502 research outputs found

    Power Management and Protection in MT-HVDC Systems with the Integration of High-Voltage Charging Stations

    Get PDF
    Due to the significant increase of the long-distance electricity demand, effective use of Distributed Generations (DGs) in power system, and the challenges in the expansion of new transmission lines to improve the reliability of power system reliability, utilizing Multi-Terminal HVDC (MT-HVDC) technology is an applicable, reliable, and cost-effective solution in hybrid AC/DC grids. MT-HVDC systems have flexibility in terms of independent active and reactive power flow (reversible control) and voltage control. Interconnecting two AC grids with different frequencies and transmitting electricity for the long-distance with low power-losses, which leads to less operation and maintenance costs, can be done through the MT-HVDC systems. The integration of large-scale remote DGs, e.g., wind farms, solar power plants, etc., and high-voltage charging stations for Electric Vehicles (EVs) into the power grid have different issues, such as economic, technical, and environmental challenges of transmission and network expansion/operation of both AC and DC grids. In details, damping oscillation, voltage support at different buses, operation of grid-connected inverters to the off-shore and on-shore AC systems, integrating of existing converter stations in MT-HVDC systems without major changes in control system, evaluation of communication infrastructure and also reactive power and filtering units’ requirements in MT-HVDC systems are the technical challenges in this technology. Therefore, a reliable MT-HVDC system can be a possible mean of resolving all the above-mentioned issues. MT-HVDC systems need a control system that can bring stability to the power system during a certain period of the operation/planning time while providing effective and robust electricity. This thesis presents an improved droop-based control strategy for the active and reactive power-sharing on the large-scale MT-HVDC systems integrating different types of AC grids considering the operation of the hybrid AC/DC grids under normal/contingency conditions. The main objective of the proposed strategy is to select the best parameters of the local terminal controllers at the site of each converter station (as the primary controller) and a central master controller (supervisory controller) to control the Power Flow (PF) and balance the instantaneous power in MT-HVDC systems. In this work, (1) various control strategies of MT-HVDC systems are investigated to propose (2) an improved droop-based power-sharing strategy of MT-HVDC systems while the loads (e.g., high-voltage charging stations) in power systems have significant changes, to improve the frequency response and accuracy of the PF control, (3) a new topology of a fast proactive Hybrid DC Circuit Breaker (HDCCB) to isolate the DC faults in MT-HVDC grids in case of fault current interruption. The results from this research work would include supporting energy adequacy, increasing renewable energy penetration, and minimizing losses when maintaining system integrity and reliability. The proposed strategies are evaluated on different systems, and various case scenarios are applied to demonstrate their feasibility and robustness. The validation processes are performed using MATLAB software for programming, and PSCAD/EMTDC and MATLAB/Simulink for simulation

    Operation of HVDC converters for transformer inrush current reduction

    Get PDF
    The present PhD thesis deals with transformer inrush current in offshore grids including offshore wind farms and High Voltage Direct Current (HVDC) transmission systems. The inrush phenomenon during transformers energization or recovery after the fault clearance is one of important concerns in offshore systems which can threaten the security and reliability of the HVDC grid operation as well as the wind farms function. Hence, the behaviour of wind turbines,Voltage Source Converters (VSC) and transformer under the normal operation and the inrush transient mode is analyzed. For inrush current reduction in the procedure of the offshore wind farms start-up and integration into the onshore AC grid, a technique based on Voltage Ramping Strategy (VRS) is proposed and its performance is compared with the operation of system without consideration of this approach. The new methodology which is simple, cost-effective ensures minimization of transformer inrush current in the offshore systems and the enhancement of power quality and the reliability of grid under the transformer energizing condition. The mentioned method can develop much lower inrush currents according to the slower voltage ramp slopes. Concerning the recovery inrush current, the operation of the offshore grid especially transformers is analyzed under the fault and the system restoration modes.The recovery inrush transient of transformers can cause tripping the HVDC and wind farms converters as well as disturbing the HVDC power transmission. A voltage control design based on VRS is proposed in HVDC converter to recover ali the transformers in offshore grid with lower inrush currents.The control system proposed can assure the correct performance of the converters in HVDC system and in wind farm and also the robust stability of the offshore grid.Esta tesis doctoral estudia las corrientes de energización de transformadores de parques eólicos marinos con aerogeneradores con convertidores en fuente de tensión (VSC) de plena potencia conectados a través de una conexión de Alta Tensión en Corriente Continua (HVDC). Las corrientes de energización pueden disminuir la fiabilidad de la transmisión eléctrica debido a disparos intempestivos de las protecciones durante la puesta en marcha o recuperación de una falta. Para la mitigación de las corrientes de energización durante la puesta en marcha del parque esta tesis propone una nueva estrategia basada en incrementar la tensión aplicada por el convertidor del parque eólico en forma de rampa (VRS). Este método persigue energizar el parque eólico con el menor coste y máxima fiabilidad. La tesis analiza diferentes escenarios y diferentes rampas. Otro momento en que las corrientes de energización pueden dar lugar a un disparo intempestivo de las protecciones es durante la recuperación de una falta en la red de alterna del parque eólico marino. Esta tesis extiende la estrategia VRS, utilizada durante la puesta en marcha del convertidor del parque, para los escenarios de recuperación de una falta

