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Abstract

Inter-area oscillations have been identified as a major problem faced by most power

systems and stability of these oscillations are of vital concern due to the potential for

equipment damage and resulting restrictions on available transmission capacity. In recent

years, wide-area measurement systems (WAMSs) have been deployed that allow inter-area

modes to be observed and identified.

Power grids consist of interconnections of many subsystems which may interact with

their neighbors and include several sensors and actuator arrays. Modern grids are

spatially distributed and centralized strategies are computationally expensive and might

be impractical in terms of hardware limitations such as communication speed. Hence,

decentralized control strategies are more desirable.

Recently, the use of HVDC links, FACTS devices and renewable sources for damping of

inter-area oscillations have been discussed in the literature. However, very few such systems

have been deployed in practice partly due to the high level of robustness and reliability

requirements for any closed loop power system controls. For instance, weather dependent

sources such as distributed winds have the ability to provide services only within a narrow

range and might not always be available due to weather, maintenance or communication

failures.

Given this background, the motivation of this work is to ensure power grid resiliency and

improve overall grid reliability. The first consideration is the design of optimal decentralized

controllers where decisions are based on a subset of total information. The second

consideration is to design controllers that incorporate actuator limitations to guarantee the

stability and performance of the system. The third consideration is to build robust controllers

to ensure resiliency to different actuator failures and availabilities. The fourth consideration

v



is to design distributed, fault-tolerant and cooperative controllers to address above issues at

the same time. Finally, stability problem of these controllers with intermittent information

transmission is investigated.

To validate the feasibility and demonstrate the design principles, a set of comprehensive

case studies are conducted based on different power system models including 39-bus New

England system and modified Western Electricity Coordinating Council (WECC) system

with different operating points, renewable penetration and failures.
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Chapter 1

Introduction

Power system is one of the most impressive engineering feats of the modern era due

to its vast geographical area, enormous dimension, and very high-reliability requirements.

The competitive market structure with penalty payments for interruptions has challenged

power system operators to maintain the grid free from major interruptions [1]. However,

when the network covers large areas it increases the risk of external disturbances and the

possibility of dynamic interferences. Further, with increasing levels of distributed energy

resources (DERs) including winds and photovoltaic (PV) generation, modern grids are more

vulnerable to system-wide disturbances [2]. These system-wide disturbances require more

sophisticated control and measurement systems to avoid system collapse as local responses

that are delivered based on the local observations are not sufficient anymore.

This will bring new challenges as coping with instability problems now require more

sophisticated wide-area measurement and control systems (WAMCS). Generally, power

systems consist of interconnections of spatially distributed subsystems which may interact

with their neighbors and include several sensors/actuators. Hence, centralized control

systems (all subsystems are connected to the same controller) are computationally expensive,

might be impractical in terms of hardware limitations such as communication speed and

decentralized control strategies are more desirable. Information structure has a direct impact

on the scalability and tractability of computing these optimal decentralized controllers [3].

As a result, extensive research is required to provide insight into decentralized, efficient and

reliable design of the future wide-area controllers.
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Figure 1.1: A typical example of inter-area oscillation.

One of the major concern faced by modern power systems is small-signal instability,

which refers to the ability of the system to remain in synchronism after being subjected to

a small disturbance [4]. Generally, the root cause of small-signal instability is insufficient

damping of low-frequency electromechanical oscillations and the following two distinct modes

of oscillation are of main concern [5]:

• Inter-area modes are associated with swinging of many generators in one part of the

system against machines in other parts. The characteristic frequency of inter-area

modes of oscillation is generally in the range of 0.1 to 1.0 Hz and are usually caused

by heavy power transfers across weak tie-lines

• Local modes are associated with one generator swinging against the rest of the system.

This type of oscillation is localized to one station or a small part of the system and

has higher oscillation frequency compare to the inter-area modes. These local modes

are usually induced by the interaction between the mechanical and electrical modes of

a turbine-generator system.

The time frame of interest in small-signal stability studies is of the order of 10 to 30

seconds following a disturbance. Stability of inter-area oscillations is of vital concern due

to the potential for equipment damage and resulting restrictions on available transmission

capacity between on the tie-lines between different areas. A typical example of the variation
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in tie-line active power flow is shown in Fig. 1.1. Over the past years, many incidents of

system blackout resulting from these oscillations have been reported and the followings are

some of these inter-area modes observation [6].

