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ABSTRACT OF THE DISSERTATION

Understanding the Role of Dynamics in Brain Networks: Methods, Theory and Application

by

MohammadMehdi Kafashan

Doctor of Philosophy in Electrical Engineering

Washington University in St. Louis, December 2016

Research Advisor: Professor ShiNung Ching

The brain is inherently a dynamical system whose networks interact at multiple spatial

and temporal scales. Understanding the functional role of these dynamic interactions is a

fundamental question in neuroscience. In this research, we approach this question through

the development of new methods for characterizing brain dynamics from real data and new

theories for linking dynamics to function. We perform our study at two scales: macro (at

the level of brain regions) and micro (at the level of individual neurons).

In the first part of this dissertation, we develop methods to identify the underlying dynamics

at macro-scale that govern brain networks during states of health and disease in humans.

First, we establish an optimization framework to actively probe connections in brain net-

works when the underlying network dynamics are changing over time. Then, we extend

this framework to develop a data-driven approach for analyzing neurophysiological record-

ings without active stimulation, to describe the spatiotemporal structure of neural activity

at different timescales. The overall goal is to detect how the dynamics of brain networks

may change within and between particular cognitive states. We present the efficacy of this
xviii



approach in characterizing spatiotemporal motifs of correlated neural activity during the

transition from wakefulness to general anesthesia in functional magnetic resonance imaging

(fMRI) data. Moreover, we demonstrate how such an approach can be utilized to construct

an automatic classifier for detecting different levels of coma in electroencephalogram (EEG)

data.

In the second part, we study how ongoing function can constraint dynamics at micro-scale

in recurrent neural networks, with particular application to sensory systems. Specifically,

we develop theoretical conditions in a linear recurrent network in the presence of both dis-

turbance and noise for exact and stable recovery of dynamic sparse stimuli applied to the

network. We show how network dynamics can affect the decoding performance in such sys-

tems. Moreover, we formulate the problem of efficient encoding of an afferent input and its

history in a nonlinear recurrent network. We show that a linear neural network architecture

with a thresholding activation function is emergent if we assume that neurons optimize their

activity based on a particular cost function. Such an architecture can enable the production

of lightweight, history-sensitive encoding schemes.
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Chapter 1

Introduction

1.1 Overview

The brain is perhaps the most enigmatic organ in the human body. Within the brain are

more than 100 billion neurons that communicate in trillions of connections called synapses.

These neurons comprise complex networks at multiple spatial and temporal scales, whose

connections are constantly changing over time. Thus, the brain is highly dynamic: its activ-

ity, and its interconnectivity, are constantly changing and adapting in ways that ultimately

allow us to see, hear and think. This dissertation addresses two related questions: (i) how

to best describe and uncover the dynamics within brain networks, and (ii) how to associate

those dynamics with different cognitive conditions, including specific neurological disorders.

In this dissertation, we explore two principal approaches to these questions. First, in part

one of the dissertation, we examine the problem of inferring time-varying connectivity be-

tween brain regions at macroscopic spatial scales. We develop, in particular, new methods
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Figure 1.1: Structure of the dissertation.

for connectivity estimation, then embed these methods in a data-driven framework for char-

acterizing the underlying network dynamics. These frameworks are deployed in the study of

human brain activity from patients with altered mental status.

Following this macro-scale analytical development, we proceed to part two of the dissertation,

in which we examine micro (i.e., neuronal) scale dynamics through a more theory-centric ap-

proach. Specifically, we examine the problem of neural encoding/decoding, or, how neurons

in the brain enable the efficient processing of information. We consider simple dynamical

models for neuronal activity and analyze, then optimize the network dynamics in order to

enable information decoding.
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Thus, the results of this dissertation represent a broad study that spans theoretical and data-

driven development, unified under the central thematic thrust of examining links between

brain dynamics and brain function.

1.2 Background and Motivation

Below, we provide background and motivation of the major topics represented in this disser-

tation. We focus on the two major parts described above, while detailed technical background

on the specific contributions is left to their respective chapters.

1.2.1 Dynamics of Neural Connectivity

Characterizing associations between different brain regions has been a major question in

neural signal analysis. The goal of this analysis is to show how different brain regions interact

with each other as individuals perform different tasks, are in different cognitive states, or are

in states of altered mental status due to brain injury [3–5]. The predominant metric that has

been used for ascertaining association has been the Pearson correlation coefficient (the zero-

lag cross-correlation of two time series). Based on this statistical metric, brain regions that

are correlated in a particular context (e.g., during a resting state) are said to be functionally

connected. Many other metrics, such as those in the frequency domain have also been used

for this purpose. It is important to note that functional connectivity is distinct from actual

anatomical connectivity; two regions may be functionally connected without possessing a

direct physiological connection between them [1].

3



Despite demonstrable successes, previous characterizations of functional connectivity are

limited by their largely static nature, since they are ascertained in the aggregate over long

recording sessions. In other words, a single connectivity map is obtained for a subject

in a cognitive state without regard for any of the temporal dynamics present within the

underlying time-series of brain activity. In contrast, recent hypothesis have postulated a

role for so-called dynamic functional connectivity (dFC) which relates to how association

between brain regions may be changing in a second-to-second manner. Our goal in this

work is to develop new methods and frameworks for ascertaining theses types of dynamics in

functional connectivity, and associate such dynamical alteration in connectivity with states

of neurological dysfunction.

1.2.2 Encoding/Decoding in Neuronal Networks

Sensory networks in the brain are organized in a layered architecture. An initial layer of

neurons receives signals from the sensory periphery (e.g. sound, light, etc.), then propagate

those signals to intermediate layers of neurons that are connected recurrently. These re-

current layers perform transformations of that information en-route to higher brain regions.

It has been hypothesized that these sensory networks enable efficient encoding of informa-

tion so as to optimally convey it and allow it to be decoded towards cognitive function [6].

However, the exact mechanisms of this information coding remain poorly understood.

Recently, parallels have been drawn between the architecture of such neuronal networks and

engineered systems for efficient compression. In particular, given the temporally punctate

nature of neuronal spikes, the theory of sparsity and compressed sensing (CS) has been con-

sidered as a schema for efficient encoding and decoding of information in sensory neuronal

4



networks [7, 8]. However, classical compressed sensing does not account for temporal dy-

namics within the forward model. Such dynamics are, of course, prevalent and pervasive

in neuronal networks. Thus, we engage in a study of how recurrent neuronal dynamics in

sensory networks may mediate CS-like coding. In other words, we elucidate conditions under

which the dynamics of the network can enable or improve efficient information processing,

particularly for time-varying signals.

1.3 Contributions

The original contributions in this dissertation are summarized below and in condensed form

in Table 1.1:

Optimal Stimulus Scheduling for Active Estimation of Dynamic Connectivity

in Evoked Brain Networks [9, 10]: The first contribution relates to the estimation of

time-varying weighted functional connections between brain regions. We consider the design

of extrinsic stimuli that can excite the network to enable more efficient estimation of such

connections. Specifically, we consider the notion of an evoked network. In such a network,

nodes are defined as different brain regions. When a brain region is stimulated, it evokes

a response in other nodes to which it is connected. The magnitude of the evoked response

constitutes the weight of an edge between those nodes. We consider the problem of scheduling

the stimulus; that is, determining the node to stimulate to best estimate these weights in a

time-varying fashion. Given a state-space formulation for the connections, a solution to this

problem can be obtained through a Kalman filter-like paradigm for recursive estimation of
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Table 1.1: Table of contributions.

Chapter
Technical
Innovations

Major Findings
Research

Output

Chapter 2

Analytical derivation of
optimal stimulus
schedule using
state-space formulation
for network weights

Identified the equivalence of
greedy and finite horizon optimal
scheduling under specific
conditions; Extracted network
structure from evoked networks

[9, 10]

Chapter 3

Established a Kalman
filter-based approach for
tracking correlation
dynamics; Analyzed
spatiotemporal
structures underlying
fMRI data

Identified orthogonal motifs with
similar patterns of correlation
dynamics that exhibit
fundamental differences in awake
and anesthetized conditions;
Investigated altered brain
microstates in resting wakefulness

[11, 12]

Chapter 4

Utilized machine
learning techniques
toward disambiguating
different coma etiologies;
developed a novel lagged
microstate analysis for
assessing coma severity

Identified spectral and
non-spectral EEG features as
biomarkers for differentiating
coma etiologies (focal vs. diffuse)
and achieving 71% accuracy of
classification; Uncovered a novel
set of lagged microstates that
appear specific to different levels
of coma severity

[13]

Chapter 5

Development of a
generalized observability
criterion for exact and
stable input recovery in
a dynamic recurrent
network

Provided analytical bounds in
terms of the system dynamics for
recovery performance in the
presence of both input
disturbance and observation noise

[14]

Chapter 6

Solved the problem of
lightweight encoding in
recurrent networks
utilizing proximal
gradient technique

Developed a linear network
architecture with a
soft-thresholding nonlinearity that
is trained to efficiently encode an
afferent input and its history

connection weights. We show the efficacy of the proposed methodology in several numerical

examples, including estimation of a network of Wilson-Cowan neural mass models.
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Spatiotemporal Analysis of Functional Connectivity During Wakefulness and

Sevoflurane Anesthesia [11,12]: Our second contribution relates to the analysis of dy-

namical structures that are present within functional magnetic resonance imaging (fMRI)

data. Such data are typically analyzed in a static fashion as referenced above. Here, we

overtly treat their temporal dynamics; that is we attempt to characterize the time-varying

nature of functional connections and potential equilibria or fixed-points that might be re-

flected in the underlying time-series. To do this, we develop a framework that uses the

filtering methodology from the first contribution together with a clustering analysis. This

framework allows us to characterize the dynamics of functional networks by estimating time-

varying connections between regions in a data-driven way and grouping similar patterns of

time-varying connectivity between region pairs. We use this framework to show fundamen-

tal differences in the dynamics of functional connectivity of individuals in awake and anes-

thetized conditions. We also use this analysis to characterize different neuronal microstates

present in neural data. A microstate is understood as a pattern of activation that tends

to repeat in the data in a non-random fashion and, thus, may be related to the underlying

equilibrium structure of the network dynamics. We show the existence of at least two mi-

crostates during resting wakefulness, and validate the methodology through a comprehensive

set of positive controls.

Characterizing Temporal Dynamics of Depressed Level of Consciousness with

Applications in Detecting Coma Severity and Coma Cause [13]: Finally, the third

contribution of part one of the dissertation relates to the use of dynamical features extracted

from electroencephalogram (EEG) data for the purpose of disambiguating individuals with

severe brain injuries resulting in coma. We use our developed analytical frameworks as well as

a range of other time-series analysis methods to disassociate the brain dynamics of individuals
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who have coma due to focal or diffuse causes. In addition, we develop a new approach based

on the aforementioned notion of microstates to characterize the temporal dynamics of EEG

activity in patients in states of coma. We show fundamental differences in the dynamical

structures, i.e. the microstates, of individuals who are deeply in unconscious states versus

those that are maintaining certain measures of cognitive function. These analyses show

the potential informativeness of temporal dynamics for clinical classification as well as their

relation to different states of cognitive function.

Decoding of Time-Varying Sparse Signals in Recurrent Linear Networks [14]: In

Part II, we move to the study of efficient coding in dynamical networks. Our first contribution

here is in the study of networks with linear dynamics that receive high dimensional input.

The network emits a lower dimensional set of outputs. We characterized the conditions on the

network dynamics that enable a decoding of the input, from the outputs, in a time-varying

manner in the presence of both disturbance and noise. Analytical bounds on performance

are obtained, and demonstrated via simulation.

Lightweight Encoding in Recurrent Networks with Soft-Thresholding Nonlin-

earities: Finally, we consider how neuronal networks might enable information encoding.

That is, given a raw signal (e.g., from the sensory periphery), how might a network produce

a sparse, encoded version of that signal to be subsequently transformed, processed and even-

tually decoded. For this purpose we derive a dynamical network that, in essence, performs

`1/`2 optimization so as to generate such an encoded representation from the raw input. We

characterize the overall functionality of this network in terms of its ability to encode signals

over a receding time horizon.
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1.4 General Notation

We use a boldface capital letter to represent a matrix and a boldface lowercase letter to

represent a column vector. For a given matrix A, the inverse, transpose and determinant

operators are given by A−1, AT , and |A|, respectively. A matrix that maintain the rows of

A with indices in set T is denoted by AT . We use diag(r) to return a diagonal matrix with

elements of the vector r on its diagonal. For a given vector r, ‖r‖0, ‖r‖1, and ‖r‖2 are the `0,

`1, and `2 norms, respectively. We call a vector r as s-sparse if there are at most s nonzero

elements in r. The n × n identity matrix is denoted by In. Finally, we denote ‖A‖2 as the

induced spectral norm of the matrix A.
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Part I

Dynamics at Macro-scale
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Chapter 2

Optimal Stimulus Scheduling for Active

Connectivity Inference in Evoked Brain

Networks

2.1 Highlights

In this chapter, we consider the problem of optimal probing to learn connections in an

evoked dynamic network. Such a network, in which each edge measures an input-output

relationship between sites in sensor/actuator-space, is relevant to emerging applications in

neural mapping and neural connectivity estimation. We show that the problem of scheduling

which nodes to probe (i.e., stimulate) amounts to a problem of optimal sensor scheduling.

By formulating the evoked network in state-space, we show that the solution to the greedy

probing strategy has a convenient form and, under certain conditions, is optimal over a finite

horizon.
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We adopt an expectation maximization technique to update the state-space parameters in

an online fashion and demonstrate the efficacy of the overall approach in a series of detailed

numerical examples. The proposed method provides a principled means to actively probe

time-varying connections in neuronal networks. The overall method can be implemented in

real time and is particularly well-suited to applications in stimulation-based cortical mapping

in which the underlying network dynamics are changing over time.1

2.2 Introduction

A topic of considerable and ongoing focus in neural engineering and computational neuro-

science is the characterization of functional networks that describe the statistical association

of the neural activity between spatially disparate brain regions [15]. In this context, the

definition of a functional network requires an observation modality with multiple recording

sites, and a statistical metric that can be used to quantify association between those sites.

An association may, or may not, be attributed to a direct physical (anatomical) connection

[11,16,17].

Many functional network estimation techniques are based on passive observation paradigms,

wherein neuronal activity is recorded but not overtly manipulated. In contrast, the rapid

emergence of neurostimulation technologies is making possible active network inference (cir-

cuit probing via stimulation, brain mapping), including the so-called evoked connectivity
1This chapter is a slightly amended version of the previously published articles which are listed as follows:

M. Kafashan, and S. Ching, “Optimal Stimulus Scheduling for Active Estimation of Evoked Brain Networks,”
Journal of Neural Engineering, 12(6), 066011, 2015.
M. Kafashan, and S. Ching, “Node selection for probing connections in evoked dynamic networks,” 53rd
IEEE Conference on Decision and Control, 6080–6085, c© 2014 IEEE.
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[18–22]. In this paradigm, a third notion is added to the network definition: an input stim-

ulus, e.g., an electrical current, which, when applied focally, leads to a detectable effect at

the recording sites.

The evoked connectivity, or evoked networks, thus rely intimately on the notions of a stimu-

lus (e.g. an input waveform) and a detector (e.g. an output response). Any evoked network

is specific to a stimulus/detector pair, in the same way that a functional network is specific

to the statistical metric used to define association. In [21], evoked networks were estimated

assuming binary detectors, i.e., yielding a characterization of the probability of inducing a

detected response given an input stimulus. In this study, we assume that the connections

in the network follow a state-space modeling formalism. Such an approach for examin-

ing dynamic relationships between multiple brain regions is well-established in the neural

connectivity modeling community. For instance, a state-space modeling approach for exam-

ining time-varying relationships between multiple brain regions was proposed in [23] and has

been used in [24] to characterize temporal changes in resting-state functional connectivity.

Similarly, in [25], a multivariate autoregressive model was developed using a time-varying

connectivity matrix, in which each connection is assumed to follow a random walk model.

This modeling paradigm has recently been adopted in several studies for modeling neuronal

dynamic functional connectivity [26–28]. In this research, we generalize the theory of es-

timating evoked networks to consider time-varying weighted connections and, further, we

address the problem of stimulus scheduling, i.e., how to determine which node to stimulate.

More specifically,

1. We generalize the notion of an evoked network to consider weighted association, where

the weights can vary as a function of time. For concreteness, but without loss of

generality, assume that the input stimulus is a fixed input waveform applied to a single
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network node, and let the detector measure the amplitude of signal deflection at all

other nodes. We seek to estimate the input-to-output amplitude ‘gain’ for each pair

of nodes. Given a state-space formulation for the connections, the solution can be

obtained through a Kalman filter-like paradigm for recursive estimation of connection

weights.

2. Assuming that only one site can be stimulated at a time, we determine the optimal

stimulation policy (schedule) for best estimating the evoked network with the minimum

number of stimulations. The assumption of single node stimulation is made for two

reasons. First, it avoids the interference confound wherein, if two nodes are stimulated

simultaneously, and an effect is observed in another node, then it is impossible to

know which of the stimulated nodes was responsible [29]. Second, with many forms of

stimulation technology, e.g., electrical microstimulation, it is difficult to stimulate and

record from a node simultaneously.

The developed theory is related to optimal design of experiments [30], but with a

very specific form that allows for convenient analytical characterizations that facilitate

online, adaptive evaluation of the stimulation schedule.

We show the efficacy of the proposed methodology in several numerical examples, including

estimation of a network of Wilson-Cowan neural mass models. Here, we demonstrate a sec-

ondary result that if the delivered stimulus has sufficiently narrow bandwidth, the underlying

causal network structure can be obtained from the evoked network through the solution of

a linear inverse problem.

The remainder of this chapter is organized as follows. In Section 2.3 we formulate the

scheduling problem in detail and develop its equivalence to the problem of sensor selection,
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Figure 2.1: Active inference of evoked networks. (A) A functional brain network, constructed
from the activity at four disparate recording/actuation sites. The resulting network consists
of 12 directed edges. The weight of each edge corresponds to the magnitude of the evoked
response when a ‘source’ node is stimulated. (B) Each probing yields observation of three
edges. In this sense, the problem of determining the optimal probing for estimating weights
is similar to that of sensor scheduling.

noting the relevant literature on solution methodologies. In Section 2.4 we develop methods

for greedy probing and show certain results on optimality. In Section 2.5, several synthesized

and biophysically inspired examples are provided. Conclusions are formulated in Section 2.6.
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2.3 Problem Formulation

2.3.1 Basic Definitions

As introduced above, we consider evoked networks in the context of neural stimulation and

recording. The underlying assumptions are the availability of neural data at N spatially

disparate sites, or nodes, and the ability to apply a prescribed exogenous input at each site.

As is standard in network theory, the term node will be used to describe each of the N sites

and the term edge will be used to describe association between nodes.

2.3.2 Evoked Connectivity

Consider a network of N nodes containing NT = N × (N − 1) directed edges. In a weighted

evoked network, the weight of the edge xj,i,k corresponds to the magnitude of the detected

response at node j when node i is stimulated at time index k. Let xk denote the vector whose

elements are xj,i,k. Assume that xk is sorted according to xk = [xT1,k xT2,k ... xTN,k]
T where xi,k

is vector of all edges connected to node i. In other words, xi,k is xj,i,k for j = 1, 2, ..., N, j 6= i

at time k. We assume that the evoked connections in the network follow a state-space model

described as
xk = xk−1+wk−1

yk = Ckxk+vk,

(2.1)

where k ∈ Z≥0, the state vector x ∈ RNT , the state noise process wk ∈ RNT is a NT -

dimensional random vector with multivariate Gaussian distribution having zero mean and

diagonal covariance matrix Qw ∈ RNT×NT , the measurement noise vk ∈ RNT is a zero-mean
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multivariate Gaussian random vector with diagonal covariance matrix Rv ∈ RNT×NT .

Qw = diag (α1, ..., αNT
) ∈ RNT×NT ,

Rv = diag (β1, ..., βNT
) ∈ RNT×NT .

(2.2)

Two remarks are in order:

Remark 2.1. The process noise wk determines the extent to which evoked connectivity

weights can change between time steps. A larger variance of wk would correspond to larger

temporal fluctuations in evoked responses, whereas a smaller variance would imply more

static networks.

Remark 2.2. The model (3.4) assumes edges are independent. Clearly, this is an approxi-

mation. With prior specification of the relationship of evoked connectivity to actual physical

connectivity, the independence assumption may be modified.

In order to avoid an interference confound2, only one node is stimulated at each time step

meaning that only N − 1 weights are observed at a time. Thus, at each time k

Ck ∈ {C1,k,C2,k, · · · ,CN,k}, (2.3)

where Ci,k is a diagonal matrix with N − 1 nonzero elements located at jjth element of the

matrix in which j ∈ {(N − 1)(i − 1) + 1, ..., (N − 1)i}. In other words, the parts of the

observation matrix corresponding to states xj,i,k, j 6= i, where i is the node stimulated at

time k, are non-zero.

The evoked connectivity estimation problem amounts to generating estimates of the weights

x based on knowledge of the stimulations and the detected responses up to time step k. Here,
2That is, ambiguity in the source of an evoked connection when two nodes are stimulated simultaneously.
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given the prior model (3.4), the best estimator in sense of mean squared error is the well-

known Kalman filter (KF) [31–33]. In our specific case, the recursive KF update equations

can be summarized as

x̂k|k−1 = x̂k−1|k−1

Pk|k−1 = Pk−1 + Qw

Kk = Pk|k−1C
T
k (CkPk|k−1C

T
k + Rv)−1

x̂k|k = x̂k|k−1 + Kk(yk −Ckx̂k|k−1)

Pk = (I−KkCk)Pk|k−1

(2.4)

where, Pk|k−1 is the estimated error covariance obtained in the propagate step using the

state equation and Yk−1, observation up to time k− 1. Pk is the estimated error covariance

obtained in update step based on Yk, the observation up to time k.

While (3.9) enables recursive estimation of network weights, the problem of identifying the

best node to stimulate at time step k remains. We define a stimulation policy as follows: at

each time k, choose a vector

σk = [σ1,k, ...σN,k]
T ∈ RN

σi,k ∈ {0, 1}, i = 1, ..., N

(2.5)

such that σi,k = 1 if node i is stimulated at time k. Since we are limited to stimulating a

single node at a time, we impose the additional constraint

1Tσk = 1, (2.6)
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where 1 denotes the vector of all ones, and further, noting that each of the N possible choices

for σk corresponds to a distinct Ck, as described above. The problem at hand is to determine

a schedule for σk that minimizes the estimation error covariance Pk over a specified time

horizon, i.e., for a given schedule over horizon M ,

ΣM = [σ1, σ2, ..., σM ] , (2.7)

minimize the average of the mean square error over the horizon M

J(ΣM) =
1

M

M∑
k=1

E[‖xk − x̂k‖2
2]. (2.8)

2.3.3 Relationship to Sensor Selection

It is evident from the formulation that the problem of stimulation scheduling design is similar

to that encountered in sensor selection, i.e., of a large number of sensors, the choice of which

ones to sample at any given point in time in order to facilitate state estimation. Indeed, at

each time k, we can conceive Ck as being a sample of (N − 1) ‘sensors’ that measure each

evoked connection weight. More generally, such problems fall into the category of optimal

design of experiments [30].

The sensor scheduling problem has received considerable attention in recent years [34–37].

The complexity of a such a problem is, generally, NP-hard [38] with optimal and near-optimal

algorithms generally involving tree pruning techniques [39]. With appropriate relaxation, a

dynamic programming procedure was developed in [40], however it is only applicable for

an objective function that minimizes the terminal estimation error. A convex relaxation

has been proposed [41], without guarantees on the performance and with complexity that
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is cubic in the total number of available sensors. In [42] a selection policy according to a

probability distribution is proposed to obtain the best upper bound on the expected steady

state performance. In order to obviate complexity, a greedy approach is common [43,44] and

can be shown to have near optimal performance under submodularity of the cost function

[45–48], which, in particular occurs if the process noise is zero [48].

In contrast to the general problem of sensor selection, our particular problem is more con-

strained since: (i) at any given time, we sample exactly N − 1 ‘sensors’, (ii) the set of

possible samplings span the entire sensor space and (iii) the process and measurement noise

covariances are diagonal. Thus, we are able to formulate relatively simple conditions under

which convenient performance characterizations and guarantees can be made. We begin by

analyzing the case of greedy scheduling, below.

2.4 Greedy and Optimal Probing in Evoked Networks

2.4.1 Greedy Approach

For the model (3.4), we can write Pk as

Pk = diag (P1,k, ..., PNT ,k) ∈ RNT×NT . (2.9)
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From the Kalman filter (3.9), the error covariance for each state at time k can be obtained

recursively as

Pj,k = σi,k
βj(Pj,k−1 + αj)

Pj,k−1 + αj + βj
+ (1− σi,k)(Pj,k−1 + αj)

= −σi,k
(Pj,k−1 + αj)

2

Pj,k−1 + αj + βj
+ (Pj,k−1 + αj)

i = d j

N − 1
e, j = 1, ..., NT

(2.10)

where, the function de is the smallest integer larger than or equal to its argument. The

greedy scheduling approach minimizes the 1-step mean square error

Minimize Jk(σk) = E[||xk − x̂k||22]

Subject to 1Tσk = 1

σi,k ∈ {0, 1}, i = 1, ..., N.

(2.11)

The cost function in the above problem is the special case of the cost function in (2.8),

with M = 1. The second and third lines of (2.11) represent the associated constraints that

must be satisfied in the solution, i.e., stimulation of one node at a time. They mirror the

definitions in (2.5) and (2.6).

