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Abstract
The power flow problem is composed of phasor variables and quantities and thus can be
naturally formulated in the complex domain; however, their applications are commonly
developed in the real domain. The solution via the Newton-Raphson method, for example,
would be restricted in the real domain once the Taylor series expansion in terms of complex
variables alone does not exist. Thanks to the Wirtinger calculus, a Newton-Raphson
method based on Taylor series expansions of nonlinear functions of complex variables
and their complex conjugates becomes possible. As new technologies are implemented in
power systems, such as the incorporation of FACTS devices, the development of power
flow applications becomes increasingly intricate, and maintaining their formulations in
the real domain is preceded by an arduous algebra task. To overcome this difficulty, a
series of power flow solution methods are proposed in this work, specified to solve multi-
terminal AC/DC hybrid systems, being formulated in the complex plane without any loss
of precision. Both sequential and unified approaches for solving hybrid AC/DC power flow
are derived in the complex plane. In order to improve the performance of the algorithms,
an exact second-order power flow algorithm in the complex domain is also proposed. Such
power flow models in the complex plane are naturally developed in Cartesian coordinates;
therefore, most constraint equations can be written as quadratic functions. Consequently,
the Taylor series expansion stops at its second order and the exact non-linearity of complex
quadratic power flow equations is maintained. Minor changes in the code structure are
required to transform the Newton-Raphson method into the exact power flow approach in
the complex plane. The new algorithm exhibits either a superior behavior in fully AC or
hybrid AC/DC networks. In order to show the validity of its formulations, the proposed
algorithms are implemented in Matlab for well-established case studies of the IEEE-14,
-30, -57 and -118 bus, a modified version of the IEEE Two Area RTS-96, and the Brazilian
Southern-equivalent of 1916-buses, termed as SIN-1916. The features and advantages of
the proposed algorithms are illustrated through the test systems interconnected across a
DC network prone to several scenarios, e.g., topology, voltage control, and interchanging
of active power.

Key-words: Complex-valued Newton-Raphson method; Second-order load flow; Sequen-
tial AC/DC power flow; Unified AC/DC power flow; VSC-HVDC; MTDC transmission
grids; Wirtinger Calculus.



Resumo
O problema de fluxo de carga é composto por variáveis e grandezas fasoriais e pode ser
naturalmente formulado no domínio complexo; porém, suas aplicações são comumente de-
senvolvidas no domínio real. A solução via o método de Newton-Raphson, por exemplo,
estaria restrita ao domínio real uma vez que a expansão em séries d Taylor em termos
somente das variáveis complexas não existe. Mas, graças ao cálculo de Wirtinger, um
método de Newton-Raphson baseado em expansões em série de Taylor de funções não
lineares de variáveis complexas e seus conjugados complexos se faz possível. A medida em
que novas tecnologias são implementadas nos sistemas de potência, como a incorporação
de dispositivos FACTS, o desenvolvimento de aplicações de fluxo de carga se torna cada
vez mais complexa, e manter suas formulações no domínio real necessita de uma árdua
tarefa de álgebra. Para superar esta dificuldade, uma série de métodos de solução de
fluxo de potência é proposta neste trabalho, especificados para solucionar sistemas híbri-
dos AC/DC multi-terminal, sendo formuladas no plano complexo sem qualquer perda de
precisão. Tanto a abordagem sequencial quanto a unificada para a solução do fluxo de
potência híbrido AC/DC são derivadas no plano complexo. Com o objetivo de melhorar
o desempenho dos algoritmos, também é proposto um algoritmo exato de fluxo de potên-
cia de segunda ordem no domínio complexo. Tais modelos de fluxo de potência no plano
complexo são naturalmente desenvolvidos em coordenadas cartesianas; logo, a maioria
das equações de restrições pode ser escrita como funções quadráticas. Consequentemente,
a expansão em séries de Taylor se encerra na sua segunda ordem e a não linearidade exata
das equações complexas quadráticas de fluxo de potência é mantida. Pequenas alterações
na estrutura do código são necessárias para transformar o método de Newton-Raphson
na abordagem exata do fluxo de potência no plano complexo. O novo algoritmo exibe um
comportamento superior em redes totalmente AC ou híbridas AC/DC. A fim de mostrar a
validade de suas formulações, os algoritmos propostos são implementados em Matlab para
estudos de casos bem estabelecidos dos sistemas teste IEEE-14, -30, -57 e -118 barras,
uma versão modificada do sistema de duas áreas IEEE RTS-96, e o sistema interligado
nacional SIN-1916 barras. As características e vantagens dos algoritmos propostos são
ilustradas através dos sistemas teste interligados através de uma rede DC propensa a
vários cenários sob diferentes topologias, controles de tensão e injeções de potência ativa,
por exemplo.

Palavras-chaves: Fluxo de carga AC/DC sequencial; Fluxo de carga AC/DC unificado;
Fluxo de carga de segunda ordem; Método Newton-Raphson no domínio complexo; Redes
de transmissão MTDC; VSC-HVDC; Wirtinger Calculus.
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1 Introduction

1.1 Context and Motivation
The power flow equations are primordially complex-valued (CV) formulations. Due

to their state variables, the most natural, compact, and direct way to formulate it is in the
Complex Domain [1]. However, numerical solutions for solving power system applications,
such as the power flow analysis and power system state estimation, were typically adapted
and carried out in the real domain, and this is not arbitrary. The solution methods of
these problems often require a first- or second-order approximation of the set of nonlinear
power flow equations. Nonetheless, such methods cannot be applied to nonlinear functions
of complex variables because they are non-analytic in their arguments. Therefore, for these
functions, Taylor series expansions do not exist. Hence, this problem has been solved for
many decades by redefining the nonlinear functions as separate functions of the real and
imaginary parts of their complex arguments so that standard methods can be applied.

Although not widely known, the Wirtinger Calculus [2] is a solution for this issue,
where the equations can be expanded in terms of the complex variables and their con-
jugates. This property lies in the fact that if a complex function is analytic in the space
spanned by ℜ{𝑥} and ℑ{𝑥} in R, it is also analytic in the space spanned by 𝑥 and its
conjugate 𝑥* in C. This expansion allows the construction of differential calculus for such
functions that is entirely analogous to the ordinary differential calculus for functions of
real variables [3]. Yet, for several decades the computers had limited processing, especially
for complex arithmetic. Thus, solving it in the real domain was still more advantageous,
replacing its complex phasors with their corresponding real-valued (RV) variables in rect-
angular or polar coordinates. However, this is no longer a constraint: modern processors
employ single instruction multiple data (SIMD), resulting in a CV formulation that is
faster than the classical RV one [4]. Therefore, the former limitations on solving power
flow equations in the complex plane are now surpassed, and the need for space spanning
in R is dismissed. In addition, the distinct advantage of a more straightforward software
implementation is retrieved.

This new scene has rescued the interest in researching how the complex implemen-
tation of the power flow equations can improve algorithms for power system applications
and analysis, making those more adaptable for recent constraints such as the insertion
of distributed and renewable energy generation and FACTS to the grid. [5] presents the
general methods and analyses for power flow analysis and power system state estima-
tion using Wirtinger’s calculus. [6] specializes the complex variable Newton Raphson in
distribution networks. [7] proposes a CV formulation for unbalanced radial networks. [8]
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presents the Newton Raphson Power Flow with FACTS devices. A novel non-iterative
power flow method based on holomorphic embedding in complex plane was proposed in
[9, 10], and has opened a whole new research path. In [11] it was presented a robust
Levemberg-Marquardt for solving ill-conditioned systems.

1.2 Contributions of the Thesis
This thesis provides contributions to the stead-state study of hybrid AC/DC power

systems with multi-terminal HVDC grids. In particular, the analysis focuses on the for-
mulation of such systems and components in the complex-plane. The impact of adopting
a complex-valued formulation, which for many decades was left aside due to no-longer
existing computational constraints, is studied along with enhancement numerical tech-
niques which was made possible by such formulation. The adequation of well-established
real-valued power flow methodologies for its natural formulation in the complex plane is
developed and enhanced. Results are supported by steady-state simulations performed on
test cases under different scenarios in Matlab.

This thesis is organized as follows. Chapter 2 is introductory, providing an overview
of HVDC technology, with a focus on recent developments in VSC HVDC technology.
Furthermore, the advantages of HVDC transmission over AC transmission are given.
Chapter 3 describes the complex-valued model solution aiming at the power flow analysis
(CV-PFA) problem. In Chapter 4 it is developed the exact power flow formulation in the
complex plane and it discusses the set of simulations aimed to support the proposal. The
major contributions of this work are in Chapter 5 and can be summarized as:

• The generalized VSC-MTDC model in complex-plane;

• The sequential AC/DC power flow algorithm with the proposed VSC model;

• A simplified sequential AC/DC power flow algorithm;

• A unified AC/DC power flow algorithm with a fully decouplable Jacobian matrix;

• An exact second-order unified AC/DC power algorithm by applying the methodol-
ogy discussed in Chapter 4.

Also, simulations are carried out aiming to validate and evaluate the numerical
performance of the proposed contributions. Finally, in Chapter 6 are gathered some overall
conclusions of the work.
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2 HVDC Technology

Although High Voltage Direct Current (HVDC) transmission might be considered
to be a mature technology, it is quite amazing how many new aspects and projects are
under consideration. The complexity of electrical power systems is increasing owing to
its interconnections with existing systems and application of new technology to provide
realiable and clean power at the lowest cost. Furthermore, there is growing interest to
incorporate renewable energy sources into the grids. Applications of HVDC transmission
technology are necessary as a means to overcome such problems.

The development of HVDC transmission system dates back to the 1930s when
mercury arc rectifiers were invented [12]. The HVDC type of electrical power transmission
began its first commercial operation in Gotland, Sweden in 1954 through a submarine
cable interconnection. Since the 1960s, HVDC transmission is being improoved with new
conceptions of switches and is now a mature technology and has played a vital part
in both long distance transmission and in the interconnection of systems. In the early
1970s, the advent of the thyristor valve gave a boost to the applications of HVDC and
considerably enhanced reliability and lowered the costs of implementation. The availability
of high power forced commutated switches in the 1990s further enhanced the applications
for HVDC, which now operates in partnership with FACTS-based AC transmission to
provide complex and versatile modes of power transmission. New applications are always
being developed. It is important, therefore, that the technology continues to be developed
too and that new researchers and engineers continue to understand this technology.

2.1 HVDC Technology Concepts
HVDC transmission systems combine high reliability with a long useful life. Their

core component is the power converter, which serves as the interface to the AC transmis-
sion system. The conversion from AC to DC, and vice versa, is achieved by controllable
electronic switches (valves). HVDC technology covers different concepts and applications,
e.g. advantages and limitations over AC transmission, configurations, and conversors.
Some of those are discussed in this section.

2.1.1 Advantages of HVDC Systems

The continuing and revived interest in DC systems can be attributed to different
factors:
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Investment costs One of the advantages DC has over three-phase AC systems is the
need for only two conductors instead of three, or only one in case of a monopolar link
with ground return. Figure 1 shows schematically the tower configurations for 1200
MW (two circuits AC, bipolar DC) and 1500–2000 MW transmission at EHVAC
single circuit or monopolar DC [12]. Figure 2 shows a simplified cost comparison for
DC and AC transmission lines. In the case of HVDC the initial capital investment is
much higher because of the converter costs. As the transmission distance increases,
the benefits of DC offset the capital investment and at certain distance the total
cost of an HVDC system is same as an AC line [13].

Long-distance transmission In AC systems, a number of technical challenges arise
when the transmission distance increases. In overhead line systems, voltage control
becomes an issue: with long lines, compensation is needed, which can give rise
to new problems, such as subsynchronous resonances [14]. In a high voltage cable
connection, the transmission distance is a limiting factor due to the charging current,
which increases with increasing voltage. At high voltages, this charging current can
even prevent the cable from carrying active power.

Cable connections The absence of this steady-state charging current makes that DC
power, contrary to AC power, easily allows to use cables at high voltages. This
makes HVDC connections particulary feasible for submarine power transmission.

Transmission line losses In an AC line, the current density in the conductor is un-
equally distributed as an AC current has the tendency to primarily flow near the
conductor surface. This “skin effect” results in a higher line resistance for AC cur-
rents compared to DC currents, which do not suffer from this unequal current distri-
bution. Furthermore, DC lines only carry active power, contrary to AC lines where
also reactive power adds up to the total line loading. These two factors make that
line losses are lower for DC transmission for similar power and voltage ratings.

Enhanced controllability In a DC link, the power through the line is fully control-
lable. This controllability yields a number of advantages, especially when the link is
to be operated in the framework of a market-oriented environment. Similarly, in a
DC grid, the power injections at different converters can be set independently. The
controllability also opens the possibility to use the link to provide auxiliary services,
e.g. sharing of primary reserves and power system damping.

Asynchronous interconnections DC technology allows to interconnect asynchronous
systems that operate at a different or at the same frequency, regarding that if phase
difference between two AC systems is large, they cannot be directly connected.
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Figure 1 – Tower configurations for HVAC and HVDC transmission [14].

Line length

Cost

HVAC station cost

HVDC station cost
Breakeven distance

Figure 2 – HVDC and HVAC transmission cost comparison.

It is clear from the above that DC technology especially yields advantages when
long-distance and submarine power transmission is considered. Consequently, when the
transmission distance is small, the high investment cost for the converter stations might
not be offset by the lower investment cost for the transmission line. A similar reasoning
holds for the overall system losses: the converter losses result in higher overall loss figures
for short connections. Furthermore, the complexity of the converter stations results in a
large number of components, which in turn demands a robust control strategy for ensuring
the reliability and availability of the overall transmission scheme.

2.1.2 Example applications

Example applications of HVDC transmission systems in [14] are shown in Figure
3, in which the labeling is as follows:
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Figure 3 – Various applications of an HVDC system [14].

1. Power transmission of bulk energy through long distance overhead line.

2. Power transmission of bulk energy through sea cable.

3. Fast and precise control of the flow of energy over an HVDC link to create a positive
damping of electromechanical oscillations and enhance the stability of the network
by modulation of the transmission power by using a Back-to-Back configuration.

4. Since an HVDC link has no constraints with respect to frequency or to phase angle
between the two AC systems, it can be used to link systems with different frequencies
using an asynchronous Back-to-Back configuration.

5. When power is to be transmitted from a remote generation location across different
countries or different areas within one country, it may be strategically and politically
necessary to offer a connection to potential partners in the areas traversed by using
a multi-terminal DC link.

6. An HVDC transmission system can also be used to link renewable energy sources,
such as wind power, when it is located far away from the consumer.

7. VSC (Voltage Source Converter) based HVDC technology is gaining more and more
attention. This new technology has become possible as a result of important ad-
vances in the development of Insulated Gate Bipolar Transistors (IGBT). In this
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system, Pulse-Width Modulation (PWM) can be used for the VSC as opposed to
the thyristor based conventional HVDC. This technology is well suited for wind
power connection to the grid.

8. Since reactive power does not get transmitted over a DC link, two AC systems can
be connected through an HVDC link without increasing the short circuit power;
this technique can be useful in generator connections.

2.1.3 HVDC System Configurations

The two most basic HVDC link configurations are the point-to-point and back-to-
back. Most HVDC systems fall under point-to-point category, which refers to long distance
power transmissions. It consists of either cable or overhead lines or a combination of these
two. In the back-to-back type of system, the rectifier and the inverter are located in the
same station. In general,it is used for providing an asynchronous interconnection for two
AC systems.

HVDC point-to-point systems are classified as either monopolar or bipolar schemes.
Fig. 4 shows the different configurations for a point-to-point link. A monopolar link (Fig.
4a) is the base configuration. It uses only one conductor and has a ground return path or
a metallic return, yielding considerable cost reductions: the metallic return requires less
insulation as it is at low voltage. A ground return results in the highest cost reduction,
but is not always allowed because of perceivable problems related to metallic corrosion of
objects in the vicinity of the grounding electrodes.

A comparable scheme is the symmetric monopole (Fig. 4b). The symmetric monopole
uses two conductors with opposite voltage polarity and is only earthed by means of a high
impedance. Hence, no earth currents flow. The scheme has primarily been used for VSC
HVDC schemes.

As an alternative to monopolar transmission schemes, a bipolar scheme (Fig. 4c)
can be used. Similar to the symmetric monopole, the bipole as well has a pair of conductors
with opposite voltage polarity. However, the bipolar scheme has two converters connected
in series at each converter end and the junction of the two converters is grounded, either
at one point or possibly at both ends. Under normal operation, the current in the two
lines is equal in magnitude and there is no ground current. However, the scheme can still
operate at half the power with the outage of one pole, increasing the overall redundancy
in the system. With similar power ratings to the monopolar scheme from Fig. 4a, the
conductors only carry half of the current.

The extension of a point-to-point HVDC system to a system with three or more
converters stations is denominated multi-terminal HVDC system. It requires a signifi-
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Figure 4 – HVDC system configurations.

cant complexity to facilitate communication and control between each converting station.
However, it is considered to be a relatively new technology and has shown potential for
a wide range of applications. A more thorough discussion concerning the multi-terminal
configuration is presented in Section 2.4.

2.2 Current Source Converter (CSC) HVDC
Using thyristor valves, the HVDC schemes discussed in this section are commonly

referred to as Current Source Converter (CSC) HVDC or alternatively Line Commutated
Converter (LCC) HVDC. The valves can be switched on, but need the current to pass
through zero in order to switch off and therefore depend on the external AC grid for
commutation. The basic module for a CSC HVDC link is a three-phase full-wave 6-pulse
converter, also known as the Graetz bridge (Fig. 5). The scheme can be used to transmit
power in both directions. This is accomplished by changing the firing angle of the thyristor,
which in turn results in a voltage polarity change of the link.

As a result of the operating principles – the thyristor valves only start conduc-
tion when triggered – and the commutation between two phases, which introduces an
additional current lagging, the converters inherently absorb reactive power. The least ex-
pensive way to compensate for the reactive power is to provide reactive compensation
by means of switchable capacitor banks which are partly already present in the form of
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Figure 5 – LCC HVDC Graetz bridge.

selective filters. Alternatives include the use of a static var compensator (SVC), a nearby
generator or a synchronous condenser.

The current source converter introduces a significant amount of harmonics, both
at the AC and DC side. These harmonics have to be filtered in order to prevent them from
entering the system and from causing a distortion of the voltage waveform. At the AC
side, usually a combination of tuned filters is used. The harmonic currents flow within the
converter transformer, that has to be specially designed to cope with the resulting voltage
stresses and losses. At the DC side, a distinction is made between characteristic harmonics
determined by the pulse number of the converter, and non-characteristic harmonics caused
by AC side unbalances [12]. The DC side harmonics are reduced by the smoothing reactor
𝐿𝑑𝑐 (Fig. 5) and filters.

One of the main disadvantages of the CSC HVDC scheme, however, is the need for a
relatively strong AC system, commonly expressed in terms of the short-circuit ratio (SCR)
at the point of common coupling (PCC). The SCR provides an indication of the inherent
strength of the AC system. Amongst the problems that can occur in low SCR systems are
dynamic overvoltages, voltage instability, harmonic resonances, voltage flicker and more
commutation failures [14]. To overcome the problems at low SCR, an alternative scheme,
called Capacitor Commutated Converter (CCC), was developed. The scheme includes a
series capacitor between the valve and the converter transformer [15]. One of the main
disadvantages, however, is that the series capacitances increase the insulation costs of
the valves. The scheme has therefore only been applied in back-to-back links, where the
voltage ratings are much lower. The concept has been applied in the Garabi back-to-back
connection between Argentina and Brazil [16] and in a back-to-back configuration in the
Rio Madeira HVDC System [17].
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2.3 Voltage Source Converter (VSC) HVDC
The development of the Insulated Gate Bipolar Transistor (IGBT) for high power

applications in the 1990s opened up new possibilities for HVDC. The IGBT, a development
from Metal-Oxide-Semiconductor Field Effect Transistor (MOSFET) technology, has a
low conduction loss and a high switching speed [15]. Contrary to thyristors, IGBTs can be
switched both on and off, making them well suited to be used in voltage source converters.
Since commutation can be achieved quickly and independently of the AC system voltage,
an entirely different type of operation compared to the LCC converter is possible. This
yields a number of advantages for VSC HVDC over CSC HVDC technology:

Reactive power control Contrary to CSC HVDC, which constantly consumes reac-
tive power, VSC HVDC can independently control the active and reactive power
within the limitations of the converter. Each converter station can be used to pro-
vide voltage support to the local AC network while transmitting any level of active
power, at no additional cost [13].

Connection to weak systems VSC HVDC can be used to connect to weak or even
passive systems. This feature makes VSC ideally suited for connecting offshore wind
farms. In case of an LCC HVDC link, the offshore converter requires an external
voltage to commutate against, which calls for all but trivial technical solutions.

Good response to AC faults The VSC converter actively controls the AC voltage/current,
so the VSC-HVDC contribution to the AC fault current is limited to rated current or
controlled to lower levels. The converter can remain in operation to provide voltage
support to the AC networks during and after the AC disturbance.

Ancillary services The VSC can be controlled to provide a variety of ancillary services,
such as reactive power support, black start capabilities [18], flicker mitigation and
unbalanced voltage compensation [19].

A typical VSC HVDC converter station is shown in Fig. 6 and consists of the
following components:

Converter The voltage source converter itself is an active component that converts the
DC side voltage to an AC voltage of an arbitrary size and shape by switching the
IGBTs.

DC capacitor The DC capacitor is the energy storage element in VSC. It provides
the VSC with the stiff DC voltage between switching instants, which is an essential
presumption with all VSC topologies.
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Figure 6 – VSC HVDC converter station scheme.

Phase reactor The phase reactor is essential to the operation of the VSC. The control
schemes switches the IGBTs as to control the complex current through the phase
reactor, thereby controlling the active and reactive power.

AC filter Since high frequency switching of the VSC only introduces high-order har-
monics in the voltage waveform, these harmonics can easily be removed by a low-pass
filter filter. Compared to CSC, the filter is not required to provide reactive power
compensation. As a consequence, much smaller filter installations are needed.

Converter transformer The VSC transformer is usually equipped with tap changers
that are used to optimize the filter bus voltage magnitude with respect to the AC
grid side voltage. Other than in CSC, the VSC transformer is not exposed to low
order voltage harmonics. This allows for a simpler design, similar to regular power
transformers.

2.3.1 VSC Topologies

2.3.1.1 Two-level converter topology

The first generation of VSC HVDC schemes, which became commercially available
as “HVDC Light” by ABB [20], was based on a two-level converter topology (Fig. 7). In
order to cope with the high voltages, each converter valve, simplified in Fig. 7 to only
one switching component, in reality consists of a multitude of series-connected IGBTs
and their anti-parallel diodes. This series connection yields a number of challenges from
a voltage balancing point of view: when fired, all stacked IGBTs should ideally start
conducting at the same instant. If not, the IGBTs that start to conduct later are stressed
to a high extent.

The well-known Pulse-Width Modulation (PWM) technique is used to make a si-
nusoidal waveform at fundamental frequency. The PWM technique basically connects the
output voltage either to the positive or negative DC voltage. By varying the width of the
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Figure 7 – Two-level voltage source converter.

pulses during which the converter voltage is connected, a high frequency voltage signal is
synthesized, containing the fundamental frequency voltage signal as shown in Fig. 11a. Al-
though IGBTs have relatively low conduction losses, the PWM switching at a frequency of
about 1.5 kHz results in relatively high switching losses. Whereas fundamental-frequency
switched CSC HVDC schemes are characterized by loss figures in the order of magnitude
of 0.8%, the first generation of VSC HVDC schemes yielded losses that were a multiple
of those of CSC schemes, adding up to 3% per converter station [15]. The subsequent
innovations in the converter topologies have mainly been aiming at reducing the losses
[21, 22].

2.3.1.2 Three-level converter topology

The second generation of commercially available schemes used a three-level con-
verter with active neutral-point clamping (NPC), depicted in Fig. 8. Two diodes are in-
serted in each phase, clamping the voltage to half the DC voltage. Thereby, these diodes
provide a third voltage level to switch between, without altering the number of switches.
Fig. 11b shows the corresponding switching pattern. The use of a third voltage level yields
a lower voltage per switching and hence a lower switching frequency per component. As
a result, the converter losses were reduced from 3% per converter station down to 1.7%
[21].

2.3.1.3 Modular multilevel converter topology

The introduction of so-called modular multilevel converters [23, 24], gave rise to
various new VSC topologies for HVDC transmission [25, 26]. Fig. 9 shows the modular
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Figure 8 – Three-level neutral-point clamped voltage source converter.

structure of the MMC scheme. The basic concept of these cascaded multilevel topologies
is to stack a number of submodules (SM) from Fig. 10. The MMC VSC HVDC converters
use the half-bridge module from Fig. 10a, which consists of two converter valves and a ca-
pacitor. Different from the earlier topologies, the MMC topology no longer has a common
DC capacitance, but includes a distributed capacitance along the valve stacks instead.
Each half-bridge submodule has two switches which can be switched in the following
ways:

Inserted: 𝑆1 is switched on and 𝑆2 is switched off.

Bypassed: 𝑆1 is switched off and 𝑆2 is switched on.

Blocked: both 𝑆1 and 𝑆2 are switched off.

The resulting waveform can be built in a stepwise manner (Fig. 11c). With a high
number of submodules, the use of PWM can thus possibly be abandoned. The resulting
voltage contains a much lower amount of high-order harmonics, compared to the two-level
and three-level topology. For a high number of submodules, the filtering requirements are
greatly reduced because of the generation of high-quality AC voltage, i.e., AC filters might
not be required.

In MMC HVDC converters, the voltage level of each module typically is in the
order of magnitude of some kilovolts (single IGBT voltage) and the number of modules
per converter arm is about a few 100, resulting in a switching frequency of only 150 Hz
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Figure 9 – Modular multilevel converter scheme.
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Figure 10 – MMC building blocks.
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per submodule [27], resulting in significantly lower switching losses: coming from 3% per
converter station in the earliest two-level schemes, the losses have dropped to about 1%,
which is in the order of magnitude of the loss figures for CSC HVDC schemes.

Whereas the technological challenge in the two-level topology primarily arose from
the switching synchronization, the MMC concepts prove to be rather challenging from a
design and control perspective as they involve balancing of the individual cell voltages.
Similar to the two-level topology, faults on the DC side cannot be cleared by any converter
action: although one can block the IGBTs, this only stops the current from flowing in one
direction since the inverse diode connected in parallel to each semiconductor switch cannot
be switched off. As a result, the VSC starts to behave as an uncontrolled diode rectifier
and the current can only be interrupted by AC breaker actions. For this issue, alternatively
to half-bridge cells, full-bridge modules (Fig. 10b) could be used. The full-bridge topology
yields the advantage of actively control and interrupt DC fault current, providing DC
fault blocking capability at the expense of increased number of switches.

2.4 Multi-terminal HVDC
Since the introduction of HVDC, engineers have been looking into the possibility

of extending the technology to multi-terminal schemes. However, the working principles
of CSC HVDC technology hamper a straightforward extension to MTDC systems. It is
only due the introduction of VSC HVDC that new interest has risen to build MTDC grid
systems.

2.4.1 DC grid layout

Fig 12 shows different topologies for connecting multiple nodes in an AC system by
means of DC transmission. The term multi-terminal is generally used to describe any DC
system with more than two converters interconnected at the DC side. On the contrary,
it is not exactly clear what topologies are included and excluded when using the term
DC grid. A first option, shown in Fig. 12a, is to build a radial MTDC system. While this
topology yields cost reductions compared to point-to-point links, it can hardly be argued
to be a true DC grid, as it has no redundancy in the DC system. A second option is to
build a grid of DC lines, shown in Fig. 12b, where each DC link is connected to the AC
system by a converter at both ends, which has the advantage of having full control over
the power flow in each DC connection. The DC links can be either CSC or VSC technology
and can also have different transmission voltages. Since the number of converters is twice
the number of links, it is expensive. A third option, shown in Fig. 12c, is a meshed DC
grid. This topology is redundant in the sense that the power can flow via different paths
in case of a line outage. In the remainder of this thesis, the major focus is on meshed DC
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Figure 11 – Switching pattern for different converter topologies.

systems, although the developed tools are also applicable to radial MTDC schemes (Fig.
12a) and multiple HVDC links (Fig. 12b).

2.4.2 Multi-terminal CSC HVDC

A classification of CSC MTDC is made based on the series or parallel connection
scheme (constant current and constant voltage, respectively), as shown in Fig. 13. A
hybrid scheme consisting of both parallel and series converters can also be conceived.

In a series-connected scheme, the same DC current flows through all converters.
The voltage rating of a converter in the series scheme is thus proportional to the power
rating. The scheme is only grounded at one point, which makes insulation coordination
complex and expensive. The advantage of the series-connected scheme is that the power
can be reversed at any converter without the need for mechanical switching actions.
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Figure 12 – Different grid topologies for hybrid AC/DC systems [28].

Figure 13 – CSC HVDC multi-terminal connection [14].

Disadvantages are that a line fault causes the interruption of the entire system and that
the schemes are not well suited for future extensions.

In parallel schemes, the converters operate at a common DC voltage. As a power
reversal in a CSC HVDC scheme is accomplished by changing the voltage polarity while
the current polarity is fixed, a power reversal at one particular converter can only be
realized by means of mechanical switching actions. Another problem is that commutation
failures at any terminal bring down the DC voltage, which draws currents to the faulted
converter. The recovery after a commutation failure is therefore more time-sensitive and
depends on the AC system strength at the faulted converter terminal.

Clearly, the specifics of the CSC technology only allow for an extension of the
technology to MTDC schemes with a limited number of terminals. Realizing a meshed
DC grid with a large number of terminals is therefore not practically feasible. For thet,
it is normally assumed that HVDC grids can only be built using VSC converters. There-
after, although the former CSC-based MTDC systems are discussed in this section, the
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contributions of this Thesis regarding the MTDC steady-state analysis are orientated to
VSC HVDC technology.

2.4.3 Multi-terminal VSC HVDC

Contrary to CSC HVDC technology, VSC HVDC allows a relatively straightfor-
ward extension of the operational principles to meshed DC grids. VSC does not suffer
from the drawbacks of CSC technology, such as the unavoidability of commutation fail-
ures and the strong dependence of the performance on the AC system strength. The main
advantage is that with VSC HVDC, no voltage polarity reversal is needed when the en-
ergy flow changes direction. Consequently, VSCs can be relatively easy to be connected
in parallel and the extension of a MTDC scheme is straightforward.

2.4.4 DC Voltage Control

Mainly three different control approaches have been suggested so far to limit the
DC voltage variation: constant voltage control, voltage margin control and voltage droop
control. Whereas the constant voltage and voltage margin control are good candidates for
relatively small MTDC systems, the latter is preferred to be applied in DC grids because
of its distributed nature as explained below.

2.4.4.1 Constant Voltage Control

The constant voltage method, also known as slack bus control, is in a sense similar
to the control of two-terminal schemes, where one converter controls the DC voltage at
its bus and the other converter controls the active power. Extending this principle to
the case of an 𝑛-terminal system results in 1 DC voltage controlling terminal (slack bus)
and 𝑛-1 terminals in constant power control mode. The constant voltage control method
has been depicted in Fig. 14, which shows the control of the voltage after the outage of
converter 2. For the purpose of illustration, the voltage difference between different nodes
in the network has been left out. In this example, converter 1 is the converter controlling
the DC voltage. This converter approximately doubles the power injected into the DC
system, by first recharging the DC capacitances and afterwards maintaining the power
balance, thereby accounting for the outage of converter 2.

2.4.4.2 Voltage Margin Control

The principles of voltage margin control were introduced in [29] for two- and three-
terminal schemes. It is a direct extension to the constant voltage method by setting up a
distributed control: in case converter 1 hits its current limit before reestablishing the power
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Figure 14 – Constant voltage control.

balance, the voltage decreases further, which would cause one of the remaining converter,
i.e. 3 or 4, to take over the voltage control by limiting the power being inverted.

Though a valid option in VSC MTDC schemes with a limited number of terminals,
the voltage margin control poses a number of challenges when used in a meshed DC system
with a large number of terminals:

• Although the control can be distributed as described above, the responsibility of
balancing the DC grid, even for major grid incidents, remains primarily with one
particular converter, which might be unacceptable from an operational perspective.

• One has to avoid that different converters at a time start to control the voltage,
which causes oscillatory behavior. This condition can e.g. occur as a consequence of
improper tuning of the voltage margins with respect to the line voltage drops.

• With the number of terminals increasing, selecting the appropriate voltage margins
for the different converters becomes challenging. A first reason is that the large
number of converters involved make the voltage margins of some converters unac-
ceptably high in order for them not to overlap with those of others. A second reason
relies in the fact that the resulting line voltage drops, which depend on the power
flows, become harder to predict and calculate in meshed systems.

