flows to a
change in sales or earnings.

T-Working
Investment

TWI

meaning: Working Capital - Working Investments over Working
Investment (which is operating assets - operating liabilities)
relevance: When this ratio is relatively high, the firm has capacity to
finance its WI with the resources available in the short term. A
relatively low value (as a trend) indicates that the firm is financing its
working investment with short term loans.

TWI trend
it confirms or refutes hypothesis regarding TWI depending on the
trend. For instance, factors such as seasonally are verified by the
trend and not for the single values of TWI.

Table 4-3: Financial Ratios Related to Debt Problems.

Ratio Significance

Earnings
Before Interest
and Taxes to
Investments

Earnings Before Interest and Taxes to Interest Expense (also called
times-interest-earned) is related to the financial leverage of the firm.
The aim is to measure how well the earning capacity of the firm
corresponds to its leverage position.

Debt to Equity

The relation between debt (from the balance sheet: Liabilities & Equity -
Equity) and equity (total assets - total liabilities) measures the balance
between reduced risk of insolvency by employing mainly equity capital
or increased gains (or losses) on equity capital by applying leverage
(use of debt) to earn project returns [GALL91].

 4.2.4.   The Random Generation of Samples

Once the ratios have been established, there are two alternatives to the

definition of the sample data to train the neural network: (a) collect real data from

financial reports of the sample firms; or (b) generate random samples that represent

the economic sector to be modeled.

The first alternative is only conceivable when the real data is somehow

accessible. Published financial reports (e.g., [COMP95], [SCHO93] and [DUN94])

then become an alternative. Unfortunately, such reports state only the averages of

the financial ratios per economic sector and firm size. Although the averages provide

the guidance to establish the sector standards, the neural network training has to be

based on actual firms’ data. The alternative to financial reports is to collect data
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directly from firms of the economic sector under study. Given a specific economic

sector and firm size, the real data available barely surpasses a hundred. Indeed,

some studies applying neural networks to bankruptcy prediction have used a few

more than a hundred firms as sample data (e.g., [RAGH93], [RAHI93], [ODOM93],

[WILS94]). However, the financial health evaluation is a more complex problem.

Rather than predicting the death or life of a patient (bankruptcy/not bankruptcy), the

aim is to identify the possible illness (profitability, liquidity, debt) for a further

treatment. In terms of neural network architecture, this means that the financial

diagnosis network requires more output neurons than the single Boolean cell used in

bankruptcy models. Consequently, the amount of samples has to be greater as well.

The second alternative to obtain training data is the random generation of

samples. The issue is then what probabilistic distributions can represent financial

ratios within an economic sector.  Although traditionally financial models have been

developed under the focus of normality, there are reasons to expect nonnormality for

financial ratios [FOST86]. For instance, the distribution can present skewness when

the numerator and denominator of the ratio do not hold the hypotheses of strict

proportionality or the limits can prevent a normal distribution. Among the several

alternatives to solve the problem of nonnormality, one can identify the specific

nonnormal distribution by analysis of sample evidence, prior evidence, or by

economic analysis of the ratio distribution [FOST86].

The strategy adopted was to recognize the nonnormality of financial ratios

and to study different distributions for the retail grocery sector (SIC 5140). Martins

[MART96] studied the distributional forms of financial accounting ratios presented by

Buckmaster and Saniga [BUCK90]. The Beta distribution was selected as the initial

function for each of the 8 financial ratios. The reason lies on its richness of forms

including the J-shape and U-shape functions. Martins studied each ratio and

evaluated how this measure can model small firms in the retail grocery sector. Each

ratio distribution was established by varying the parameters α and β of the Beta

distribution (with mean values taken from the IRS Corporate Financial Ratios

[SCHO93]). Once the distributions were defined, the samples were generated

randomly (according to an algorithm in [DAGP88] pp. 194-195). For each firm

generated, a new study was developed comparing its random ratios. The aim was to

identify any discrepancy in the relationship between the individual ratios of each firm.

Whenever the random ratio values were contradictory, the ratios were changed to

keep consistency. Figure 4-3 is a summary of the random generation of the first ratio
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(see Appendix A for the others). Notice that the modifications in the random values

changed the final ratio distribution.

Final Distribution:
mean = 2.53; StdDev = 1.66; min = -0.79; max = 6.37;
histogram range: -1 to 7
Best Fitting: Triangular Distribution: (-1,1,7);
Sq. Error: 0.00783

Original Distribution:
Bucksmaster’s U shape
Beta Distribution: beta(3.5, 3);
Chosen interval:  [-2,7]

0

0.5

1

1.5

2

2.5

-2 -1 0 1 2 3 4 5 6 7

beta(3.5,3,-2,7,x)

Ratio Limits (Profit and Loss) According to the firm size [SCHO93]:

Figure 4-3: Random Distribution of the Financial Ratio Cash Flow to Sales.

Three hundred and five (305) retail firms were generated, 200 were used to

train (Appendix B) and 105 to test the neural models (Appendix C). In each case,

there was the concern of keeping a fair distribution of samples with respect to the

financial problems. Table 4-4 is a summary of the distributions of the financial

problems.

Table 4-4: Distribution of the Samples Regarding the Financial Problems.

Financial Problem Distribution on the
Training

Distribution on the
Testing

Profitability 27 13.5% 18 17.2%
Short Term Liquidity 35 17.5% 12 11.4%
Debt 33 16.5% 14 13.3%
Further Analysis 29 14.5% 11 10.5%
Profitability and Short Term Liquidity 21 10.5% 17 16.2%
Profitability and Debt 24 12.0% 19 18.1%
Short Term Liquidity and Debt 31 15.5% 14 13.3%

Total of Firms 200 100% 105 100%

All

5.1 2.8

 1M to 999.99M
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 1MM to 24.99MM

3.4 2.0

25MM  to 999.99MM
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 100MM and over
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0.0516Exponential

0.0329Uniform
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0.0114Erlang

0.0112Lognormal

0.0103Beta (2.1,2.65)

0.0078Triangular

Sq ErrorFunction
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 4.3.  Neural Network: Diagnosing Through Inductive

Reasoning

The relation between the indicators and the financial problems depends on

the size of the firm, the economic segment, seasonal sales, and business cycle (e.g.,

[OSTE92], [HAWA86]). Depending on these factors, similar ratios can indicate

different financial problems. For instance, the analyst can consider the same ratios

with different weights when analyzing distinct economic activities. Besides, as shown

in Figure 4-2, although a ratio was related to one category of problem, it can also

affect others. For example, when the activity ratio Net WC/sales is high it might be

an indication of low profitability too.

These are some of the reasons that justify the use of a neural network in the

diagnostic phase. It is difficult to establish the direct causal relationship for financial

problems. Even if possible the relationship would be too specific and would need to

be updated according to the business being analyzed. Updating and learning with

indirect relationships are typical advantages of neural networks. Furthermore, the

past values of the adjustment ratio influences the future performance of the firm

[DAVI93]. Predicting future events based on past data is another task appropriate to

neural networks. Particularly in finance, neural networks have performed better than

traditional techniques. They have been applied in areas such as bankruptcy forecast

[WILS94], prediction of loan chances [BARK90a], and analysis of investments

[BARR94].

A close analysis of the financial problem classification allows one to conceive

the mapping ratio-problem. The problems can be represented by regions on the ratio

space. Rather than a single region, a financial problem is represented by areas

limited by different relations of ratio values. This means that there are several

combinations of ratios that lead to a similar financial problem [MART96]. Considering

this fact, it seemed plausible that the Radial-Basis model could represent well this

feature by allocating a center to each region of a problem. On the other hand, the

limited amount of data was a reason to believe that the Backpropagation model

would be more suitable to learn the ratio-problem mapping. Therefore, testing both

models became a natural choice.
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 4.3.1.    The Scaling Process

A neural network can learn only if the training data is presented within an

appropriate interval. The real data must be scaled into a range that reflects the

trends in the original data without affecting the generalization performance. This is

accomplished by the scaling process. Specifically in the data sample of the financial

ratios collected, the range of each ratio varies according to the data shown Table 4-

5. The different nature of the RBF and Backpropagation models required distinct

scaling processes. In the next sections we discuss the strategies adopted in each

case.

a)   Scaling in the RBF network

In the RBF networks, the scaling was established considering three aspects:

• neuron activation;

• critical points and distinguished compressions in the critical
intervals; and

• the relative importance of each ratio to each financial problem.

neuron activation. In RBF networks, the neuron activation is a function of the

distance among input patterns. Considering the raw input data, the parameter of the

radial basis function lies between the interval [minimum distance; maximum

distance]. According to Table 4-5 the maximum Euclidean distance between two

patterns (firms) is3:

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

dmax =
+ + + +

+ + +

− − − − − −

− − − − − − −

6 37 0 79 3 21 2.81 32.54 1 91 78 12 2.26)

0 80 5 60) 1 00 1 00) 7.82 5 34 4.98 10 11

2 2 2 2

2 2 2 2

. ( . ) . ( ) ( . ) . (

. ( . . ( . ( . ) ( . )

dmax  ≅ 85.

there are two problems here: first, this value would not be differentiated by an RBF

neuron with a gaussian function. Even the actual maximum Euclidean distances in

the training set leads to the following results (taking a fixed variance equal to 1):

for distance = 76.6: e d− =
2

5.41 10x 
-34

for distance = 7.60: e d− =
2

4.71x10   -4

                                               

3 This theoretical maximum Euclidean distance rarely occurs in practice. The actual maximum
Euclidean distance in the training data is 76.6 (90% of the theoretical maximum).
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The precision of the calculus has to be sufficiently high to differentiate the

activation of the actual maximum distance from the activation of 10% of this

maximum. Second, the Euclidean distance is practically established by one ratio

alone. The proportional contribution of each ration is: 0.7%, 0.5%, 13%, 79.6%,

0.6%, 0.06%, 2.4%, and 3.2% respectively. This means that ratio 4 is responsible for

almost 80% of the maximum distance value. The Euclidean distance has also the

disadvantage of mixing units of different coordinates. For instance, while the Cash

Conversion Cycle is measured in days, the trend(TWI) is evaluated by one of the

strings [decreasing, stable, increasing] represented by the numbers -1, 0 and 1,

respectively. Obviously, by mixing such units one yields unreasonable results. A

solution for this problem is the adoption of the Weighted Euclidean Norm:

Table 4-5: Scaling Situation of Each Financial Ratio.

Ratio 1 2 3 4 5 6 7 8

Name Cash
Flow/
Sales

Net
Margin

CCC Sales/W TWI trend
(TWI)

EBIT/I Debt/ Eq

Problem Profitab Profitab S.T.Liq. Profitab S.T.Liq. S.T.L
iq.

Debt Debt

minimum -0.79 -2.81 1.91 2.26 -5.60 -1.00 -5.34 -10.11

maximum 6.37 3.21 32.54 78.12 0.80 1.00 7.82 4.98

variance 2.74 1.73 47.65 249.72 2.16 0.39 8.93 8.16

Critical < 2 and
> 3.5

< 1.2
> 3.0

< 7.0
> 23

< 7.0
> 45

< 0.2
> 0.5

< 2.0
> 4.5

< 0
> 3

Points -

Scaling Case
II II II II II I II II

d ,  w x - y
=

( ) = ( )ix y ×∑ i i
i

p
2

1

(4-1)

where x, y and w ∈ �p and w is the weight vector that balances the contribution of

each coordinate i = 1,...,p in the calculus of the distance. One of the methods to

determine the weight vector w is to establish wi as the variance of coordinate i. The

resultant distance is then called Equal Variance Scale. This distance is invariant with

the units of each coordinate and all variables contribute with the same grade to the

squared distances [HART75]. The maximum weighted Euclidean distance of the

patterns in the training set of the financial ratio problem is given by:

30

30% 30%

4.52

30% 30%

0.50.2

30% 30%

457

30% 30%

237

30% 30%

31.2

30%

3.52

30% 30%
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( ) ( ) ( )
( ) ( ) ( )
( ) ( )

dmax

6.37

=

+ + +

+ + +

+

− − − − −

− − − − − −

− − −

( . ) . ( ) . ( . )

. ( . ( . . ( . .

( . ) . ( . ) .

0 79 2.74 3 21 2.81 1 73 32.54 1 91 47.65

78 12 2.26) 249.72 0 80 5 60) 2.16 1 00 1 00) 0 39

7.82 5 34 8 93 4.98 10 11 8 16

2 2 2

2 2 2

2 2

dmax = + + + + + + +18 68 20 97 19.69 23 04 19.0 10 24 19.40 27.92. . . .

dmax  = 12.61.

the values in the square roots represent the contribution of each ratio to the

maximum distance, that is: 11.7%, 13.2%, 12.4%, 14.5%, 12%, 6.4%, 12.2%, and

17.6%, respectively. The weighted Euclidean norm brought the maximum difference

among contributions from 79.6% to 11.2% of the maximum distance.

The affect of the weighted Euclidean distance on the neuron activation can be

noticed by observing its actual value in the training set, that is, 8.86. In this case, the

gaussian values (for a fixed variance of 1) would be:

for distance = 8.86: e d− =
2

1.42 10x 
-4

for distance = 0.886: e d− =
2

0.4123  

It can be noticed that 10% of the maximum distance is now much more

distinguishable than with the Euclidean norm.

critical points and distinguished compressions in the critical intervals. During

the knowledge acquisition process, some critical regions have been established for

each financial ratio. A critical region is the vicinity of an imaginary turning point

regarding the pattern classification. For instance, in ratio 1, Cash_Flow/Sales, the

expert identified the neighborhood of 2.0 as the region where a retail company might

be close to an insufficient generation of cash. Although this is not a definitive

classifier (since other ratios must also be checked before the diagnostic), it is an

indication that might be associated to an unsatisfactory profitability.

A ratio has either one (case I) or two critical regions (case II). The choice of

the critical point is based on the financial sector and means only a warning that can

be even ignored, depending on the other financial ratios. In other words, the critical

points can not be seen as financial rules but only as hypothetical landmarks to the

classification. The inclusion of critical points aimed to distinguish the scaling factors

among ratio intervals. In this way, broader ranges of values with similar patterns can

be “compressed”, reducing the weighted distance (i.e., approximating similar

patterns).
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(a) original ratio range. A critical point cp is
considered the turning point of the ratio
interval.

(b) scaling interval. the network input data
is preserved into the original interval. The
critical point cp is scaled into the point e. The
scaling is differentiated by distinct
compression grades in the warning and in
the remaining regions.

Figure 4-4: Scaling Case I: (a) original ratio range (b) scaling interval.

According to the critical points, there are two scaling cases. For each, a

general scaling equation was established and applied to the ratios. Case I of scaling

is illustrated in Figure 4-4a. In this case, the ratio has a single critical point cp that

corresponds to the turning point e in the scaled interval. Once the point cp has been

established, the formula for scaling the financial ratio values is given by :

r

r

cp
e

e
r cp

cp
e cp

s =
+ −

−
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+ −
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− >




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
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;  r  cp

  r

(4-2)

where e = min + (cp-min)*(1-comp/100) (4-3)

r is the original ratio, rs its correspondent scaled value, and comp is the percentage

of compression of the critical region.

The scaling case II is illustrated in Figure 4-5. Two critical points cp1 and cp2

are determined, establishing two “warning regions”. Points e1 and e2 in the scaling

interval are the limits to the compressions of the critical regions 1 and 2, respectively.

The scaling of a financial ratio r is given by the following equation:
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where r is the original ratio, rs its correspondent scaled value, and comp1 and

comp2 are the percentages of compression of the critical regions 1 and 2,

respectively. The scaled value e1 is determined by Eq. (4-3) and e2 by the

warning

maxcpmin

% compression

maxemin

min cp max
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following:

e2 = max - (max - cp2)*(1-comp2/100) (4-5)

In Table 4-6 we present the critical points and grades of reduction adopted in

the RBF model. In fact, several grades of reduction were tested and 30% yielded the

best results regarding the tradeoff training-testing errors.

(a) original ratio range. Two critical points cp1

and cp2 are considered turning points of the
ratio interval.

(b) scaling interval. the original interval is
preserved. The two critical points cp1 and
cp2 are scaled into e1 and e2, respectively.
Ratios in the ranges min-e1 and e2-max
are compressed according to comp1 and
comp2 grades, respectively.

Figure 4-5: Scaling Case II: (a) original ratio range (b) scaling interval.

relative importance of each ratio. The weighted Euclidean distance reduces the

effects of different units and intervals of each coordinate. Each coordinate has the

same strength in the final distance. Nevertheless, there still remain an important

issue when the weighted Euclidean distance is applied: do all coordinates count with

the same grade in the measure of similarity? Particularly in our case, this is not true.

As we see in the next section, a single RBF network was unable to learn the patterns

of the firm. Three network were designed and trained independently, one for each

financial problem (Further Analysis is a result from the activation of the other output

neurons). Therefore, there was need for considering each ratio differently in each

financial problem. The weight of each ratio depends on the similarity criteria. For

instance, if two firms are being compared regarding their profitability condition, ratios

1, 2, and 4 in Table 4-7 should weight more than the others. The strategy here was

to identify the weight of each ratio in each financial problem. The individual weights

were established with two rules in mind: they should reflect the importance of the

ratios and should add up 1. The expert decided, first, to identify clusters of

importance (according to the nature of the ratios) and divide the weights within each

cluster.

comp1 % comp2 %

maxe1 e2min

min cp1 maxcp2
warnings

cp1min maxcp2
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Table 4-6 : Scaling decisions for each financial ratio.

ratio c1
Comp

1

financial
warning

c2
Comp2

financial
warning

e1 e2

1 2.0 30% improper cash
generation.

3.5 30% - - -

2 1.2 30% low profitability. 3 30% - - -

3 7 30%
high turnover (bad for
period and sector
considered, but it can be
favorable in some
circumstances)

23 30%
too much
capital tied up
to the short
term cycle.

4 7 30% low working capital
turnover.

45 30% high financial
cost in order
to run the
short term
activity

5 0.2 30%
the short term debt is
either high or
compromises the entire
cash.

0.5 30% - - -

6 0 0% watch 5 0 0 - -1 1

7 2 30%
earnings insufficient to
fulfill obligations. 4.5 30% - - -

8 0 30%
high business risk
premium (Equity < 0). 3 30%

high financial
risk
(premium)

0.5 0.8

The ratio weights in Table 4-7 were determined for each similarity criterion

(i.e., for each financial problem) according to the following empirical strategy: first,

the ratios were grouped into three or four categories. Each category was weighted

based on its affect on the financial problem. The weights within the categories were

then established in order to describe their relative importance and to add up the

category weight. For each financial problem this process was repeated until the

expert was satisfied with the relative importance of each financial ratio. The

percentages in Table 4-7 are the parameters wi in Eq. 3-28 to determine the final

weights kii used in the calculus of the distance4.

                                               

4 According to EQUATION 3-27, for each financial problem the sum of  eight coefficients kii
2

 is equal to
8, the total of financial ratios (the dimension of the input space).
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Table 4-7: Ratio Weight Factors for Each Financial Problem

Financial Ratios

1 2 3 4 5 6 7 8

Financial
Problem

Cash
Flow/
Sales

Net
Margin CCC

Sales/
W TWI

trend
(TWI) EBIT/I

Debt/ Eq

wii 40% 20% 6% 9% 5% 0% 10% 10%
Profitability 60% 15% 5% 20%

kii 1.7889 1.2649 0.692
8

0.848
5

0.632
5

0 0.8944 0.8944

wii 12% 5% 15% 10% 30% 13% 7.5% 7.5%
Short Term

Liq.
17% 68% 15%

kii 0.9798 0.6325 1.095
4

0.894
4

1.549
2

1.01
98

0.7746 0.7746

wii 15% 5% 5% 8% 5% 2% 20% 40%
Debt 20% 20% 60%

kii 1.0954 0.6325 0.632
5

0.800
0

0.632
5

0.40
00

1.2649 1.7889

wii 17% 10% 14% 14% 10% 5% 15% 15%
Further
Analysis

27% 28% 15% 30%

kii 1.1662 0.8944 1.058
3

1.058
3

0.894
4

0.63
5

1.0954 1.095

Some examples of how the distance between two companies was measured

are shown in Table 4-8.

Table 4-8: Example of the Calculus of the Distance Between Firms.

Firm r1 r2 r3 r4 r5 r6 r7 r8 Prof STL Debt F.A

111 1.2 -1.5 3.4 25.6 0.35 0 2.20 1.43 1 0 0 0
146 0.2 -0.1 10.6 70.5 0.78 0 -2.2 3.64 1 0 1 0
170 3.6 1.35 7.8 27.6 0.69 0 3.2 2.42 0 0 0 1
222 0.6 0.13 13.9 26.8 0.47 0 4.25 2.48 1 0 0 0

Distances Between Firms 111 and 146 (average = 2.9852) 2.942 2.778 2.893 3.33
Distances Between Firms 111 and 170 (average = 2.4203) 3.402 1.895 1.958 2.43
Distances Between Firms 111 and 222 (average = 1.7735) 1.954 1.740 1.468 1.93
Distances Between Firms 170 and 222 (average = 3.5260) 4.061 3.006 3.333 3.70
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b)   Scaling in the Backpropagation network

Backpropagat ion
architecture

RBF architecture

OutputInput

X1

X8

X7

X6

X5

X4

X2

X3
Y1

Y2

Y3

Y4

OutputInput

X5

X1

X8

X7

X6

X4

X2

X3
Y1

Y2

Y3

Y4

Figure 4-6: The two Neural Network architectures tested.