Lemma 2.1. The problem (2.11) is solved by stimulation of node m, where

m = argmax
i

∑
j∈Ii

(Pj,k−1 + αj)
2

Pj,k−1 + αj + βj

Ii = {(N − 1)(i− 1) + 1, ..., (N − 1)i}

(2.12)
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Proof. Observe that the cost in (2.11) can be separated, resulting in

Minimize Jk(σk) = Ĵk(σk) + J̄k

Subject to 1Tσk = 1

σi,k ∈ {0, 1}, i = 1, ..., N.

Ĵk(σk) = −
N∑
i=1

σi,k
∑
j∈Ii

(Pj,k−1 + αj)
2

Pj,k−1 + αj + βj

Ii = {(N − 1)(i− 1) + 1, ..., (N − 1)i}

J̄k =

NT∑
j=1

(Pj,k−1 + αj),

(2.13)

In (2.13), J̄k is not a function of σk and minimization of Jk(σk) is equivalent to minimization

of Ĵk(σk). Thus, the solution of problem (2.13) is equivalent to selection of σk which results

in maximum reduction of Ĵk(σk), i.e., the node that satisfies the criterion (2.12).

Conceptually, the argument is understood as follows. We divide all possible edges into N

distinct groups. By selecting a node to stimulate, the error covariance for N − 1 edges are

updated, and the estimation error in all other groups is propagated.

We now proceed to explore conditions under which the greedy algorithm can have optimal

performance over a finite horizon.
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2.4.2 Greedy and Round-Robin Equivalence

We first present conditions under which the greedy algorithm reduces to a round-robin

(i.e., periodic) probing schedule. In particular, consider the case where the process and

measurement noise variances are equal, i.e.,

Assumption 2.1 (A.1).

α1 = α2 = ... = αNT
= α

β1 = β2 = ... = βNT
= β.

(2.14)

Such an assumption, while seemingly strong, is reasonable when one considers applications

such as probing a neuronal network using, for instance, a uniform grid of electrodes [22], with

no prior assumptions on the evoked network structure or dynamics. Furthermore, consider

Assumption 2.2 (A.2).

p0 = [p1,0, ..., pN,0]T ∈ RN

∀j ∈ Ii, Pj,0 = pi,0, i = 1, ..., N

Ii = {(N − 1)(i− 1) + 1, ..., (N − 1)i}.

(2.15)

This assumption states that the initial error covariance for all edges in the same group is

equal (but edges in different groups can, in general, have different initial values).

Finally, we consider

Assumption 2.3 (A.3).

pi,0 + α > β, i = 1, ..., N, (2.16)
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which states, roughly, that the initial uncertainty is at least as large as the observation error

variance.

We now state two preliminary lemmas whose proofs are strictly algebraic and thus omitted,

Lemma 2.2. For p, α, β > 0 and c ∈ Z, c > 1 it holds that

β(p+ cα)

p+ cα + β
<

β(p+ (c− 1)α)

p+ (c− 1)α + β
+ α. (2.17)

Lemma 2.3. The function f(p) = (p+α)2

p+α+β
is monotonicity increasing in p > 0 for α, β > 0.

Further, we consider:

Lemma 2.4. Let p1,0 = p2,0 = ... = pN,0, and let ΣN = [σ1, σ2, ..., σN ] with σi,k = 1, if i = k,

then after N time steps, p1,N+1 > p2,N+1 > ... > pN,N+1, ∀α, β, pi,k > 0.

Proof. After N time steps and knowing the schedule ΣN , the error covariance for the edges

connected to node i, can be written as

pi,N =
β(pi,0 + iα)

pi,0 + iα + β
+ (N − i)α (2.18)

It can be seen based on equation (2.17) that

β(p1,0 + α)

p1,0 + α + β
+ (N − 1)α >

β(p2,0 + 2α)

p2,0 + α + β
+ (N − 2)α

> ... >
β(pN,0 +Nα)

pN,0 + α + β

(2.19)

The above condition still holds if p1,0 > p2,0 > ... > pN,0 because equation (2.18) is increasing

with pi,0. To make the last statement more clear, assume that p1,0 > p2,0, then based on
24



equation (2.17) we have

β(p2,0 + α)

p2,0 + α + β
+ (N − 1)α >

β(p2,0 + 2α)

p2,0 + α + β
+ (N − 2)α (2.20)

We know that the equation (2.18) is increasing with pi,0, therefore based on p1,0 > p2,0 we

can write

β(p1,0 + α)

p1,0 + α + β
+ (N − 1)α >

β(p2,0 + α)

p2,0 + α + β
+ (N − 1)α (2.21)

which results in

β(p1,0 + α)

p1,0 + α + β
+ (N − 1)α >

β(p2,0 + 2α)

p2,0 + α + β
+ (N − 2)α (2.22)

Theorem 2.1. Assume, without loss of generality, that p1,0 ≥ p2,0 ≥ ... ≥ pN,0. Then, under

assumptions (A.1)-(A.3), the greedy optimization (2.11) reduces to a ‘round-robin’ strategy

that stimulates node 1 to node N in sequence, periodically.

Proof. From (2.12), at time k = 1, the new error variances can be written as

p1,1 =
β(p1,0 + α)

p1,0 + α + β
,

pi,1 = pn,0 + α, i = 2, ..., N.

(2.23)

Similarly, at time k = 2, because p1,1 < β and pi,1 = pn,0 + α > β, i = 2, ..., N then (2.12)

implies that node 2 should be stimulated. Similarly, by iterating forward, for the first N

simulations the greedy scheduling stimulates nodes 1 through N , in sequence.
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After N time steps, at time k = N + 1, it follows from Lemma 2.2 and Lemma 2.3 that the

error covariances satisfy is p1,N ≥ p2,N ≥ ... ≥ pN,N and the result follows.

2.4.3 Greedy and Finite Horizon Optimality Equivalence

We now explore conditions under which the finite horizon problem (2.8) reduces to the greedy

problem (2.11). We begin with a preliminary lemma, stated without proof.

Lemma 2.5. For p, α, β > 0

(p+ α)2

p+ α + β
> p+ α− β,

(p+ α)2

p+ α + β
< p+ α

(2.24)

Theorem 2.2. Under assumptions (A.1)-(A.3), the schedule ΣM that solves (2.8) contains

at most one stimulation of each node where M ≤ N .

Proof. The proof is by contradiction. First, consider the case ofM = 2. Assume, without loss

of generality, that in the optimal policy Σ2, the nodem is stimulated twice, i.e., Σ2 = [σ1, σ2],

where σm,1 = σm,2 = 1 and all other elements of Σ2 are zero. In this case J1 and J2 are
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J1(Σ2)

N − 1
= − (pm,0 + α)2

pm,0 + α + β
+

N∑
i=1

(pi,0 + α)

J2(Σ2)

N − 1
= −

(
− (pm,0+α)2

pm,0+α+β
+ (pm,0 + α) + α

)2

− (pm,0+α)2

pm,0+α+β
+ (pm,0 + α) + α + β

− (pm,0 + α)2

pm,0 + α + β
+

N∑
i=1

((pi,0 + α) + α)

J2
Total(Σ2) =

1

2
(J1(Σ2) + J2(Σ2))

(2.25)

Now, suppose that a node m′ 6= m was stimulated at time step k = 2. In this case, the

schedule becomes Σ
′
2 = [σ

′
1, σ

′
2], where σ′m,1 = σ

′

m′ ,2
= 1 and all other elements of Σ

′
2 are

zero. J1 and J2 for this case can be written as

J1(Σ
′
2)

N − 1
= − (pm,0 + α)2

pm,0 + α + β
+

N∑
i=1

(pi,0 + α)

J2(Σ
′
2)

N − 1
= −

(
(pm′ ,0 + α) + α

)2

(pm′ ,0 + α) + α + β

− (pm,0 + α)2

pm,0 + α + β
+

N∑
i=1

((pi,0 + α) + α)

J2
Total(Σ

′

2) =
1

2

(
J1(Σ

′

2) + J2(Σ
′

2)
)

(2.26)

Based on Lemma 2.5, it follows that

− (pm,0 + α)2

pm,0 + α + β
+ (pm,0 + α) < β. (2.27)

We know that pm′ ,0+α > β and based on Lemma 2.3 it is straightforward to see that whenever

m
′ 6= m then J2

Total(Σ
′
2) < J2

Total(Σ2), establishing the contradiction. The remainder of the

proof follows an inductive argument, noting that over a horizon M ≤ N , probing any node
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that has not previously been stimulated will result in more reduction in the total cost function

(via J2(·)) versus one that has already been stimulated.

We now provide a sufficient condition under which the greedy algorithm is finite horizon

optimal.

Theorem 2.3. Let assumptions (A.1)-(A.3) hold and, additionally, let

β >

√
N − 1√

N −
√
N − 1

α. (2.28)

Then, the solution for (2.8) over a horizon M ≤ N is the greedy solution.

Proof. Based on Theorem 1, in a finite horizon with M ≤ N , each node should be selected

just once and the total cost function can be written as

JMTotal(ΣM )

N − 1
= −

(
pm′′′ ,0 +Mα

)2

pm′′′ ,0 +Mα+ β
− 2

(
pm′′ ,0 + (M − 1)α

)2

pm′′ ,0 + (M − 1)α+ β

− ...− (M − 1)

(
pm′ ,0 + 2α

)2

pm′ ,0 + 2α+ β
−M (pm,0 + α)2

pm,0 + α+ β

+ Constant, m
′′′ 6= m

′′ 6= m
′ 6= m.

(2.29)

It can be seen from JMTotal(ΣM) that each term leads to a different overall reduction of the

JMTotal(ΣM). In this equation m,m
′
, ...,m

′′
,m

′′′ are the node numbers that are stimulated

at time 1, 2, ...,M , respectively. It can be shown via algebraic manipulations that (2.28) is

sufficient to ensure,

(M − i) (p+ (i+ 1)α))2

p+ (i+ 1)α + β
< (M + 1− i) (p+ iα)2

p+ iα + β
(2.30)
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Hence, in order to get maximal reduction for (2.29) it is sufficient to maximize the term

multiplied by M , then the term multiplied by M − 1 and so on, i.e., greedy scheduling.

We are now ready to state the following result,

Theorem 2.4. Under assumptions (A.1)-(A.3), along with (2.28), the solution to the finite

horizon problem (2.8) where M > N , is a periodic, i.e., round-robin, repetition of the greedy

algorithm over the first N steps.

Proof. The result is a direct consequence of Theorems 2-3.

2.4.4 Steady State Error Covariance Bound

Due to the structure of the optimal policies studied here (e.g., round-robin), it is possible

to make comments on bounds for the steady state error covariance. To do so, we need to

consider limk→∞ pi,k = limk→∞ pi,k−N = pi, i = 1, ..., N . The steady state recursive equations

for the error covariance of each edge can be written as

pi =
β(pi + iαn)

pi + iα + β
+ (N − i)α, i = 1, ...N. (2.31)

For each i, (2.31) has one positive solution. Bounds are obtained by evaluating the sum over

i. When the probing scheduling is known a priori, we can solve (2.31) to find the steady

state error covariance bound. Even in the case of the pure greedy approach of Section 2.4.1,

bounds can be obtained by solving recursive equations similar to (2.31) in which, for each

edge, N equations are solved and the maximum and minimum of N possible solutions for

the trace of the error covariance are obtained.
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2.4.5 Expectation Maximization (EM) for Joint State and Noise

Parameters Estimation

A final obstacle in using the scheduling policies and inference methods derived in the pre-

vious parts is knowing the noise parameters that specify the state-space model. Since such

information is difficult to define a priori, a principled way to update them alongside the state

estimates is required. Here, we face the challenge of estimating noise parameters alongside

our online probing strategy. To address this issue we use an EM algorithm [49,50] to jointly

estimate the state and model parameters from measured evoked responses.

Assuming diagonal covariance matrices for model parameters, we can decouple the update

procedures for each edge, resulting in a reduction of the computational burden typically

associated with EM methods. Our developed algorithm is slightly different from the standard

EM technique for linear models due to the irregular sampling imposed by our scheduling

policy. In other words, we jointly estimate the state, xj,k, k = 1, 2, · · · ,m, αj and βj from

the (irregular) observations yj,k, k ∈ K, 1 ≤ |K| ≤ m. The detailed of derivation the EM

algorithm for this scenario is provided in the Appendix A.1.

2.5 Examples

2.5.1 Numerical Examples

We proceed to illustrate the results through a series of simulation studies.
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Figure 2.2: Trace of error covariance matrix with round-robin and variance greedy approach
for node selection, N = 10 nodes. The upper and lower bound are indicated by the green
and black lines, respectively.

Greedy and Round-robin Scheduling: Consider a network with N = 10 nodes with

noise covariance matrices constructed by drawing αi and βi from a uniform distribution

in the intervals [0, 0.1] and [0, 0.3], respectively. Figure 2.2 shows the trace of the error

covariance matrix (MSE) for the round-robin and greedy approach. The initial value of

the error covariance for all edges are drawn from a uniform distribution in the interval of

[0.5, 1.5]. The green and black lines in this figure constitute upper and lower steady state

bounds for the round-robin policy, as obtained via (2.31).

Optimality of the Greedy Solution: We further consider the case where α = 0.1, β =

0.3 and where initial conditions for the error covariances are assumed to be 1.5 for all edges.

The results are illustrated in Figure 2.3. Clearly, the greedy and round-robin approaches are

equal in this case, and the MSE curves are overlapping.
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Figure 2.3: Trace of error covariance matrix with round-robin and greedy approach for node
selection, N = 10 nodes. Here, assumption (A.1) is satisfied with α = 0.1, β = 0.3.

Moreover, to illustrate the results of Section 2.4.3, we consider a network with N = 5 nodes,

α = 0.1, β = 1.1, i.e, Assumptions (A.1)-(A.3) and (2.28) are satisfied. Fig. 2.4 shows the

trace of error covariance matrix for the greedy algorithm versus complete tree search over

the horizonM = 10. We note equivalence of the two policies, and the round-robin (periodic)

character of the greedy solution.

Joint Noise and Connection Estimation via EM: Figure 2.5 depicts the simulation

results for joint model parameter estimation and network probing for a five node network.

In this example, we assume αj = 0.5, j = 2, 3, 5, 8, 14, 16, while for the remaining evoked

connections we assume αj is drawn uniformly from the interval (0, 0.1). In other words, a

few edges in the network evolve with high process noise compared to other edges.
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Figure 2.4: Trace of error covariance matrix with greedy algorithm and tree search for node
selection assuming A = I, one for non-zero elements of Ck and 5 number of nodes with fixed
α and β satisfying assumption (A.1). α = 0.1, β = 1.1 and initial error covariance drawn
from uniform random distribution satisfying (A.2), (A.3) and equation (2.28).

Figure 2.6 shows the estimated process noise for the second state, α2, for both the round-

robin and greedy approach. It can be seen from this figure that the greedy approach provides

a better estimation of the noise variance compared to the round-robin. This is resulting in

more samples of x2 compared to the uniform sampling via round-robin strategy.

Figure 2.7 illustrate true and estimated x2 using round-robin and greedy approach. Note,

particularly, that in areas specified with dashed ellipses, the estimated state (evoked connec-

tions) with the greedy approach can track the true state closely as compared to the estimated

state with the round-robin policy.
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In the final example, we apply the developed theory to a biophysical neuronal network

model, in which each node is a Wilson-Cowan mean field neuronal mass model [51–53]. In

this model, the jth node is described by the nonlinear differential equations as

ėj =− ej + (ke − reej)F(c1ej − c2ij + Ce,j(e) + Pj(t))

+ bejuj(t) + w(t)

i̇j =− ij + (ki − riej)F(c3ej − c4ij + Ci,j(e) +Qj(t))

+ bijuj(t),

(2.32)
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Figure 2.5: Trace of error covariance matrix with round-robin and greedy approach for node
selection, N = 5 nodes without having information about noise variances.
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Figure 2.7: True (green) and estimated x2 with round-robin (red) and greedy (blue) schedul-
ing.

where (ej, ij) denote, respectively, the activity in excitatory and inhibitory cell populations

in a cortical macrocolumn and e is the vector of the activity in excitatory cell populations

for all macrocolumns. The connectivity between macrocolumns arises through the functions

Ce,j(·) and Ci,j(·) and without loss of generality we consider the same function for both

excitatory and inhibitory populations as

Cx,j(e(t)) =
N∑
l=1

cjlej(t− τjl), x = e, i, (2.33)
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Figure 2.8: Network structure inference from evoked connectivity. (A) A three node network
with structure matrix A where aij = [A]i,j shows the effective gain/ attenuation and delay
from node j to node i. (B), (C) and (D) show how activity at each node, V, evolves based
on network structure when the first node is stimulated by input u1.

where cjl and τjl are the amplitude and delay of a directed connection from node l to node

j, respectively. The term uj(t) is the exogenous input, which will facilitate active probing of

the network connections.

Evaluating Evoked Connectivity Performance in Terms of C: In the above formu-

lation, the matrix C, [C]j,l = cjl represents the actual connectivity between nodes, which

may mediate evoked connections via indirect paths (e.g., Node 1 to Node 2 to Node 3, lead-

ing to an evoked connection from Node 1 to Node 3). To the matrix C we can associate a

corresponding structural matrix [A] such that [A]j,l = ajl is the evoked connection from node

j to node l due only to cjl. In other words, cjl is a parameter in the dynamical system (2.32),

whereas ajl describes the input-to-output gain (i.e., the evoked connection) that arises as a

consequence of only cjl in (2.32). Note that ajl can be nonzero only if cjl is nonzero.

In order to evaluate the performance of our active inference scheme, we exploit the fact that

when the delivered stimulus, i.e., u(t) is sufficiently narrowband, the signal propagation via

(2.32) is approximately linear; that is, a narrowband excitation travels from node to node,
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incurring only attenuation and phase lag and not a shift in frequency. Thus, if the evoked

network is defined in terms of a tightly band-limited stimulus and a similarly band-limited

detector, we can exploit a formal model of the form:

V =

(
∞∑
i=0

Ai

)
U = (I−A)−1 U, (2.34)

where i denotes the number of edges that mediate an evoked effect. That is, i = 1 describes

direct connections only, i = 2 describes connections mediated by a cascade of two edges, etc.

Figure 2.8 illustrates how evoked activity is related to the narrowband network structure A.

Thus, the evoked connectivity matrix X is related to A via the relation

X =



x1,1 x1,2 · · · x1,N

x2,1 x2,2 · · · x2,N

...
... . . . ...

xN,1 xN,2 · · · xN,N


= (I−A)−1 . (2.35)

Consequently, by inverting the evoked connectivity matrix according to (2.35), we can assess

performance of our scheme against the known actual connections in A.

Performance in a 9 Node WC Network: We consider a nine node network of the form

(2.32) with parameters

c1 = 16, c2 = 12, c3 = 15, c4 = 3, ae = 1.3, ai = 2

θe = 4, kd = 2, θi = 3.7, re = ri = 1

ke = ki = 1, bej = bij = 1, Pj(t) = 1, Qj(t) = 0,

(2.36)
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and w(t) taken as a Gaussian random process of variance 0.1. The matrix C was specified to

be binary and symmetric, and is depicted in Figure 2.9A. With the parametrization (2.36),

each node is not intrinsically oscillatory. Figure 2.10A shows the evoked response for nodes

2− 9 when the Node 1 is actively stimulated by a single harmonic input

u1(t) = 10 cos(2πf0t)

uj(t) = 0, j = 2, · · · , 9,
(2.37)

where f0 = 1, and the evoked response are measured over a window of 2 milliseconds. From

Figure 2.10A, an induced oscillation at frequency f0 is clear at the four nodes upon which

node 1 impinges, i.e., the top row in Figure 2.9A. Also, it can be seen from this figure that

the amplitude of the evoked response for the other nodes is low. Figure 2.10B shows the

filtered version of the evoked response at f0. It can be inferred from this figure that there

are different delays associated with each connection.

2.5.2 Biophysical Network Simulation

Inference of Static Structure: We proceeded to embed narrowband stimulus/detector

in the overall evoked network methodology to obtain an evoked connectivity matrix, and

then the structural matrix A via inversion. Figure 2.9B-D illustrate the performance of

the inference after different time steps for a particular value of measurement noise β (here,

assumed to be known). Here, the structure itself was not allowed to change. Figure 2.11

illustrates the performance aggregated over different measurement noise intensities. As seen,

the inference of network structure is quite accurate and, for low values of measurement noise,

below 10% error.
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Figure 2.9: (A) Pattern of network connectivity for nine node Wilson-Cowan model. Red
shows the existence of a connection while blue means no structural connection. (B) Random
initialization of the estimated network structure before stimulation. (C) Estimated network
structure after 5 stimulations. (D) Estimated network structure after 9 stimulations. The
colorbar is the same for (A-D).

Time-varying Connections: Finally, we performed a simulation study of a connectivity

matrix that changes over time, and there is no information about the process noise covariance

matrix. Here, we assumed that delay between nodes is fixed and is not changing over time

(with the same values as previous example). Therefore, the scheduling policies derived

previously remain applicable. Similar to the previous example, the time window for probing

and measuring the activity is specified as 2 milliseconds. At the first time step, we assume
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Figure 2.10: (A) Measured evoked response from nodes 2-9 when the first node is stimulated
by a single tone input at frequency f0 = 1 Hz. (B) Filtered version of the evoked response
at central frequency f0.

the connectivity, C(0), as shown in Figure 2.9A and then allow this to evolve based on the

following relation:

Cjl(k) = Cjl(k − 1) + w∗jl(k), k = 1, · · · , K, (2.38)
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Figure 2.11: Box plot of the relative error versus measurement noise, β, for network structure
inference for 100 Wilson-Cowan networks with 9 nodes and fixed network structure.

where w∗jl(k) is Gaussian random variable with standard deviation α∗jl. Here, α∗jl = 0 except

for

α∗1,3 = 0.5, α∗1,4 = 0.5, α∗3,1 = 0.5, α∗4,1 = 0.5. (2.39)

Intuitively, a good scheduling policy would be one that, after several time steps, probes

exclusively the first, third and fourth nodes such that network changes can be tracked over

time.

Figure 2.12 shows the results of our estimation procedure for both greedy and round-robin

scheduling. It is evident from this figure that after a few time steps, the greedy policy indeed

converges to an iteration between nodes 1, 3 and 4.
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Figure 2.12: Scheduling policy and normalized MSE for round-robin versus greedy solution
for Wilson-Cowan model with network structure which changes over time.

2.6 Chapter Summary

In this work, we have formulated the problem of node selection for probing connections in

evoked networks. Here, each connection (weight) describes the node output responses when

an input node is activated using a prescribed stimulus. Like ‘functional’ networks, such

connections do not necessarily correspond to the physical network structure. However, in

contrast to passive network inference methods, evoked connections are defined explicitly in

both sensor and actuator space.
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Here, we showed that the problem of deciding which node to stimulate in order to probe

the evoked connections is equivalent to a problem of sensor scheduling, where each ‘sensor’

measures the weight of an edge relative to the delivered stimulus. Based on a Kalman filter

paradigm for estimating the weights, we proceeded to derive convenient rules for greedy

scheduling. Then, we showed that under certain conditions, the greedy algorithm is optimal

over a finite horizon and, moreover, it amounts to a predetermined periodic ‘round-robin’

selection schedule. Those conditions – that measurement and process noise are equal across

nodes; and that initial uncertainty of edges is grouped on a node-by-node basis – are ex-

pected to be particularly applicable in situations where the sensor/actuators are co-located,

relatively homogeneous and minimal prior information is known about the weights.

We demonstrated the efficacy of the proposed methods in several examples, including a

simulation study of a biophysical mean-field model. In this case, we showed that exploiting

certain dynamical properties of the network, namely, approximate linearity with respect to

a narrowband stimulus, allows for recovery of underlying structure from the evoked network

through a linear inverse problem. Although not the focus of the present research, such a

concept could certainly be generalized in future work.

The proposed methodology provides a principled way to interrogate the connections in brain

networks via stimulation, with specific applications in brain mapping. More generally, our

results fall into the category of perturbation analysis and system identification for complex

networks, which is an emerging area of interest in the domains of biological, social and

economic networks [54,55].
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Chapter 3

Spatiotemporal Analysis of Functional

Connectivity During Wakefulness and

Sevoflurane Anesthesia

3.1 Highlights

We provide an extensive analysis and evaluation of current dynamical functional connectivity

(dFC) methods with a particular focus on the extraction of neuronal microstates, defined

as repeating non-stationary patterns of network interaction. We show the existence of at

least two microstates in the blood oxygen level dependent (BOLD) signal during resting

wakefulness and point out key methodological considerations related to such analysis.

Further, we present a data-driven Kalman filter-based approach to tracking correlation dy-

namics. The filter explicitly accounts for the bounded nature of correlation measurements
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through the inclusion of a Fisher transform in the measurement equation. An output lin-

earizion facilitates a straightforward implementation of the standard recursive filter equa-

tions, including admittance of covariance identification via an autoregressive least squares

method.

We demonstrate the efficacy and utility of these approaches in characterizing spatiotempo-

ral patterns of correlated neural activity during the transition from resting wakefulness to

general anesthesia. Specifically, we show how the interactions between so-called resting state

networks (RSNs) become altered as individuals become sedated due to the actions of the

general anesthetic drug Sevoflurane.3

3.2 Introduction

Characterization of large-scale brain networks using blood-oxygenation-level dependent (BOLD)

functional magnetic resonance imaging (fMRI) is typically based on the assumption of net-

work stationarity across the duration of a scan. As a result of the stationarity assumption,

the conventional application of FC produces a single, static network of associations (between

brain regions) for an entire trial or recording session. Such networks are essentially weighted

graphs, where the recorded regions are the nodes and the statistical associations constitute

the edge weights [15] (Fig. 3.1B). Analysis of such networks have produced groundbreaking

descriptions of how different brain regions co-activate in function-specific ways.
3This chapter is a slightly amended version of the previously submitted and published articles which are

listed as follows:
M. Kafashan, S. Ching, and B. Palanca, “Spatiotemporal Functional Connectivity Motifs Persist during
Wakefulness and Sevoflurane Anesthesia,” under review in Frontiers in Neural Circuit, 2016.
M. Kafashan, B. Palanca, and S. Ching, “Bounded-Observation Kalman Filtering of Correlation in Multi-
variate Neural Recordings,” IEEE Engineering in Medicine and Biology Society (EMBS), Chicago, USA,
c© 2014 IEEE.
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Dynamic functional connectivity generalizes this methodology by allowing the associations

(i.e., weights) to themselves covary in time [79]. Indeed, recent studies in humans have sug-

gested that within-network functional connectivity fluctuates on the order of seconds to min-

utes [85,86]. Other studies have shown that functional networks can exhibit non-stationary,

spontaneous fluctuations irrespective of cognitive processing [74, 87]. These findings imply

that mechanistically important network information can be missed when using average func-

tional connectivity as a monolithic network measure. However, an opposing view is that

such dynamicity is a spurious consequence of confounding factors such as head motion while

subjects are recorded [94].