2.4.4.3 Voltage Droop Control

As an alternative to voltage margin control, the voltage droop control has been
developed. The control method was first presented conceptually in [30] and was later
developed further and applied in [31, 32]. Fig. 15 schematically depicts the control actions
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taken by the three droop-controlled converters after an outage of converter 2. Contrary to
the situation with a slack bus control, converters 3 and 4 also decrease their power taken
from the DC grid. Converter 1 still increases its power injection, but to a lesser extent
than was the case with the voltage margin control.

Figure 15 – Voltage droop control.

2.5 Partial Conclusions
This chapter gives a brief contextualization of DC power transmission and a techni-

cal overview, primarily focusing on VSC HVDC technology. It can be concluded that VSC
HVDC technology provides significant advantages over CSC HVDC technology, which
make it a preferred technological candidate for the interconnection of weak AC systems
and the connection of wind farms. Furthermore, the technical specifics of VSC HVDC
allow a relatively straightforward extension of the operation principles to multi-terminal
transmission schemes. Recent evolution in the converter topology yield lower losses, which
have been considered a significant drawback of VSC technology for many years.
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3 The Generic Complex-Valued Power Flow
Analysis (CV-PFA)

In this chapter is presented the derivation of the complex-valued power flow (CV-
PFA) [5], derived straightforwardly from Wirtinger’s Work [2]. Firstly, the whole power
flow modeling starts based on the classical nodal equation as presented in [8]. The ana-
lytical model is then derived through the general power flow equations. The main reason
for this latter option is the transformer model with tap position off-nominal, including
phase-shifters [33, 34]. Further discussions on this issue are addressed throughout the
derivation of the approaches. The analytical properties of complex-valued functions and
variables, as well as the Wirtinger Calculus, which are the foundation of the CV-PFA, are
summarized in Appendix A.

3.1 Nodal Equation
The current injections at each bus can be given by

𝐼 = Y 𝑉 , (3.1)

where Y is the network nodal admittance matrix, 𝑉 = [𝑉1; 𝑉2; ...; 𝑉𝑛]𝑇 is the bus voltage
vector and 𝐼 = [𝐼1; 𝐼2; ...; 𝐼𝑛]𝑇 is the bus current injection for 𝑛 buses. Thus, the complex
nodal power can be expressed as

𝑆 = 𝑉 ⊙ 𝐼*, (3.2)

or
𝑆 = 𝑉 ⊙ (Y* 𝑉 *) . (3.3)

where ⊙ is the Handamard or element-wise product. Then, the nodal complex power at
bus 𝑘, i.e., 𝑆𝑘, is

𝑆𝑘 = 𝑉𝑘 𝑌 *
𝑘𝑘 𝑉 *

𝑘 + 𝑉𝑘

𝑁∑︁
𝑚=0
𝑚 ̸=𝑘

𝑌 *
𝑘𝑚 𝑉 *

𝑚, (3.4)

where 𝑁 +1 is the number of network nodes, and the node 0 is assigned as the slack node.
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3.2 Complex-Valued Power Flow Equations
The complex-valued power flow equations that model any type of branch in an

electrical network, i.e., transmission lines and phase- and phase-shifting-transformers are
as follows:

𝑆𝑘𝑚 = 𝑉𝑘

(︃
𝑦*

𝑘𝑚

𝑎𝑘𝑚𝑎*
𝑘𝑚

− 𝑗 𝑏𝑠ℎ
𝑘𝑚

)︃
𝑉 *

𝑘 − 𝑉𝑘
𝑦𝑘𝑚*
𝑎*

𝑘𝑚

𝑉 *
𝑚, (3.5)

𝑆𝑚𝑘 = 𝑉𝑚 (𝑦*
𝑘𝑚 − 𝑗 𝑏*

𝑘𝑚) 𝑉 *
𝑚 − 𝑉𝑚

𝑦*
𝑘𝑚

𝑎𝑘𝑚

𝑉 *
𝑘 . (3.6)

and

𝑆*
𝑘𝑚 = 𝑉 *

𝑘

(︃
𝑦𝑘𝑚

𝑎*
𝑘𝑚𝑎𝑘𝑚

+ 𝑗 𝑏𝑠ℎ
𝑘𝑚

)︃
𝑉𝑘 − 𝑉 *

𝑘

𝑦𝑘𝑚

𝑎𝑘𝑚

𝑉𝑚, (3.7)

𝑆*
𝑚𝑘 = 𝑉 *

𝑚

(︁
𝑦𝑘𝑚 + 𝑗 𝑏𝑠ℎ

𝑘𝑚

)︁
𝑉𝑚 − 𝑉 *

𝑚

𝑦𝑘𝑚

𝑎*
𝑘𝑚

𝑉𝑘. (3.8)

In the set of equations (3.5-3.8), the general off-nominal tap transformer model
is composed by an ideal transformer with complex turns ratio 𝑎𝑒𝑗𝜑 : 1 in series with its
admittance or impedance [33].

3.3 Wirtinger Derivatives Applied to the Power Flow Equations
Firstly, let us assume that the complex power injections, 𝑆𝑘 and 𝑆𝑚, are equal to

the power flows 𝑆𝑘𝑚 and 𝑆𝑚𝑘, respectively. Then, applying the Wirtinger calculus to the
complex power flow equation given by (3.5) yields

𝜕𝑆𝑘

𝜕𝑉𝑘

⃒⃒⃒⃒
⃒
𝑉 *

𝑘
=𝐶𝑜𝑛𝑠𝑡

=
(︃

𝑦*
𝑘𝑚

𝑎𝑘𝑚𝑎*
𝑘𝑚

− 𝑗 𝑏𝑠ℎ
𝑘𝑚

)︃
𝑉 *

𝑘 − 𝑦*
𝑘𝑚

𝑎*
𝑘𝑚

𝑉 *
𝑚, (3.9)

𝜕𝑆𝑘

𝜕𝑉 *
𝑘

⃒⃒⃒⃒
⃒
𝑉𝑘=𝐶𝑜𝑛𝑠𝑡

= 𝑉𝑘

(︂
𝑦*

𝑘𝑚

𝑎𝑘𝑚𝑎𝑘𝑚*
− 𝑗 𝑏𝑠ℎ

𝑘𝑚

)︂
, (3.10)

𝜕𝑆𝑘

𝜕𝑉𝑚

⃒⃒⃒⃒
⃒
𝑉 *

𝑚=𝐶𝑜𝑛𝑠𝑡

= 0.0, (3.11)

𝜕𝑆𝑘

𝜕𝑉 *
𝑚

⃒⃒⃒⃒
⃒
𝑉𝑚=𝐶𝑜𝑛𝑠𝑡

= − 𝑉𝑘
𝑦*

𝑘𝑚

𝑎*
𝑘𝑚

, (3.12)

𝜕𝑆𝑘

𝜕𝑎𝑘𝑚

⃒⃒⃒⃒
⃒
𝑎*

𝑘𝑚
=𝐶𝑜𝑛𝑠𝑡

= − 𝑉𝑘

(︃
𝑦*

𝑘𝑚

𝑎2
𝑘𝑚𝑎*

𝑘𝑚

)︃
𝑉 *

𝑘 , (3.13)

𝜕𝑆𝑘

𝜕𝑎*
𝑘𝑚

⃒⃒⃒⃒
⃒
𝑎𝑘𝑚=𝐶𝑜𝑛𝑠𝑡

= − 𝑉𝑘

(︃
𝑦*

𝑘𝑚

𝑎𝑘𝑚(𝑎*
𝑘𝑚)2

)︃
𝑉 *

𝑘 + 𝑉𝑘
𝑦*

𝑘𝑚

(𝑎*
𝑘𝑚)2 𝑉 *

𝑚. (3.14)

and given by (3.6) yields
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𝜕𝑆𝑚

𝜕𝑉𝑚

⃒⃒⃒⃒
⃒
𝑉 *

𝑚=𝐶𝑜𝑛𝑠𝑡

=
(︁
𝑦*

𝑘𝑚 − 𝑗 𝑏𝑠ℎ
𝑘𝑚

)︁
𝑉 *

𝑚 − 𝑦*
𝑘𝑚

𝑎𝑘𝑚

𝑉 *
𝑘 , (3.15)

𝜕𝑆𝑚

𝜕𝑉 *
𝑚

⃒⃒⃒⃒
⃒
𝑉𝑚=𝐶𝑜𝑛𝑠𝑡

= 𝑉𝑚

(︁
𝑦*

𝑘𝑚 − 𝑗 𝑏𝑠ℎ
𝑘𝑚

)︁
, (3.16)

𝜕𝑆𝑚

𝜕𝑉𝑘

⃒⃒⃒⃒
⃒
𝑉 *

𝑘
=𝐶𝑜𝑛𝑠𝑡

= 0.0, (3.17)

𝜕𝑆𝑚

𝜕𝑉 *
𝑘

⃒⃒⃒⃒
⃒
𝑉𝑘=𝐶𝑜𝑛𝑠𝑡

= − 𝑉𝑚
𝑦*

𝑘𝑚

𝑎𝑘𝑚

, (3.18)

𝜕𝑆𝑚

𝜕𝑎𝑘𝑚

⃒⃒⃒⃒
⃒
𝑎*

𝑘𝑚
=𝐶𝑜𝑛𝑠𝑡

= 𝑉𝑚
𝑦*

𝑘𝑚

𝑎2
𝑘𝑚

𝑉 *
𝑘 , (3.19)

𝜕𝑆𝑚

𝜕𝑎*
𝑘𝑚

⃒⃒⃒⃒
⃒
𝑎𝑘𝑚=𝐶𝑜𝑛𝑠𝑡

= 0.0. (3.20)

and given by (3.7) yields

𝜕𝑆*
𝑘

𝜕𝑉𝑘

⃒⃒⃒⃒
⃒
𝑉 *

𝑘
=𝐶𝑜𝑛𝑠𝑡

= 𝑉 *
𝑘

(︃
𝑦𝑘𝑚

𝑎*
𝑘𝑚𝑎𝑘𝑚

+ 𝑗 𝑏𝑠ℎ
𝑘𝑚

)︃
, (3.21)

𝜕𝑆*
𝑘

𝜕𝑉 *
𝑘

⃒⃒⃒⃒
⃒
𝑉𝑘=𝐶𝑜𝑛𝑠𝑡

=
(︃

𝑦𝑘𝑚

𝑎*
𝑘𝑚𝑎𝑘𝑚

+ 𝑗 𝑏𝑠ℎ
𝑘𝑚

)︃
𝑉𝑘 − 𝑦𝑘𝑚

𝑎𝑘𝑚

𝑉𝑚, (3.22)

𝜕𝑆*
𝑘

𝜕𝑉𝑚

⃒⃒⃒⃒
⃒
𝑉 *

𝑚=𝐶𝑜𝑛𝑠𝑡

= − 𝑉 *
𝑘

𝑦𝑘𝑚

𝑎𝑘𝑚

, (3.23)

𝜕𝑆*
𝑘

𝜕𝑉 *
𝑚

⃒⃒⃒⃒
⃒
𝑉𝑚=𝐶𝑜𝑛𝑠𝑡

= 0.0, (3.24)

𝜕𝑆*
𝑘

𝜕𝑎𝑘𝑚

⃒⃒⃒⃒
⃒
𝑎*

𝑘𝑚
=𝐶𝑜𝑛𝑠𝑡

= − 𝑉 *
𝑘

(︃
𝑦𝑘𝑚

𝑎*
𝑘𝑚𝑎2

𝑘𝑚

)︃
𝑉𝑘 + 𝑉 *

𝑘

𝑦𝑘𝑚

𝑎2
𝑘𝑚

𝑉𝑚, (3.25)

𝜕𝑆*
𝑘

𝜕𝑎*
𝑘𝑚

⃒⃒⃒⃒
⃒
𝑎𝑘𝑚=𝐶𝑜𝑛𝑠𝑡

= − 𝑉 *
𝑘

(︃
𝑦𝑘𝑚

(𝑎*
𝑘𝑚)2𝑎𝑘𝑚

)︃
𝑉𝑘. (3.26)

Finally, applying Wirtinger calculus to (3.8) yields
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𝜕𝑆*
𝑚

𝜕𝑉𝑘

⃒⃒⃒⃒
⃒
𝑉 *

𝑘
=𝐶𝑜𝑛𝑠𝑡

= − 𝑉 *
𝑚

𝑦𝑘𝑚

𝑎*
𝑘𝑚

, (3.27)

𝜕𝑆*
𝑚

𝜕𝑉 *
𝑘

⃒⃒⃒⃒
⃒
𝑉𝑘=𝐶𝑜𝑛𝑠𝑡

= 0.0, (3.28)

𝜕𝑆*
𝑚

𝜕𝑉𝑚

⃒⃒⃒⃒
⃒
𝑉 *

𝑚=𝐶𝑜𝑛𝑠𝑡

=𝑉 *
𝑚

(︁
𝑦𝑘𝑚 + 𝑗 𝑏𝑠ℎ

𝑘𝑚

)︁
, (3.29)

𝜕𝑆*
𝑚

𝜕𝑉 *
𝑚

⃒⃒⃒⃒
⃒
𝑉𝑚=𝐶𝑜𝑛𝑠𝑡

=
(︁
𝑦𝑘𝑚 + 𝑗 𝑏𝑠ℎ

𝑘𝑚

)︁
𝑉𝑚 − 𝑦𝑘𝑚

𝑎*
𝑘𝑚

𝑉𝑘, (3.30)

𝜕𝑆*
𝑚

𝜕𝑎𝑘𝑚

⃒⃒⃒⃒
⃒
𝑎*

𝑘𝑚
=𝐶𝑜𝑛𝑠𝑡

= 0.0, (3.31)

𝜕𝑆*
𝑚

𝜕𝑎*
𝑘𝑚

⃒⃒⃒⃒
⃒
𝑎𝑘𝑚=𝐶𝑜𝑛𝑠𝑡

= 𝑉 *
𝑚

𝑦𝑘𝑚

(𝑎*
𝑘𝑚)2 𝑉𝑘. (3.32)

3.4 Bus Models in the Complex Domain

3.4.1 Slack-Bus Type

The complex voltage at a slack-bus type is known, once the magnitude and phase-
angle values are specified for the reference bus.

3.4.2 PQ-Bus Type

With the active- and reactive-power demand specified for a 𝑃𝑄 node, the following
complex mismatches functions are expressed as

𝑀𝑘 = 𝑆𝑘 − (𝑃𝑘𝑠 + 𝑗 𝑄𝑘𝑠), (3.33)

𝑀*
𝑘 = 𝑆*

𝑘 − (𝑃𝑘𝑠 − 𝑗 𝑄𝑘𝑠), (3.34)

where 𝑃𝑘𝑠 and 𝑄𝑘𝑠, are the specified active- and reactive-power injection at node 𝑘, re-
spectively.

In order to derive the Newton-Raphson algorithm in the complex domain, the
Jacobian matrix elements in complex form corresponding to each 𝑃𝑄 − 𝐵𝑢𝑠 are formed
based on the Wirtinger derivatives of 𝑀𝑘 and 𝑀*

𝑘 with respect to the complex and the
complex conjugate nodal voltage magnitudes, yielding
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𝜕𝑀𝑘

𝜕𝑉𝑘

⃒⃒⃒⃒
⃒
𝑉 *

𝑘
=𝐶𝑜𝑛𝑠𝑡

=
𝑁∑︁

𝑚 ∈ Ω𝑘

𝜕𝑆𝑘

𝜕𝑉𝑘

⃒⃒⃒⃒
⃒
𝑉 *

𝑘
=𝐶𝑜𝑛𝑠𝑡

, (3.35)

𝜕𝑀𝑘

𝜕𝑉 *
𝑘

⃒⃒⃒⃒
⃒
𝑉𝑘=𝐶𝑜𝑛𝑠𝑡

=
𝑁∑︁

𝑚 ∈ Ω𝑘

𝜕𝑆𝑘

𝜕𝑉 *
𝑘

⃒⃒⃒⃒
⃒
𝑉𝑘=𝐶𝑜𝑛𝑠𝑡

, (3.36)

𝜕𝑀𝑘

𝜕𝑉𝑚

⃒⃒⃒⃒
⃒
𝑉 *

𝑚=𝐶𝑜𝑛𝑠𝑡

= 0.0, (3.37)

𝜕𝑀𝑘

𝜕𝑉 *
𝑚

⃒⃒⃒⃒
⃒
𝑉𝑚=𝐶𝑜𝑛𝑠𝑡

=
𝑁∑︁

𝑚 ∈ Ω𝑘

𝜕𝑆𝑘

𝜕𝑉 *
𝑚

⃒⃒⃒⃒
⃒
𝑉𝑚=𝐶𝑜𝑛𝑠𝑡

, (3.38)

and

𝜕𝑀*
𝑘

𝜕𝑉𝑘

⃒⃒⃒⃒
⃒
𝑉 *

𝑘
=𝐶𝑜𝑛𝑠𝑡

=
𝑁∑︁

𝑚 ∈ Ω𝑘

𝜕𝑆*
𝑘

𝜕𝑉𝑘

⃒⃒⃒⃒
⃒
𝑉 *

𝑘
=𝐶𝑜𝑛𝑠𝑡

, (3.39)

𝜕𝑀*
𝑘

𝜕𝑉 *
𝑘

⃒⃒⃒⃒
⃒
𝑉𝑘=𝐶𝑜𝑛𝑠𝑡

=
𝑁∑︁

𝑚 ∈ Ω𝑘

𝜕𝑆*
𝑘

𝜕𝑉 *
𝑘

⃒⃒⃒⃒
⃒
𝑉𝑘=𝐶𝑜𝑛𝑠𝑡

, (3.40)

𝜕𝑀*
𝑘

𝜕𝑉𝑚

⃒⃒⃒⃒
⃒
𝑉 *

𝑚=𝐶𝑜𝑛𝑠𝑡

=
𝑁∑︁

𝑚 ∈ Ω𝑘

𝜕𝑆*
𝑘

𝜕𝑉𝑚

⃒⃒⃒⃒
⃒
𝑉𝑚=𝐶𝑜𝑛𝑠𝑡

, (3.41)

𝜕𝑀*
𝑘

𝜕𝑉 *
𝑚

⃒⃒⃒⃒
⃒
𝑉𝑚=𝐶𝑜𝑛𝑠𝑡

= 0.0. (3.42)

Here Ω𝑖 in (3.35-3.42) is the set of neighboring buses connected to the 𝑘𝑡ℎ − 𝑏𝑢𝑠 and 𝑁

is the total number of buses. Moreover, in (3.37-3.38) and (3.41-3.42), 𝑚 ̸= 0 and 𝑚 ̸= 𝑘.
We highlight that the right hand side (rhs) of (3.40) is the nodal complex current at node
𝑘 while the rhs of (3.35) is the complex conjugate of the nodal current at node 𝑘.

3.4.3 PV-Bus Type

As the active-power generation and the terminal voltage magnitude at a 𝑃𝑉 − 𝑏𝑢𝑠

are both specified, i.e., 𝑃𝑘𝑠 and 𝑉𝑘𝑠, respectively, the sum of 𝑀𝑘 in (3.33) and 𝑀*
𝑘 in (3.34)

gives the complex residual function, 𝑀𝑘𝑔, which is related to the active-power constraint
as follows:

𝑀𝑘𝑔 = 𝑀𝑘 + 𝑀*
𝑘 ,

= 𝑆𝑘 + 𝑆*
𝑘 − 2 × 𝑃𝑘𝑠.

(3.43)

The second complex residual function 𝐸𝑘𝑔 for a generator node 𝑘 is formed, using the
voltage magnitude constraint given by

|𝐸𝑘𝑔| = |𝑉𝑘|2 − |𝑉𝑘𝑠|2, (3.44)
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where the |𝑉𝑘𝑠| is the specified voltage magnitude at Node 𝑘.

As |𝑉𝑘|2 = 𝑉𝑘𝑉 *
𝑘 , (3.44) can be expressed in the complex domain as

𝐸𝑘𝑔 = 𝑉𝑘 𝑉 *
𝑘 − |𝑉𝑘𝑠|2, (3.45)

and the Jacobian matrix elements associated with a Generator node 𝑘 are obtained by
taking the partial derivatives of the complex residual functions in (3.43) and (3.45) with
respect to 𝑉𝑘 and 𝑉 *

𝑘 , yielding

𝜕𝑀𝑘𝑔

𝜕𝑉𝑘

⃒⃒⃒⃒
⃒
𝑉 *

𝑘
=𝐶𝑜𝑛𝑠𝑡

= 𝜕𝑀𝑘

𝜕𝑉𝑘

⃒⃒⃒⃒
⃒
𝑉 *

𝑘
=𝐶𝑜𝑛𝑠𝑡

+ 𝜕𝑀*
𝑘

𝜕𝑉𝑘

⃒⃒⃒⃒
⃒
𝑉 *

𝑘
=𝐶𝑜𝑛𝑠𝑡

, (3.46)

𝜕𝑀𝑘𝑔

𝜕𝑉 *
𝑘

⃒⃒⃒⃒
⃒
𝑉𝑘=𝐶𝑜𝑛𝑠𝑡

= 𝜕𝑀𝑘

𝜕𝑉 *
𝑘

⃒⃒⃒⃒
⃒
𝑉𝑘=𝐶𝑜𝑛𝑠𝑡

+ 𝜕𝑀*
𝑘

𝜕𝑉 *
𝑘

⃒⃒⃒⃒
⃒
𝑉𝑘=𝐶𝑜𝑛𝑠𝑡

, (3.47)

𝜕𝑀𝑘𝑔

𝜕𝑉𝑚

⃒⃒⃒⃒
⃒
𝑉 *

𝑚=𝐶𝑜𝑛𝑠𝑡

= 𝜕𝑀𝑘

𝜕𝑉𝑚

⃒⃒⃒⃒
⃒
𝑉 *

𝑚=𝐶𝑜𝑛𝑠𝑡

+ 𝜕𝑀*
𝑘

𝜕𝑉𝑚

⃒⃒⃒⃒
⃒
𝑉 *

𝑚=𝐶𝑜𝑛𝑠𝑡

, (3.48)

𝜕𝑀𝑘𝑔

𝜕𝑉 *
𝑚

⃒⃒⃒⃒
⃒
𝑉𝑚=𝐶𝑜𝑛𝑠𝑡

= 𝜕𝑀𝑘

𝜕𝑉 *
𝑚

⃒⃒⃒⃒
⃒
𝑉𝑚=𝐶𝑜𝑛𝑠𝑡

+ 𝜕𝑀*
𝑘

𝜕𝑉 *
𝑚

⃒⃒⃒⃒
⃒
𝑉𝑚=𝐶𝑜𝑛𝑠𝑡

, (3.49)

where in (3.48-3.49), 𝑚 ̸= 0 and 𝑚 ̸= 𝑘. Moreover, note that the rhs of (3.46-3.49) are
defined in (3.35-3.42). On the other hand, the partial derivatives of 𝐸𝑘𝑔 in (3.45) with
respect to 𝑉𝑘 and 𝑉 *

𝑘 are expressed as

𝜕𝐸𝑘𝑔

𝜕𝑉𝑘

⃒⃒⃒⃒
⃒
𝑉 *

𝑘
=𝐶𝑜𝑛𝑠𝑡

= 𝑉 *
𝑘 , (3.50)

𝜕𝐸𝑘𝑔

𝜕𝑉 *
𝑘

⃒⃒⃒⃒
⃒
𝑉𝑘=𝐶𝑜𝑛𝑠𝑡

= 𝑉𝑘, (3.51)

and the partial derivaives with respect to 𝑉𝑚 and 𝑉 *
𝑚 are given by

𝜕𝐸𝑘𝑔

𝜕𝑉𝑚

⃒⃒⃒⃒
⃒
𝑉 *

𝑚=𝐶𝑜𝑛𝑠𝑡

= 0.0, for 𝑚 ̸= 0 and 𝑚 ̸= 𝑘, (3.52)

𝜕𝐸𝑘𝑔

𝜕𝑉 *
𝑚

⃒⃒⃒⃒
⃒
𝑉𝑚=𝐶𝑜𝑛𝑠𝑡

= 0.0, for 𝑚 ̸= 0 and 𝑚 ̸= 𝑘, (3.53)

3.4.4 PQV-Bus Type

This type of bus is referred to model On-Load-Tap-Changer (OLTC), which can
be a phase-transformer for local and nearby bus voltage regulation or a phase-shifting-
transformer for controlling the active power flow transmitted over a line [35]. It is also
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suited to model a DC link of a voltage-sourced converter [36, 37]. As the active- and
reactive-power demand are specified, the complex mismatches functions as stated in (3.33)
and (3.34) are employed. Nonetheless, it is worth to recall that the OLTC tap position
allows us to regulate the voltage magnitude at either 𝑘− or 𝑚 − 𝑏𝑢𝑠. Let us assume that
the 𝑚 − 𝑏𝑢𝑠 voltage is regulated, leading to the following mismatches functions:

𝑀𝑚 = 𝑎𝑘𝑚 − 𝑎*
𝑘𝑚 − 2 × ℑ{𝑎𝑘𝑚}, (3.54)

𝐸𝑚 = 𝑉𝑚 𝑉 *
𝑚 − |𝑉𝑚𝑠|2, (3.55)

Here ℑ{𝑎𝑘𝑚} is the specified imaginary part of the complex tap value, e.g, for a
phase-transformer, we have ℑ{𝑎𝑘𝑚} = 0; otherwise, it is a phase-shifter-transformer and
instead of (3.54), (3.43) is used. In (3.55), 𝑉𝑚𝑠 is the specified voltage at node 𝑚, i.e., the
regulated nodal voltage, yielding the partial derivatives of (3.54) and (3.55) given by

𝜕𝑀𝑚

𝜕𝑎𝑘𝑚

⃒⃒⃒⃒
⃒
𝑎*

𝑘𝑚
=𝐶𝑜𝑛𝑠𝑡

= 1.0, (3.56)

𝜕𝑀𝑚

𝜕𝑎*
𝑘𝑚

⃒⃒⃒⃒
⃒
𝑎𝑘𝑚=𝐶𝑜𝑛𝑠𝑡

= −1.0, (3.57)

and

𝜕𝐸𝑚

𝜕𝑉𝑚

⃒⃒⃒⃒
⃒
𝑉 *

𝑚=𝐶𝑜𝑛𝑠𝑡

= 𝑉 *
𝑚, (3.58)

𝜕𝐸𝑚

𝜕𝑉 *
𝑚

⃒⃒⃒⃒
⃒
𝑉𝑚=𝐶𝑜𝑛𝑠𝑡

= 𝑉𝑚. (3.59)

When (3.43) is used, the corresponding partial derivatives are those defined in
(3.13-3.14) and (3.25-3.26).

3.5 Complex-Valued Iterative Solution

3.5.1 The Newton-Raphson Algorithm

When the slack bus is excluded, the state variables vector in the complex conjugate
coordinate becomes

x𝑐 = [𝑉1, 𝑉2, . . . , 𝑉𝑁−1, 𝑉 *
1 , 𝑉 *

2 , . . . , 𝑉 *
𝑁−1]𝑇 , (3.60)

and the mismatches vector reduces to
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𝑀(x𝑐) = [𝑀1, 𝑀2, . . . , 𝑀𝑁−1, 𝑀*
1 , 𝑀*

2 , . . . , 𝑀*
𝑁−1]𝑇 . (3.61)

If Node 𝑘 (for 𝑘 = 1, 2, . . . , 𝑁 − 1) is a 𝑃𝑉 − 𝑏𝑢𝑠 or a 𝑃𝑄𝑉 − 𝑏𝑢𝑠, the pair of
elements 𝑀𝑘 and 𝑀*

𝑘 in (3.61) are replaced by 𝑀𝑘𝑔 and 𝐸𝑘𝑔 as in (3.43) and (3.45) or
replaced by 𝑀𝑚 and 𝐸𝑚 as in (3.54) and (3.55), respectively. Here, the objective is to
calculate x𝑐 that satisfies

𝑀(xc) = 0. (3.62)

It follows that the linearization of (3.62) from one step to the sequel is given by

𝑀
(︁
xc

(𝜈−1)
)︁

+ J
(︁
xc

(𝜈−1)
)︁

Δxc
(𝜈) = 0, (3.63)

and
xc

(𝜈) = xc
(𝜈−1) −

[︁
J(𝜈−1)

]︁−1
𝑀
(︁
xc

(𝜈−1)
)︁

, (3.64)

or
Δxc

(𝜈) = −
[︁
J(𝜈−1)

]︁−1
𝑀
(︁
xc

(𝜈−1)
)︁

, (3.65)

where J is the complex-valued Jacobian matrix in the complex conjugate coordinate. So,
the update equation is given by

xc
(𝜈) = xc

(𝜈−1) + Δxc
(𝜈). (3.66)

The convergence criterion can be the same that is often assumed in the R−𝑑𝑜𝑚𝑎𝑖𝑛,
i.e., ⃦⃦⃦

Δx(𝜈)
𝑐

⃦⃦⃦
∞

≤ 𝑡𝑜𝑙 (≈ 10−3), (3.67)

where ‖·‖∞ is defined as the infinity norm and 𝜈 is the iteration counter. In the complex
domain, the convergence criterion is chosen to be the infinity norm of the Δxc

(𝜈) of the
complex conjugate partition as explained next.

3.5.2 Structure of the Complex-Valued Power Flow Jacobian Matrix

The complex-valued power flow Jacobian matrix exhibits the following structure:
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J =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝜕𝑀𝑘𝑔

𝜕𝑉𝑘

𝜕𝑀𝑘𝑔

𝜕𝑉𝑚

𝜕𝑀𝑘𝑔

𝜕𝑎𝑘𝑚

𝜕𝑀𝑘

𝜕𝑉𝑘

𝜕𝑀𝑘

𝜕𝑉𝑚

𝜕𝑀𝑘

𝜕𝑎𝑘𝑚

0.0 0.0 𝜕𝑀𝑚

𝜕𝑎𝑘𝑚

𝜕𝑀𝑘𝑔

𝜕𝑉 *
𝑘

𝜕𝑀𝑘𝑔

𝜕𝑉 *
𝑚

𝜕𝑀𝑘𝑔

𝜕𝑎*
𝑘𝑚

𝜕𝑀𝑘

𝜕𝑉 *
𝑘

𝜕𝑀𝑘

𝜕𝑉 *
𝑚

𝜕𝑀𝑘

𝜕𝑎*
𝑘𝑚

0.0 0.0 𝜕𝑀𝑚

𝜕𝑎*
𝑘𝑚

𝜕𝐸𝑘𝑔

𝜕𝑉𝑘
0.0 0.0

𝜕𝑀*
𝑘

𝜕𝑉𝑘

𝜕𝑀*
𝑘

𝜕𝑉𝑚

𝜕𝑀*
𝑘

𝜕𝑎𝑘𝑚

0.0 𝜕𝐸𝑚

𝜕𝑉𝑚
0.0

𝜕𝐸𝑘𝑔

𝜕𝑉 *
𝑘

0.0 0.0

𝜕𝑀*
𝑘

𝜕𝑉 *
𝑘

𝜕𝑀*
𝑘

𝜕𝑉 *
𝑚

𝜕𝑀*
𝑘

𝜕𝑎*
𝑘𝑚

0.0 𝜕𝐸𝑚

𝜕𝑉 *
𝑚

0.0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (3.68)

In (3.68), the partial derivatives in the 1𝑠𝑡 and 4𝑡ℎ rows correspond to 𝑃𝑉 − 𝑏𝑢𝑠𝑒𝑠,
those in the 2𝑛𝑑 and 5𝑡ℎ rows correspond to 𝑃𝑄 − 𝑏𝑢𝑠𝑒𝑠 and those in the 3𝑡ℎ and 6𝑡ℎ

rows correspond to 𝑃𝑄𝑉 − 𝑏𝑢𝑠𝑒𝑠. In order to factorize the CV-Jacobian matrix in (3.68),
two QR-algorithms are considered and investigated [38, 39]; the latter is written in polar
coordinates. Both are the extension of the well-known real-valued algorithm described
in [40], which was successfully applied to PSSE by [41, 42, 43]. Recall that the QR-
algorithm should be applied to an augmented matrix in order to avoid explicitly storing
the Q-matrix. To this end, the QR-transformation is applied to Ja given by

Ja
(𝜈−1) =

[︁
J(𝜈−1) 𝑀

(︁
xc

(𝜈−1)
)︁]︁

. (3.69)

On the other hand, it turns out that if we store the sequence of rotations in compact
form, the complex-valued Jacobian matrix can be kept constant, implying that only the
right-hand-side vector is updated throughout the final iterations. Here, the solution of
(3.65) is reached by performing a simple back-substitution over the factorization of (3.69),
yielding

̃︀J(𝜈)
a =

[︁
Tc

̃︁M𝑐

]︁
, (3.70)

where Tc is an upper triangular matrix of dimension - 2𝑛 × 2𝑛, and ̃︁M𝑐 comprises the
corresponding rows in the updated rhs vector, dimension - 2𝑛 × 1, for 𝑛 = 𝑁 − 1. Then,
(3.65) can be expressed through

Δx(𝜈)
𝑐 = Tc

̃︁M𝑐. (3.71)
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4 Exact CV-Power Flow Analysis

The exact real-valued load flow formulation is not a new issue in the state-of-
the-art literature. In order to achieve a more accurate model, Sachdev and Medicherla
[44] proposed a second-order method in polar coordinates formulation. Nonetheless, this
approach still neglects all the higher-order terms in Taylor’s series expansion of the load
flow equations. On the other hand, Iwamoto and Tamura [45] proposal is developed using
rectangular coordinates and showed that no terms of Taylor’s series expansion need to
be neglected in their method. Moreover, the Hessian matrix calculation is not required in
their proposal if all the constraint functions are quadratic.