From the three aspects considered in the scaling in the RBF networks, only

one is relevant to the Backpropagation: critical points and distinguished

compressions (or expansions) in the critical intervals. The neuron activation is

treated directly by the Backpropagation activation function and the parameter is not

the distance as it happens in the RBF. Also, since a single Backpropagation

architecture was built, all ratios are considered with the same strength.

The first decision regarding the compression (expansion) of ratio intervals

was to lead the original maximum and minimum of the training set (i.e., [minT,maxT])

to the scaled limits (i.e., [minS,maxS]) (which is dependent on the activation

function). Once the limits were established, one has to recognize the scaling case.

As in the RBF model, two cases were identified: (i) intervals with a single critical

point; and (ii) intervals with two critical points. In case I, the scaling equation is Eq.

(4-2) with the scaling point e given by:

e = (maxS-minS)/2 (4-6)

In case II, the scaling is given by Eq. (4-4) with the critical points cp1 and cp2

and the scaling points e1 and e2 determined according to prior knowledge about the

ratios.

 4.3.2.   The Network Architectures

In Figure 4-6 we present the two basic architectures developed. In the

Backpropagation model, we varied the scaling intervals, the number of hidden

neurons and the hidden and output activation function. The amount of samples

combined with the complexity of the diagnose make the convergence an impossible
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goal to classical Backpropagation models. The only method that did converge was

based on the Levenberg-Marquardt algorithm ([LEVE44] and [MARQ63]).

The results of the Backpropagation training are shown in Appendix D.

Although several configurations learnt all training samples, their testing

performances varied from 38% to 90% of error. The best performances in the testing

were 38% and 39% of error with correspondent 7% and 0% of error in the training.

The chosen architecture uses the interval [0,1], 10 hidden neurons and logsig as

activation function in both layers.

The RBF training required a much broader set of configurations. One can

vary the following:

• the learning rule in each layer;

• the grades of compression in the scaling process;

• the method of determining centers;

• the activation function (any kind of RBF function, normalized or not); and,

• particularly in the financial diagnose, the number of networks required for the

learning.

The issue of whether apply supervised or unsupervised strategy as the

learning rule was solved by testing both approaches. As suggested by the literature

(e.g., [WETT92]), the supervised learning was essential to the process of capturing

the characteristics of financial situations. The tests confirmed that, without taking into

account the financial problem associated with a set of ratios, the network is

incapable of identifying problematic financial situations. We adopted the Orthogonal

Least Square [CHEN91] in the first layer. The supervised method improved

significantly the RBF performance. Only with a large amount of data an unsupervised

method could learn the nature of the relationship between ratios and problems. With

a supervised strategy the centers are more typical standards to the different financial

problematic situations.

Finally, also due to the relative little amount of samples, a single RBF was

unable to learn the different situations that led to a financial problem. Table 4-9 is a

summary of the RBF simulations (see Appendix E for the entire list of simulations).

The three-network approach was better than the single net and the four network

models. In the three-network model, the fourth answer is the result of the

combination of the other three. From the results shown in Table 4-9 one can

conclude that the RBF performance was not as good as expected. The best testing
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performance was a 60% of correct answers while the correspondent training

performance was 23% of errors. The best net used the first 200 samples as possible

centers, with an orthogonalization error of 0.05, reaching 74, 78 and 81 for the total

of centers of each subnet. It reached 11% of error in the training and 42% in the

testing. The experiments show that the inclusion of a greater number of samples

improve the RBF performance.

The results from the neural network simulations can be summarized by the

following:

Table 4-9: Main Results of the RBF Net Simulations.
Network Scaling λ Orth. Final Training Testing

Accuracy Centers RMS % Error RMS % Error

4, 100 KM
p=10

30-30% 0 0.20 100 100 100 100 0.2053 33 0.2900 50

4, 100 KM
p=5

30-30% 0 0.10 100 100 100 100 0.2007 34 0.2769 47

4, 200 KM
p=5

30-30% 0 0.01 141 129 128 175 0.1970 39 0.2892 53

4, 200 FM 60-60% 0 0.10 15 32 42 80 0.2089 36 0.2406 45
3, 100 KM

p=10
30-30% 0 0.20 100 100 100 0.1753 30 0.2990 50

3, 100 KM
p=5

30-30% 0 0.2 100 100 100 0.1508 23 0.2827 40

3, 100 FM 60-60% 0 0.1 19 33 100 0.1698 29 0.2470 45
3, 200 KM

p=20
30-30% 0 0.01 141 129 128 0.1388 25 0.3242 50

3, 200 KM
p=10

30-30% 0 0.01 141 129 128 0.1443 28 0.2986 48

3, 200 FM 30-30% 0 0.10 15 32 42 0.1651 26 0.2341 40
3, 200 FM 30-30% 0 0.05 74 78 81 0.1005 11 0.2619 42

a) RBF models based on unsupervised strategies were unsuccessful in finding

the centers. The financial comparison between firms requires a specific kind

of weighted norm and it is problem identification dependent. In other words,

two companies may seem similar regarding ratio values, but the only way to

measure the real relationship between the ratios is taking the financial

problem into consideration.

b) In both models, there is a remarkable tradeoff between training and

generalization error. Again, this seems to be related to the amount of

samples.

c) In both models the scaling and range of input values affect the network

performance.

Although Backpropagation has been the best model in terms of the tradeoff

training/generalization, the RBF networks seem to be more adequate to a future rule

extraction procedure. The nature of the financial statement analysis makes the RBF
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theoretically more adequate to treat the problem, but the practical restriction of the

number of samples did not allow to conclude this fact.

Table 4-10: Causes to be checked according to the financial problems.

Kind of the Problem Some Potential Causes

Activity
purchases, production process, credit granting , sales, credit
terms, fixed assets, seasonal sales, accounts receivable
turnover, etc.

Debt
maturity, financial risk, lease payments, interest charges, long
term investments, working capital, etc.

Profitability
operational costs, pricing, opportunity costs, administrative
expenses, market share, etc.

Activity and Debt purchases, short term debt, fixed asset financing, etc.
Activity and Profitability days sales outstanding, indirect costs, inventory turnover, etc.

Debt and Profitability
short term debt, gross margin, operating expenses, debt
structure, etc.

Activity, Debt and
Profitability

current assets turnover, interest charges, gross margin, etc.

 4.4. Fuzzy Expert System: Indicating Solutions Through

Deductive Reasoning

The main usefulness of the neural module is to reduce the solution space

where detailed causes are searched. If the kind of problem is unknown, the amount

of questions to the user would be much higher. Since there is a first clue to the

problem, the questions can be directed to related causes instead of general

investigations.

Table 4-10 presents some examples of factors checked by the analyst in each

problematic situation. The solution process starts with checking all potential causes

associated to the diagnosis. Each one is compared to standard patterns of the

business environment of the firm (economic sector, size, etc.). Whenever a deviation

is found, the analyst inspects related factors and recommends appropriate actions.

The modeling of the financial knowledge required indicated two relevant facts

about financial statement analysis:

First, solving a financial problem, once its type is known, is basically a task of

tracking causes and indicating adjustments. This task is essentially deductive in a

sense that it is accomplished by comparing facts with associated patterns. The

analyst not only recommends but also justifies his/her advice based on the causes

identified in the reasoning process. Deductive reasoning and justification are the
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main reasons for using expert systems in the solution phase. Expert systems have

become popular partially for their ability of performing these tasks [HAYE94].

Second, during the process of elucidating the knowledge, the expert uses

linguistic terms to describe most of the variables listed in Table 4-10. Terms such as

“high reduction of inventory” and “low interest” were constantly used to describe

actions to be taken or information about the economy in a certain time. The strategy

was then to specify a fuzzy expert system [KAND92] to model the process of

indicating alternative solutions to the company.

 4.4.1.   The Knowledge Acquisition and Representation Processes

The knowledge acquisition consisted in identifying the kind of information and

understanding the expert has about the problem. Also, we studied which form of

representation could model the way he conceives this knowledge and information.

Generally, the knowledge was stated as the following: “IF Profitability AND Interest is

Medium and Accounts Receivable in Days of Sales is Very High, THEN Reduce Accounts

Receivable is Medium”. There are two important aspects in this fact: first, the expert

naturally uses rules to describe the knowledge; second, among the information he

treats, several are fuzzy in nature. This motivated the building of a fuzzy-rule based

system [KAND96]. The problem consists now in identifying all variables and rules

and defining the correspondent fuzzy memberships and crisp values.

The rule base has three kinds of variables: variables of state, fuzzy variables

and limited variables. Variables of state are crispy and commonly non-numeric. They

define particular conditions of a financial and economic aspects. An example is the

Sales forecast trend. This variable represents a condition (e.g., increasing) and it is

neither fuzzy nor numeric. Fuzzy variables are used to model the imprecision of the

linguistic terms used by the expert to describe the rules. An example is Inventory

whose state has been described by terms such as low, high or medium. Finally,

limited variables have crispy values and influence the expert’s decision depending on

their relationship with crispy boundaries. An example is the antecedent of the rule “If

the Debt/Equity ratio is negative, then the financial risk is high.” [PACH96].

The fuzzy memberships were determined from the expert’s experience and

from the evaluation of the results. The system received a sample case and the

answer was analyzed. This process of output analysis was simplified by the use of

SIMULINK, where different alternatives of inputs were entered for analyzing the

correspondent outputs (see Appendix F). Whenever the expert disagreed with the
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answer, the consequents of the inference were reevaluated. The general approach

was to change the membership functions of the consequents according to the

difference between desired and obtained outputs.

One of the decisions we made is the shape of the fuzzy membership

functions. We began by using linear functions and checking the difference between

their output and the one generated by non-linear functions. The answers varied in an

interval between -5% and 5%. Therefore, we decided to keep the simpler inference

process of linear functions since the final answers were not significantly different

according to the expert. It is relevant to mention that this could be different if the

process of suggesting financial solutions to firms is modeled as a dynamic problem.

In this case, gaussian functions could be used to model the dynamic features such

as different recommendations according to the country economical situation, or

according to structural changes in the firm.

In Figure 4-7 we illustrate an example of the fuzzy membership functions

used in the system. The main advantage of triangular and trapezoidal functions is

their simplicity in representing a fuzzy concept and the facility of parameter changes.

Figure 4-7: Example of the Membership Functions Used in the System.



&KDSWHU �� $SSOLFDWLRQ� 6PDOO )LUP )LQDQFLDO +HDOWK 73

 4.4.2.   Approximate Reasoning

The neural network output identifies the kind of rule of the fuzzy expert

system. Depending on the financial problem, the consequent of a rule may have

different the fuzzy values. The knowledge coming from the neural network is crisp

and cannot be evaluated differently by the fuzzy expert system. This limited the fuzzy

inference to an Approximate Reasoning deduction.

As in most practical applications of fuzzy systems (e.g., [HIRO93] and

[TERA94]), the max-min aggregation rule of fuzzy inference [MAMD75] was used to

match inputs and fuzzy rules. The fuzzy inference is fired by the input of numeric or

state values of the firm’s variables. Numeric values will either fulfill numeric variables

(e.g., Cash Flow/Sales = 3.1) or give a partial information to a fuzzy variable (e.g.,

Inventory = 1.2). The input can also be the condition of a state variable (e.g.,

forecast trend = stable).

Figure 4-8: Fuzzy Inference Using Nonlinear Sets and MinMax
Composition.

Figure 4-8 and Figure 4-9 are comparisons of two different inference process

tested in the system: MinMax and ProdMax compositions, respectively. Both were
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established from nonlinear fuzzy sets. The percentual difference between the two

outputs is 2.14% (for the reduction of the inventory) and 0.7% (for the reduction of

accounts receivable). As it happen with the fuzzy membership functions, the

difference between the results of each fuzzy inference is not significant. For

simplicity, we adopted the Min-Max Composition.

Figure 4-9: Fuzzy Inference Using Nonlinear Sets and ProdMax
Composition.

The final answer is the result of the defuzzification of the fuzzy conclusion

[PACH96b]. Unfortunately, there is a lack of a systematic approach to the

defuzzification process in fuzzy systems [YAGE94], [LEE90]. Several methods have

been proposed ([HELL93] and [YAGE93]) varying from the most used centroid

(gravity center or center of area) to neuro-defuzzification processes [SONG94]. The

centroid was chosen because it keeps the balance between the antecedents, that is,

it does not imply different grades of relevance according to the strength of firing, as it

happens, for instance, with the “Largest Maximum” and “Smallest Maximum”

methods.
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The total of rules used in the system was 150. In Appendix G we list 64 of the

fuzzy rules used in the system.

 4.4.3.   The Synergy with Neural Network Module

An issue that can be asked regarding the role of the neural module in the

system are: “why the fuzzy expert system needs to use the financial problem as an

antecedent of each rule?”. The financial problem qualifies the rules. The form of a

rule can be determined only if it is specific to the financial problem. As an example

consider the rule “IF Liquidity and CCC is High AND Interest is Medium THEN Reduce

Inventory is HIGH”. If there is no liquidity problem, the consequent could be different

(Medium Inventory Reduction). Therefore, one of the principal usefulness of the

connectionist model is the qualification of the rules of the fuzzy expert system model.

 4.5.  The Architecture of the Hybrid System

Figure 4-10 depicts the architecture of the hybrid system built in this

dissertation. The system is be based on loosely coupled architecture [MEDS95] (or

intercommunicating hybrid system [GOON95b]) for the following reasons:

(a) there is no commercial shell available that includes the kinds of
Backpropagation and RBF models needed and a fuzzy expert system
module;

(b) the choice for a neural network tool (such as Matlab) made possible to test
several kinds of neural models;

(c) the development was simplified by the integration based on files; and

(d) different tools were used to find the best models in both parts of the
system.
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Figure 4-10:  The Architecture of the System.
(a) the user enters the data needed to determine the financial ratios, (b) the financial ratios
are passed to the neural network module which diagnoses the problem, (c) this information
is sent to the database, (d) the expert system consults the database to know the problem
and financial indexes, (e) after the inference, the suggestions are presented to the user.

The system works in the following way: first, the user informs the financial

variables used to calculate the ratios of the firm under consideration; the neural

model estimates the financial condition of the firm, indicating a possible problem or a

situation where it is not possible to derive a conclusion; the neural output is then

saved in file; the fuzzy expert system is now called to proceed an inference in order

to indicate a solution to the financial problem.

The financial database is composed by information extracted from the

following financial statements

• balance sheet of the company

• cash flow from operations

• income statement

From these statements, the neural module reads the data used to calculate

the financial ratios and the fuzzy module reads the data used to calculate reference

values in the fuzzy antecedents of the rules. Besides this information, the system

asks for trends and forecast to the user.

In Figure 4-11 we present an example of the application of the system,

beginning with the neural network output. The inference was applied to a grocery

firm whose manager states that “…there is a fast growing firm in constant

Neural Network

c

b
a

Cash Flow
Balance

 Financial Data
Database

e

d

IF Profitability AND
Gross/Sales > 20IF Activity AND Is > 20
THEN

Expert System
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evolution…”. Besides this auspicious fact, the firm has been sending warning signals

to the banks. Recently, this firm has experienced an increasing dependence on

external funds to support its working capital requirements.

The first step is the calculus of the financial ratios used by the Neural Network

(Table 4-12) to indicate an eventual problem. Table 4-11 shows some of the

information used by the Fuzzy Expert System module; part of the information

corresponds to the manager’s perceptions about some trends of the firm. These

trends are not evaluated by the system due to the trade-off general purpose-

specificity; that is, unless each firm is analyzed by a financial expert, any type of

trend analysis would depend on the manager’s perceptions [PACH96b].

Table 4-11: Example of some variables used by the FES module.
Variables Internal External

values manager’s
perception

sector market

Seasonal: NO
Sales forecast trend: S or D**
average Purchases trend* S or D
Inventory* 25.7 21.4
Cash Conversion Cycle (CCC) 9.0 6.8
Interest 13
Accounts Receivable (AR)* 7.6 4.6
* in days of sales
** Stable or Decreasing

Table 4-12: Inputs of the Neural Network module
Period* (1) (2) (3)  I **

CCC (days) 8.2 8.9 9.8 9.0
EBIT / I 5.55 4.92 4.13 4.87

Sales / WC 3.07 3.05 2.97 3.03
Net Income / Sales (%) 1.89 1.75 1.73 1.79
Cash Flow / Sales (%) 4.29 4.07 4.17 4.18

T/ | WI | 0.00 -0.08 -0.19 -0.09
trend T/ | WI | -1.00 0.00 -1.00 -0.67
Debt / Equity 0.25 0.26 0.30 0.27

*: bimonthly periods
*Input: average (no seasonal periods)

Figure 4-11 is a schematic view of the whole analysis performed by the

system. Initially the neural network was called to give a hint about the financial

problem. Its output indicated a possible liquidity problem. The fuzzy expert system

begun the inference by checking the fuzzy rules whose first antecedent is Liquidity.

The inference process led the system to look for (in the database) or ask for (to the

user) the information in Table 4-12. The system begins the inference and after

composition and defuzzification processes, presents the results. The final response

is an advise in order to reduce the firm’s average Inventory by 18% and the average
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Accounts Receivable by 16%. This means that the firm may slow-down its growth in

order to avoid liquidity pressures.

An important aspect of the final diagnostic is its specificity. There is a trade-off

between the general purpose of the system and the validation issue. The system

reaches its deepest point of analysis when only rules particular to the firm could

indicate a more detailed diagnostic. For instance, if a firm has low inventory turnover,

the system can indicate to “increase the inventory turnover by 8%”  but it would not

indicate to "increase the inventory turnover by 8% by diminishing the production

period in 12%”.

Neural Network Module

X1= 4.18

X2= 1.79

X3= 3.03

X4= 9.0

X5= -0.09

X6= -1

X7= 4.87

X8= 0.27

Profitabil i ty

Liquidity

Debt

Fur ther
Analys is

Fuzzy Expert System module

Rules Fuzzy Premises (AND) Fuzzy Consequence (AND)

# Inv. CCC Interest ARs Reduce Inv. Reduce ARs

1. H I G H H I G H H I G H

2. M E D I U M H I G H M E D I U M

3. H I G H H I G H H I G H H I G H

4. M E D I U M H I G H M E D I U M M E D I U M M E D I U M

5. M E D I U M H I G H H I G H M E D I U M

6. M E D I U M M E D I U M M E D I U M M E D I U M L O W

rules f i red

Inv: Inventory; CCC: Cash Conversion Cycle; ARs:
Accounts Receivable in days of Sales.

Inv. Red. Inv.ARsInterestC C C Red.  ARs

1

6

5

4

3

2

1.2

15.718.1

1.65131.32 400400

3030001.20

Variables:
Liquidity, no Seasonal, Sales forecast
trend stable or decreasing, Purchases
trend stable or increasing
Inventory: I/Io=1.2
Cash Conversion Cycle: CCC / CCCo=
1.32
Interest = 13 % (annual)
Accounts Receivable in days of Sales:
ars/arso=1.65

Diagnostic:

1)  Liquidity Problem
2)  Recommended action(s):

• 5HGXFH ,QYHQWRU\ E\ �� �

• 5HGXFH $FFRXQWV 5HFHLYDEOH

E\ �� ��

a) Liquidity, no Seasonal, Sales
forecast trend stable or
decreasing, Purchases trend
stable or increasing:

diagnostic analysis in relation to
the annual interest (%) and
average inventory (measured as
firm’s average inventory /
standard average).

Case a) Inventory reduction
Case b) Accounts Receivable
reduction.

b)

Figure 4-11: Example of Fuzzy Inference in the System.
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Conclusions and Future Developments

 5.1.  Conclusions

Our main goal in this dissertation was to develop a system to diagnose and

indicate solutions to financial health problems of small and medium firms (SMF). The

motivation was the fact that, even though financial management is a critical aspect of

surviving for SMFs, they can not afford financial consulting. The development of a

computational tool for supporting financial decisions can fulfill this lack. The system

can pinpoint the main financial aspects to be adjusted, meaning significant savings

of resources to the firm.

The bibliographical search shown that most systems developed in this area

were dedicated to bankruptcy and credit analysis. Forecasting bankruptcy and

analyzing credit are tasks essentially different than financial health analysis.

Bankruptcy models aim to predict the death or life of a firm while credit analysis

studies the financial condition of a firm with the exclusive purpose of loan safety.

Financial health evaluation is a more complex task: it has to show not whether the

patient is about to die but what disease it has; and it is not developed to creditors

interested only in the safety of their investments but to managers dedicated to take

financial decisions that lead to long-run profitability and success of the firm.

A study of financial statement analysis shown that there are two different

reasoning processes participating of the solution: inductive and deductive. The first

clue the expert has about the problem is a consequence of his/her experience in

seeing financial scenarios of a firm. The diagnostic is contextual, dynamic with the

financial environment and dependent on the expert’s experience. It is essentially

intuitive. On the other hand, the search for causes and correctives follows a logical

path of links between financial conditions and actions. It is also dynamic and

dependent on the financial environment, but it has the characteristic of being

resultant of a deductive process.

The choice of the tools that could combine the inductive and deductive

reasoning processes lead to the study of hybrid intelligent systems, and, more

specifically to the development of a neuro-symbolic (or connectionist-symbolic)
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system. The inductive reasoning was modeled by the connectionist module while the

deduction was implemented through a fuzzy expert system.

The connectionist module was based on financial indicators of the firm. We

studied two alternatives of algorithms: Radial Basis Function and Backpropagation.