Thus, in this Chapter we pursue the characterization of dFC in two ways. First, we examine

the basic question of whether legitimate dynamic structures can be extracted from fMRI

recordings. In particular, we study the existence of neural microstates, within the concep-

tual framework of the brain transitioning in a series of brief movements between stationary

regimes [70]. Second, we take a complementary approach to ask whether functional connec-

tions of the same average strength also possess the same temporal dynamics. In this regard,

we introduce a new technical method for estimating time-varying correlations and use it to

show fundamental changes in network dynamics during states of general anesthesia.

3.3 Data and Methods

3.3.1 Data Acquisition and Pre-Processing

We obtained fMRI recordings from a cohort of subjects who underwent recording while in

an awake resting state and in a state of general anesthesia. These data were acquired and
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preprocessed as previously described in [68]. Briefly, healthy human volunteers underwent

BOLD fMRI (3T, repetition time, 2.2 seconds) during quiet wakefulness and while rendered

unresponsive by 1.2 vol% sevoflurane. Stringent frame censoring of motion artifact and

regression of whole brain global signal were applied to the BOLD signals. Cortical gray

matter was segmented into 6 x 6 x 6 mm regions. A winner take all algorithm selected 1076

regions with more than 90% probability of assignment to seven RSNs: Dorsal Attention

Network (DAN), Ventral Attention Network (VAN), Somatomotor Network (SMN), Visual

Network (VIS), Frontoparietal Control Network (FPC), Language Network (LAN), Default

Mode Network (DMN). Repeated pseudorandom resampling of these regions was performed

to select 15 representatives of each RSN for each iteration. These subsampled data were

used for our spatiotemporal decomposition.

3.3.2 Sliding Window Correlation

In order to characterize the temporal dynamics of functional connectivity, first we gener-

ate covariance matrices Sk over sliding windows for each subject at both 0% and 1.2%

sevoflurane. Then, we estimated covariance from the regularized precision matrix using the

graphical LASSO method by placing a penalty on the `1 norm of the precision matrix (Θk)

to promote sparsity [88, 89]. It assigns a large cost to matrices with large absolute values,

thus effectively shrinking elements towards zero. For the kth sliding window, the following

log-likelihood optimization problem is maximized:

L(Θk) = log det(Θk)− tr(SkΘk) + λ‖Θk‖`1 , (3.1)
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Figure 3.1: Schematic of Spatiotemporal decomposition of dynamic functional connectivity.
(A) Functional connectivity over time. (B) Conventional FC over entire scan time. (C)
Temporal and spatial motifs obtained from spatiotemporal analyses.

where the regularization parameter, λ, allows us to balance the trade off between log-

likelihood and the number of nonzero coefficients in the inverse covariance matrix, which

was set to 0.1 in our analyses. Thus, for each subject, we obtained an ordered set of (win-

dowed) covariance matrices. The (i, j)th element of these matrices form the raw time-series

of each weight within the functional network, which we will later treat with a novel filtering

method. First, however, we examine the issue of stationarity within the set of covariance

matrices.
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3.4 Evidence of Microstate Dynamics During RestingWake-

fulness

We begin with a basic investigation of whether certain spatial patterns are over-represented

within the set of windowed covariance matrices. Such patterns, or microstates, would indicate

bona fide dynamics within the fMRI data such as might arise if the network possessed

a number of asymptotically stable equilibria. We specifically engage the negative control

study performed in [94], which argues against such dynamics. Our key result here is that

improperly applied dimensionality reduction can lead to substantial data misinterpretation

and that, in fact, microstates exist. We show the existence of at least two microstates in the

BOLD signal during resting wakefulness.

Microstate Analysis of Resting Wakefulness: To find microstates, we applied k-means

clustering to the correlation matrices obtained from all 10 subjects (737 sliding windows in

total). Correlation values between all region-pairs were included, resulting in (105×104)/2 =

5460 features per matrix. The clustering algorithm was performed with random initialization

of centroid points and was repeated 100 times to increase chances of escaping local minima.

The Occupancy of Each Microstate and Microstates Similarity: We define occu-

pancy, or occurrence, of a microstate for a particular individual subject as the ratio of being

at that microstate to the total number of sliding windows. We denote the occupancy of

subject i being at microstate j as pji which is bounded between 0 and 1. The entropy of the

occupancy for subject i is defined as Ei = −
∑2

j=1 p
j
i log2 p

j
i .
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Positive Control Cases: To investigate the existence of microstates in fMRI data of

individuals during resting wakefulness, we generated different synthesized versions of the

BOLD signal as follows:

1. In Case I, we generated stationary simulated BOLD fMRI time-series exactly in the

way explained by Laumann et al. [94]. Briefly, for each individual subject, covariance

matrix and power spectrum obtained over entire scan time of that particular subject is

used to generate a surrogate multivariate time-series matched in covariance and spec-

tral frequency of the original BOLD signal. By doing so, we can generate a stationary

synthesized time -series for all the subjects in the dataset. The average functional con-

nectivity of each subjects, calculated over entire scan time, is provided in the Appendix

B.1 (Figure B.1).

2. In Case II, a non-stationary simulated BOLD fMRI time-series is generated based

on the microstate analysis results on the real BOLD signal. For each subject, we

considered two microstates with the assumption that the subject is jumping between

these two microstates over time during resting wakefulness (see Appendix B.1 for more

details).

3. In Case III, we generated stationary simulated BOLD fMRI time-series for each indi-

vidual subject as in Case I, but we did not modify the power spectrum of the simulated

signal.

Statistical Analysis: We calculated the correlation between microstates for each case sep-

arately to compare microstates obtained from the real BOLD signals to microstates obtained

from different simulated fMRI time-series.

50



Differences in occupancy of being at a particular microstate across different cases, the real

BOLD and simulated BOLD, were assessed using two sample Kolmogorov–Smirnov test

(K–S test). The two sample K-S test is a nonparametric test for cases where the sample

distributions are unknown which returns a test decision for the null hypothesis that two

samples are from the same continuous distribution. Self-similarity of microstates across

different time-series data, real and simulated, were tested using t-test on the z-values of

microstates.

3.4.1 PCA Changes the Results of Microstate Analysis

Here, we show how applying PCA to time-series data (as performed in [94]) can funda-

mentally alter the results of microstate analysis. Figure 3.2A illustrates a two dimensional

non-stationary data randomly generated with two distinct covariance matrices (red and blue

colors). We consider the same sampling frequency as the real BOLD signals in our study.

The scatter plot of the synthesized data is shown in Figure 3.2B. The covariance matrix of

the two dimensional synthesized data, a 2× 2 matrix, has three distinct values, because the

off diagonal elements of covariance matrix are the same due to the symmetry. Figure 3.2C

demonstrates three elements of the covariance matrix of the synthesized data obtained for

window length of 50 samples; the same value is used to find FC in the real BOLD signal. The

sliding correlation of the synthesized time-series data, which has one distinct value (diagonal

elements of the correlation matrix are one), is shown in Figure 3.2D. It can clearly be seen

in this plot that the correlation is going through a significant change after window number

20 (this is how we generated this data). However, applying PCA to the original synthe-

sized time-series data conflate elements of the covariance matrix and the sliding correlation

values across two different microstates as depicted in Figure 3.2E-F. In this toy example,
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Figure 3.2: (A) A two dimensional non-stationary data randomly generated with two distinct
covariance matrices (red and blue colors) over time. (B) Scatter plot of the synthesized data
with a similar sampling frequency to that of real BOLD signals. (C) Three distinct elements
of covariance matrix of the synthesized data obtained for window length of 50 samples, the
same value is used to find FC in real BOLD signal. (D) Sliding correlation of the synthesized
time-series data. (E) Three distinct elements of covariance matrix of the synthesized data
obtained for window length of 50 samples after applying PCA and keeping all the dimensions
(here just two dimensions). (F) Sliding correlation of the synthesized time-series data after
applying PCA.
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before and after applying PCA over 100 realization of random synthesized data. (B) Esti-
mated correlation error before and after applying PCA to time-series data is highlighted in
Figure 3.3B. Error bars stand for standard deviation (SD).

the dimensionality of the time-series data before and after applying the PCA were kept the

same. We then applied the microstate analysis described in the section 3.4 to find the two

microstates existed in the simulated data. We observed that the accuracy of finding the true

microstates is reduced significantly in the case that PCA is applied to the time-series data

as expected by just comparing Panel D and F in Figure 3.2. Figure 3.3A shows the results

of the microstate analysis for estimating the correlation for both the microstates before and

after applying PCA over 100 realization of random synthesized data. Estimated correlation

error before and after applying PCA to time-series data is highlighted in Figure 3.3B. In this

plot, error bars stand for standard deviation (SD). Covariance matrices of two microstates

are fixed across all realizations. Exact covariance and correlation matrices, alongside the

estimated ones, before and after applying PCA are reported in the Appendix B.1.
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PCA to the real BOLD signals, case I, case II and case III. For all the simulated cases, the
covariance matrix and power spectrum of each subject is used to generate the simulated
BOLD time-series for that particular subject.
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3.4.2 Microstate Occupancy can Reveal Non-Stationarity of the

BOLD Signal

Here, we present the results of microstate analysis on the real BOLD signal and different

synthesized BOLD fMRI time-series, both stationary and non-stationary, to point out the

importance of microstate occupancy in interpreting the salience of the obtained microstates.

For all the cases introduced in the section 3.4, we present the results before and after applying

PCA to the initial time-series data. Utilizing PCA analysis, the original time-series data was

dimensionality reduced from 105 to 30 dimensions prior to clustering [94]. We chose k = 2

for our k-means analysis.

Figure 3.4 illustrates two microstates obtained before, left panel, and after, right panel,

applying PCA for the real BOLD signals, and cases I-III (see section 3.4 for more detail on

each cases). It can be concluded from this plot that the obtained microstates from all the

cases are similar to the ones of the real BOLD signals. Also, we can see visually from this

figure that by applying PCA to each case, the obtained microstates tend to be more similar

to each other. For all the the simulated BOLD signals in this figure, the covariance matrix

and power spectrum of each subject is used to generate the simulated BOLD time-series for

that particular subject. To assess the similarity of microstate obtained from the real BOLD

signals to the ones from the simulated cases, we calculated the pairwise similarity between

each case. The similarity of microstates from the real BOLD signals to the ones from case I,

case II and case III (with 100 realizations for the simulated BOLD signals) was 0.89±0.04,

0.97±0.01, and 0.90±0.02 (mean±SD), respectively.

Connectivity maps of two microstates for the real BOLD signal without PCA are shown

in Figure 3.5. This plot demonstrates the left view of the connectivity maps. Also, the
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Figure 3.5: Connectivity maps of two microstates for the real BOLD signal without PCA.
All connections with correlation value less than 0.1 are set to zero.

connectivity patterns of the two microstates between pairs of RSNs, for 10 pairs, are shown

in Figure 3.6. In these illustrations, all connections with correlation value less than 0.1

are set to zero. We note that the FPC network and DMN are anti-correlated in the second

microstate while there is no such relation between them in the first microstate. Furthermore,

fairly strong correlation between VIS and DAN in the first microstate disappears in the

second one.

Microstate occupancy across different subjects for the real BOLD signal, and cases I-III are

demonstrated in Figure 3.7. It can be concluded from this plot that occupancy of being at

either of the microstates (microstate 1 or microstate 2) in the real BOLD signal is entropic,

and each subject exhibits jumping between these two microstates over the scan time. The

same behavior is observed in the non-stationary simulated BOLD time-series, case II, as

expected. However, for both case I and case III, the microstate occupancy before applying

PCA shows mostly one microstate for each subject, which means that during the scan time

that (simulated) subject does not reveal any jumping to another microstate.

As predicted from the previous section, applying PCA to the time-series data changes the

microstate occupancy dramatically, especially for stationary simulated signals. Statistical
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All connections with correlation value less than 0.1 are set to zero.
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Figure 3.7: Microstate occupancy across different subject for the real BOLD signal, and
cases I-III before and after applying PCA to original time-series data.

analysis revealed that the occupancy of being at the first microstate is significantly different

between the real BOLD signal and case I (K-S test, p-value = 0.031, stat = 0.6). Moreover,

the real BOLD signal is not significantly different from case II (K-S test, p-value = 0.975,

stat = 0.2). Additionally, the real BOLD signal is significantly different from case III (K-S

test, p-value = 0.007, stat = 0.7).

Sliding window correlations projected onto the first two principal components colored by

microstate identity is shown in Figure 3.8. This figure clearly shows how applying PCA can

change the outcome significantly. We further quantified the microstates similarity (correla-

tion between two microstates) and microstate entropy for cases before and after applying

PCA shown in Figure 3.9. We tested the difference between microstates similarity before and

after PCA by utilizing t-tests on z-values of correlation (applying Fisher inverse transform

to correlation values) over subjects. The statistical results show significant difference before
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Figure 3.9: Microstates similarity (correlation between two microstates) and microstate en-
tropy for the real BOLD, cases I-III before and after applying PCA to original time-series
data. Error bars stand for standard deviation (SD).

and after applying PCA for all the cases I-III with p-value � 0.001. We further analyzed

the differences in the entropy of occupancy, over subjects, before and after applying PCA

to the original time-series data. The results of such statistical analyses are as follows: (K-S
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Figure 3.10: Difference between two microstates, separately, obtained from the real BOLD
signal, case I-III. Top panel shows microstates difference before applying PCA, while bottom
panel represents microstates difference after applying PCA to original time-series data.

test for the real BOLD, p-value = 0.111, stat = 0.5), (K-S test for the case I, p-value �

0.001, stat = 1), (K-S test for the case II, p-value � 0.001, stat = 1), (K-S test for the case

III, p-value=0.001, stat = 0.8). The results of statistical tests on the occupancy, of being at

a particular microstate, is reported in the Appendix B.1.

Figure 3.10 depicts the difference between two microstates, separately, obtained before and

after applying PCA to time-series data from the real BOLD signal, case I-III. It is clear

in this plot that before applying PCA to the original time-series, the difference between

microstates for all cases is significant. Again, here we can see that applying PCA to the

original time series data causes the microstate to become very similar (reduces the difference

between two microstate). Figure 3.11 shows the similarity of each microstates obtained from

cases I-III over 100 random realizations to the ones obtained from the real BOLD signal.
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3.4.3 Existence of Microstates

Through the use of these positive controls, we can conclude that dynamic structure is present

and can be extracted from our fMRI data, as long as dimensionality reduction is avoided

on the raw time series data. While this methodological validation is itself valuable, our

primary interest is in deploying the extraction of dynamics towards a better understanding

of different clinical conditions, as now follows.

3.5 Spatiotemporal Motifs of Correlated Activity in Gen-

eral Anesthesia

The induction of general anesthesia incurs a dramatic change in phenotype compared to

wakefulness. Substantial progress has been made at identifying the molecular targets [56]
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and subcortical arousal systems [57] perturbed in this transition. Correlated electrical ac-

tivity among distributed cortical regions also changes substantively, suggesting concurrent

perturbation in the networks underlying cognition and behavior [58–64].

The disruption of RSNs is a candidate mechanism whereby anesthetic agents induce sedation

and unconsciousness. Each RSN encompasses brain regions of presumably shared functional

specialization that demonstrate marked zero time lag correlation among surrogates of neural

activity. These findings evoke a complementary line of inquiring regarding which compo-

nents of the functional neuroarchitecture underlying wakefulness remain preserved during

the anesthetized state. In prior fMRI studies, general anesthesia appear to perturb RSNs in

both animals [65] and humans [66–68].

We hypothesized that analyzing these temporal dynamics (in the sense of dynamical func-

tional connectivity) would reveal additional anesthesia-induced disruptions within and be-

tween RSN’s.

In particular, we sought to perform a clustering analysis not on the windowed covariance

matrices (as in the previous subsection), but rather on the correlation time-series. That is, to

group region pairs that exhibit similar temporal fluctuations in their correlation. However,

given the inherent stochasticity of these time series, we first apply a filtering step to smooth

the correlation trajectories (Fig. 3.1). We note that such filters have been developed for

this purpose [78], however they do not constrain the observation (i.e., the cross-correlation).

As a consequence, the resulting estimate may lie outside of the limits [−1, 1]. In the formu-

lation presented herein, we assume that each successive correlation arises from a standard

autoregressive model, transformed through a Fisher transform (a normalizing nonlinearity

that constrains the random walk between [−1, 1]).
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Following filtering, we use k-means clustering to separate the correlation trajectories into

groups of region pairs that exhibit similar temporal profiles, thus yielding a number of

spatiotemporal motifs that exhibit similar dynamics of correlated activity ((Fig. 3.1)C).

3.5.1 Dynamic Correlation Model

Here, we perform a second analysis that complements the microstate approach outlined in

the previous section. Specifically, in addition to clustering the windowed matrices, we also

sought to cluster the correlation time-series in order to learn whether these time-series possess

systematic dynamic fluctuations. That is, if two connections have the same average weight,

does those weights covary in time.

To pursue this analysis, the correlation trajectories for each region pair were calculated using

a bounded Kalman filtering approach. Let zk, k = 1, 2, ... be a vector time series of correlation

values between pairs of brain regions. We assume that zk arises from an underlying state

xk ∈ RN via

zk = F−1(xk), (3.2)

where the function F−1 is vector-valued inverse Fisher transform which can be written as

F−1



x1

...

xN


 =


tanh (x1)

...

tanh
(
xN
)
 . (3.3)

Such a function bounds the state within [−1, 1] and is the standard transformation of the

cross-correlation into a normally distributed variable. We assume that xk obeys a standard,
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linear state space model of the form

xk = Akxk−1+wk−1,

yk = F−1(Ckxk+vk).

(3.4)

Here, the state noise process wk ∈ RN is an N -dimensional random vector with multivari-

ate Gaussian distribution having zero mean and covariance matrix Qw ∈ RN×N , the noise

vector vk ∈ RN is a zero-mean multivariate Gaussian random vector with covariance matrix

Rv ∈ RN×N . Bounded nature of correlation coefficients result in a non-Gaussian noise for

the observation vector yk. The covariance Qw determines the extent to which correlation

can change in successive measurements, while Rv simply characterizes measurement noise.

In this sense, the vector yk consists of noisy observations of pairwise correlation values. We

assume that state noise and measurement noise are uncorrelated.

We seek the optimal filter for obtaining the state estimate ẑk in the sense of minimum

mean-squared error (MMSE), i.e.,

min
ẑk

E
[
‖ẑk − zk‖2

2

]
. (3.5)

Central to this problem is the calculation of the probability density function (p.d.f.) of the

state vector at any given time k, conditioned on Yk = {y0,y1, . . . ,yk}, the set of all the past

observations. The presence of the nonlinearity (3.3) complicates this calculation, but only

slightly since F is smooth and invertible. Thus, it follows immediately that we can obtain a

surrogate measurement

dk = F(yk), (3.6)
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such that dk is linear in the state xk. Note that (3.2) directly yields the p.d.f. of zk from

that of xk. Thus, the problem (3.5) reduces to the classical Kalman filter to obtain the

(Gaussian) p.d.f. of xk given Yk [92, 93], based on the measurements dk.

It follows directly from (3.4)-(3.6) that the p.d.f. p(yk|xk) can be written as

p (yk|xk) =
1

|Jk|
p (vk = F(yk)−Ckxk) , (3.7)

where p (vk = F(yk)−Ckxk) is p.d.f. of vk, a zero-mean multivariate Gaussian with covari-

ance matrix Rv. A standard Bayesian approach thus yields the posterior density p (xk| Yk),

which is Gaussian with covariance matrix (Σ) and mean (µ) as

Σ =
(
P−1
k|k−1 + Ck

TR−1
v Ck

)−1

,

µ = Σ×
(
P−1
k|k−1x̂k|k−1 + Ck

TR−1
v F(yk)

)
.

(3.8)

The Kalman update equations are thus

x̂k|k−1 = Akx̂k−1|k−1,

Pk|k−1 = AkPk−1|k−1A
T
k

+ Qw,

x̂k|k =
(
Pk|k−1

−1 + Ck
TRv

−1Ck

)−1

×
(
Pk|k−1

−1x̂k|k−1 + Ck
TRv

−1F(yk)
)
,

Pk|k =
(
Pk|k−1

−1 + Ck
TRv

−1Ck

)−1
.

(3.9)

In the subsequent results, we assume an initial multivariate Gaussian prior x0|−1 with mean

x̂0|−1 and covariance of P0|−1. We note that, for the problem (3.5), (3.9) returns the optimal

estimate. After obtaining state estimate x̂k|k, the correlation coefficients ẑk are approximated
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using fourth order Taylor expansion of (3.2) around x̂k|k as

ẑk = tanh(x̂k|k)− tanh(x̂k|k) ∗ sech2(x̂k|k) ∗ diag(Pk|k)

+
1

24
(22 tanh(x̂k|k) ∗ sech4(x̂k|k)− 2 sinh(3x̂k|k) ∗ sech5(x̂k|k)) ∗ 3diag(P)2

k|k,
(3.10)

where all the multiplication and powers of vectors are element-wise operations. Also, diag()

operator applies to a square matrix and returns a vector containing the diagonal elements

of the matrix. Performance of the developed filter is evaluated on synthesized data in a

numerical simulation in Appendix B.4.

A final obstacle in using the filter equations (3.9) is knowing the noise parameters that specify

the state-space model. Since such information is difficult to define a priori, a principled way

to update them alongside the state estimates is required. Here, we face the challenge of

estimating noise parameters alongside our online filtering. To address this issue we use an

EM algorithm [49, 50] to jointly estimate the state and model parameters from observed

correlation data. Assuming diagonal covariance matrices for model parameters, we can

decouple the update procedures for each edge, resulting in a reduction of the computational

burden typically associated with EM methods. Briefly speaking, after initializing the model

parameter (process and measurement noise), we perform the E-step, filtering and smoothing,

and then updating the parameter in the M-step. The E and M steps alternate to convergence.

In order to obviate computational issues associated with this algorithm, a maximum iteration

number is set alongside the convergence criterion.

Defining Motifs: The filtered correlation time series were concatenated across subjects

and both arousal states. Using a k-means algorithm, we defined 8 orthogonal clusters with

region pair membership defined by the strength of covarying correlation trajectories. We
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selected 8 clusters based on analysis of model fit assessed by Akaike Information Criterion

(AIC) [90], Appendix B.2. More detail on this approach is provided elsewhere [91]. A

schematic of spatiotemporal decomposition of dynamic functional connectivity is shown in

Figure 3.1. Moreover, simulations on synthesized data demonstrate efficacy and utility of

our approach for differentiating different patterns of dynamic fluctuations among spatially

distributed clusters of brain regions with identical mean average correlation, Appendix B.3.

3.6 Spatiotemporal Functional Connectivity Motifs Per-

sist During Wakefulness and Sevoflurane Anesthesia

3.6.1 Widespread Conservation of Functional Connectivity Struc-

ture under Sevoflurane Anesthesia

We first used the analysis framework to study how similar, on average, is the correlation

structure during wakefulness compared to that during sevoflurane general anesthesia. This

analysis complemented an earlier analysis [68] that suggested key alterations within the DMN

and VAN. Using both a simple correlation (Figure 3.12) for quantifying similarity across

average correlation matrices (0% and 1.2%), we observed a high degree of conservation of

functional connectivity within RSNs regardless of arousal state. Matrices showing the average

correlation for the two conditions are similar (Figure 3.12A). At a region level, the standard

deviation across volunteers is 0.13 and mainly 0.15. Figure 3.12B shows the standard error

of mean (SEM) of average correlation (0% and 1.2%). We assessed the similarity between

the two conditions by calculating the correlation of the mean correlation values. The overall

similarity of all correlations among brains regions at 0% and 1.2% sevoflurane was 0.76.
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Figure 3.12: (A) Average correlation matrices (0% and 1.2%). (B) Standard error of mean
(SEM) of average correlation matrices. (C) Similarity across average correlation matrices
(0% and 1.2%) for entire data. (D) SEM of Similarity across average correlation matrices for
entire data. (E) Similarity across average correlation matrices (0% and 1.2%) for subsampled
data. (F) SEM of Similarity across average correlation matrices for subsampled data.