    Operation of HVDC converters for transformer inrush current reduction

    Get PDF
    The present PhD thesis deals with transformer inrush current in offshore grids including offshore wind farms and High Voltage Direct Current (HVDC) transmission systems. The inrush phenomenon during transformers energization or recovery after the fault clearance is one of important concerns in offshore systems which can threaten the security and reliability of the HVDC grid operation as well as the wind farms function. Hence, the behaviour of wind turbines,Voltage Source Converters (VSC) and transformer under the normal operation and the inrush transient mode is analyzed. For inrush current reduction in the procedure of the offshore wind farms start-up and integration into the onshore AC grid, a technique based on Voltage Ramping Strategy (VRS) is proposed and its performance is compared with the operation of system without consideration of this approach. The new methodology which is simple, cost-effective ensures minimization of transformer inrush current in the offshore systems and the enhancement of power quality and the reliability of grid under the transformer energizing condition. The mentioned method can develop much lower inrush currents according to the slower voltage ramp slopes. Concerning the recovery inrush current, the operation of the offshore grid especially transformers is analyzed under the fault and the system restoration modes.The recovery inrush transient of transformers can cause tripping the HVDC and wind farms converters as well as disturbing the HVDC power transmission. A voltage control design based on VRS is proposed in HVDC converter to recover ali the transformers in offshore grid with lower inrush currents.The control system proposed can assure the correct performance of the converters in HVDC system and in wind farm and also the robust stability of the offshore grid.Esta tesis doctoral estudia las corrientes de energización de transformadores de parques eólicos marinos con aerogeneradores con convertidores en fuente de tensión (VSC) de plena potencia conectados a través de una conexión de Alta Tensión en Corriente Continua (HVDC). Las corrientes de energización pueden disminuir la fiabilidad de la transmisión eléctrica debido a disparos intempestivos de las protecciones durante la puesta en marcha o recuperación de una falta. Para la mitigación de las corrientes de energización durante la puesta en marcha del parque esta tesis propone una nueva estrategia basada en incrementar la tensión aplicada por el convertidor del parque eólico en forma de rampa (VRS). Este método persigue energizar el parque eólico con el menor coste y máxima fiabilidad. La tesis analiza diferentes escenarios y diferentes rampas. Otro momento en que las corrientes de energización pueden dar lugar a un disparo intempestivo de las protecciones es durante la recuperación de una falta en la red de alterna del parque eólico marino. Esta tesis extiende la estrategia VRS, utilizada durante la puesta en marcha del convertidor del parque, para los escenarios de recuperación de una falta.Postprint (published version

    Decentralized and Fault-Tolerant Control of Power Systems with High Levels of Renewables

    Get PDF
    Inter-area oscillations have been identified as a major problem faced by most power systems and stability of these oscillations are of vital concern due to the potential for equipment damage and resulting restrictions on available transmission capacity. In recent years, wide-area measurement systems (WAMSs) have been deployed that allow inter-area modes to be observed and identified.Power grids consist of interconnections of many subsystems which may interact with their neighbors and include several sensors and actuator arrays. Modern grids are spatially distributed and centralized strategies are computationally expensive and might be impractical in terms of hardware limitations such as communication speed. Hence, decentralized control strategies are more desirable.Recently, the use of HVDC links, FACTS devices and renewable sources for damping of inter-area oscillations have been discussed in the literature. However, very few such systems have been deployed in practice partly due to the high level of robustness and reliability requirements for any closed loop power system controls. For instance, weather dependent sources such as distributed winds have the ability to provide services only within a narrow range and might not always be available due to weather, maintenance or communication failures.Given this background, the motivation of this work is to ensure power grid resiliency and improve overall grid reliability. The first consideration is the design of optimal decentralized controllers where decisions are based on a subset of total information. The second consideration is to design controllers that incorporate actuator limitations to guarantee the stability and performance of the system. The third consideration is to build robust controllers to ensure resiliency to different actuator failures and availabilities. The fourth consideration is to design distributed, fault-tolerant and cooperative controllers to address above issues at the same time. Finally, stability problem of these controllers with intermittent information transmission is investigated.To validate the feasibility and demonstrate the design principles, a set of comprehensive case studies are conducted based on different power system models including 39-bus New England system and modified Western Electricity Coordinating Council (WECC) system with different operating points, renewable penetration and failures