The aim was to find which model would more adequate to combine the

heterogeneous features of financial analysis, mainly the dependency of the ratio

relevance with the financial problem. Although theoretically we had reasons to

believe that the RBF model would be more adequate, the Backpropagation results

were better5. The main reason is the relative little amount of samples used to train

the network. This is actually a practical restriction since a specific economic sector

rarely has hundreds of firms of certain size. The alternative is to generate more

samples from the study of the financial indicators of the existing firms.

The fuzzy expert system was based on the Approximate Reasoning. Fuzzy

and crisp values used by the expert during the deduction are modeled as

antecedents of fuzzy rules. Therefore, we used a fuzzy rule-based system based on

Approximate Reasoning. The validation was dependent on the trade-off between the

general purpose of the system and its level of specificity. The deepest point of

analysis is reached when only rules specific to the firm could indicate a more detailed

diagnostic.

 5.2.  Future Developments

 5.2.1.   Contextual Rules

A significant improvement to the system is the application of some method of

rule extraction in the neural phase (e.g., [FU94], [TOWE93], [TOWE94], [ANDR95],

[GILE93]). The explicit knowledge of how the network reaches an output would help

the financial validation of the results (from a normative point of view) and would give

a measure of the degree of structure of the neural knowledge. Also, the translated

neural network can be incorporated directly into the fuzzy expert system knowledge

base.

                                               

5 Percentual errors of each model:

Model Training Testing
Backpropagation 5% 39%

RBF 11% 42%
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 5.2.2.   Fuzzy Neural Network and Possibilistic Reasoning in FES

Another improvement that can be added to the neural module is the

transformation of the neural system into a fuzzy neural network (e.g., [GUPT92],

[JANG95]). The neural output would be not only an indication of a financial problem

but also the possibility degree of this problem. Given a set of ratios, a fuzzy neural

network can form the pairs (problem, possibility degree) for each financial problem.

These pairs are read by the fuzzy expert system which the fires the qualitative rules

with initial strength given by the possibility degree.

A direct consequence of the development of a fuzzy neural network is that the

system can now be modeled as a possibilistic fuzzy expert system. The rules

modeled currently have all Necessity grade equal to 1, since this was also the

supposition to the neural network output. By considering a possibility degree, one

can add other rules to the fuzzy expert system, mainly rules non-qualitative, that is,

without the financial problem in the antecedents. There are some financial rules

whose Necessity degree is not 1, meaning that they occur according to the financial

environment. This can be modeled by Possibility theory.

 5.2.3.   Modeling Market Variables as Fuzzy Intervals

Some variables of the financial statement analysis are being modeled by

variables of state (e.g., sales forecast trend = “stable,” “decreasing” or “increasing”).

Nevertheless market variables can be modeled by fuzzy intervals rather than by crisp

sets. For instance, the knowledge about the interest rate can be described by the

interval [0%,10%]. The system can work with different possibilities of interest within

this interval. The fuzzy interval can be modeled flat fuzzy numbers [DUBO80b] and

the Possibility theory can be used to carry the inference.

 5.2.4.   Integration with Other Modules Developed by the Group

This dissertation is part of a broader work. Since 1991, the group of Applied

Artificial Intelligence of the Production Engineering Department of the Federal

University of Santa Catarina has been working with Financial Management of small

and medium firms. As a result, four master thesis and five doctorate dissertations

were developed or are currently being written. Among them, we find the use of Case-

Based reasoning for sales forecasting and the application of distributed artificial

intelligence for working capital management. These two tasks are directly related to

the financial statement analysis and one of the future developments will be the

integration between these models.
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 5.2.5.   Development of the System on an Object-Oriented Platform

A recent trend in Hybrid Intelligent Systems has been the integration of

different artificial intelligence tools through object-oriented platforms. Several

features of the object-oriented paradigm (e.g., the encapsulation, inheritance,

polymorphism and reutilization of code) made easier the integration of code and the

exchange of information among different technologies [KHEB95]. In order to better

fulfill the previous future development, the current system should be rewritten as an

object-oriented program in its both modules, the neural and symbolic processes.

 5.2.6.   Change on the Hybrid System Architecture

Another improvement to the system is the change of its architecture.

According to Medsker classification [MEDS94], the system is a loosely-coupled

system, since it performs the exchange of information between the neural and the

symbolic modules via files. The performance will be improved by the implementation

of a memory-based information exchange.

Other possibility is the study of an integrated architecture, where the neuron

and symbolic modules work as a single processing architecture. According to the

Goonatilake and Khebbal’s classification [GOON95b], this would mean to transform

the system from the current intercommunicating hybrid to a polymorphic hybrid

architecture. The system can work as a chameleon, working as a connectionist

system during the diagnose phase and as a symbolic process during the solving

step.

 5.2.7.   Use of Different Methods of Neural Learning

The neural module of the hybrid system can be other than RBF or

Backpropagation. Actually, even the networks here implemented can be eventually

improved by the application of training methods such as cross-correlation or data

pruning on the sample data. Rather than finding the best neural learning, the aim

was to provide means for integrating the neural and fuzzy paradigms in the search

for a combined method in financial diagnosis. Future work might improve the

learning module or even replace it by extracting the rules from the learnt network

(e.g., [ANDR95] and [TOWE93])
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 7.1.  Appendix A:

Financial Ratio Distributions

Financial Ratio 2:
Net Margin

Final Distribution:
mean = 0.5936; StdDev = 1.31; min = -2.81;

max = 3.21; histogram range: -3 to 3.82
Best Fitting: Beta Distribution: (3.31, 2.99);
Sq. Error: 0.01099

Original Distribution:
Bucksmaster’s U shape

Beta Distribution: beta(4,2.3);
Chosen interval [-4,3.7]
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Financial Ratio 3:
Cash Conversion Cycle

Final Distribution:

mean = 14.1; StdDev = 6.9; min =1.91; max
= 32.54; histogram range: 1 to 33
Best Fitting: Erlang;     Sq. Error: 0.01035

Original Distribution:
Bucksmaster’s  Reverse J

Beta Distribution: beta(2, 3.8);
Chosen interval:  [0,35] 0
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Financial Ratio 4:
Sales to Working Capital

Final Distribution:

mean = 28.6; StdDev = 15.8; min = 2.26;
max = 78.12; range: 2 to 79
Best Fitting: Weibull; Sq. Error: 0.008888

Original Distribution:
Bucksmaster’s J shape

Beta Distribution: beta(2.5, 4);
Chosen interval:  [-10,90] 0
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beta(2.5,4,-10,90,x)
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Financial Ratio 5:
T to Working Investment (TWI)

Final Distribution:

mean = -0.6063; StdDev = 1.47; min = -5.6;
max = 0.80; histogram range: -6 to 1
Best Fitting: Beta (2.33, 0.6927); Sq. Error: 0.05137

Original Distribution:
Bucksmaster’s J shape

Beta Distribution: beta(5,1.1);
Chosen interval:  [-5,1] 0
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Financial Ratio 6:
T/|WI| trend

Final Distribution:

mean = 0.04;  StdDev = 0.6248; min = -1;
max = 1; histogram range: -1 to 1
Best Fitting: norm(0.04, 0.6232); Sq. Error: 0.001273

Original Distribution:

normal Distribution: normal(0,1);
Chosen interval:  [-1,1]

Obs: this ratio does not have sample data in [SCHO93]. The decision was taking the trend
as a normal distribution with average 0, that is, in the average, the firms have a stable
trend regarding the ratio T/|WI|.
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Financial Ratio 7:
EBIT to Interest Charges

Final Distribution:

mean = 2.9; StdDev = 2.99; min = -5.34; max
= 7.82; histogram range: -6 to 8
Best Fitting: Beta: (2.67, 1.57); Sq. Error: 0.01274

Original Distribution:
Bucksmaster’s J shape

Beta Distribution: beta(3,2);
Chosen interval:  [-6,8]
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Financial Ratio 8:
Debt to Equity

Final Distribution:

mean = 0.7782; StdDev = 2.86;
min = -10.11; max = 4.98; histogram range: -11 to 5
Best Fitting: Beta(3.77, 1.39); Sq. Error: 0.007098

Original Distribution:
Bucksmaster’s J shape

Beta Distribution: beta(6.5,2);
Chosen interval:  [-16,5] 0
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 7.2.  Appendix B:

Samples Used to Train the Neural Networks

No. R1 R2 R3 R4 R5 R6 R7 R8 Prof STL Debt FA
1 -0.22 -0.68 8.22 47.70 -2.05 0 -5.00 4.01 1 1 0 0
2 2.41 1.07 11.10 56.21 -0.21 -1 2.80 0.40 0 1 0 0
3 2.37 1.11 10.05 40.83 -0.78 -1 5.70 -2.82 0 1 1 0
4 4.13 2.19 12.86 30.79 -3.20 -1 5.80 0.54 0 1 0 0
6 2.07 0.71 12.22 13.47 0.05 -1 2.33 1.33 0 1 0 0
7 3.50 0.80 13.05 21.69 -2.70 0 2.10 -1.47 0 1 1 0

10 2.42 -1.26 8.58 36.90 -4.21 -1 -2.12 -0.32 0 1 1 0
11 -0.20 -0.70 14.54 42.26 -2.22 0 -4.53 3.19 1 1 0 0
12 1.34 -1.68 1.91 20.47 0.23 0 -3.50 -1.15 0 0 1 0
13 2.36 0.70 17.66 53.54 0.62 0 1.75 3.94 0 1 1 0
14 6.37 2.80 5.70 34.14 -1.45 0 7.20 0.88 0 1 0 0
15 2.31 -1.74 9.27 24.79 0.69 0 -2.21 -4.55 0 0 1 0
16 4.20 2.33 7.07 40.32 0.74 0 5.90 0.10 0 0 0 1
19 2.30 0.80 6.48 17.96 -1.73 0 5.49 -1.99 0 1 1 0
21 3.90 1.90 6.54 15.56 -1.22 0 4.8 1.25 0 1 0 0
22 2.04 -1.37 27.73 22.15 -0.45 -1 -3.97 2.49 0 1 1 0
23 3.26 1.40 7.42 37.62 0.79 -1 4.23 2.67 0 0 0 1
24 1.28 0.60 9.75 28.02 0.60 0 2.07 0.04 0 0 1 0
25 2.30 0.43 13.91 16.81 -2.47 0 2.07 4.37 0 1 0 0
26 -0.79 -1.82 18.23 16.53 -5.03 0 -5.34 3.18 1 1 0 0
27 5.35 2.05 17.79 28.25 0.43 0 5.26 -2.05 0 0 1 0
29 5.2 1.70 10.73 33.97 -1.03 -1 4.24 0.47 0 1 0 0
30 1.85 0.87 19.54 10.63 0.30 -1 2.09 -0.07 0 0 1 0
31 2.01 -1.12 7.60 34.62 0.40 0 -2.39 -1.45 0 0 1 0
34 4.35 1.98 8.33 27.78 -0.33 0 6.97 0.10 0 1 0 0
36 4.6 2.12 14.98 40.82 0.65 0 7.56 -2.41 0 0 1 0
37 5.17 2.50 17.61 61.68 0.23 0 6.3 -0.89 0 0 1 0
38 2.28 0.80 13.55 24.44 0.33 0 4.89 -0.53 0 0 1 0
39 -0.11 -0.54 20.96 32.33 -1.19 -1 -1.49 -3.71 1 0 1 0
42 2.97 0.10 9.57 27.92 0.24 0 3.74 -1.36 0 0 1 0
43 4.23 2.12 13.04 29.32 0.60 0 5.23 2.98 0 0 0 1
44 1.68 -0.86 12.13 16.88 -0.56 0 -4.54 0.05 0 1 1 0
45 5.26 2.32 9.66 24.52 0.41 1 6.00 1.53 0 0 0 1
46 3.61 1.93 23.35 43.91 -0.75 -1 5.35 2.70 0 1 0 0
47 4.23 2.52 21.26 19.98 -1.76 0 7.03 2.55 0 1 0 0
48 2.19 0.35 7.03 27.87 -2.16 1 4.04 -6.84 0 1 1 0
50 3.82 -0.99 12.95 5.03 -1.73 0 2.23 1.17 0 1 0 0
54 6.01 2.80 17.02 23.95 0.38 1 7.20 -0.07 0 0 1 0
55 3.60 -0.60 7.95 32.01 0.78 0 1.84 -9.94 0 0 1 0
56 3.34 -0.91 21.67 34.18 0.59 0 -3.18 -5.60 0 0 1 0
58 5.02 2.23 7.56 31.15 -0.10 0 6.10 -2.58 0 1 1 0
59 3.20 -2.65 6.36 8.91 -1.76 0 -3.20 3.72 0 1 1 0
61 1.43 -0.39 20.64 17.66 -0.13 1 1.52 1.48 0 0 1 0
63 4.21 2.31 8.70 22.18 0.56 0 6.36 -4.44 0 0 1 0
64 0.35 -0.22 11.70 32.12 -4.80 1 -3.53 4.76 0 1 1 0
65 2.99 1.75 15.48 4.01 -1.53 0 4.23 2.27 0 1 0 0
66 3.24 1.23 5.71 31.96 -1.52 -1 3.80 -3.18 0 1 1 0
67 3.74 2.09 14.90 60.26 -1.98 0 5.32 -6.34 0 1 1 0
69 5.20 2.70 12.78 78.12 0.05 0 6.90 -4.79 0 0 1 0
70 2.06 0.58 15.27 40.83 -1.93 0 3.20 2.91 0 1 0 0
71 5.56 1.10 16.27 9.89 -2.03 -1 6.72 -7.11 0 1 1 0
72 2.70 1.55 8.38 16.63 -1.28 -1 4.26 4.09 0 1 0 0
73 3.45 1.69 14.93 8.15 0.31 0 4.2 0.7 0 0 0 1
74 2.79 1.55 6.51 67.52 -0.75 -1 3.76 -1.4 0 1 1 0
75 3.01 0.97 19.92 2.37 -1.35 0 3.25 2.62 0 1 0 0
76 0.52 -0.06 13.59 9.66 -3.62 -1 2.26 1.87 1 1 0 0
77 1.20 -2.81 17.01 24.7 -3.39 -1 -4.04 3.24 1 1 0 0
78 5.48 2.90 8.36 27.05 0.20 0 7.20 0.36 0 0 0 1
79 3.03 1.23 7.74 13.38 -0.94 -1 5.29 2.14 0 1 0 0
80 3.57 1.84 20.23 40.13 0.59 0 5.00 4.80 0 0 1 0
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No. R1 R2 R3 R4 R5 R6 R7 R8 Prof STL Debt FA
81 6.30 3.21 9.92 19.29 0.51 0 7.82 3.21 0 0 0 1
82 4.87 2.25 14.35 31.81 0.03 0 5.60 1.61 0 0 0 1
85 3.66 1.85 14.75 61.40 -1.23 0 6.26 1.26 0 1 0 0
88 3.31 1.50 20.12 31.61 0.07 0 4.24 2.90 0 0 0 1
89 3.13 1.78 5.79 34.64 -1.33 0 4.93 0.89 0 1 0 0
90 2.73 -1.54 16.86 24.71 -4.12 1 -2.60 2.07 0 1 0 0
91 2.54 0.92 7.93 8.88 0.30 1 5.30 2.19 0 1 0 0
93 5.47 2.78 20.01 72.34 0.65 0 7.20 0.28 0 0 0 1
94 2.34 1.24 7.08 28.32 -3.16 -1 5.63 4.81 0 1 1 0
97 1.96 1.02 28.05 6.15 -1.94 0 3.29 4.50 0 1 1 0
98 5.20 3.04 29.63 16.23 0.60 0 7.47 -4.62 0 0 1 0
99 4.70 2.92 18.14 33.94 0.33 0 7.45 -10.11 0 0 1 0