Further enhancements to the second-order load flow were proposed by Roy and
Rao [46], who showed that the use of a particular starting point and some suited approxi-
mations become his approach faster and require less memory than the fast decoupled load
flow (FDLF), which was taken as the benchmark in his work. In [47] some improvements
in the exact load flow formulation are suggested aiming to overcome the FDLF slow con-
vergence rate and failures when it is carried out on systems with large 𝑅/𝑋 ratios and
capacitive series branches. It is conjectured that the poor FDLF performance under those
conditions might be due to the approximations made while developing the FDLF model
itself. In addition, a new technique is added for handling 𝑄 limit violations at 𝑃𝑉 buses.
A comparative analysis of the convergence characteristics of second-order load flow meth-
ods is conducted in [48] but focused on FDLF. More recently, in [49] a new second-order
load flow method is proposed. It is based on the constant Jacobian matrix in polar coor-
dinates and requires the Hessian matrix calculation. In any case, the algorithms regarding
all works mentioned earlier are aimed to solve the exact power flow problem formulated
in the real domain. This procedure is followed because the power flow equations should
be written in rectangular coordinates, splitting into real and imaginary parts. So, if the
mismatch equations are quadratic functions, their second-order expansion in the Taylor
series is exact.

As the quadratic power flow equations in the complex plane are naturally formu-
lated in rectangular coordinates, a second-order complex-valued power flow formulation is
straightforwardly derived in this chapter. In order to present the effectiveness of the new
method, three classes of algorithms are considered in this chapter and their performances
are compared. The first one is the well-known Newton-Raphson method in the real do-
main and written in polar coordinates, which is taken as a benchmark. The second one
is the generic complex-valued NR power flow as presented in Chapter 3. The third one is
the proposed second-order power flow derived from Iwamoto’s approach as described in
[45], otherwise developed in the complex plane.
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4.1 The Iwamoto’s Approach in Complex Plane
The most noteworthy feature aiming the CV power flow equations expansion Tay-

lor series is that no terms beyond the second order derivative exist because the original
equations (3.5-3.8) are quadratic functions in 𝑥 and 𝑥*. Indeed, this feature is used to
develop the proposed algorithm, i.e., the exact 2𝑛𝑑-order complex-valued power flow (CV-
EPF), once it allows to retain the nonlinearity without introducing any approximation
or assumption into the model. Thus, without any loss of exactness, this work employs
the very nice property presented by Iwamoto’s approach in [45], i.e., the Hessian matrix
calculation can be avoided. Consequently, the power flow problem expanded in a 2𝑛𝑑-order
Taylor’s series becomes

J Δ𝑥𝑐 = 𝑌 𝑠𝑝𝑒𝑐
𝑐 − 𝑌 𝑐 (𝑥𝑐) − 𝑌 𝑐 (Δ𝑥𝑐) , (4.1)

where 𝑌 𝑠𝑝𝑒𝑐
𝑐 is a vector of constant terms referred as specified quantities. 𝑌 𝑐 (𝑥𝑐) and

𝑌 𝑐 (Δ𝑥𝑐) are the vector of calculated quantities and the 2𝑛𝑑-order term of the Taylor
serie expansion, respectively. Thereby, this latter is equivalent to the Hessian matrix
which is complicated and of high dimensionality [45, 50]. Consequently, its calculation
is advantageously avoided as described in Appendix B. Notice that the only difference
between 𝑌 𝑐 (𝑥𝑐) and 𝑌 𝑐 (Δ𝑥𝑐) is their argument. Writing (4.1) in terms of Δ𝑥𝑐, leads to

Δ𝑥𝑐 = J−1 [ 𝑌 𝑠𝑝𝑒𝑐
𝑐 − 𝑌 𝑐 (𝑥𝑐) − 𝑌 𝑐 (Δ𝑥𝑐) ] . (4.2)

As 𝑌 𝑐 (Δ𝑥𝑐) is function of Δ𝑥𝑐, a numerical solution is needed to find the exact
correction vector. Hence, (4.2) can be iteratively solved:

Δ𝑥(𝜈+1)
𝑐 =

(︁
J(0)

)︁−1 [︁
𝑌 𝑠𝑝𝑒𝑐

𝑐 − 𝑌 𝑐

(︁
𝑥(0)

𝑐

)︁
− 𝑌 𝑐

(︁
Δ𝑥(𝜈)

𝑐

)︁ ]︁
. (4.3)

In this algorithm, the starting values assigned to the state variables stay constant
throughout the iterations. Thus, also 𝑌 𝑐(𝑥(𝜈=0)

𝑐 ) and J(𝜈=0) which are functions of 𝑥(𝜈=0)
𝑐

remain constant during the iterative process. Consequently, only Δ𝑥(𝜈+1)
𝑐 and 𝑌 𝑐(Δ𝑥(𝜈)

𝑐 )
change their values in the iteration process. Now, it is worth highlighting the fact that
the Jacobian matrix is factorized only once, significantly lighting the computing burden.
Notice that null values are assigned to Δ𝑥(𝜈=0)

𝑐 in the first iteration of the exact power
flow loop [45]. Consequently, it is the former Newton-Raphson method. The recommended
convergence criterion to be satisfied is

⃦⃦⃦
Δx(𝜈+1)

𝑐 − Δx(𝜈)
𝑐

⃦⃦⃦
∞

≤ 𝑡𝑜𝑙
(︁
𝑒.𝑔., 10−6

)︁
, (4.4)

where Δx𝑐 physically means the total (or exact) voltage correction vector. Hence, the
state variables updating only occurs once the convergence has been reached, yielding
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𝑥(⋆)
𝑐 = 𝑥(0)

𝑐 + Δ𝑥(𝜈+1)
𝑐 , (4.5)

where 𝑥(⋆)
𝑐 is the solution vector for the power flow problem. Nonetheless, as any iterative

process, the outcome to reach the solution is prone to the starting values assigned to
the state variables. If needed, the starting point can be enhanced by making at least one
iteration, e.g., through the Newton-Raphson method, as shown in Fig. 16b. Thus, (4.5)
has to be re-written, leading to

𝑥(⋆)
𝑐 = 𝑥(1)

𝑐 + Δ𝑥(𝜈+1)
𝑐 . (4.6)

Fig. 16 depicts both possibilities, i.e., (4.5-4.6), where the state variables are up-
dated only once, i.e., after the iterative process is over.

(a) Starting point; (b) Enhanced Starting point.

Figure 16 – Exact power flow solutions through Iwamoto’s approach.

4.1.1 The Second-Order Complex-Valued Power Flow Formulation

In order to simplify notation, it is considered in this section a power system where
all buses are PQ-buses, except, of course, the slack-bus, for which terms are removed
since its voltage is known. The vector of state variables 𝑥𝑐 is defined as in (3.60) and the
correction vector Δ𝑥𝑐 have the same structure. The terms of (4.3) are given by:

𝑌 𝑠𝑝𝑒𝑐
𝑐 =

⎡⎣ 𝑆𝑠𝑝𝑒𝑐

𝑆* 𝑠𝑝𝑒𝑐

⎤⎦ =
⎡⎣ 𝑃 𝑠𝑝𝑒𝑐 + 𝑗 𝑄𝑠𝑝𝑒𝑐

𝑃 𝑠𝑝𝑒𝑐 − 𝑗 𝑄𝑠𝑝𝑒𝑐

⎤⎦ , (4.7)

𝑌 𝑐

(︁
𝑉 (0)

𝑐

)︁
=
⎡⎣ 𝑆

(︁
𝑉 (0)

𝑐

)︁
𝑆*
(︁
𝑉 (0)

𝑐

)︁ ⎤⎦ =
⎡⎣ 𝑉 (0) ⊙ Y* 𝑉 *(0)

𝑉 *(0) ⊙ Y 𝑉 (0)

⎤⎦ , (4.8)

and

𝑌 𝑐

(︁
Δ𝑉 (𝜈)

𝑐

)︁
=
⎡⎣ 𝑆

(︁
Δ𝑉 (𝜈)

𝑐

)︁
𝑆*
(︁
Δ𝑉 (𝜈)

𝑐

)︁ ⎤⎦ =
⎡⎣ Δ𝑉 (𝜈) ⊙ Y* Δ𝑉 *(𝜈)

Δ𝑉 *(𝜈) ⊙ Y Δ𝑉 (𝜈)

⎤⎦ . (4.9)

The generalization for PV and PQV-buses is made in this same manner considering
its respective constraints modeled in Chapter 3. The flow chart scheme for this algorithm
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𝑥(0)
𝑐

𝑌 𝑠𝑝𝑒𝑐
𝑐

𝑌 𝑐(𝑥(0)
𝑐 )

J(0)

Δ𝑥(1)
𝑐

𝑌 𝑐(Δ𝑥(𝜈)
𝑐 )

Δ𝑥(𝜈+1)
𝑐

Converged?

𝜈 = 𝜈 + 1

Output
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𝑥(0)

𝑐 + Δ𝑥(𝜈+1)
𝑐

yes no

Figure 17 – Flow chart of the 2𝑛𝑑-order CV power flow algorithm.

is illustrated in Fig. 17. It is clear now how simple is the 2𝑛𝑑-order expansion of the
CV power flow formulation when considering the Hessian equivalent function from the
Iwamoto approach. The numerical performance for such implementation is evaluated in
the next section.

4.2 Numerical Results
In this section, the performance of the exact CV power flow algorithm is evaluated.

As described earlier, a total of three algorithms were implemented in order to compare
their performances. In this section they are identified as follows:

1. RV-PFA Classic real-valued Newton-Raphson method in polar coordinates;

2. CV-PFA Complex-valued Newton-Raphson power flow as presented in Chapter 3;

3. CV-EPF Complex-valued exact 2𝑛𝑑-order power flow algorithm.
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All algorithms described here were encoded in Matlab by using the sparsity tech-
nique and column approximate minimum degree (colamd) ordering scheme. The numerical
tests were executed by using an Intel® Core™ i5-4200 CPU @ 1.60Hz 2.30 GHz; 6GB of
RAM and 64-bit operating system. A flat start condition is assigned to the state variables
in all simulations. The tolerance adopted for the convergence criterion in all simulations
is 10−6. All simulations are carried out on the standard IEEE-14, -30, -57, and -118 bus
systems, and on the SIN-1916 bus systems.

4.2.1 IEEE / SIN Test Systems

Table 1 provides the network features of the well-conditioned IEEE / SIN test
systems. Whereas, Table 2 allows us to make a comparative analysis of the performance
referred to all algorithms carried out on the simulations regarding the number of iterations
and time consuming to reach the solution. For the CPU time comparison, the well-known
real-valued Newton-Raphson method in polar coordinates is taken as the benchmark,
i.e., Table 2 shows how faster the processing times are for the algorithms 2. CV-PFA
and 3. CV-EPF compared to 1. RV-PFA. Regardless of power system dimension, 2.
CV-PFA has shown to have a quite similar performance compared to 1. RV-PFA,
for either the number of iterations to converge and computing time. This emphasizes
that modern processors can compute complex arithmetic with no apparent extra burden
[4]. Due the Iwamoto’s Approach characteristics, the proposed algorithm 3. CV-EPF
naturally demands more iterations to reach the solution. However, avoiding the need for
building and factorizing the Jacobian matrix at each iteration allows the algorithm to be
quite fast. Indeed, the simulation results have shown a better performance for 3. CV-
EPF for all test systems, especially the larger one, reaching the problem solution 2.89
times faster than the classic 1. RV-PFA algorithm.

Table 1 – Features of the IEEE / SIN Test systems

IEEE-Test Bus Systems / SIN- 14 30 57 118 1916
No. of PV-bus (𝑁𝑃 𝑉 ) 4 5 6 53 163
No. of PQ-bus (𝑁𝑃 𝑄) 9 24 50 64 1753
No. of transformers 3 4 15 9 835
No. of TL + shunt 21 43 83 200 3197
RV-(𝑝): 𝑛 = (𝑁𝑃 𝑉 + 2 × 𝑁𝑃 𝑄) 22 53 106 181 3669
CV-(𝑟): 𝑛 = 2 × (𝑁𝑃 𝑉 + 𝑁𝑃 𝑄) 26 58 112 234 3832

TL - Transmission Line
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Table 2 – Performance in the IEEE/SIN test systems (tol. = 1.0 × 10−6)

Number Time / Total
Algorithms of iteration time

Iters. (× faster) (× faster)

IE
EE

-1
4 1. RV-PFA 3 1 1

2. CV-PFA 3 0.97 0.88
3. CV-EPF 7 7.61 1.58

IE
EE

-3
0 1. RV-PFA 3 1 1

2. CV-PFA 3 1.06 0.98
3. CV-EPF 7 8.28 1.65

IE
EE

-5
7 1. RV-PFA 3 1 1

2. CV-PFA 3 1.07 1.03
3. CV-EPF 9 10.45 1.50

IE
EE

-1
18 1. RV-PFA 3 1 1

2. CV-PFA 3 1.08 1.04
3. CV-EPF 6 9.03 1.20

SI
N

-1
91

6 1. RV-PFA 6 1 1
2. CV-PFA 6 1.01 1.07
3. CV-EPF 26 67.24 2.89

4.3 Partial Conclusions
In this chapter is developed a complex-valued exact power flow solution (CV-EPF)

by adapting the Iwamoto approach to the complex plane formulation. The proposed algo-
rithm is compared to the well-known RV Newton-Raphson method in polar coordinates,
besides the CV Newton-Raphson power flow algorithm as discussed in Chapter 3. It is
shown that the proposed CV exact power flow algorithm is faster and very easily can be
implemented.
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5 Complex-Valued Power Flow Analysis for
Hybrid AC/DC Transmission Grids

Nowadays, the ever growing need for transmission capacity in power systems, and
integration with renewable energy sources and offshore grids, has led to an increased
interest in transmission based on Multi-Terminal High Voltage Direct Current (MTDC)
technology. MTDC emplying Voltage Source Converter (VSC) is an enhanced HVDC
technology of attractive application in the industry because of their well-known advantages
over conventional Current Source Commutated (CSC) [13], which allow the relatively
straightforward extension of the multi-terminal configurations.

Many research efforts has been conducted on the development of a steady-state
VSC MTDC model applicable to integrated AC/DC power flow algorithms. In the state-
of-the-art, mainly two power flow formulations aiming to model the integrated AC/DC
grids can be found. In the first, the solution method is sequential [51, 52, 53, 54, 55], while
in the second, the solution is formulated in a unified fashion [56, 57, 58, 59]. In sequential
methods, the AC and DC equations are solved sequentially, whereas the hybrid systems
are solved together in the unified methods. Comparing their implementation effort, the
sequential approach is more advantageous mainly because it allows embedding an MTDC
system to an existing AC-based power flow software [60]. However, the sequential solution
requires an additional iterative process to solve the DC grid power flow because its inner
losses are not known a priori.

The major contribution presented in this chapter is the development of a detailed,
general complex-valued (CV) VSC-MTDC steady-state model and, from that, the de-
velopment of a set of hybrid AC/DC power flow solutions in complex plane. The main
motivation is that the complex-valued power flow is more suited to modern processors and
lends itself to an easier software implementation, as further discussed in Chapter 3. To
demonstrate the CV VSC-MTDC model applicability, both sequential and unified power
flow formulations for hybrid AC/DC transmission grid were developed in the complex
plane.

The formulation is solved, likewise [5], by Newton’s method using Wirtinger’s
calculus, preserving the powerful convergence property of Newton’s method [8]. The full
complex power flow equations with no restrictions on the topology or configuration of the
AC and DC networks are assumed. Moreover, without any loss of generality, the former
VSC-HVDC model showed in Fig. 18 is adopted in this chapter [52]. The main reason is
that power flow equations are functions only of the network’s state variables, including the
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AC side of the converter. Consequently, regardless of the Newton-Raphson iterative power
flow algorithms, i.e., sequential or unified approach, usually it requires fewer number of
iterations to reach the solution than other equivalent algorithms which model the state
variables inner the converter explicitly [61, 56]. This model also includes a representation
of converter transformer, AC filter and phase reactor as a part of the converter model.

Transformer

Filter

Reactor

Converter

AC System DC System

Figure 18 – VSC HVDC scheme.

5.1 The Generalized Complex-Valued VSC-MTDC Formulation
The two most basic VSC-HVDC configurations are the back-to-back and point-

to-point in either monopolar or bipolar fashions. Two monopolar VSC-HVDC links are
shown schematically in Fig. 19, where each converter comprises a voltage-source-converter
(VSC) and an interfacing load-tap-changer (LTC) transformer, AC filter and phase reac-
tor. Remark that the two VSCs are series-connected on their DC sides, both sharing a
capacitor, in the back-to-back configuration (Fig. 19a), or a DC cable, in the point-to-point
configuration (Fig. 19b). Whereas on the converters’ AC side, the converter transformers
are connected to the AC Point of Common Coupling (PCC), which makes each VSC to
be shunt-connected with the AC system, just as if they were two STATCOM [62].

𝑉𝑠 1
𝑉𝑐 1 +

−
𝑉𝑑𝑐

𝑉𝑐 2

𝑉𝑠 2

Rectifier Inverter

(a) Back-to-back.

𝑉𝑠 1
𝑉𝑐 1 +

−
𝑉𝑑𝑐 1

𝐺𝑑𝑐

+

−
𝑉𝑑𝑐 2

𝑉𝑐 2

𝑉𝑠 2

Rectifier Inverter

(b) Point-to-point.

Figure 19 – VSC HVDC link scheme.
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The VSC-HVDC shown in Fig. 19b is extended to a generic VSC-MTDC hybrid
AC/DC transmission grids’ one-line diagram, depicted in Fig. 20. In spite of the VSC-
HVDC, this VSC-MTDC model can be extended to any number of terminals. Further-
more, despite other FACTS devices are not shown, e.g., a battery energy storage system
(BESS), a DFIG-based wind farm or a photovoltaic generation system (PV), to cite a
few, they can be equally DC grid-connected.

𝑉𝑠 1
𝑉𝑐 1

𝐺𝑑𝑐 12 𝑉𝑐 2

𝑉𝑠 2

𝑉𝑠 3
𝑉𝑐 3

𝐺𝑑𝑐 34 𝑉𝑐 4

𝑉𝑠 4

𝐺𝑑𝑐 13 𝐺𝑑𝑐 24

+

−
𝑉𝑑𝑐 1

+

−
𝑉𝑑𝑐 2

+

−
𝑉𝑑𝑐 3

+

−
𝑉𝑑𝑐 4

Figure 20 – VSC MTDC scheme.

5.1.1 The equivalent VSC model

The equivalent circuit of a generalized VSC-HVDC converter is presented in Fig.
21.

𝑉𝑐

𝑆𝑐𝑍𝑐
𝑆𝑐𝑓

𝑆𝑓

𝑍𝑓

𝑆𝑠𝑓𝑍𝑡
𝑆𝑠

𝑉𝑠

PCC

−

+
𝑉𝑑𝑐

𝑃𝑑𝑐

𝑉𝑓

Figure 21 – VSC HVDC equivalent model.

Assuming the AC system as well the VSC are three-phase balanced, each former
VSC based power flow model can be represented at the fundamental (power grid) fre-
quency by the complex bus voltage 𝑉𝑐. Based on these assumptions, the general complex
power flow equations at PCC and at the converter AC-terminal are:

𝑆𝑠 = 𝑉𝑠 𝐼*
𝑠 = 𝑉𝑠 𝑌 *

𝑡 (𝑉 *
𝑠 − 𝑉 *

𝑓 ), (5.1)
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and
𝑆𝑐 = 𝑉𝑐 𝐼*

𝑐 = 𝑉𝑐 𝑌 *
𝑐 (𝑉 *

𝑐 − 𝑉 *
𝑓 ), (5.2)

while the expressions for the power flowing through the transformer, phase reactor and
filter are

𝑆𝑠𝑓 = 𝑉𝑓 𝑌 *
𝑡 (𝑉 *

𝑓 − 𝑉 *
𝑠 ), (5.3)

𝑆𝑐𝑓 = 𝑉𝑓 𝑌 *
𝑐 (𝑉 *

𝑓 − 𝑉 *
𝑐 ), (5.4)

and
𝑆𝑓 = 𝑉𝑓 𝑌 *

𝑓 𝑉 *
𝑓 , (5.5)

where 𝑌{·} = 1/𝑍{·} and 𝑍{·} = (𝑅{·} +𝑗 𝑋{·}) are the impedance of the converter coupling
components. The losses in the converter can be represented as a function of the reactor
current magnitude 𝐼𝑐𝑚, as first discussed in [63]:

𝑃𝑙𝑜𝑠𝑠 = 𝑎 + 𝑏 𝐼𝑐𝑚 + 𝑐 𝐼2
𝑐𝑚, (5.6)

with 𝐼𝑐𝑚 = 1√
3

√︃
𝑆𝑐 𝑆*

𝑐

𝑉𝑐 𝑉 *
𝑐

. (5.7)

Furthermore, the sum of losses and reactive power absorption between the con-
verter AC-terminal and PCC bus, here defined as 𝑆𝑙𝑜𝑠𝑠, is given by

𝑆𝑙𝑜𝑠𝑠 = 𝑆𝑐 − 𝑆𝑠 = 𝑍𝑡𝑓 𝐼𝑠 𝐼*
𝑠 + 𝑍𝑓 𝐼𝑓 𝐼*

𝑓 + 𝑍𝑐 𝐼𝑐 𝐼*
𝑐 , (5.8)

and the overall active power losses between the converter DC-terminal and PCC bus is
named 𝑃𝑙𝑜𝑠𝑠𝑒𝑠 and given by

𝑃𝑙𝑜𝑠𝑠𝑒𝑠 = 𝑃𝑑𝑐 − ℜ{𝑆𝑠} = 𝑃𝑙𝑜𝑠𝑠 + ℜ{𝑆𝑙𝑜𝑠𝑠}. (5.9)

Regarding VSC-HVDC with a Modular Multilevel Converter (MCC) topology, the
filtering requirements are greatly reduced because of the generation of high-quality AC
voltage [13]. Thus, AC filters might not be necessary and such conversors can be modelled
as shown in Fig. 22, which leads to the following power flow equations:

𝑆𝑠 = 𝑉𝑠 𝐼*
𝑠 = 𝑉𝑠 𝑌 *

𝑒𝑞 (𝑉 *
𝑠 − 𝑉 *

𝑐 ), (5.10)

and
𝑆𝑐 = 𝑉𝑐 𝐼*

𝑐 = 𝑉𝑐 𝑌 *
𝑒𝑞 (𝑉 *

𝑐 − 𝑉 *
𝑠 ), (5.11)

where 𝑌𝑒𝑞 = 1/(𝑍𝑡 + 𝑍𝑐).
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𝑉𝑐

𝑆𝑐

𝑍𝑡 + 𝑍𝑐

𝑆𝑠

𝑉𝑠

PCC

−

+
𝑉𝑑𝑐

𝑃𝑑𝑐

Figure 22 – MMC VSC HVDC equivalent model (no filter).

5.1.2 The VSC-MTDC control strategies

A VSC converter can independently control the active and reactive power injection
into the AC system. Such technology allows different control strategies for both AC- and
DC-side of the converter.

5.1.2.1 AC-side control strategies

PQ-constraint mode

The converters setted in this mode model the active and reactive HVDC power
absorptions as seen from the AC network. They are under the following complex power
constraints:

𝑆𝑠 − 𝑆𝑠𝑝𝑒𝑐
𝑠 = 0 (5.12)

and
𝑆*

𝑠 − 𝑆* 𝑠𝑝𝑒𝑐
𝑠 = 0, (5.13)

where 𝑆𝑠𝑝𝑒𝑐
𝑠 = (𝑃 𝑠𝑝𝑒𝑐

𝑠 + 𝑗 𝑄𝑠𝑝𝑒𝑐
𝑠 ) is the complex power specified at the converter corre-

sponding PCC bus.

PV-constraint mode

Here, the VSC is under the active power flow constraint and adapts the reactive
power injection to obtain a constant AC bus voltage magnitude. Thus, the complex power
control established in (5.12, 5.13) have to be replaced by

𝑆𝑠 + 𝑆*
𝑠 − 2 × 𝑃 𝑠𝑝𝑒𝑐

𝑠 = 0 (5.14)

and
𝑉𝑠 𝑉 *

𝑠 − (𝑉 𝑠𝑝𝑒𝑐
𝑠 )2 = 0. (5.15)
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5.1.2.2 DC-side control strategies

Very often the converters under power constraint are referred to as primary con-
verters. In turn, the converters that control the active power flow in order to sustain the
DC voltage are referred to as secondary converters [37, 57], and hereafter also referred
as sec-conv for short. In this section, two DC voltage control strategies are discussed, as
follows.

Constant DC Voltage Control

The converter responsible to control the DC Voltage adapts its AC active power
flow constraint, which is injected into the DC bus in order to establish the DC Voltage
under the following constraint:

𝑉𝑑𝑐 𝑉 *
𝑑𝑐 − (𝑉 𝑠𝑝𝑒𝑐

𝑑𝑐 )2 = 0, (5.16)

which is equivalent to
𝑉𝑑𝑐 − 𝑉 𝑠𝑝𝑒𝑐

𝑑𝑐 = 0, (5.17)

where: 𝑉𝑑𝑐 = (𝑉𝑑𝑐 + 𝑗 0.0). This feature allows us to infer that the DC network constraints
functions are analytic or holomorphic functions, i.e., they are not function of their com-
plex conjugate state variables. Thereby, the Cauchy-Riemann equations hold (please, see
Section II of [11]), and only the complex DC state variable, i.e., 𝑉𝑑𝑐 = (𝑉𝑑𝑐 + 𝑗 0.0),
is needed to solve the problem posed in (3.62). This property applies to every DC-side
constraint, once all its variables has null imaginary values in the complex plane.

Notice this converter plays the role of a slack bus for the DC grid, and hereafter
will be referred as so. The rest constraint, i.e., the active power exchange balance among
the 𝑛 converters coupled through the DC network, including their losses, leads to∑︁

𝑃𝑑𝑐 = 𝑃𝑑𝑐,1 + 𝑃𝑑𝑐,2 + ... + 𝑃𝑑𝑐,𝑛 +
∑︁

𝑃𝑑𝑐 𝑙𝑜𝑠𝑠 = 0. (5.18)

Voltage Droop Control

The reliability of the dc grid can be significantly enhanced by droop control since
multiple converters can simultaneously contribute to the dc voltage stability. Various
types of dc voltage droop characteristics, including voltage-power (V-P) droop [31, 64],
voltage-current (V-I) droop [65] and voltage droop with different dead-bands and limits
[66], have been proposed for MTDC. Although firstly addressed for dynamic studies, the
steady-state aspect of those droop techniques is detailed in [55].

A basic V-P droop characteristic is shown in Fig. 23a. Generally, if V-P droop is
employed by a dc grid of 𝑛 buses, the power flow problem can be described as how to
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solve the operating point of the system with a series of 𝑘 specified V-P characteristics and
(𝑛−𝑘) given nodal or branch powers. If the V-P droop is used for terminal, the converter
rectifying power would be controlled according to

𝑃𝑑𝑐,𝑖 = 𝐾𝑖 (𝑉 𝑟𝑒𝑓
𝑑𝑐,𝑖 − 𝑉𝑑𝑐,𝑖) + 𝑃 𝑟𝑒𝑓

𝑑𝑐,𝑖 , (5.19)

where 𝐾𝑖 is the droop control gain, which indicates the sensitivity of the converter power
to the local dc voltage. By setting 𝐾 to zero, a VSC terminal in power control mode
or with known power generation can also be represented by (5.19). This feature of V-
P droop makes it easier to analyze the power flow of the DC grid in a more generic
way. Furthermore, the droop characteristics could be a combination of multiple linear or
nonlinear functions of DC voltage, increasing the voltage control capability. For instance,
when the voltage droop with a power dead-band shown in Fig. 23b is implemented, the
scheduled power will be produced by the converter as the dc voltage is maintained close
to its nominal value. Once the voltage exceeds the dead-band zone, the converter power
will adjust to contribute to the stabilization of the dc grid.

𝑃𝑑𝑐

𝑉𝑑𝑐

0Inverter Rectifier

𝑃 𝑟𝑒𝑓
𝑑𝑐

𝑉 𝑟𝑒𝑓
𝑑𝑐

1
𝐾 = 1/𝜌

(a) Basic V-P droop

𝑃𝑑𝑐

𝑉𝑑𝑐

0Inverter Rectifier

𝑃 𝑟𝑒𝑓
𝑑𝑐

𝑃 𝑚𝑖𝑛
𝑑𝑐

𝑃 𝑚𝑎𝑥
𝑑𝑐

𝑉 𝑟𝑒𝑓
ℎ𝑖𝑔ℎ

𝑉 𝑟𝑒𝑓
𝑙𝑜𝑤

𝐾2

𝐾1

(b) V-P droop with dead-band.

Figure 23 – V-P droop characteristics.

5.1.3 The DC network power flow formulation

The DC networks is represented by a resistive network with current injections.
The power flow equations of a DC grid may be represented by

𝑃 𝑑𝑐 = 𝑝 · 𝑉 𝑑𝑐 ⊙ (Y𝑑𝑐 𝑉 𝑑𝑐), (5.20)

where Y𝑑𝑐 is the DC network nodal admittance matrix; 𝑉 𝑑𝑐 is the DC bus voltage vector

which in expanded form is 𝑉 𝑑𝑐 = [𝑉𝑑𝑐,1; 𝑉𝑑𝑐,2; ...; 𝑉𝑑𝑐,𝑛]𝑇 and 𝑃 𝑑𝑐 is the DC network bus
active power injection vector, represented by 𝑃 𝑑𝑐 = [𝑃𝑑𝑐,1; 𝑃𝑑𝑐,2; ...; 𝑃𝑑𝑐,𝑛]𝑇 for 𝑛 buses;
𝑝 = 1 for a monopolar system or 𝑝 = 2 for a monopolar symmetrically grounded or
bipolar system; and ⊙ the Handamard or element-wise product.
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5.2 The Complex-Valued AC/DC Sequential Algorithm (CV-ADS)
Currently, Beerten’s work [51] is still one of the most cited sequential AC/DC

power flow in the state-of-art, and in [52] he extends his proposal to a more generalized
VSC model, as considered in this chapter. In the light of that, in this section a Complex-
Valued VSC-MTDC Power Flow Algorithm is developed following the same principals
aiming to emphasise the generality of the CV power flow models.

In order to simplify notation, it is assumed in this section that interconnected AC
and DC buses have the same bus number, all interconnected with VSC converters. For
convenience, the analysis will be confined to one AC grid and one DC grid with 𝑛 buses
each and 𝑛 converters, of which 𝑘 control the DC voltage (𝑘 = 1 or 1 < 𝑘 ≤ 2 for a MTDC
with slack or droop voltage control, respectively). The method can easily be extended to
include multiple AC and DC grids.

In the sequential approach, the DC grid variables are used as inputs to solve
the AC equations and vice versa, which allows an easy embeddedness of DC grids into
existing AC power flow programs. Fig. 24 shows the flow chart of the sequential power flow
algorithm. Thus, each network, i.e., the DC as well as the AC network have to be solved
iteratively. Due to the converters loss inclusion, an extra inner loop is required to calculate
the secondary converter active power injections as a result of the nonlinear DC power flow
solution, which is described below in this section. After that, the former iteration is needed
to ensure the overall solution converges while the overall power flow solution changes due
to the updates of the DC slack bus power injection. Further formulation details of the
sequential hybrid power flow can be tracked in [51, 54].

5.2.1 AC network power flow

The non-linear set of power flow equations for all AC buses can be solved using
the CV-PFA described in Chapter 3. However, the converters AC-side constraints must
be included at the AC buses they are connected on, described as follows.

The converter complex and complex-conjugated power injections, 𝑆𝑠 and 𝑆*
𝑠 , are

included in the power mismatch vectors 𝑀 and 𝑀* as negative loads. The power mismatch
vectors from (3.33)-(3.34) can be rewritten as

𝑀 = 𝑆 − (𝑃 𝑠𝑝𝑒𝑐 + 𝑗 𝑄𝑠𝑝𝑒𝑐) − 𝑆𝑠, (5.21)

𝑀* = 𝑆* − (𝑃 𝑠𝑝𝑒𝑐 − 𝑗 𝑄𝑠𝑝𝑒𝑐) − 𝑆*
𝑠 . (5.22)

The specified active power injection of a converter setted as DC slack bus is changed
in order to control the DC grid voltages. As a first estimate to initiate the iteration, the
DC system is assumed to be lossless, hence
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Figure 24 – Flow chart of the sequential VSC AC/DC power flow algorithm.