• In 1960’s with the interconnection of Ontario Hydro, Hydro-Qubec and Detroit Edison

systems, oscillations were experienced

• In 1969, oscillations were observed in the Finland-Sweden and Norway-Denmark

interconnected system.

• In 1971 - 1972, more than 70 incidents of unstable inter-area oscillations occurred in

the Mid-Continent Area Power Pool system.

• In 1975, unstable oscillations of 0.6 Hz were encountered on the interconnected power

system of New South Wales and Victoria.

• In 1982 - 1983, the State Energy Commission of Western Australia identified low

damped inter-area oscillations with a frequency range of 0.2 to 0.3 Hz.

• In 1996, the Pacific AC Inter-tie in WECC experienced unstable low-frequency inter-

area oscillations following the outage of four 400 kV lines.

Typically, local modes of oscillation can be damped by using power system stabilizers

(PSSs) but PSSs are less effective for inter-area modes. In recent years, wide-area

measurement systems (WAMSs) have been deployed that allow inter-area modes to be easily

observed and identified [7]. As a result, low-frequency oscillations can be observed globally

and then appropriately designed wide-area controllers can be deployed. These systems should

be

• Distributed or decentralized, modular and adaptive

• Make efficient use of actuator limits and capabilities

• Robust to sensor, communication, and actuator loss
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This dissertation studies decentralized, fault-tolerant and coordinated wide area control

of future power grids. The work in this dissertation is inspired by the following facts in

modern power grids. Firstly, power grids consist of interconnections of many subsystems

distributed over a vast geographical area and centralized controllers are impractical or

uneconomical. Secondly, new generation sources connected to the grid through inverters,

such as, distributed wind generations have limited capabilities and it is critical to consider

their actuator constraints. Finally, changes in scheduling of generators may mean that some

actuators are unavailable. The use of renewable sources to contribute to power system

stability may also be limited by the fact that they are not always available. The goal of this

dissertation is to develop new control theories and apply them to improve the power system

reliability.

1.1 Problem Description and Previous Works

In practice, most complex systems consist of interconnections of many subsystems. Each

subsystem may interact with its neighbors and include several sensors and actuator arrays.

Examples of such interconnected systems include control of smart grids [8], coordination

of large-scale electric vehicle charging [9] and flight formation [10]. In some cases, lumped

approximations of PDEs can also be used for modeling and control of identical interconnected

systems such as distributed heating/sensing [3] and large vehicle platoons [11]. For these

spatially distributed systems, centralized strategies (all subsystems are connected to the same

controller) are computationally expensive and might be impractical. Hence, decentralized

control problems have received a considerable attention in recent years. These problems arise

when a system consists of several decision makers (DMs) in which their actions are based

on decentralized information structure [12]. The term decentralized used in this work as a

general term where decisions are based on a subset of total information available about the

system.

Decentralized control problems were first studied by Radner as a team decision problem

[13]. Major difficulties that arise in these problems are from the information patterns. Early

work by Witsenhausen [14] demonstrated the computational difficulties associated with team
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decision making even in a simple two-player process. This counterexample demonstrates

that nonlinear control strategies outperform all linear laws in that decentralized decision

making problem. Another possibility is that decentralized control problem caused by delayed

information sharing pattern (e.g. network delay), which limits the information sharing

between different controllers. In [15], it has been shown that for a unit-delay information

sharing pattern, the optimal controller is linear. However, decentralized control problems

with multi-step delayed information sharing patterns generally do not have this property.

A major concern faced by modern power systems is small-signal instability, which refers

to the ability of the system to remain in synchronism after being subjected to a small

disturbance [4]. The key is to have sufficient damping that oscillations die out within a

short amount of time after the disturbance, say, within 10 seconds. If damping becomes too

low, the associated power swings may cause generators to fall out of synchronism or trigger

protection. In recent years, wide-area measurement systems (WAMS) have been deployed

that allow inter-area modes to be easily observed and identified [7]. In WAMS, phasor

measurement units (PMUs) are being used to collect synchronized measurements from the

power grid. As a result, the problem of lack of global observation for local controllers can

be addressed and improvement in the damping of inter-area oscillations can be achieved by

using remote feedback signals and specially designed WADCs.

There exists a large body of work in the control literature on stability analysis of systems

with input constraints [16, 17, 18, 19]. However, the effects of saturation have not been taken

into account in previous works for analyzing and designing damping controllers for power

system components, including traditional synchronous generators [20, 21, 22, 23], modern

FACTS devices [24, 25], energy storage systems [26] and renewable resources [27]. These

efforts generally do not consider the nonlinear effects of hard saturation limits on control

signals. Note that this is different from the traditional magnetic saturation of generators

but instead reflects the practical limitations of equipment ratings and can be expressed using

hard saturation limits restricting the amplitude of the controller output.