100 2.81 1.05 7.68 10.54 -1.72 0 3.04 1.67 0 1 0 0
101 4.65 0.93 8.43 10.88 -0.18 -1 6.00 1.21 0 1 0 0
103 2.00 0.21 6.48 7.38 -0.55 -1 5.49 -0.87 0 1 1 0
106 1.06 -0.04 13.09 2.26 -1.11 0 2.11 -5.70 0 1 1 0
107 4.81 2.80 5.33 9.86 0.38 0 6.78 -2.69 0 0 1 0
109 4.93 1.34 9.35 50.06 0.40 0 5.83 1.15 0 0 0 1
110 4.35 1.50 17.23 23.52 -2.42 1 4.52 -4.47 0 1 1 0
111 1.25 -1.50 3.42 25.56 0.35 0 2.20 1.43 1 0 0 0
113 3.69 -0.50 12.47 25.61 0.14 0 1.64 4.14 0 0 1 0
116 4.67 2.64 4.36 26.61 0.27 1 5.65 -2.41 0 0 1 0
117 2.20 1.07 20.31 72.92 0.79 1 5.09 0.02 0 0 0 1
118 2.55 -0.49 22.7 43.62 -3.83 0 2.14 2.08 0 1 0 0
119 3.03 0.12 8.15 14.5 0.63 0 4.65 2.95 1 0 0 0
120 3.06 -0.32 11.65 43.49 -1.98 1 4.09 0.40 0 1 1 0
123 2.76 -0.94 7.77 8.01 0.79 0 1.73 3.98 0 0 1 0
125 3.87 2.21 14.93 5.37 -2.14 0 5.12 2.66 0 1 0 0
126 4.13 1.87 21.40 33.38 0.15 0 5.44 0.88 0 0 0 1
127 3.98 0.99 15.24 39.60 0.10 0 2.49 0.11 0 0 0 1
129 4.35 1.25 5.61 9.46 -0.51 0 4.27 0.32 0 1 0 0
131 1.83 0.77 10.10 5.88 -2.35 0 6.15 2.30 0 1 0 0
132 3.650 1.58 9.86 20.69 -1.33 0 3.22 -1.70 0 1 1 0
133 1.11 0.61 19.26 22.24 -2.53 0 6.95 1.58 0 1 0 0
134 2.71 1.05 14.72 4.84 0.03 0 3.52 -1.05 0 1 1 0
137 5.68 2.59 23.50 33.00 -1.92 0 5.70 4.40 0 0 0 1
138 3.99 2.41 11.39 29.65 0.25 0 5.81 2.01 0 0 0 1
139 2.88 1.44 5.27 19.48 0.33 0 5.36 0.95 0 0 0 1
140 4.13 2.58 6.26 53.52 0.8 0 6.55 3.00 0 0 0 1
141 2.55 -0.88 15.24 33.51 -1.53 0 -2.29 2.50 0 1 1 0
143 3.61 2.02 8.81 25.71 -3.34 0 4.05 3.43 0 1 0 0
144 5.71 2.31 24.34 27.97 -0.75 0 4.76 -2.99 0 1 1 0
145 3.32 0.56 3.18 35.22 0.70 0 3.23 1.08 0 0 0 1
146 0.19 -0.14 10.55 70.54 0.78 0 -2.23 3.64 1 0 1 0
148 5.54 2.88 11.19 8.74 0.50 1 7.21 1.07 0 0 0 1
150 3.55 1.15 7.09 23.8 0.62 1 3.82 -2.35 0 0 1 0
151 1.44 -0.51 5.05 14.81 -5.60 0 -2.31 -0.41 0 1 1 0
152 3.49 -2.19 10.32 48.1 0.58 -1 -3.75 -2.99 0 0 1 0
153 0.16 -0.64 2.57 20.90 0.59 1 -0.80 0.31 1 0 0 0
156 3.63 2.13 11.98 30.57 -4.91 1 6.82 -4.49 0 1 1 0
157 3.8 -0.31 6.79 69.73 0.57 0 1.32 0.64 0 0 1 0
159 3.86 -0.40 20.42 46.67 -1.08 0 1.68 4.68 0 1 1 0
162 5.57 2.32 16.70 27.10 0.32 0 5.48 2.97 0 0 0 1
164 3.25 1.47 27.95 6.99 -1.07 0 3.41 0.40 0 1 0 0
166 3.92 1.37 12.46 38.77 -1.91 1 4.67 2.86 0 1 0 0
167 1.35 -0.50 16.98 30.62 -4.85 1 -3.88 2.45 1 1 0 0
170 3.65 1.35 7.76 27.60 0.69 0 3.2 2.42 0 0 0 1
171 3.63 1.81 32.54 12.20 -0.20 -1 4.34 2.50 0 1 0 0
172 3.83 0.42 14.14 37.10 -0.15 -1 3.56 3.33 0 1 0 0
174 3.65 2.26 5.16 19.64 0.65 0 5.66 -0.95 0 0 1 0
175 3.78 1.61 7.53 20.68 0.70 0 3.81 -4.26 0 0 1 0
176 6.18 1.35 10.77 50.24 0.76 0 4.32 3.30 0 0 0 1
180 4.77 2.01 12.99 5.77 -1.57 0 4.66 1.03 0 1 0 0
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No. R1 R2 R3 R4 R5 R6 R7 R8 Prof STL Debt FA
181 4.95 1.80 16.06 46.24 -1.30 1 3.75 2.82 0 1 0 0
182 3.15 2.20 12.61 27.34 0.71 0 6.48 4.76 0 0 1 0
185 0.62 -1.05 27.58 6.15 -1.51 0 -3.21 -0.42 1 1 0 0
186 3.53 1.11 5.98 36.05 0.76 1 3.14 1.59 0 0 0 1
187 3.30 2.35 6.13 30.54 0.76 1 4.73 0.23 0 0 0 1
190 3.82 1.59 9.46 25.38 -0.92 0 5.86 2.61 0 1 0 0
191 5.28 2.17 18.43 28.64 0.12 0 6.64 4.67 0 0 1 0
193 2.44 1.24 20.63 29.84 -0.55 -1 3.80 -0.49 0 1 1 0
194 3.54 2.40 10.9 14.08 0.62 0 4.83 -5.82 0 0 1 0
195 2.66 1.34 12.31 10.80 0.17 0 3.70 -2.64 0 0 1 0
196 3.48 2.36 10.13 34.59 0.11 0 5.48 2.79 0 0 0 1
197 1.73 1.02 13.05 34.49 -5.28 1 2.16 -5.10 0 1 1 0
198 3.25 0.24 26.71 32.45 -3.01 1 0.85 -2.56 0 1 1 0
201 0.54 -0.68 8.22 430 0.20 -1 -1.25 3.50 1 0 0 0
204 0.84 -0.73 8.60 35.57 0.40 0 1.74 2.62 1 0 1 0
205 0.95 -0.31 9.84 19.61 0.40 -1 -1.79 1.35 1 0 0 0
206 0.72 0.39 7.82 15.53 -2.61 0 1.79 1.54 1 0 0 0
207 1.79 0.67 16.34 22.41 0.11 0 2.25 2.97 0 0 0 1
208 2.01 0.83 17.43 420 0.61 0 2.54 1.05 0 0 0 1
209 0.13 -1.91 170 55.42 0.63 1 -2.98 1.76 1 0 0 0
210 1.25 -2.09 19.73 25.14 0.56 0 1.86 4.25 1 0 1 0
212 0.45 -0.14 8.90 26.00 0.71 0 -1.29 2.26 1 0 0 0
213 0.87 0.13 14.28 21.20 0.03 0 4.69 3.64 1 0 0 0
214 0.27 0.19 31.78 24.34 0.25 -1 1.03 0.67 1 1 0 0
216 0.92 0.34 19.33 28.57 0.19 0 2.60 2.82 1 0 0 0
217 0.68 0.23 27.93 8.96 -1.32 0 4.11 1.95 1 1 0 0
219 0.25 0.11 19.38 18.90 0.32 0 2.82 0.45 1 0 0 0
222 0.56 0.13 13.91 26.81 0.47 0 4.25 2.48 1 0 0 0
223 1.14 -0.64 16.82 43.46 0.30 0 1.41 1.09 1 0 0 0
225 1.43 -0.30 12.25 26.67 0.39 1 -1.22 0.66 1 0 0 0
229 1.05 0.11 17.65 21.77 0.40 1 1.96 3.13 1 0 0 0
231 0.34 0.13 14.39 12.75 -1.62 1 2.47 1.33 1 1 0 0
232 1.26 0.73 32.00 18.95 -0.52 0 2.48 2.68 1 1 0 0
234 1.23 0.39 23.33 24.38 -1.25 -1 1.78 1.70 1 1 0 0
235 1.34 0.09 21.42 12.91 -3.03 -1 3.75 3.16 1 1 0 0
237 1.47 -1.60 32.10 10.92 -2.24 1 1.72 1.67 1 1 0 0
239 1.23 -2.03 26.76 7.61 -0.43 0 2.13 1.13 1 1 0 0
240 1.06 -1.36 24.21 5.13 -2.95 1 2.10 2.14 1 1 0 0
241 1.44 -0.77 15.89 27.61 0.49 0 1.76 -2.91 1 0 1 0
242 1.75 0.16 14.84 31.58 0.32 0 1.18 2.67 1 0 1 0
243 1.25 0.18 14.81 42.83 -0.16 1 0.98 -1.79 1 0 1 0
245 1.12 0.15 17.70 51.89 0.08 0 1.66 -2.40 1 0 1 0
247 0.39 0.27 6.67 44.08 0.74 -1 1.34 1.87 1 0 1 0
248 0.78 0.30 7.95 29.24 0.04 0 0.75 2.65 0 0 1 0
250 1.07 -0.15 9.84 19.08 -0.15 0 1.12 3.96 1 0 1 0
252 1.39 0.22 16.36 18.91 -0.16 1 1.35 3.80 1 0 1 0
253 0.64 0.15 14.09 33.03 0.20 0 1.19 3.93 1 0 1 0
255 1.25 0.21 8.63 25.05 -1.28 -1 6.02 2.45 0 0 0 1
256 0.73 0.18 14.58 30.30 0.32 0 1.61 3.88 1 0 1 0
257 0.52 -2.10 23.18 53.66 0.12 0 0.94 3.75 1 0 1 0
258 1.40 -1.27 16.90 47.40 0.15 1 -1.64 -2.40 1 0 1 0
260 0.30 0.20 6.69 40.42 0.39 0 1.83 4.24 1 0 1 0
264 1.27 0.12 17.92 20.73 -0.10 1 4.17 3.04 1 0 0 0
267 1.50 -0.66 19.33 25.56 0.48 1 2.22 0.96 1 0 0 0
268 1.56 0.06 19.70 18.67 0.33 0 5.08 2.12 1 0 0 0
269 1.23 0.15 19.67 17.70 0.31 0 3.75 1.94 1 0 0 0
270 0.30 0.08 12.72 25.34 0.03 1 2.97 1.08 1 0 0 0
272 1.22 0.33 16.71 15.98 0.28 0 1.14 2.90 1 0 1 0
273 1.78 -0.44 15.01 34.73 0.04 1 1.07 -2.24 1 0 1 0
277 0.21 -1.10 17.33 18.70 0.27 0 0.93 3.68 1 0 1 0
280 1.29 0.25 11.49 16.86 0.11 0 3.28 -4.20 1 0 1 0
283 0.35 -0.70 27.10 5.60 -0.37 1 1.89 2.33 1 1 0 0
284 -0.06 -0.71 28.42 32.24 -4.52 -1 -1.46 0.42 1 1 0 0
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No. R1 R2 R3 R4 R5 R6 R7 R8 Prof STL Debt FA
285 1.11 0.06 30.84 11.94 -4.67 1 -0.36 0.46 1 1 0 0
286 1.12 -0.86 32.22 14.08 0.14 -1 2.01 3.12 1 1 0 0
289 0.68 -1.42 27.65 5.01 -0.20 -1 2.18 0.64 1 1 0 0
290 0.87 0.15 10.05 54.20 0.68 1 4.40 3.63 1 0 0 0
291 0.68 -0.24 6.05 52.46 0.67 1 2.26 0.39 1 0 0 0
292 0.36 -0.14 7.54 49.49 0.30 1 2.16 0.45 1 0 0 0
294 1.37 0.21 5.33 49.80 0.38 0 4.52 1.67 1 0 0 0
295 1.02 -0.83 6.56 57.86 0.79 0 2.16 1.18 1 0 0 0
297 0.30 0.15 7.36 51.32 0.43 0 4.38 1.30 1 0 0 0
298 0.70 0.11 6.95 62.82 0.38 1 6.40 1.22 1 0 0 0
299 1.36 -0.09 15.50 33.89 0.10 0 2.01 -1.23 1 0 1 0
300 1.06 -1.14 12.80 36.62 0.30 1 2.04 4.98 1 0 1 0
301 1.22 0.23 17.80 28.90 0.10 1 1.87 4.36 1 0 1 0
305 1.50 0.012 24.70 31.62 0.21 0 3.01 -2.05 1 0 1 0
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 7.3.  Appendix C:

Samples Used to Test the Neural Networks

No. R1 R2 R3 R4 R5 R6 R7 R8 Prof STL Debt FA
5 1.51 -1.49 2.67 11.41 0.21 0 -2.17 1.05 1 1 0 0
8 2.20 0.80 9.88 19.09 0.13 -1 2.45 -2.97 0 1 1 0
9 2.01 0.86 17.43 46.75 0.61 0 3.39 0.21 0 0 0 1

17 3.62 1.80 23.74 -5.00 0.30 0 4.60 4.54 0 0 0 1
18 4.02 1.70 13.21 20.88 0.70 1 4.30 -1.45 0 0 1 0
20 6.05 1.70 14.22 35.48 -0.07 -1 4.26 1.14 0 1 0 0
28 6.18 2.31 4.24 11.26 0.46 1 5.60 2.48 0 0 0 1
32 2.58 0.90 11.46 24.26 -3.47 0 2.20 4.84 0 1 1 0
33 2.05 0.80 10.02 22.52 -0.84 0 2.24 -1.91 0 1 0 0
35 2.85 -2.29 23.62 21.43 0.58 0 -2.72 -3.02 0 0 1 0
40 3.01 0.26 9.70 68.10 0.72 0 5.76 1.06 0 0 0 1
41 1.97 -0.32 9.10 77.62 0.89 0 1.97 -0.58 0 0 1 0
49 5.23 2.23 20.23 27.39 -0.33 -1 5.46 -4.79 0 1 1 0
51 4.13 1.76 17.30 43.35 -3.77 0 4.30 0.75 0 1 0 0
52 2.54 0.34 20.03 20.42 -1.37 0 3.92 -1.54 0 1 1 0
53 4.10 2.32 8.15 57.76 0.23 0 6.26 0.78 0 0 0 1
57 3.42 1.88 29.76 18.15 0.56 -1 5.22 4.10 0 1 0 0
60 2.30 -1.35 18.14 5.15 -2.61 0 -3.48 4.80 0 1 1 0
62 2.54 0.88 19.10 -6.55 0.12 1 3.12 -3.15 0 1 1 0
68 4.21 2.27 20.46 9.26 -1.58 0 5.73 1.54 0 1 0 0
83 1.30 0.72 22.15 20.48 0.79 0 4.07 1.24 1 0 0 0
84 2.74 1.21 7.39 40.98 0.63 0 5.22 -2.87 0 0 1 0
86 2.25 -2.08 16.57 34.26 0.09 0 -2.31 -0.99 0 0 1 0
87 0.33 -0.14 33.20 6.28 -0.47 1 -3.58 0.02 1 1 0 0
92 5.45 2.24 2.63 83.90 0.70 0 6.23 2.98 0 0 0 1
95 1.20 -1.25 22.63 43.86 -3.97 0 -2.12 0.80 1 1 0 0
96 4.70 2.59 5.84 53.04 0.37 1 6.54 -3.26 0 0 1 0

102 2.23 -1.46 21.59 41.94 -5.15 0 -1.67 -3.12 0 1 1 0
104 6.15 2.98 10.38 17.45 0.36 0 7.20 -4.87 0 0 1 0
105 4.35 1.72 18.76 10.71 -0.06 -1 4.60 1.97 0 1 0 0
108 4.55 0.69 23.66 12.81 -3.29 1 7.70 2.16 0 1 0 0
112 3.59 1.63 17.30 4.56 -4.86 0 7.58 -3.71 0 1 1 0
114 -0.4 -1.23 15.12 38.03 -4.66 0 -3.59 -3.11 1 0 1 0
115 3.12 -0.76 11.21 13.83 -2.4 0 -2.35 0.77 0 1 1 0
121 5.13 0.36 15.36 55.18 0.15 0 2.91 0.25 0 0 0 1
122 4.18 2.32 11.99 7.77 -0.45 0 4.71 2.90 0 1 0 0
124 4.04 -0.21 7.63 20.43 0.73 0 1.54 -4.59 0 0 1 0
128 3.47 -1.35 13.01 12.04 -1.17 0 2.04 2.17 0 1 1 0
130 2.12 -1.63 20.38 -2.79 0.23 1 -2.37 -0.20 0 0 1 0
135 4.94 1.37 9.80 21.15 0.29 0 3.58 -3.42 0 0 1 0
136 3.47 0.97 8.97 28.73 0.09 0 3.37 3.87 0 0 1 0
142 3.80 1.42 18.12 36.76 0.67 1 5.93 -1.73 0 0 1 0
147 0.21 -2.25 4.42 24.11 0.12 1 -2.86 3.49 1 0 0 0
149 4.90 -1.11 14.72 26.05 0.28 0 2.26 4.12 0 0 1 0
154 -0.12 -1.39 16.29 31.62 -2.56 0 -2.22 3.25 1 1 0 0
155 1.23 0.53 9.82 20.41 0.25 0 2.62 -1.71 1 0 1 0
158 3.85 2.12 30.77 59.17 0.75 1 5.61 1.08 0 0 0 1
160 3.17 1.67 18.78 2.19 -1.33 0 3.46 -1.27 0 1 1 0
161 1.35 -1.55 17.24 33.69 -0.03 1 -2.45 1.2 1 1 0 0
163 1.55 -0.97 36.48 6.28 -0.60 -1 2.29 0.16 1 1 0 0
165 4.25 2.21 14.11 9.98 0.22 0 5.31 0.52 0 0 0 1
168 4.29 1.29 25.53 14.52 -3.97 0 3.46 1.47 0 1 0 0
169 0.63 -0.17 27.30 11.58 -1.09 0 -0.77 0.26 1 1 0 0
173 3.58 0.51 19.39 19.93 -0.31 0 4.27 2.66 0 1 0 0
177 1.39 -0.36 12.46 32.99 -1.28 0 -2.49 1.78 1 1 0 0
178 3.89 2.21 14.95 48.91 0.55 1 5.7 0.73 0 0 0 1
179 4.67 3.10 9.61 27.03 -1.83 -1 7.2 2.12 0 1 0 0
183 2.18 1.38 15.64 46.84 -1.49 0 3.45 4.81 0 1 1 0
184 -0.41 -1.17 26.24 12.01 -0.41 -1 -2.21 0.93 1 1 0 0
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No. R1 R2 R3 R4 R5 R6 R7 R8 Prof STL Debt FA
188 2.85 1.73 20.76 17.85 -2.34 -1 3.75 1.26 0 1 0 0
189 1.34 -1.09 6.39 42.01 -0.27 -1 -1.65 0.89 1 1 0 0
192 3.58 2.13 16.40 9.21 -0.43 -1 5.06 4.26 0 1 1 0
199 2.90 1.09 10.09 28.37 0.15 0 3.29 -4.74 0 0 1 0
200 4.23 2.03 15.92 25.91 -0.57 0 4.75 4.63 0 1 1 0
202 0.67 0.43 27.45 10.00 -1.39 0 4.91 0.67 1 1 0 0
203 1.16 0.41 13.87 44.27 0.05 -1 4.64 1.54 1 0 0 0
211 0.60 0.44 20.66 35.30 0.62 0 1.40 2.40 1 0 0 0
215 1.02 -1.33 23.74 35.00 0.30 0 -2.11 0.37 1 0 0 0
218 1.22 0.25 16.71 21.72 0.18 1 3.80 2.05 1 0 0 0
220 -1.01 -2.32 12.02 23.88 0.27 0 -2.69 1.41 1 0 0 0
221 0.54 0.25 17.41 22.05 -0.10 1 1.67 0.04 1 0 0 0
224 0.37 0.19 16.03 31.18 0.53 0 2.23 2.30 1 0 0 0
226 0.75 -0.41 16.44 25.98 0.17 0 0.70 1.22 1 0 0 0
227 1.35 -0.4 12.35 22.78 0.57 0 1.78 2.54 1 0 0 0
228 0.67 0.38 18.26 31.82 -0.20 1 2.28 3.01 1 0 0 0
230 1.27 -1.16 14.82 27.03 0.52 0 2.30 2.43 1 0 0 0
233 0.09 -1.06 12.16 33.88 -2.89 -1 -1.36 0.72 1 1 0 0
236 1.13 0.57 20.22 6.80 0.21 -1 2.56 0.58 1 1 0 0
238 1.68 -1.88 30.39 15.3 0.10 0 1.77 2.30 1 1 0 0
244 0.23 -1.29 12.95 14.03 0.33 0 0.43 4.12 1 0 1 0
246 0.86 -1.19 8.49 55.97 0.22 0 1.15 1.77 1 0 1 0
249 0.47 -0.32 13.77 33.17 -0.20 0 1.28 4.18 1 0 1 0
251 0.85 0.2 13.88 15.77 0.32 0 1.2 3.28 1 0 1 0
254 0.82 -0.29 15.21 23.64 0.28 -1 -0.42 -0.89 1 0 1 0
259 0.47 -0.08 14.66 22.30 0.08 0 -0.43 -1.75 1 0 1 0
261 1.31 0.15 15.78 38.12 0.05 1 1.20 4.45 1 0 1 0
262 1.28 0.13 16.73 45.78 -0.10 1 1.27 -0.33 1 0 1 0
263 1.16 0.32 19.04 25.56 0.47 -1 1.66 3.89 1 0 1 0
265 0.80 -0.14 13.68 29.10 0.16 0 2.30 0.71 1 0 0 0
266 1.13 0.10 23.20 22.66 0.20 0 3.57 2.44 1 0 0 0
271 1.14 0.34 20.44 14.62 0.62 0 3.87 2.47 1 0 0 0
274 1.24 0.11 7.39 40.98 0.63 0 1.48 1.43 1 0 1 0
275 1.28 0.25 21.76 38.67 0.43 0 1.04 3.68 1 0 1 0
276 0.34 -0.86 12.82 28.87 0.47 1 0.81 4.36 1 0 1 0
278 0.11 -1.40 12.38 25.42 0.03 1 1.41 -3.01 1 0 1 0
279 1.32 0.11 12.13 24.15 0.46 0 1.16 3.35 1 0 1 0
281 3.52 2.24 2.63 83.90 -0.70 0 5.54 3.73 0 0 0 1
282 1.36 0.30 29.48 22.25 0.14 0 3.38 2.21 1 1 0 0
287 0.32 0.22 31.10 26.90 0.03 -1 2.63 0.45 1 1 0 0
288 1.17 0.08 21.81 4.22 -0.18 0 3.84 0.65 1 1 0 0
293 1.02 0.26 9.23 50.84 0.60 0 3.50 0.40 1 0 0 0
296 0.55 0.24 6.30 66.68 0.22 0 1.99 0.45 1 0 0 0
302 1.43 0.24 19.70 24.60 -0.10 1 1.14 4.70 1 0 1 0
303 1.22 0.12 21.30 15.40 0.05 1 1.44 -2.03 1 0 1 0
304 1.25 0.30 18.00 23.40 0.15 1 2.45 -3.4 1 0 1 0
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 7.4.  Appendix D:

Results of the Backpropogation Training

a) Scaling Interval: [0,1]
Date No.

Hidden
Activati

on
 Function Training Testing

 Neurons Hidden Output Time Epochs RMS % Error RMS %
Error

21-Aug-95 10  logsig  logsig 3572 37 0.0938 3 0.3166 53
20-Aug-95 10  logsig  logsig 5525 40 0.1939 15 0.2328 38
21-Aug-95 10  logsig  logsig 3501 40 0.1044 7 0.2328 38
20-Aug-95 15 logsig logsig 13835 50 0.1490 20 0.3378 60
21-Aug-95 15 logsig logsig 11662 52 0.0794 1 0.2757 49
20-Aug-95 20  logsig  logsig 21081 50 0.2776 51 0.3582 71
20-Aug-95 25 logsig logsig 24810 50 0.0546 1 0.2973 54
20-Aug-95 30  logsig  logsig 45877 50 0.0511 0 0.3064 54
20-Aug-95 40  logsig  logsig 66107 50 0.1883 36 0.3053 58

11-Aug-95 10  logsig tansig 7624 150 0.1496 23 0.2935 47
21-Aug-95 10  logsig tansig 5878 70 0.1598 23 0.2735 43
20-Aug-95 15 logsig tansig 12879 50 0.1231 13 0.3177 63
22-Aug-95 15 logsig tansig 13748 70 0.1250 12 0.3199 55
11-Aug-95 20  logsig tansig 15786 150 0.1033 6 0.3322 68
20-Aug-95 25 logsig tansig 43678 50 0.0802 0 0.3777 71
16-Aug-95 30  logsig tansig 101726 100 0.0586 0 0.4830 90
21-Aug-95 40  logsig tansig 132520 50 0.0450 0 0.5011 90

14-Aug-95 10 tansig  logsig 12897 103 0.0886 0 0.3400 46
21-Aug-95 10 tansig  logsig 5777 70 0.0908 0 0.3401 49
20-Aug-95 15 tansig logsig 11004 41 0.0653 0 0.3025 48
21-Aug-95 15 tansig logsig 9798 41 0.0653 0 0.3025 48
14-Aug-95 20 tansig  logsig 20168 45 0.0549 0 0.3076 52
20-Aug-95 25 tansig logsig 23524 50 0.1055 8 0.2904 49
15-Aug-95 30 tansig  logsig 54022 50 0.0336 0 0.3326 58
20-Aug-95 40 tansig  logsig 102635 50 0.2307 42 0.3343 68

20-Aug-95 10 tansig tansig 4608 34 0.1473 20 0.2600 42
21-Aug-95 10 tansig tansig 3360 34 0.1473 20 0.2600 42
20-Aug-95 15 tansig tansig 12031 50 0.1199 8 0.3183 62
22-Aug-95 15 tansig tansig 13626 70 0.1177 10 0.3200 68
20-Aug-95 20 tansig tansig 18569 50 0.0907 6 0.3721 62
20-Aug-95 25 tansig tansig 31624 50 0.1046 5 0.3783 81
20-Aug-95 30 tansig tansig 34833 50 0.0814 2 0.4467 78
21-Aug-95 40 tansig tansig 101526 50 0.2008 47 0.4976 91
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b) Scaling Interval: [-1,1]
Date Hidden Activation Function Training Testing