Thus, the correlated activity during wakefulness accounts for roughly 58% of that during

sevoflurane general anesthesia. The greatest similarity was within RSNs, as summarized in

Figure 3.12C, with low variance across our participants (Figure 3.12D). To allow feasibility

for subsequent spatiotemporal analysis we reduced dimensionality using random subsampling

of all regions, 15 per RSN. Again, similarity in the average correlation structure at 0% and

1.2% sevoflurane was conserved (Figure 3.12E), mainly for within RSN comparisons, with

variance across subjects.
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3.6.2 Correlated Brain Activity During Sevoflurane General Anes-

thesia Can Be Decomposed into Dynamic Spatiotemporal Mo-

tifs

Next, we determined whether the temporal trajectory of correlation among pairs of brain

regions respect RSN boundaries. We separately decomposed the correlations among fMRI

BOLD signals acquired at 0% and 1.2% sevoflurane into eight clusters. Each cluster repre-

sents correlations between paired brain regions that follow a similar pattern over time. The

resulting spatiotemporal motifs were ranked by average correlation among members. Figure

3.13 shows second and third spatial (Figure 3.13A,F) and temporal (Figure 3.13D,F,I,J)

motifs of the decomposition.
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We carried out spatiotemporal decomposition of the correlated brain activity measured at

0% and 1.2% sevoflurane. These motifs were determined independently as we could not
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Figure 3.16: change in correlation (0%-1.2%) vs mean correlation at 0%.

assume that the motifs would be identical. Figure 3.14 shows all temporal motifs. All spa-

tial motifs are shown in Figure 3.15. Three types of motifs were observed. Motifs 1 and

2 contained mainly within-RSN pairings with high mean correlation strength and appear

relatively conserved following the transition from wakefulness to anesthetic-induced uncon-

sciousness. Other motifs, 3-4, were composed of region pairs with intermediate correlation

strength between interactions/connections within and between RSNs. Their membership

and correlation strength change between 0% and 1.2% sevoflurane. Clustering also gener-

ated motifs mainly in between-RSN region pairs of low or intermediate correlation (motifs

5-7) and a motif with negligible correlation (motif 8).

We quantified the similarity between motifs during wakefulness and 1.2% sevoflurane, com-

pared the number of edges that were in each motif among the two conditions, and found the

distributions to have no statistical difference (Chi-square test, dF = 49, p = 0.23). Figure

3.16 demonstrates changes in correlation (0%-1.2%) versus mean correlation at 0%).
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The spatiotemporal motifs obtained from this approach are explained in the following sec-

tions.

Spatiotemporal Motifs that Persist Between Wakefulness and General Anesthe-

sia: As the correlations of signals within a show the greatest correlation (Figure 3.12A),

one possibility is that spatiotemporal decomposition would recapitulate RSNs. Instead, our

clustering generated motifs composed of brain regions spanning different RSNs but appeared

to be relatively conserved between quiet wakefulness and general anesthesia, as for the mo-

tif 2 (Figure 3.13 A). This motif is composed mainly of within-RSN pairs, suggesting that

changes in correlation strength covary across RSNs. The mean correlation strength does

not appear to change between wakefulness and general anesthesia. The temporal profile

of average correlation over time shows marginally higher correlation and variability at 0%

compared to 1.2% (0%: mean 0.39, SD 0.11; 1.2%: mean 0.34, SD 0.1, Figure 3.13D-E). We

use the F-test to show that the variability in variance between two conditions is statistically

significant (F-test, dF1 = 2059, dF2 = 1539, p � 0.001).

In contrast, motif 3 has varying membership of intra-RSN and inter-RSN pairs (Figure

3.13F). As with motif 2, the temporal profile of correlations across members shows greater

strength and variability at 0% sevoflurane (0%: mean 0.25, SD 8.8 x 10-2; 1.2%: mean 0.21,

SD 7.7 x 10-2, F-test, dF1 = 2059, dF2 = 1539, p � 0.001; Figure 3.13I-J). As with motifs

2 and 3 (Figure 3.13D-E and 3.13I-J), the correlation strength and variance in all temporal

motifs is higher at 0% (Figure 3.14).

Figure 3.17B shows the similarity between motifs, for 8 different window sizes, by computing

the correlation of the spatial component of each motif. Motifs 1, 2, 3, and 8 had the greatest

similarity between wakefulness and general anesthesia. In other words, the region pairs
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Figure 3.17: Analysis of spatial motifs. (A) Bar plot of the cardinality percentage of each
motif for both condition (0% and 1.2%). Error bars stand for SEM. Average similarity (B)
and SEM of average similarity (C) between motifs, for 8 different window size, by computing
the correlation of spatial component of each motif. (C) Standard error of similarity between
motifs. Average similarity (D) and SEM of average similarity (E) between motifs calculated
from each individual at 0% sevoflurane. Average similarity (F) and SEM of average similarity
(G) between motifs calculated from each individual at 1.2% sevoflurane.

with the strongest average correlation changed the least during the transition to anesthetic-

induced unconsciousness.

Spatiotemporal Motifs that Vary Between Wakefulness and General Anesthesia:

Figure 3.17B demonstrates that there are motifs which are not similar during the transition

to anesthetic-induced unconsciousness. Motifs 4, 5, 6, and 7 show very low similarity from

wakefulness to anesthetic condition. An interesting result from these motifs is the observation

that spatiotemporal dynamics differ between 0% and 1.2% sevoflurane mainly in interactions

between RSNs.
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It can be seen in motif 4 that connections/interactions between DAN and VIS networks

represent similar dynamic covariation during 0% sevoflurane, which groups them in the

same motif, while such a similarity is broken in 1.2% sevoflurane. This reorganization of

interactions between RSNs can be seen between VIS and SMN networks in motif 4 with

intermediate strength of average correlation as well as DMN and SMN in motif 6 with

intermediate average correlation.

3.6.3 Robustness as a Function of Parameters and Intersubject

Variability

We also assessed the consistency of motifs as a function across individual subjects (Figure

3.17D-G). Figure 3.17A demonstrates the average cardinality of each motif over different

window length. Error bars stand for SEM of the average cardinality. Figure 3.17D repre-

sents average similarity between motifs calculated separately from each individual during

wakefulness. This figure illustrates that the motifs are robust across different subjects. In

other words, high value of similarity are located mostly on diagonal elements of the similarity

matrix; however, because of process noise and subject variability in some motifs, medium

similarity can be seen in the off diagonal elements of the similarity matrix. Standard error of

the mean of similarity in this calculation is shown in Figure 3.17E. In a similar way, Figure

3.17F demonstrates average similarity between motifs calculated separately from each in-

dividual during anesthetic-induced unconsciousness. Average similarity between motifs and

the deviation from the mean for a fixed window size, 11 seconds, over different individuals,

without concatenation, is provided in Appendix B.5.
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3.7 Discussion

3.7.1 Non-stationarity and Existence of Microstates During Rest-

ing Wakefulness

In the first part of this chapter, we evaluated dFC microstate analysis and showed that

dimensionality reduction (specifically, PCA) on the original data can change the microstate

result significantly. This can be understood in terms of the de-correlating effect of PCA,

which may promote similarity in the post-PCA windowed correlation matrices. Understand-

ing this methodological issue, we proceeded to show the presence of microstates within real

fMRI data. In particular, we highlighted how the occupancy of the extracted microstates

provides a crucial quantification that can substantiate their dynamic nature.

3.7.2 Spatiotemporal FC Motifs During Wakefulness and Sevoflu-

rane Anesthesia

We quantified the extent of conservation of functional connectivity, defined by the correlation

of intrinsic activity, within the cerebral cortex between wakefulness and sevoflurane general

anesthesia. This was addressed in multiple ways. First, we assessed the similarity between

the functional connectivity by computing correlations of the entire BOLD time-series (i.e.,

average correlation) for each regime. Second, we estimated how the correlation between

region-pairs evolves as a function of time, thus enabling us to disambiguate region-pairs with

similar average correlations into groups with different correlation dynamics. In particular, we

decomposed the correlation at each moment in time into a finite set of spatiotemporal motifs
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whose superposition recovers the average functional connectivity. Our results indicate that

the transition from 0% to 1.2% sevoflurane is associated with altered interaction between

RSNs.

Dynamic Functional Connectivity: Our clustering approach generates similar motifs

for wakefulness compared to sevoflurane general anesthesia for region pairs within RSNs

(motifs 1-3, 19% region pairs). Other motifs (4-6, 49% region pairs) with intermediate aver-

age correlation strength exhibit dissimilar membership between the baseline and anesthetic

conditions. Finally, the large bulk of interactions between regions of different RSNs differ

between motifs and have low mean correlation strength (motifs 7-8, 32% of region-pairs).

Our findings suggests, perhaps intuitively, that intermediate correlations between RSNs are

the most sensitive to sevoflurane anesthesia. Indeed, we observe that the composition of

motifs with intermediate strength of correlation is largely altered, while motifs with higher

strength of average correlation are maintained at both 0% and 1.2% sevoflurane.

Altered Correlation Dynamics in Sevoflurane-induced Sedation: The above obser-

vations suggest a mechanism for sevoflurane-induced unconsciousness involving dis-coordination

between RSNs. Specifically, whereas within-RSN interactions appear quite robust, the mo-

tifs associated with cross-RSN interactions are fundamentally altered in their composition.

Thus, those regions with co-evolving correlation in awake conditions no longer exhibit the

same coordination in unconsciousness. While not a causal mechanism for unconsciousness,

this observation is nonetheless consistent with the integrated information theory of (loss of)

consciousness [95], while also allowing for the possibility of persistent coordinated electrical

activity over wide swatches of cortex during general anesthesia [96].
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Limitations: We acknowledge limitations in our work that may inform future investi-

gations. To identify spatiotemporal patterns, we used the k-means clustering technique.

Though k-means clustering is an efficient and robust partitioning algorithm, it has several

limitations, in particular difficulty separating clusters of different sizes and densities as well

as a high susceptibility to outliers [97]. A possible source of variation in this approach relates

to the selection of the number of clusters, k. As in other investigations, we did not have

an a priori value of k and instead parametrically determined the number of groups with the

best fit (Appendix B.2). An experimental limitation of this study is the number of subjects

scanned under both conditions. Though we were able to scan each subject for an extended

period, increasing the number of subjects will improve the robustness of the findings.
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Chapter 4

Characterizing Temporal Dynamics of

Depressed Level of Consciousness with

Applications in Detecting Coma Severity

and Coma Cause

4.1 Highlights

Determining the causes and severity of a depressed level of consciousness (DLOC) including

coma is a common clinical challenge. Quantitative analysis of electroencephalogram (EEG)

has the potential to improve DLOC assessment by providing readily deployable, temporally

detailed characterization of the brain activity of such patients. While used commonly for

seizure detection, EEG-based assessment of DLOC etiology is not well-established. We

sought to determine whether salient information regarding coma severity and coma subtypes

can be extracted from the EEG via time-series analyses and classification techniques.
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First, we retrospectively analyzed EEG recordings from 62 patients with DLOC with consen-

sus focal or diffuse culprit pathology. For each recording, we performed a suite of time-series

and Fourier-based spectral analyses, then used a statistical framework to identify which anal-

yses (features) could be used to distinguish between focal and diffuse cases. We identified

several spectral and non-spectral EEG features that were robustly and significantly different

between DLOC patients with focal vs. diffuse etiologies. A support vector machine (SVM)

classifier was trained on these features to classify cases on the basis of EEG, demonstrating

accuracy up to 71% correct classification. Our findings suggest that DLOC due to focal vs.

diffuse injuries differ along several electrophysiological parameters. These early results may

form the basis of future classification strategies for DLOC and coma.

Second, we develop a new approach termed lagged microstate analysis (LMA) to characterize

temporal dynamics of brain activity in patients with DLOC. Each microstate in our defi-

nition incorporates both temporal and spatial information. Furthermore, we show how the

occupancy of being at a particular microstate, extracted from this spatiotemporal analysis,

can be utilized to improve automatic classification of different levels of coma severity.4

4.2 Introduction

A depressed level of consciousness (DLOC) is a near universal result of acute severe brain

injury, and disorders of consciousness are among the most feared long-term sequelae of such

injuries. Coma, a state of complete loss of spontaneous or stimulus-induced arousal, is the

most severe form, but all forms of DLOC have substantial impacts on patient outcomes
4This chapter is a slightly amended version of the previously submitted article which is listed as follows:

M. Kafashan, S. Ryu, D. Roberts, A. Thonthakudi, L. Eisenman, T. Kummer, and S. Ching, “Electroen-
cephalographic Features for Classification of Depressed Level of Consciousness: Focal versus Diffuse Etiolo-
gies,” under review in Brain Informatics, 2016.
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[98,99]. A DLOC can result from diffuse brain injuries, or from focal insults that secondarily

induce widespread alterations in cerebral function [100]. Formulating an accurate differential

is crucial to the clinical management of patients with DLOC, as diagnoses drive the approach

to treatment and prognosis [99–101]. Diagnostic formulation often begins with distinguishing

between focal and diffuse etiologies.

In some cases a careful history, paired with a basic laboratory workup and screening neu-

roimaging tests are all that are required to determine the cause of coma or a related DLOC

in a given patient. Often, however, these standard assessments prove inadequate to distin-

guish a focal from a diffuse etiology acutely. There are several common scenarios in which

such ambiguity exists: A patient may have a DLOC that exceeds expectations from modest

structural brain injury evident on imaging; or a patient’s DLOC may result from a focal

process that, due to its nature, acuity, location, or size, is not apparent on screening imag-

ing studies. Seizures may depress consciousness and can accompany either focal or diffuse

pathology. Focal and diffuse injury can also coexist, both impacting wakefulness.

More specialized testing, such as expanded laboratory assessments, specialized neuroimaging

studies, and invasive procedures, are available and may help to establish a diagnosis in such

cases. These tests, however, carry risks and are therefore rarely utilized in the absence

of suggestive results from initial assessments. Similarly, highly specialized interventions

including specific medications (e.g. specific therapy for DLOC resulting from toxin ingestion)

and even surgical procedures (e.g. cerebral ventricular decompression for DLOC due to

elevated intracranial pressure) are effective in some cases, but are rarely used empirically.

A non-invasive, bedside screening test that can help classify DLOC acutely, therefore, could

be of significant utility in guiding both advanced diagnostic strategies and ultimately man-

agement approaches [102]. A strong suggestion of a focal etiology in the absence of initial
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neuroimaging findings might prompt more advanced neuroimaging studies. Similarly, a

strong suggestion of a diffuse etiology, even in the presence of distracting structural brain

lesions, might prompt a more extensive toxic-metabolic work-up, or a more aggressive cor-

rection of known toxic-metabolic abnormalities.

All DLOC, and in particular coma, are characterized by pathological alterations in brain

electrical activity [103]. These electrical alterations may provide valuable etiological insight.

Consistent with this, in addition to its well-established role in seizure detection, the EEG has

been shown to have utility in the monitoring of other large-scale alterations of neurological

function. Examples include EEG monitoring of delirium [104], burst suppression [105], and

cerebral ischemia [106]. Thus, EEG can non-invasively provide highly temporally-resolved

data at the bedside on both structural brain injury and on non-structural injury that may

not be apparent on screening neuroimaging studies.

Visual inspection of raw EEG data requires advanced training and cannot easily capture

the full complexity of electrical dynamics that are potentially encoded in the EEG signal.

In contrast, quantitative EEG methods use computer-assisted analysis of EEG patterns to

derive quantitative metrics that are not immediately apparent upon review of raw EEG data.

The use of quantitative EEG analysis in the clinical setting has seen significant recent growth,

particularly in the domains of sleep [107], epilepsy [108], and general anesthesia [109]. In

these scenarios, progress has been made towards translational applications including seizure

detection [110], classification of sleep stages [111], and quantification of depth of anesthesia

[112].

In the context of brain injury and DLOC, the deployment of EEG-based classification tech-

niques is more limited, although its potential as a diagnostic and scientific research tool is

repeatedly acknowledged. A common application of quantitative EEG to DLOC involves
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classical spectral analysis, which decomposes a given signal into constituent frequencies,

typically aggregated into the standard EEG ‘bands’ (i.e., delta, alpha, etc.) [113]. In this

context, severe brain injuries are classically associated with concentration of EEG power into

low frequencies (<1Hz). However, while approaches based on spectral analysis are common-

place in EEG studies, this form of analysis only captures sinusoidal harmonic structure in

the underlying signal. Other forms of spatiotemporal time series analysis are available that

may complement and augment spectral methods, and have been applied to EEG data from

limited cohorts of patients with DLOC. These analyses, which include measures of signal

entropy and complexity, characterize aspects of the EEG time series that are not directly

captured by spectral analyses.

Significant effort has been directed at the EEG-based analysis of chronic DLOC in reha-

bilitative settings, such as minimally conscious and persistent vegetative states [114, 115],

wherein a large number of EEG analyses have screened for their potential to disambiguate

these subtypes. While these studies have yielded insights into the mechanisms of these con-

ditions, the analyses rely on high-density research grade EEG/MEG instrumentation [114]

that is generally unavailable in the acute setting. It furthermore remains unclear whether

insights gleaned from these studies will prove informative in the acute setting, though a

recent study did identify several acute electrophysiological correlates of outcome in coma

[116], demonstrating the prognostic potential of EEG-based approaches.
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4.3 Methods

4.3.1 Data Acquisition and Pre-Processing

We retrospectively collected EEG data, EEG reports, and complete medical records from

62 patients who underwent EEG for routine monitoring purposes related to a diagnosis

of coma or less-severe DLOC at the time of EEG, at the Neurological and Neurosurgical

Intensive Care Unit at Barnes-Jewish Hospital andWashington University School of Medicine

(St. Louis, MO, USA). There were 62 patients considered and 70 total EEG studies (6

patients underwent EEG monitoring twice and one patient underwent EEG monitoring three

times). In all cases, EEG was performed for the detection of non-convulsive seizures in

patients with otherwise inadequately explained DLOC. Only cases in which seizures were not

detected at any point in the hospitalization were analyzed. For each of the 62 patients, two

neurointensivists (TTK and DER) examined all diagnostic data available including imaging

to assign a focal or diffuse classification. Importantly, these assessments benefited from

diagnostic data not available to the team at the time of the initial EEG. Thus in most cases

we were able to determine DLOC etiology to a reasonable degree of clinical certainty despite

the diagnostic ambiguity that resulted in EEG testing early on. Imaging data was given

the greatest weight in etiological determinations. Evidence of herniation or direct injury

to brainstem reticular activating structures resulted in assignment to a focal etiology. Less

severe structural lesions were interpreted in the context of historical data and coexisting

toxic-metabolic influences to determine the etiology of the DLOC.

Cases were included in the analysis of detecting coma subtypes only when the ultimate

etiology (focal vs. diffuse) was apparent from clinical data. In cases of disagreement, the

case was re-reviewed and discussed until a consensus was reached (most such cases classified
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as indeterminate). In total 43 subjects (22 focal and 21 diffuse) were used in the analysis of

detecting coma cause (24 focal and 23 diffuse, with total 47 EEG studies analyzed). Figure

4.1A summarizes the 43 subjects that were analyzed for classification of coma subtypes.

To examine the utility of traditional clinical EEG metrics, the clinical EEG reports were

separately scrutinized to identify reported features that could assist in the classification of

cases as focal or diffuse in etiology. Specifically, any focal or lateralized abnormalities in the

report were flagged as supportive of a focal as opposed to diffuse etiology.

Glasgow coma scale (GCS), which is a neurological scale that aims to give a reliable and

objective way of recording the conscious state of a person, is reported for all of the cases.

Hence, all the cases were included in the analysis for detecting the level of coma severity.

We consider GCS = 7 to be the threshold for binarization of coma severity to low and high

resulting in 42 cases with high GCS and 28 cases with low GCS. Figure 4.1B summarizes

the 62 subjects that were analyzed for classification of different levels of coma. GCS level of

subjects with more than one EEG study is also shown in this plot.

4.3.2 EEG Signal Processing and Statistical Analysis

Dataset: Recordings are collected at a sampling frequency of either 250 or 500 Hz using

the standard 10-20 system of electrode placement. The 500Hz data were downsampled to

250Hz prior to analysis. In our analyses, we used a bipolar montage with 18 bipolar channels

(FP1-F7, F7-T7, T7-P7, P7-O1, Fp1-F3, F3-C3, C3-P3, P3-O1, Fz-Cz, Cz-Pz, Fp2-F4, F4-

C4, C4-P4, P4-O2, Fp2-F8, F8-T8, T8-P8, and P8-O2). Records were visually analyzed for

quality control, and sections of the record containing large-amplitude artifacts were excluded

from analysis. Each bipolar channel was normalized to zero-mean, unit variance. Then,
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Figure 4.1: (A) Summary of Study Population for classification of different coma etiologies.
(B) Summary of Study Population for spatiotemporal analysis of different levels of coma.

these channels were filtered using a 10th order Chebyshev Type I lowpass filter with cutoff

frequency of 50Hz before any further analysis.

Definition of Trials: We divided each patient’s EEG recording into separate trials for

the purposes of analysis. Specifically, trials were defined on the basis of non-overlapping
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sliding windows of the bipolar montaged EEG data (Figure 4.2). Dividing the EEG data

into subintervals results in different predictions for each trial, thus yielding an empirical

probability of focal/diffuse for each subject. We allocated the trials of a subject to either

the training or testing set, ensuring that training and testing sets are independent.

Feature Extraction: We obtained 25 features listed in Table 4.1 for discrimination of coma

severity and cause. These different features related to the dynamical (including spectral)

properties of time-series data. For each subject, we extracted one 25-dimensional feature

vector for each trial by averaging feature vectors over different epochs of that trial (Figure

2). Secondary statistics (e.g., higher order moments) of the features were not considered

in this analysis. All signal processing and feature extractions were performed in MATLAB

(Natick, MA), and feature selection and evaluation of classifiers were computed in R (version

3.1.2).

Table 4.1: List of 25 features extracted from EEG data.
Feature ID Description

1–2 Maximum, minimum eigenvalues of the estimated A matrix from MVAR
fitting with p = 1 (4.1)

3 Number of absolute eigenvalues of matrix A larger than Threshold=0.95
4–6 Statistical properties: variance, skewness, and kurtosis
7–11 Power in the delta, theta, alpha, beta, and gamma bands
12 Ratio of power in beta and gamma bands to total power
13 Ratio of power in delta and theta bands to total power
14 Hurst exponent [117]
15 Hjorth parameters [117]

16–19 Eequidistant mutual information, quiprobable mutual information, and
the first minimums of both types of mutual information [117]

20 Bicorrelation
21 Median frequency [117]

22–24 Spearman autocorrelation, Pearson autocorrelation, and partial
autocorrelation

25 Composite permutation entropy index (CPEI) [118]
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Figure 4.2: Schematic illustrating sliding window to define epoch and trial in EGG data with
bipolar montage. The EEG channel number on the vertical axes are ordered as: FP1–F7,
F7–T7, T7–P7, P7–O1, Fp1–F3, F3–C3, C3–P3, P3–O1, Fz–Cz, Cz–Pz, Fp2–F4, F4–C4, C4–P4,
P4–O2, Fp2–F8, F8–T8, T8–P8, P8–O2.

Training and Testing Separation: We trained a binary classifier from our features using

independent training and testing sets. Two testing paradigms were considered. In the

first paradigm, we partitioned the data into two groups: two-third of total subjects were

selected randomly and defined as the training set and one-third of subjects were defined as

the testing set. This process was repeated within a cross-validation paradigm, in order to

evaluate average classification performance. In the second paradigm, we withheld one-third

of the data as a dedicated test set, and trained strictly on the remaining two-third of the

patients (i.e., with no re-sampling and averaging).
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SVM Classifier with Embedded Selections of Best Predictors: We specified a sup-

port vector machine (SVM) to function as a binary classifier to discern a patient’s coma

severity (i.e. low or high GCS) and DLOC etiology (i.e. focal or diffuse). The SVM ap-

proach uses a portion of data as support vectors to create a decision boundary (i.e, threshold)

[119]. For the classification performance reported in this study, subjects in the testing set

are different from subjects in training test.

To train the classifier, we applied principal component analysis to the primary feature vectors

over trials, and only the first 20 important principal components (PCs) of feature vectors were

kept. The first 20 principal component explains more than 98% of the variance in the original

feature vectors. We used a data-driven approach to rank the features/PCs by importance by

evaluating a family of vector quantization (LVQ) models. This procedure was completed via

the train.R routine in the Caret toolbox [120], implemented in the R programming language.

A 10-fold cross validation is used within this feature selection step which is resampled 50

times. We then selected a set of predictive PCs based on their importance, to train an SVM

with a linear kernel according to different etiologies agreed upon by the neurologist. The use

of a linear kernel aids in reducing overfitting.

Multivariate Autoregressive Model of EEG Data: Features 1-3 in Table 4.1 use a mul-

tivariate autoregressive model, wherein the (multivariate) EEG signal is modeled as a linear

sum of previous samples. For a multivariate N-channel process x(t) = [x1(t),x2(t), · · · ,xN(t)]T ,

a MVAR model of order p takes the following form:

x(t) =

p∑
k=1

Akx(t− k) + w(t), (4.1)
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where w(t) ∈ RN are additive noise vectors (innovation process) and Ak ∈ RN×N are the

MVAR model coefficients. Here, we used a standard Least-Squares approach to implement

the model fit [121].

Statistical Evaluation: We used a two-sample t-test to compare feature distributions. In

this pilot study, our goal was to generate hypotheses regarding which of the screened features

were informative with respect to the considered coma etiologies. Since the PCs of the primary

features are uncorrelated, we compared etiology distributions of each PC independently to

a nominal significance level of p = 0.05.

4.3.3 Lagged Microstate Analysis (LMA) of Depressed Level of

Consciousness

We utilized the lagged cross-correlation of EEG data to characterize the temporal dynamics

of brain connectivity in coma. We sought to find out how coupling between different regions

changes over time, and define microstates which can explain these fluctuations. To identify

microstates in coma, we concatenated all data together, and then applied k-means clustering

to extract salient microstates which are consistent over all subjects. To capture the time

delays that may exist between EEG time series, we incorporated the lagged cross-correlation,

as well as zero-lag Pearson correlation, to amount for connectivity structure over different

time windows. Correlation values between all region-pairs over 4 different lags were included,

resulting in 4× (18× 17)/2− 18 = 666 features per sliding window. The diagonal elements

of zero-lag correlation were not included in the feature vector. To reduce the computational

burden, we applied a dimensionality reduction to reduce the number of features to 30 before

clustering analysis. Note that the dimensionality reduction is performed on the correlation

89



trajectories and not the raw EEG data. The clustering analysis was performed with random

initialization of centroids and was repeated 100 times to increase chances of escaping local

minimum. Finally microstates are defined by averaging the lagged cross-correlation matrices

corresponding to clusters obtained from microstate analysis over sliding windows.