In order to transmit remote feedback signals to a WADC and then to the actuators, highly

reliable communications and computations are required. Time delay and communication

failures or cyber-attacks can easily degrade the performance of the aforementioned controllers
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[28, 25].The network may experience constant or time varying delays [29], packet dropout

[30] or packet disordering [31]. Hence, the communication network introduces uncertainty

in the operation of the closed-loop system. Moreover, changes in scheduling of generators

may mean that some actuators are unavailable. The use of renewable sources to contribute

to power system stability may also be limited by the fact that they are not always available.

For example, on calm days wind turbines may not be generating electric power if there is

insufficient wind to drive the turbines. Hence, the availability of these weather dependent

renewable resources could cause significant reliability issues. In contrast with a large

wind farm in a concentrated location, deployment of multiple small-scale wind farms will

require special techniques for actuator coordination as none could be used individually to

achieve adequate damping. Moreover, the availability of these weather dependent renewable

resources could pose design challenges for the reliability of critical controllers.

1.2 Motivation and Contributions

Given the background, the motivation of this dissertation is to improve the reliability and

resiliency of power systems. The primary sub-tasks of this research with motivations and

contribution can be described below.

1. Design optimal decentralized controllers where decisions are based on the subset of total

information available about the system. Generally, decentralized controllers are the

only feasible solution for large-scale power systems as centralized control architectures

are impractical or hard to implement. However, the information structure has a

direct impact on the scalability and tractability of computing optimal decentralized

controllers and most researchers have to resort to suboptimal methods. As a result, we

have formulated the problem of optimal H2 decentralized control for specially invariant

systems and transformed the problem to an infinite number of model matching with

a specific structure that can be solved efficiently. In addition, we have derived the

closed-form expression (explicit formula) of the decentralized controllers for the first

time and presented a constructive procedure to obtain the state-space representation.

In particular, it is shown that the optimal decentralized controller is given by a specific
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positive feedback scheme. A numerical example is given and compared with previous

works which illustrate the effectiveness of our proposed method.

2. Design controllers that incorporates actuator limitations to guarantee the stability

and performance of the system. Most of the new generation resources have limited

capability and can contribute to grid stability within a narrow range depending

on operating conditions. However, it is critical to consider the effects of actuator

constraints, these have not been taken into account in previous work. To guarantee

the stability, we have estimated the domain of attraction (DA) of a single-machine

infinite-bus (SMIB) power system with saturation nonlinearity and compared with

the exact description of the null controllable region. Then, we have designed both

state-feedback and dynamic output-feedback controllers to enlarge the DA. Simulation

results on a detailed nonlinear model of a synchronous generator indicate that the DA

enlarges with our proposed controller. Our results also indicate that Critical Clearing

Time (CCT) and damping of the system with saturation can be improved using our

proposed method.

3. Design robust controllers to ensure resiliency to different actuator failures and actuator

availability. Wide-area controllers are becoming more common in modern power grids.

However, still very few such systems have been deployed in practice at least partly

due to the robustness that is required for any closed loop power system controls.

Increasing interconnections and power demands in modern power systems lead to

greater vulnerability to faults and components failures. Hence, we have presented a

new fault-tolerant WADC such that nominal controller remains operational after faults

in the actuators. We have addressed this problem by inserting virtual actuators (VAs)

between the faulty plant and nominal controller to re-route the control signals to other

healthy actuators and recover the performance of fault-free system without the need to

retune the controller. Our proposed approach is applied to Kundur’s two-area system

and the 39-bus New England system and numerical results show the effectiveness of

the proposed method subjected to different failures.
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4. Design cooperative controllers, ensuring resiliency and considering actuator limitations

with high levels of renewables. To address the above tasks simultaneously, we have

developed a new design method for fault-tolerant wide-area controllers using modal-

based control allocation (MB-CA), which manage actuator availability and coordinates

a set of actuators based on effects on the modal system, desired control actions

and actuator constraints. We have developed an optimization algorithm to solve

the problem in real-time and presented a visualization of the average feasible virtual

control regions in modal coordinates. This approach has also been further developed

to sparse MB-CA where supervisory controller only communicates with necessary

actuators to achieve the desired performance. The proposed approachs are applied

to a modified Western Electricity Coordinating Council (WECC) system with high

levels of renewables to verify the feasibility on a complex power system.