 Neurons Hidden Output Time Epochs RMS %
Error

RMS % Error

20-Aug-95 10  logsig  logsig 6956 50 0.1575 16 0.2743 41
21-Aug-95 10 logsig logsig 7525 70 0.1019 3 0.3124 42
21-Aug-95 10  logsig  logsig 3235 74 0.1231 9 0.3182 44
20-Aug-95 15  logsig  logsig 8765 50 0.0726 0 0.3055 55
21-Aug-95 15  logsig  logsig 7783 37 0.0726 0 0.3055 55
20-Aug-95 20  logsig  logsig 18978 50 0.2378 51 0.3103 64
22-Aug-95 20  logsig  logsig 8727 70 0.1255 14 0.2745 49
20-Aug-95 25  logsig  logsig 28925 50 0.1565 28 0.2895 54
20-Aug-95 30  logsig  logsig 14158 50 0.2118 43 0.3193 59
20-Aug-95 40  logsig  logsig 46334 50 0.1892 33 0.3298 54
12-Aug-95 10  logsig tansig 1415 53 0.1057 5 0.2803 41
21-Aug-95 10 logsig tansig 7538 70 0.1607 16 0.2415 44
11-Aug-95 10  logsig tansig 2005 100 0.1527 17 0.2482 43
20-Aug-95 15  logsig tansig 10031 50 0.1322 11 0.2674 51
21-Aug-95 15  logsig tansig 14239 70 0.1244 10 0.2832 54
22-Aug-95 20  logsig tansig 8698 50 0.0963 5 0.3821 51
13-Aug-95 20  logsig tansig 30588 96 0.0668 3 0.3787 51
20-Aug-95 25  logsig tansig 18667 50 0.0991 7 0.3827 62
13-Aug-95 30  logsig tansig 85013 130 0.0482 0 0.5305 70
20-Aug-95 40  logsig tansig 53041 50 0.1577 15 0.5731 79
22-Aug-95 40  logsig tansig 8727 70 0.1255 14 0.2745 49

13-Aug-95 10 tansig  logsig 4279 57 0.0795 2 0.3110 40
21-Aug-95 10 tansig  logsig 6595 57 0.0795 2 0.3110 40
20-Aug-95 15 tansig  logsig 18022 50 0.1211 9 0.2971 48
21-Aug-95 15 tansig  logsig 14187 70 0.0689 0 0.3109 49
22-Aug-95 20 tansig  logsig 8220 70 0.0714 1 0.3069 52
13-Aug-95 20 tansig  logsig 15796 71 0.0683 0 0.3059 53
20-Aug-95 25 tansig  logsig 49060 50 0.2325 45 0.2840 56
13-Aug-95 30 tansig  logsig 50212 150 0.0710 3 0.2920 55
14-Aug-95 40 tansig  logsig 116776 138 0.0266 0 0.3156 53

20-Aug-95 10 tansig tansig 8836 50 0.1523 18 0.2716 53
21-Aug-95 10 tansig tansig 7289 70 0.1504 17 0.2803 53
20-Aug-95 15 tansig tansig 8589 50 0.1341 11 0.3393 65
21-Aug-95 15 tansig tansig 14314 70 0.1302 11 0.3406 64
20-Aug-95 20 tansig tansig 26743 50 0.1273 10 0.3588 56
22-Aug-95 20 tansig tansig 9727 70 0.1042 7 0.4176 55
20-Aug-95 25 tansig tansig 49467 50 0.1327 13 0.3673 75
20-Aug-95 30 tansig tansig 32702 50 0.2301 28 0.5048 76
21-Aug-95 40 tansig tansig 130381 50 0.2171 31 0.5061 81
5-Sep-95 40 tansig tansig 38736 70 0.1379 13 0.5887 81
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c) Scaling Intervals: [0,1] (R1), [0,1] (R2), [-1,1] (R3), [-1,1] (R4), [0,1] (R5), [-1,1] (R6), [0,1] (R7), [-1,1] (R8)
Date Hidden Activation

Function
Training Testing

 Neurons Hidden Output Time Epochs RMS % Error RMS % Error
 23-Aug-95 10  logsig  logsig 2306 50 0.1381 16 0.2439 38
 23-Aug-95 10 logsig logsig 2770 70 0.1077 6 0.3041 40
 23-Aug-95 15  logsig  logsig 7666 50 0.0869 1 0.2833 47
 23-Aug-95 20  logsig  logsig 15354 50 0.0796 3 0.3026 47
 23-Aug-95 25  logsig  logsig 22898 50 0.1750 12 0.3082 61
 23-Aug-95 30  logsig  logsig 19546 50 0.1807 29 0.3187 56
28-Aug-95 40  logsig  logsig 26609 50 0.0906 4 0.3361 70
22-Aug-95 10  logsig tansig 1633 50 0.1560 20 0.2825 50
22-Aug-95 10 logsig tansig 1107 51 0.1560 20 0.2853 50
 23-Aug-95 15  logsig tansig 10455 50 0.1378 17 0.3374 61
28-Aug-95 20  logsig tansig 7659 50 0.0957 7 0.3912 61
28-Aug-95 25  logsig tansig 12238 50 0.1587 25 0.3599 73
28-Aug-95 30  logsig tansig 32918 130 0.0651 2 0.5154 83
23-Aug-95 10 tansig  logsig 3509 50 0.0905 5 0.2773 41
23-Aug-95 10 tansig  logsig 6151 70 0.0906 2 0.3396 44
28-Aug-95 15 tansig  logsig 5499 50 0.1529 21 0.2703 51
28-Aug-95 20 tansig  logsig 11022 50 0.0832 2 0.3104 60
28-Aug-95 30 tansig  logsig 16399 70 0.0415 0 0.3026 51
23-Aug-95 10 tansig tansig 1119 50 0.1577 21 0.2620 50
23-Aug-95 10 tansig tansig 1652 70 0.1512 20 0.3279 53
28-Aug-95 15 tansig tansig 4220 50 0.1211 12 0.3037 59
28-Aug-95 20 tansig tansig 5863 50 0.1356 20 0.3442 68
29-Aug-95 30 tansig tansig 14474 50 0.2172 36 0.4365 88
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 7.5.  Appendix E:

Results of the RBF Training

3 Networks
K-Means (with P = 10 and Normalized Gaussian) (expected number of centers = 100)

Date Scaling λ Orth. Final Training Testing

Accuracy Centers Time RMS % Error RMS %
Error

12-Sep-95 30-30% 0 0.2 100 100 100 8061 0.1753 30 0.2990 50
18-Aug-95 30-30% 0 0.3 34 43 46 6774 0.2371 42 0.3436 67
18-Aug-95 30-30% 0 0.4 26 34 37 6088 0.2624 44 0.3509 66
18-Aug-95 30-30% 0 0.5 18 26 28 5368 0.2911 52 0.3606 79
19-Aug-95 30-30% 1 0.2 100 100 100 13849 0.2239 54 0.3129 63
19-Aug-95 30-30% 2 0.2 100 100 100 13803 0.3114 73 0.3570 78
19-Aug-95 40-40% 0 0.2 100 100 100 15509 0.1753 30 0.2990 50
11-Sep-95 40-40% 0 0.3 34 43 46 4200 0.2336 46 0.3437 64
11-Sep-95 40-40% 0 0.4 29 35 32 4555 0.2761 53 0.3642 71
11-Sep-95 40-40% 0 0.5 22 27 23 2175 0.2929 57 0.3491 71
19-Aug-95 50-50% 0 0.2 100 100 100 14584 0.1847 32 0.3105 52

3 Networks
K-Means (with P = 5 and Normalized Gaussian) (expected number of centers = 100)

Date Scaling λ Orth. Final Training Testing

Accuracy Centers Time RMS % Error RMS %
Error

22-Aug-95 30-30% 0 0.2 100 100 100 10323 0.1508 23 0.2827 40
22-Aug-95 30-30% 0 0.3 24 34 37 4442 0.2609 49 0.3324 72
22-Aug-95 30-30% 0 0.4 17 26 27 2147 0.2789 54 0.3412 73
22-Aug-95 30-30% 0 0.5 13 19 19 2905 0.3125 67 0.3651 81
22-Aug-95 30-30% 1 0.1 100 100 100 8609 0.2276 56 0.2966 56
22-Aug-95 30-30% 1 0.3 24 34 37 2470 0.3744 72 0.3865 71
22-Aug-95 30-30% 2 0.1 100 100 100 4978 0.2976 72 0.3093 72
11-Sep-95 40-40% 0 0.2 100 100 100 10666 0.1645 28 0.2795 48
11-Sep-95 40-40% 0 0.3 29 37 33 4224 0.2707 53 0.3527 74
11-Sep-95 40-40% 0 0.4 21 28 24 4163 0.2892 55 0.3513 77
11-Sep-95 50-50% 0 0.2 100 100 100 12236 0.1702 31 0.2961 52

3 Networks
Normalized Gaussian (expected number of centers = 100)

Date Center l Orth. Final Training Testing

Det. Accuracy Centers Time RMS % Error RMS %

Error

scaling: 80-80;  80-80;  50-50;   80-80;   0-0;   80-80;   80-80

18-Aug-95 First M 0 0.1 22 40 100 6712 0.1760 33 0.2453 53

18-Aug-95 First M 0 0.1 22 40 100 6676 0.1879 31 0.2324 50

scaling: 60-60;  60-60;  60-60;   60-60;   0-0;   60-60;   60-60

12-Sep-95 First M 0 0.1 19 33 100 1888 0.1698 29 0.2470 45

12-Sep-95 K-M(10) 0 0.1 100 100 100 3177 0.1872 29 0.3378 52
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3 Networks
K-Means (with P = 20 and Normalized Gaussian) (expected number of centers = 200)

Date Scaling λ Orth. Final Training Testing

Accuracy centers Time RMS %
Error

RMS %
Error

22-Aug-95 30-30% 0 0.01 141 129 128 54737 0.1388 25 0.3242 50
05-Sep-95 30-30% 0 0.10 67 80 81 6726 0.2473 48 0.3572 68
21-Aug-95 30-30% 0 0.20 59 71 72 7241 0.2555 52 0.3602 70
06-Sep-95 30-30% 0 0.30 52 62 63 6525 0.2628 55 0.3449 73

06-Sep-95 30-30% 0 0.40 45 54 54 52482 0.2673 55 0.3443 75

22-Aug-95 30-30% 0 0.50 37 45 45 15885 0.2668 58 0.3487 77

09-Sep-95 30-30% 1 0.01 141 129 128 31814 0.3161 86 0.3649 88
21-Aug-95 30-30% 1 0.10 67 80 81 35470 0.3606 84 0.4042 86
06-Sep-95 30-30% 1 0.20 59 71 72 11784 0.3511 81 0.4042 85
21-Aug-95 30-30% 2 0.01 141 129 128 71565 0.4429 86 0.4480 89
21-Aug-95 30-30% 2 0.10 67 80 81 34932 0.4453 85 0.4576 88
21-Aug-95 30-30% 2 0.20 59 71 72 32974 0.4211 86 0.4479 88

20-Aug-95 40-40% 0 0.01 141 129 128 27818 0.1511 30 0.3133 51
20-Aug-95 40-40% 0 0.10 67 80 81 18380 0.2414 45 0.3587 66
20-Aug-95 40-40% 0 0.20 59 71 72 16107 0.2502 50 0.3608 70

20-Aug-95 50-50% 0 0.01 141 129 128 18919 0.1533 32 0.3095 57
20-Aug-95 50-50% 0 0.10 67 80 81 12615 0.2358 52 0.3483 72
20-Aug-95 50-50% 0 0.20 59 71 72 10715 0.2434 53 0.3517 72

3 Networks
K-Means (with P = 10 and Normalized Gaussian) (expected number of centers = 200)

Date Scaling λ Orth. Final Training Testing

Accuracy centers Time RMS %
Error

RMS %
Error

07-Sep-95 30-30% 0 0.01 141 129 128 63772 0.1443 28 0.2986 48
22-Aug-95 30-30% 0 0.10 67 80 81 5221 0.2349 49 0.3512 67
22-Aug-95 30-30% 0 0.20 59 71 72 5066 0.2411 54 0.3645 68
22-Aug-95 30-30% 0 0.30 52 62 63 13048 0.2511 56 0.3586 75
22-Aug-95 30-30% 0 0.40 45 54 54 11458 0.2588 55 0.3546 76
22-Aug-95 30-30% 0 0.50 37 45 45 5091 0.2668 58 0.3487 77
07-Sep-95 30-30% 1 0.01 141 129 128 31732 0.3335 87 0.3525 81
09-Sep-95 30-30% 1 0.10 67 80 81 21951 0.3676 84 0.3895 83
09-Sep-95 30-30% 1 0.20 59 71 72 5201 0.3627 84 0.3888 85
09-Sep-95 30-30% 2 0.01 141 129 128 22678 0.4436 86 0.4288 88
09-Sep-95 30-30% 2 0.10 67 80 81 5824 0.4389 84 0.4384 87
09-Sep-95 30-30% 2 0.20 59 71 72 8600 0.4174 84 0.4307 88
09-Sep-95 40-40% 2 0.01 141 129 128 31534 0.1515 29 0.3056 50
09-Sep-95 40-40% 2 0.10 67 80 81 7283 0.2324 48 0.3571 71
09-Sep-95 40-40% 2 0.20 59 71 72 15150 0.2411 50 0.3564 73
12-Sep-95 50-50% 0 0.01 141 129 128 21465 0.1413 27 0.3191 56
12-Sep-95 50-50% 0 0.10 67 80 81 12867 0.2251 50 0.3494 69
12-Sep-95 50-50% 0 0.20 59 71 72 10830 0.2306 51 0.3456 70
12-Sep-95 60-60% 0 0.01 141 129 128 15396 0.1472 30 0.3288 64
12-Sep-95 60-60% 0 0.10 67 80 81 11636 0.2123 43 0.3770 76
12-Sep-95 60-60% 0 0.20 59 71 72 4187 0.2227 47 0.3726 76
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3 Networks
First 200 Candidates

Date Scaling λ Orth. Final Training Testing

Accuracy centers Time RMS % Error RMS %
Error

15-Sep-95 30-30% 0 0.01 150 138 145 17626 0.0173 1 0.3311 58
18-Sep-95 30-30% 0 0.05 74 78 81 25353 0.1005 11 0.2619 42
14-Sep-95 30-30% 0 0.10 15 32 42 6164 0.1651 26 0.2341 40
14-Sep-95 30-30% 0 0.20 2 2 7 4697 0.2433 49 0.2359 53
15-Sep-95 40-40% 0 0.01 138 148 142 24696 0.0134 0 0.3309 60
18-Sep-95 40-40% 0 0.05 65 82 82 12484 0.0973 11 0.2818 48
14-Sep-95 40-40% 0 0.10 17 27 50 4945 0.1695 30 0.2481 43
14-Sep-95 40-40% 0 0.20 2 3 8 3460 0.2489 48 0.2466 52
14-Sep-95 50-50% 0 0.01 139 142 142 16547 0.0216 1 0.3371 62
14-Sep-95 50-50% 0 0.10 14 33 50 2561 0.1696 29 0.2486 49
14-Sep-95 50-50% 0 0.20 3 4 7 1646 0.2599 62 0.2689 70
13-Sep-95 60-60% 0 0.01 132 147 143 13434 0.0159 1 0.3256 57
15-Sep-95 60-60% 0 0.02 106 128 119 14515 0.0367 1 0.3192 57
15-Sep-95 60-60% 0 0.03 91 110 103 37034 0.0581 5 0.2919 49
13-Sep-95 60-60% 0 0.04 75 100 92 18776 0.0761 7 0.2790 51
13-Sep-95 60-60% 0 0.05 61 85 83 6741 0.0924 10 0.2806 52
13-Sep-95 60-60% 0 0.06 52 70 75 5343 0.1090 18 0.2741 47
13-Sep-95 60-60% 0 0.07 43 59 70 4206 0.1251 20 0.2600 45
13-Sep-95 60-60% 0 0.08 34 51 67 3062 0.1431 22 0.2487 45
14-Sep-95 60-60% 0 0.09 25 43 61 3100 0.1622 26 0.2422 43
13-Sep-95 60-60% 0 0.10 21 32 53 2626 0.1708 30 0.2471 44
13-Sep-95 60-60% 0 0.15 7 12 21 5238 0.2270 43 0.2409 51
13-Sep-95 60-60% 0 0.20 3 6 8 4855 0.2500 62 0.2468 64

4 Networks
K-Means (with P = 10 and Normalized Gaussian) (expected number of centers = 100)

Date Scaling λ Orth. Final Training Testing

Accuracy Centers Time RMS %
Error

RMS %
Error

23-Aug-95 30-30% 0 0.2 100 100 100 100 3806 0.2053 33 0.2900 50
22-Aug-95 30-30% 0 0.3 34 43 46 100 2483 0.2557 53 0.3245 72
22-Aug-95 30-30% 0 0.4 26 34 37 25 3235 0.2736 56 0.3304 71
22-Aug-95 30-30% 0 0.5 18 26 28 13 919 0.2946 62 0.3380 84
14-Aug-95 30-30% 1 0.1 100 100 100 100 20232 0.2292 62 0.4583 89
14-Aug-95 30-30% 1 0.2 100 100 100 100 20270 0.2292 62 0.4583 89
14-Aug-95 30-30% 2 0.1 100 100 100 100 20302 0.2874 86 0.4632 91
14-Aug-95 30-30% 2 0.2 100 100 100 100 5053 0.2874 86 0.4632 91
10-Sep-95 40-40% 0 0.2 100 100 100 100 3660 0.2150 39 0.2895 55
09-Sep-95 40-40% 0 0.3 100 45 41 100 6774 0.2533 56 0.3246 70
09-Sep-95 40-40% 0 0.4 29 35 32 18 1748 0.2835 61 0.3410 76
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4 Networks
K-Means (with P = 5 and Normalized Gaussian) (expected number of centers = 100)

Date Scaling λ Orth. Final Training Testing
Accuracy Centers Time RMS %

Error
RMS %

Error
22-Aug-95 30-30% 0 0.1 100 100 100 100 4013 0.2007 34 0.2769 47
22-Aug-95 30-30% 0 0.2 33 44 49 100 2506 0.2520 50 0.3227 79
22-Aug-95 30-30% 0 0.3 24 34 37 100 2262 0.2725 60 0.3157 77
22-Aug-95 30-30% 0 0.4 17 26 27 15 1349 0.2856 65 0.3226 80
22-Aug-95 30-30% 0 0.5 13 19 19 10 3834 0.3106 78 0.3417 87
22-Aug-95 30-30% 1 0.1 100 100 100 100 4078 0.2491 68 0.2877 62
22-Aug-95 30-30% 1 0.3 24 34 37 100 3515 0.3582 82 0.3589 79
22-Aug-95 30-30% 2 0.1 100 100 100 100 3194 0.2994 84 0.2975 80
22-Aug-95 30-30% 2 0.3 24 34 37 100 2439 0.3536 76 0.3728 79
9-Sep-95 40-40% 0 0.1 100 100 100 100 3879 0.2086 38 0.2745 53
9-Sep-95 40-40% 0 0.3 29 37 33 66 2128 0.2796 63 0.3318 79
9-Sep-95 40-40% 0 0.4 21 28 24 16 1222 0.2931 67 0.3307 82

12-Sep-95 50-50% 0 0.2 100 100 100 100 12257 0.2475 50 0.3086 66

4 Networks
K-Means (with P = 20 and Normalized Gaussian) (expected number of centers = 200)

RBF Tests
Date Scaling λ Orth. Final Training Testing

Accuracy centers Time RMS %
Error

RMS %
Error

19-Aug-95 30-30% 0 0.01 141 129 128 175 33858 0.1940 37 0.3092 57
24-Aug-95 30-30% 0 0.10 67 80 81 28 8315 0.2628 59 0.3354 76
23-Aug-95 30-30% 0 0.20 59 71 72 25 11391 0.2686 62 0.3377 78
23-Aug-95 30-30% 0 0.30 52 62 63 22 5435 0.2739 65 0.3255 81
24-Aug-95 30-30% 0 0.40 45 54 54 19 13210 0.2771 66 0.3251 83
10-Sep-95 30-30% 0 0.50 37 45 45 16 12478 0.2823 73 0.2823 85
19-Aug-95 30-30% 1 0.01 141 129 128 175 34619 0.3133 100 0.3415 95
05-Sep-95 30-30% 1 0.10 67 80 81 28 10851 0.3474 98 0.3732 96
24-Aug-95 30-30% 1 0.20 59 71 72 25 16604 0.3401 94 0.3732 95
19-Aug-95 30-30% 2 0.01 141 129 128 175 47827 0.4127 100 0.4090 99
07-Sep-95 30-30% 2 0.10 67 80 81 28 10073 0.4146 100 0.4169 98
24-Aug-95 30-30% 2 0.20 67 80 81 28 10484 0.3952 100 0.4090 97
11-Sep-95 40-40% 0 0.01 141 129 128 175 22994 0.2008 40 0.3006 58
10-Sep-95 40-40% 0 0.10 67 80 81 28 7307 0.2587 56 0.3366 74
10-Sep-95 40-40% 0 0.20 59 71 72 25 6031 0.2649 59 0.3382 76
13-Sep-95 50-50% 0 0.01 141 129 128 175 77148 0.2021 43 0.2976 63
13-Sep-95 50-50% 0 0.10 67 80 81 28 24073 0.2548 60 0.3283 78
12-Sep-95 50-50% 0 0.20 59 71 72 25 34907 0.2601 61 0.3310 78
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4 Networks
K-Means (with P = 10 and Normalized Gaussian) (expected number of centers = 200)

Date Scaling λ Orth. Final Training Testing

Accuracy centers Time RMS %

Error

RMS %

Error

21-Aug-95 30-30% 0 0.01 141 129 128 175 34106 0.1970 39 0.2892 53
22-Aug-95 30-30% 0 0.10 67 80 81 28 7355 0.2541 59 0.3306 75
22-Aug-95 30-30% 0 0.20 59 71 72 25 9014 0.2584 62 0.3412 76
22-Aug-95 30-30% 0 0.30 52 62 63 22 30240 0.2655 65 0.3365 82
22-Aug-95 30-30% 0 0.40 45 54 54 19 26819 0.2710 64 0.3332 84
23-Aug-95 30-30% 0 0.50 37 45 45 16 6755 0.2768 68 0.3286 84
23-Aug-95 30-30% 1 0.01 141 129 128 175 25893 0.3265 100 0.3316 89
23-Aug-95 30-30% 1 0.10 67 80 81 28 6536 0.3529 98 0.3613 93
23-Aug-95 30-30% 1 0.20 59 71 72 25 13521 0.3491 96 0.3607 94
23-Aug-95 30-30% 2 0.01 141 129 128 175 31265 0.4133 100 0.3933 100
23-Aug-95 30-30% 2 0.10 67 80 81 28 7179 0.4095 99 0.4011 97
23-Aug-95 30-30% 2 0.20 59 71 72 25 6062 0.3923 98 0.3948 97
10-Sep-95 40-40% 0 0.01 141 129 128 175 29069 0.2011 40 0.2946 55
11-Sep-95 40-40% 0 0.10 67 80 81 28 18316 0.2524 58 0.3352 80
11-Sep-95 40-40% 0 0.20 59 71 72 25 20127 0.2584 60 0.3347 80
12-Sep-95 50-50% 0 0.01 141 129 128 175 28547 0.1954 38 0.3052 62
12-Sep-95 50-50% 0 0.10 67 80 81 28 19800 0.2474 60 0.3291 75
12-Sep-95 50-50% 0 0.20 59 71 72 25 26655 0.2512 60 0.3261 75

4 Networks
First-M Candidates (expected number of centers = 200)

Date Scaling λ Orth. Final Training Testing

Accurac
y

centers Time RMS %
Error

RMS %
Error

15-Sep-95 30-30% 0 0.10 21 32 53 88 15293 0.2123 40 0.2501 50
15-Sep-95 30-30% 0 0.20 2 2 7 45 9587 0.2600 57 0.2418 58
15-Sep-95 40-40% 0 0.10 17 27 50 91 13828 0.2115 40 0.2508 47
15-Sep-95 40-40% 0 0.20 2 3 8 46 7993 0.2639 57 0.2499 59
18-Sep-95 50-50% 0 0.01 139 142 142 180 31775 0.1535 15 0.3194 65
15-Sep-95 50-50% 0 0.10 14 33 50 80 30235 0.2116 40 0.2512 53
15-Sep-95 50-50% 0 0.20 3 4 7 40 10581 0.2718 66 0.2665 73
18-Sep-95 60-60% 0 0.01 132 147 143 171 23721 0.1529 15 0.3103 62
15-Sep-95 60-60% 0 0.10 15 32 42 80 16241 0.2089 36 0.2406 45
15-Sep-95 60-60% 0 0.20 3 6 8 46 6044 0.2647 66 0.2499 68
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 7.6. 