4.4 EEG Features for Classification of Depressed Level

of Consciousness: Focal versus Diffuse Etiologies

4.4.1 Several Time-Series Metrics, including Non-Spectral Features,

Discriminate Focal from Diffuse DLOC

We first screened and ranked the importance of the primary features, i.e., without applying

PCA (Figure 4.3A). As illustrated in Figure 4.3B, these primary features contain substantial

redundancy, particularly in the entropic features (i.e., features 15-20 in Table 4.1). Thus, we

transformed the primary features into their uncorrelated principal components, then ranked

these PCs (Figure 4.3C-D).

Figure 4.4 shows the distributions, portrayed as notched box plots, of the 6 most informative

PCs as identified by our iterative selection method. Recall that a PC is informative if its

distribution over subjects is different between focal and diffuse DLOC, so as to enable SVM

classification. The means for each feature distribution in Figure 4.4 are significantly different

(p ≤ 0.05 in all cases, t-test, uncorrected, see also methods) between the focal and diffuse

cases. It is important to note that the difference in these PC distributions between diffuse

and focal DLOC is not contingent on the feature selection paradigm. In other words, these
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Figure 4.3: Feature ranking by importance (A) before and (C) after applying PCA to original
feature vector. Correlation among feature (B) before and (D) after applying PCA.

differences are properties of the data, absent any automated selection algorithm. Here, we

used epoch length of 5 seconds with 40 epochs in a trial. We repeated our analysis using

different feature epoch lengths (1s, 10s, 20s, data not shown), without any qualitative change

to the overall results.
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Figure 4.4: Notched box plots for the distributions of 6 most informative PCA predictors.

Figure 4.5A-C illustrates the PC loading, i.e., the linear contribution of the primary features

on the six most informative PCs portrayed in a pairwise fashion. Figure 4.5D summarizes

the loading across the first 20 PCs. Of note is that a combination of spectral and non-

spectral time series analysis provides discriminative (focal/diffuse) power in this dataset.

For instance, PC1 (most informative) is comprised largely from entropic features (15-24 in

Table 4.1), whereas PC4 (second most informative) has a large contribution from spectral

features (10-12 in Table 4.1). This observation indicates that these features are providing

complementary information regarding DLOC etiology.
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Table 4.2: Averaged Classification Performance before Applying PCA on Initial Features.
Classification results are for different epoch length (1s, 5s, and 20s) and different number
of epochs in a trial (10, 20, 40, 100, and all epochs). All the results are averaged classifier
performance over 500 random training and testing sets. In each realization, the subjects in
training and testing sets are different.

epoch
length

Number of epochs
in a trial

Accuracy
(Hard)

Accuracy
(Soft) Specificity Sensitivity

10 0.56 0.57 0.42 0.7
20 0.57 0.58 0.45 0.7

1s 40 0.57 0.58 0.5 0.68
100 0.58 0.59 0.48 0.69
All 0.57 0.57 0.47 0.69
10 0.56 0.59 0.41 0.73
20 0.56 0.59 0.42 0.72

5s 40 0.57 0.57 0.4 0.71
100 0.58 0.56 0.37 0.71
All 0.57 0.6 0.41 0.78
10 0.54 0.55 0.3 0.74
20 0.58 0.55 0.3 0.74

20s 40 0.55 0.57 0.4 0.73
All 0.58 0.58 0.39 0.77

4.4.2 Focal and Diffuse DLOC are Classified with Good Accuracy

using a Limited Number of PCA Features

We designed a classifier for focal versus diffuse DLOC on the basis of first the primary features

and then the PCs, as outlined in the Methods. Table 4.2 shows the classifier performance

using the primary features only (i.e., without applying PCA) for different epoch lengths and

number of epochs in a trial. In this analysis, the classifier is trained based on the 10 most

informative features on two third of subjects and then tested on the remaining patients (14

subjects). We performed training and testing for 500 repetitions (each repetition, subjects in

the training set are totally different from subjects in testing set). The values reported in this

table are averaged over repetitions. In this Table, hard accuracy refers to deciding etiology
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Table 4.3: Averaged Classification Performance after Applying PCA on Initial Features.
Classification results are for different epoch length (1s, 5s, and 20s) and different number
of epochs in a trial (10, 20, 40, 100, and all epochs). All the results are averaged classifier
performance over 500 random training and testing sets. In each realization, the subjects in
training and testing sets are different.

epoch
length

Number of epochs
in a trial

Accuracy
(Hard)

Accuracy
(Soft) Specificity Sensitivity

10 0.65 0.65 0.58 0.73
20 0.64 0.64 0.56 0.73

1s 40 0.61 0.62 0.6 0.68
100 0.65 0.66 0.62 0.71
All 0.6 0.6 0.52 0.69
10 0.62 0.62 0.53 0.72
20 0.63 0.63 0.54 0.75

5s 40 0.67 0.66 0.6 0.74
100 0.69 0.64 0.54 0.76
All 0.64 0.64 0.55 0.73
10 0.61 0.62 0.51 0.74
20 0.62 0.58 0.6 0.52

20s 40 0.65 0.66 0.6 0.72
All 0.64 0.64 0.62 0.68

on the basis of the majority of trials, while soft accuracy characterized performance over

trials. The classifier exhibits higher sensitivity (true positives; here ‘positive’ is defined as a

focal etiology) compare to specificity (true negatives, i.e., diffuse trials that were classified

as diffuse). In this analysis, false positives (misclassification of diffuse as focal etiology)

constitute the predominant source of inaccuracy.

Classification performance after applying PCA to initial feature is reported in Table 4.3.

Only the first six PCs are used for classification. As shown in the Table, working the PCA

space results in substantial improvement to the overall classifier design. Specifically, it can

be seen in this table that the false positive rate is improved on average by 0.16, and average

performance approaches 70% for many parameterizations.
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Table 4.4: Classification Performance after Applying PCA on Initial Features with first 14
Subjects as Testing set. Classification results are for different epoch length (1s, 5s, and 20s)
and different number of epochs in a trial (10, 20, 40, 100, and all epochs).

epoch
length

Number of epochs
in a trial

Accuracy
(Hard)

Accuracy
(Soft) Specificity Sensitivity

10 0.64 0.65 0.61 0.68
20 0.64 0.67 0.65 0.69

1s 40 0.71 0.69 0.63 0.73
100 0.71 0.69 0.56 0.79
All 0.64 0.64 0.5 0.75
10 0.64 0.68 0.59 0.75
20 0.64 0.64 0.57 0.71

5s 40 0.71 0.72 0.69 0.79
100 0.71 0.68 0.55 0.77
All 0.64 0.64 0.55 0.73
10 0.57 0.59 0.51 0.64
20 0.64 0.61 0.51 0.69

20s 40 0.71 0.65 0.55 0.73
All 0.64 0.64 0.67 0.62

Finally, we performed a final test of the classifier by withholding 14 subjects (1/3 of data)

as a dedicated testing set, and trained the classifier on only the remaining cases. That

is, we trained a classifier on 2/3 of the data, then evaluated it on a separate, withheld

patient cohort. Table 4.4 reports the classification performance in this scenario, where again

performance approaches 71% with high sensitivity, but only moderate specificity.

4.4.3 Clinical EEG Interpretation

Lastly, we examined the EEG reports of our study population to determine whether a similar

classification performance could be achieved from a more straightforward clinical decision

process. Specifically, we cataloged observations of focal or lateralized abnormalities in the

EEG reports (slowing or isolated epileptiform discharges); an indication of a spatially local
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Table 4.5: Clinical EEG Interpretation Offers Poor Discrimination of Focal Etiology. Of
twenty one recordings from patients with consensus focal disease, only seven were interpreted
as focal/lateralized in the clinical EEG report.

Patient ID Focal/Lateralized Slowing
5 Y
6 N
7 N
8 N
9 N
12 N
17 Y
19 N
20 N
21 N
22 N
24 N
27 N
28 N
29 N
30 N
31 N
32 N
35 N
36 N
43 N

electrophysiological phenomenon correlating with focal injury. As shown in Table 4.5, of

the 21 patients with focal injury in our study, a report of focal/lateralized slowing was only

present in seven instances (i.e., corresponding to a sensitivity of 7/21 = 0.33), demonstrating

that the clinical EEG report was a poor indicator of focal etiology. Generalized slowing was

observed in all study patients.
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4.5 Lagged Microstate Analysis of Depressed Level of

Consciousness: Signature of Coma Severity

Figure 4.6 shows the microstates (over four lags) and Figure 4.7 illustrates the connectivity

pattern projected onto a scalp map. In this illustration, all connections with correlation

value less than a threshold of 0.05 are set to zero (see Appendix C.2, Figure C.2 for the

head map plot with 0.1 as the threshold). The occupancy of each microstate for low and

high GCS is shown in Figure 4.8. The number of microstates is determined on the basis of

the ratio of within and between cluster distance (see Appendix C.1). We consider a window

length of 20 seconds.

The microstates are sorted based on their average correlation strength. It can be seen from

this plot that State 5 is more prevalent in low GCS while State 1 is more specific to high

GCS. State 5 shows high anterior-posterior anti-correlations over lags. In contrast, State 1

represents stronger scalp-wide correlation is relatively persistent over 240 milliseconds (all

lags). This entire analysis was repeated for different numbers of microstates in the Appendix

C.2.

To further interpret these states, we queried there specificity to particular neuroactive med-

ications. Figure 4.9 illiterates the microstate occupancy with and without using neuroactive

medication for patients with DLOC. Here, the considered medications are propofol, mida-

zolam, and fentanyl, which are commonly used in this patient population. From the figure,

we observe no specificity of the microstates of this class of drugs.

We next obtained the average lagged cross-correlation for a separate cohort of 108 healthy

subjects, obtained from an open, online database [122] of resting state EEG. We selected the
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Figure 4.6: Spatiotemporal microstates extracted from subjects with different coma severity
and coma subtypes based on lagged cross-correlation of EEG data.
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Figure 4.7: Connectivity Map of all microstates with k=5. First, second, third and fourth
columns are associated to zero, first, second, and third lag connectivity. All connections with
correlation value less than 0.05 are set to zero.
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and fentanyl). Error bar shows the standard error of the mean.

same bipolar channels as used in our clinical population. Figure 4.10 portrays the average

lagged cross-correlation, where connections with correlation value less than 0.05 are set to
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Figure 4.10: Average lagged cross-correlation for healthy subjects with four different lags. All
connections with correlation value less than 0.05 are set to zero in the head map illustration.

zero in the head map illustration. This average lagged cross-correlation is mostly similar to

State 4 from our patient population.

4.5.1 Relationship of Microstates to Channel-wise Power Spectra

The power spectral density of bipolar channels averaged over all patients with DLOC is

represented in Figure 4.11. The dominant feature that unifies these power spectra is a low

frequency peak in a 1-3 Hz range, which is a classical spectral characteristic of the EEG

in comatose patients. Such rhythmicity may correspond to State 4, where recovery of the

correlation structure is observed at −240ms (i.e., the third lag), consistent with a 2Hz

oscillation.
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Figure 4.11: The power spectral density of 18 bipolar channels averaged over all patients
with DLOC.

The power spectra for the healthy cohort is portrayed in Figure 4.12. We highlight differences

in the low-frequency content of the patients and healthy subjects in Figure 4.13, specifically

the lack of a 1-3Hz peak in the latter. This observation is interesting insofar as it suggests: (i)

the average spatial correlation of the healthy brain (at rest) can also be found as a microstate

(i.e., here, State 4) of the comatose brain; but (ii) that the temporal dynamics of this state

are fundamentally different from those in the healthy condition.
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Figure 4.12: The power spectral density of 18 bipolar channels averaged over all healthy
individuals in the study.
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Figure 4.13: The power spectral density of 2 bipolar channels zoomed in the range of 0-8
Hz for (A) patients with coma and (B) healthy subjects. PSDs are averaged over all the
subjects in the study for each case separately.
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Figure 4.14: Feature ranking by importance (A) before and (B) after applying PCA to
original feature vector. Occupancy features obtained from microstate analysis are shown
with red filled circle in the left figure.

4.5.2 Classification of Coma Severity by Exploiting Microstate Oc-

cupancy

In this section, we show how the result of microstate analysis can enhance an automatic

classification of different levels of coma severity. Here, the occupancy of being at a particular

microstate is considered as a new feature for classification, in addition to those considered in

our etiological (focal vs. diffuse) classifier. Specifically, to the features in Table 4.1 we add

the occupancy of being at each of 5 different microstates (Feature IDs 26-30).

Figure 4.14A illustrates the ranking of all features for a severity classifier. It can be seen

from this figure that the new defined features based on microstate analysis, shown with red

filled circles, are among the most important features.

To obtain the actual classifier, we apply PCA to entire feature vector as was done previously

for the etiological classifier. The rankings of principal component based on importance is

shown in Figure 4.14B.
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Figure 4.15: (A) Classification performance using 25 features extracted from 70 cases with
two levels of coma severity, low and high, identified based on GCS score. (B) Classification
performance using both 25 time series features in combination of five occupancy features
from microstate analysis.

We compared the classification accuracy with and without utilizing the occupancy features in

two ways. First, we performed a test of the classifier by withholding 21 cases as a dedicated

testing set, and trained the classifier on only the remaining cases. The classifier retained

only the first six PCs obtained from the with- and without-occupancy feature sets. Figure

4.15 shows the classification performance of the two scenarios.

Second, we performed training and testing for 500 repetitions (in each repetition, subjects

in the training set are totally different from subjects in testing set). That is, we trained a

classifier on 2/3 of the subjects, then evaluated it on a separate, withheld patient cohort.

By doing so, we observed that the classifier with occupancy features outperforms the classi-

fiers without occupancy features by an average of 5.96%± 2.28 (mean ± SD). The average

106



classification performance without occupancy features were as follows: accuracy=67.04, sen-

sitivity=75.38, and specificity=57.07. After adding occupancy features, the classification

performance enhanced as: accuracy=73.0, sensitivity=81.05, and specificity=62.63.

4.6 Discussion

4.6.1 Disambiguating Focal and Diffuse DLOC Etiologies using EEG

Time Series Analysis

Our results demonstrate proof-of-concept for EEG-based segregation of focal versus diffuse

DLOC etiology based on time-series analysis and support-vector machine classification. We

evaluated the performance of this system by segmenting our data into separate training

and testing sets and then using cross-validation to minimize model overfitting. The results

demonstrate performance up to 71% accuracy when compared to classification based on

clinical and imaging parameters. In many cases the ultimate cause of the DLOC only

becomes clear in retrospect, and is ambiguous at the time the EEG is ordered. Thus even in

cases where a clinical diagnosis can eventually be made, an EEG-based diagnostic method

could assist with the timely delivery of care.

The design of our classifier reveals that potentially clinically-useful information regarding

the level of DLOC may be embedded in both spectral and non-spectral features of the

EEG signals of patients with DLOC. Our results further suggest that spectral analysis alone

(e.g., band-limited power) may not capture all aspects of the underlying neuronal dynamics

of coma etiology. In considering the performance of our derived classifier, it is notable
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that our primary features (Table 4.1) do not include any overt spatial analysis (e.g., cross-

correlation), focusing on analysis at the individual channel level only. Thus, an interesting

inference resulting from our approach is that channel-wise temporal dynamics may embed

differences in coma etiology. So, inferences on diffuse/focal DLOC can potentially be made

without explicitly describing between-channel spatial relationships.

In contrast, other methods for detecting focal versus diffuse pathology from the EEG in-

clude the brain symmetry index (BSI), which examines inter-hemispheric symmetries in the

power-spectral density [123]. This method has been used in the detection of focal seizures

and hemispheric strokes [124]. EEG-based synchronization indices, also derived from the

power-spectrum, have also been suggested as a means of detecting diffuse electrophysiological

phenomena [125]. To date, none of these methods has been used in the context of DLOC or

coma, and none of them incorporate the time-series analysis and automatic feature selection

framework deployed herein. Our goal in this study was to screen several minimally-processed

dynamical features using a data-driven framework. Thus we did not evaluate indices such

as the BSI, though band-limited power was included in our analysis framework. However,

it is possible that these processed indices may provide discriminability regarding focal and

diffuse DLOC. Moreover, the incorporation of active stimuli to assess EEG reactivity may

provide additional information about DLOC [126]. A comparative study of existing indices

applied to DLOC with potential inclusion of active stimulation is an important direction for

future work.

Limitations: The main limitation in the development of our algorithm is the lack of a true

gold standard upon which to train our classifier. Our cases were independently diagnosed by

two neurointensivists on the basis of all available retrospective data, including neuroimaging,

and only cases in which both felt a clear diagnosis was evident were included.

109



In this retrospective study we relied on the GCS for identification of coma severity for patients

with DLOC. The GCS is an imperfect measure of DLOC: its measurement is incomplete in

intubated patients and many features that are likely to be clinically significant are not

assessed. Several other metrics such as the Full Outline of UnResponsiveness score [127] and

the JFK Coma Recover Scale, Revised [128] are likely to provide superior differentiation of

patients with DLOC. Unfortunately our data did not permit such assessments retrospectively,

though a prospective trial is underway including assessment of these metrics in addition to

GCS.

Another drawback of our framework is that direct mechanistic interpretation from descriptive

time-series analysis is lacking. The support vector machine approach aggregates all of the

data/features (because the best predictors are combination of the primary features), then

generates a set of predictors that may, or may not, be overtly linked to an underlying circuit

mechanism.

Lastly, we have not taken specific steps to manage confounds introduced by the adminis-

tration of medications such as antiepileptic drugs, including benzodiazepines, on the brain’s

electrical activity. It is well-established that these medications, among other factors such as

sleep [129], can lead to confounding effects on the EEG. In the absence of a much larger trial

matched for specific agents or classes of agents, it will be challenging to fully understand the

impact of such confounds. Indeed, our study size of 43 patients with known etiology may

not be sufficient to sample the range of EEG variation associated with these drugs and we

were not able to control for a bias in the types of drugs administered to focal versus dif-

fuse DLOC. We hypothesize that the confounding effects of these drugs constitute a major

source of classification error in our dataset. In a future prospective trial it may be feasible
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to more specifically test the effect of classes of medications on the discriminatory power of

our classification scheme in individual subjects.

Design Considerations: The feature selection framework reported above requires no man-

ual specification of thresholds or other detection rules. The method can be applied to any

number of EEG channels. However, it should be noted that a pervasive challenge with any

clinical EEG recording is overall signal quality and presence of artifacts (e.g., due to patient

motion), which is expected to be compounded with added channels.

It is important to note that with our feature selection scheme, any change to the design

parameters may lead to a different set of PCA features being chosen. Nevertheless, in our

study, we found that across a range of design parameterizations (e.g., changing the trial

length from 5 minutes to 10 minutes) the set of best predictors was largely comprised of the

same descriptive time-series statistics. Thus, we conclude that these particular PCA features

are robustly informative with respect to our two DLOC variants.

4.6.2 Spatiotemporal Characterization of Different Levels of Coma

Severity

We presented a new spatiotemporal feature termed lagged microstate analysis. Our analysis

shows that these microstates ranked among the most important predictors of level of coma

severity. Specifically, we quantified the extent of the appearance of each microstate for dif-

ferent levels of coma severity, from which we can also draw some basic conclusions regarding

differences between low and high GCS scores in patients with DLOC. Our findings suggest

that patients with low GCS scores (deeper levels of unconsciousness) tend to be a state of
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frontal-posterior anti-correlation, whereas the patients with high GCS tend to exhibit more

persistent correlation across the scalp.

As mentioned, above, the microstates can in some cases be related to the harmonic structure

(e.g., 1-3Hz rhythmicity) of the EEG. However, we can at this point only conjecture as to the

physiological basis of these observed dynamics. In particular, our microstates, while spatially

cogent, depict an enigmatic mix of correlations and anti-correlations. The latter remain the

topic of substantial debate in terms of their cognitive salience. For example, previous studies

have demonstrated anti-correlation between ventromedial prefrontal cortex (vmPFC) and

networks activated in studies of visual and spatial attention such as superior/inferior parietal

and extrastriate cortices [133–135]. vmPFC is often associated with mentalizing, evaluative,

and self-referential processing. Anti-correlation between the default mode network and task

positive network has been reported in several studies, and it has been suggested that it

represent a “division of labor” between networks with seemingly opposite functions [136].

It has already been suggested that certain neuropathologies are associated with long term

anti-correlation, whereas the normal brain is more stochastic [138] in terms of its activity.

Hence, persistence of anti-correlation over several lags might be an evidence of such long

term anti-correlation in patients with DLOC.
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Part II

Dynamics at Micro-scale
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Chapter 5

Decoding of Time-Varying Sparse

Signals in Recurrent Linear Networks

5.1 Highlights

In this chapter, we study how the dynamics of recurrent networks, formulated as general

dynamical systems, mediate the recovery of sparse, time-varying signals. Our formulation

resembles the well-described problem of compressed sensing, but in a dynamic setting. We

specifically consider the problem of recovering a high-dimensional network input, over time,

from observation of only a subset of the network states (i.e., the network output). Our goal is

to ascertain how the network dynamics may enable recovery, even if classical methods fail at

each time instant. We are particularly interested in understanding performance in scenarios

where both the input and output are corrupted by disturbance and noise, respectively. Our

main results consist of the development of analytical conditions, including a generalized
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observability criterion, that ensure exact and stable input recovery in a dynamic, recurrent

network setting.5

5.2 Introduction

5.2.1 Background

The notion of efficient coding dictates that information processing in neuronal networks

is optimal according to a cost function that penalizes excessive neuronal activation [139–

141]. Given the temporally punctate nature of neuronal spikes, sparsity has been frequently

considered within the schema of efficient coding [6, 142]. Notable within the sparse coding

framework [143–145] are analyses that leverage the theory of compressed sensing (CS) [146–

148] for underdetermined linear systems (e.g., [7, 8, 149, 150]). CS outlines conditions under

which a linear system admits exact and stable recovery (i.e., decoding) of a sparse input

[151–154]. Classical CS, however, does not typically consider temporal dynamics within the

recovery problem.

Since networks in the brain are inherently recurrent, interest has also grown around so-called

dynamic CS and, specifically, on the recovery of signals subjected to transformation via a

dynamical system (or, network). In this context, sparsity has been formulated in three

ways: 1) In the network states (state sparsity) [155–157]; 2) In the structure/parameters of

the network model (model sparsity) [158, 159]; and 3) In the inputs to the network (input

sparsity) [160–170]. In this chapter, we focus on this latter category of recovery problems.
5This chapter is a slightly amended version of the previously published article which is listed as follows:

M. Kafashan, A. Nandi, and S. Ching, “Relating Observability and Compressed Sensing of Time-Varying
Signals in Recurrent Linear Networks,” Neural Networks, 83, 11-20, 2016.
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Figure 5.1: Schematic of the considered network architecture. We study how the afferent, re-
current and output stages of this architecture interplay in order to enable accurate estimation
of the input u(t) from y(t) in the presence of both disturbance and noise.

Our motivation is to understand how three stages of a generic network architecture – an

afferent stage, a recurrent stage, and an output stage (see Figure 5.1) – interplay in order

to enable an observer, sampling the output, to recover the (sparse) input in the presence

of both disturbance and noise. Such an architecture is pervasive in sensory networks in the

brain wherein a large number of sensory neurons, receiving excitation from the periphery,

impinge on an early recurrent network layer that transforms the afferent excitation en route

to higher brain regions [171,172]. Moreover, beyond neural contexts, understanding network

characteristics for dynamic CS may aid in the analysis of systems for efficient processing

of naturally sparse time-varying signals [162]; and in the design of resilient cyber-physical

systems [160,161,163], wherein extrinsic perturbations are sparse and time-varying.
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Specifically, we consider a network that receives an input ut and generates observations

(network outputs), yt via its recurrent dynamics, i.e.,

rt+1 = f(rt, ut, dt) (5.1)

yt = g(rt, et) (5.2)

where, here, rt are the network states, dt is the disturbance and et is the noise. Our focus is

on how the network dynamics, embedded in f(·), g(·), impact the extent to which ut can be

inferred from yt in the case where the dimensionality of the latter is substantially less than

that of the former. We will focus exclusively on the case where these dynamics are linear.

Considered at face value, the problem of sparse recovery in a dynamic setting could be

broken down into a sequential problem wherein classical CS is performed on the system

frozen at each time instant. However, this approach would require the strong condition that

the system admits classical CS pointwise. In a dynamic network, recovery may be possible

even if the conditions for (static) CS fail at each time instant. For instance, in a linear

dynamical system, if the number of observations is smaller than the dimension of the state

space, then it is not possible to simply ‘invert’ the observations to recover the states at any

particular time. However, the notion of observability provides conditions under which such

recovery is possible, as long as those observations are allowed to accrue through the system

dynamics over some period of time.

Here, we postulate, then derive, a set of analytical conditions for dynamic CS that involve

observability, but are in general less stringent than necessitating CS at each time instant.

Associated with these conditions, we also derive bounds on the l2-norm of the reconstruction

error over a finite time horizon, which can be defined in terms of both the disturbance and
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the noise. Salient interpretations of the conditions, such as a basic trade-off between the

ability of a network to simultaneously reject input disturbances while still admitting stable

recovery, are highlighted and demonstrated via simulation.

5.2.2 Relationship to Prior Results in Sparse Time-Varying Input

Recovery

The sparse input recovery problem for linear dynamical systems can be formulated in both

the spatial and temporal dimension. Our contributions are related to the former. As men-

tioned above, in this context, previous work has considered recovery of spatially sparse inputs

for network resilience [160,161] and encoding of inputs with sparse increments [162]. In [163],

conditions for exact sparse recovery are formulated in terms of a coherence-based observabil-

ity criterion for intended applications in cyber-physical systems. Our contributions herein

provide a general set of analytical results, including performance bounds, pertaining to ex-

act and stable sparse input recovery of linear systems in the presence of both noise and

disturbance.