5. Stability of wide area controls with intermittent information transmission Due to

the interruption in communication links between remote measurements and damping

controller or from the damping controller to the damping actuators, the closed loop

system might become unstable. To estimate instability, we have formulated the

problem as discrete-continuous time models and the stability conditions are derived

using time scale theory. This method allows us to handle discrete and continuous

models as two pieces of the same framework, such that the system switches between

a continuous time subsystem (when the communication occurs) and a discrete-time

system (when the communication fails). The contribution is in quantifying the

maximum time of interruption in order to guarantee exponential stability. The findings

are useful in specifying the minimum requirements for communication infrastructure

and the time to activate remedial action schemes.
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1.3 Dissertation Outline

This dissertation mainly deals with decentralized, fault-tolerant and coordinated control to

improving the resiliency of modern grids in the presence of high penetration of renewable.

A brief introduction that describes the previous works, motivations and contributions

have been presented in Chapter 1. The remainder of this dissertation is organized as

follows:

Chapter 2 presents explicit solution for decentralized control of a class of spatially

invariant systems. In addition, we provide a constructive procedure to obtain the state-

space representation of the decentralized controller.

Chapter 3 presents the analysis and a method to design damping controllers considering

the effects of saturation limits. As shown in this Chapter, nonlinear effects of saturation

should be considered to guarantee the stability and satisfactory performance.

In Chapter 4, a new approach is presented to design fault-tolerant wide-area damping

controllers. Our approach is based on the concept of virtual actuators to benefit from

redundancy in the actuator’s equipped with supplementary control.

Next in Chapter 5, a modal-based control allocation approach has been presented. This

approach coordinates a set of actuators to contribute to damping of inter-area oscillations

based on their effects on the modal system, desired control actions and actuator constraints.

In Chapter 6, the previous method has been further developed to sparse modal-based

control allocation where supervisory controller only communicates with necessary actuators

to achieve the desired performance.

Future, stability of wide area controls with intermittent information transmission has

been studied in Chapter 7 to estimate instability in modern power grids with non-ideal

communication links.

Finally, the conclusion with a summary of work and directions for future research are

provided in Chapter 8.
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Chapter 2

Optimal H2 Decentralized Control of

Spatially Invariant Systems

This chapter presents an explicit solution to decentralized control of a class of spatially

invariant systems. The problem of optimal H2 decentralized control for cone causal systems

is formulated. Using Parseval’s identity, the optimal H2 decentralized control problem is

transformed into an infinite number of model matching problems with a specific structure

that can be solved efficiently. In addition, the closed-form expression (explicit formula)

of the decentralized controller is derived for the first time. In particular, it is shown

that the optimal decentralized controller is given by a specific positive feedback scheme.

A constructive procedure to obtain the state-space representation of the decentralized

controller. A numerical example is given and compared with previous works which illustrate

the effectiveness of the proposed method. Part of the results in this chapter will be appear

in [32].
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2.1 Introduction

Decentralized control problems, different from classical centralized ones, have received a

considerable attention in recent years. These problems arise when a system consists of

several decision makers (DMs) in which their actions are based on decentralized information

structure [12]. The term decentralized used in this chapter as a general term where decisions

are based on a subset of total information available about the system. The information

structure has a direct impact on the scalability and tractability of computing optimal

decentralized controllers [33]. Over the past few years, different decentralized information

structure has been analyzed and the theory of such systems has been studied in detail

[12, 33, 34, 35].

In this research, we study the decentralized control of spatially invariant systems that

are made up of infinite numbers of identical subsystems and are functions of both temporal

and spatial variables. Spatial invariance means the distributed system is symmetric in the

spatial structure and the dynamics do not vary as we shift along with spatial coordinates.

In [3], a framework for spatially invariant systems with distributed sensing and actuation

has been proposed and optimal control problems such as LQR, H2 and H∞ has been studied

in a centralized fashion. In [36], the authors claimed that for spatially invariant systems,

dependence of the optimal controller on information decays exponentially in space and the

controller have some degree of decentralization.

Decentralized control problems can also be reformulated in a model matching framework

using the Youla parametrization. For general systems, this nonlinear mapping from the

controller to the Youla parameter removes the convexity of constraint sets (e.g. decentralized

structure) [37]. However, a large class of systems called quadratic invariance have been

introduced in [38], under which the constraint set is invariant under above transformation.