Appendix F:

Example of the Use of Simulink During the Test of Different

Inputs to the Fuzzy Expert System

0.1

Seasonal

0.95

Liquidity

inventory
Signal

0.6

Constant

0.3

Constant1

+
+

Sum

0.1

apstrend

0.1

salesftrend

Mux

Mux1

*

cccSignal1

0.7

Constant2

0.7

Constant3

+
+

Sum1

*

interestSignal2

16

Constant4

3

Constant5

+
+

Sum2 +
+

Sum3

10

Constant7

15

Constant6

Signal3

*

ars

Inv

cccc

iinterest

ars_

Fuzzy Logic Controller

Demux

Demux

output

output2

[-0.3,0.3]
[0.3,0.9]

Multiplexer indicates the
number of  inputs (=8)
required . Matlab
requires to know how
many variables

DeMultiplexer indicates
the number of  outputs
(=2) required . Matlab
requires to know how
many variables

[-1,1]
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Reduce of Inventory

Reduce ARS (Accounts Receivable)
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 7.7.  Appendix G:

Examples of the Rules Used in the Fuzzy Expert System

(in [MART96])

1) IF LIQUIDITY
and Seasonal is no
and Inventory is HIGH
and <Purchases> in days of Sales trend is increasing or stable
and CCC is HIGH
and Sales forecast trend is stable or decreasing

THEN  Reduce Inventories is HIGH
 
2) IF LIQUIDITY

and Seasonal is no
and Inventory is HIGH
and <Purchases> in days of Sales trend is unstable
and CCC is HIGH
and Sales forecasts trend is stable or decreasing

THEN Reduce Inventories is MEDIUM
 
3) IF LIQUIDITY

and Seasonal is no
and Inventory is MEDIUM
and <Purchases> in days of Sales trend is increasing or stable
and CCC is HIGH
and Sales forecast trend is stable or decreasing

THEN Reduce Inventories is MEDIUM
 
4) IF LIQUIDITY

and Seasonal is no
and Inventory is LOW
and <Purchases> in days of Sales trend is stable
and CCC is HIGH
and Sales forecast trend is stable or decreasing

THEN  Reduce Inventories is LOW
 
5) IF LIQUIDITY

and Seasonal is no
and Inventory is LOW
and <Purchases> in days of Sales trend is stable
and CCC is HIGH
and Sales forecast trend is stable or decreasing

THEN  Reduce Inventories is LOW
 
6) IF  LIQUIDITY

and  Seasonal is no
and  Interest is HIGH
and  Accounts Receivable in Days of Sales is HIGH
and  Inventory is HIGH

THEN  Reduce Inventories is HIGH
and  Reduce Accounts Receivable is HIGH
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7) IF  LIQUIDITY
and  Seasonal is no
and  Interest is HIGH
and  Accounts Receivable in Days of Sales is MEDIUM
and  Inventory is MEDIUM
and  Sales forecast trend is stable or decreasing

THEN  Reduce Inventories is MEDIUM
and  Reduce Accounts Receivable is MEDIUM

 
 
8) IF  LIQUIDITY

and  Seasonal is no
and  Interest is MEDIUM
and  Accounts Receivable in Days of Sales is  HIGH
and  Inventory is HIGH
and  Sales forecast trend is stable or decreasing

THEN  Reduce Inventories is HIGH
and  Reduce Accounts Receivable is MEDIUM

 
9) IF  LIQUIDITY

and  Seasonal is no
and  Interest is MEDIUM
and  Accounts Receivable in Days of Sales is  HIGH
and  Inventory is HIGH
and  Sales forecast trend is unstable

THEN  Reduce Inventories is MEDIUM
and  Reduce Accounts Receivable is MEDIUM

 
10)  IF  LIQUIDITY

and  Seasonal is no
and  Interest is MEDIUM
and  Accounts Receivable in Days of Sales is MEDIUM
and  Inventory is MEDIUM
and  Sales forecast trend is decreasing

THEN  Reduce Inventories is MEDIUM
and  Reduce Accounts Receivable is LOW

 
11)  IF  LIQUIDITY

and  Seasonal is no
and  Interest is LOW
and  Accounts Receivable in Days of Sales is HIGH
and  Inventory is HIGH or MEDIUM
and  Sales forecast trend is stable or decreasing

 THEN  Reduce Inventories is MEDIUM
and  Reduce Accounts Receivable is MEDIUM

 
12)  IF  LIQUIDITY

and  Seasonal is no
and  Interest is LOW
and  Accounts Receivable in Days of Sales is MEDIUM
and  Inventory is HIGH
and  Sales forecast trend is unstable

THEN  Reduce Inventories is LOW
and  Reduce Accounts Receivable is LOW

 
13)  IF LIQUIDITY

and Seasonal is yes
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and Inventory is VERY HIGH
and Sales forecast trend is decreasing

THEN  Reduce Inventories is MEDIUM
 
14)  IF LIQUIDITY

and Seasonal is yes
and Inventory is VERY HIGH
and Sales forecast trend is unstable

THEN Reduce Inventories is LOW
 
15)  IF LIQUIDITY

and Seasonal is yes
and Inventory is HIGH
and Sales forecast trend is decreasing

THEN Reduce Inventories is LOW
 
16)  IF LIQUIDITY

and Seasonal is yes
and Interest is HIGH
and Accounts Receivable in Days of Sales is VERY HIGH
and Inventory is VERY HIGH

THEN Reduce Inventories is MEDIUM
and Reduce Accounts Receivable is MEDIUM

 
17)  IF LIQUIDITY

and Seasonal is yes
and Interest is HIGH
and Accounts Receivable in Days of Sales is VERY HIGH
and Inventory is HIGH

THEN  Reduce Inventories is LOW
and  Reduce Accounts Receivable is LOW

 
18)  IF LIQUIDITY

and Seasonal is yes
and Interest is MEDIUM
and Accounts Receivable in Days of Sales is VERY HIGH
and Inventory is HIGH or VERY HIGH

THEN  Reduce Inventories is LOW
and  Reduce Accounts Receivable is LOW

 
19)  IF  LIQUIDITY

and  Seasonal is yes
and  Interest is MEDIUM
and  Accounts Receivable in Days of Sales is HIGH
and  Inventory is HIGH
and  Sales forecast trend is decreasing

THEN  Reduce Inventories is MEDIUM
and  Reduce Accounts Receivable is LOW

 
20)  IF  LIQUIDITY

and  Seasonal is yes
and  Interest is MEDIUM
and  Accounts Receivable in Days of Sales is  HIGH
and  Inventory is HIGH
and  Sales forecast trend is unstable

THEN  Reduce Inventories is LOW
and  Reduce Accounts Receivable is LOW
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21)  IF  LIQUIDITY
and  Seasonal is yes
and  Interest is LOW
and  Accounts Receivable in Days of Sales is HIGH
and  Inventory is HIGH or MEDIUM
and  Sales forecast trend is stable or decreasing

 THEN  Reduce Inventories is LOW
and  Reduce Accounts Receivable is LOW

 
22)  IF LIQUIDITY

and Accounts Payable in Days of Sales is LOW
 THEN Negotiate Payable terms

 
23)  IF LIQUIDITY

and Seasonal is no
and STDebt is HIGH
and Interest is HIGH
and T / | WI | trend is negative
and Sales Volume is HIGH
and business phase is growth

THEN Slow down business growth
 
24)  IF LIQUIDITY

and Seasonal is no
and STDebt is HIGH
and Levarage is HIGH
and Operational Income is HIGH

THEN Inject Equity
 
25)  IF LIQUIDITY

and DEBT is no
and Seasonal is no
and mid-term Sales forecast trend is stable or increasing
and STDebt is HIGH or MEDIUM
and Levarage is LOW
and Operational Income is HIGH

THEN Increase LTDebt position
 
26)  IF PROFITABILITY

and Sales Volume is LOW
and Contribution Margin is HIGH
and Selling Expenses is HIGH

THEN Reduce Selling Expenses is HIGH

27)  IF PROFITABILITY
and Sales Volume is LOW
and Contribution Margin is HIGH
and Average Cost of Purchases is HIGH

THEN Reduce Cost of Purchases is HIGH
 
28) IF PROFITABILITY

and Sales Volume is LOW
and Contribution Margin is HIGH
and Average Cost of Purchases is AVERAGE
and Selling Expenses is HIGH

THEN Reduce Cost of Purchases is LOW
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29)  IF PROFITABILITY
and Sales Volume is LOW
and Contribution Margin is HIGH
and Average Cost of Purchases is AVERAGE
and Selling Expenses is AVERAGE

THEN Reduce Cost of Purchases is MEDIUM
 
30)  IF PROFITABILITY

and Sales Volume is LOW
and Contribution Margin is HIGH
and elasticity is yes
and Average Cost of Purchases is LOW
and Selling Expenses is LOW

THEN Reduce Margin is MEDIUM
 
31)  IF PROFITABILITY

and Sales Volume is LOW
and Contribution Margin is HIGH
and elasticity is no
and Average Cost of Purchases is LOW
and Selling Expenses is LOW

THEN Reduce Margin is LOW
 
32)  IF PROFITABILITY

and Sales Volume is LOW
and Contribution Margin is HIGH
and elasticity is yes!
and Average Cost of Purchases is LOW
and Selling Expenses is LOW

THEN Reduce Margin is HIGH
 
33)  IF PROFITABILITY

and Sales Volume is HIGH
and Contribution Margin is LOW
and elasticity is yes!

THEN Increase Margin is MEDIUM
 
34)  IF PROFITABILITY

and Sales Volume is MEDIUM
and Contribution Margin is LOW
and elasticity is yes!

THEN Increase Margin is LOW
 
35)  IF PROFITABILITY

and Administrative Expenses is HIGH
THEN  Reduce Administrative Expenses is HIGH

 
36)  IF PROFITABILITY

and Administrative Expenses is MEDIUM
THEN  Reduce Administrative Expenses is LOW

 
37)  IF  PROFITABILITY

and  Contribution Margin  is HIGH
THEN Check pricing in relation to product turnover

 
38)  IF PROFITABILITY

and Seasonal is yes
and Interest is HIGH
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and Inventory is VERY HIGH OR HIGH
THEN  Reduce Inventories is MEDIUM

 
39)  IF PROFITABILITY

and Seasonal is yes
and Interest is HIGH
and Inventory is MEDIUM

THEN Reduce Inventories is LOW
 
40)  IF PROFITABILITY

and Seasonal is no
and Interest is HIGH
and Inventory is VERY HIGH OR HIGH

THEN  Reduce Inventories is MEDIUM
 
41)  IF PROFITABILITY

and Seasonal is no
and Interest is ( HIGH or MEDIUM)
and Inventory is VERY HIGH OR HIGH

THEN Reduce Inventories is HIGH
 
42)  IF PROFITABILITY

and Seasonal is no
and Interest is ( VERY HIGH OR HIGH or MEDIUM)
and Inventory is MEDIUM

THEN  Reduce Inventories is MEDIUM
 
43)  IF  PROFITABILITY

and  Interest is LOW
and  Inventory is HIGH or VERY HIGH or MEDIUM

THEN  Reduce Inventories is MEDIUM
 
44)  IF PROFITABILITY

and Interest is HIGH
and Accounts Receivable in Days of Sales is VERY HIGH

THEN Reduce Accounts Receivable is HIGH
 
45)  IF PROFITABILITY

and Seasonal is yes
and Interest is HIGH
and Accounts Receivable in Days of Sales is HIGH

THEN Reduce Accounts Receivable is MEDIUM
 
46)  IF PROFITABILITY

 and Interest is MEDIUM
and Accounts Receivable in Days of Sales is VERY HIGH

THEN Reduce Accounts Receivable is MEDIUM
 
47)  IF PROFITABILITY

and Seasonal is no
 and Interest is MEDIUM

and Accounts Receivable in Days of Sales is HIGH
THEN Reduce Accounts Receivable is MEDIUM

 
48)  IF PROFITABILITY

and LIQUIDITY is no
and mid-term Sales forecast trend is stable or increasing
and Leverage is LOW
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and Interest mid-term forecast trend is stable or decreasing
and Operational Income is HIGH

THEN Increase Leverage by LTDebt
 
49) IF DEBT

and mid-term Sales forecast trend is stable or decreasing
and Fixed Assets Turnover is LOW

THEN Reduce Investments in Fixed Assets
50) IF DEBT

and PROFITABILITY is no
and mid-term Sales forecast trend is stable or decreasing
and Interest is ( HIGH and Interest mid-term forecast trend is stable or decreasing)
and Leverage is HIGH

THEN Negotiate debt terms and inject Equity
 
51) IF DEBT

and mid-term Sales forecast trend is stable or decreasing
and Interest is HIGH and Interest mid-term forecast trend is increasing
and Leverage is HIGH

THEN (Negotiate debt terms or inject Equity) and Stop borrowing
 
52)  IF DEBT

and mid-term Sales forecast trend is stable or decreasing
and Interest is HIGH and Interest mid-term forecast trend is stable or decreasing
and Leverage is MEDIUM

THEN Negotiate debt terms
 
53) IF DEBT

and Sales Volume is (LOW or MEDIUM)
and ST I Expense / LT I Expense is MEDIUM or HIGH
and Interest is HIGH or MEDIUM and Interest mid-term forecast trend is stable or 

decreasing
THEN Restructure terms between LT and ST Debt

 
54)  IF DEBT

and PROFITABILITY is no
and Sales Volume is HIGH
and ST I Expense / LT I Expense is MEDIUM or HIGH
and Interest mid-term forecast trend is increasing

THEN Increase Debt payment
 
55)  IF DEBT

and Operational Cash Flow  is HIGH
THEN Reduce Fixed Costs is MEDIUM

 
56) IF DEBT

and Operational Cash Flow  is MEDIUM
THEN Reduce Fixed Costs is MEDIUM

 
57)  IF DEBT

and Levarage is HIGH or MEDIUM
and Interest is HIGH or VERY HIGH
and Credit Line is restricted

THEN Reduce Fixed Costs is HIGH
 
58)  IF DEBT

and Levarage is MEDIUM
and Interest is MEDIUM
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and Credit Line is available
THEN Reduce Fixed Costs is MEDIUM

 
59)  IF DEBT

and Levarage is HIGH or MEDIUM
and Interest is HIGH or VERY HIGH

THEN Reduce Inventories is HIGH
and Reduce Accounts Receivable is MEDIUM

 
60)  IF DEBT

and Levarage is HIGH
and Interest is LOW

THEN Reduce Inventories is MEDIUM
and Reduce Accounts Receivable is LOW

 
61)  IF DEBT

and Interest is HIGH
and Fixed Charge Coverage is LOW
and Sales forecast trend is decreasing

THEN Negotiate Lease terms
 
62)  IF DEBT

and PROFITABILITY is no
and ST I Expense / LT I Expense is MEDIUM or HIGH
and mid-term Sales forecast trend is stable or decreasing

THEN Restructure terms between LT and ST Debt (Extend Debt terms)
 
63)  IF DEBT

 and LIQUIDITY
and PROFITABILITY is no
and Interest is HIGH or MEDIUM
and Contribution Margin is AVERAGE or HIGH
and Sales Volume is HIGH

THEN Increase On Sale offers
 
64)  IF DEBT

 and LIQUIDITY
and PROFITABILITY is no
and Interest is HIGH or MEDIUM
and Contribution Margin is LOW

THEN Redefine On Sale mix
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 7.8.  Appendix H:

MATLAB Code of the Backpropagation Network

% PROGRAM: backprop()
% Backpropagation Network to Diagnose Financial Health Problems
% TECHNICAL OBSERVATION:

% This program implements 3 Backpropagation Algorithms
%    Roberto Pacheco and Alejandro Martins, July 1995.
clc
disp('============================================================')
disp(' BACKPROPAGATION TO CLASSIFY THE COMPANIES - TRAIN AND TEST ')
disp('===========================================================')
echo off;
t=clock;
%%%%%%%%%%%%%%%%% Reading Network Parameters %%%%%%%%%%%%%%%%
typeBP =-1;
while (typeBP < 1) | (typeBP > 3),
   disp('Type of Backpropagation Optimizing Algorithm: ');

disp('    [1] Simple BP - poor');
disp('    [2] Optimized BP - reasonable approximation ');
disp(' [3] Levenberg-Marquardt BP          - excellent but very slow');
typeBP = input('Chose One: ');

end;
totHidden = input ('Total of Hidden Neurons: ');
max_epoch = input('Maximum Number of Epochs: ');
RMSgoal = input('RMS Goal: ');
typeAFH = -1; typeAFO=-1;
while ((typeAFH < 49) | (typeAFH > 51))&((typeAFO < 49) | (typeAFO > 51)),
disp('Types of Activation Function ');
disp(' [1] logaritmic  sigmoid-logsig (interval[0,1])');
disp(' [2] tangent sigmoid     - tansig (interval [-1,1])');
disp(' [3] linear                     - purelin (interval [-1,1])');
str = input('Chose: (for Hidden) <space> (for Output): ','s');
typeAFH = str(1); typeAFO = str(3);
end;
if(typeAFH == 49)
actFunHL = 'logsig'; %%% activation function in the hidden layers
elseif (typeAFH == 50)
actFunHL = 'tansig'; %%% activation function in the hidden layers
else
actFunHL = 'purelin'; %%% activation function in the hidden layers
end;
if(typeAFO == 49)
actFunOL = 'logsig'; %%% activation function in the output layers
elseif (typeAFO == 50)
actFunOL = 'tansig'; %%% activation function in the output layers
else
actFunOL = 'purelin'; %%% activation function in the output layers
end;
clear str typeAFH typeAFO;
clc; clc;
disp( ===============================================================')
disp(' BACKPROPAGATION TO CLASSIFY THE COMPANIES - TRAIN AND TEST' )
disp( ===============================================================')
disp(‘ ‘);

fprinff(sprinff('Number of Layers               : 2')); disp(");
fprinff(sprinff('Number of Hidden Neurons : %%d'),totHidden); disp(");
fprinff(sprinff('Hidden Activation Function  : %%s'),actFunHL); disp(");
fprinff(sprinff('Output Activation Function   : %%s'),actFunOL); disp(");
fprinff(sprinff('RMS Goal                            : %%1.3f'),RMSgoal); disp(");
msg = sprinff('Backpropagation Algorithm  : %%s');
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if (typeBP==1 )
   fprinff(msg,'Simple BackProp (Grad. Desc. without momentum and Adaptive Lr)');
elseif(typeBP==2)
   fprinff(msg,'Optimized Backpropagation (Grad. Desc. with momentum + adap. Lr)');
elseif(typeBP==3)
  fprinff(msg,'Levenberg-Marquardt Optimization');
end;
ch = -1;
while (ch ~= 1) & (ch ~= 2)
  disp(' '); disp(");
  ch = input('Press any [1] to initiate training or [2] to cancel: ');
end;
if (ch==2)
  return
end;
clear ch;
clc;
echo off;
disp(' ');disp(");
fprinff(' TRAINING...');