A second significant line of research in sparse input recovery problems pertains to the tem-

poral dimension. There, the goal is to understand how a temporally sparse signal (i.e., one

that takes the value of zero over a nontrivial portion of its history) can be recovered from

the state of the network at a particular instant in time. This problem has been used to

describe ‘memory’ in dynamical models of brain networks [164–169]. In particular, in [170]

the problem of ascertaining memory is related to CS performed on the network states, over

a receding horizon of a scalar-valued input signal. In contrast to these works, we consider

spatial sparsity of vector-valued inputs with explicit regard for both disturbance and an overt
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observation equation, i.e., states not to be directly sampled, but are transformed to an (in

general lower-dimensional) output.

5.3 Detailed Problem Formulation

We consider a discrete-time linear network, formulated in the typical form of a linear dy-

namical system, i.e.,:

rk+1 = Ark + Buk + dk

yk = Crk + ek,

(5.3)

where k is an integer time index, rk ∈ Rn is the activity of the network nodes (e.g., in the case

of a rate-based neuronal network [9–11, 173–176], the firing rate of each neuron), uk ∈ Rm

is the extrinsic input, dk ∈ Rn is the input disturbance, ek ∈ Rp is the measurement noise

independent from dk, and yk ∈ Rp is the observation at time k. The matrix A ∈ Rn×n

describes connections between nodes in the network, B ∈ Rn×m contains weights between

input and output and C ∈ Rp×n is the measurement matrix. Such a model is, of course, quite

general and can be used to describe recurrent dynamics in neuronal networks [177–181], and

machine learning applications such as pattern recognition and data mining [182–185].

We consider the case of bounded disturbance and noise, i.e., ‖ek‖`2 ≤ ε, ‖dk‖`2 ≤ ε′. Since

m, the number of input nodes, is larger than n, the number of network nodes, B takes the

form of a “wide" matrix. We assume that at each time at most s input nodes are active

(s-sparse input), leading to an `0 constraint to (5.3) at each time point:

‖uk‖`0 ≤ s. (5.4)
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In the absence of disturbance and noise, recovering the input of (5.3) with the `0 constraint

(5.4) amounts to the optimization problem:

(P0) minimize
(rk)Kk=0,(uk)K−1

k=0

K−1∑
k=0

‖uk‖`0

subject to rk+1 = Ark + Buk

yk = Crk.

(5.5)

It is clear that Problem (P0) is a non-convex discontinuous problem, which is not numerically

feasible and is NP-Hard in general [186]. For static cases, such `0 optimization problems fall

into the category of combinatorial optimization which require exhaustive search to find the

solution [187].

Thus, throughout this chapter, we follow the typical relaxation methodology used for such

problems wherein the `0 norm is relaxed to the l1 norm, resulting in the problem:

(P1) minimize
(rk)Kk=0,(uk)K−1

k=0

K−1∑
k=0

‖uk‖`1

subject to rk+1 = Ark + Buk

yk = Crk.

(5.6)

In the case that either input disturbance, or measurement noise, or both exist, we solve the

following convex optimization Problem (P2):

(P2) minimize
(rk)Kk=0,(uk)K−1

k=0

K−1∑
k=0

‖uk‖`1

subject to rk+1 = Ark + Buk

‖yk −Crk‖`2 ≤ ε′′,

(5.7)
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where ε′′ is the l2 norm of a surrogate parameter that aggregates the effects of disturbance

and noise. In P2, the objective function is exactly the same as P1. However, due to noise and

disturbance, the last constraints in P2 are quadratic inequalities instead of affine constraints

in P1. In the case of noisy measurement with no disturbance ε′′ = ε. In the next section, we

show conditions for the network (5.3) under which Problems (P1) and (P2) result in exact

and stable solutions.

5.4 Results

We will begin by presenting a general theory for problems (P1) and (P2) for underdetermined

linear dynamic networks. We will then briefly show how this reduces exactly to the case of

sequential application of classical CS when the system is fully determined. Finally, we present

an analysis to characterize the ability of a network to reject input disturbances while still

admitting stable recovery in the presence of disturbance and noise, simultaneously.

5.4.1 Preliminaries

We begin by recalling some basic matrix notation and matrix norm properties that will

be used throughout this chapter. Given normed spaces (Rn1 , ‖.‖`2) and (Rn2 , ‖.‖`2), the

corresponding induced norm or operator norm denoted by ‖.‖i,2 over linear maps D : Rn1 →

Rn2 , D ∈ Rn2×n1 is defined by

‖D‖i,2 = sup{‖Dr‖`2
‖r‖`2

| r ∈ Rn1 , r 6= 0}

= max{
√
λ | λ ∈ σ

(
DTD

)
},

(5.8)
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where σ(M) is the set of eigenvalues of M (or the spectrum of M).

Definition 5.1. A vector is said to be s-sparse if ‖c‖`0 ≤ s, in other words it has at most

s nonzero entries.

It is well known that in the static case (standard CS), exact and stable recovery of sparse

inputs can be obtained under the restricted isometry property (RIP) [151–154,188], defined

as:

Definition 5.2. The restricted isometry constant δs of a matrix Φ ∈ Rn×m is defined as the

smallest number such that for all s-sparse vectors c ∈ Rm the following equation holds

(1− δs)‖c‖2
`2
≤ ‖Φc‖2

`2
≤ (1 + δs)‖c‖2

`2
. (5.9)

It is known that many types of random matrices with independent and identically distributed

entries or sub-Gaussian matrices satisfy the RIP condition (5.9) with overwhelming proba-

bility [189–191].

5.4.2 A Generalized Observability Criteria for Time-Varying Sparse

Input Recovery

In this case, we consider (5.3) in the absence of input disturbance (dk = 0) with the linear

map C : Rn → Rp. We will focus on the case where p < n so that direct inversion of C is

not possible. For any positive K, we define the standard linear observability matrix as
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OK ≡



C

CA

...

CAK


. (5.10)

If rank(OK) = n, then the system (5.3) is observable in the classical sense 6. Here, we do

not assume any knowledge of the input other than the fact that it is s-sparse at each time.

Note that if we iterate the output equation in (5.3) for K+ 1 time steps and exploit the fact

that the input vector is s-sparse as shown in Figure 5.2, we obtain:



y0

y1

...

yK


= OKr0 + JsK



us0

us1
...

usK−1


, (5.11)

where usk represents s nonzero elements of uk, and JsK is as follows:

JsK =



0 0 · · · 0

CBs
0 0 · · · 0

CABs
0 CBs

1 · · · 0

...
... . . . ...

CAK−1Bs
0 CAK−2Bs

1 · · · CBs
K−1


, (5.12)

where Bs
i is the n × s matrix corresponding the active columns of B (corresponding to

nonzero input entries) at time step i (see Figure 5.2). In general, we do not know where the
6The system is said to be observable if, for any initial state and for any known sequence of input there is

a positive integer K such that the initial state can be recovered from the outputs y0, y1,..., yK .
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Figure 5.2: The matrix Bs
k is the n× s matrix corresponding the active columns of the full

matrix B at time step k.

active columns of B are located at each time a priori. Thus, J s
K is defined as the set of all

possible matrices satisfying the structure in (5.12), where the cardinality of this set is
(
m
s

)K .
We first establish conditions under which a one to one correspondence exists between sparse

input and observed output for the system (5.3).

Lemma 5.1. Suppose that the sequence (yk)
K
k=0 from noiseless measurements is given, and

A, B and C are known. Assume rank(OK) = n and the matrix CB satisfies the RIP

condition (5.9) with isometry constant δ2s < 1. Further, assume

rank([OK J2s
K ]) = n+ rank(J2s

K ), ∀J2s
K ∈ J 2s

K . (5.13)

Then, there is a unique s-sparse sequence of (uk)
K−1
k=0 and a unique sequence of (rk)

K
k=0 that

generate (yk)
K
k=0.

Proof. See Appendix D.1
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The rank condition (5.13) implies that all columns of the observability matrix must be

linearly independent of each other (i.e., the network is observable in the classical sense) and

of all columns of JsK . Since the exact location of the nonzero elements of the input vector

are not known a priori, this condition is specified over all matrices in J 2s
K . Thus, (5.13) is a

combinatorial condition. From our simulation studies, we have observed that this condition

holds for random Gaussian matrices almost always (see also Examples 1 and 2 in Section

5.5).

Having established the existence of a unique solution, we now proceed to study the con-

vex problems (P1) and (P2) that recover these solutions for this case. First, we provide

theoretical results for the stable recovery of the input where measurements are noisy i.e.,

(P2).

Theorem 5.1. (Noisy recovery) Assume rank(OK) = n and the matrix CB satisfies the

RIP condition (5.9) with δ2s <
√

2 − 1. assume (5.13) holds. Suppose that the sequence

(yk)
K
k=0 is given and generated from sequences (r̄k)

K
k=0 and s-sparse (ūk)

K−1
k=0 based on

r̄k+1 = Ar̄k + Būk, k = 0, · · · , K − 1

yk = Cr̄k + ek, k = 0, ..., K,

(5.14)

where (‖ek‖`2 ≤ ε)Kk=0 and A, B and C are known. Then, the solution to Problem (P2) obeys

K−1∑
k=0

‖u∗k − ūk‖`2 ≤ Csε, (5.15)

where

Cs = 2αC0K(1− ρ)−1. (5.16)
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C0, ρ, α are given explicitly below:

C0 =

1 +

√√√√√Kσmax (CTC)σmax (ATA)σmax

(
(I−PJ2s

K
)T (I−PJ2s

K
)
)

σmin
(
OK

TOK

)
σmin

(
(I−PJ2s

K
)T (I−PJ2s

K
)
)

 ,

α =
2
√

1 + δ2s

1− δ2s

,

ρ =

√
2δ2s

1− δ2s

,

PJ2s
K

= J2s
K (J2s

K
T
J2s
K )−1J2s

K
T
.

(5.17)

Proof. Assume that the the sequences (r∗k)
K
k=0 and sparse (u∗k)

K−1
k=0 are the solutions of Prob-

lem (P2). First we derive the bound for the ‖r∗k − r̄k‖`2 in the following Lemma.

Lemma 5.2. Suppose that the sequence (yk)
K
k=0 is given and generated from sequences

(r̄k)
K
k=0 and s-sparse (ūk)

K−1
k=0 based on (5.14), where (‖ek‖`2 ≤ ε)Kk=0 and A, B, C are known.

Then, any solution r∗k to Problem (P2) obeys

‖r∗k − r̄k‖`2 ≤ 2ε

√√√√√ Kσmax

(
(I−PJ2s

K
)T (I−PJ2s

K
)
)

σmin
(
OK

TOK

)
σmin

(
(I−PJ2s

K
)T (I−PJ2s

K
)
) (5.18)

Proof. See Appendix D.2.
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From Lemma 5.2, and the equation yk = CAr̄k−1 + CBūk−1 + ek we can derive a bound for

‖CB (u∗k − ūk) ‖`2 as

‖CB (u∗k − ūk) ‖`2 = ‖(e∗k+1 + ek+1) + CA(r̄k − r∗k)‖`2

≤ ‖ek+1 + e∗k+1‖`2 + ‖CA(r̄k − r∗k)‖`2

≤ 2ε

1 +

√√√√ Kσmax (CTC)σmax (ATA)

σmin
(
OK

TOK

)
σmin

(
(I−PJ2s

K
)T (I−PJ2s

K
)
)


= 2C0ε.

(5.19)

Now, denote u∗k = ūk + hk where hk can be decomposed into a sum of vectors hk,T0(k),

hk,T1(k), hk,T2(k), · · · for each k, each of sparsity at most s. Here, T0(k) corresponds to

the location of non-zero elements of ūk, T1(k) to the location of s largest coefficients of

hk,T c
0 (k), T2(k) to the location of the next s largest coefficients of hk,T c

0 (k), and so on. Also,

let T01(k) ≡ T0(k) ∪ T1(k). Extending the technique in [154, 188], it is possible to obtain a

cone constraint for linear dynamical systems.

Lemma 5.3. (Cone constraint) The optimal solution for the input in Problem (P2) satisfies

K−1∑
k=0

‖hk,T c
01(1)‖`2 ≤

K−1∑
k=0

‖hk,T0(1)‖`2 . (5.20)

Proof. See Appendix D.3.

We can further establish a bound for the right hand side of (5.20):
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Lemma 5.4. The optimal solution for the input in Problem (P2) satisfies the following

constraint
K−1∑
k=0

‖hk,T01(1)‖`2 ≤ K(1− ρ)−1αC0ε. (5.21)

Proof. See Appendix D.4.

Finally, based on Lemma 5.3 and Lemma 5.4, it is easy to see that

K−1∑
k=0

‖hk‖`2 ≤
K−1∑
k=0

(
‖hk,T01(1)‖`2 + ‖hk,T c

01(1)‖`2
)

≤ 2
K−1∑
k=0

‖hk,T01(1)‖`2

≤ 2αC0K(1− ρ)−1ε = Csε.

(5.22)

Theorem 5.2. (Noiseless recovery) Assume rank(OK) = n and the matrix CB satisfies

the RIP condition (5.9) with δ2s <
√

2− 1. Further, assume (5.13) holds. Suppose that the

sequence (yk)
K
k=0 is given and generated from sequences (r̄k)

K
k=0 and s-sparse inputs (ūk)

K−1
k=0

based on dynamical equation (5.14), where ε = 0 and A, B and C are known. Then the

sequences (r̄k)
K
k=0 and (ūk)

K−1
k=0 are the unique minimizer to Problem (P1).

Proof. It can be concluded from Lemma 5.1 and Theorem 5.1 that with the assumption

stated in the theorem and ε = 0 the sequences (r̄k)
K
k=0 and (ūk)

K−1
k=0 are the unique minimizer

to Problem (P1).

The results in the above Theorems hinge on an RIP criteria involving the combined matrix

CB, which can be interpreted in the context of an overcomplete dictionary in the classical
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compressed sensing literature [192,193]. In this sense, the B matrix (i.e., the connectivity of

the afferent stage in Figure 5.1) can be interpreted as a dictionary that transforms the sparse

input u onto the recurrent network states. The output matrix C enabled ‘readout’ of the

states. Thus, the properties of C and B individually do not have direct bearing on dynamic

CS. However, since these matrices dictate the signal flow to and from the recurrent stage,

dynamic CS depends on whether these two matrices are matched in the sense of satisfying

the RIP condition presented above.

5.4.3 Proper Reduction to Sequential CS

In the previous section, we focused on the case where the matrix C precludes direct inversion

of the system states from the observations. It is worth noting that the results remain valid

even without this assumption and, in fact, reduce to the case of sequential application of

classical compressed sensing.

This reduction is most easily seen by assuming that C is square and full rank, so that the

network state can be obtained directly via inversion at each instant in time. It is intuitive

that in this case, the cost function in (5.7) is minimized by application of standard CS at

each time instant, depending exclusively on the RIP properties of the matrix B. Specifically,

under the assumption that C is full rank, Theorem 5.1 reduces exactly to:

Theorem 5.3. Assume that the matrix B satisfies the RIP condition (5.9) with δ2s <
√

2−1.

Suppose that the sequence (yk)
K
k=0 is given and generated from sequences (r̄k)

K
k=0 and s-sparse

(ūk)
K−1
k=0 based on (5.14), where (‖ek‖`2 ≤ ε)Kk=0 and A, B, C, N (C) = {0} are known. Then,
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the solution to Problem (P2) obeys

K−1∑
k=0

‖u∗k − ūk‖`2 ≤ Csε, (5.23)

where

Cs = 2αC0K(1− ρ)−1. (5.24)

C0, ρ, α are given explicitly below:

C0 =
1√
σ

(
1 +

√
σmax (CTC)σmax (ATA)

σmin (CTC)

)
,

α =
2
√

1 + δ2s

1− δ2s

,

ρ =

√
2δ2s

1− δ2s

,

σmin
(
CTC

)
< σ < σmax

(
CTC

)
.

(5.25)

Proof. This Theorem is a special case of Theorem 5.1 and the proof can be obtained readily

by following the proof of Theorem 5.1.

An analogous reduction for exact recovery in the noiseless case (ε = 0) can also be made.

5.4.4 Recovery in the Presence of Disturbance and Noise

Finally, we show how eigenstructure of the network implies a fundamental trade-off between

stable recovery and rejection of disturbance (i.e., corruption).

Here, for ease of presentation, we will use of the results of Theorem 5.3, though the concepts

generalize. It is easy to see from (5.23) that the upper-bound of the recovery error is reduced
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by decreasing the maximum singular value of A. Thus, we can use the upper-bound of the

input recovery error as a comparative measure of performance. In the absence of both

disturbance and noise, the best error performance is achieved when A = 0, i.e., the network

is static, which is intuitive since in this scenario any temporal effects would smear potentially

salient parts of the signal.

On the other hand, having dynamics in the network should improve the error performance in

the presence of the disturbance. To demonstrate this, consider (5.3) with dk nonzero. When

A = 0, i.e., a static network, the disturbance can be exactly transformed to the measurement

equation resulting in Cdk + ek as a surrogate measurement noise with

‖Cdk + ek‖`2 ≤
√
σ′ε′ + ε,

σmin
(
CTC

)
< σ′ < σmax

(
CTC

)
.

(5.26)

In this case, the error upper-bound can be obtained by exploiting the result of Theorem 5.3

as
K−1∑
k=0

‖u∗k − ūk‖`2 ≤ C ′s(
√
σ′ε′ + ε),

C ′s =
2√
σ
αK(1− ρ)−1.

(5.27)

When A is nonzero, it is not possible to exactly map the disturbance to the output as above.

Nevertheless, it is straightforward to approximate the relative improvement in performance.

For instance, consider a system with a symmetric A where the disturbance and input are in

displaced frequency bands. Then it is a direct consequence of linear filtering that the power

spectral density of the disturbance can be attenuated according to

SdFilt(ejω) = sd(ejω)(ejωIn −A)−1(e−jwIn −A)−1, (5.28)
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where ω is the frequency of the disturbance. So, for instance, if ω = π,

Tr{SdFilt(ejπ)} = Tr{sd(ejπ)(In + A)−2}

= sd(ejπ)
n∑
i=1

(1 + λi(A))−2,
(5.29)

where λi(A) is the ith eigenvalue of matrix A. Assuming the input is sufficiently displaced

in frequency from the disturbance, the error upper-bound can be then readily approximated

using the results of Theorem 5.3 as follows

K−1∑
k=0

‖u∗k − ūk‖`2 ≤ Cs

(√
σ′′

n

n∑
i=1

(1 + λi(A))−2ε′ + ε

)
,

σmin
(
CTC

)
< σ′′ < σmax

(
CTC

)
.

(5.30)

By comparing (5.27) and (5.30), it is evident that the presence of dynamics in A can reduce

the error upper-bound by at least a factor of two, assuming σ′ and σ′′ are close to each other.

In the examples below, we will show that, in fact, performance in many cases can exceed

this bound considerably.

5.5 Examples

In this section, we present two brief examples that demonstrate the key aspects of the

results. For solving our convex optimization problems, we used CVX with a MATLAB

interface [194, 195]. To speed up the computations, alternative `1 minimization algorithms

could potentially be utilized [196,197], though we do not explore these herein.
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Figure 5.3: The recovered input for (A) p = 35 and (B) p = 45 for both static (middle
images) and dynamic (left images) CS where n = 45 and m = 68. Original input is in the
right hand side denoted as true digit.

5.5.1 One-step and Sequential Recovery in Recurrent Networks

In this example, we construct a recurrent network of the form in Figure 5.1, which satisfies

conditions in Theorem 5.1. Specifically, we consider a random network so that the matrices

A, B and C are constructed with entries that are drawn from an independent, identically

distributed normal distribution. The dimensionality considered is n = 45, m = 68 , p = 35.

The sparse input is defined as the image of a digit, shown in Figure 5.3 where each pixel

takes the value of 0 or 1. Here, the horizontal axis is treated as time, i.e., column k of the

image is the input to the system at time k with K = 68.

Since p < n, it is clear that sequential application of static CS is not possible in this case

(i.e., since C cannot be inverted). However, for this network setup, we verify numerically
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that the conditions of Theorem 5.2 hold generically, and thus recovery of the sparse input

is expected after K time steps by solving (P1) in one step over the entire time horizon, i.e.,

one-step dynamic CS. Figure 5.3A confirms this result, wherein exact recovery of the input

is shown. Moreover, we confirm that sequential application of CS does not lead to correct

recovery.

As a point of comparison, we also considered the case wherein C is full rank (i.e., p = 45)

(Figure 5.3B), in which case sequential application of CS does indeed lead to recovery.

5.5.2 Recovery in the Presence of Disturbance and Noise

In this example we highlight the competing influence of disturbance and noise in a recur-

rent setting, and specifically our derived error bounds. We construct networks of the same

dimension as in Example 1, but for simplicity, now assume that C is full rank.

We begin by considering the effects of noise only, wherein ek is assumed to follow an uniform

distribution U(−0.5, 0.5) while dk = 0. Figure 5.4A shows the mean square error (MSE)

versus the maximum singular value of A, for several random realization of A. It can be seen

from this figure that by increasing
√
σmax(ATA), the recovery performance is degraded, as

we expect based on the derived bound for the error in (5.23).

However, based on our discussion in Section 5.4.4, we also know that dynamics embedded in

A are beneficial for the rejection of disturbances. Thus, to contrast Figure 5.4A, we consider

the case when disturbance is added to the input. In Figure 5.4B, we show the MSE versus√
σmax(ATA) for several random A when ek ∼ U(−0.5, 0.5) and dk ∼ N (0, 1). It is seen

that increasing
√
σmax(ATA) allows disturbance rejection and improves performance.
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Figure 5.4: (A)MSE versus the maximum singular value of A, for several random realization
of A with noise and in the absence of disturbance. (B) MSE versus the maximum singular
value of A, for several random diagonal A with noise and disturbance.

Taken together, Figure 5.4 emphasizes the basic trade-off in recovery performance due to

noise and disturbance. Thus, in the presence of both sources of corruption, an effective

network must exhibit a relatively balanced spectrum.

To provide an intuitive visual demonstration of this principle, we construct an input consist-

ing of a smoothly changing sequence of 64 frames (images). Each frame, is corrupted with

disturbance at each time, and the difference between two consecutive frames is considered

as the sparse input to the network. The disturbance dk is assumed to be a random variable

drawn from a Gaussian distribution, N (0, 0.2), passed through a fifth-order Chebyshev high

pass filter. Each frame has m = 400 pixels and K = 64. This input is passed through a

random network of dimension n = p = 200, i.e. random Gaussian matrices for B and C.

We designed the matrix A to balance the performance bound (5.23) and the ability to reject

the disturbance as per Section 5.4.4. Figure 5.5A shows the original frames at different

times. We assumed that the first frame is known exactly. Frames recovered from the output
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Figure 5.5: (A) Four noiseless frames of a movie. Recovery via (B) static CS and (C) dynamic
CS in the presence of disturbance.
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Figure 5.6: PSNR of the recovered frame versus frame number for both CS with and without
dynamics.

136



0

M
S
E

s=10

s=4

1

M
S
E

s=10

s=4

(A) (B)

0.5

1

1.5
2

1

0

3 5 7 9 1 3 5 7 9

Figure 5.7: MSE as a function of (A) log(1/ε) and (B) log(1/ε′) for the reconstructed input
with n = 50, m = 100, p = 40, evaluated over 10 time steps for 100 random trials (different
random matrices A, B, C in each trial).

of a static network , i.e., A = 0 are depicted in Figure 5.5B. In contrast, frames recovered

from the output of the designed dynamic network are shown in Figure 5.5C. It is clear from

the figure that the quality of recovery is better in the latter case. Figure 5.6 illustrates the

PSNR, defined as 10 log( 1
MSE

) as a function of frame number with and without dynamics. It

can be concluded from this figure that having recurrent dynamics embedded in A results in

recovery that is more robust to disturbance, while without dynamics, error propagates over

time, and the reconstruction quality is degraded.

We conducted simulation experiments to examine the effect of the noise and disturbance

strength on the reconstruction error when C is not full. Figure 5.7 shows the average MSE

for the reconstructed input versus log(1/ε) and log(1/ε′), respectively with n = 50, m = 100,

p = 40, evaluated over 10 time steps for 100 random trials (different random matrices A, B,

C in each trial) with 4-sparse and 10-sparse inputs. This figure shows that the reconstruction

error decreases as a function of noise energy.
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5.5.3 Input Recovery in an Overactuated Rate-Based Neuronal Net-

work

A fundamental question in theoretical neuroscience centers on how the architecture of brain

networks enables the encoding/decoding of sensory information [6, 198, 199]. In our final

example, we use the results of Theorems 5.3 and 5.2 to highlight how certain structural

and dynamical features of neuronal networks may provide the substrate for sparse input

decoding. Specifically, we consider a firing rate-based neuronal network [175] of the form

Tr
dr

dt
= −r + Wu + Mr, (5.31)

with input rates u ∈ Rm, output rates r ∈ Rn, a feed-forward synaptic weight matrix

W ∈ Rn×m, and a recurrent synaptic weight matrix M ∈ Rn×n. We consider n = 50 neurons

which receive synaptic inputs from m = 100 afferent neurons, i.e., neurons that impinge on

the network in question. Here, Tr ∈ Sn+ is a diagonal matrix whose diagonal elements are the

time constants of the neurons. A discrete version of (5.31), alongside a linear measurement

equation can be written in the standard form (5.3) where A = In −∆tTr
−1 + ∆tTr

−1M is

related to connections between nodes in the network, and B = ∆tTr
−1W contains weights

between input and output nodes. For this example, we assume that the network connectivity

has a Watts–Strogatz small-world topology [200] with connection probability pM and rewiring

probability qM .
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Figure 5.8: (A) The maximum singular value of A versus the inhibition percentage. MSE of
input recovery in the presence of (B) Noise and (C) Disturbance as a function of the percent
of inhibitory neurons.