Different constraint classes such as distributed control with delay, decentralized control and

sparsity constraints have been considered in literature and a vectorization technique has

been used for computation. However, no explicit solution has been provided and due to high

computation requirements and numerical issues, vectorization approach is limited to systems

with a small number of states [39].
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Distributed controller design problem for classes of spatially invariant systems with

limited communications can also be cast as a convex problem using Youla parametrization.

This class includes spatially invariant systems with additional cone causal property where

information propagates with a time delay equal to their spatial distance [40]. A more general

class for cone causality, termed as funnel causality where the propagation speeds in the

controller are at least as fast than the plant was introduced in [41]. It is important to note

that decentralized control with structures such as cone or funnel causality yields a convex

problem. However, these problems are in general infinite dimensional and finding the explicit

solution or developing an efficient procedure for solving these problems are still open, and

are the subject of intense research.

In the previous work reported in [42], the optimal centralized control problem for this

type of spatially invariant systems have successfully been posed as a distance minimization

in a general L∞ space, from a vector function to a subspace with a mixed L∞ and H∞ space

structure. In [43], Banach space duality structure of the problem in terms of tensor product

spaces have been formulated. It has been shown that the dual and pre-dual spaces together

with the annihilator and pre-annihilator subspaces can be realized as specific tensor spaces

and subspaces, respectively. In [44] and [45], the optimal centralized and decentralized H2

control problem is formulated using an orthogonal projection from a tensor Hilbert space of

L2 and H2 onto a particular subspace. It is important to note that these projections can be

solved numerically to only compute the optimal cost function. However, further extensions

are needed to solve the problem explicitly and calculate the transfer function or state-space

characterization of the optimal decentralized controller.

Motivated by the concern outlined above, in this research, the optimal H2 decentralized

control problem for a class of spatially invariant system is considered. By building on

our previous results, we derived the decentralized problem for cone causal systems. Using

Parseval’s identity, the optimal H2 decentralized control problem is transformed to infinite

number of model matching problem with a specific structure that can be solved efficiently. In

addition, the closed-form expression (explicit formula) of the optimal decentralized controller

is derived in which the optimal control was previously unknown. A constructive procedure

to obtain the state-space representation of the decentralized controller is also provided.
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A numerical example is given and compared with previous works which demonstrate the

effectiveness of the proposed method.

This chapter is organized as follows. In Section 2.2, mathematical preliminaries and

state-space representation of discrete cone causal systems are presented. In Section 2.3, we

demonstrate that the optimal decentralized controller can be designed based on an infinite

number of model matching problems which can be solved efficiently. This is followed in

Section 2.4 by an example illustrating the validity of the results. Finally, some concluding

remarks are drawn in Section 2.5.

2.2 Discrete Cone Causal Systems

The framework considered in this research for discrete cone casual systems was first

introduced in [40]. The spatially invariant system G with inputs u(i, t) and outputs y(i, t)

has the following form

y(i, t) =
∞∑

j=−∞

∞∑
τ=−∞

ĝ(i− j, t− τ)u(j, τ) (2.1)

ĝ(i, t) = 0, ∀t < 0 (due to temporal causality)

where i is discrete space, t is discrete time, and ĝ(i, t) represents the spatio-temporal impulse

response of G and has temporal causality. Using the λ-transform g(i, λ) =
∑∞

t=0 ĝ(i, t)λt,

the spatio-temporal transfer function G is given by

G(z, λ) :=
∞∑

i=−∞

g(i, λ)zi (2.2)

where z denotes the two-sided spatial transform variable, λ denotes the one-sided temporal

transform variable and input-output relation is as follow

Y (z, λ) = G(z, λ)U(z, λ) (2.3)
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Figure 2.1: Support of the spatio-temporal impulse response of a centralized (left) and a
cone causal (right) system.

Figure 2.2: Support of a finite approximation of a cone causal system using equation (2.4)
in the right and equation (2.5) in the left.

where Y (z, λ) is the transform of y(i, t) and U(z, λ) is the transform of u(i, t).

Particular structure of interest is the case where the spatio-temporal impulse response of

the system ĝ(i, t) has the cone causal structure as shown in Fig. 2.1.

Definition 2.1. A discrete linear system y = Gu is called cone causal if it has the following

form [40]

G(z, λ) =
∞∑

i=−∞

gi(λ)zi (2.4)

gi(λ) = λ|i|g̃i(λ)

where the transfer function g̃i(λ) corresponds to temporally causal systems.