𝑃
(0)
𝑠,𝑠𝑙𝑎𝑐𝑘 = −

𝑘∑︁
𝑖 ̸=𝑠𝑙𝑎𝑐𝑘

𝑃𝑠,𝑖. (5.23)

For subsequent iterations, the solution from the previous iteration is used for
𝑃𝑠,𝑠𝑙𝑎𝑐𝑘.

Furthermore, converters in PV-constraint mode are represented as AC generators
and their respective AC buses are changed from PQ-nodes to PV-nodes.

5.2.2 Converter Calculations

With each converter voltage 𝑉𝑠 and power injection 𝑆𝑠 at PCC known, the con-
verter side voltage and currents can be calculated. For the VSC model in Fig. 21, the
filter bus voltage 𝑉𝑓 can be written as

𝑉𝑓 = 𝑉𝑠 + 𝑍𝑡 𝐼𝑠, (5.24)
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where
𝐼𝑠 = 𝑆*

𝑠

𝑉 *
𝑠

. (5.25)

The converter current 𝐼𝑐 is calculated as

𝐼𝑐 = 𝐼𝑠 + 𝑉𝑓

𝑍𝑓

, (5.26)

which magnitude, denoted as 𝐼𝑐𝑚, can be substituted in (5.6) to calculate the converter
losses. The converter voltage 𝑉𝑐 can be calculated as

𝑉𝑐 = 𝑉𝑓 + 𝑍𝑐 𝐼𝑐. (5.27)

The power injection at the converter terminal is given by

𝑆𝑐 = 𝑉𝑐 𝐼*
𝑐 . (5.28)

With all quantities on the AC side known, the DC grid’s injected power becomes

𝑃𝑑𝑐 = −ℜ{𝑆𝑐} − 𝑃𝑙𝑜𝑠𝑠. (5.29)

5.2.3 DC network power flow

The non-linear DC network equations from (5.20) can be solved with a NR method

J𝑑𝑐 Δ𝑉 𝑑𝑐 = Δ𝑃 𝑑𝑐. (5.30)

The power mismatch vector Δ𝑃 𝑑𝑐 is given by

Δ𝑃 𝑑𝑐 = 𝑃 𝑟𝑒𝑓
𝑑𝑐 + 𝐾

(︁
𝑉 𝑟𝑒𝑓

𝑑𝑐 − 𝑉 𝑑𝑐

)︁
− 𝑃 𝑑𝑐 (𝑉 𝑑𝑐) , (5.31)

where 𝑃 𝑑𝑐 (𝑉 𝑑𝑐) is calculated from (5.20) in each inner DC iteration and 𝑃 𝑟𝑒𝑓
𝑑𝑐 is given

by (5.29) from the outer iteration. 𝐾 is the droop control gain vector, represented by
𝐾 = [𝐾1; 𝐾2; ...; 𝐾𝑘]𝑇 , which has null values for the converters not setted in droop control
mode.

The Jacobian matrix J𝑑𝑐 is

J𝑑𝑐 = 𝜕P𝑑𝑐

𝜕V𝑑𝑐

= 𝑝 · Y𝑑𝑐 ⊙ 𝑉 𝑇
𝑑𝑐 + K, (5.32)

with K being the diagonal matrix of the vector 𝐾.
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Similar to the AC power flow, the equations and terms corresponding to the DC
slack bus are removed since its voltage is given by (5.17). After convergence, the voltages
on all DC buses are known, while the resulting secondary converter power injections can
be found using (5.20).

5.2.4 Secondary converter iteration

After calculating the DC network, the complex power 𝑆𝑠,𝑘 injected into the AC
grid by each secondary converter 𝑘 is calculated from its DC power 𝑃𝑑𝑐,𝑘 by accounting
for the converter and components losses. As the losses from (5.6) and (5.8) depend on
the converter state variables, which in turn depend on 𝑆𝑠,𝑘, an additional iteration is
needed. The procedure put forward in this section uses the previous AC grid state to
calculate the secondary converter power injection 𝑆𝑠,𝑘, i.e., the voltage at the PCC of
each secondary converter 𝑉𝑠,𝑘 is kept constant since it is the solution for the iteration
cycle under consideration.

This additional iteration is depicted in Fig. 25. The subscript 𝑘 to indicate a
secondary converter has been omitted to simplify the notation. To start the iteration, an
initial estimate is needed for the converter side active power injection. Using the power
injection resulting from the DC power flow and an initial estimation of the converter losses
𝑃𝑙𝑜𝑠𝑠 deducted from the results of the AC network power flow in the overall iteration cycle,
𝑆𝑐 is updated by

𝑆𝑐 = 𝑃𝑑𝑐 − 𝑃𝑙𝑜𝑠𝑠 + 𝑗 ℑ{𝑆𝑠 + 𝑆𝑙𝑜𝑠𝑠}. (5.33)

A NR iteration based on 𝑉𝑐 and 𝑉𝑓 as variables is internally used to update the
converter losses:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝜕𝑆𝑐

𝜕𝑉𝑐
0 𝜕𝑆𝑐

𝜕𝑉 *
𝑐

𝜕𝑆𝑐

𝜕𝑉 *
𝑓

0 𝜕𝑆𝑓

𝜕𝑉𝑓

𝜕𝑆𝑓

𝜕𝑉 *
𝑐

𝜕𝑆𝑓

𝜕𝑉 *
𝑓

𝜕𝑆*
𝑐

𝜕𝑉𝑐

𝜕𝑆*
𝑐

𝜕𝑉𝑓

𝜕𝑆*
𝑐

𝜕𝑉 *
𝑐

0

𝜕𝑆*
𝑓

𝜕𝑉𝑐

𝜕𝑆*
𝑓

𝜕𝑉𝑓
0 𝜕𝑆*

𝑓

𝜕𝑉 *
𝑓

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣
Δ𝑉𝑐

Δ𝑉𝑓

Δ𝑉 *
𝑐

Δ𝑉 *
𝑓

⎤⎥⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎣
Δ𝑆𝑐

Δ𝑆𝑓

Δ𝑆*
𝑐

Δ𝑆*
𝑓

⎤⎥⎥⎥⎥⎥⎥⎦ . (5.34)

The power mismatches Δ𝑆𝑐 and Δ𝑆𝑓 can be calculated by

Δ𝑆𝑐 = 𝑆𝑐 − 𝑆𝑐(𝑉𝑐, 𝑉 *
𝑐 , 𝑉 *

𝑓 ), (5.35)

Δ𝑆𝑓 = 0 − 𝑆𝑓 (𝑉 *
𝑐 , 𝑉𝑓 , 𝑉 *

𝑓 ), (5.36)
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Figure 25 – Secondary converter iteration flow chart.

where 𝑆𝑐(𝑉𝑐, 𝑉 *
𝑐 , 𝑉 *

𝑓 ) is from (5.2) and 𝑆𝑓 (𝑉 *
𝑐 , 𝑉𝑓 , 𝑉 *

𝑓 ) is given by

𝑆𝑓 (𝑉 *
𝑐 , 𝑉𝑓 , 𝑉 *

𝑓 ) = 𝑉𝑓

(︁
𝑌 *

𝑓𝑓 𝑉 *
𝑓 − 𝑌 *

𝑡 𝑉 *
𝑠 − 𝑌 *

𝑐 𝑉 *
𝑐

)︁
, (5.37)

with 𝑌𝑓𝑓 = 𝑌𝑡 + 𝑌𝑐 + 𝑌𝑓 .

The elements of the Jacobian matrix can be analytically derived from (5.2) and
(5.37) directly. The resulting derivations are given in the following set of equations:



Chapter 5. Complex-Valued Power Flow Analysis for Hybrid AC/DC Transmission Grids 64

𝜕𝑆𝑐

𝜕𝑉𝑐

= 𝑌 *
𝑐

(︁
𝑉 *

𝑐 − 𝑉 *
𝑓

)︁
,

𝜕𝑆𝑓

𝜕𝑉𝑓

= 𝑌 *
𝑓𝑓 𝑉 *

𝑓 − 𝑌 *
𝑡 𝑉 *

𝑠 − 𝑌 *
𝑐 𝑉 *

𝑐 ,

𝜕𝑆𝑐

𝜕𝑉 *
𝑐

= 𝑉𝑐 𝑌 *
𝑐 ,

𝜕𝑆𝑓

𝜕𝑉 *
𝑓

= 𝑉𝑓 𝑌 *
𝑓 ,

𝜕𝑆*
𝑐

𝜕𝑉𝑐

= 𝑉 *
𝑐 𝑌𝑐,

𝜕𝑆*
𝑓

𝜕𝑉𝑓

= 𝑉 *
𝑓 𝑌𝑓 ,

𝜕𝑆*
𝑐

𝜕𝑉 *
𝑐

= 𝑌𝑐 (𝑉𝑐 − 𝑉𝑓 ) ,
𝜕𝑆*

𝑓

𝜕𝑉 *
𝑓

= 𝑌𝑓𝑓 𝑉𝑓 − 𝑌𝑡 𝑉𝑠 − 𝑌𝑐 𝑉𝑐,

𝜕𝑆𝑐

𝜕𝑉𝑓

= 0,
𝜕𝑆𝑓

𝜕𝑉𝑐

= 0,

𝜕𝑆𝑐

𝜕𝑉 *
𝑓

= − 𝑉𝑐 𝑌 *
𝑐 ,

𝜕𝑆𝑓

𝜕𝑉 *
𝑐

= − 𝑉𝑓 𝑌 *
𝑐 ,

𝜕𝑆*
𝑐

𝜕𝑉𝑓

= − 𝑉 *
𝑐 𝑌𝑐,

𝜕𝑆*
𝑓

𝜕𝑉𝑐

= − 𝑉 *
𝑓 𝑌𝑐,

𝜕𝑆*
𝑐

𝜕𝑉 *
𝑓

= 0,
𝜕𝑆*

𝑓

𝜕𝑉 *
𝑐

= 0.

After a convergence of 𝑆𝑐, the power injected into the AC network 𝑆𝑠 is calculated
(Fig. 25) and thereafter checked for convergence in the overall iteration loop (Fig. 24).

5.3 A Simplified Complex-Valued AC/DC Sequential Algorithm
(CV-ADS-S)
The Sequential Algorithm as presented above has a deep concern on calculating

the most exact correction possible for the complex power 𝑆𝑠,𝑘 injected into the AC grid
by a secondary converter 𝑘 at each global iteration. This calculation requires the third
inner NR iteration described in subsection 5.2.4. In this section, as suggested in [60], a
modification on the sequential algorithm [51] is made: an approximated correction for the
𝑆𝑠,𝑘 is calculated aiming to dismiss the need for the secondary converter iteration and,
consequently, making the sequential algorithm faster and easier to implement.

The algorithm structure remains the same as shown in Fig. 24, only the sec-conv
iteration is substituted by the sec-conv calculation as follows.

5.3.1 Secondary converter calculation

After calculating the DC network, the complex power 𝑆𝑠,𝑘 injected into the AC
grid by each secondary converter 𝑘 is calculated from its DC power 𝑃𝑑𝑐,𝑘 by accounting for
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the overall converter losses. Regard that, even though the losses from (5.9) depend on the
converter state variables, the correction of those losses is significantly small, even more
if compared with the magnitude of the power injected. Thus, the procedure put forward
in this section uses the previous converter losses to calculate the power injection 𝑆𝑠,𝑘. By
doing so, the whole sec-conv iteration can be replaced by this single calculation:

𝑆𝑠,𝑘 = −𝑃𝑑𝑐,𝑘 − 𝑃𝑙𝑜𝑠𝑠𝑒𝑠,𝑘 + 𝑗 ℑ{𝑆𝑠,𝑘}. (5.38)

5.3.2 Another considerations on the sequential algorithm

One of the main advantages of the sequential algorithms over the unified ones is
the easy embedding into existing AC power flow programs, as mentioned earlier. However,
for implementations where the AC power flow is built into the algorithm, the converters’
calculations can run together with the AC and DC iterations. In practice, this means
that no inner iterations are needed at all. In other words, the AC grid, the converters,
and the DC grid state variables are still computed sequentially, but under only the global
iteration, allowing the algorithm to be even faster. The flow chart in this case, still similar
to Fig. 24, is better represented by Fig. 26.

The sequential algorithm built this way gets real close to a unified one, in terms of
either structure or performance. In fact, it might be considered as unified once it is not a
sequence of inner iterations anymore, although the AC and DC state variables corrections
are still calculated sequentially. However, by going further and coupling the AC and DC
system equations in a single NR power flow, the algorithm would definitely become a
unified one. From that, the following Unified AC/DC Power Flow is straightforwardly
developed.

5.4 The Complex-Valued AC/DC Unified Algorithm (CV-ADU)
In the literature, a several number of different VSC-MTDC unified power flow

models can be found. Although each one might use a singular model for the hybrid
AC/DC problem, they all can be summarized in the following NR linearization:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

J𝑎𝑐 J𝑎𝑐/𝑣𝑠𝑐 J𝑎𝑐/𝑑𝑐

J𝑣𝑠𝑐/𝑎𝑐 J𝑣𝑠𝑐 J𝑣𝑠𝑐/𝑑𝑐

J𝑑𝑐/𝑎𝑐 J𝑑𝑐/𝑣𝑠𝑐 J𝑑𝑐

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Δ𝑉 𝑎𝑐

Δ𝑉 𝑣𝑠𝑐

Δ𝑉 𝑑𝑐

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Δ𝑆𝑎𝑐

Δ𝑆𝑣𝑠𝑐

Δ𝑃 𝑑𝑐

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (5.39)

which terms, in general, are described as:
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Figure 26 – Flow chart of the sequential VSC AC/DC power flow algorithm.

Δ𝑉 𝑎𝑐 incremental vector of complex and complex conjugate AC network state variables,
which in expanded form is Δ𝑉 𝑎𝑐 = [Δ𝑉1; Δ𝑉2; ...; Δ𝑉𝑛; Δ𝑉 *

1 ; Δ𝑉 *
2 ; ...; Δ𝑉 *

𝑛 ]𝑇 , for
𝑛 AC buses;

Δ𝑉 𝑣𝑠𝑐 incremental vector of complex and complex conjugate converters state variables,
which in expanded form is Δ𝑉 𝑣𝑠𝑐 = [Δ𝑉𝑐,1; Δ𝑉𝑐,2; ...; Δ𝑉𝑐,𝑛; Δ𝑉 *

𝑐,1; Δ𝑉 *
𝑐,2; ...; Δ𝑉 *

𝑐,𝑛]𝑇 ,
for 𝑛 converters;

Δ𝑉 𝑑𝑐 incremental vector of complex DC network state variables, which in expanded
form is Δ𝑉 𝑑𝑐 = [Δ𝑉𝑑𝑐,1; Δ𝑉𝑑𝑐,2; ...; Δ𝑉𝑑𝑐,𝑛]𝑇 , for 𝑛 DC buses;

Δ𝑆𝑎𝑐 AC network bus complex and complex conjugate power mismatches, which in
expanded form is Δ𝑆𝑎𝑐 = [Δ𝑆1; Δ𝑆2; ...; Δ𝑆𝑛; Δ𝑆*

1 ; Δ𝑆*
2 ; ...; Δ𝑆*

𝑛]𝑇 ;

Δ𝑆𝑣𝑠𝑐 Converters complex and complex conjugate power mismatches, which in ex-
panded form is Δ𝑆𝑣𝑠𝑐 = [Δ𝑆𝑐,1; Δ𝑆𝑐,2; ...; Δ𝑆𝑐,𝑛; Δ𝑆*

𝑐,1; Δ𝑆*
𝑐,2; ...; Δ𝑆*

𝑐,𝑛]𝑇 ;

Δ𝑃 𝑑𝑐 DC network bus power mismatches, which in expanded form is

Δ𝑃 𝑑𝑐 = [Δ𝑃1; Δ𝑃2; ...; Δ𝑃𝑛]𝑇 ;
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J{·} The Jacobians of each subsystem;

J{·}/{·} The Jacobians of each combination of subsystems.

This is an overall representation in complex plane for the unified algorithms present
in the state-of-art. The linearized problem may vary according to the specific model
adopted in each proposal. In the Baradars’ proposal [59], for instance, the converters
state variables are calculated separately, except the power losses for the ones assigned for
the DC voltage control, reducing the size of the problem. However, in all cited proposals,
the Jacobian of the combined subsystems has to be constructed and it is done by an
arduous algebra task, which makes the implementation more complex compared to the
sequential method [60]. However, the considerations on the sequential method stated in
Section 5.3 allow the implementation of a much simpler linearization of the AC/DC power
flow equations, as shown bellow:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

J𝑎𝑐

0 · · · 0
... . . . ...
0 · · · 0

0 · · · 0
... . . . ...
0 · · · 0

J𝑑𝑐

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎣
Δ𝑉 𝑎𝑐

Δ𝑉 𝑑𝑐

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
Δ𝑆𝑎𝑐

Δ𝑃 𝑑𝑐

⎤⎥⎥⎥⎦ . (5.40)

Here, the Jacobian matrix is directly built by coupling the AC and DC network
Jacobians, respectively J𝑎𝑐 from (3.68) and J𝑑𝑐 from (5.32). Similar to Baradar’s unified
method [59], the converters’ state variables are assumed constant in this set of power
flow equation and are calculated separately. In addition to that, so are the losses on the
converters in DC voltage control mode. With this, the need for deriving the power flow
equations of the combined subsystems is avoided.

Thereafter, the Jacobian has null elements interconnecting the AC and DC sys-
tems, resulting in a perfectly decouplable system. Although factorizing two decoupled
matrices instead of a larger one can be faster for some applications. Whereas, in hybrid
AC/DC systems the DC system is usually much smaller than the AC grid, which in turn
makes the factorizing of the coupled Jacobian more effective.

The converters’ state variables, losses and power injections are calculated in the
same way as described for the sequential algorithm. Fig. 27 shows the flow chart for this
unified power flow algorithm.
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Figure 27 – Flow chart of the unified VSC AC/DC power flow algorithm.

5.5 The Exact Complex-Valued AC/DC Unified Algorithm (CV-
ADU-E)
As discussed above, the unified AC/DC power flow algorithm has, by definition,

both AC and DC power flow problems comprised in one single Newton-Raphson iterative
formulation, although the converter state variables can be updated aside. Furthermore,
by formulating the unified method in the complex plane, the set of equations to be solved
is fully quadratic.

With such distinct characteristics, a the unified AC/DC power flow formulation,
as presented in Section 5.4 above, can be easily expanded in a second-order Taylor series
in order to find the exact state variables correction vector in a faster algorithm. Thus, in
this section a 2𝑛𝑑-order Unified AC/DC Power Flow is proposed. This is done by applying
the Iwamoto approach as it was applied in the complex-valued AC power flow in Chapter
4, although one correction step is required as described below.

The iterative solution for a 2𝑛𝑑-order Taylor series expanded problem is summa-
rized in solving the problem given by (4.3), reproduced here for better convenience:
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Δ𝑥(𝜈+1)
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)︁−1 [︁
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𝑐

)︁
− 𝑌 𝑐

(︁
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𝑐

)︁ ]︁
. (5.41)

In therms of the proposed unified method, (5.41) can be rewritten as:

⎡⎣ Δ𝑉 (𝜈+1)
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⎛⎝ ⎡⎣ 𝑆𝑠𝑝𝑒𝑐

𝑎𝑐

(︁
𝑃

(𝜈)
𝑙𝑜𝑠𝑠𝑒𝑠

)︁
𝑃 𝑠𝑝𝑒𝑐

𝑑𝑐

(︁
𝑃

(𝜈)
𝑙𝑜𝑠𝑠𝑒𝑠

)︁ ⎤⎦−

⎡⎣ 𝑆𝑎𝑐

(︁
𝑉 (0)

𝑎𝑐

)︁
𝑃 𝑑𝑐

(︁
𝑉

(0)
𝑑𝑐

)︁ ⎤⎦−

⎡⎣ 𝑆𝑎𝑐

(︁
Δ𝑉 (𝜈)

𝑎𝑐

)︁
𝑃 𝑑𝑐

(︁
Δ𝑉

(𝜈)
𝑑𝑐

)︁ ⎤⎦ ⎞⎠ .

(5.42)

Regard that, differently from the original Iwamoto approach, the vector of specified
values is not constant for the proposed unified method. For instance, a primary converter
who controls the active power at PCC will have its DC-side power specified by 𝑃 𝑠𝑝𝑒𝑐

𝑑𝑐 =
−ℜ{𝑆𝑠𝑝𝑒𝑐

𝑠 } − 𝑃𝑙𝑜𝑠𝑠𝑒𝑠. In turn, the converters on DC voltage control mode will specify the
active power injection into PCC by (5.38), according to the demanded active power from
the DC grid and accounting its respective losses.

For calculating those losses and correct the specified values, the DC and the con-
verters state variables must be updated through the iteration process by

⎡⎣ 𝑉 (𝜈)
𝑠

𝑉
(𝜈)
𝑑𝑐

⎤⎦ =
⎡⎣ 𝑉 (0)

𝑠

𝑉
(0)
𝑑𝑐

⎤⎦+
⎡⎣ Δ𝑉 (𝜈)

𝑠

Δ𝑉
(𝜈)
𝑑𝑐

⎤⎦ . (5.43)

Where 𝑉 𝑠 and Δ𝑉 𝑠 refer to the state variables of the PCC buses and are therms in
𝑉 𝑎𝑐 and Δ𝑉 𝑎𝑐, respectively. Notice that, in this iteration process, those state variables are
updated from its initial guess. With those considerations, the 2𝑛𝑑-order Unified AC/DC
Power Flow Algorithm can be summarized in Fig. 28.

5.6 Numerical Results
In this chapter, four Complex-Valued Newton-Raphson Power Flow formulations

were proposed for solving the VSC-MTDC hybrid AC/DC power flow, and they are
identified as follows:

1. CV-ADS The full sequential algorithm with an internal loop for solving the sec-
ondary converters power and losses, as detailed in Section 5.2;

2. CV-ADS-S The same sequential algorithm, but without this former inner loop, as
discussed in Section 5.3;

3. CV-ADU The unified algorithm as proposed in Section 5.4.

4. CV-ADU-E The 2𝑛𝑑-order unified algorithm as proposed in Section 5.5.
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Figure 28 – Flow chart of the 2𝑛𝑑-order unified VSC AC/DC power flow algorithm.

All algorithms described here were encoded in Matlab by using sparsity technique
and column approximate minimum degree (colamd) ordering scheme. The numerical tests
were executed by using an Intel® Core™ i5-4200 CPU @ 1.60Hz 2.30 GHz; 6GB of RAM
and 64-bit operating system. Two hybrid AC/DC test systems were simulated: a modified
IEEE Two Area RTS-96 test system with two coupled MTDC networks, duplicated here
from [52], and a proposed test system as presented in Fig. 32, where a MTDC grid is
interconnecting different standard IEEE-test systems, i.e., IEEE-14, -57 and -118 bus
systems, operating under different scenarios. A flat start condition is assigned to the state
variables in all simulations. The tolerance adopted for the convergence criterion in all
simulations is 10−6.

5.6.1 Modified IEEE Two Area RTS-96 test system with two coupled MTDC
networks

In order to validate the effectiveness of the aforementioned developed algorithms
in complex plane, they are carried out on the Beerten’s modified version [52] of the IEEE
Two Area RTS-96 (MRTS) network [67] as presented in Fig. 29. In this MRTS network,
the three interconnections between the two areas have been replaced by MTDC systems:
in the 138 kV system, line 107 - 203 has been replaced by a 3-terminal 150 kV MTDC
system connecting the two asynchronous systems with a 150 MW offshore wind farm
(buses 301 and 302). In the 345 kV system, lines 113 - 215 and 123 - 217 have been
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replaced by a 4-terminal 300 kV MTDC system. The parameters of the VSC converters
can be found in Tab. 3. The 3-terminal DC system between buses 107 and 203 represents
a filterless MMC VSC MTDC system, the 4-terminal MTDC scheme includes low-pass
filters and represents a 2-level PWM VSC MTDC system. Both 3- and 4-terminal MTDC
grids are highlighted in red and blue, respectively, in Fig. 29.

Table 3 – VSC Converter Data.

Converter
parameters (𝑝.𝑢.)

Rating & Converter loss data
No. 1,2 3 4,6 5,7

𝑋𝑡 0.1121 𝑃𝑑𝑐 (𝑀𝑊 ) 100 200 200 100
𝑅𝑡 0.0015 ±𝑉𝑑𝑐 (𝑘𝑉 ) 150 150 300 300
𝑋𝑐 0.16428 𝑎 (𝑀𝑊 ) 1.103 2.206 1.103 2.206
𝑅𝑐 0.0001 𝑏 (𝑘𝑉 ) 0.887 0.887 1.800 1.800
𝐵𝑓 0.0087𝑎 𝑐𝑟𝑒𝑐 (Ω) 2.885 1.442 5.94 11.88

𝑐𝑖𝑛𝑣 (Ω) 4.371 2.185 9 18
𝑎 Only included for converters 4 - 7.

The three AC networks operate asynchronously, with reference (slack) buses at 113,
213 and 302. They can be solved either separately or in one row. A generator (U100),
producing 80 MW, at bus 107 and a generator (U76), producing 76 MW, at bus 201 have
been disabled and replaced by the production of 150 MW in bus 302. The active power
injections of the 4-terminal MTDC grid converters closely resemble the line flows between
the different zones in the original two-area MRTS network. All converters are set to PQ-
constraint control except for converter 2, which is controlling the voltage magnitude at
bus 203. Converters 1 and 4 are responsible for controlling the DC Voltage of the two DC
grids.

The AC/DC hybrid power flow solution is summarized in Table 4. The same results
presented in [52] were achieved by all algorithms developed in the complex plane. Their
performance over iterations and time to reach the solution are shown in Table 5. 1. CV-
ADS is taken as the benchmark for time comparison. The processing time samples were
taken by running each algorithm a thousand times in a row and calculating the median
time.

Table 4 – Voltages and power injections report
Converter at 𝐴𝐶 Side 𝐷𝐶 Side

bus Control mode
PCC VSC Voltage Power

𝑉𝑠 𝜃𝑠 𝑃𝑠 𝑄𝑠 𝑉𝑐 𝜃𝑐 𝑃𝑐 𝑄𝑐 𝑉𝑑𝑐 𝑃𝑑𝑐

(𝑝𝑢) (𝑑𝑒𝑔) (𝑀𝑊 ) (𝑀𝑉 𝐴𝑟) (𝑝𝑢) (𝑑𝑒𝑔) (𝑀𝑊 ) (𝑀𝑉 𝐴𝑟) (𝑝𝑢) (𝑀𝑊 )
107 Slack - Q 1.025 -9.31 66.84 0.00 1.042 0.65 66.91 11.75 1.000 -68.47
203 P - V 1.000 -5.04 75.00 5.86 1.038 6.47 75.09 21.50 0.999 -76.76
301 P - Q 1.050 -0.08 -150.00 0.00 1.120 -20.73 -149.67 56.40 1.006 146.16
113 Slack - Q 1.020 0.00 124.43 0.00 1.061 18.41 124.67 31.36 1.000 -127.49
123 P - Q 1.050 10.13 -50.00 0.00 1.042 2.92 -49.96 -3.46 1.008 48.60
215 P - Q 1.014 10.22 -135.00 0.00 1.062 -9.92 -134.72 39.26 1.010 131.67
217 P - Q 1.039 14.58 50.00 0.00 1.033 21.94 50.04 -3.14 1.006 -51.37
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Figure 29 – Modified two-area RTS-96 system with 2 MTDC systems [52].
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Table 5 – Comparison between the sequential and unified algorithm 10−6

Algorithm Number of iterations Elapsed time
AC DC Slack DC Global per iteration total

1. CV-ADS 7 5 5 3 4.94 ms 14.85 ms
2. CV-ADS-S 8 6 - 4 3.29 ms (1.50x faster) 13.20 ms (1.12x faster)
3. CV-ADU - - - 5 1.64 ms (3.01x faster) 8.53 ms (1.74x faster)
4. CV-ADU-E - - - 13 0.34 ms (14.49x faster) 5.92 ms (2.51x faster)

By avoiding the need of a third inner iteration, 2. CV-ADS-S demands an extra
outer iteration to converge compared to 1. CV-ADS, and yet presents a better computing
time. Thus, it is shown that the implementation of an extra inner iteration in 1. CV-ADS
can indeed be avoided without any loss of accuracy or efficiency, retaining the aptitude
to be incorporated with an external AC power flow software.

Still, the proposed 3. CV-ADU has a solid advantage in computing time over the
sequential methods. Those results are expected, once the unified method synthesizes the
whole problem in further less calculations. In a software implementation point of view,
for the cases where the AC system must be derived, the unified methodology might be
more attractive than the sequential one. This is even more relatable when considering the
proposed 3. CV-ADU, which dismiss the need for constructing the combining AC/DC
Jacobian as it is still done in the state-of-art. Furthermore, by being implemented in the
complex plane, 3. CV-ADU can easily be enhanced by the Iwamoto approach, resulting
in the proposed 4. CV-ADU-E, with even further timing performance.

Droop control

With the proposed algorithms validated and their performances compared, a dif-
ferent scenario for the MRTS network is simulated: the VSC converters 1 and 2 at the
3-terminal MTDC grid are now set for DC voltage droop control, both with the V-P droop
approach. The first converter is prioritized in the task of controlling the DC voltage by
setting it with a higher gain 𝐾 than the converter 2. In turn, converter 2 has a dead-band
which allows the converter having a constant power absorption from the DC grid while
its DC voltage is under an interval, i.e., VSC 2 will only contribute to the DC voltage
control when the voltage goes off this interval. The converters parameters for this droop
control and the DC voltage characteristic are shown in Fig. 30. The active power and DC
voltage of reference were obtained from the power flow solution in Table 4.

A series of power flows are solved with this DC voltage control implemented, as the
scheduled power provided by the offshore wind farm and rectified by the converter 3 varies
from 0 to 300 MW. The steady-state responses of the converter powers are presented in
Fig. 31.
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Figure 30 – V-P droop characteristics.

Figure 31 – Steady-state variations of the power injections and DC voltage on VSC 1-2.

5.6.2 IEEE-Standard systems interconnect through MTDC grid

In the sequence are provided the results obtained via simulations carried out on a
AC/DC hybrid transmission test system built by interconnecting three well-know IEEE
test systems with a 3-bus MTDC, as shown in Fig. 32. considering the converters with
the same specifications as the converters 1-3 from Table 3. From the picture below, one
can infer that the IEEE-test systems are operated as isolated AC subsystems, but all
are interconnected through the DC grid. This latter is operated either in a mono- or
bipolar configuration. Thus, it allows us to simulate many scenarios taking AC isolated
networks importing or exporting active power to each other. In order to demonstrate the
generality of the algorithms developed in complex plane, different scenarios of operation
are considered hereafter. Basically, in all simulations a common assumption is considered,
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i.e., the IEEE-118 bus system is taken as an export market because of its larger number
of power sources. The simulations are conducted as follows:

Figure 32 – Hybrid AC&DC one-line diagram.

Case 1: IEEE-118 bus system is exporting energy to the remainder subsystems.

Case 2: The converters coupled to IEEE-14 and -57 bus systems are co-located in
the same substation. The power exchanges among all subsystems are the same as
considered in Case 1.

Case 3: Likely to Case 1, except that the 𝐷𝐶 link between the IEEE-14 and IEEE-57
subsystems is out of service. Consequently, the DC grid topology becomes radial.

Tables 6 and 7 show the results obtained through the simulations described above.
Notice that both DC grid operation mode are equally simulated and included in all cases,
i.e., monopolar and bipolar. In all cases, regardless the operation mode, 7 iterations are
required to reach the final solution. Moreover, the VSC voltages regarding the subsystems
IEEE-14 and -57 bus suffer small changes as can be seen in Table 6 in all cases as well.