    A Wide Area Hierarchical Voltage Control for Systems with High Wind Penetration and an HVDC Overlay

    Get PDF
    The modern power grid is undergoing a dramatic revolution. On the generation side, renewable resources are replacing fossil fuel in powering the system. On the transmission side, an AC-DC hybrid network has become increasingly popular to help reduce the transportation cost of electricity. Wind power, as one of the environmental friendly renewable resources, has taken a larger and larger share of the generation market. Due to the remote locations of wind plants, an HVDC overlay turns out to be attractive for transporting wind energy due to its superiority in long distance transmission of electricity. While reducing environmental concern, the increasing utilization of wind energy forces the power system to operate under a tighter operating margin. The limited reactive capability of wind turbines is insufficient to provide adequate voltage support under stressed system conditions. Moreover, the volatility of wind further aggravates the problem as it brings uncertainty to the available reactive resources and can cause undesirable voltage behavior in the system. The power electronics of the HVDC overlay may also destabilize the gird under abnormal voltage conditions. Such limitations of wind generation have undermined system security and made the power grid more vulnerable to disturbances. This dissertation proposes a Hierarchical Voltage Control (HVC) methodology to optimize the reactive reserve of a power system with high levels of wind penetration. The proposed control architecture consists of three layers. A tertiary Optimal Power Flow computes references for pilot bus voltages. Secondary voltage scheduling adjusts primary control variables to achieve the desired set points. The three levels of the proposed HVC scheme coordinate to optimize the voltage profile of the system and enhance system security. The proposed HVC is tested on an equivalent Western Electricity Coordinated Council (WECC) system modified by a multi-terminal HVDC overlay. The effectiveness of the proposed HVC is validated under a wide range of operating conditions. The capability to manage a future AC/DC hybrid network is studied to allow even higher levels of wind

    Short circuit analysis of an offshore AC network having multiple grid forming VSC-HVDC links

    Get PDF
    This article presents the short circuit analysis of an offshore AC network which consists of wind power plants interconnected using HVAC cables. The power generated in the offshore AC network is transmitted to several onshore grids using VSC-HVDC system. The offshore AC network is formed by the VSC-HVDC systems using frequency and voltage droop control. A coordinated control scheme is proposed for wind turbines and offshore VSCs during short circuit conditions in the offshore grid to ensure fault ride through (FRT) without compromising the system stability. The theoretical analysis used for developing this control scheme allows to calculate the system limits taking into consideration the active and reactive power capability. In order to verify the proposed control scheme, three phase symmetric faults have been applied on a wind turbine busbar, HVAC busbar, and at the AC cable that interconnects the VSC-HVDC system. Additionally, a frequency coordination control scheme without communication between wind power generation and VSC-HVDC system has been proposed. The methodology and control system have been validated by performing a nonlinear simulation.Postprint (author's final draft

    Wide-area monitoring and control of future smart grids

    No full text
    Application of wide-area monitoring and control for future smart grids with substantial wind penetration and advanced network control options through FACTS and HVDC (both point-to-point and multi-terminal) is the subject matter of this thesis. For wide-area monitoring, a novel technique is proposed to characterize the system dynamic response in near real-time in terms of not only damping and frequency but also mode-shape, the latter being critical for corrective control action. Real-time simulation in Opal-RT is carried out to illustrate the effectiveness and practical feasibility of the proposed approach. Potential problem with wide-area closed-loop continuous control using FACTS devices due to continuously time-varying latency is addressed through the proposed modification of the traditional phasor POD concept introduced by ABB. Adverse impact of limited bandwidth availability due to networked communication is established and a solution using an observer at the PMU location has been demonstrated. Impact of wind penetration on the system dynamic performance has been analyzed along with effectiveness of damping control through proper coordination of wind farms and HVDC links. For multi-terminal HVDC (MTDC) grids the critical issue of autonomous power sharing among the converter stations following a contingency (e.g. converter outage) is addressed. Use of a power-voltage droop in the DC link voltage control loops using remote voltage feedback is shown to yield proper distribution of power mismatch according to the converter ratings while use of local voltages turns out to be unsatisfactory. A novel scheme for adapting the droop coefficients to share the burden according to the available headroom of each converter station is also studied. The effectiveness of the proposed approaches is illustrated through detailed frequency domain analysis and extensive time-domain simulation results on different test systems