The recurrent synaptic matrix M is defined as

(M)ij =


+mE

ij if recurrent neuron j is excitatory

0 if no connection from neuron j to i

−mI
ij if recurrent neuron j is inhibitory

(5.32)

For the purposes of illustration, we select the diagonal elements of matrix Tr, from a uniform

distribution U(0.1, 0.2). We study the recovery performance associated with the network over

100 time steps, assuming a timescale of milliseconds and an discretization step of 0.1 ms.
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At each time step, the nonzero elements of the input vector u, i.e., firing rate of the afferent

neurons, are drawn from an uniform distribution U(0.5, 1.5). Moreover, we assume that ele-

ments of the observation matrix C are drawn from a Gaussian distribution N (0, 1). Finally,

we assume mE
ij and mI

ij are drawn from lognormal distributions lnN (0, 1) and lnN (0, 0.1),

respectively. The latter assumption is chosen for illustration only and is not related to known

physiology.

Recovery Performance from Error Bounds: We proceed to conduct a Monte Carlo

simulation of 100 different realizations of W, M and C. Fig. 5.8A illustrates that the

maximum singular value of the matrix A decreases as a function of the percent of inhibitory

neurons. Thus, we anticipate from our derived performance bounds that performance in

terms of mean square error (MSE) should be best for networks with high inhibition in

the presence of noise. This prediction bears out in Fig. 5.8B, where we indeed observe

a monotone relationship between MSE and inhibition. On the one hand, low-inhibition

is favorable for facilitating recovery in the presence of disturbance depicted in Fig. 5.8C.

Such tradeoffs are interesting to contemplate when considering the functional advantages of

network architectures observed in biology, such as the pervasive 80-20 ratio of excitatory to

inhibitory neurons [175, 201]. Together, Figs. 5.8B and 5.8C illustrate how the excitatory-

inhibitory ratio mediate a basic tradeoff in the capabilities of a rate-based neuronal network.

Recoverable Sparsity based on Theorem 5.2: Having ascertained the performance

tradeoff curves, we sought to characterize in more detail the level of recoverable sparsity

with specific connection to Theorem 5.2 and (5.13). We considered networks as above, but

with p = 30 and 20/80 for the ratio of inhibitory/excitatory over 10 time steps for 100

random trials. Thus, the output of the network is of lower dimension than the network state
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Figure 5.9: (A) Examining the rank condition (5.13) in the networks of Example 3, with
p = 30, for different values of s. (B) The probability of exact recovery of dynamic sparse
input to the network over s.

space and the observability matrix is of nontrivial construction. Fig. 5.9A shows that for

this setup, the rank condition (5.13) holds up to 2s = 27. Thus, Theorem 5.2 predicts that

recover will be possible (to within the RIP condition on CB) for signals with 13 nonzero

elements. Fig. 5.9B validates this theoretical prediction by illustrating recovery performance

in the absence of disturbance and noise for different values s. It is observed that when the

rank condition holds, reconstruction is perfect and that the probability of exact recovery is

decreased by increasing s, as expected.

5.6 Discussion

In this chapter, we presented analytical conditions that are sufficient to ensure the recovery

of time-varying signals processed via a recurrent linear network, wherein the network output

is allowed to accrue prior to recovery. The conditions amount to a generalized observability

criteria and are less stringent than the approach of performing sparse recovery pointwise, i.e.,

at each instant in time. Further, we derived several bounds in terms of the system dynamics
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for recovery performance in the presence of both input disturbance and observation noise. We

showed that dynamics can play opposing roles in mediating accurate recovery with respect

to these two different sources of corruption.

Potential Applicability: The analysis developed herein is suited to the treatment of mul-

tivariate time-series that are modeled as the output of a network with linear dynamics. The

key results are specific to contexts where extrinsic perturbations to such networks are sparse

and time-varying. Both engineering and scientific impacts of these results can be postulated.

In the former case, the goal may be to design networks to process time-varying signals that

are naturally sparse, such as high-dimensional neural data. In the latter (scientific) case, the

goal is to understand how the naturally occurring architectures of networks, such as those in

the brain, confer advantages for processing of afferent signals. Such a paradigm may be use-

ful in the theoretical formulation of sensory neural coding mechanisms [8]. Other application

domains such as video processing [162], medical imaging [202], and resilient cyber-physical

systems [160,161] may also be considered. In either the scientific or application-driven cases,

a precursor to further study are a set of verifiable conditions that overtly link network char-

acteristics/dynamics to sparse input processing, i.e., the main thrust of the present work.

Assumptions and Limitations: A key assumption in instantiating our analysis results is

that the network dynamical matrices (A, B, C) are known and/or specified. As well, recon-

struction of inputs requires knowledge of noise bounds (i.e., upper-bounds on the magnitude

of both disturbance, ε, and noise, ε′, as per Section 5.4). In practice, several data-driven

algorithms, such as expectation maximization [49, 50], could be used in the estimation of

such bounds, though we did not pursue this here. Importantly, there is no need to know

the actual noise time-series in absolute terms, which would have restricted functionality.
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Treatment of systems with nonlinear dynamics, including a more detailed examination of

networks with prescribed topologies (using the developed theory), are left as subjects for

future work.
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Chapter 6

Lightweight Encoding in Recurrent

Networks with Soft-Thresholding

Nonlinearities

6.1 Highlights

A long-standing and influential hypothesis in sensory processing is that early sensory net-

works adapt themselves to produce efficient codes of afferent inputs. Here, we show how

a nonlinear recurrent network provides an optimal solution for the efficient coding of an

afferent input and its history. We specifically consider the problem of producing lightweight

codes, ones that minimize both `1 and `2 constraints on sparsity and energy, respectively.

When embedded in a linear coding paradigm, this problem results in a non-smooth convex

optimization problem. We employ a proximal gradient descent technique to develop the so-

lution, showing that the optimal code is realized through a recurrent network endowed with

a nonlinear soft thresholding operator.
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The training of the network connection weights is readily achieved through gradient-based

local learning. If such learning is assumed to occur on a slower time-scale than the (faster)

recurrent dynamics, then the network as a whole converges to an optimal set of codes and

weights via what is, in effect, an alternative minimization procedure. Our results show how

the addition of thresholding nonlinearities to a recurrent networks may enable the production

of lightweight, history-sensitive encoding schemes.

6.2 Introduction

It has been hypothesized that the early stages of sensory processing have evolved to ac-

curately encode environmental signals with minimal consumption of biological resources

[6, 201, 203–206]. There are several studies on extracting salient input features, generally

known as efficient coding, to explain a variety of observed properties of sensory systems

[140, 207–213]. Moreover, sparse coding [214–216] is considered to be a plausible model of

the visual cortex [216–218], suggesting that sensory information is encoded using a small

number of active neurons at any given point in time. However, it is still far from clear how

sensory neurons perform efficient encoding.

In this chapter, we develop dynamical networks that produce efficient codes by adapting

(learning) their connection weights in response to properties of the input. The developed

learning rules are local, ones that use only information currently available at the node or con-

nection that is to be modified, and we incorporate efficient encoding to achieve representation

patterns that are sparse, and consume minimal energy. Also, we will show how memory, the

ability of the network to reconstruct previous inputs from a current representation, is related

to the number of active neurons in the network. These algorithms are biologically plausible
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learning rule which might be helpful in explaining the storage of memory in brain networks

for sensory information processing.

The remainder of the chapter is organized as follows. In Section 6.3 we formulate the problem

in detail. In Section 6.4 we introduce soft thresholding recurrent neural networks and provide

learning rules to train such networks. Simulation results for several different scenarios are

provided in Section 6.5. Finally, conclusions are formulated in Section 6.6.

6.3 Problem Statement

The goal of minimal energy sparse coding is to efficiently represent time-varying input vectors

approximately as a weighted linear combination of a small number of unknown basis vectors.

These basis vectors capture high-level salient structure in the input data. We consider an m-

dimensional input signal, denoted as x, which is represented using basis vectors d1, · · · ,dn ∈

Rm and a sparse vector of weights or firing rates r ∈ Rn as

x ' x̂ = Dr. (6.1)

We specifically seek lightweight representations so that r is minimal with respect to both `1

and `2 criteria. First, we assume that the basis vectors (columns of matrix D) are known.

Thus, we consider the optimization of the following objective

J(r) =
1

2
‖x−Dr‖2

2 +
λ2

2
‖r‖2

2 + λ1 ‖r‖1 (6.2)

with respect to r. Here, the first term is the data fidelity term, the error between the

reconstructed input signal and the actual stimulus, the second term corresponds to the cost
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of the signal representation, and the last term controls the sparsity level of the representation.

The objective in (6.2) is a nonsmooth convex function of r. The proximal gradient method

[221–223] has recently been shown to be effective for finding the optimal solution for this

class of objectives. Here, we use it to solve (6.2) and demonstrate the solution can be realized

through a two-layer recurrent nonlinear network. In this method, we split the objective into

two terms, one of which is differentiable. This splitting is not unique, so different splittings

lead to different implementations of the proximal gradient method for the same original

problem.

6.4 Soft-Thresholding Recurrent Neural Networks

Here, we show how a soft-thresholding recurrent neural network (STRNN) can generate a

solution to the above class of optimization problems. Specifically, we note that the cost

function J(r) can be written as

J(r) = f(r) + g(r), (6.3)

where
f(r) =

1

2
‖x−Dr‖2

2 +
λ2

2
‖r‖2

2 ,

g(r) = λ1 ‖r‖1 .

(6.4)

Further, f and g are closed proper convex and f is differentiable. The proximal gradient

method results in the following dynamic equation for r:

rk+1 = proxµg
(
rk − µ∇f(rk)

)
∇f(r) = −DTx + DTDr + λ2r,

(6.5)

147



where the discrete step size µ is the regularization parameter of the rates.7 At each iteration

k, this discrete dynamical system can be interpreted as a discrete linear neural network with a

“leak” (−λ2r), feedforward connections (W = DT), and recurrent connections (M = DTD),

followed by a nonlinear proximal operator defined as

proxµg(r) = arg min
v

(
g(v) +

1

2µ
‖v− r‖2

2

)
, (6.6)

which is an slantwise operation on the elements of the vector r = [r1, · · · , rn]T. When λ1 = 0,

there is no `1 constraint in the objective function, g(r) = 0, which results in proxµg(r) = r.

In this scenario, the solution for optimal firing rates matches exactly with a linear neural

network. For the case that λ1 6= 0, the optimality condition for this minimization problem

considering g(r) = λ1 ‖r‖1 leads to the following solution for the proximal operator:

proxµg(ri) =


ri − µλ1 if ri > µλ1

0 if |ri| ≤ µλ1

ri + µλ1 if ri < −µλ1

. (6.7)

It is easy to verify that the above proximal operator is soft thresholding. Having a soft

thresholding operator applied to a linear neural network results in keeping just high values

of firing rates at each time instant.
7When ∇f is Lipschitz continuous with constant L, this method can be shown to converge with rate

O(1/k) when µ ∈ (0, 1/L] is used.
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6.4.1 Short Term Memory in STRNNs

In this section, we want to characterize the capability of SRTNNs to preserve the input

history in a network. In order to train a network to be able to reconstruct the input history

from the present state of the network, we need to modify the objective function in (6.2) to

incorporate this ability. To do so, we first assume that along with D, which can be thought

of as a decoder to recover the current input x(t) from the current activity of the network

r(t), there also exists an S such that DSq can be considered as the decoder to reconstruct

the past input x(t− q) from r(t), where

x(t− q) ' DSqr(t). (6.8)

We modify (6.2) to incorporate history reconstruction ability as follows:

Js(r(t)) = J(r(t)) +
λ

2
‖r(t− 1)− Sr(t)‖2

2 . (6.9)

The last term in (6.9) is the error between the true and reconstructed input history, one

time step in the past. Similar to (6.3), JS can be split into

Js(r(t)) = f ′(r(t)) + g(r(t)). (6.10)

The optimal firing rate r(t) using proximal gradient method can be written as

rk+1(t) = proxµg
(
rk(t)− µ∇f ′(rk(t))

)
∇f ′(r(t)) = −DTx(t) +

(
DTD + λSTS

)
r(t)− λSTr(t− 1) + λ2r(t)

= −Wx(t) + Mdr(t)−Msr(t− 1) + λ2r(t),

(6.11)
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{

Delay

Delay

Figure 6.1: The structure of a STRNN withm = 2 and n = 3. The feedforward (W), delayed
recurrent connections (Ms), and recurrent connections (Md) are shown in blue, orange and
red, respectively.

where Md and Ms contain recurrent connections in the network. The structure of a STRNN

with two inputs and three network nodes is shown in Figure 6.1. The learning rules for

feedforward and recurrent weight matrices are provided in the next section.

6.4.2 Online Learning Rules of Connections

In this section, we present the basic components of our online learning rules of connections

in a STRNN. At time instant t, the finite training set composed of i.i.d. samples of a

distribution p(x) is denoted as X(t) = [x(1), · · · .x(t)]. Also, the network activity over t
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time steps is described as R(t) = [r(1), · · · .r(t)]. Learning rules for the connections in the

network can be readily inferred from D and S. To learn D and S, we optimize the following

empirical cost function at each time instant t:

{D(t),S(t)} = arg min
{D,S}

1

t

t∑
i=1

Js(r(t))

= arg min
{D,S}

1

t

t∑
i=1

1

2
‖x(t)−Dr(t)‖2

2 +
λ

2
‖r(t− 1)− Sr(t)‖2

2 .

(6.12)

The cost function in (6.12) is separable over D and S, which makes adaptation of these two

variables independent of each other. It is straightforward to verify that a small change of

D in the direction of ∆D(t) = τ
(
X(t)R(t)T − αD(t)

)
reduces the first term in (6.12). The

coefficients α and τ control the energy of the basis vectors and the speed of the learning

process, respectively. Similarly, ∆S(t) = τ
(
R(t− 1)R(t)T − αS(t)

)
8 reduces the second

term in (6.12). The problem with these learning rules is that storing X(t) and R(t) for

large t is not efficient. To remedy this issue, we define two new variables, denoted as A(t)

and B(t), which are updated based on the current input and network activity. The learning

rules for these variable are obtained with the assumption that the input to the network,

x, and the network activity, r, are whitened. Even if the input is whitened the network

activity is not necessarily whitened, and the choice of S will be dominated by second-order

statistical dependencies. To resolve these dependencies, we need to take into account the

covariance matrix of the network activity in the cost function. Having the update rule for D

and S, we can find the learning rules for the network connections. Also, different time scales

can be considered for different weight matrices in the network denoted as τW , τ sM , and τ dM .

The leaning procedure for the network connections is summarized in Algorithm 6.1. In the
8If we want to be precise, R(t− 1)R(t)T should be replaced by [0 R(t− 1)]R(t)T.
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Algorithm 6.1 Online update rules for network connections
Require: x(t), r(t), r(t− 1), A(t− 1), B(t− 1), W(t− 1), Ms(t− 1), Md(t− 1), εa, εb, τw,

τ sm, τ dm

1: A(t)← εaA(t− 1) + (1− εa)x(t)r(t)T

2: B(t)← εbB(t− 1) + (1− εb)r(t− 1)r(t)T

A(t) = [a1(t), · · · , an(t)] ∈ Rm×n

B(t) = [b1(t), · · · ,bn(t)] ∈ Rn×n

W(t− 1) =
[
wT

1 (t− 1), · · · ,wT
n(t− 1)

]T ∈ Rn×m

Ms(t− 1) =
[
ms

1
T(t− 1), · · · ,ms

n
T(t)

]T ∈ Rn×n

Md(t− 1) =
[
md

1(t− 1), · · · ,md
n(t− 1)

]
∈ Rn×n

3: for i = 1 to n do

4: ∆wi(t)← τw(aTi (t)− αwi(t− 1))

5: ∆ms
i (t)← τ sm(bT

i (t)− αms
i (t− 1)r(t− 1)r(t− 1)T)

6: ∆md
i (t)← τ dm(Wai(t) + Msbi(t)− αmd

i (t− 1))

7: end for

8: return W(t), Ms(t), Md(t)

update rule equation for rows of Ms, the term r(t − 1)r(t − 1)T removes the second-order

statistical dependencies.

Here, we want to show that the update rule for connection weights is local and just is related

to information available to neurons on either side of the connection that is associated with

that weight. The strength of the feedforward connection weight from input node j to network

node i at time t is denoted as wij(t). From the update rule for feedforward weight, which is
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shown in the fourth line of Algorithm 6.1, ∆wij(t) can be written as

∆wij(t) = τw (aji(t)− αwij(t))

aji(t) = εaaji(t− 1) + (1− εa)xj(t)ri(t)
(6.13)

where aji(t) is the ji-th element of A(t), xj(t) is the j-th element of x(t) and ri(t) is the i-th

element of r(t) . For εa = 0, aji = xj(t)ri(t) while for εa 6= 0 it depends on the history of

input and network firing rate at input node j and network node i, respectively as shown in

Figure 6.2A for εa = εb = 0. The strength of the delayed recurrent connection weight from

network node j to network node i at time t is denoted as ms
ij(t). Similarly from the fifth

line of Algorithm 6.1, ∆ms
ij(t) can be written as

∆ms
ij(t) = τ sm(bji(t)− αrprei (t)rj(t− 1))

bji(t) = εbbji(t− 1) + (1− εb)rj(t− 1)ri(t)

rprei (t) =
n∑
j=1

ms
ij(t− 1)rj(t− 1)

(6.14)

where bji(t) is the ji-th element of B(t), rprei (t) is the presynaptic firing rate of node i. For

εb = 0, bji = rj(t − 1)ri(t) while for εb 6= 0 it depends on the history of network firing rate

at nodes i and j as shown in Figure 6.2A for εa = εb = 0. Hence, the learning is just related

to information available to neurons on either side of the connection. The strength of the

recurrent connection weight from network node j to network node i at time t is denoted as

md
ij(t). For simplicity, we show the locality of the learning rule of md

ij(t) for εa = εb = 0.
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(A) (B)

Figure 6.2: Schematics of learning rules for connection wights in a STRNN with εa = εb = 0.

From the sixth line of Algorithm 6.1, ∆md
ij(t) can be written as

∆md
ij(t) = τ dm(Iprei (t)rj(t) + rprei (t)rj(t)− αmd

ij(t− 1))

Iprei (t) =
n∑
j=1

wij(t− 1)xj(t),
(6.15)

where, Iprei (t) is the presynaptic input to network node i. Therefore, the learning rule is

local, as shown in Figure 6.2B, and related to presynaptic input, presynaptic firing rate and

firing rate of a node which connection is connect to.

6.5 Examples

In this section, we present numerical examples to show the effectiveness of the developed soft-

thresholding nonlinear network. Here, input sequences are uncorrelated Gaussian random

processes with zero mean and unit variance. For the purpose of learning the STRNN, we

consider n = 15 and a one dimensional input with 800 epochs (10000 samples per epoch,

corresponding to approximately an order of magnitude time-scale separation between the
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Figure 6.3: Firing rate activity of learned STRNNs over epoch number with A) λ1 = 0,
B) λ1 = 0.01, and C) λ1 = 0.04. Recovery performance of learned STRNNs after different
number of epochs versus q for D) λ1 = 0, E) λ1 = 0.01, and F) λ1 = 0.04.
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Figure 6.4: Evolution of Frobenius norm of A) feedforward, B) delayed recurrent, and C)
recurrent connectivity matrices over epoch number.

learning and network dynamics). We proceed the experiment by setting εa = εb = 0.1,

λ = 1, λ2 = 0.15, α = 0.2, µ = 0.1, τ̂w = 1e− 5, τ̂ sm = 1e− 5, τ̂ dm = 1e− 3, zero initialization

for the firing rates, and random initialization for weight matrices. Figure 6.3A-C show the
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Figure 6.5: The average number of reconstructed lags as a function of epoch number for
different values of (A) λ1 and (B) λ2. All other parameters except λ1 and λ2 are the same
for both plots.

evolution of the firing rate activity of the network over epoch number for λ1 = 0, λ1 = 0.01

and λ1 = 0.04, respectively. It is clear from these plots that different value of λ1 causes

different level of sparsity in the firing activity of the network.

For the purpose of testing the learned STRNN, the ability of the network to recover the input

history from the current network activity before and after training is shown in Figure 6.3D-

F. We tested the learned network using 50000 random realizations drawn from a Gaussian

distribution with zero mean and unit variance. These plots also illustrate the ability of

the network to reconstruct the input history over epoch number. Evolution of connections

weights, Frobenius norm of connectivity matrices, over time, epoch number, is illustrated in

Figure 6.4.

Figure 6.5A illustrates the average number of reconstructed lags, q̄, as a function of epoch

number for different values of λ1. In this study λ2 = 0.15, λ = 1,α = 0.2, µ = 0.1, τw = τ̂w,

τ sm = τ̂ sm, and τ dm = τ̂ dm. Furthermore, q̄ as a function of epoch number for different values
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Figure 6.6: The average number of reconstructed lags as a function of epoch number for
different values of (A) λ and (B) α. All other parameters except α and λ are the same for
both plots.

of λ2 is depicted in Figure 6.5B. In this plot. λ1 = 0.01, λ = 1, α = 0.2, µ = 0.1, τw = τ̂w,

τ sm = τ̂ sm, and τ dm = τ̂ dm. For both of these studies, This figure represents how increasing λ2

results in decreasing the ability to reconstruct the input history. The reason is that by fixing

λ and increasing λ2 the optimization is forced to provide codes that are efficient mostly in

terms of energy and less in terms of the history recovery.

We also studied the effect of α and λ on q̄. Figures 6.6A-B illustrate q̄ as a function of epoch

number for different values of λ and α, respectively. In these studies, λ1 = 0.01, λ2 = 0.15,

µ = 0.1, τw = τ̂w, τ sm = τ̂ sm, and τ dm = τ̂ dm.

Figure 6.7A shows q̄ as a function of epoch number for different values of τw (time constant

of feedforward connections) for λ1 = 0.01. Furthermore, q̄ as a function of epoch number for

different values of τ dm (time constant of recurrent connections) for λ1 = 0.01 is depicted in

Figure 6.7B. In these studies, λ2 = 0.15, λ = 1, α = 0.2, µ = 0.1, and τ sm = τ̂ sm.
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Figure 6.7: The average number of reconstructed lags as a function of epoch number for
different values of (A) τw (time constant of feedforward connections) and (B) τ dm (time
constant of recurrent connections). All other parameters except τw and τ dm are the same for
both plots.
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Figure 6.8: The average number of reconstructed lags as a function of epoch number for
different values of τ sm, time constant of delayed recurrent connections, for (A) λ1 = 0.01 and
(B) λ1 = 0.04. All other parameters except λ1 are the same for both plots.

The average number of reconstructed lags as a function of epoch number for different values

of τ sm (time constant of delayed recurrent connections) for λ1 = 0.01 and λ1 = 0.04 are shown
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in Figures 6.8A-B. In these studies, λ2 = 0.15, λ = 1, α = 0.2, µ = 0.1, , τw = τ̂w, and

τ dm = τ̂ dm.

6.6 Chapter Summary

The processes by which efficient codes are produced remains a fundamental question in

theoretical neuroscience. The role of recurrent networks in mediating these codes has been

studied in the context of minimum-energy optimization problems. In this scenario, the

synthesized networks exhibit linear dynamics. Here, we show how thresholding nonlinearities

arise naturally through the optimization of a cost function that minimizes both energy and

sparsity, i.e., what we term as a lightweight code. Such nonlinearities are, of course, intrinsic

to the dynamics of neurons. Our complete network is able to produce lightweight codes that

allow faithful reconstruction of both the current input and its history.
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Chapter 7

Conclusions and Future Work

7.1 Summary and Conclusions

In this dissertation, we have explored several issues pertaining to the link between brain

network dynamics and their associated function.

First, we considered the problem of node selection for probing connections in evoked net-

works. Here, each connection (weight) describes the node output responses when an input

node is activated using a prescribed stimulus. Like ‘functional’ networks, such connections do

not necessarily correspond to the physical (anatomical) network structure. However, in con-

trast to passive network inference methods, evoked connections are defined explicitly in both

sensor and actuator space. We showed that the problem of deciding which node to stimulate

in order to probe the evoked connections is equivalent to a problem of sensor scheduling,

where each ‘sensor’ measures the weight of an edge relative to the delivered stimulus. Based

on a Kalman filter paradigm for estimating the weights, we proceeded to derive convenient

rules for greedy scheduling. Then, we showed that under certain conditions, the greedy al-

gorithm is optimal over a finite horizon and, moreover, amounts to a predetermined periodic
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‘round-robin’ selection schedule. Those conditions – that measurement and process noise are

equal across nodes; and that initial uncertainty of edges is grouped on a node-by-node basis

– are expected to be particularly applicable in situations where the sensor/actuators are co-

located, relatively homogeneous and minimal prior information is known about the weights.

We demonstrated the efficacy of the proposed methods in several examples, including a sim-

ulation study of a biophysical mean-field model. In this case, we showed that exploiting

certain dynamical properties of the network, namely, approximate linearity with respect to

a narrowband stimulus, allows for recovery of underlying structure from the evoked network

through a linear inverse problem. The proposed methodology provides a principled way to

interrogate the connections in brain networks via stimulation, with specific applications in

brain mapping.