On the other hand, Table 7 presents the power flow values at each branch in the 𝐷𝐶

grid. Remark that the losses variation are approximately linear concerning the operation
mode of the converters. The total losses under bipolar operation mode is approximately
the half of those resulted under monopolar operation mode. Highlight as expected there
are no losses in the link which connects the subsystems IEEE-14 and -57 bus in Case 2
once the converters referred to those subsystems are co-located in the same substation.
Finally, in Case 3 the total losses have decreased because the link which connects the
subsystems IEEE-14 and -57 bus is out of service.
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Table 6 – Voltages and power injections report.
Converter at 𝐴𝐶 Side 𝐷𝐶 Side

Cases Operation Mode System bus (type) Control mode
VSC Power Injection Modulation index Voltage Power

𝑉𝑠ℎ 𝜃𝑠ℎ 𝑃𝑠ℎ 𝑄𝑠ℎ 𝑚 𝜙𝑠ℎ 𝑉𝑑𝑐 𝑃𝑑𝑐

(𝑝𝑢) (𝑑𝑒𝑔) (𝑀𝑊 ) (𝑀𝑉 𝐴𝑟) (𝑝𝑢) (𝑑𝑒𝑔) (𝑝𝑢) (𝑀𝑊 )

Case 1

Monopolar
118-bus 59 (PV) P - Q 0.969 -12.318 -60.00 -40.00 1.110 -12.318 1.008 -58.59
57-bus 18 (PQ) Slack - V 1.006 -11.239 20.70 11.41 1.161 -11.239 1.000 21.86
14-bus 5 (PQ) P - Q 1.021 -3.632 35.00 5.00 1.182 -3.632 0.998 36.19

Bipolar
118-bus 59 (PV) P - Q 0.969 -12.318 -60.00 -40.00 1.114 -12.318 1.004 -58.59
57-bus 18 (PQ) Slack - V 1.006 -11.188 20.97 11.44 1.161 -11.188 1.000 22.13
14-bus 5 (PQ) P - Q 1.021 -3.632 35.00 5.00 1.181 -3.632 0.999 36.19

Case 2

Monopolar
118-bus 59 (PV) P - Q 0.969 -12.318 -60.00 -40.00 1.109 -12.318 1.009 -58.59
57-bus 18 (PQ) Slack - V 1.006 -11.235 20.72 11.41 1.161 -11.235 1.000 21.86
14-bus 5 (PQ) P - Q 1.021 -3.632 35.00 5.00 1.180 -3.632 1.000 36.19

Bipolar
118-bus 59 (PV) P - Q 0.969 -12.318 -60.00 -40.00 1.114 -12.318 1.004 -58.59
57-bus 18 (PQ) Slack - V 1.006 -11.186 20.98 11.45 1.161 -11.186 1.000 22.14
14-bus 5 (PQ) P - Q 1.021 -3.632 35.00 5.00 1.180 -3.632 1.000 36.19

Case 3

Monopolar
118-bus 59 (PV) P - Q 0.969 -12.318 -60.00 -40.00 1.112 -12.318 1.006 -58.59
57-bus 18 (PQ) Slack - V 1.006 -11.252 20.63 11.40 1.161 -11.252 1.000 21.79
14-bus 5 (PQ) P - Q 1.021 -3.632 35.00 5.00 1.188 -3.632 0.993 36.19

Bipolar
118-bus 59 (PV) P - Q 0.969 -12.318 -60.00 -40.00 1.115 -12.318 1.003 -58.59
57-bus 18 (PQ) Slack - V 1.006 -11.194 20.93 11.44 1.161 -11.194 1.000 22.10
14-bus 5 (PQ) P - Q 1.021 -3.632 35.00 5.00 1.184 -3.632 0.996 36.19

Table 7 – Power flow report: 𝐷𝐶 side.

Cases Operation Mode Branch

Direct Reverse Power
Flow Flow Loss

𝑃𝑑𝑐 𝑃𝑑𝑐 𝑃𝑑𝑐

(𝑀𝑊 ) (𝑀𝑊 ) (𝑀𝑊 )

Case 1

Monopolar

59 - 18 30.62 -30.38 0.24
59 - 5 27.98 -27.70 0.28
18 - 5 8.51 -8.49 0.02

Total Power Loss 0.54

Bipolar

59 - 18 30.67 -30.55 0.12
59 - 5 27.93 -27.79 0.14
18 - 5 8.41 -8.40 0.01

Total Power Loss 0.27

Case 2

Monopolar

59 - 18 33.84 -33.55 0.29
59 - 5 24.75 -24.53 0.22
18 - 5 11.66 -11.66 0.00

Total Power Loss 0.51

Bipolar

59 - 18 33.84 -33.69 0.15
59 - 5 24.75 -24.64 0.11
18 - 5 11.55 -11.55 0.00

Total Power Loss 0.26

Case 3

Monopolar
59 - 18 21.92 -21.79 0.13
59 - 5 36.67 -36.19 0.48

Total Power Loss 0.61

Bipolar
59 - 18 22.16 -22.10 0.06
59 - 5 36.43 -36.19 0.24

Total Power Loss 0.30



Chapter 5. Complex-Valued Power Flow Analysis for Hybrid AC/DC Transmission Grids 77

5.7 Partial Conclusions
This chapter develops Newton-Raphson power flow algorithms in the complex

plane aiming to evaluate the performance of VSC-MTDC hybrid AC/DC transmission
grids, in both sequential and unified fashion. In addition, a unified exact power flow
based on the Iwamoto’s approach is proposed. It is shown that the implementation in
the complex plane is straightforward and is much easier to encode than in the former
domain. Moreover, all of the computations in the complex plane can be carried out in a
very similar manner, making many tools and methods already developed readily available
to be used in the industry.
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6 Conclusions and Future Work

6.1 Conclusions
This thesis is a contribution on the study of complex-valued formulations for

steady-state analysis for power systems, in particular hybrid AC/DC power systems with
multi-terminal VSC-HVDC grid. Wirtinger calculus and compact expressions of com-
plex variable vector derivatives are the basis of the presented proposals. The underlying
mathematical formulation is elegant and leads to a computer code that can be easily
implemented and maintained.

In Chapter 3, the generic Newton-Raphson power flow algorithm formulation in
the complex plane was presented, which was the base for the proposed algorithms in the
subsequent chapters. It was shown how the Wirtinger Calculus can be used for deriving
the power flow equations in their natural complex form, dismissing the need for splitting
those equations in the Real Domain.

In Chapter 4, the Iwamoto’s approach for expanding the quadratic real-valued
power flow equations in rectangular coordinates was applied for the complex-valued for-
mulation, once it is also formulated with quadratic equations. This resulted in a faster
power flow algorithm based on an exact correction vector iteration, which does not require
updating and re-factorizing the Jacobian matrix.

The context presented in Chapter 2 was the motivation for directing the research
focus in CV steady-state analysis to hybrid AC/DC power systems, which resulted in
contributions presented in Chapter 5.

In Chapter 5 the complex-valued generalized VSC-MTDC model was presented,
with no restrictions on DC grid topology or VSC technology. The sequential algorithm
proposed by Beerten was reformulated in the Complex Domain, resulting in simpler for-
mulations due to the nature of the complex-value power flow equations without any loss
of accuracy. It was also shown that the sequential method could be simplified by avoiding
the inner iteration loop for VSC power losses balancing. A unified method was proposed
in a fashion where the Jacobian matrix is built by considering the AC and DC grids de-
coupled, resulting in an easy and very concise implementation. Furthermore, the Iwamoto
approach could also be used to reformulate the proposed unified algorithm by doing simple
adjustments in the framework, resulting in a faster algorithm.
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6.2 Future Work
An immediate goal to be investigated is the building of an enhanced power flow

aiming VSC-MTDC hybrid AC/DC transmission grids that include a variety of FACTS
devices and renewable energy sources. For instance, the unified power flow controller
(UPFC) which controls the real and imaginary parts of the total complex power over a
transmission line, i.e., active and reactive power, simultaneously; a battery energy storage
system (BESS); a PMSG-based wind farm and a photovoltaic generation system (PV),
to cite a few.

The studied second-order power flow, or exact power flow, has reported very
good results for well-conditioned AC or AC/DC systems, however, its performance in
ill-conditioned cases has not been explored yet. This line should lead to developing uni-
versal solvers, able to outperform NR in well-conditioned systems and successfully solve
ill-conditioned cases.

The studied techniques should be considered for other related tools like the Con-
tinuation Power Flow, Optimal Power Flow, and Security Analysis, for instance. Addition-
ally, the use of complex variables is ideally suited for handling the phasor measurements
straightforwardly, being promising for state estimation frameworks and Energy Manage-
ment System (EMS) applications.
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APPENDIX A – Complex-Valued Functions
and Variables

A.1 The Complex-Valued Wirtinger Calculus
This appendix contains some of the definitions and properties of complex-valued

functions, its differentiability, and the Wirtinger Calculus as summarized in Professor
Pires work (2018) - [5].

A.2 Complex Differentiability
A complex function is defined as

𝑓(𝑥) = 𝑢(𝑎, 𝑏) + 𝑗 𝑣(𝑎, 𝑏), (A.1)

where 𝑥 = 𝑎+𝑗 𝑏 and 𝑢(𝑎, 𝑏), 𝑣(𝑎, 𝑏) are real functions, 𝑢, 𝑣 : R2 → R. Functions like (A.1)
are in general complex, but may be real-valued in special cases, e.g.: squared error cost
function J (|e2|). The definition of complex differentiability requires that the derivatives
defined as the limit be independent of the direction in which Δ𝑥 approaches 0 in complex
plane.

𝑓 ′(𝑥0) = lim
Δ𝑥→0

𝑓(𝑥 + Δ𝑥) − 𝑓(𝑥)
Δ𝑥

. (A.2)

This requires that the Cauchy-Riemann equations be satisfied, i.e.,

𝜕𝑢

𝜕𝑎
= 𝜕𝑣

𝜕𝑏
,

𝜕𝑣

𝜕𝑎
= −𝜕𝑢

𝜕𝑏
. (A.3)

These conditions are necessary for 𝑓(𝑥) to be complex-differentiable. If the partial
derivatives of 𝑢(𝑎, 𝑏) and 𝑣(𝑎, 𝑏) are continuous on their entire domain, then they are
sufficient as well. Therefore, the complex function 𝑓(𝑥) is called an analytic or holomorphic
function [68]. As an example, let 𝑓(𝑥) = 𝑥2 be a complex function with 𝑥 = 𝑎+ 𝑗 𝑏. Then,

𝑓(𝑥) = 𝑥2 = 𝑎2 − 𝑏2⏟  ⏞  
=𝑢

+ 𝑗 2𝑎𝑏⏟ ⏞ 
=𝑣

= 𝑦,

which under differentiation rule leads to

𝜕𝑢
𝜕𝑎

= 2𝑎 = 𝜕𝑣
𝜕𝑏

= 2𝑎; 𝜕𝑢
𝜕𝑏

= −2𝑏 = −
(︁

𝜕𝑣
𝜕𝑎

= 2𝑏
)︁
.

These results show that the Cauchy-Riemann equations hold and hence 𝑓(𝑥) =
𝑦 = 𝑥2 is a holomorphic function.
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A.3 CR-Calculus or Wirtinger Calculus
Introduced by Wilhelm Wirtinger in 1927 [2], the CR-Calculus, also known as

the Wirtinger calculus, provides a way to differentiate non-analytic functions of complex
variables. Specifically, this calculus is applicable to a function 𝑓(𝑥) given by (A.1) if and
only if 𝑢(𝑎, 𝑏) and 𝑣(𝑎, 𝑏) have continuous partial derivatives with respect to 𝑎 and 𝑏,
yielding:

𝜕𝑓

𝜕𝑥
= 𝜕𝑓

𝜕𝑎

𝜕𝑎

𝜕𝑥
+ 𝜕𝑓

𝜕𝑏

𝜕𝑏

𝜕𝑥
. (A.4)

Considering that:

𝑎 = (𝑥 + 𝑥*)
2 , 𝜕𝑎 = (𝜕𝑥 + 𝜕𝑥*)

2 , (A.5)

𝑏 = 𝑗
(𝑥* − 𝑥)

2 , 𝜕𝑏 = 𝑗
(𝜕𝑥* − 𝜕𝑥)

2 , (A.6)

and by setting 𝜕𝑥*

𝜕𝑥
to zero, it follows that:

𝜕𝑓

𝜕𝑥
= 1

2

(︃
𝜕𝑓

𝜕𝑎
− 𝑗

𝜕𝑓

𝜕𝑏

)︃
. (A.7)

Note that the Cauchy-Riemann conditions for 𝑓(·) to be analytic in 𝑥 can be expressed
compactly using the gradient as 𝜕𝑓

𝜕𝑥* = 0, i.e., 𝑓(·) is a function of only 𝑥.

Similarly, if the derivative of 𝑓(·) is taken with respect to 𝑥*, i.e.,

𝜕𝑓

𝜕𝑥* = 𝜕𝑓

𝜕𝑎

𝜕𝑎

𝜕𝑥* + 𝜕𝑓

𝜕𝑏

𝜕𝑏

𝜕𝑥* , (A.8)

by setting 𝜕𝑥
𝜕𝑥* to zero, it becomes:

𝜕𝑓

𝜕𝑥* = 1
2

(︃
𝜕𝑓

𝜕𝑎
+ 𝑗

𝜕𝑓

𝜕𝑏

)︃
. (A.9)

Again, the Cauchy-Riemann conditions for 𝑓(·) to be analytic in 𝑥* can be expressed
compactly using the gradient as 𝜕𝑓

𝜕𝑥
= 0, i.e., 𝑓(·) is a function only of 𝑥*.

In other words, the gradient (respectively conjugate gradient) operator acts as a
partial derivative with respect to 𝑥 (respectively to 𝑥*), treating 𝑥* (respectively 𝑥) as a
constant. This is formally given by:

𝜕𝑓(𝑥𝑐)
𝜕𝑥

= 𝜕𝑓(𝑥,𝑥*)
𝜕𝑥

⃒⃒⃒
𝑥*=𝐶𝑜𝑛𝑠𝑡

=1
2

(︁
𝜕𝑓
𝜕𝑎

− 𝑗 𝜕𝑓
𝜕𝑏

)︁
, (A.10)

𝜕𝑓(𝑥𝑐)
𝜕𝑥* = 𝜕𝑓(𝑥,𝑥*)

𝜕𝑥*

⃒⃒⃒
𝑥=𝐶𝑜𝑛𝑠𝑡

=1
2

(︁
𝜕𝑓
𝜕𝑎

+ 𝑗 𝜕𝑓
𝜕𝑏

)︁
. (A.11)

As an example, let 𝑓(𝑥𝑐) = 𝑓(𝑥, 𝑥*) = 𝑥* 𝑥= ‖𝑥‖2 =𝑎2 + 𝑏2, be a real function of
complex variable which is the squared Euclidean distance to the origin, with 𝑥 = 𝑎 + 𝑗 𝑏.
Then,
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𝑓(𝑥𝑐) = 𝑓(𝑥, 𝑥*) = 𝑥*𝑥 = 𝑎2 + 𝑏2⏟  ⏞  
=𝑢

+ 𝑗 (𝑎𝑏 − 𝑎𝑏)⏟  ⏞  
0=𝑣

= 𝑦

as 𝑣 = 0, clearly the Cauchy-Riemann equations do not hold and hence 𝑓(𝑥𝑐) = 𝑓(𝑥, 𝑥*) =
𝑥*𝑥 is not analytic or non-holomorphic function. To overcome this apparent difficult, by
applying the CR-Calculus leads to

𝜕𝑓(𝑥𝑐)
𝜕𝑥

= 𝑥*; 𝜕𝑓(𝑥𝑐)
𝜕𝑥* = 𝑥,

which suggests the geometric interpretation showed in Fig. 33.

Figure 33 – Contour plot of the real function of complex variable.

Its analysis allow us to infer that the direction of maximum rate of change of the
objective function is given by the conjugate gradient defined in (A.11). Notice that its
positive direction is referred to a maximization problem (dot arrow) whereas the opposite
direction concerns to the cost function minimization.
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APPENDIX B – Numerical Equivalence
𝑓 (Δx𝑒) ≡ 1

2 𝐻(x𝑒) Δx2
𝑒

Let us consider the following simple system of quadratic equations and the
starting values assigned to the unknowns as being x(𝜈=0)

𝑒 = [1.0; 1.0]:

𝑓1(𝑥) = +2𝑥2
1 − 2𝑥1𝑥2 + 2𝑥2

2 − 2.24
𝑓2(𝑥) = −2𝑥2

1 − 1𝑥1𝑥2 + 2𝑥2
2 − 0.64, (B.1)

which in matrix form becomes

⎡⎢⎢⎢⎣ 𝑦𝑠

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
2 −1 −1 2

−2 −0.5 −0.5 2

⎤⎥⎥⎥⎦ ·

⎡⎢⎢⎢⎢⎢⎢⎣
𝑥1𝑥1

𝑥1𝑥2

𝑥2𝑥1

𝑥2𝑥2

⎤⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎣
2 −2 2

−2 −1 2

⎤⎥⎥⎥⎦ ·

⎡⎢⎢⎢⎣
𝑥1𝑥1

𝑥1𝑥2

𝑥2𝑥2

⎤⎥⎥⎥⎦
(B.2)

where 𝑦𝑠 = [2.24; 0.64]𝑇 . Hence, the Taylor series expansion of (B.2) leads to

⎡⎢⎢⎢⎣ 𝑦𝑠

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣ 𝑦(𝑥𝑒)

⎤⎥⎥⎥⎦+

⎡⎢⎢⎢⎣
𝜕𝑦1
𝜕𝑥1

𝜕𝑦1
𝜕𝑥2

𝜕𝑦2
𝜕𝑥1

𝜕𝑦2
𝜕𝑥2

⎤⎥⎥⎥⎦ ·

⎡⎢⎢⎢⎣
Δ𝑥1

Δ𝑥2

⎤⎥⎥⎥⎦+

+ 1
2

⎡⎢⎢⎢⎣
𝜕2𝑦1
𝜕𝑥2

1
2 𝜕2𝑦1

𝜕𝑥1𝜕𝑥2

𝜕2𝑦1
𝜕𝑥2

2

𝜕2𝑦2
𝜕𝑥2

1
2 𝜕2𝑦2

𝜕𝑥1𝜕𝑥2

𝜕2𝑦2
𝜕𝑥2

2

⎤⎥⎥⎥⎦ ·

⎡⎢⎢⎢⎣
Δ𝑥2

1

Δ𝑥1Δ𝑥2

Δ𝑥2
2

⎤⎥⎥⎥⎦ ,

(B.3)
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or⎡⎢⎢⎢⎣
2.24

0.64

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
𝑓1(𝑥(𝜈)

𝑒 )

𝑓2(𝑥(𝜈)
𝑒 )

⎤⎥⎥⎥⎦+

⎡⎢⎢⎢⎣
4 𝑥(𝜈)

𝑒1 − 2 𝑥(𝜈)
𝑒2 −2 𝑥(𝜈)

𝑒1 + 4 𝑥(𝜈)
𝑒2

−4 𝑥(𝜈)
𝑒1 − 𝑥(𝜈)

𝑒2 −𝑥(𝜈)
𝑒1 + 4 𝑥(𝜈)

𝑒2

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

Δ𝑥
(𝜈)
1

Δ𝑥
(𝜈)
2

⎤⎥⎥⎥⎦+

1
2

⎡⎢⎢⎢⎣
4 2 (−2) 4

−4 2 (−1) 4

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

Δ𝑥2
1

(𝜈)

Δ𝑥
(𝜈)
1 Δ𝑥

(𝜈)
2

Δ𝑥2
2

(𝜈)

⎤⎥⎥⎥⎦ ,

(B.4)

and alternatively,⎡⎢⎢⎢⎣
2.24

0.64

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
𝑓1(𝑥(𝜈)

𝑒 )

𝑓2(𝑥(𝜈)
𝑒 )

⎤⎥⎥⎥⎦+

⎡⎢⎢⎢⎣
4 𝑥(𝜈)

𝑒1 − 2 𝑥(𝜈)
𝑒2 −2 𝑥(𝜈)

𝑒1 + 4 𝑥(𝜈)
𝑒2

−4 𝑥(𝜈)
𝑒1 − 𝑥(𝜈)

𝑒2 −𝑥(𝜈)
𝑒1 + 4 𝑥(𝜈)

𝑒2

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

Δ𝑥1
(𝜈)

Δ𝑥2
(𝜈)

⎤⎥⎥⎥⎦+

⎡⎢⎢⎢⎣
𝑓1(Δ𝑥

(𝜈)
1 )

𝑓2(Δ𝑥
(𝜈)
2 )

⎤⎥⎥⎥⎦ ,

(B.5)

where the 2nd order term in (B.4) is replaced by the 1st order term in (B.5) except that
now its arguments are the corrections imposed to the unknowns. Thus, (B.5) in the first
iteration becomes

⎡⎢⎢⎢⎣
2.24

0.64

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
2

−1

⎤⎥⎥⎥⎦+

⎡⎢⎢⎢⎣
2 2

−5 3

⎤⎥⎥⎥⎦ ·

⎡⎢⎢⎢⎣
Δ𝑥1

Δ𝑥2

⎤⎥⎥⎥⎦ , (B.6)

which can be re-written and solved, yielding

⎡⎢⎢⎢⎣
Δ𝑥1

Δ𝑥2

⎤⎥⎥⎥⎦ = −

⎡⎢⎢⎢⎣
2 2

−5 3

⎤⎥⎥⎥⎦
−1

·

⎡⎢⎢⎢⎣
−0.24

−1.64

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
−0.16

0.28

⎤⎥⎥⎥⎦ . (B.7)

Now, it allow us to infer about the equivalence between the 2nd order term in
(B.4) and the third term in (B.5), yielding
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1
2

⎡⎢⎢⎢⎣
4 −4 4

−4 −2 4

⎤⎥⎥⎥⎦ ·

⎡⎢⎢⎢⎣
(−0.16)2

(−0.16)(0.28)
(0.28)2

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
0.2976

0.1504

⎤⎥⎥⎥⎦

≡

⎡⎢⎢⎢⎣
𝑓1(−0.16)

𝑓2(0.28)

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
0.2976

0.1504

⎤⎥⎥⎥⎦ .

(B.8)

This nice property holds at each iteration. Therefore, taking in mind larger sys-
tems, the use of equation (B.5) instead (B.4) is computationally much more advantageous.
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A B S T R A C T

This paper deals with a robust complex-valued Levenberg-Marquardt algorithm specially developed for solving
ill-conditioned power flow problems. Moreover, it can also be a useful tool for voltage instability and voltage
collapse studies. Because power flow models are nonlinear, the Wirtinger calculus is applied to develop iterative
algorithms based on Taylor series expansions of nonlinear functions of complex variables and their complex
conjugates. Our proposal in complex plane is straightforward derived in rectangular coordinates. Consequently,
its performance is compared to the well-known optimized multiplier based load flow method. Aiming this
purpose, we show that few changes in the codes are required to transform the complex-valued Newton-Raphson
power flow algorithm into the complex-valued Levenberg-Marquardt power flow one. Furthermore, we show
that the latter lends itself well to modeling new smart grid technologies while exhibiting a bi-quadratic con-
vergence rate and superior performance as compared to the former procedure. The performance of our proposal
is demonstrated and analyzed on well-conditioned IEEE-14, −30, −57 and −118 bus systems and the Brazilian
Southern-equivalent system termed SIN-1916 bus. Furthermore, its performance is also demonstrated on the ill-
conditioned IEEE-11, −43 bus systems besides the SIN-1916 under stressed operating conditions or higher R X/
ratios of transmission lines.

1. Introduction

Traditionally, algorithms for solving various power system appli-
cations are developed in the real domain. Examples are power flow
analysis and power system state estimation, among others. Evidently,
real-valued models are not natural representations of complex-valued
voltage and current phasors; they lead to solution methods that may
suffer from large computing times and ill-conditioned problems. To
circumvent these weaknesses, iterative and non-iterative algorithms
carried out in the complex plane were recently proposed in the litera-
ture; examples are [1–4] for iterative methods and [5–7] for non-
iterative methods. Iterative complex-valued power flow calculation is
addressed by Wang [5] and by Nguyen and Vu [1] by using the Wir-
tinger calculus [8]. Besides in power flow analysis, CR calculus was also
extended to power system state estimation [9,10]. Additionally, com-
plex-valued optimization has also found applications in applied
mathematics, signal processing [11–15], control theory, neural net-
works [16] and biomedicine, among others. The Wirtinger calculus
makes use of the property that if a function is analytic in the space
spanned by x{ }R and x{ }I in the domain, it is also analytic in the

space spanned by x and x ∗ in the domain. The latter is known as
the conjugate coordinates system and it is also referred as
CR Calculus.

In the state-of-the-art literature of numerical analysis, a number of
methods have been proposed to solve ill-conditioned nonlinear system
of equations; the reader is referred to [17–19] for further details. In
power systems analysis, [20–23] were advocating the use of the
Brown’s and Brent’s methods while recently, Pourbagher and Derakh-
shandeh [24] were promoting the Levenberg-Marquardt algorithm as
described in [25]. We carry out a thorough comparison between various
methods described in [25–27] on test functions posed in [17]. Our
study reveals that the algorithm proposed by Yang [25] exhibits the
best trade-off between easy encoding task, low computational overhead
and very good robustness. Thus, this algorithm is chosen as the algo-
rithm to solve the problem posed in complex-valued power flow ana-
lysis. Enhancements to the Yang’s proposal can be found in [27,28], but
they are beyond the scope of this work. Nonetheless, as our goal is to
improve the numerical robustness of the Newton-Raphson power flow
algorithm, the Barel’s format equation [14] is used in this work because
it is based on the Jacobian instead of the gain matrix [25], which
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mainly aimed to speed up the search of a solution. Notice that we have
successfully applied the Levenberg-Marquardt algorithm and compared
its performance to others classical methods widely known in power
system state estimation [29].

The complex-valued Newton-Raphson and Levenberg-Marquardt
power flow algorithms, respectively termed (CV-NR) and (CV-LM) for
short, were developed by using Wirtinger calculus. When compared to
the former, the latter involves Jacobian matrices with enhanced spar-
sity property; is naturally formulated in the rectangular coordinates and
the mismatch vector can be built based on quadratic functions.
Consequently, the iterative solution emerged from the Taylor series
expansion allow us to retain the exact non-linearity of the power flow
equations. Notice that the 2nd-order term is based on the Iwamoto’s
contribution [30] instead of the classical Hessian matrix because it
implies less computational overhead; possesses higher numerical ro-
bustness when the power system is heavily loaded or presents branches
with high R/X ratio [20–24,29–32], and exhibits a bi-quadratic con-
vergence rate [25,27], which is clearly superior to the quadratic con-
vergence rate of the Newton-Raphson algorithm. Many others con-
tributions on the issues raised above are stated in [33–36], to cite a few.
In order to conduct a comparative analysis a family of algorithms as
applied to power flow analysis is used for evaluating the performance of
our proposal and each one is identified as follows:

(1) RV NR p r( , ): Real-Valued Newton-Raphson algorithms in polar and
rectangular coordinates are the conventional methods used today
by the industry.

(2) RV LM p r( , ): Real-Valued Levenberg-Marquadt in real-domain,
e.g., polar and rectangular coordinates. The algorithm is the
counterpart of our proposal in complex plane [25] in both co-
ordinates.

(3) RV OM r( ): Real-Valued Optimized Multiplier method in rectan-
gular coordinates as developed by Tamura & Iwamoto [30] is a
robust algorithm dealing with ill-conditioned power flow problems
[34,35]. This application is taken as a benchmark in the simulations
presented and discussed in this paper.

(4) CV OM r( ): Complex-Valued Optimized Multiplier method in rec-
tangular coordinates. It is the counterpart of the benchmark ap-
plication taken in complex plane.

(5) CV NR r( ): Complex-Valued Newton-Raphson algorithm in rec-
tangular coordinates which has been proposed in [1].

(6) CV LM r( ): Complex-Valued Levenberg-Marquadt method in rec-
tangular coordinates is our proposal described in the sequel.

This paper is organized as follows. The theoretical foundation of the
proposal is based on the Wirtinger Calculus as presented in Section 2. In
Section 3 is derived the bus models as applied to power flow analysis.
Section 4 shows the derivation of the robust complex-valued Levenberg-
Marquardt algorithm which is emerged in an unified complex conjugate
coordinates system, including its Jacobian matrix. Section 5 presents a
small example followed by the simulations carried out on well- and ill-
conditioned IEEE-test systems. The Section 6 states some conclusions
and future works.

2. Theoretical foundation

2.1. Complex differentiability

A complex function is defined as

= +f x u a b jv a b( ) ( , ) ( , ), (1)

where = +x a jb and u a b v a b( , ), ( , ) are real functions, u v, : 2 .
Functions like (1) are in general complex, but may be real-valued in
special cases, e.g.: squared error cost function e(| |)2J . The definition of
complex differentiability requires that the derivatives defined as the
limit be independent of the direction in which x approaches 0 in
complex plane.

= +f x f x x f x
x

( ) lim ( ) ( ).
x

0
0 (2)

This requires that the Cauchy-Riemann equations be satisfied, i.e.,

= =u
a

v
b

v
a

u
b

, . (3)

These conditions are necessary for f x( ) to be complex-differenti-
able. If the partial derivatives of u a b( , ) and v a b( , ) are continuous on
their entire domain, then they are sufficient as well. Therefore, the
complex function f x( ) is called an analytic or holomorphic function
[37]. As an example, let =f x x( ) 2 be a complex function with

= +x a jb. Then,

= = + =
= =
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2 2 2

which under differentiation rule leads to
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b2 2 ; 2 2 .

These results show that the Cauchy-Riemann equations hold and
hence = =f x y x( ) 2 is a holomorphic function.

2.2. CR-Calculus or Wirtinger calculus

Introduced by Wilhelm Wirtinger in 1927 [8], the CR-Calculus, also
known as the Wirtinger calculus, provides a way to differentiate non-
analytic functions of complex variables. Specifically, this calculus is
applicable to a function f x( ) given by (1) if u a b( , ) and v a b( , ) have
continuous partial derivatives with respect to a and b, yielding

= +f
x

f
a

a
x
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Since we have

= + = +a x x a x x( )
2

, ( )
2

, (5)

= =b j x x b j x x( )
2

, ( )
2

, (6)

and by setting x
x
to zero, it follows that

=f
x

f
a

j f
b

1
2

.
(7)

Nomenclature

xc vector of the state variables in the conjugate coordinate
system

x x, complex and complex conjugate state variables
a a, complex and complex conjugate tap position

{·}, {·}R I real and imaginary part of a complex variable
J complex-valued Jacobian matrix

M complex-valued mismatch vector
(·)c quantity in the conjugate coordinate system
· 2 squared Euclidean norm
· infinity norm

cond (·) matrix condition number
> 0 the Levenberg-Marquardt (LM) regularization parameter

iteration counter
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Note that the Cauchy-Riemann conditions for f (·) to be analytic in x
can be expressed compactly using the gradient as = 0f

x , i.e., f (·) is a
function of only x.

Similarly, if we take the derivative of f (·) with respect to x , that is,

= +f
x

f
a

a
x

f
b

b
x

. (8)

By setting x
x
to zero, we get

= +f
x

f
a

j f
b

1
2

.
(9)

Again, the Cauchy-Riemann conditions for f (·) to be analytic in x can
be expressed compactly using the gradient as = 0f

x , i.e., f (·) is a
function only of x .

In other words, the gradient (respectively conjugate gradient) op-
erator acts as a partial derivative with respect to x (respectively to x ),
treating x (respectively x) as a constant. Formally, we have

= =
=
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As an example, let = = = = +f x f x x x x x a b( ) ( , )c
2 2 2, be a real

function of complex variable which is the squared Euclidean distance to
the origin, with = +x a jb. Then,

= = = + + =
= =

f x f x x x x a b j ab ab y( ) , ( )c
u v

2 2

as =v 0, clearly the Cauchy-Riemann equations do not hold and hence
= =f x f x x x x( ) ( , )c is not analytic or non-holomorphic function. To

overcome this apparent difficult, by applying the CR-Calculus leads to

= =f x
x

x f x
x

x( ) ; ( ) ,c c

which suggests the geometric interpretation showed in Fig. 1.
Its analysis allow us to infer that the direction of maximum rate of

change of the objective function is given by the conjugate gradient
defined in (11). Observe that its positive direction is referred to a
maximization problem (dot arrow) whereas the opposite direction
concerns to the cost function minimization.

Remarks: (1) Hereafter, a real-valued or complex-valued function
and its argument are provided with a subscript c if it is a function in the
complex conjugate coordinates, i.e., x x( , ). (2) When the CR-Calculus is
extended to the vector case, it is denoted the multivariate CR-Calculus
and the basic rules for the scalar case remain unchanged.

3. Complex-valued power flow modeling

3.1. Complex-valued power flow equations

The complex-valued power flow equations that model any type of
branch in an electrical network, i.e., transmission lines and phase- and
phase-shifting-transformers are as follows:
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and their complex conjugate counterpart are
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(14)

= +S V y jb V V
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a

V( ) .mk m km km
sh

m m
km

km
k (15)

In (12)–(15), the general off-nominal tap transformer model is com-
posed by an ideal transformer with complex turns ratio ae : 1j in series
with its admittance or impedance [38]. Notice that the Eqs. (12)–(15)
are written in rectangular coordinates. Thus, this feature allow us to
solve the power flow equations formulated as a set of quadratic alge-
braic equations which takes into account all terms of the Taylor series
expansion as outlined by Iwamoto [32]. Therefore, the exact non-lin-
earity of the complex power flow equations is naturally retained in its
formulation. Besides that, one take the advantage of replacing the
Hessian matrix calculation by the mismatch vector which makes use of
quadratic functions having as argument instead of current state vari-
ables (estimates) makes use of correction state variables values, i.e., xi.