    Enhanced power flow methods in complex plane for VSC-MTDC hybrid AC/DC transmission grids

    Get PDF
    The power flow problem is composed of phasor variables and quantities and thus can be naturally formulated in the complex domain; however, their applications are commonly developed in the real domain. The solution via the Newton-Raphson method, for example, would be restricted in the real domain once the Taylor series expansion in terms of complex variables alone does not exist. Thanks to the Wirtinger calculus, a Newton-Raphson method based on Taylor series expansions of nonlinear functions of complex variables and their complex conjugates becomes possible. As new technologies are implemented in power systems, such as the incorporation of FACTS devices, the development of power flow applications becomes increasingly intricate, and maintaining their formulations in the real domain is preceded by an arduous algebra task. To overcome this difficulty, a series of power flow solution methods are proposed in this work, specified to solve multiterminal AC/DC hybrid systems, being formulated in the complex plane without any loss of precision. Both sequential and unified approaches for solving hybrid AC/DC power flow are derived in the complex plane. In order to improve the performance of the algorithms, an exact second-order power flow algorithm in the complex domain is also proposed. Such power flow models in the complex plane are naturally developed in Cartesian coordinates; therefore, most constraint equations can be written as quadratic functions. Consequently, the Taylor series expansion stops at its second order and the exact non-linearity of complex quadratic power flow equations is maintained. Minor changes in the code structure are required to transform the Newton-Raphson method into the exact power flow approach in the complex plane. The new algorithm exhibits either a superior behavior in fully AC or hybrid AC/DC networks. In order to show the validity of its formulations, the proposed algorithms are implemented in Matlab for well-established case studies of the IEEE-14, -30, -57 and -118 bus, a modified version of the IEEE Two Area RTS-96, and the Brazilian Southern-equivalent of 1916-buses, termed as SIN-1916. The features and advantages of the proposed algorithms are illustrated through the test systems interconnected across a DC network prone to several scenarios, e.g., topology, voltage control, and interchanging of active power.O problema de fluxo de carga é composto por variáveis e grandezas fasoriais e pode ser naturalmente formulado no domínio complexo; porém, suas aplicações são comumente desenvolvidas no domínio real. A solução via o método de Newton-Raphson, por exemplo, estaria restrita ao domínio real uma vez que a expansão em séries d Taylor em termos somente das variáveis complexas não existe. Mas, graças ao cálculo de Wirtinger, um método de Newton-Raphson baseado em expansões em série de Taylor de funções não lineares de variáveis complexas e seus conjugados complexos se faz possível. A medida em que novas tecnologias são implementadas nos sistemas de potência, como a incorporação de dispositivos FACTS, o desenvolvimento de aplicações de fluxo de carga se torna cada vez mais complexa, e manter suas formulações no domínio real necessita de uma árdua tarefa de álgebra. Para superar esta dificuldade, uma série de métodos de solução de fluxo de potência é proposta neste trabalho, especificados para solucionar sistemas híbridos AC/DC multi-terminal, sendo formuladas no plano complexo sem qualquer perda de precisão. Tanto a abordagem sequencial quanto a unificada para a solução do fluxo de potência híbrido AC/DC são derivadas no plano complexo. Com o objetivo de melhorar o desempenho dos algoritmos, também é proposto um algoritmo exato de fluxo de potência de segunda ordem no domínio complexo. Tais modelos de fluxo de potência no plano complexo são naturalmente desenvolvidos em coordenadas cartesianas; logo, a maioria das equações de restrições pode ser escrita como funções quadráticas. Consequentemente, a expansão em séries de Taylor se encerra na sua segunda ordem e a não linearidade exata das equações complexas quadráticas de fluxo de potência é mantida. Pequenas alterações na estrutura do código são necessárias para transformar o método de Newton-Raphson na abordagem exata do fluxo de potência no plano complexo. O novo algoritmo exibe um comportamento superior em redes totalmente AC ou híbridas AC/DC. A fim de mostrar a validade de suas formulações, os algoritmos propostos são implementados em Matlab para estudos de casos bem estabelecidos dos sistemas teste IEEE-14, -30, -57 e -118 barras, uma versão modificada do sistema de duas áreas IEEE RTS-96, e o sistema interligado nacional SIN-1916 barras. As características e vantagens dos algoritmos propostos são ilustradas através dos sistemas teste interligados através de uma rede DC propensa a vários cenários sob diferentes topologias, controles de tensão e injeções de potência ativa, por exemplo