%%%%%%%%%%%%%%%%% Loading Data %%%%%%%%%%%%%%%%%%%%%%%%%%%
disp(");
fprinff('                    1. Loading Training Files...');
load train.dat;   load scales.dat        %%%% scale factors to the scaling of the input vectors
y           = train(:,10:13); %%%% outputs to the training set.
%%%%%%%%%%%%%%% Testing the dimensions %%%%%%%%%%%%%%%%%%%%%%%
[N p]       = size(train);
[lineY Q] = size(y);
if (lineY ~= N)
  disp('Error: the total of targets is inferior to the total of inputs');
  retum;
end;
echo off; clear p lineY;

%%%%%%%%%%%% FIRST STEP: SCALING OF THE INPUT VECTORS %%%%%%%%%%%%%%%%
disp(");    fprinff(‘                          2.Scaling Inputs...');
load mins.dat: load maxs.dat:
x = scale(train(:,2:9),min(train(:,2:9)),max(train(:,2:9)),mins,maxs, scales;
[N P] = size(x);

%%%%%%%%%% transforming 'y' into .1 or .9 vectors %%%%%%%%%%%%%%%%%%%%%
disp("):
fprinff(' 3. Transforming outputs ');
for i=1 :N

for j=1 :Q
  if (y(i,j) == 0)

    y(i,j)=0.1;
else
     Y(i,j)=0.9;
end;

 end;
end;

%%%%%%% SECOND STEP: ADJUSTING LEARNING AND TRAINING PARAMETERS %%%%%%
Tolerance = 0.3;
disp_freq=1;
Ir=0.95;
momentum=0.95;
err_ ratio=1.04;
tp = [disp_freq max_epoch RMSqoal Ir momentum err_ratio];

%%%%%%% THIRD STEP: INITIALIZING THE NETWORK %%%%%%%%%%%%%%%%%%%%%
Pmin max=[min(x);max(x)]';
% Creates a network with “totHidden" neurons with “actFunHL”
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% in the first layer and “y” dimension neurons with
% a “actFunOL" activation function in the second layer.
[W1,b1,W2,b2] = initff(PminMax,totHidden,actFunHL,4,actFunOL);

%%%%%%% FOURHT STEP: TRAINING THE NETWORK %%%%%%%%%%%%%%%%%%%
disp(");fprinH('                               4. Training outputs '); disp("); disp(");
if (typeBP ==1) %%% Classical Backpropagation
[W1,b1,W2,b2,te,tr]=trainbp(W1 ,b1 ,actFunHL,W2,b2,actFunOL...
,x',y',tp);
elseif (typeBP == 2) %%% Optimized Backpropagation
[W1,b1,W2,b2,te,tr]=trainbpx(W1,b1 ,actFunHL,W2,b2,actFunOL...
 ,x',y',tp);
elseif (typeBP == 3) %%% Levenberg-Marquardt Backpropagation
[W1,b1,W2,b2,te,tr]=trainlm(W1,b1,actFunHL,W2,b2,actFunOL...

,x',y',tp);
end;
t = etime(clock,t);
clear disp_freq err_ratio i j tp; pause;

disp("); fprinff('             Results:');disp(' ');

%%%%%%% FIFTH STEP: VERIFYING TRAINING PERFORMANCE %%%%%%%%%%%%
YN = simuff(x',W1,b1,actFunHL,W2,b2,actFunOL)';
Error = y - YN;

%%%%%%%%% RMS in the Training Phase
RMSTrain = sqrt(sum(sum(Error.^2))/(N*Q));
fprinff(sprintf('                             RMSTraining : %%2.4f'),RMSTrain); disp(");

%%%%%%% Percentual Error in the Training Phase
PErrTrain = errperc(y,YN,Tolerance);
fprinff(sprinff('                                 Perceptual Error: %%2.2f %'),PErrTrain); disp(");

disp(");disp("); disp('                                                  Press any Key to Continue ');pause;

%%%%%%% SIXTH STEP: TESTING PERFORMANCE %%%%%%%%%%%%%%%%%%%
clc; disp(' ');
fprinff('  TESTING...'); disp(' ');
fprinff('             1. Loading Testing Files...');disp(' ');
load testing.dat;
y = testinq(:,10:13); %%%% outputs to the training set.

%%%%%%%%%%%% testing dimensions
[N QT] = size(y);
jf (Q ~= QT)
disp('Error: the testing data is not related to this network - output dimensions do not match!');
 return;
end;

%%%%%%%%%%%%% scaling the input vector
fprinff(' 2. Scaling ');disp(' ');
x = scale(testing(:,2:9),min(train(:,2:9)),max(train(:,2:9)),mins, maxs,scales);
[N PT] = size(x);
clear scales train;
if (PT ~= P)
  disp ('Error: testing and training input patterns have different dimensions!');
  return;
end;
clear QT PT;

%%%%%%%%%% transforming 'y' into .1 or .9 vectors
fprinff(' 3. Transforming outputs ');disp(' ');
for i=1 :N
for j=1 :Q

if (y(i,j) == 0)
    y(i,j)=0.1;
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else
     y(i,j) = 0.9;

     end;
  end;
end;

%%%%%%%%% Network Response to the Testing Inputs
YN = simuff(x',W1,b1,actFunHL,W2,b2,actFunOL)';
Error = y - YN;

disp("); disp(");fprinff('                          Results:');disp(' ');
%%%%%%%%% RMS in the Testing Phase
RMSTest = sqrt(sum(sum(Error.^2))/(N*Q));
fprinff(sprinff('                RMS Testing                                  : %%2.4f ‘,)RMST); disp(‘ ‘);

%%%%%%% Percentual Error in the Testing Phase
PErrTest = errperc(y,YN,Tolerance);
fprinff(sprintf('                       Percentual Error                      : %%2.2f%’),PerrTest);
disp(");disp("); disp("); disp(");disp("); disp(");
disp('Press any Key to Continue ');pause;

clc; clc;
disp('================================================================')
disp(' BACKPROPAGATION TO CLASSIFY THE COMPANIES - TRAIN AND TEST’)
disp('================================================================')
fprinff(sprinff('Date                                                      : %%s'),date);disp(");
fprinff(sprinff('Number of Layers                     : 2')); disp(");
fprinff(sprinff('Number of Hidden Neurons       : %%d'),totHidden); disp(");
fprinff(sprinff('Hidden Activation Function        :%°/Os'),actFunHL); disp(");
fprinff(sprinff('Output Activation Function         : %%s'),actFunOL); disp(");
fprinff(sprinff('RMS Goal : %%1.3f'),RMSgoal); disp(");
msg = sprinff('Backpropagation Algorithm        : %%s');
if (typeBP==1)
fprinff(msg,'Simple BackProp (Grad. Desc. without momentum and Adaptive Lr)');
elseif(typeBP==2)
fprinff(msg,'Optimized Backpropagation (Grad. Desc. with momentum + adap. Lr)');
elseif(typeBP==3)
fprinff(msg,'Levenberg-Marquardt Optimization');
end;
disp(' ');disp(‘ TRAINING Results:');
fprintf(sprinff('             No Epochs : %%3d'),te); disp(");
fprinff(sprinff('             Training Time : %%2.4f seconds'),t); disp(");
fprinff(sprinff('             RMS Training : %%2.4f'),RMSTrain); disp(");
fprinff(sprinff('             Percentual Error: %%2.2f'),PErrTrain);
fprinff('%%');
disp(' ');disp(' TESTING Results: ');
fprinff(sprinff(' RMS Testing : %%2.4f'),RMSTest); disp(");
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 7.9.  Appendix I:

MATLAB Code of the RBF Network

% PROGRAM: ortrbf()
% Orthogonal Least Squares Learning Algorithm for RBF
%    Chen, Cowan, and Grant
%    IEEE Trans. on NN, Vol. 2, No. 2 -1991.
%
% TECHNICAL OBSERVATION:
%........................................
% This program implements a Radial Basis Function Network with
% the orthogonal least squares learning algorithm.
% Roberto Pacheco and Alejandro Martins, July 1995.
% Variables:
% x is (N x p) : input vectors.
% y is (N x q) : target vectors.
% M : expected number of centers
% CWNorms is q x p : weights for each weighted matrix
% RMSgoal : precision (e.g., 0.003)
% Ms(i) : actual number of centers for output'i'
% cent is (N x sum(Msi)) : vectors of centers
% radius is(N x sum(Msi)) : the radius of the centers
clc; clc;
disp('=================================================================')
disp(' SUPERVISED (Ort) RBF TO CLASSIFY THE COMPANIES - TRAIN AND TEST' )
disp('=================================================================')
echo off;   t=clock;
%%% Tolerance to the difference between target and network responses
Tolerance = 0.30;
load train.dat:
load wnomms.dat;   %%%% Weights to the weighted norm
load scales.dat        %%%% scale factors to the scaling of the input vectors
y              = train(:,10:13); %%%% outputs to the training set.
NORMS   = wnorms;              clear wnorms;
M             = input('Expected Number of Centers: ');
%%% PO - error maximum associated to the regression (choice of the centers)
PO = input('Approximation Grade in Orthonormalization Process: ');
typeRBF =-1;
while (typeRBF < 0) | (typeRBF > 5),
   disp('Type of Radial Basis Function: ');
   disp('      [1] Gaussian     [2] Multiquadratic    [3] Inverse Multiquadratic');
   disp('      [4] Cubic Spline [5] Linear Spline');
   typeRBF = input('Chose One: ');
   if (typeRBF > 5)

   typeRBF = 0;
  end;
end;
if (typeRBF==1)         tRBF =Gaussian';
  elseif(typeRBF==2)  tRBF= 'Multiquadratic';
  elseif(typeRBF==3)  tRBF = 'Inverse multiquadratic';
  elseif(typeRBF==4)  tRBF = 'Cubic Spline';
  else                         tRBF = 'Linear Spline';
end;
typeNetwork = -1;
while (typeNetwork ~= 0) & (typeNetwork ~= 1),
      disp('Type of RBF Network: [0] Non-normalized       [1] Normalized');
      typeNetwork = input('Chose One: ');
end;
it (typeNetwork==0) tNet = 'Non-normalized';

else                                          tNet = 'Normalized';
end;
typeDetCent = -1;
while (typeDetCent ~= 0) & (typeDetCent ~= 1),
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      disp('Method of Center Determination: [0] First-M Centers [1] K-means');
      typeDetCent = input('Chose One: ');
end;
if(typeDetCent)

tDetCent = 'K-means';
PN = input('P in the P-nearest neighbor Algorithm: ');

else
    tDetCent = 'First-M Centers';
end;
Lambda = input('Regularization Parameter: ');
RMSgoal = input('RMS goal : ');
clc; clc
disp('=================================================================')
disp(' SUPERVISED (Ort) RBF TO CLASSIFY THE COMPANIES - TRAIN AND TEST' )
disp('=================================================================')
fprinff(sprinff('Expected Number of Centers: %%d'),M); disp(");
fprinff(sprinff('Accuracy in Orthonormalization : %%2.3f'),PO);disp(");
fprinff(sprinff('RMS Goal : %%1.3f'),RMSgoal); disp(");
msg = sprinff('Type of Radial Basis Function : %%s');
fprinff(msg,tRBF); disp(' ');
msg = sprintf('Type of Radial Basis Network:%%s');
fprinff(msg,tNet); disp(");
msg = sprinff('Method of Center Determination : %%s');
fprinff(msg,tDetCent);
if(typeDetCent)
    msg=sprinff(' (P = %%2.2f)');fprinff(msg,PN);
end;
disp("); fprinff(sprinff('Regularization Parameter : %%3.2f (Lambda)'),Lambda); echo off;
disp(' ');disp("); fprinff(' TRAINING...');
%%%%%%%%%%%%%%% Testing the dimensions %%%%%%%%%%%%%%%%%%
[N p]        = size(train);
[lineY Q]  = size(y);
[lineCW colCW] = size(NORMS);
if (lineY ~= N)
    disp('Error: the total of targets is inferior to the total of inputs');
   return;
end;
if (lineCW ~= Q)
   disp ('Error: there must be the same number of weighted matrices as there are outputs!');
   retum;
end;
echo off;
clear p lineY lineCW;
%%%%%%% transforming 'y' into -1 or 1 vectors
disp(' '); fprinff(‘ 1. Transforming outputs ');
for i=1 :N
   for j=1 :Q

 if (y(i,j) <= 0)
   y(i,j)=0.1;
else
   Y(i.i) = 0 9;
  end;

  end;
end:

%%%%%%%%%%%% FIRST STEP: SCALING OF THE INPUT VECTORS %%%%%%%%%%%%%
disp(' ');
fprinff('2. Scaling...');disp(");
x = train(:,2:9);
maxT = max(train(:,2:9)); minT = min(train(:,2:9));
x = scale(x,minT,maxT,scales);
varT = var(x);
[N P] = size(x);
clear train;
if (colCW~= P)
   disp ('Error: there must be the same number of weights in the Weighted matrices as there are inputs!');    retum;
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end;
clear colCW;

%%%%%% SECOND STEP: FORMATION OF THE (Q)-SETS OF CENTERS %%%%%%%%%%
    disp(' ');         fprinff('                    3. Forming the Center Candidates...');
CENTS = [];   %%% matrix with the Q-sets of M candidates to be centers
RADS = []; %%% matrix with the Q sets of radius of the M centers
begCent = 1;
endCent = M;
for phase = 1:Q
 %/////////////// CWNorm of the input patterns with respect to the Output coordinate "phase”
 CWNorm = sqrt(P*diag(NORMS(phase,:))); %% each diagonal element is equal to sqrt(P*wi)
 %%%%% Initialization of the M expected Centers
 if (typeDetCent ==0)
   %//////////// The first M input patterns are candidates to be Centers
   CENTS(:,begCent:endCent) = x(1 :M,:)'; % initial M centers
   %/////////////// Radius of the centers
   % radius = averdist(x,CENTS(:,begCent:endCent)',CWNorm); % M center radius
 r = 2*P*sum(NORMS(phase,:)./varT);
 radius = ones(1,M)*r;
 %%%%%% Add the radius of the “phase"-th set of Centers
 RADS = [RADS';radius']';
 else
     %/////////// The candidates to be Centers are determined by the Kmeans Algorithm
     [cents rads] = kmeanwn(x,M,CWNorm); % Kmeans
     %/////////// Radius of the centers - p-nearest neighbor  Algorithm
     rads= spread(cents,PN,CWNorm)';
     CENTS = [CENTS,cents'];
     RADS = [RADS';rads']';
     clear cents r rads;
 end;
 %%%%%%% update the center counters
 begCent = endCent+1;
 endCent = endCent+M;
end;
Ms          = zeros(1,Q); % total of centers in each subgroup of the hidden layer
POSCENTS = [];              % matrix with the Q sets of Ms(1 ,phase) Positions in each set of centers
disp(' '); fprinff('                       4. Finding Orthogonal Basis - Center Selection...');
%%% FOR related to the Q Sets of Centers
begCent = 1;
endCent = M;
for phase=1:Q
  MaxErrors = [];    %%% orthogonalization error of each basis vector
  CentersPos = D; %%% positions of the formed centers (orthogonal basis) (Ms(phase) x 1)
 %/////////////////CWNorm of the input patterns with respect to the Output coordinate 'phase"
 WNorm = sqrt(Ptdiag(NORMS(phase,:))); %% each diagonal element is equal to sqrt(P*wi)
 %////////////// Gaussian Matrix (Haykin pg. 259)
  maxEr = 0; error = [];
  for j=begCent:endCent
     for i=1:N
         dist = (x(i,:)-CENTS(:,j)')./sqrt(var(x));
         dist = sqrt(dist*CWNom'*CWNorm*dist');
        Gauss(i,j) = rbfunct(dist,RADSt),typeRBF);
    end;
    %% orthogonalization error of the center just obtained
    error(j) = (Gauss(:,j)'*y(:,phase))A2/(Gauss(:,j)'*Gauss(:,j));
    error(j) = error(j)/(y(:,phase)'y(:,phase));
 end;
[maxEr posBas ] = max(error);

%%%%%/////////////////// Formation of the Ms Centers associated to the Nphase"th set A = Gauss(:,posBas); %% matrix with the
orthogonal basis (N x Ms)
while ((1 - sum(MaxErrors)) > PO) & (Ms(1,phase) < M)
   %/// append the current error to the MaxErrors vector
   MaxErrors = [MaxErrors;maxEr];
   %||| append the current (position) center to the formed basis
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   CentersPos = [CentersPos;posBas];
   Ms(1 ,phase) = Ms(1 ,phase) + 1; %% total of centers is increased
   maxEr = 0; posBas = 0; error = [];
   for j=begCent:endCent
       if (~findvec(CentersPos',j))
          %%%%% b is a orthonormal vector
          b = gramsch(A,Gauss(:,j));
          %%%%% orthogonalization error of the center just obtained
          error(j) = (b'*y(:,phase))^2/(b'*b);
          error(j) = error(j))/(y(:,phase)'*y(:,phase));
     end;
 end; %% already tested all centers and choose the next orthonormal basis vector
if (error ~=[] )
    [maxEr posBas] = max(error);
    %llll addition of the new basis vector to the matrix of orthogonal vectors
    A = [A';gramsch(A,Gauss(:,posBas))']';
end;
end: %%% end of the formation of the Ms Centers if the "phase"th set

 %%%%% Add the center positions associated to the 'phase-th' set of Centers
 POSCENTS = [POSCENTS;CentersPos];
 %%%%%%% update the center counters
 begCent = endCent+1;
 endCent = endCent+M;
end: %%%% End of the formation of all i = 1.Q sets of (Msi) Centers
clear A b MaxErrors maxEr error CentersPos posBas radius;

%%%%%%%% THIRD STEP: FORMATION OF THE MATRIX OF CENTERS%%%%%%%%%%%
CENTERS = []; % matrix with all Q sets of Ms-centers
RADIUS = [];    % radius of the (sum(Ms(1,1 :Q)) x Q centers
begCent = 1; %%% first column of the vector with the Center positions in each 'phase' (1 to Q)
endCent = 0; %%% last column (idem)
%%% FOR related to the (Q) Sets of Centers
for phase=1:Q
  endCent = endCent + Ms(1,phase);
  PosCents = POSCENTS (begCent:endCent,1);
  for j=1:Ms(1 ,phase)
  CENTERS(begCent+j-1,:) =CENTS (:,PosCents(j)
   RADIUS(1,begCent+j-1) = RADS(1,PosCents0);
  end;
  begCent = begCent + Ms(1 ,phase);
end;
CENTERS = CENTERS';
%%%%%%%Form of the final matrix with the Q sets of center: %%
%% CENTERS becomes the following matrix:
%%
%% || 1         ..           1          |     | Q          ..   Q            ||
%% || C1,1    ..     CMs(1)1,1 |     | C1,1 .. CMs(Q)1,1    ||
%%||...          ..                      |     |   ....     ..        ...         ||
%% || 1         ..           1          |     |      Q ..            Q       ||
%% || C1,8    ..      CMs(1)1,8|     | C1,8 ..   CMs(Q)1,8  ||
%%

%%%%%% FOURTH STEP: FORMATION OF THE GAUSSIAN MATRIXES%%%%%%%%%%%%%% disp(' );
fprinff('                              5. Forming Gaussian Matrixes...');
clear Gauss PosCents CENTS RADS;
GAUSSIAN = []; %%% gaussian matrix of all centers (as done in CENTERS) (N x sum(Ms(phase))
begCent = 1; %% first column of the vector with the Center positions in each “phase” (1 to Q)
endCent = 0; %%% last column (idem)
%%% FOR related to the (Q) Sets of Centers
for phase=1:Q
  endCent = endCent + Ms(1,phase);
 %//////////////// CWNorm of the input patterns with respect to the Output coordinate “phase”
 CWNorm = sqrt(P*diag(NORMS(phase,:))); %% each diagonal element is equal to sqrt(P*wi)
 %% determines the Gaussian Matrix
 for i=1:N
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  for j=1:Ms(1,phase)
  rad = RADIUS(1,begCent+j-1);
  dist = (x(i,:)-CENTERS(:,begCent+j-1 )')./sqrt(varT);
  dist = sqrt(dist*CWNorm'*CWNorm*dist');
  GAUSSIAN(i,begCent+j-1 )=rbfunct(dist,rad,typeRBF);
 end;
end;
%%%%%%%%%%%%%%%%% Normalized RBF %%%%%%%%%%%%%%%%%%
if (typeNetwork)
  for i=1:N
%   tot = sum(GAUSSIAN(i,begCent:endCent));
    tot = max(GAUSSIAN(i,begCent:endCent));
      GAUSSIAN(i,begGent:endCent) = GAUSSIAN(i,begCent:endCent)/tot;
  end;
 end;
 clear tot;
 begCent = begCent + Ms(1,phase);
end; %% end of the phase.