3.2. Bus models in the complex domain

3.2.1. Slack-bus type
The complex voltage at a slack-bus type is known, once the mag-

nitude and phase-angle values are specified for the reference bus.

3.2.2. PQ-Bus Type
With the active- and reactive-power demand specified for a PQ

node, the complex mismatches functions are expressed as

= +M S P jQ( ),k k ks ks (16)

=M S P jQ( ),k k ks ks (17)

where Pks and Qks are the specified active- and reactive-power injection
at node k, respectively.

In order to derive the Newton-Raphson algorithm in the complex
domain, the Jacobian matrix elements in complex form corresponding
to each PQ Bus are formed based on the Wirtinger derivatives of
Mk and Mk with respect to the complex and the complex conjugate
nodal voltage unknowns, yielding

=
= =

M
V

S
V

,k

k V Const m

km

k V Constk k k (18)

=
= =

M
V

S
V

,k

k V Const m

km

k V Constk k k (19)

Fig. 1. Contour plot of the real function of complex variable.
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and
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=
= =
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S
V

,k

m V Const m

km

m V Constm k m (24)

=
=

M
V

0.0.k

m V Constm (25)

where k in (18)–(25) is the set of neighboring buses connected to the
k busth . Moreover, in (20) and (21) and (24) and (25), m 0 and
m k . We highlight that the right hand side (rhs) of (23) is the nodal
complex current at node k while the rhs of (18) is the complex conjugate
of the nodal current at node k.

3.2.3. PV-bus type
As the active-power generation and the terminal voltage magnitude

at a PV bus are both specified, i.e., Pks and Vks, respectively, the sum
of Mk in (16) and Mk in (17) gives the complex residual function, Mkg ,
which is related to the active-power constraint as follows:

= +
= + ×

M M M
S S P

,
2 .

kg k k

k k ks (26)

The second complex residual function Ekg for a generator node k is
formed, using the voltage magnitude constraint given by

=E V V| | | | | | ,kg k ks
2 2 (27)

where the V| |ks is the specified voltage magnitude at Node k.
Using =V V V| |k k k

2 , (27) can be written in the complex domain as

=
= +

E V V V
e f V

| | ,
| | ,

kg k k ks

k k ks

2

2 2 2 (28)

where ek and fk , respectively, are the real and imaginary part of Vk. So,
it should be noted that the derivation of the current formulation in
complex plane is as the rectangular formulation in real domain, i.e., it
requires an extra equation at each PV bus in the system, due to the need
to maintain the specified voltage magnitude (28). Consequently, the
rectangular formulation has a larger equation and variable count re-
lative to the polar formulation because of the number of PV buses in the
system. Then, the Jacobian matrix elements associated with a generator
node k are obtained by taking the partial derivatives of the complex
residual functions in (26) and (28) with respect to Vk and Vk , yielding
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= = =
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k
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k

m V Constm m m (32)

where in (31) and (32), m 0 and m k . Note that the rhs of
(29)–(32) are defined in (18)–(25).

Similarly, the partial derivatives of Ekg in (28) with respect to
Vk and Vk are expressed as

=
=

E
V

V ,kg

k V Const
k

k (33)

=
=

E
V

V ,kg

k V Const
k

k (34)

while its partial derivatives with respect to Vm and Vm are given by

=
=

E
V

m m k0.0, for 0 and ,kg

m V Constm (35)

=
=

E
V

m m k0.0, for 0 and ,kg

m V Constm (36)

3.2.4. PQV-bus type
This type of bus is referred to On-Load-Tap-Changer (OLTC) trans-

former bus, which can be connected to a phase-transformer for local
and nearby bus voltage regulation or to a phase-shifting-transformer for
controlling the active power flow transmitted over a line [39]. It is also
suited to model a DC link of a voltage-sourced converter [40]. When
specifying the active- and reactive-power demand, the complex mis-
match functions as stated in (16) and (17) are employed. It is worth to
recall that the OLTC tap position allows us to regulate the voltage
magnitude at either k- or m-bus. Let us assume that the m-bus voltage is
regulated, leading to the following mismatches functions:

= ×M a a a2 { },m km km kmI (37)

=E V V V| | ,m m m m
2

s (38)

Here, a{ }kmI is the specified imaginary part of the complex tap value.
For example, for a phase-transformer, we have =a{ } 0.0kmI ; otherwise,
it is a phase-shifter-transformer and instead of (37), (26) is used. In
(38), Vms is the specified voltage at node m, i.e., the regulated nodal
voltage, yielding the partial derivatives of (37) and (38) given by

=
=

M
a

1.0,m

km a Constkm (39)

=
=

M
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1.0,m

km a Constkm (40)

and

=
=
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V ,m
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m

m (41)

=
=

E
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V .m

m V Const
m

m (42)

4. Complex-valued iterative solution

4.1. The CV NR r( ) and CV LM r( ) algorithms

When the slack bus is excluded, the state variables vector becomes

= … …x V V V V V V[ , , , , , , , ] ,c N N
T

1 2 1 1 2 1 (43)

and the mismatches vector reduces to

= … …M x M M M M M M( ) [ , , , , , , , ] .c N N
T

1 2 1 1 2 1 (44)

If Node k (for = …k N1, 2, , 1) is a PV bus or a PQV bus, the pair
of elements Mk and Mk in (44) are replaced by Mkg and Ekg as in (26)
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and (28) or are replaced by Mm and Em as in (37) and (38), respectively.
Here, the objective is to calculate xc that satisfies

=M x( ) 0.c (45)

At this point, one should call the reader attention toward the mis-
match vector as stated in (46) where the quadratic term of Taylor serie
expansion may or not be included, yielding

= +M x Y x Y x Y( ) ( ) ( ) ,c e c c s
( 1) ( 1) ( 1) (46)

where in (46)Ys is a vector of specified quantities, i.e., constant term;
=Y x J x( )e c c c

( 1) ( 1) ( 1) is a vector of calculated quantities at current
iteration, while Y x( )c

( 1) is equivalent to the 3th term of the Taylor
serie expansion, i.e., it retains the exact Hessian matrix effect as proved
in [30]. When it is included in (46), null values are assigned to its ar-
gument, i.e., ==x 0c

( 0) . Thus, only Y x( )c
( 1) is updated because the

term == = =x J Y x( )c c e c
( 0) ( 0) ( 0)1

is kept constant throughout the iterative
process. Consequently, the Jacobian matrix is factorized just once and
the state variables are updated after convergence is reached, i.e.,

= +=x x xc c c
( 0) ( ). This approach is beyond the scope of this paper and

will be further developed in future work.
Let us now describe the algorithm that we have implemented. The

linearization of (45) from one step to the sequel is given by

+ =M x xJ
I

( )
0

0,c c
( 1) ( 1)

( )
( )

(47)

or

=x M xJ
I

( )
0

,c c( )
( 1)

( )

† ( 1)

(48)

where J is the complex-valued Jacobian matrix; I is an identity matrix
of dimension- ×n n2 2 ;(·)† operator is defined as the Moore-Penrose
pseudoinverse [41]; Finally, in (47) and (48) > 0( ) is the Levenberg-
Marquardt (LM) regularization parameter which influences both the
length and direction of the states corrections aiming to speed up the
solution reaching. As shown in Fig. 1, recall that the direction of the
solution reaching is defined by f x

x
( )c , i.e., opposite direction of the

complex conjugate gradient. This important feature will be exploited in
power flow problems and also extended to power system state estima-
tion. Actually, these investigations are the partial motivation for the
next forthcoming papers.

Remark that if = 0( ) at the first step of LM given by (47) and (48),
the LM algorithm becomes the classical Newton-Raphson method.
Otherwise, it is calculated as

= µ M x( ) ,c( ) ( )
( 1)

(49)

where the initial value of =µ( 0) is set to 10 5 and is chosen from the
range: 1 2, being = 1 a recommended value [25]. Now, instead
of using only one LM step as stated in (48), two additional approx-
imation steps are computed by utilizing the previous Jacobian matrix.
The second correction step is

=y M yJ
I

( )
0

,c
c( )

( 1)

( )

† ( 1)

(50)

being = = +y x x xc c c c
( 1) ( ) ( 1) ( ). And the third step is

=z M zJ
I

( )
0

,c
c( )

( 1)

( )

† ( 1)

(51)

assuming = = +z y y yc c c c
( 1) ( ) ( 1) ( ). Thus, the convergence

checking should be carried out over this last approximation step,
yielding

z tol ( 10 ),c
( ) 3 (52)

where is the iteration counter. If (52) is satisfied, stop and print out

the results. Otherwise, calculate the ratio of error deduction
=err Ared Pred/( ) ( ) ( ), where

=
+ + +

Ared M x
M x x y z

( )
( ) ,

c

c c c c

( ) ( 1) 2

( 1) ( ) ( ) ( ) 2
(53)

=
+ +
+ +

+

Pred
M x M x x
M y M y y

M z M z z

J
J

J

( ) ( )
( ) ( )

( ) ( ) .

c c c

c c c

c c c

( )

( 1) 2 ( 1) ( 1) ( ) 2

( 1) 2 ( 1) ( 1) ( ) 2

( 1) 2 ( 1) ( 1) ( ) 2 (54)

The state vector is updated through

Fig. 2. One-line diagram for the 3-Bus test system.

Table 1
Bus data.

Bus Specified Quantities inpu

Type Pg V Pload Qload

PV-2 1.0000 1.0000 0.2160 0.0918
PQ-3 2.700 1.620

Table 2
Branches data.

Branch Serie Shunt

k m R X Charging Y/2
pu pu MVAr pu

1-2 0.0012 0.0021
1-3 0.0150 0.0400
2-3 0.3000 1.6000 39.2 0.196

Table 3
State Variables Vector.

xc =xc
( 0) =xc

( 1) =xc
( 2) =xc

( 3)

V2 1.000 1.000 1.000 1.000
e j0.0 +e j0.132 +e j0.115 +e j0.115

V3 1.000 0.907 0.889 0.889
e j0.0 e j5.326 e j5.548 e j5.552

V2 1.000 1.000 1.000 1.000
× e j0.0 × e j0.132 e j0.115 e j0.115

V3 1.000 0.907 0.887 0.887
× e j0.0 × +e j5.326 +e j5.421 +e j5.420
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=
+ + +

x
x x y z p

x

, if er r

, otherwise.
c

c c c c

c

( )
( 1) ( ) ( ) ( ) ( )

0
( 1) (55)

Finally the LM regularization parameter ( ) as defined in (49) is
updated because µ( ) is prone to changes as follows

(56)

where < <p p p0 10 1 2 and . Now, the iteration counter
is updated, i.e., = + 1 and it is checked if the maximum iteration
number is reached; if that is the case, terminate the algorithm and print
out the results, otherwise restarts the whole process by going back to
(48). Remark that the Jacobian matrix J is evaluated only once at the ν-
th iteration, which is an appealing property for the biquadratic con-
vergence rate of the proposed approach. The latter can be proved easily
using the same theorems shown in [25]. Note that the calculation of the
J matrix might be time consuming for large-scale systems. Thanks to
the biquadratic convergence rate of the proposed approach, the number
of iterations is reduced significantly. On the other hand, the linerization
error of the nonlinear equation is compensated through the two addi-
tional approximate LM steps. This improves the numerical robustness of
the CV-LM mainly when the power network is both under highly
stressed operating conditions and presents branches with high R/X
ratio. Finally, note that there are several parameters that have to be set
before the iterative CV-LM has started. In this work the assumed values
for these parameters are: = = =p p p10 , 0.25, 0.750

4
1 2 and = 10 8

following the recommendation stated in [25,28]. This set of parameters
values works well for the IEEE-test systems that we used.

4.2. The complex-valued power flow jacobian matrix

The complex-valued power flow Jacobian matrix exhibits the fol-
lowing pattern:

Table 4
CV-Power Flow Report.

CPI Coordinates

Rectangular Polar

S1 + + j2.0788 2.2844 × +e3.0887 j47.697

S2 + j0.7841 0.5449 × e0.9548 j34.802

S3 j2.6999 1.6199 × e3.1487 j149.036

S12 + j0.7183 0.4114 × +e0.8277 j150.199

S13 + + j2.7972 1.8730 × +e3.3663 j33.806

S23 + j0.0649 0.1350 × e0.1498 j64.323

S21 + j0.7192 0.4099 × e0.8277 j29.686

S31 j2.6368 1.4171 × e2.9935 j151.745

S32 j0.0631 0.2028 × e0.2124 j107.289

Table 5
Features of the IEEE Test systems.

IEEE-Test Bus Systems/ SIN- 14 30 57 118 1916

No. of PV-bus N( )PV 4 5 6 53 163
No. of PQ-bus N( )PQ 9 24 50 64 1753
No. of transformers 3 4 15 9 835
No. of TL + shunt 21 43 83 200 3197

V p( ): = + ×n N N( 2 )PV PQ 22 53 106 181 3669

V r( ): = × +n N N2 ( )PV PQ 26 58 112 234 3832

(TL) - Transmission Line.

Table 6
Well-conditioned systems.

(p) - polar coordinates; (r) - rectangular coordinates.

Fig. 3. Sparsity structure of (a) real-valued Jacobian matrix; (b) complex-va-
lued Jacobian matrix of the IEEE 57-bus system.
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In (57), the partial derivatives in the 1st and 4th rows correspond to
PV-buses, those in the 2nd and 5th rows correspond to PQ-buses and
those in the 3th and 6th rows correspond to PQV-buses. Note that here
the partition matrix regarding the Levenberg-Marquardt parameter
regularization is not shown once it is a diagonal matrix. Even though in
order to factorize the complex-valued Jacobian matrix, two QR-algo-
rithms are considered and were investigated [42,43]; the latter is for-
mulated in polar coordinates. Both are the extension of the well-known
real-valued algorithm described in [44], which was successfully applied
to PSSE [45–47]. Recall that the QR-algorithm should be applied to an
augmented matrix in order to avoid calculate and explicitly storing the
Q-matrix. To this end, the QR-transformation is applied to Ja given by

= M xJ J
I

( )
0

.ca
( 1)

( 1)

( )

( 1)

(58)

It turns out that if we store the sequence of rotations in compact form,
the complex-valued Jacobian matrix can be kept constant, implying
that only the right-hand-side vector is updated throughout the final
iterations. Hence, the solution over the three steps of LM algorithm
given by (48)–(51) can be performed as a simple back-substitution over
the factorization of (58), yielding

= MJ T[ ].ca c
( 1)

(59)

where Tc is an upper triangular matrix of dimension- ×n n4 2 , and Mc
comprises the corresponding rows in the updated rhs vector, dimension-

×n4 1, for =n N 1, being N defined as the number of bus. Then, (48)
can be expressed through

=x MT .c cc
( ) (60)

5. Numerical simulations

In this section, we provide a detailed description of the CV NR r( )

on a 3-bus power system. Then, we compare the performance of this
algorithm with those of the CV-LM carried out on the well-conditioned
IEEE-14, −30, −57 and −118 bus systems and on the ill-conditioned
IEEE-11, −43 bus and 1916 bus systems. Note that these algorithms
were encoded in Matlab by using sparsity technique and column ap-
proximate minimum degree (colamd) ordering scheme. The numerical
tests were executed by using an Intel Core i5-4200 CPU @ 1.60 Hz
2.30 GHz; 6 GB of RAM and 64-bit operating system. A flat start con-
dition is assigned to the state variables for the well-conditioned systems
in all simulations. Whereas for the ill-conditioned systems, the starting
values assigned to the voltage magnitude is 1.0 pu in all cases while for

Table 7
Ill-conditioned systems

(p) - polar coordinates; (r) - rectangular coordinates.

Table 8
M x( )c in pu - =S 100base MVA.

Load Factor RV-OM(r) RV-LM(p) RV-LM(r) CV-LM(r)

1.00 5.94E−07 1.05E−08 6.27E−07 8.58E−06
1.10 2.77E−11 3.76E−06 Collapsed 1.37E-10
1.15 1.7163 0.0027 Collapsed 0.0076
1.20 Collapsed 0.0340 Collapsed 0.0188
1.25 Collapsed 0.0529 Collapsed 0.0300
1.50 Collapsed 0.1831 Collapsed 0.0804

(p) - polar coordinates; (r) - rectangular coordinates

Fig. 4. Mismatches variations under a loading factor of 1.15.

Table 9
Effect of R X/ ratios on convergence.

R/X RV-OM(r) CV-OM(r) RV-LM(p) RV-LM(r) CV-LM(r)

IEEE-30 Bus System
°30 4 6 2 2 2
°40 4 7 3 2 2
°50 4 Collapsed 12 12 11
°60 8 Collapsed 7 Collapsed 11

IEEE-118 Bus System
°30 5 6 2 3 3
°40 9 Collapsed 7 4 12
°50 35 Collapsed 10 13 11
°60 Collapsed Collapsed 8 13 12

SIN-1916 Bus System
°5 6 6 4 4 4
°10 11 Collapsed 16 Collapsed 21
°20 Collapsed Collapsed 21 Collapsed 20
°30 Collapsed Collapsed 27 Collapsed 29
°40 Collapsed Collapsed 32 Collapsed 31

(p) - polar coordinates; (r) - rectangular coordinates
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the voltage phase angle the value is 0.0 rad, i.e., flat start; and fractions
of the angles states. This latter are provided by the best solution under
flat start condition. Notice that the Jacobian matrix is factorized at each
iteration and the tolerance adopted for the convergence criterion in all
simulations is 10 3.

5.1. CV-power flow calculation analysis on a small example

The one-line diagram of the 3-bus system is depicted in Fig. 2 and
the system bus data and branch parameters data in pu, calculated on
the base values of =V 230base kV and =S 100base MVA, are provided in
Tables 1 and 2, respectively.

5.1.1. CV-state variables throughout the iterations
As expected, the numerical values of the state variables calculated

in the complex plane, which are displayed in Table 3, are exactly the
same as those obtained in the real domain.

5.1.2. CV-Power Flow Analysis Report
Consequently, the values of the power injections and the power

flows calculated in the real- and complex-domain are also the same
which are displayed in Table 4.

5.2. IEEE test systems: well-conditioned systems

Table 5 provides the network features for the well-conditioned IEEE
test systems. Highlight the large number of PV-bus type ( 45%) for the
IEEE-118 bus system.

The results presented in Table 6 allows us to compare the number of
iterations and time consuming to reach the solution of all algorithms
carried out on the well-conditioned systems. The analyzes are sum-
marized in the sequel.

• in blue rows the real- and complex-valued Newton-Raphson method
performance is evaluated through its version in polar and rectan-
gular coordinates, i.e., RV NR p r( , ) and CV NR r( ), respectively.
Clearly, the version in rectangular coordinate is time consuming.
However, surprisingly the version CV NR r( ) requires less compu-
tational overhead than RV NR r( ) for larger systems.
• in yellow rows the robust real- and complex-valued Levenberg-
Marquardt algorithm performance is evaluated through its version
in polar and rectangular coordinates, i.e., RV LM p r( , ) and
CV LM r( ), respectively. Again, the version in rectangular co-
ordinate is time consuming, but both version requires in average the
half number of iterations to reach the solution due to its bi-quadratic
convergence property. Nonetheless, the robust Levenberg-
Marquardt methodology is addressed to deal with ill-conditioned
systems.
• in brown rows the performance of the well-known optimized mul-
tiplier based load flow method is jointly presented with its version in
complex plane. Highlight the RV OM r( ) is slower than CV OM r( )

in all test cases.

In all simulations analyzed in Table 6, the relative maximum bias
between the corresponding state variables calculated in complex plane
and in real domain is around 10 7. The small differences are round-off
errors due arithmetic operation of real and complex numbers.

In the sequel, highlight the sparsity structures of the Jacobian ma-
trices in real and complex plane. For instance, Fig. 3 displays the pat-
tern for the IEEE-57 bus system in -domain given by (57) as compared
to that derived in -domain. Clearly, the diagonal blocks of the CV-
Jacobian matrix are almost diagonal matrices, which speeds up its
factorization.

5.3. IEEE test systems: ill-conditioned systems

The ill-conditioned systems are so inordinately sensitive to small
perturbations that no numerical technique can be used with confidence.
In other words, a system of linear equations is said to be ill-conditioned
when some small perturbation in the system, regardless the side, can
produce relatively large changes in the exact solution. Otherwise, the
system is said to be well-conditioned [41]. For instance, consider:

+ =
+ =

x y
x y

0.835 0.667 0.168
0.333 0.266 0.067,

for which A is assumed as the coefficient matrix and b as the right-
hand-side (rhs) vector, thus = × +cond A( ) 1.3238 10 06 and the exact
solution is =x 11 and = = ×x Ax b1; 8.1524 102

13. If =b 0.0672
is slightly perturbed to become =b 0.0662 , then the exact solution
changes dramatically to become =x 6661 and

= = ×x Ax b834; 7.4937 102
13. In this sense, the algorithms

performance is compared taking into account the test systems or under
heavily loaded condition or different R X/ ratios aiming to reach only
feasible solution. The test systems are the well-known ill-conditioned
IEEE-11 and IEEE-43 bus systems [22]. Besides that, further simulations
are included for the SIN-1916 buses operating under stressed condition
or different R X/ ratios.

Nonetheless, the numerical results for the mismatch vector have
revealed that there is no feasible solution for the ill-conditioned IEEE
11-bus system. Specifically, the total load from bus 7 to 11 cannot be
supplied which makes the constraints (45) violated in the majority of
the nodes. Even though, the RV LM p r( , ) and CV LM r( ) provide the
best possible solution. This behavior enables the RV LM p( ) and
CV LM r( ) as an useful tool to support voltage instability and voltage
collapse studies.

In the sequel, Table 7 gathers the results obtained through the si-
mulations carried out on the ill-conditioned systems. All simulations
carried out on the SIN-1916 bus system is under 1.15 of loading factor
applied linearly to P and Q at all PQ-bus type. Similarly, the analyzes
are summarized bellow.

• in blue rows, as expected, the real- and complex-valued Newton-
Raphson method collapsed in all cases, regardless the coordinates
system, i.e., RV NR p r( , ) and CV NR r( ). However, surprisingly for
the 43-Bus system the exception is theCV NR r( ) which got success.
• in yellow rows, where the results obtained through the LM ap-
proaches are presented, the performance of RV LM p( ) and
CV LM r( ) are the most robust in Table 7, whereas the version
RV LM r( ) has collapsed (SIN-1916 bus system).
• in brown rows the performance of the optimized multiplier based
load flow method is jointly shown with its version in complex plane.
Highlight the RV OM r( ) performs much better than CV OM r( )

which agree with the conclusions stated in [34] regarding the al-
gorithm RV OM , i.e., in polar and rectangular coordinates.

Finally, note that the average value for the condition number of the
CV-Jacobian matrix which is referred to the last iteration is higher than
that presented before as an example of an ill-conditioned system.

5.4. Refining the performance analysis

The overall performance of the CV LM r( ) and RV LM p( ) algo-
rithms aiming to solve ill-conditioned power flow problems allow us to
claim that its robustness is effective and promising. Regardless the
vector space and the size of the network, the developed algorithms
exhibit very stable and reliable convergence properties since they reach
a good solution under very stressed operating conditions. For ill-con-
ditioned systems the use of the infinity norm of the mismatches vector
at the end of the iterations is strongly recommended; indeed, the
M x( )c allow us to test if the reached solution is associated with an
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unsolvable system or not.
In this sense, Table 8 shows the results for the SIN 1916-bus system

under additional heavy loading conditions. Notice that a loading factor
of 1.0 is associated with a well-conditioned system as presented in
Section 5.2. Remark that the RV OM r( ) collapses when a loading
factor greater than 15 % is applied, whereas the RV LM r( ) does not
support any tested overload. Finally, highlight the mismatch values
determined by the CV LM r( ) is lower than those calculated through
the RV LM p( ).

For instance, Fig. 4 depicts the mismatches variation throughout the
iterations for the SIN 1916-bus system under a loading factor of 1.15.
Clearly, the mismatches referred to the RV OM r( ) are not acceptable.

On the other hand, Table 9 presents the effect of different R X/ ratios
on convergence behavior of selected algorithms. Recall that higher R X/
ratio can make a numerically well-conditioned system in an ill-condi-
tioned one. The test cases presented in the sequence were generated
under the following algorithm [31]:

1. Z and are obtained from R and X of each branch impedance, i.e.,
×Z e j = + = +Z j R jX(cos sin ) .

2. Setting = + to simulate high R X/ ratios. For instance,
= ° °20 ; 40 and °60 .

3. R and X are obtained using Z and for each branch impedance,
yielding + = × = +R jX Z e Z j(cos sin )j .

The results presented in Table 9 clearly reveal that the algorithm
RV LM p( ) and CV LM r( ) are the best to deal with ill-conditioned
systems, regardless the size of the test system. Furthermore, the ap-
proaches CV OM r( ) and RV LM r( ) performs poorly compared to
RV OM r( ) andCV LM r( ), respectively. Particularly, the comparative
analysis confirm the same behavior presented and justified in [34].

6. Conclusions and future research

In this paper we have developed a complex-valued Newton-Raphson
and a robust complex-valued Levenberg-Marquardt algorithm and re-
ferred versions aimed at solving well- and ill-conditioned power flow
problems, respectively. It is shown that the implementation of the al-
gorithms is straightforward and is much easier to encode them in the
complex plane than in the real domain. All of the computations in the
complex plane can be carried out in a very similar manner as those in
the real domain, making many tools and methods developed for the
latter readily available for the former domain. For ill-conditioned sys-
tems, the performance of the CV LM r( ) and the RV LM p( ) is both
superior compared to the RV OM r( )-based power flow method, al-
though they require a few changes in the parameters aiming to meet
better performance.

As a future research, the following three objectives will be achieved.

• Firstly, the numerical algorithms to be used to factorize the com-
plex-valued Jacobian matrix will be investigated because of in the
ill-conditioned systems all the simulations are carried out on the
border of the Jacobian matrix singularity. Thus, the orthogonal
Givens-rotations-based methods are recommended [42,43] as their
numerical robustness is superior. Nonetheless, further investigations
are required in order to define what is the most effective ordering
scheme that should be used jointly.
• Secondly, the complex-valued power flow analysis as stated in this
paper is naturally formulated in rectangular coordinates. This fea-
ture allows us to exploit the power flow equations as a set of
quadratic algebraic equations. This means that the exact non-line-
arity of the complex power flow equations is retained, i.e., the
Taylor series expansion as outlined by Iwamoto & Tamura [32] is
exact. Otherwise, it is approximated as in the Newton-Raphson
method when applied to the power flow analysis and the Gauss-
Newton method used to solve the power system static state

estimation.
• Thirdly, the building of a power flow and a state estimation fra-
mework for hybrid AC-DC systems that include a variety of FACTS
devices will be investigated [40,48–51].
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A B S T R A C T   

In this paper an enhanced power flow algorithm in complex plane is proposed. The power flow models in 
complex plane is naturally developed in Cartesian coordinates, thus most of the constraints equations can be 
written as quadratic functions. Consequently, the Taylor series expansion stops in the third term and the exact 
nonlinearity of the quadratic complex power flow equations is retained while the remaining functions are dealt 
through the Newton-Raphson method. Minor changes in the codes are required to transform the Newton- 
Raphson method into the enhanced power flow approach in complex plane. The new algorithm exihibits 
either a superior behavior in well- or ill-conditioned networks. The features and advantages of the proposed 
algorithm are illustrated through a small example and case studies carried out either on the well- or ill- 
conditioned fashion of the IEEE-14, − 30, − 57 and − 118 bus and the Brazilian Southern-equivalent of 1916- 
buses, termed as SIN-1916.   

1. Introduction 

The exact real-valued load flow formulation is not a new issue in the 
state-of-the-art literature. In order to achieve a more accurate model, 
Sachdev and Medicherla [1] proposed a second order method in polar 
coordinates formulation. Nonetheless, this approach still involves 
neglecting all the higher order terms in the Taylor’s series expansion of 
the load flow equations. On the other hand, Iwamoto and Tamura [2] 
proposal is developed using rectangular coordinates and showed that no 
terms of the Taylor’s series expansion need be neglected in their method. 
Moreover, in their proposal the Hessian matrix calculation is not 
required if all the constraints functions are quadratic. Further en
hancements to the second order load flow were proposed by Roy and 
Rao [3] who showed that the use of a particular starting point and some 
suited approximations become his approach faster and requires less 
memory than the fast decoupled load flow (FDLF) which was taken as 
the benchmark in his work. In [4] some improvements in the exact load 
flow formulation are suggested aiming to overcome the FDLF slow 
convergence rate and failures when it is carried out on systems with 
large R/X ratios and capacitive series branches. It is conjectured that the 
poor FDLF performance under those conditions might be due to the 
approximations made while developing the FDLF model itself. In addi
tion, a new technique is added for handling Q limit violations at PV 
buses. A comparative analysis of the convergence characteristics of 

second-order load flow methods is conducted in [5] but focused to FDLF. 
More recently, in [6] a new second order load flow method is proposed. 
It is based on the constant Jacobian matrix in polar coordinates and 
requires the Hessian matrix calculation. Anyway, the algorithms 
regarding all works mentioned earlier are aimed to solve the exact 
power flow problem formulated in the real domain. This procedure is 
followed because the power flow equations should be written in rect
angular coordinates which allow to be splitted in real and imaginary 
parts. So, if the mismatches equations are quadratic functions their 
expansion in Taylor series till the third term is exact. 

Nonetheless, none of the work on exact load flow model mentioned 
earlier shows how to deal with constraints that are not quadratic func
tions, e.g., on-load-tap-changer (oltc) and phase-shifters to cite a few, but 
recent work addresses these issues in complex plane [7]. To circumvent 
these weaknesses, in this work an enhanced power flow solution is 
proposed. As the quadratic power flow equations in complex plane are 
naturally formulated in rectangular coordinates, the complex-valued 
enhanced power flow formulation is straightforward derived and in 
our proposal the non-quadratic functions are dealt through the Newton- 
Raphson method. In order to present the effectiveness of the new 
method, three classes of algorithms are considered in this work and their 
performance are compared. The first one is the well known Newton- 
Raphson method in real domain and written in polar coordinates 
which is taken as a benchmark. The second one is the Iwamoto’s 
approach as described in [2] otherwise developed in complex plane. The 
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third one is the proposed enhanced power flow algorithm that is also 
extended to the Levenberg-Marquardt approach [8] aimed to ill- 
conditioned networks. Notice that the contribution presented in this 
work is essentially based on Iwamoto’s approach [2] in complex vari
ables while allowing for multiple Jacobian matrix factorizations. 

The aforementioned algorithms are identified as follows.  

1. RV − NRM(p)
fg Real-valued Newton-Raphson method in polar 

coordinates; 
2. CV − EIA(r)

ag Complex-valued enhanced power flow based on Iwamo
to’s approach in rectangular coordinates [2], i.e., approximate gain 
updating; 

3. RV − EPF(r)
fg Real-valued enhanced power flow algorithm in rectan

gular coordinates;  
4. CV − EPF(r)

fg Complex-valued enhanced power flow algorithm in 
rectangular coordinates; 

5. CV − ALM(r)
fg Real-valued approximated Levenberg-Marquardt algo

rithm in rectangular coordinates; 
6. CV − ELM(r)

fg Complex-valued enhanced Levenberg-Marquardt algo
rithm in rectangular coordinates. 

The reminder of this paper is organized as follows. In Section 2 the 
power flow formulation in complex plane is summarized. In Section 3 is 
developed the enhanced power flow formulation in complex plane. 
Section 4 presents and discusses the set of simulations aimed to support 
the proposed contribution. In Section 5 are stated some conclusions and 
future works. 

2. The complex-valued power flow formulation 

2.1. General power flow equations 

The general power flow equations that model any type of branch in 
an electrical network, i.e., transmission lines and phase- and phase- 
shifting-transformers can be written as follows: 

Skm = Vk

(
y*

km

tkmt*km
− jbsh

km

)

V*
k − Vk

y*
km

tkm
V*

m, (1)  

Smk = Vm
(
y*

km − jbsh
km

)
V*

m − Vm
y*

km

t*km
V*

k . (2)  

and their complex conjugate counterpart are 

S*
km = V*

k

(
ykm

t*kmtkm
+ jbsh

km

)

Vk − V*
k
ykm

t*km
Vm, (3)  

S*
mk = V*

m

(
ykm + jbsh

km

)
Vm − V*

m
ykm

tkm
Vk. (4) 

In (1)–(4), bsh
km is the half susceptance shunt of a transmission line 

π-model whereas tkm = akme− jφkm is the general off-nominal tap trans
former model. This latter is assumed an ideal transformer with complex 
turns ratio tkm : 1 in series with its admittance or impedance. Thus, if the 
corresponding branch is referred to  

(i) off-nominal tap transformer: bsh
km = 0 and φkm = 0  

(ii) pure-shifter: bsh
km = 0 and akm = 1  

(iii) phase-shifter: bsh
km = 0  

(iv) π-transmission line: akm = 1 and φkm = 0 

Thereby, regardless the branch type, all terms in (1)–(4) are 
quadratic functions of bus voltage. This main feature allow us to 
formulate the power flow problem as a set of quadratic algebraic 
equations. Hence, thanks to Wirtinger calculus, all terms of the Taylor 
series expansion can be taken into account in the solution of the emerged 
nonlinear system of equations in complex plane. Consequently, the exact 
nonlinearity of the quadratic complex power flow equations is naturally 
retained in the complex-valued power flow formulation as described in 
the sequel. 