Next, we studied the notion of neuronal microstates in the context of resting state fMRI

recordings of brain activity. For this purpose, we developed a bounded-observation Kalman

filter for estimating correlation dynamics in neural recordings. The metric of interest–the

Pearson correlation coefficient–is constrained to [−1, 1], necessitating the inclusion of a Fisher

transform in the filter equations. Utilizing the proposed technique, we quantified the extent

of conservation of functional connectivity, defined by the correlation of intrinsic activity,

within the cerebral cortex between wakefulness and sevoflurane general anesthesia. Our

results indicated that the transition from 0% to 1.2% sevoflurane is associated with altered

interaction between resting state networks. In addition, we observed evidence of altered

brain microstate dynamics during resting wakefulness. Then, we evaluated the limitation of

PCA for dFC analysis on original time-series data, and showed how such analysis can change

the outcome significantly.
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We then proceeded to demonstrate proof-of-concept for EEG-based segregation of focal ver-

sus diffuse DLOC etiology based on time-series analysis and support-vector machine classifi-

cation. We highlighted how information regarding these etiologies may be embedded within

the temporal dynamics of the measured EEG signals. Moreover, we developed a new spa-

tiotemporal characterization of so-called lagged microstates, in order to better understand

the mechanisms of impaired consciousness in DLOC patients. We showed that patients hav-

ing severe impairments can be differentiated from those with relatively milder impairments

on the basis of this new analysis. Thus, this method can be used as a feature for improving

automatic classification of level of consciousness in patients with coma.

In parallel with our data-driven investigations, we also performed theory-based development

of information processing in small neuronal network models. In this context, we derived ana-

lytical conditions that are sufficient to ensure the recovery of time-varying signals processed

via a recurrent linear network, wherein the network output is allowed to accrue prior to

recovery. The conditions amount to a generalized observability criteria and are less stringent

than the approach of performing sparse recovery pointwise, i.e., at each instant in time. Fur-

ther, we derived several bounds in terms of the system dynamics for recovery performance

in the presence of both input disturbance and observation noise. We showed that dynamics

can play opposing roles in mediating accurate recovery with respect to these two different

sources of corruption.

Finally, we considered the processes by which efficient codes may be produced in sensory

networks. The role of recurrent networks in mediating these codes has been studied in

the context of minimum-energy optimization problems. In this scenario, the synthesized

networks exhibit linear dynamics. In this topic, we showed how thresholding nonlinearities

arise naturally through the optimization of a cost function that minimizes both energy and
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sparsity, i.e., what we term as a lightweight code. Such nonlinearities are, of course, intrinsic

to the dynamics of neurons. Our complete network is able to produce lightweight codes that

allow faithful reconstruction of both the current input and its history.

7.2 Future Directions

This dissertation has outlined results along two major axes: (i) tracking connectivity within

brain networks in a dynamic manner, and (ii) synthesizing dynamics for particular objective

function. The former, in particular, may generalize to a number of applications related

to understanding transient changes in the brain, for instance, associated with neurological

disorders. Other potential future research directions that may emanate from this dissertation

are discussed below:

Tracking Dynamic Connectivity with Active Stimulation in Clinical Settings: In

this dissertation, we solved the optimal probing strategy for a scenario where connections

are dynamic and are changing over time. However, we did not have the opportunity to

deploy this theory in experimental contexts. With the rapid development of new tools and

technology for modifying neural activity, such deployment may be accessible in the near

future and, thus, constitutes a natural progression for the developed methods.

Finding Spatiotemporal Motifs in Neural Data by Incorporating Structural Con-

straints from Physiology: The spatiotemporal motifs obtained in Chapter 3 and Chap-

ter 4 were obtained without any prior constraints. Hence, It is of interest to perform this
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analyses by having specific constraints in terms of geometry and structure for each motif,

potentially arising from the underlying anatomy.

Designing Neural Network Architecture Based on Different Objective Function:

In this dissertation, we presented how a neural-like network architecture emerges as a result

of solving a particular optimization problem. It would be interesting to explore how differ-

ent objective functions result in different architectures in terms of observed dynamics and

adaptation rules. Again, introducing prior biological constraints may add to the richness of

the obtained rules.

Data Processing and Dimensionality Reduction by Training a Neural Network

with Applications in Time-series Data Processing: Perhaps the greatest challenge

in neural data analysis is in the extraction of low-dimensional structures from what are,

in native form, very high dimensional recordings. Conventional methods, such as PCA,

can be problematic since they may be biased by regions with high activity, without overt

regard for temporal dynamics. Thus, there is a substantial need for neural data processing

and dimensionality reduction methods that explicitly account for temporal structure and

memory on time-series data. Such development is, perhaps, the most general opportunity

for future extensions of the work developed herein.
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Appendix A

Supplementary Materials for Chapter 2

A.1 EM Algorithm with Irregular Observations

Here, we provide the details of EM algorithm used for a linear state space model with

irregularly spaced observations. Again, the problem is to jointly estimate the state, xj,k, k =

1, 2, · · · ,m, αj and βj from yj,k, k ∈ K, 1 ≤ |K| ≤ m. Because the noise covariance matrices

are diagonal, we can decouple the estimation processes and neglect j. Therefore, the problem

reduces to joint estimation of the state xk, k = 1, · · · ,m, α (process noise variance) and β

(measurement noise variance) from ykn , n = 1, · · · , |K| ≤ m, subject to the linear state space

model in (3.4).

E-Step: We start with initial conditions x0|0 = µ0 and P0 = σ0. If there exist observation

at time k, then the estimated mean and variance are updated based on the Kalman filter

equations (3.9). Otherwise, the mean and variance estimates of the states are updated as
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x̂k|k−1 = x̂k−1|k−1

Pk|k−1 = Pk−1 + α,

x̂k|k = x̂k−1|k−1

Pk = Pk|k−1.

(A.1)

Based on the obtained estimates using the forward filtering recursion, the smoothed estimates

can be obtained using backward recursion in the usual way reported in [49,50] as

Jk−1 = Pk−1(Pk|k−1)−1,

xk−1|m = xk−1|k−1 + Jk−1(xk|m − xk|k−1),

Pk−1|m = Pk−1 + Jk−1(Pk|m − Pk|k−1)Jk−1,

(A.2)

where xk|m is the smoothed state at time k based on at most m observations. Also, the

lag-one covariance smoother can be written as

Pm,m−1|m = (1−Km)Pm−1

Pk−1,k−2|m = Pk−1Jk−2 + Jk−2(Pk,k−1|m − Pk−1)Jk−2

(A.3)

M-Step: In the maximization step, we perform maximum likelihood estimation of model

parameters from the joint density of the states Xm = {x0, x1, · · · , xm} and observations

Ym = {yk, k ∈ K}, where the cardinality of Ym is |K|. For instance if Y4 = {y1, y3}, then

|K| = 2, k1 = 1 and K2 = 3. The joint density of Xm and Ym can be factorized as

fΘ(Xm, Ym) = fµ0,σ0(x0)
m∏
k=1

fα(xk|xk−1)

|K|∏
n=1

fβ(ykn|xkn), (A.4)
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where Θ = {µ0, σ0, α, β}. Under the Gaussian assumption, the log-likelihood function can

be written as
LX,Y (Θ) = − 1

2σ0

(x0 − µ0)2 − 1

2
ln(σ0)

− 1

2α

m∑
k=1

(xk − xk−1)2 − m

2
ln(α)

− 1

2β

|K|∑
n=1

(ykn − Cknxkn)2 − |K|
2
ln(β)

+ Constant.

(A.5)

Based on (A.5), if we have the complete data, i.e., {Xm, Ym}, then the maximum likelihood

estimation (MLE) of Θ can be easily obtained. However, we do not have the complete data

and the MLE of Θ can be obtained iteratively using EM algorithm by successively improving

the approximation of the complete data in E-step. In the M-step, we find the parameter Θ

that maximizes following quantity at iteration i,

Q(Θ|Θ(i−1)) = EX|Y,Θ(i−1){LX,Y (Θ)|Ym,Θ(i−1)} (A.6)

Given Θ(i−1), the desired conditional expectations in (A.6) can be obtained from the E-step

as
Q(Θ|Θ(i−1)) = − 1

2σ0

[
P0|m + (x0|m − µ0)2

]
− 1

2
ln(σ0)

− 1

2α
[S11 − 2S10 + S00]− m

2
ln(α)

− 1

2β

|K|∑
n=1

[
(ykn − Cknxkn)2 + C2

knPkn|m
]

− |K|
2
ln(α) + Constant,

(A.7)
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where

S11 =
m∑
k=1

(x2
k|m + Pk|m),

S10 =
m∑
k=1

(xk|mxk−1|m + Pk,k−1|m),

S00 =
m∑
k=1

(x2
k−1|m + Pk−1|m).

(A.8)

Maximization of (A.7) with respect to Θ yields the updated estimates at iteration i as

αi =
1

m
(S11 − S2

10/S00),

βi =
1

K

|K|∑
n=1

[
(ykn − Cknxkn)2 + C2

knPkn|m
]
,

µi0 = x0|m, σ
i
0 = P0|m.

(A.9)

In summary, after initializing the parameter Θ, we perform the E-step, filtering and smooth-

ing, and then updating the parameter in the M-step. The E and M steps alternate to

convergence. In order to obviate computational issues associated with this algorithm, a

maximum iteration number is set alongside the convergence criterion.
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Appendix B

Supplementary Materials for Chapter 3

B.1 Additional Results for Section 3.4

Toy Example: The original covariance and correlation matrices for microstate 1 and 2

were used to generate synthesized data in toy example shown in Figures 3.2 and 3.3 of the

main manuscript are as follows:

CovState1 =

1.54 2.40

2.40 5.67

 , CorrState1 =

 1 0.81

0.81 1

 ,

CovState2 =

2.61 2.02

2.02 5.36

 , CorrState2 =

 1 0.54

0.54 1

 .
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The averaged estimation of covariance and correlation matrices after performing microstate

analysis on the original time-series data (before applying PCA) on 100 realization of synthe-

sized data are as follows:

CovState1 =

1.65 2.44

2.44 5.70

 , CorrState1 =

 1 0.80

0.80 1

 ,

CovState2 =

2.55 1.91

1.91 5.26

 , CorrState2 =

 1 0.52

0.52 1

 .
The averaged estimation of covariance and correlation matrices after performing microstate

analysis on the original time-series data (after applying PCA) on 100 realization of synthe-

sized data are as follows:

C̃ovState1 =

1.66 2.16

2.16 5.79

 , C̃orrState1 =

 1 0.70

0.70 1

 ,

C̃ovState2 =

2.43 2.27

2.27 5.23

 , C̃orrState2 =

 1 0.65

0.65 1

 .

Statistical Analysis of Occupancy: The results of statistical test on occupancy of being

at a particular microstate (without loss of generality microstate 1) before and after applying

PCA on the original time-series data for different cases are as follows: (K-S test for the real

BOLD case, p-value = 0.111, stat = 0.5), (K-S test for the case I, p-value=0.031, stat=0.6),

(K-S test for the case II, p-value=0.007, stat=0.7), (K-S test for the case III, p-value=0.031,

stat=0.6).
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Figure B.1: Functional connectivity of each subjects, calculated over entire scan time, for
all individuals in our dataset.

Static Functional Connectivity of Each Subjects: Figure B.1 demonstrates the func-

tional connectivity of each subjects, calculated over entire scan time.

Non-stationary Simulation of the BOLD Time-Series: To simulate a non-stationary

BOLD time-series data, we use the results of microstate analysis on the real BOLD signal.

After applying microstate analysis to the real BOLD signal, we exactly know the microstate

index for each sliding window for all subjects. Then for all sliding window which are as-

signed to the firs microstate, we calculate the average covariance matrices for all subjects

individually. This analysis results in Figure B.2A. In a similar way, we can find covariance

matrices associated to second microstate for each individual subjects (Figure B.2B). We then

use these covariance matrices to simulate BOLD signal with similar non-stationarity as the

real BOLD signal for each subject.
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Figure B.2: Microstates used for simulation of time-series data in case II. (A) Correlation
matrices associated to the first microstate for each individual obtained from microstate
analysis of the BOLD signal. (B) Correlation matrices associated to the second microstate
for each individual obtained from microstate analysis of the BOLD signal.
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Figure B.3: (A) Total power spectrum and (B) total functional connectivity of all subjects
in our dataset.

Total Power Spectrum and Total Correlation Matrix Across All the Subjects:

Figure B.3 illustrates total correlation matrix and Total power spectrum of all subjects in

our dataset.

B.2 Determining the Number of Motifs Using AIC

Selecting the number of clusters, k, in unsupervised learning is one of the key problem. The

correct choice of K is often ambiguous. There exists several heuristic methods to facilitate

the selection of k such as "The Elbow Method" by [224] and a technique based on the

use of hierarchical clustering by [225]. Another set of approaches for determining k are

information criteria methods. In this chapter, we adopt the Akaike information criterion

(AIC) [90] approach. AIC rewards goodness of fit, assessed by the likelihood function, but

it also includes a penalty that is an increasing function of K. Figure B.4 shows AIC versus

K for both 0% and 1.2% vol sevoflurane. In this plot, AIC values are normalized to have

maximum value of unity for each condition. It can be seen from this figure that K = 8 is

the optimal choice of K for both condition.
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Figure B.4: Normalized AIC versus number of cluster K. AIC values are normalized to have
maximum value of unity for each condition.

B.3 Spatiotemporal Analyses of Synthesized Data

Here, we demonstrate the efficacy and utility of the approach in a simple example of a data

set with 9 locations and 160 time windows. We assume there exists 5 spatial motifs shown

in Figure B.5A and each motif has the same temporal correlation trajectory with the same

mean over time (Green lines shown in Figure B.5B). Before decomposing the correlation

trajectories, we added noise drawn from uniform distribution inside interval (−0.1, 0.1) to

all region pair correlations over time. Figure B.5 shows spatiotemporal decomposition of

correlation time series. Spatial and temporal motifs are shown in Figure B.5A and B.5B,

respectively. It can be conclude from these plots that temporal information can play an

important role for extracting meaningful motifs even though if all the region pairs have the

same static correlation value.
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Figure B.5: (A). Spatial motifs and (B) temporal correlation trajectories associated with
each cluster for synthesized data. Green line shows the average correlation over time and
space for each cluster.

B.4 Numerical Simulation of the Developed Filter on

Synthesized Data

To illustrate the performance of the proposed filter, we simulate a univariate example of the

system (3.4) with A = C = 1, Qw = 0.1 and Rv = 0.05. Fig. B.6 shows the estimate of

the correlation, i.e., zk, using the proposed filter, as well as the results of naive application

of the Extended Kalman Filter (EKF) based on linearization of (3.3) [226]. Clearly, state

estimation using proposed optimal filter is closest to the true state of the system. This result

is expected because EKF is simply a linearization of F−1(), which will produce poor results

when the argument of the function is large (i.e., large correlation values).

Fig. B.7 illustrates mean-square error (MSE) for the proposed optimal filtering compared to

EKF for different noise parameter values. In this simulation, a 4-dimensional system with

A = C = I4 is considered. The process and measurement noise are considered in the form of
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Figure B.8: (A) Bar plot of the cardinality percentage of each motif for both condition (0%
and 1.2%) for a fixed window size, 11 seconds, over different individuals. Error bars stand for
SEM. Average similarity (B) and SEM of average similarity (C) between motifs over different
individuals, by computing the correlation of spatial component of each motif.

Qw = σ2
wI4, Rv = σ2

vI4 and each time MSE is calculated for a specific ratio of r = σ2
w/σ

2
v.

It can be seen in this figure that by increasing r, MSE is decreased for both filters. Also, It

can be seen that optimal filter always has better performance in term of MSE compare to

EKF.

B.5 Robustness as a Function of Intersubject Variability

To see how consistent the spatiotemporal motifs are for different conditions (0% and 1.2%),

we look at how spatial motifs at 0% and 1.2% obtained from each individual, without con-

catenating data from all subjects for each condition, are similar. Figure B.8A demonstrates

the average cardinality of each motifs over different individual. Error bars stand for SEM

of the average cardinality. Figure B.8B represents average similarity between motifs at 0%

and 1.2% obtained from each individual for 11 seconds window size. Standard error of the
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mean of the average similarity is shown in Figure B.8C. We can see from this figures that

the similarity between first, second and eighth motifs are robust over different individual.
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Appendix C

Supplementary Materials for Chapter 4

C.1 Determining the Number of Microstates

Figure C.1 shows the ratio of within-cluster distance to between-cluster distance versus the

number of microstates/clusters based on lagged cross-correlation analysis for patients with

different levels of coma severity and subtype. It can be seen from this figure that k = 5 is a

good choice of K for different cases.

C.2 Robustness of Results with Respect to the Choice of

Microstates Number

Figure C.2 demonstrates the connectivity pattern of microstates over head map with k=5.

In this illustration, all connections with correlation value less than 0.1, threshold, are set to

zero.
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Figure C.1: Ratio of within–cluster distance to between-cluster distance versus number of
clusters for microstate analysis based on lagged cross-correlation with different epoch length
and number of samples for each lag. Four lags is considered for all of the cases.

We performed the microstate analysis using lagged cross-correlation of EEG data for different

number of clusters. Figures C.3, C.4, and C.6 illustrate the microstates for k = 4, k = 6,

and k = 7, respectively. All of the parameter, except the number of microstates, are exactly

the same as parameter considered in section 4.5. Figure C.5 demonstrates the connectivity

pattern of microstates over head map with k=6. In this illustration, all connections with

correlation value less than 0.05, threshold, are set to zero. Microstate occupancy for all the

cases are shown in Figure C.7. For all cases, the states are ranked based on their average

strength.
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Figure C.2: Connectivity Map of all microstates with k=5. First, second, third and fourth
columns are associated to zero, first, second, and third lag connectivity. All connections with
correlation value less than 0.1 are set to zero.
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Figure C.3: Spatiotemporal microstates extracted from subjects with different coma severity
and coma subtypes based on lagged cross-correlation of EEG data with k=4 microstates.
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Figure C.4: Spatiotemporal microstates extracted from subjects with different coma severity
and coma subtypes based on lagged cross-correlation of EEG data with k=6 microstates.
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Figure C.5: Connectivity Map of all microstates with k=6. First, second, third and fourth
columns are associated to zero, first, second, and third lag connectivity. All connections with
correlation value less than 0.05 are set to zero.
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Figure C.6: Spatiotemporal microstates extracted from subjects with different coma severity
and coma subtypes based on lagged cross-correlation of EEG data with k=7 microstates.
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186



Appendix D

Supplementary Materials for Chapter 5

D.1 Proof of Lemma 5.1

We start the proof using contradiction. Let us assume that the sequence of (uk)
K−1
k=0 and

(rk)
K
k=0 is not unique and there is another sequence of s-sparse (ûk)

K−1
k=0 and (r̂k)

K
k=0 which

satisfies the system (5.3) with noiseless measurements. Note that uk − ûk has at most 2s

nonzero elements. Similar to the depiction in Figure 5.2, we can rewrite (5.11) based on 2s

columns of B corresponding to 2s active non-zero elements of uk − ûk as



y0

y1

...

yK


= OKr0 + J2s

K



u2s
0

u2s
1

...

u2s
K−1


, (D.1)
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

y0

y1

...

yK


= OK r̂0 + J2s

K



û2s
0

û2s
1

...

û2s
K−1


. (D.2)

By subtracting the above equations from each other we have

OK(r0 − r̂0) + J2s
K



u2s
0 − û2s

0

u2s
1 − û2s

1

...

u2s
K−1 − û2s

K−1


= 0. (D.3)

Based on assumptions that rank(OK) = n and rank([OK J2s
K ]) = n+rank(J2s

K ), ∀J2s
K ∈ J 2s

K ,

all columns of the observability matrix must be linearly independent of each other, and of

all columns of the J2s
K matrix. Hence, the vector r0− r̂0 = 0. Having r0 = r̂0 and the matrix

CB satisfying the RIP condition (5.9) with isometry constant δ2s < 1, it is easy to see that

uk = ûk and therefore there exists unique state and s-sparse input sequences.
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D.2 Proof of Lemma 5.2

Lets assume that the the sequences (r∗k)
K
k=0 and s-sparse (u∗k)

K−1
k=0 are the solutions of Problem

(P2). In this case (D.3) can be rewritten as

OK(r∗0 − r̄0) + J2s
K



u∗2s0 − ū2s
0

u∗2s1 − ū2s
1

...

u∗2sK−1 − ū2s
K−1


=



e0

e1

...

eK


+



e∗0

e∗1
...

e∗K


, (D.4)

where ‖e∗k‖`2 ≤ ε. Based on assumptions that rank(OK) = n and rank([OK J2s
K ]) = n +

rank(J2s
K ), ∀J2s

K ∈ J 2s
K we can project the above equation using the projection (I−PJ2s

K
)

where PJ2s
K

= J2s
K (J2s

K
T
J2s
K )−1J2s

K
T . It is straightforward to verify that (I−PJ2s

K
)J2s

K = 0 and

therefore we have

(I−PJ2s
K

)OK(r∗0 − r̄0) = (I−PJ2s
K

)



e0

e1

...

eK


+ (I−PJ2s

K
)



e∗0

e∗1
...

e∗K


. (D.5)

Finally, we can derive the error bound for the state error from (D.5) as

‖r∗0 − r̄0‖`2 ≤ 2ε

√√√√√ Kσmax

(
(I−PJ2s

K
)T (I−PJ2s

K
)
)

σmin
(
OK

TOK

)
σmin

(
(I−PJ2s

K
)T (I−PJ2s

K
)
) (D.6)

In a similar fashion we have an exact same bound for the state error at a different time k.
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D.3 Proof of Lemma 5.3

For each j ≥ 2 and k = 0, · · · , K − 1 we have

‖hk,Tj(k)‖`2 ≤ s1/2‖hk,Tj(k)‖l∞ ≤ s−1/2‖hk,Tj−1(k)‖`1 , (D.7)

and thus ∑
j≥2

‖hk,Tj(k)‖`2 ≤ s−1/2(‖hk,T1(k)‖`1 + ‖hk,T2(k)‖`1 + · · · )

≤ s−1/2‖hk,T c
0 (k)‖`1 .

(D.8)

Therefore, we have the following equation

‖hk,T c
01(k)‖`2 = ‖

∑
j≥2

hk,Tj(k)‖`2 ≤
∑
j≥2

‖hk,Tj(k)‖`2

≤ s−1/2‖hk,T c
0 (k)‖`1 .

(D.9)

Since (u∗k)
K−1
k=0 minimizes the cost function in Problem (P2),

K−1∑
k=0

‖ūk‖`1 ≥
K−1∑
k=0

‖u∗k‖`1 =
K−1∑
k=0

‖ūk + hk‖`1

=
K−1∑
k=0

 ∑
i∈T0(k)

|ūk,i + hk,i|+
∑

i∈T c
0 (k)

|ūk,i + hk,i|


≥

K−1∑
k=0

(‖ūk,T0(k)‖`1 − ‖hk,T0(k)‖`1 + ‖hk,T c
0 (k)‖`1 + ‖ūk,T c

0 (k)‖`1)

(D.10)

ū0, · · · , ūK−1 are non-zero for T0(0), · · · , T0(K − 1), respectively. Therefore,

‖ū0,T c
0 (0)‖`1 = · · · = ‖ūK−1,T c

0 (K−1)‖`1 = 0 (D.11)
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which gives
K−1∑
k=0

‖hk,T c
0 (k)‖`1 ≤

K−1∑
k=0

‖hk,T0(k)‖`1 . (D.12)

Considering

‖hk,T0(k)‖`1 ≤ s1/2‖hk,T0(k)‖`2 , (D.13)

and substituting it into (D.9) and (D.12) we have

K−1∑
k=0

‖hk,T c
01(k)‖`2 ≤

K−1∑
k=0

‖hk,T0(k)‖`2 . (D.14)

D.4 Proof of Lemma 5.4

To find the bound for
∑K−1

k=0 ‖hk,T01(k)‖`2 , we start with

CBhk = CBhk,T01(k) +
∑
j≥2

CBhk,Tj(k), (D.15)

which gives

‖CBhk,T01(k)‖2
`2

=
〈
CBhk,T01(k),CBhk

〉
− 〈CBhk,T01(k),

∑
j≥2

CBhk,Tj(k)〉. (D.16)

From (5.19) and the RIP condition for CB,

|〈CBhk,T01(k),CBhk〉| ≤ ‖CBhk,T01(k)‖`2‖CBhk‖`2

≤ 2εC0

√
1 + δ2s‖hk,T01(k)‖`2 ,

(D.17)
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and, moreover, application of the parallelogram identity for disjoint subsets T0(k) and

Tj(k), j ≥ 2 results in

|〈CBhk,T0(k),CBhk,Tj(k)〉| ≤ δ2s‖hk,T0(k)‖`2‖hk,Tj(k)‖`2 . (D.18)

Inequality (D.18) holds for T1 in place of T0. Since T0 and T1 are disjoint

‖hk,T0(k)‖`2 + ‖hk,T1(k)‖`2 ≤
√

2‖hk,T01(k)‖`2 , (D.19)

which results in

(1− δ2s)‖hk,T01(k)‖2
`2
≤ ‖CBhk,T01(k)‖2

`2

≤ ‖hk,T01(k)‖`2(2C0ε
√

1 + δ2s +
√

2δ2s

∑
j≥2

‖hk,Tj(k)‖`2).
(D.20)

It follows from (D.8) and (D.20) that

‖hk,T01(k)‖`2 ≤ αC0ε+ ρs−1/2‖hk,T c
0 (k)‖`2 . (D.21)

Now, using (D.12) and (D.21) we can conclude that

K−1∑
k=0

‖hk,T01(k)‖`2 ≤ KαC0ε+ ρs−1/2

K−1∑
k=0

hk,T c
0 (k)‖`2

≤ KαC0ε+ ρ

K−1∑
k=0

‖hk,T0(k)‖`2

≤ KαC0ε+ ρ

K−1∑
k=0

‖hk,T01(k)‖`2 ,

(D.22)
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which means
K−1∑
k=0

‖hk,T01(k)‖`2 ≤ K(1− ρ)−1αC0ε. (D.23)
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