    Passivity - Based Control and Stability Analysis for Hydro-Solar Power Systems

    Get PDF
    Los sistemas de energía modernos se están transformando debido a la inclusión de renovables no convencionales fuentes de energía como la generación eólica y fotovoltaica. A pesar de que estas fuentes de energía son buenas alternativas para el aprovechamiento sostenible de la energía, afectan el funcionamiento y la estabilidad del sistema de energía, debido a su naturaleza inherentemente estocástica y dependencia de las condiciones climáticas. Además, los parques solares y eólicos tienen una capacidad de inercia reducida que debe ser compensada por grandes generadores síncronos en sistemas hidro térmicos convencionales, o por almacenamiento de energía dispositivos. En este contexto, la interacción dinámica entre fuentes convencionales y renovables debe ser estudiado en detalle. Para 2030, el Gobierno de Colombia proyecta que el poder colombiano El sistema integrará en su matriz energética al menos 1,2 GW de generación solar fotovoltaica. Por esta razón, es necesario diseñar controladores robustos que mejoren la estabilidad en los sistemas de energía. Con alta penetración de generación fotovoltaica e hidroeléctrica. Esta disertación estudia nuevas alternativas para mejorar el sistema de potencia de respuesta dinámica durante y después de grandes perturbaciones usando pasividad control basado. Esto se debe a que los componentes del sistema de alimentación son inherentemente pasivos y permiten formulaciones hamiltonianas, explotando así las propiedades de pasividad de sistemas eléctricos. Las principales contribuciones de esta disertación son: una pasividad descentralizada basada control de los sistemas de control de turbinas hidráulicas para sistemas de energía de múltiples máquinas para estabilizar el rotor acelerar y regular el voltaje terminal de cada sistema de control de turbinas hidráulicas en el sistema como, así como un control basado en PI pasividad para las plantas solares fotovoltaicas

    Management and Protection of High-Voltage Direct Current Systems Based on Modular Multilevel Converters

    Get PDF
    The electrical grid is undergoing large changes due to the massive integration of renewable energy systems and the electrification of transport and heating sectors. These new resources are typically non-dispatchable and dependent on external factors (e.g., weather, user patterns). These two aspects make the generation and demand less predictable, facilitating a larger power variability. As a consequence, rejecting disturbances and respecting power quality constraints gets more challenging, as small power imbalances can create large frequency deviations with faster transients. In order to deal with these challenges, the energy system needs an upgraded infrastructure and improved control system. In this regard, high-voltage direct current (HVdc) systems can increase the controllability of the power system, facilitating the integration of large renewable energy systems. This thesis contributes to the advancement of the state of the art in HVdc systems, addressing the modeling, control and protection of HVdc systems, adopting modular multilevel converter (MMC) technology, with focus in providing services to ac systems. HVdc system control and protection studies need for an accurate HVdc terminal modeling in largely different time frames. Thus, as a first step, this thesis presents a guideline for the necessary level of deepness of the power electronics modeling with respect to the power system problem under study. Starting from a proper modeling for power system studies, this thesis proposes an HVdc frequency regulation approach, which adapts the power consumption of voltage-dependent loads by means of controlled reactive power injections, that control the voltage in the grid. This solution enables a fast and accurate load power control, able to minimize the frequency swing in asynchronous or embedded HVdc applications. One key challenge of HVdc systems is a proper protection system and particularly dc circuit breaker (CB) design, which necessitates fault current analysis for a large number of grid scenarios and parameters. This thesis applies the knowledge developed in the modeling and control of HVdc systems, to develop a fast and accurate fault current estimation method for MMC-based HVdc system. This method, including the HVdc control, achieved to accurately estimate the fault current peak value and slope with very small computational effort compared to the conventional approach using EMT-simulations. This work is concluded introducing a new protection methodology, that involves the fault blocking capability of MMCs with mixed submodule (SM) structure, without the need for an additional CB. The main focus is the adaption of the MMC topology with reduced number of bipolar SM to achieve similar fault clearing performance as with dc CB and tolerable SM over-voltage
    corecore