2.2. Complex-valued constraints functions 

Assuming the injected complex power at each bus is given by 

Sk =
∑

m∈Ωk

Skm, (5)  

where Ωk is the set of neighboring buses connected to the kth − bus, the 
constraints functions are modeled as shown in the sequence. 

2.2.1. PQ-bus type 
Similarly to the former model, with the active- and reactive-power 

demand specified for a PQ node, the complex mismatches functions 
are expressed as 

Mk = Sk − (Pks + jQks),

M*
k = S*

k −
(
Pks − jQks

)
,

(6)  

where Pks and Qks are the specified active- and reactive-power injection 
at node k, respectively. 

2.2.2. PV-bus type 
As the active-power generation and the terminal voltage magnitude 

at a PV − bus are both specified, i.e., Pks and Vks, respectively, the sum of 
Mk and M*

k in (6) gives the complex residual function, Mkg, which is 
related to the active-power constraint, yielding 

Mkg = Mk + M*
k ,

= Sk + S*
k − 2 × Pks.

(7)  

The second complex residual function Ekg for a generator node k is 
formed, using the voltage magnitude constraint given by 

Nomenclature 

xc Vector of the state variables in the conjugate coordinate 
system 

Δxc Vector of the approximated state variables correction in 
the conjugate coordinate system 

x,x* Complex and complex conjugate state variables 
x(☆)

c Solution vector for the state variables in the complex 
conjugate coordinates 

Δx(☆)
c Vector of the enhance state variables correction in the 

conjugate coordinate system 
t, t* Complex and complex conjugate tap position 
R{⋅},I{⋅} Real and imaginary part of a complex variable 
J Complex-valued Jacobian matrix 
cond(J) Condition number of the Jacobian matrix 
M Complex-valued mismatch vector 
(⋅)c Quantity in the complex conjugate coordinate system 
‖⋅‖2 Squared Euclidean norm 
ν Iteration counter 
‖⋅‖∞ Infinity norm  
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Ekg = VkV*
k − |Vks|

2
,

= e2
k + f 2

k⏟̅̅̅ ⏞⏞̅̅̅ ⏟
=|Vk |

2
− |Vks|

2
, (8)  

where ek and fk, respectively, are the real and imaginary part of Vk. So, it 
should be noted that the derivation of the current formulation in com
plex plane is as the rectangular formulation in real domain, i.e., it re
quires an extra equation at each PV-bus in the system, due to the need to 
maintain the specified voltage magnitude (8). Consequently, the rect
angular formulation has a larger equation and variable count relative to 
the polar formulation because of the number of PV-bus in the system. 

2.2.3. PQV-bus type 
This type of bus is referred to on-load-tap-changer (oltc) transformer 

bus, which can be connected to a phase-transformer for local and nearby 
bus voltage regulation or to a phase-shifting-transformer for controlling 
the active power flow transmitted over a line. When specifying the 
active- and reactive-power demand, the complex mismatch functions as 
stated in (6) are employed. It is worth to recall that the oltc tap position 
allows us to regulate the voltage magnitude at either k- or m-bus. Let us 
assume that the m-bus voltage is regulated. Hence the following mis
matches functions are adopted. 

Mm = j
(
t*km − tkm

)

2
− I

{
tkms

}
, (9)  

Em = VmV*
m − |Vms |

2
, (10)  

where I{tkms} is the specified imaginary part of the complex tap value, e. 
g., for a phase-transformer the I{tkms} = 0. Otherwise, it is a phase- 
shifter-transformer and instead of (9), (7) is used. In (10), Vms is the 
specified voltage at node m, i.e., the regulated nodal voltage which may 
be local or remote. Remark that in (9) the constraint is not a quadratic 
function. This apparent difficulty is easily circumvented as shown in the 
sequel. 

3. Power flow algorithms in complex plane 

The complex-valued enhanced power flow in Cartesian coordinates, 
i.e., CV − EPF(r) for short, can be formulated as follows [8]. Firstly, as the 
slack bus is excluded from the iterative loop, the vector of state variables 
in complex plane becomes 

xc =
[
x1, x2,…, xN− 1, x*

1, x
*
2,…, x*

N− 1

]T
, (11)  

where N is the total number of buses. Thus, the mismatches vector re
duces to 

M
(

xc

)

=
[
M1,M2,…,MN− 1,M*

1,M
*
2,…,M*

N− 1

]T
. (12)  

Recalling that the goal is to calculate xc that satisfies 

M
(

xc

)

= 0. (13)  

At this point, the reader should be aware toward the nature of the 
constraints functions taken into account in the mismatch vector. The 
most noteworthy feature aiming the iterative process formulation is that 
no terms beyond the second order derivative exist because the original 
Eqs. (1)–(4) are quadratic functions in x and x*. Indeed, this feature is 
used to develop the proposed algorithm, i.e., CV − EPF, once it allows to 
retain the nonlinearity without introducing any approximation or 
assumption into the model. Thus, without any loss of exactness, this 
work employs the very nice property presented by Iwamoto’s approach 
in [2], i.e., the Hessian matrix calculation can be avoided. Consequently, 
the mismatch vector (13) in expanded Taylor’s series becomes 

M
(

x(ν)c

)

= Ye

(

x(ν)c

)

+Y
(

Δx(ν)c

)

− Ys, (14)  

where Ys is a vector of constant terms referred as specified quantities. 

Whereas at each iteration, Ye

(

x(ν)
c

)

= J(ν)c Δx(ν)
c and Y

(

Δx(ν)
c

)

are the 

vector of calculated quantities and the 3th term of the Taylor serie 
expansion, respectively. Thereby, this latter is equivalent to the Hessian 
matrix which is complicated and of high dimensionality [2,9]. Conse
quently, its calculation is advantageously avoided as described in the 
Appendix. 

Notice that in (14) the only difference between Y
(

Δx(ν)
c

)

and 

Ye

(

x(ν)
c

)

is their argument. Hence, if Y
(

Δx(ν)
c

)

is neglected in (14) the 

CV − EPF(r) algorithm becomes the former Newton-Raphson method in 
complex plane, i.e., CV − NRM(r) [8,10,11] in Cartesian coordinates. 
Hence, writing (14) in terms of Δxc, leads to 

Δx(ν+1)
c = − (J(ν))

− 1M
(

x(ν)c

)

. (15)  

Thereby, since (15) is not approximate but intended to be exact, (9) or 
any other non-quadratic constraint should not be in use. Otherwise a 
null value is assigned to the corresponding non-quadratic function and 
(15) becomes an enhanced correction, i.e., it is not exact. At this stage 
three algorithms are formulated in complex plane and presented 
hereinafter. 

3.1. The Iwamoto’s approach in complex plane 

In this algorithm the starting values assigned to the state variables 

stay constant throughout the iterations. Thus, also Ye

(

x(ν=0)
c

)

and J(ν=0)

which are functions of x(ν=0)
c remain constant during the iterative pro

cess if they are once computed, i.e., the gain is approximate instead of 
full, as depicted in Fig. 1a. Thereby, this approach is termed as 
CV − EPFag because is aimed to lighten the computational burden. 

Consequently, only Δx(ν+1)
c and Y

(

Δx(ν)
c

)

change their values in the 

iteration process. Notice that null values are assigned to Δx(ν=0)
c in the 

fist iteration of the exact power flow loop [2]. Consequently, it is the 
former Newton-Raphson method. Hence, the recommended conver
gence criterion to be satisfied is 
⃦
⃦
⃦
⃦Δx(ν+1)

c − Δx(ν)
c

⃦
⃦
⃦
⃦

∞
⩽tol

(
e.g., 10− 3), (16)  

where Δxc physically means the total voltage correction vector. Now, it 
is worth to highlight the fact that the following two matrices operation 
are done just once, i.e., the Jacobian matrix factorization and the state 
variables updating in (15). This latter occurs after the convergence has 
been reached, yielding 

x(☆)
c = x(0)c +Δx(ν+1)

c , (17)  

where x(☆)
c is the solution vector for the power flow problem. None

theless, as any iterative process the outcome to reach the solution is 
prone to the starting values assigned to the state variables. If needed, the 
starting point can be enhanced making at least one iteration, e.g., 
through the Newton-Raphson method, as shown in Fig. 1b. Thus, (17) 
has to be re-written, leading to 

x(☆)
c = x(1)c +Δx(ν+1)

c . (18) 

Fig. 1 depicts both possibilities, i.e., (17) and (18), where the state 
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variables are updated only once, i.e., after the iterative process is over. 

3.2. The Enhanced Power Flow Algorithm (CV-EPF) 

Contrary to the procedure shown in Fig. 1, the proposed algorithm 
requires at each iteration either a full gain updating, CV − EPF(r)

fg , or an 

approximate gain updating, CV − EPF(r)
ag , for short. In the full gain mode 

the Jacobian matrix is updated and factorized at each iteration while in 
the approximate gain mode the Jacobian matrix may be kept constant. e. 
g., after the 2nd iteration likely the former Newton-Raphson method via 
approximate gain updating. Regarless the updating mode, the advantage 
over the Iwamoto’s algorithm is the lower number of iterations required 
to achieve the convergence and less proneness to divergence stemmed 
by starting values assigned to the state variables. These issues are 
highlighted in the next section. 

Hence, the convergence checking is carried out over the Infinity 
norm of two vectors. Simultaneously, it occurs over the corrections to be 
applied to the state variables and over the mismatches vector. This latter 
is included aiming to be aware against ill-conditioned systems [8], 
leading to 
⃦
⃦
⃦
⃦Δx(ν)c

⃦
⃦
⃦
⃦

∞
and

⃦
⃦
⃦
⃦M

(

xc

)(ν)⃦⃦
⃦
⃦

∞
⩽tol

(

e.g., 10− 3
)

. (19)  

If (19) is satisfied, stop and print out the results. Otherwise, the state 
variables are updated as in (20). 

x(ν)c = x(ν− 1)
c +Δx(ν)c , (20)  

and the iteration counter is increased followed by the updating of the 
mismatch vector and the Jacobian matrix. Notice the Jacobian matrix 
updating and its factorization are done at each iteration if full gain mode 
is assumed. Thus, the fast plane rotation can be applied efficiently once 
this algorithm is a square root- and division-free Givens rotations [12]. 

3.3. The Enhanced Levenberg-Marquardt Algorithm (CV-ELM) 

To assign robustness to the enhanced power flow solution in ill- 

conditioned networks, the enhanced Levenberg-Marquardt approach 
(6.CV − ELM) is now proposed. It is straightforward derived from the 
approximate Levenberg-Marquardt algorithm (5.CV − ALM) as pre
sented in [8]. In fact, the Levenberg-Marquardt algorithm remain un
changed while only the corrections to be applied to the state variables 
are either enhanced due to the inclusion of the third term of the Taylor’s 
series expansion or due the three corrections provided by the Levenberg- 
Marquardt algorithm, i.e., Δx(ν)

c ,Δy(ν)c and Δz(ν)c [13] yielding 

x(ν)c =

⎧
⎪⎨

⎪⎩

x(ν− 1)
c + Δx(ν)c + Δy(ν)

c
+ Δz(ν)c , iferr(ν)⩾p0

x(ν− 1)
c + Δx(☆)

c , otherwise.
(21)  

where ν is the iteration counter; p0 = 10− 4; Δx(☆)
c is the enhanced 

correction which adds the exact effect of the third term of Taylor series 
expansion (see, Fig. 1). The ratio of error deduction of the Levenberg- 
Marquardt algorithm is given by 

err(ν) =
Ared(ν)

Pred(ν), (22)  

Ared(ν) =

⃦
⃦
⃦
⃦M

(

x(ν− 1)
c

)⃦
⃦
⃦
⃦

2

−

⃦
⃦
⃦
⃦M

(

x(ν− 1)
c + Δx(ν)c + Δy(ν)

c
+ Δz(ν)c

)⃦
⃦
⃦
⃦

2

, (23)  

and  

For additional details, kindly report to [8]. 

4. Numerical simulations 

In this section, the performance of the enhanced power flow algo
rithms described earlier is evaluated. The Iwamoto’s approach which is 
developed with an approximate gain updating is termed as CV − EIAag. 
Instead, the proposed algorithm in this work requires full gain updating, 
so it is termed as CV − EPFfg. All simulations are carried out on the 
standard IEEE-14, − 30, − 57 and − 118 bus systems and on the 1916 bus 
systems. 

All algorithms described earlier were encoded in Matlab by using 

Fig. 1. Exact power flow solutions through Iwamoto’s approach. (a) Starting point; (b) Enhanced starting point.  

Pred(ν) =

⃦
⃦
⃦
⃦M

(

x(ν− 1)
c

)⃦
⃦
⃦
⃦

2

−

⃦
⃦
⃦
⃦M

(

x(ν− 1)
c

)

+ J(ν− 1)Δx(ν)c

⃦
⃦
⃦
⃦

2

+

⃦
⃦
⃦
⃦M

(

y(ν− 1)
c

)⃦
⃦
⃦
⃦

2

−

⃦
⃦
⃦
⃦M

(

y(ν− 1)
c

)

+ J(ν− 1)Δy(ν)
c

⃦
⃦
⃦
⃦

2

+

⃦
⃦
⃦
⃦M

(

z(ν− 1)
c

)⃦
⃦
⃦
⃦

2

−

⃦
⃦
⃦
⃦M

(

z(ν− 1)
c

)

+ J(ν− 1)Δz(ν)c

⃦
⃦
⃦
⃦

2

.

(24)   
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sparsity technique and column approximate minimum degree (colamd) 
ordering scheme. The numerical tests were executed by using an Intel® 
Core™ i5-4200 CPU @ 1.60 Hz 2.30 GHz; 6 GB of RAM and 64-bit 
operating system. A flat start condition is assigned to the state vari
ables in all simulations. The tolerance adopted for the convergence 
criterion in all simulations is 10− 12. Otherwise, it is indicated in the 
corresponding table of results. 

4.1. Small example: comparative performance in real domain 

Without any loss of generality, a numerical example developed in the 
real domain is shown in the sequel considering the nonlinear system of 
equations, i.e., (25) which is taken from the Appendix. That is composed 
of quadratic functions as it was employed in [2] and the performance of 
the Newton-Raphson method and the algorithm proposed in this work, 
both with full gain updating can be previewed in Table 1, including the 
Iwamoto’s approach. Notice that in this table the starting values 
assigned to the unknowns and the reached solution are highlighted in 
bold. The Newton-Raphson method needs 4 iterations to attain the 
convergence while the enhanced method here proposed requires 3 it
erations to reach the solution. On the other hand, the Iwamoto’s 
approach demands 9 iterations. Clearly, the proposed algorithm pre
sents the best performance once the corrections applied to the state 
variables at each iteration are exact in this case while in the remaining 
ones the corrections are approximated. Remark that in [2] although the 
corrections applied to the state variables are exact the gain updating is 
approximate because the Jacobian matrix is kept constant throughout 
the iterations. Whereas in the Newton-Raphson method, nevertheless 
the full gain updating is employed aiming the incremental correction 
calculation, only the first two terms in the Taylor series expansion are 

taken into account. Anyway, usually for larger systems in the real 
domain the exact method is about 3 to 5 times faster than the Newton- 
Raphson method [5]. 

4.2. IEEE/SIN test systems as well-conditioned systems 

Table 2 provides the network features of the well-conditioned IEEE/ 
SIN test systems. Whereas, Table 3 allows us to make a comparative 
analysis of the performance referred to all algorithms carried out on the 
well-conditioned systems regarding the number of iterations and time 
consuming to reach the solution. The well known Newton-Raphson 
method in polar coordinates is taken as the benchmark. 

Regardless whether the real or complex vector space and how large is 
the network, the Iwamoto’s approach demands much more iterations 
than any other algorithm to attain the solution. For instance, see the its 
behavior (2.CV − EIA(r)

ag ) in Table 3. Moreover, aiming the solution for 
the SIN-1916 bus system the Iwamoto’s algorithm needs an enhanced 
starting point to start the iterative process, as shown earlier in Fig. 1b. In 

Table 1 
Solution of (25) presented in the Appendix, tol.: 5× 10− 4.  

Iteration Newton-Raphson method - full gain updating  

xe  Δx   

xe1  xe2  Δx1  Δx2  

0 1.0  1.0  – – 
1 0.840000000000000  1.280000000000000  − 0.160000000000000  + 0.280000000000000  
2 0.800983823043909  1.202561901617696  − 0.039016176956091  − 0.077438098382304  
3 0.800000712925059  1.200002946154031  − 0.000983110118850  − 0.002558955463665  
4 0.800000000000644  1.200000000004269  − 0.000000712924415  − 0.000002946149762  
Iteration Exact Iwamoto’s approach - approximate gain updating  

xe  Δx   

xe1  xe2  Δx1  Δx2  

0 1.0  1.0  – – 
1   − 0.160000000000000  + 0.280000000000000  
2   − 0.197000000000000  + 0.168200000000000  
3   − 0.196075880000000  + 0.215840240000000  
4   − 0.200432236598369  + 0.193078411679926  
5   − 0.199442869522463  + 0.203291377105927  
6   − 0.200163088277594  + 0.198513230469437  
7   − 0.199900481845622  + 0.200692695990663  
8   − 0.200039463087178  + 0.199683135589635  
9 0.800019837117279  1.200146514220692  − 0.199980162882721  + 0.200146514220692  
Iteration Enhanced method - full gain updating  

xe  Δx   

xe1  xe2  Δx1  Δx2  

0 1.0  1.0  – – 
1 0.803000000000000  1.168200000000000  − 0.197000000000000  0.168200000000000  
2 0.799996996729410  1.199973828390555  − 0.003003003270590  0.031773828390555  
3 0.799999999999999  1.199999999999990  + 0.000003003270589  + 0.000026171609435   

Table 2 
Features of the IEEE/ SIN Test systems.  

IEEE-Test Bus Systems/ SIN- 14 30 57 118 1916 

No. of PV-bus (NPV) 4 5 6 53 163 
No. of PQ-bus (NPQ) 9 24 50 64 1753 
No. of transformers 3 4 15 9 835 
No. of TL + shunt 21 43 83 200 3197 
RV-(p) :n = (NPV + 2× NPQ) 22 53 106 181 3669 

CV-(r):n = 2× (NPV + NPQ) 26 58 112 234 3832 

TL - Transmission Line. 
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this case, one iteration through Newton-Raphson method is required. 
Even though, further 40 iterations are needed. 

Whereas, the evaluation of the proposed algorithm, i.e., 3.RV − EPF(r)
fg 

and 4.CV − EPF(r)
fg which are both highlighted in bold in Table 3 allows us 

to infer that the approach 4.CV − EPF(r)
fg demands less iterations than 

3.RV − EPF(r)
fg and usually requires lower number of iterations to reach 

the solution in all simulations. 
Besides that, it performs better than any other algorithm for the 

standard IEEE-test systems with respect to the total time to attain the 
convergence. For instance, taking as reference the well known Newton- 
Raphson method in polar coordinates, i.e., 1.RV − NRM(p)

fg , carried out on 

the IEEE-14, − 30, − 57 and − 118, the approach 4.CV − EPF(r)
fg is 2.14×,

2.77×,2.04× and 1.49× faster, respectively. The exception occurs for 
larger systems when the time consuming becomes higher because of the 
arithmetic of complex numbers, e.g., SIN-916 bus system. In this case the 

approach 4.CV − EPF(r)
fg is about 23.7% slower than 1.RV − NRM(p)

fg . 

4.3. IEEE/SIN test systems as ill-conditioned systems 

At this stage only selected algorithms are evaluated based on the 
studies conducted in [8]. Specifically, two scenarios are taken into ac
count by using the SIN-1916 as the test bed. 

In the first scenario the SIN-1916 is under stressed operating con
dition. The values assigned to the state variables before starting the 
iterative process are in all cases the flat start condition, i.e., 1.0 pu for the 
voltage magnitude and 0.0 rad for the phase angles. Also, the conver
gence criterion is relaxed in order to decrease the number of iterations 
required to attain the convergence, e.g., tol. = 1.0× 10− 03. In the sequel 
Table 4 shows the performance of the approaches 5.CV − ALM(r)

fg and 

6.CV − ELM(r)
fg . The features and advantages of the proposed algorithm 

are illustrated through simulations conducted under different loading 
factor applied linearly to the real and imaginary part, i.e., P and Q of all 
PQ-bus type. Notice that a loading factor of 1.0 is associated with a well- 
conditioned systems as presented in Section 4.2. The results reveal that 
the enhanced Levenberg-Marquardt approach (6.CV − ELM(r)

fg ) has 
outstanding performance compared to the previous version of the al
gorithm (5.CV − ALM(r)

fg ) as presented in [8]. Although the robustness of 
both algorithms is the same, in average, the number of iterations of 
enhanced Levenberg-Marquadt algorithm is reduced to the half. 

In the second scenario, aiming to refine the performance analysis 
presented above, let us compare the behavior of both algorithms under 
the impact of different R/X ratios on the number of iterations. Recall 
that higher R/X ratio can make a numerically well-conditioned system 
in an ill-conditioned one. Aiming this purpose, the test cases presented 
in the sequence are generated by the algorithm proposed in [14] and is 
summarized as follows. 

1. |zkm| and θkm are obtained from rkm and xkm of each branch imped
ance, i.e., 

⃒
⃒zkm

⃒
⃒× ejθkm=

⃒
⃒zkm

⃒
⃒(cosθkm + jsinθkm) = rkm + jxkm.  

2. Setting θkm
′ = θkm +Δθkm to simulate high rkm/xkm ratios. For 

instance, Δθkm = − 20◦; − 40◦ and − 60◦. 

Table 3 
Performance in the well-conditioned systems.  

(tol. = 1.0× 10− 12)   

Algorithms Number of 
Iters. 

Time/ iteration (×
faster)  

Total time (×
faster)  

IEEE- 
14 

1.RV − NRM(p)
fg  

5 1 1 

2.CV − EIA(r)
ag  

14 31.18 1.81 

3.RV − EPF(r)
fg  

5  2.92  1.86  

4.CV − EPF(r)
fg  

4  1.87  2.14   

IEEE- 
30 

1.RV − NRM(p)
fg  

5 1 1 

2.CV − EIA(r)
ag  

21 51.5 1.92 

3.RV − EPF(r)
fg  

6  2.28  2.05  

4.CV − EPF(r)
fg  

4  2.26  2.77   

IEEE- 
57 

1.RV − NRM(p)
fg  

6 1 1 

2.CV − EIA(r)
ag  

22 11 1.46 

3.RV − EPF(r)
fg  

6  0.92  1.26  

4.CV − EPF(r)
fg  

4  1.2  2.04   

IEEE- 
118 

1.RV − NRM(p)
fg  

5 1 1 

2.CV − EIA(r)
ag  

26 11.57 1 

3.RV − EPF(r)
fg  

6  1.13  1.07  

4.CV − EPF(r)
fg  

5  1.33  1.49   

SIN- 
1916 

1.RV − NRM(p)
fg  

7 1 1 

2.CV − EIA(r)
ag  41*  15.57 0.95 

3.RV − EPF(r)
fg  

8  1.32  0.71  

4.CV − EPF(r)
fg  

5  0.60  0.76  

(p) - polar coordinates; (r) - rectangular coordinates (*) - with enhanced starting 
point. 

Table 4 

Efect of ∕= loading factor on 
⃦
⃦
⃦
⃦M

(

xc

)⃦
⃦
⃦
⃦

∞ 
(pu) and number of iterations.  

Load Factor 5.CV − ALM(r)
fg  6.CV − ELM(r)

fg  

1.10 3.61e-6 (5) 3.61e-6 (5) 
1.15 0.00945 (57) 0.00941 (25) 
1.20 0.0195 (100) 0.0392 (55) 
1.25 0.0302 (96) 0.0306 (47) 
1.50 0.1517 (47) 0.6109 (37) 

(p) - polar coordinates; (r) - rectangular coordinates Sbase = 100 MVA. 

Table 5 

Effect of ∕= R/X ratios on 
⃦
⃦
⃦
⃦M

(

xc

)⃦
⃦
⃦
⃦

∞ 
(pu) and number of iterations.  

(p) - polar coordinates; (r) - rectangular coordinates Sbase = 100 MVA. 
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3. rkm
′ and xkm

′ are obtained using |zkm| and θkm
′ for each branch 

impedance, yielding rkm
′ + jxkm

′ =
⃒
⃒zkm

⃒
⃒× ejθkm

′

=
⃒
⃒zkm

⃒
⃒(cosθkm

′ +

jsinθkm
′). 

The overall performance is revealed in Table 5. Their contents are the 
maximum value (pu) of the Infinity norm of the mismatch vector and 
number of iterations. The results allow us to reach the same conclusions 
emerged from the Table 4, i.e., the approach 6.CV − ELM(r)

fg performs 

better than 5.CV − ALM(r)
fg regarding the number of iterations. On the 

other hand, aiming power flow analysis of ill-conditioned networks, two 
criterias should be satisfied. The first one is the convergence accuracy 
whereas the second one is the maximum value (pu) of the Infinity norm 
of the mismatches vector. Remark that in the Tables 4 and 5 the infea
sible solutions are highlighted in yellow. 

5. Conclusions and future research 

In this paper is developed a complex-valued enhanced power flow 
solution aiming either well- or ill-conditioned networks. The proposed 

algorithm is compared to the well known Newton-Raphson method in 
polar coordinates, besides the Iwamoto’s approach proposed in [2]. It is 
shown that the proposed algorithm is faster and more reliable regardless 
the network is either well- or ill-conditioned. The proposed technique 
can be conveniently incorporated in the existing RV- and CV − NRM 
power flows by adding a subroutine for computing the exact effect of the 
second order term of the Taylor’s series expansion and calculating the 
modified residual vector. As a future research, the following two im
mediate objectives will be achieved. Firstly, the numerical algorithms to 
be used to factorize the complex-valued Jacobian matrix will be inves
tigated [15] because in ill-conditioned systems very often the simula
tions are carried out on the border of the Jacobian matrix singularity. 
Secondly, the complex-valued enhanced power system state estimation 
will be studied and developed. 
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Appendix A. Numerical equivalence f
(

Δxe

)

≡ 1
2 H

(

xe

)

Δx2
e 

Let us consider the following simple system of quadratic equations and the starting values assigned to the unknowns as being x(ν=0)
e = [1.0; 1.0

]

: 

f1(x) = +2x2
1 − 2x1x2 + 2x2

2 − 2.24
f2(x) = − 2x2

1 − 1x1x2 + 2x2
2 − 0.64,

(25)  

which in matrix form becomes 

[ ys ] =

[
2 − 1 − 1 2
− 2 − 0.5 − 0.5 2

]

⋅

⎡

⎢
⎢
⎣

x1x1
x1x2
x2x1
x2x2

⎤

⎥
⎥
⎦

=

[
2 − 2 2
− 2 − 1 2

]

⋅

⎡

⎣
x1x1
x1x2
x2x2

⎤

⎦

(26)  

where ys = [2.24; 0.64]T. Hence, the Taylor series expansion of (26) leads to 

[ ys ] = [ y(xe) ] +

⎡

⎢
⎢
⎢
⎣

∂y1

∂x1

∂y1

∂x2

∂y2

∂x1

∂y2

∂x2

⎤

⎥
⎥
⎥
⎦

⋅
[

Δx1
Δx2

]

+ +
1
2

⎡

⎢
⎢
⎢
⎢
⎣

∂2y1

∂x2
1

2
∂2y1

∂x1∂x2

∂2y1

∂x2
2

∂2y2

∂x2
1

2
∂2y2

∂x1∂x2

∂2y2

∂x2
2

⎤

⎥
⎥
⎥
⎥
⎦

⋅

⎡

⎢
⎢
⎣

Δx2
1

Δx1Δx2

Δx2
2

⎤

⎥
⎥
⎦, (27)  

or 

[
2.24
0.64

]

=

[
f1
(
x(ν)e

)

f2
(
x(ν)e

)

]

+

[
4x(ν)e1

− 2x(ν)e2
− 2x(ν)e1

+ 4x(ν)e2

− 4x(ν)e1
− x(ν)e2

− x(ν)e1
+ 4x(ν)e2

][
Δx(ν)1

Δx(ν)2

]

+
1
2

[
4 2( − 2) 4
− 4 2( − 1) 4

]

⎡

⎢
⎢
⎣

Δx2
1
(ν)

Δx(ν)1 Δx(ν)2

Δx2
2
(ν)

⎤

⎥
⎥
⎦, (28)  

and alternatively, 
[

2.24
0.64

]

=

[
f1
(
x(ν)e

)

f2
(
x(ν)e

)

]

+

[
4x(ν)e1

− 2x(ν)e2
− 2x(ν)e1

+ 4x(ν)e2

− 4x(ν)e1
− x(ν)e2

− x(ν)e1
+ 4x(ν)e2

][
Δx(ν)1

Δx(ν)2

]

+

[
f1
(
Δx(ν)1

)

f2
(
Δx(ν)2

)

]

, (29)  
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where the 2nd order term in (28) is replaced by the 1st order term in (29) except that now its arguments are the corrections imposed to the unknowns. 
Thus, (29) in the first iteration becomes 
[

2.24
0.64

]

=

[
2
− 1

]

+

[
2 2
− 5 3

]

⋅
[

Δx1
Δx2

]

, (30)  

which can be re-written and solved, yielding 
[

Δx1
Δx2

]

= −

[
2 2
− 5 3

]− 1

⋅
[
− 0.24
− 1.64

]

=

[
− 0.16
0.28

]

. (31)  

Now, it allow us to infer about the equivalence between the 2nd order term in (28) and the third term in (29), yielding 

1
2

[
4 − 4 4
− 4 − 2 4

]

⋅

⎡

⎣
( − 0.16)2

( − 0.16)(0.28)
(0.28)2

⎤

⎦ =

[
0.2976
0.1504

]

≡

[
f1( − 0.16)

f2(0.28)

]

=

[
0.2976
0.1504

]

. (32) 

This nice property holds at each iteration. Therefore, taking in mind larger systems, the use of Eq. (29) instead (28) is computationally much more 
advantageous. 
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Itajubá (UNIFEI) - MG, and Federal University of Santa Catarina 
(UFSC) - SC, respectively, all in Brazil. In 1996 (Jan-Jul), he did 
part of his graduate program at “The Bradley Department of 
Electrical and Computer Engineering” - VTech, Blacksburg-VA, 
USA. Since 1987 he is with the Institute of Electric Systems and 
Energy at UNIFEI, where he is currently a Professor. His 
research interests include power system analysis and real-time 
control of wide area monitoring (WAM) and complex-valued 
network applications.  

Guilherme Chagas received his B.Sc. degree in Control and 
Automation Engineering in 2015, M.Sc. degree in Electrical 
Engineering in 2018 from Federal University of Itajubá (UNI
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Abstract

This paper presents new methodologies and modeling aimed at studying interwoven AC and DC subsystems of a
power system in the complex plane. It is well known that the development of any former power flow application
in real domain addressed to embedding FACTS devices is preceded by an arduous algebra task. To overcome this
difficulty, a novel power flow solution method is proposed in this work. Thanks to the Wirtinger calculus, a Newton-
Raphson method based on Taylor series expansions of nonlinear functions of complex variables and their complex
conjugates is developed. Thus, the voltage-source-converter multi-terminal direct current is formulated in complex
plane without any loss of accurateness and is termed as VSC-MTDC. Its performance is assessed through a small
example and on the IEEE-test systems interconnected across a DC network prone to several scenarios, e.g., topology,
loading magnitude and interchanging of active power.

Keywords: Complex-valued Newton-Raphson method, VSC-MTDC hybrid transmission grids formulated in
complex plane, Wirtinger Calculus.