%%%%%%%% FIFTH STEP: FORMATION OF THE WEIGHT VECTOR %%%%%%%%%%%%%
disp(' ');
fprinff('                         6. Forming the Weight Vector..');
%%% FOR related to the (Q) Sets of Centers
YN      = []; %%% network responses (is a N x Q) vector
WEIGHT = []: %%% weight matrix of the neural network (sum(Ms(:,:)) x 1 )
begCent = 1; %%% first column of the vector with the Center positions in each 'phase (1 to Q)
endCent = 0; %%% last column (idem)
for phase=1:Q
   endCent = endCent + Ms(1,phase);
   G = GAUSSIAN(:,begCent:endCent);
   CWNomm = sqrt(P*diag(NORMS(phase,:))); %% each diagonal element is equal to sqrt(P*wi)
   %% determines the Go Matrix to be used in the pseudo-inverse
   Go=[];
   for i=1: Ms(1,phase)
     for j=1: Ms(1 ,phase)
       rad = RADIUS(1,begCent+j-1);
      dist = wnormvar(CENTERS(:,begCent+i-1 )',CWNorm,CENTERS(:,begCent+j-1 )',var(x))
      Go(i,j) = rbfunct(dist,rad,typeRBF);
     end;
   end;
   %%% Inclusion of the bias Vector
   G = [G';ones(N,1)']';
   Go = [Go;ones(Ms(1,phase),1)']; %% adds a line of ones in the Go matrix
   Go = [Go';ones((Ms(1 ,phase)+1),1)'j'; %% adds a column to the Go matrix
   %%% "weight" is a column vector (Ms(phase) x 1) with the weights of the current set center
   Weight = ((inv(G'*G + Lambda*Go)*G')*y(:,phase));
   %%% The network response to the 'phase' output neuron
   YN = [YN;(G*weight)'];
   %%% WEIGHT is a column vector (sum(MS(1 ,phase) x 1 ) with the Q sets of weights
   WEIGHT = [WEIGHT;weight];
   begCent = begCent + Ms(1,phase);
end:

%%^%%%%%%%%%%% Formation of the Network response vector
YN=YN'; %%is a N x Q vector
%%/ “Purification” of the output answers (greater than (1-Tolerance) it is 0.9
%%///// and lower than Tolerance, it is = 0.1)
for i=1:N
 for j=1:Q
     if (YN(i,j) <=Tolerance)
        YN(i,j) = 0.1;
       elseif (YN(i,j) > (0.9-Tolerance))
          YN(i,j) = 0.9;
        end;
     end;
end:
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%%%%%%% Formation of the last output coordinate %%%%%
%the last output coordinate is 1 when the others are "off" and 0 otherwise
for i=1:N
   YN(i,Q) = 0.9;
   for j=1:Q
        if (YN(i,j) >= 0 5)
          YN(i,Q) = 0.1;
          break;
       end;
     end;
end;

t=etime(clock,t);
disp(' ');
fprinff('         Results:');disp('');
%%%%%%%%%%%%% CALCULUS OF THE NETWORK RMS %%%%%%%%%%%%%%%
Error = y - YN;
RMSTrain = sqrt(sum(sum(Error.^2))/(N*Q));
fprinff(sprinff(' RMSTraining : %%2.4f'),RMSTrain); disp(");
%IIIIIIIIIIIIIIIII Percentual Error of the Training
PErrTrain = errperc(y,YN,Tolerance);
fprinff(sprinff('                  Percentual Error: %%2.2f %%'),PErrTrain); disp(");

clear x y weight Go G CWNorm GAUSSIAN;

disp(' ');
fprinff(' TESTING...');
%%%%%%%%%%%%%%%%%% ERROR IN THE TESTING SAMPLES %%%%%%%%%%%%% disp(' ');
fprintf('                   1. Loading Testing Files...'); load testing.dat;
y                 = testing(:,10:13); %%%% outputs to the training set.
%%%%%%%%%%%%%%%%% testing dimensions
[N QT] = size(y);
jf (Q ~= QT)
 disp('Error: the testing data is not related to this network - output dimensions do not match!');
 retum;
end;
%%%%%%%%%%%%%%%%% scaling the input vector
disp(' ');  fprinff('                    2. Scaling...');
x = scale(testing(:,2:9),minT,maxT,scales);
[N PT] = size(x);
clear scales testing;
if (PT-= P)
  disp ('Error: testing and training input patterns have different dimensions!');
  retum;
end;
clear QT PT;

%%%%%%%% transforming 'y' into -1 or 1 vectors
disp(' ');
fprinff(' 3. Transforming outputs ');
for i=1 :N
  for j=1 :Q
     if (Y(i,j) == 0)
        y(i,j)=0.1;
else
     y(i,j) = 0.9;
   end;
  end;
end:

%%%%%%%%%%%%%%%%%% Formating the GAUSSIAN MATRIXES %%%%%%%%%%%%
disp(' ');
fprinff(                  ' 4. Calculating Network Responses...');
GAUSSIAN = ones(N,(sum(Ms)+Q)); %%% (N x (sum(Ms(phase)) + Q biases))
begCent = 1;        %% first column of the vector with the Center positions in each "phase' (1 to Q)
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endCent = 0; %%% last column (idem)
%%% FOR related to the Q Sets of Centers
for phase=1:Q
    endCent = endCent + Ms(1 ,phase);
    %//////////////// CWNorm of the input patterns with respect to the Output coordinate “phase"
    CWNorm = sqrt(P*diag(NORMS(phase,:)));
    %% determines the Gaussian Matrix
    for i=1:N
      if (phase == 1)
        for j=begCent:endCent
           rad = RADIUS(1,j);
           dist = (x(i,:)-CENTERS(:,j)')./sqrt(varT);
           dist = sart(dist*CWNorm'*CWNorm*dist'):
      GAUSSIAN(i,j)=rbfunct(dist,rad,typeRBF);
   end;
else
  for j=begCent:endCent
       rad = RADIUS(1,j);
       dist = (x(i,:)-CENTERS(:,j)')./sqrt(varT);
       dist = sqrt(dist*CWNorm'*CWNorm*dist');
      GAUSSIAN(i,j+phase-1 )=rbfunct(dist,rad,typeRBF);
     end;
   end;
end;

%%%%%%%%%%%%%%%%% Normalized RBF %%%%%%%%%%%%%%
if (typeNetwork)
   for i=1:N
     if (phase == 1 )
%     tot = sum(GAUSSIAN(i,begCent:endCent));
        tot = max(GAUSSIAN(i,begCent:endCent));
        GAUSSIAN(i,begCent:endCent) = GAUSSIAN(i,begCent:endCent)/tot;
      else
          begP = begCent+phase-1; endP = endCent+phase-1;
%    tot = sum(GAUSSIAN(i,begP:endP));
       tot = max(GAUSSIAN(i,begP:endP));
       GAUSSIAN(i,begP:endP) = GAUSSIAN(i,begP:endP)/tot;
       end;
     end;
   end;
  clear tot;
  begCent = begCent + Ms(1,phase);
end; %% end of the phase.

%%%%%%%%%%%%%%%%%%%% Calculating the network answers
%%% FOR related to the Q Sets of Centers
YN           = []; %% network responses (is a N x Q) vector
begCent = 1; %% first column of the vector with the Center positions in each “phaseg” (1 to Q)
endCent = 0; %% last column (idem)
for phase=1:Q
     endCent = endCent + Ms(1 ,phase) +1;
     G = GAUSSIAN(:,begCent:endCent);
     %%% 'weight' is a column vector (Ms(phase) x 1) with the weights of the current set center
     weight = WEIGHT(begCent:endCent,1);
     %%% The network response to the 'phase' output  neuron
    YN = [YN;(G*weight)'];
    begCent = begCent + Ms(1,phase) + 1;
end;

%%%%%%%%%%%%% Formation of the Network response vector
YN = YN': %% is a N x Q vector

%%/ “purification”of the ouput answers (greater than (1-Tolerance) it is 0.9
%%//// and lower than Tolerance, it is = 0.1)
for i=1:N
  for j=1:Q
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     if (YN(i,j) <=Tolerance)
        YN(i,j) = 0.1;
      elseif (YN(i,j) >= (0.9 -Tolerance))
         YN(i,j) = 0.9;
      end;
    end;
end:

%%%%%%% Formation of the last output coordinate %%%
%the last output coordinate is 1 when the others are “off” and 0 otherwise for i=1:N
  YN(i,Q) = 0.9;
  for j=1:Q
     if (YN(i,j) >= 0 5)
        YN(i,Q) = 0.1;
        break;
      end;
    end;
end

disp(' ');
fprinff(' Results:');disp('');
%%%%%%%%%%%%% CALCULUS OF THE NETWORK TESTING RMS  %%%%%%%%%%%
Error = y - YN;
RMSTest = sqrt(sum(sum(Error.^2))/(N*Q));
fprinff(sprinff('                         RMSTesting : %%2.4f'),RMSTest); disp(");

%////////////////// Percentual Error of the Testing
PErrTest = errperc(y,YN,Tolerance);
fprinff(sprinff('                   PercentualError: %%2.2f %%'),PErrTest);

clear i j begCent endCent weight G Go;
%clear CWNorm YN testinq x y phase rad dst;

%%################################
clc: clc:
disp( ================================================================')
disp(' SUPERVISED (Ort) RBF TO CLASSIFY THE COMPANIES - TRAIN AND TEST' )
disp('=================--==============================================')
fprinff(sprinff('Date                                                              : %%s'),date);disp(");
fprinff(sprinff('Expected Number of Centers: %%d'),M);disp(");
fprinff(sprinff('Final Number of Centers : '));
for phase=1:Q
 fprinff(sprinff('%%d,),Ms (1,phase ))
end;
msg = sprinff(' (%%d subnetworks)');
fprinff(msg,Q); disp(");
fprinff(sprinff('Accuracy in Orthonormalization : %%2.3f'),PO);disp(");
fprinff(sprinff('RMS Goal : %%1.3f'),RMSgoal); disp(");
msg = sprinff('Type of Radial Basis Function : %%s');
fprinff(msg,tRBF); disp(' ');
msg = sprinff('Type of Radial Basis Network   :%%s');
fprinff(msg,tNet); disp(");
msg = sprinff('Method of Center Determination: %%s');
fprinff(msg,tDetCent);
if(typeDetCent)
msg=sprinff(' (P = %%2.2f)');fprinff(msg,PN);
end;
disp(");clear tDetCent;
fprinff(sprinff('Regularization Parameter : %%3.2f (Lambda)'),Lambda);
disp(' ');disp(' TRAINING Results: ');
fprinff(sprinff(' TrainingTime : %%6.4fseconds'),t); disp(");
fprinff(sprinff(' RMSTraining : %%2.4f'),RMSTrain); disp(");
fprinff(sprinff(' Percentual Error: %%2.2f '),PErrTrain);
fprinff('%%');
disp(' ');disp(' TESTING Results: ');
fprinff(sprinff(' RMSTesting : %%2.4f'),RMSTest); disp(");
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fprinff(sprinff(' Percentual Error: %%2.2f '),PErrTest);
fprinff(‘%%’); disp

function [c,r]=kmeanwn(x,M,CWNorm)
%USAGE [center,spread] = kmeanwn(data,number centers, CWNorm)
%    Inputs: x is (N x p)                                : feature vectors.
%           M                                                 : number of clusters.
%    CWNorm is diag(p xp)                        : weighted matrix to obtain norm
% Outputs                                                 : cis(Mxp) :clustervectors.
%         r is (M, 1)                                     : spread of the cluster c
% Page 247 of "Fundamentals of speech recognition. "
%
[N,p]=size(x);
% xmax=max(max(abs(x)));
% x=x/xmax;     % Normalize the data set.
% c=rand(M,p); % Init. clusters randomly.
c=x(1:M,:);% Init. clusters from first M data pattern.

dist=zeros(N,M);
Chanqe=1; iter=0;              np=zeros(1,N); xvar=var(x);
%R=cov(x); [V,D]=eig(R); D=diag(D)'; xvar=D;
xvar=ones(N,1 )*xvar;
while Change == 1,
   cp = zeros(M,p);   %%%% cp     - sum of patterns within the center
  cndx=zeros(M,1); %%%% cndx - total of patterns within the center
  for i=1:M,
   dist(:,i)=((((x-ones(N ,1 )*c(i,: (ones(N ,p)*CWNorm) ) .^2) ./xvar)*ones(p,1 );
    end;
[ymin,posCent]=min(dist'); %%% obtain the centers of each pattern (minimum distance)
for i=1:N,
 k=posCent(i);      %%% center k has the minimum distance to pattern x(i)
cp(k,:)=cp(k,:)+x(i,:); %%% adds the pattern x(i) to the others in the center
cndx(k) = cndx(k)+1; %%% increase the number of patterns within the center
end;
for i=1:M,
c(i,:)=cp(i,:)/(cndx(i)+eps); %%% the center is the mean of all patterns in it
end;
if posCent == np,
[nm,i]=min(cndx);
if nm==0,
jj = round(200*rand(1))+1;
 c(i,:)=x(jj,:);
else,
Change=0;
 end;
else,
   np=posCent;
end;
iter = iter +1;
end;
% Compute the cluster spread.
r=ones (M,1);
for i=1:N,
  k=posCent(i);
  r(k)=r(k)+ wnormvar(x(i,:),CWNomm,c(k,:),var(x)))^2; end;
r=r./cndx;
c;    %centers
r;    % spread of centers

function [b] = gramsch(A,g)
%                   function [b] = gramsch(A,g)
%  Gran-Schimdt’s method
%    Orthogonalization of a vector g into the vector b,
%   according to the basis matrix A.
% INPUTS:
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%    A (N x Ms) - matrix orthogonal
%    where:
%       N - total of vectors in A
%       Ms - dimension of the orthogonal space A
%        g (N x 1 ) - vector to be orthogonalized
%OUTPUT:
%          b (N X 1 ) - vector 9 after orthogonalization
%
[N Ms] =size(A);
[Ng col] = size(g);

if (N ~= Ng)
 disp('Error: incompatible dimensions between matrix 'A' and vector "g"');
 return;
end;
if (col ~= 1)
   disp('Error: vector '9" has to be one-column vector!');
end;

%%% The Gram-Schmidt Orthogonalization process:
%%%-------------------------------------------------------
%%%
%%%The new orthogonal vector is the following linear combination:
%%%
%%% b(i,1) = g(i,1) - SUM ((A(:,i)'*g)/(A(:,i)'*A(:,i)))*A(:,i)
%%%             1,MS
%%% Where:
%%% num = (A(:,i)'*g)
%%% den = (A(:,i)'*A(:,i))
%%% coefs = num/den
%%% ones(N,1 )*coefs' is the expansion of matrix "coefs" to N space
%%%%%%%%%%%%%%%% calculus of the coeficients Lambdas
% ///// “numerators”
num = A'*g;             % dimension (Ms x 1)

%//// 'denominators”
den = diag(A'*A); % dimension (Ms x 1)

%//// “coeficients”
coefs = num./den: % dimension (Ms x 1)

%%%%%%%%%% calculus of the orthogonal vector

%/// x = g - (expand matrix of coeficients to dimension N * vector A(j))
b = g - (ones(N,1)*coefs'.*A)*ones(Ms,1);

function [D]=wnormvar(X,C,Y,VAR)
% Weighted equal variance scale: D = sqrt(XC'.C.X’/var)
% weighted in (Haykin, "Neural Networks-A Comprehensive Foundation" pg. 258)
% equal variance scale in (Hartigan, "Clustering Algorithms", 1975, pg. 60).
%
% USAGE
% 1) [D]=wnorm(X,C,Y,VAR)
% Input: X - input vector (P X 1)
%    : Y - input vector (P x 1)
%    : C - weight Matrix (P x P)
%    : VAR - variance Matrix (1 x P)
% Output: D - weighted norm of (X - Y)
%
echo off;
[linX colX] = size(X);
[linY coly = size(Y);
[linC colC] = size(C);

if (linX ~=1)1 (linY~=1)
 disp('Error in wnormvar.m: the vectors must be one-line vectors!');   return;
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end;
if (colX -= colY)
  disp('Error in wnormvar.m: the vectors dimensions must be the same!');
  return;
end;
if (colC ~= colY)
  disp('Error in wnormvar.m: C is not a weighted matrix for the vector X!');
end;
if Y==[]
   Dif = X;
 else
   Dif = (X - Y)./sqrt(VAR);
end;
D = snrt(Dif-C'*C*Dif'}:

function [r] = Ffunct(dist,radius,typeRB, )
% rbtunct(.) calculates the value of a Radial Basis Function
% USAGE: [r] = rbf(dist,radius,typeRBF)
% INPUTS
% dist (1 xl)-distance radius (1 x P) -radius
% typeRBF - identifies which RBF to use
%        1 - Gaussian 2 - Multiquadratic
%        3 - Inverse Multiquadratic 4 - Cubic Spline
%        5 - Linear Spline
%
echo off;
%%%%%%%%%%% Testing the Dimensions:
[linX colX] = size(dist);
[linY coly = size(radius);
if (linX ~=1) | (colX~=1)1 (linY ~=1)1 (colY ~=1)
disp('Error in function rbfunct: the parameters must be numbers!');
retum;
end;

%%%%%%%%%%%%%%%%%%%%%% Gaussian Function if (typeRBF== 1)
  r = exp(-dist^2/radius^2);
  return;
end;

%%%%%%%%%%%%%%%%%%%%%%%%% Multiquadratic Function
if (typeRBF == 2)
   r = sqrt(dist^2/ + radius^2);
   return;
end;
%%%%%%%%%%%%%%%%%%%%%% Inverse Multiquadratic Function if (typeRBF == 3)
   r = sqrt(dist^2 + radius^2);
   r=1/r;
   retum;
end;
%%%%%%%%%%%%%%%%%%%%%%%%%% Cubic Spline Function if (typeRBF == 4)
   %% the distance ^3 is the rbf parameter
   r = dist^3;
   return;
end;
%%%%%%%%%%%%%%%%%%%%%%%%% Linear Spline Function
if (typeRBF == 5)
   r = dist;
   retum;
end;

function [XS] = scale(X,minT,maxT,SCALES)
% determines the scaled patteM 'xs' from the raw data 'x'
% USAGE[xs] = scale(x,ScaleMatrix)
% INPUTS:
% X is (N x P) - matrix with the input vectors (only Coordinate Values!)
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% minT is (1 x P) - vector with min values used in the training
% maxT is (1 x P) - vector with max values used in the training
% SCALES is (N x M) - Scale matrix to determine the case and indexes of scaling
%OUTPUT:
%            XS (N x P) - matrix with the scaled input vectors
%
% Based on Martins & Pacheco’s scaling method:
%
% The scaling here always preserves the original interval [min,max]. There have been two cases identified: in one, the
% interval is divided into two parts. The new position of the turning point identified in the coordinate of x describes the
% compression in the original interval. The second scaling case occurs when the interval is divided into three parts. In this
% case, the turning points C1 and C2 are determined according to prior knowledge about the behavior of the coordinate
% of x. E1 and E1 are the scale turning points. They reflect the shrinking or expansion in the original data into the
% scaling interval.
%% August 1995.
%
[N P] = size(X);
[PS S] = size(SCALES);
if (P -= PS)
   disp('Error in the function "scale": SCALES is not a scale matrix for x');
   return;
end;

%%%%%%%%%%% Adding the Minimum and Maximum of X into SCALES matrix
A = minT'; %% first column is the minimum of each coordinate
A = [A,maxT']; %% second column is the maximum of each coordinate
SCALES = [A,SCALES];

%% SCALES becomes the following matrix:
% columns:
%          1                             2                                  3              4     5 6 7
% I min_coord_1_of_x max_coord_2_x scale_case_Coord_1 C1 C2 Comp1 Comp2
% |
% |
% I min_coord_P_of_x max_coord_P_x scale_case_Coord_P C1 C2 Comp1 Comp2 I
%
% where 'Comp1' is the compression grade of the first critical interval
% and 'Comp2' is the compression grade of the second critical interval

%%%%%%%%%% Calculus of the Scaling Turning Points E1 and E2
for i=1:P
 %/// First compression degree is in SCALES(1,6)
 %lil E1 = (c1-min)*(1-Compl/100) + min
 SCALES(i,6) = (SCALES(i,4)-SCALES(i,1))^(1-SCALES(i,6)/100) + SCALES(i,1);
 %/// Second compression degree is in SCALES(1,7)
 if(SCALES(i,3)==2)
    %// E2 =max-(max-c2)*(1-Comp2/100)
  SCALES(i,7) = SCALES(i,2) - (SCALES(i,2)-SCALES(i,5))*(1-SCALES(i,7)/100);
 end;
end:
%%%%%%%%%%% Change in SCALES to accomodate the calculus at once: for j=1:P
    if(SCALES0,3)==1) %% first case at scaling
     SCALESt,5) = SCALES0,2);        % C2 = MAX
SCALESt,7) = SCALES0,2);        % E2 = MAX
   end;
end;

%%%%%%%%%%%%%%%%% scaling process for i=1:N
  for j=1:P
     MIN = SCALESt,1 );               MAX = SCALESt,2);
     C1 = SCALESt,4); C2 = SCALESt,5);
     E1 = SCALESt,6); E2 = SCALESt,7);
     if (X(i,j) <= C1)
  XS(i,j) = ((X(i,j) - MIN)/(C1 - MIN))*(E1-MIN) + MIN;
     elseif (X(i,j) > C1 ) & (X(i,j) <= C2)
XS(i,j) = ((X(i,j) - C1)/(C2 - C1))*(E2- E1) + E1;
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    elseif (X(i,j) > C2) & (C2 ~= MAX)
XS(i,j) = ((X(i,j) - C2)/(MAX- C2))*(MAX - E2) + E2;
    else
XS(i,j) = ((X(i,j) - C1)/(MAX - C1))*(MAX - E1) + E1;
    end;
  end;
end:
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