Nomenclature

xc Vector of the state variables in the conjugate
coordinate system

∆xc Vector of the approximated state variables
correction in the conjugate coordinate sys-
tem

x, x∗ Complex and complex conjugate state vari-
ables

t, t∗ Complex and complex conjugate tap posi-
tion

ℜ{·}, ℑ{·} Real and imaginary part of a complex vari-
able

J Complex-valued Jacobian matrix

M Complex-valued mismatch vector

(·)c Quantity in the conjugate coordinate system

∥·∥∞ Infinity norm

ν Iteration counter

1. Introduction

The power flow equations are primordially complex-
valued (CV) formulations. Due to their state variables,
the most natural, compact and direct way to formulate it
is in the Complex Domain. However, such equations are
non-analytic in their phasors variables, i.e. they do not
have a Taylor series expansion in therms of these com-
plex variables alone, which is a condition for solving the
Power Flow problem with numerical methods, such as
Newton-Raphson. For this issue we have the Wirtinger
calculus, where the equations can be expanded in terms
of the complex variables and their conjugates. An-
other problem with this implementation is that for many
decades the computers had limited processing. Thus,
it was more advantageous to solve it in the real do-
main, replacing their complex variables by their real-
valued (RV) rectangular or polar coordinates. But now
the modern processors employ single instruction multi-
ple data (SIMD), resulting in a CV formulation that is
faster than the classical RV one [1], yet it has the distinct
advantage of a simple software implementation.

This new scene has rescued the interest to research
how the complex implementation of the power flow
equations can improve the algorithms for power flow
analysis and state estimation, making those algorithms
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more adaptable for recent constraints such as the inser-
tion of distributed and renewable energy generation and
FACTS to the grid. [2] presents the general methods and
analyses for load flow formulations using Wirtinger’s
calculus. [3] specializes the complex variable New-
ton Raphson to distribution networks. [4] proposes a
CV formulation for unbalanced radial networks. [5]
presents the Newton Raphson Power Flow with FACTS
devices. In [6] was presented a robust Levemberg-
Marquardt for solving ill-conditioned systems and in [7]
an enhanced power flow solution is proposed. Likewise,
in this paper a generalized VSC-MTDC power flow so-
lution is formulated in the complex plane.

Nowadays, power transmission employing VSC-
MTDC is an enhanced HVDC tecnhology of attractive
application in the industry because of their well-known
advantages [8]. The two most basic VSC-HVDC con-
figurations are the back-to-back and point-to-point in ei-
ther monopolar or bipolar fashions. The two monopo-
lar VSC-HVDC links are shown schematically in Fig.
1 where each converter comprises a voltage-source-
converter (VSC) and an interfacing load-tap-changer
(LTC) transformer [9]. Remark that the two VSCs are
series-connected on their DC sides, both sharing a ca-
pacitor in the case of the back-to-back configuration or
a DC cable in the case of the point-to-point configu-
ration. Whereas on the converters AC side, the trans-
former’s respective primary and secondary windings are
connected to the high-voltage power grid which makes
each VSC to be shunt-connected with the AC system,
just as if they were two STATCOM [10].

Figure 1: VSC-HVDC schematic representation. (a) Back-to-back.
(b) Point-to-point.

On the other hand, Fig. 2 shows a VSC-MTDC
hybrid AC&DC transmission grid’s one line diagram.
From the picture showed in the sequel one can infer
that the IEEE-test systems are operated as an isolated
AC subsystems, but all are interconnected through a DC
grid. This latter being operated either in monopolar or

bipolar configuration. Thus, it allows us to simulate a
large number of scenarios taking AC isolated networks
importing or exporting active power to each other. Fur-
thermore, in spite of other FACTS devices are not shown
in Fig. 2, e.g., a battery energy storage system (BESS),
a PMSG-based wind farm and a photovoltaic generation
system (PV), to cite a few, they can be equally DC grid
connected.

Basically, in the state-of-the-art two approaches for
the the hybrid AC/DC power flow can be found. In
the first, the solution method is sequential [11, 12, 13]
while in the second the solution is formulated in an uni-
fied fashion [14, 15, 16]. In sequential methods the AC
and DC equations are solved sequentially whereas in
the unified methods the hybrid systems are solved to-
gether. Both methods were first implemented consider-
ing the DC slack bus voltage control, where one VSC
terminal may be selected to compensate the power im-
balance of the overall DC grid. Those works were ex-
tended in [17, 18] to include the voltage droop control
strategy where multiple converters can simultaneously
contribute to the DC voltage stability as presented in
[19, 20].

In this work both sequential and unified formula-
tions were developed and applied to the general VSC-
MTDC hybrid AC/DC transmission grid stated in com-
plex plane. Comparing their implementation effort, Bel-
mans et. al. [11] claim that the sequential approach is
more advantageous because it allows to embed a MTDC
system to an existing AC based power flow software.
The authors share the same viewpoint and extended it
towards the power flow software developed in complex
plane, but the sequential solution requires an additional
iterative process to solve the DC grid power flow be-
cause its inner losses are not known a priori. Regarding
the VSC-MTDC voltage control strategies, once their
formulations rely only on real variables they remain the

Figure 2: Hybrid AC&DC one-line diagram.
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same in the complex plane. Considering this, the volt-
age droop control can be straightforwardly implemented
from, e.g., [17] for the sequential or [18] for the unified
method with no need of adaptions to CV formulation.
To keep it simple this paper adopts the classic dc slack
bus control strategy as it is in [11, 16].

The major contribution presented in this work is the
development of a generalized VSC-MTDC power flow
solution in complex plane that lands itself to an easy
software implementation, and whose performance is
better than the classical VSC-MTDC power flow in
real variables; these features make the complex vari-
able power flow more suited to modern processors. The
formulation is solved, in the same way as [2], by New-
ton’s method using Wirtinger’s calculus, preserving the
powerful convergence property of Newton’s method [5].
The full complex power flow equations with no restric-
tions on the topology or configuration of the AC and
DC networks is assumed. Moreover, without any loss
of generality, the former VSC-HVDC model showed in
Fig. 3 is adopted in this work [16]. The main reason is
the power flow equations are functions only of the net-
work’s state variables, including the AC side of the con-
verter. Consequently, regardless the Newton-Raphson
iterative power flow algorithms, i.e., sequential or uni-
fied approach, usually it requires fewer number of iter-
ations to reach the solution than other equivalent algo-
rithms which model the state variables inner the con-
verter explicitly [14].

The remainder of this paper is organized as follows.
In Section II the Newton-Raphson method in complex
plane is summarized. Section III presents the general-
ized complex-valued VSC-MTDC power flow formu-
lation proposed in this work, including their control
strategies aimed to meet the AC/DC hybrid networks
operation scenarios. Section IV is addressed to show the
numerical performance of the current proposals. Ending
the paper, Section V presents the main conclusions and
future developments.

Figure 3: VSC-HVDC model.

2. Complex-Valued Newton-Raphson Method

2.1. Power flow algorithm in complex plane
For any AC network the set of complex state vari-

ables, excluding one that is referred to the slack bus, is
regularly taken into account in the complex-valued iter-
ative algorithm [2] as follows:

xc = [V1,V2, . . . ,VN−1,V∗1 ,V
∗
2 , . . . ,V

∗
N−1]T , (1)

and the mismatches vector leads to

M
(
xc

)
= [M1,M2, . . . ,MN−1,M∗1,M

∗
2, . . . ,M

∗
N−1]T .

(2)
Nonetheless, here the goal is to calculate xc that sat-

isfies
M

(
xc

)
= Ye(xc) − Ys = 0, (3)

where in (3), Ys is a vector of specified quantities, i.e.,
constant term; Ye(xc) = Jc ∆xc is a vector of calculated
quantities at each iteration. Consequently, the lineariza-
tion of (3) from one step to the sequel leads to

M
(
x(ν−1)

c

)
+ J(ν−1) ∆x(ν)

c = 0, (4)

or ∆x(ν)
c = −

(
J(ν−1)

)−1
M

(
x(ν−1)

c

)
, (5)

where J is the complex-valued Jacobian matrix. As a
further advantage provided by the Wirtinger calculus
[21, 22], the Jacobian matrix emerged in Cartesian coor-
dinates needs lesser algebra task as well as minor imple-
mentation effort (encoding) than the former procedure
in real domain [6].

In this work the convergence checking is carried out
over the Infinity norm of two vectors. Firstly, it oc-
curs over the corrections to be applied to the state vari-
ables and simultaneously over the mismatches vector.
This latter is included aiming to be aware against ill-
conditioned systems [6], yielding

∥∥∥∆x(ν)
c

∥∥∥∞ and
∥∥∥M(xc)(ν)

∥∥∥∞ ≤ tol (e.g., 10−3). (6)

If the constraint in (6) is satisfied, stop and print out
the results. Otherwise, the state vector is updated as in
(7).

x(ν)
c = x(ν−1)

c + ∆x(ν)
c , (7)

and the iteration counter is increased followed by the
updating of the mismatch vector and the Jacobian ma-
trix factorization. This latter task can be mandatory
or not once the Jacobian matrix may be kept constant
throughout the iterative process (approximate, instead
of full gain) which is a decision very often adopted after
the second iteration aiming to lighten the computational
burden. In the sequel is summarized the AC power flow
formulation in complex plane. Further details can be
found in [6].
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2.2. Complex-valued power flow equations
The general complex-valued power flow equations

that model any type of branch in an electrical network,
i.e., AC&DC transmission lines and phase- and phase-
shifting-transformers can be written as follows:

S km = Vk

(
y∗km

tkmt∗km
− j bsh

km

)
V∗k − Vk

y∗km

tkm
V∗m, (8)

S mk = Vm

(
y∗km − j bsh

km

)
V∗m − Vm

y∗km

t∗km
V∗k . (9)

and their complex conjugate counterpart are

S ∗km = V∗k

(
ykm

t∗kmtkm
+ j bsh

km

)
Vk − V∗k

ykm

t∗km
Vm, (10)

S ∗mk = V∗m
(
ykm + j bsh

km

)
Vm − V∗m

ykm

tkm
Vk. (11)

In (8-11), where tkm = akm e− jφkm is the general off-
nominal tap transformer model which is composed by
an ideal transformer with complex turns ratio tkm : 1 in
series with its admittance or impedance. Hence, if the
corresponding branch is referred to

1. an off-nominal tap transformer: bsh
km = 0 and φkm =

0

2. a pure-shifter: bsh
km = 0 and akm = 1

3. a phase-shifter: bsh
km = 0

4. a π−transmission line: akm = 1 and φkm = 0

5. a DC link: akm = 1; φkm = 0; bsh
km = 0 and

ℑ{ ykm} = 0. Consequently, Vk; V∗k → Vdck; Vm;
V∗m → Vdcm; S km → Pkm.

2.3. Complex-valued constraints functions
Assuming the injected complex power at each bus is

given by
S k =

∑

m ∈Ωk

S km, (12)

where Ωk is the set of neighboring buses connected to
the kth − bus, the constraints functions are modeled as
follows.

2.3.1. PQ-bus type
Similarly to the former model, with the active- and

reactive-power demand specified for a PQ node type,
the complex mismatches functions are expressed as

Mk = S k − (Pks + j Qks),

M∗k = S ∗k − (Pks − j Qks),
(13)

where Pks and Qks are the specified active- and reactive-
power injection at node k, respectively.

2.3.2. PV-bus type
As the active-power generation and the terminal volt-

age magnitude at a PV − bus type are both specified,
i.e., Pks and Vks, respectively, the sum of Mk and M∗k in
(13) gives the complex residual function, Mkg, which is
related to the active-power constraint, yielding

Mkg = Mk + M∗k ,

= S k + S ∗k − 2 × Pks.
(14)

The second complex residual function Ekg for a gen-
erator node k is formed, using the voltage magnitude
constraint given by

Ekg = Vk V∗k − |Vks|2 ,

= e2
k + f 2

k︸  ︷︷  ︸
=|Vk |2

− |Vks|2 , (15)

where ek and fk, respectively, are the real and imaginary
part of Vk. So, it should be noted that the derivation of
the current formulation in complex plane is as the rect-
angular formulation in real domain, i.e., it requires an
extra equation at each PV-bus in the system due to the
need to maintain the specified voltage magnitude (15).
Consequently, the rectangular formulation has a larger
equation and variable count relative to the polar formu-
lation because of the number of PV-bus in the system.

2.3.3. PQV-bus type
This type of bus is referred to on-load-tap-changer

(OLTC) transformer bus, which can be connected to a
phase-transformer for local and nearby bus voltage reg-
ulation or to a phase-shifting-transformer for controlling
the active power flow transmitted over a line [23]. When
specifying the active- and reactive-power demand, the
complex mismatch functions as stated in (13) are em-
ployed. It is worth to recall that the OLTC tap position
allows us to regulate the voltage magnitude at either k−
or m−bus. Let us assume that the m−bus voltage is reg-
ulated. Thus, the following mismatches functions are
adopted.

Mm = j
(t∗km − tkm)

2
− ℑ{tkms }, (16)

Em = Vm V∗m −
∣∣∣Vms

∣∣∣2 , (17)

Here, ℑ{tkms } is the specified imaginary part of the com-
plex tap value. For instance, for a phase-transformer
the ℑ{tkms } = 0.0; otherwise, it is a phase-shifter-
transformer and instead of (16), (14) is used. In (17),
Vms is the specified voltage at node m, i.e., the regulated
nodal voltage which may be local or remote.
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3. Complex-Valued VSC-MTDC Formulation

3.1. The generalized complex-valued VSC-HVDC for-
mulation

The equivalent circuit of the VSC-HVDC at the i-
th bus is presented in Fig. 3 under the following as-
sumptions: i) the system as well the VSC are three-
phase balanced; ii) the harmonics generated by the con-
verters are neglected. Thus, each former VSC based
power flow model can be represented at the fundamen-
tal (power grid) frequency by the complex bus voltage
Vshi and generalized to any number m of DC terminals,
for i = 1, 2, · · · ,m. Based on these assumptions the gen-
eral complex power flow equation at the AC side of the
converter is

S shi = Vi Ish∗i = Vi Y sh∗i (V∗i − V sh∗i ), (18)

where Y shi = 1/Zshi and Zshi = (Rshi + j Xshi) is the
impedance of the converter coupling transformer. Fur-
thermore, the losses in the converter model can be rep-
resented as a function of the reactor current magnitude
Ic as discussed in [24], where the coefficients a, b and c
are shown in Table 1:

Ploss = a + b Ic + c Ic2, (19)

with Ici =
1√
3

√
S shi S sh∗i

Vi V∗i
. (20)

Table 1: Per unit converter loss coefficients.

a b c
rectifier 11.033 3.464 4.400 x 10−3
inversor 6.667

3.2. The generalized complex-valued VSC-MTDC for-
mulation

Firstly, it is worth suggest to the reader to take a
glance on the detailed steady state VSC-MTDC mod-
els which are all developed in real domain, e.g., [14, 11,
16]. Instead, for the sake of simplicity, the VSC-HVDC
shown in Fig. 3 is extended to the generalized VSC-
MTDC power flow model depicted in Fig. 4. In spite
of the VSC-HVDC model can be extended to any num-
ber of terminal, here it follows the same three terminal
VSC-MTDC topology taken into account in [16]. No-
tice that if the three converters are all co-located in the
same substation, i.e. they are directly connected with a
common DC link, Yi j = Y jk = Yik = 0. Otherwise, i.e.,
Yi j , Y jk , Yik , 0, a DC network is explicitly repre-
sented, comprising of three DC buses and three HVDC

transmission lines. Hence, the DC bus voltages Vdci,
Vdc j and Vdck are the complex-valued state variables
of the DC network, i.e., Vdcm = (Vdcm + j 0.0) for
m = i, j, k.

Figure 4: VSC-MTDC model.

3.3. The VSC-MTDC slack bus control strategy
Very often the converters at buses j and k are referred

as primary converters [15, 16]. They can provide either
the independent active and reactive power flow control
or active power flow and voltage control. Remark that
both control mode are operated in the AC side of the
converters as follows.

3.3.1. PQ control mode
The converters are under the following complex

power constraints

S sh j − S shspec
j = 0

S shk − S shspec
k = 0,

(21)

where S shspec
j = (Pshspec

j + j Qshspec
j )

S shspec
k = (Pshspec

k + j Qshspec
k ),

(22)

are the complex power specified at buses j and k, re-
spectively.

3.3.2. PV control mode
The VS Cm are under the active power flow and volt-

age control. Hence, the converters at buses j and k may
control voltage rather than reactive power. Thus, the
complex power control established in (21) have to be
replaced by

S sh j + S sh∗j − 2 × Pshspec
j = 0

S shk + S sh∗k − 2 × Pshspec
k = 0,

(23)
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and V j V∗j − (V spec
j )2 = 0

Vk V∗k − (V spec
k )2 = 0,

(24)

respectively.

On the other hand, the converter at bus i which in turn
is referred as a secondary converter provides the voltage
control at its DC terminal bus, yielding

Vdci Vdc∗i − (Vdcspec
i )2 = 0, (25)

which is equivalent to

Vdci − Vdcspec
i = 0, (26)

where: Vdci = (Vdci + j 0.0). This feature allows us to
infer that the DC network constraints functions are an-
alytic or holomorphic functions, i.e., they are not func-
tion of their complex conjugate state variables. Thereby,
the Cauchy-Riemann equations hold (please, see Sec-
tion II of [6]), and only the complex DC state variables,
i.e., Vdcm = (Vdcm + j 0.0) for m = i, j, k are needed
to solve the problem posed in (3). The remaining con-
straint, i.e., the active power exchange balance among
the converters coupled through the DC network, includ-
ing their losses, leads to

Pdc∑ = Pdci + Pdc j + Pdck + Ploss = 0. (27)

Notice the converter at bus i plays the role of a DC
slack bus. Further details are provided hereafter.

3.4. The generalized DC network power flow formula-
tion

As depicted in Fig. 4 the voltage and current relation-
ships of a DC grid may be represented by

Ydc V dc = I dc, (28)

where Ydc is the DC network nodal admittance matrix;

V dc is the DC bus voltage vector which in expanded
form is V dc = [Vdci; Vdc j; Vdck]T and I dc is the DC
network bus current injection vector, represented by
I dc = [Idci; Idc j; Idck]T , being

Idcm = − Pdcm

Vdcm
, (29)

for m = i, j, k. Instead, assuming a bipolar DC grid [11]
the above equation becomes

Idcm = − Pdcm

2 × Vdcm
. (30)

Therefore, similarly to the AC power flow formula-
tion, a DC slack bus should be selected and the corre-
sponding DC voltage is kept constant in the DC network
nodal equation (28). Thus, equally to its AC counter-
part, the DC slack bus is required to providing voltage
control and balancing the active power exchange among
the converters through (26) and (27), respectively. As
described earlier, the converter at bus i plays the role
of a DC slack bus. Hence, equations (26-30) are the
basic operating constraints of the DC network, being
this latter mathematically coupled with the AC side of
the VSC-MTDC through the DC power exchange Pdci,
Pdc j, Pdck.

3.5. Embedding the DC network into the unified formu-
lation

Aiming the embeddedness of the DC network into the
generalized VSC-MTDC model, the power flow prob-
lem stated in (3) should be organized as follows:

∆xc incremental vector of complex and com-
plex conjugate state variables, being ∆xc =

[∆x1;∆x2;∆x3;∆x∗1;∆x∗2]T , where

∆x1 incremental vector of complex AC network state
variables, which in expanded form is ∆x1 =

[∆Vi;∆V j;∆Vk]T ;

∆x2 incremental vector of complex VSC-MTDC
converter state variables, which in expanded
form is ∆x2 = [∆V shi;∆V sh j;∆V shk]T ;

∆x3 incremental vector of complex DC network state
variables, which in expanded form is ∆x3 =

[∆Vdci;∆Vdc j;∆Vdck]T .

M
(
xc

)
bus power mismatch and VSC-MTDC control
mismatch vector and their complex conjugate,
and M

(
xc

)
= [M1

(
xc

)
; M2

(
xc

)
; M3

(
xc

)
;

M1

(
xc

)∗
; M2

(
xc

)∗
]T , where

M1

(
xc

)
AC network bus complex power mismatches,

which in expanded form is [S i; S j; S k]T ;

M2

(
xc

)
control complex mismatches of the VSC-

MTDC converters, which in expanded form is
[Pdc∑; S sh j−S shspec

j ; S shk−S shspec
k ]T , whereas

its complex conjugate counterpart is M2

(
xc

)∗
=

[Vdci − Vdcspec
i ; (S sh j − S shspec

j )∗;
(S shk − S shspec

k )∗];

M3

(
x
)

DC network bus complex current injections,
which in compact form is = [Ydc V dc − Idc].

6



J unified complex-valued Jacobian matrix, which
in expanded form may be represented through
four partitions matrix, yielding

J =



∂M1
∂x1

∂M1
∂x2

∂M1
∂x3

∂M2
∂x1

∂M2
∂x2

∂M2
∂x3

∂M3
∂x1

∂M3
∂x2

∂M3
∂x3

...

∂M1
∂x∗1

∂M1
∂x∗2

∂M2
∂x∗1

∂M2
∂x∗2

∂M3
∂x∗1

∂M3
∂x∗2

· · · ... · · ·
∂M∗1
∂x1

∂M∗1
∂x2

∂M∗2
∂x1

∂M∗2
∂x2

∂M∗1
∂x3

∂M∗2
∂x3

...

∂M∗1
∂x∗1

∂M∗1
∂x∗2

∂M∗2
∂x∗1

∂M∗2
∂x∗2



.

(31)

3.6. Embedding the DC network into the sequential for-
mulation

In the sequential approach, the DC grid variables are
used as inputs to solve the AC equations and vice versa,
which allows an easy embeddedness of DC grids into
existing AC power flow programs. Thus, each network,
i.e., the DC as well as the AC network have to be solved
iteratively. Due to the converters loss inclusion, an ex-
tra inner loop is required to calculate the DC slack bus
active power injection as a result of the nonlinear DC
power flow solution. After that, the former iteration is
needed to ensure the overall solution converges while
the overall power flow solution changes due to the up-
dates of the DC slack bus power injection. Further for-
mulation details of the sequential hybrid power flow can
be tracked in [11, 13].

3.7. Number of unknowns required to solve VSC-
MTDC

At this stage, it is worthwhile to take stock of the un-
knowns and the specified quantities. The set of state
variables corresponding to each converter is comprised
of DC side voltages, i.e., Vdcm = (Vdcm + j 0.0) for
m = j, k, · · · once Vdci is specified and on the AC side
output, for PV control mode the unknowns quantities
are the voltage phase angles, θshm, whereas for PQ con-
trol mode the unknowns are the voltage phasor, V shm,
for m = i, j, k, · · · . Finally, the number of complex state
variables in the AC network of N buses where each con-
verter is coupled is n = N − 1. In this work the sequen-
tial and unified approaches were developed in complex
plane and their performance are compared under several
scenarios of topology, load magnitude and interchang-
ing of active power as described in the sequel.

4. Numerical Simulations

The unified and the sequential formulation of a CV
Newton-Raphson Power Flow were programmed and
executed in Matlab, using an Intel® Core™ i7 CPU 870
@ 2.93GHz; 8GB of RAM and 64-bit operating system.
Two hybrid AC/DC test systems were simulated: a 5-
bus example system, duplicated here from [11] in order
to validate the results, and a proposed test system as pre-
sented in Fig. 2, were a MTDC grid is interconnecting
different standard IEEE-test systems, e.g., IEEE-14, -57
and -118 bus systems, operating under different scenar-
ios. A flat start condition is assigned to the state vari-
ables in all simulations. Notice that the Jacobian matrix
is factorized at each iteration and the tolerance adopted
for the convergence criterion in all simulations is 10−3.

4.1. IEEE 5-Bus test system with a coupled MTDC Net-
work

In order to validate the effectiveness of the developed
algorithms in complex plane, i.e., the unified and se-
quential power flow formulations, both are carried out
on the 5-bus test system with the coupled MTDC net-
work of 3-nodes as presented in Fig. 5. The DC branch
parameters used hereafter were obtained based on the
results tabulated in [11].

(a)

(b)

Figure 5: Hybrid AC&DC power flow solution.
(a) The AC 5-bus one-line diagram; (b) The DC 3-bus one-line dia-
gram.
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The AC/DC hybrid power flow solution is showed in
Table 2. The same results presented in [11] which are
reproduced in Fig. 5 were achieved by both algorithms
developed in the complex plane, i.e., the unified and se-
quential approaches, which demanded 3 and 2 iterations
respectively to reach the solution. Tables 3 and 4 sum-
marize the remaining results.

4.2. IEEE-Standard systems interconnect through
MTDC grid
In the sequence are provided the results obtained

via simulations carried out on the AC/DC hybrid trans-
mission system that was shown earlier in Fig. 2, consid-
ering a MTDC grid with the same specifications as pre-
sented in the previous test system. In order to demon-
strate the generality of the algorithms developed in com-
plex plane, different scenarios of operation are consid-
ered hereafter. Table 5 gathers the network features of
the IEEE test systems. Basically, in all simulations a
common assumption is considered, i.e., the IEEE-118
bus system is taken as an export market because of its
larger number of power sources. The simulations are
conducted as follows:

Case 1: IEEE-118 bus system is exporting energy to
the remainder subsystems considering the same
MTDC configuration as shown earlier in Fig. 2.

Case 2: The converters coupled to IEEE-14 and -57
bus systems are co-located in the same substation.
The power exchanges among all subsystems are
the same as considered in Case 1.

Case 3: Likely to Case 1, except that the DC link
between the IEEE-14 and IEEE-57 subsystems is
out of service. Consequently, the DC grid topology
becomes radial.

Tables 6 and 7 show the results obtained through the
simulations described above. Notice that both DC grid
operation mode are equally simulated and included in
all cases, i.e., monopolar and bipolar. In all cases, 4 and
2 iterations are required to reach the final solution for
the unified and sequential methods, respectively. More-
over, the VSC voltages regarding the subsystems IEEE-
14 and -57 bus suffer small changes as can be seen in
Table 6 in all cases as well.

On the other hand, Table 7 presents the power flow
values at each branch in the DC grid. Remark that the
losses variation are approximately linear concerning the
operation mode of the converters. The total losses un-
der bipolar operation mode is approximately the half of
those resulted under monopolar operation mode. High-
light as expected there are no losses in the link which

connects the subsystems IEEE-14 and -57 bus in Case
2 once the converters referred to those subsystems are
co-located in the same substation. Finally, in Case 3
the total losses have decreased because the link which
connects the subsystems IEEE-14 and -57 bus is out of
service.

5. Conclusions and future investigations

In this paper is developed a Newton-Raphson method
in complex plane aiming to evaluate the performance
of VSC-MTDC hybrid AC/DC transmission grids. It is
shown that the implementation in complex plane is flex-
ible and straightforward to model the power flow equa-
tions and FACTS devices. All of the computations in
the complex plane can be carried out in a very similar
manner, making many tools and methods already devel-
oped readily available to be used in the industry. As an
immediate goal to be investigated is the building of an
enhanced power flow and a state estimation framework
aiming VSC-MTDC hybrid AC/DC transmission grids
that include a variety of FACTS devices and renewable
energy sources. For instance, the unified power flow
controller (UPFC) which controls the real and imagi-
nary parts of the total complex power over a transmis-
sion line, i.e., active and reactive power, simultaneously;
a battery energy storage system (BESS); a PMSG-based
wind farm and a photovoltaic generation system (PV),
to cite a few.
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Table 2: Voltages and power injections report.

Converter at AC Side DC Side

bus Control mode
VSC Power Injection Converter loss Voltage Power

Vsh θsh Psh Qsh Ploss Vdc Pdc
(pu) (deg) (MW) (MVAr) (MW) (pu) (MW)

2 P - Q 0.984 -3.755 -60.00 -40.00 1.36 1.008 -58.60
3 Slack - V 1.003 -3.429 20.71 7.84 1.15 1.000 21.86
5 P - Q 0.993 -3.343 35.00 5.00 1.19 0.998 36.20

Table 3: Power flow report: AC side.

bus type
Voltage Power Injection
V θ P Q

(pu) (deg) (MW) (MVAr)
1 Slack 1.060 0.000 133.68 84.31
2 PV 1.000 -2.384 -40.00 -82.84
3 PQ 1.000 -3.898 -24.28 -7.85
4 PQ 0.996 -4.264 -40.00 -5
5 PQ 0.991 -4.151 -25.00 -5

Branch
Direct Way Reverse Way Power Loss

P Q P Q P Q
(MW) (MVA) (MW) (MVA) (MW) (MVA)

1 - 2 98.401 71.358 -95.683 -69.576 2.718 1.782
1 - 3 35.276 12.954 -34.213 -15.074 1.063 -2.120
2 - 3 13.264 -6.228 -13.148 2.576 0.116 -3.651
2 - 4 17.085 -5.185 -16.903 1.744 0.181 -3.440
2 - 5 25.334 -1.852 -25.077 -0.350 0.257 -2.202
3 - 4 23.080 4.649 -23.023 -6.472 0.056 -1.823
4 - 5 -0.073 -0.273 0.077 -4.650 0.004 -4.922

Total Power Loss 4.395 -16.377

Table 4: Power flow report: DC side.

Branch
Direct Way Reverse Way Power Loss

Pdc Pdc Pdc
(MW) (MW) (MW)

2 - 3 30.624 -30.381 0.244
2 - 5 27.979 -27.701 0.278
3 - 5 8.510 -8.493 0.017

Total Power Loss 0.539

Table 5: Features of the IEEE Test systems

IEEE-Test Bus Systems 14 57 118

No. of PV-bus (NPV ) 4 6 53
No. of PQ-bus (NPQ) 9 50 64
No. of transformers 3 15 9
No. of TL + shunt 21 83 200
RV-(p): n = (NPV + 2 × NPQ) 22 106 181
CV-(r): n = 2 × (NPV + NPQ) 26 112 234

TL - Transmission Line
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Table 6: Voltages and power injections report.

Converter at AC Side DC Side

Cases Operation Mode System bus (type) Control mode
VSC Power Injection Voltage Power

Vsh θsh Psh Qsh Vdc Pdc
(pu) (deg) (MW) (MVAr) (pu) (MW)

Case 1

Monopolar
118-bus 59 (PV) P - Q 0.969 -12.318 -60.00 -40.00 1.008 -58.59

57-bus 18 (PQ) Slack - V 1.006 -11.239 20.70 11.41 1.000 21.86
14-bus 5 (PQ) P - Q 1.021 -3.632 35.00 5.00 0.998 36.19

Bipolar
118-bus 59 (PV) P - Q 0.969 -12.318 -60.00 -40.00 1.004 -58.59

57-bus 18 (PQ) Slack - V 1.006 -11.188 20.97 11.44 1.000 22.13
14-bus 5 (PQ) P - Q 1.021 -3.632 35.00 5.00 0.999 36.19

Case 2

Monopolar
118-bus 59 (PV) P - Q 0.969 -12.318 -60.00 -40.00 1.009 -58.59

57-bus 18 (PQ) Slack - V 1.006 -11.235 20.72 11.41 1.000 21.86
14-bus 5 (PQ) P - Q 1.021 -3.632 35.00 5.00 1.000 36.19

Bipolar
118-bus 59 (PV) P - Q 0.969 -12.318 -60.00 -40.00 1.004 -58.59

57-bus 18 (PQ) Slack - V 1.006 -11.186 20.98 11.45 1.000 22.14
14-bus 5 (PQ) P - Q 1.021 -3.632 35.00 5.00 1.000 36.19

Case 3

Monopolar
118-bus 59 (PV) P - Q 0.969 -12.318 -60.00 -40.00 1.006 -58.59

57-bus 18 (PQ) Slack - V 1.006 -11.252 20.63 11.40 1.000 21.79
14-bus 5 (PQ) P - Q 1.021 -3.632 35.00 5.00 0.993 36.19

Bipolar
118-bus 59 (PV) P - Q 0.969 -12.318 -60.00 -40.00 1.003 -58.59

57-bus 18 (PQ) Slack - V 1.006 -11.194 20.93 11.44 1.000 22.10
14-bus 5 (PQ) P - Q 1.021 -3.632 35.00 5.00 0.996 36.19

Table 7: Power flow report: DC side.

Cases Operation Mode Branch

Direct Reverse Power
Flow Flow Loss

Pdc Pdc Pdc
(MW) (MW) (MW)

Case 1

Monopolar

59 - 18 30.62 -30.38 0.24
59 - 5 27.98 -27.70 0.28
18 - 5 8.51 -8.49 0.02

Total Power Loss 0.54

Bipolar

59 - 18 30.67 -30.55 0.12
59 - 5 27.93 -27.79 0.14
18 - 5 8.41 -8.40 0.01

Total Power Loss 0.27

Case 2

Monopolar

59 - 18 33.84 -33.55 0.29
59 - 5 24.75 -24.53 0.22
18 - 5 11.66 -11.66 0.00

Total Power Loss 0.51

Bipolar

59 - 18 33.84 -33.69 0.15
59 - 5 24.75 -24.64 0.11
18 - 5 11.55 -11.55 0.00

Total Power Loss 0.26

Case 3

Monopolar
59 - 18 21.92 -21.79 0.13
59 - 5 36.67 -36.19 0.48

Total Power Loss 0.61

Bipolar
59 - 18 22.16 -22.10 0.06
59 - 5 36.43 -36.19 0.24

Total Power Loss 0.30
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