The interpretation of this property is that the input uk to the kth system gk affects the

output ym of the mth system gm, which is |k − m| spatial location away with a delay of
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|k−m| time steps [40]. This type of cone causal systems can also be written in the following

form

G(z, λ)=
∞∑
k=0

gk(z)λk (2.5)

gk(z)=
k∑

n=−k

gn,kz
n

For an infinite number of terms, the above two systems are equivalent. However, we usually

use a finite number of terms in the calculations, thus the first definition is more general as

shown in Fig. 2.2 for one example.

In general, the transfer function G(z, λ) can be seen as a multiplication operator on

L2(T, D̄) where T is the unit circle and D̄(D) is the closed (open) unit disc of the complex

domain C. Assume that G(z, λ) is stable, then we have [44]

G(z, λ) : L2(T, D̄) −→ L2(T, D̄) (2.6)

u −→ Gu = G(eiθ, λ)u(eiθ, λ)

where 0 ≤ θ < 2π, and |λ| ≤ 1.

From Hp-theory [46] asserts that if f ∈ H2, then f(ejw) ∈ L2, that is, H2 may be viewed

as a closed subspace of L2. Letting H2
⊥ be the orthogonal complement in L2, then we have

L2 = H2 ⊕H2
⊥, (2.7)

which means that every f ∈ L2 can be written uniquely as

f = f1 + f2, (2.8)

with f1 ∈ H2 and f2 ∈ H2
⊥. The `2-norm of the original system can be defined as

‖G‖2 =

(
∞∑

i=−∞

∞∑
t=0

|ĝ(t, i)|2
) 1

2

(2.9)
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and the H2-norm of its transform G(z, λ) is given by

‖G‖H2 =
1

2π

[∫
θ∈[0,2π]

∫
w∈[0,2π]

∣∣G(eiθ, eiw)
∣∣2dwdθ] 1

2

(2.10)

where the isometry ‖G‖2 = ‖G‖H2 holds. Before solving the optimal H2 decentralized

control problem for cone causal systems, it is also important to review the basics of state-

space representation of this class of systems.

Definition 2.2. Consider the system G with state-space representation

G =

 A(z) B

C(z) D

 = D + λC(z)
(
I − λA(z)

)−1
B (2.11)

The set of `-causal system refers to the system where B and D are independent of z and

matrices A(z) and C(z) are of the following forms [47]

A(z) = A−1z
−1 + A0 + A1z

1 (2.12)

C(z) = C−1z
−1 + C0 + C1z

1 (2.13)

where An and Cn are independent of z and the dimension of the matrix A denotes the

temporal order of the system.

The set of `-causal systems is equal to the set of cone causal systems. Note that this

set is closed under addition, composition, and inversion of systems [47]. Thus, it is closed

under feedback and linear fractional (Youla) transformations. For complex systems, the

state space representation of the controller can be obtained by realizing each element of the

transfer function by performing basic sum, product, and inverse operations. Suppose that

G1 and G2 are two subsystems with the following state-space representation

G1 =

 A1(z) B1

C1(z) D1

 , G2 =

 A2(z) B2

C2(z) D2

 (2.14)
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Figure 2.3: General control configuration.

The following operations are useful to build the state-space model of the transfer function

[48]

G−1
1 =

 A1(z)−B1D
−1
1 C1(z) −B1D

−1
1

D−1
1 C1(z) D−1

1

 (2.15)

G1 +G2=


A1(z) 0 B1

0 A2(z) B2

C1(z) C2(z) D1 +D2

 (2.16)

G1G2=


A1(z) B1C2(z) B1D2

0 A2(z) B2

C1(z) D1C2(z) D1D2

 (2.17)

In the next section, the decentralized problem is verbalized in detail and an explicit solution

is presented.

17



2.3 Design of Optimal H2 Decentralized Controller

Our goal in this research is to design the optimal H2 decentralized controllers for general

disturbance attenuation problem as shown Fig. 2.3. The open loop system is denoted by G,

the controller by K, the performance outputs by z, the measurements by y, the input control

signals by u and the external disturbances by w. The closed loop disturbance response from

w to z is given by

Tzw = Gzw +GzuK(I −GyuK)−1Gyw (2.18)

where the stable spatio-temporal controller K (internally) stabilizes and minimizes the H2

norm of the disturbance transfer function Tzw. The particular structure of interest is when

the spatio-temporal transfer function Gyu yields the following cone causal form (as defined

in Section 2.2):

Gyu(z, λ) =
∞∑

i=−∞

gi(λ)zi (2.19)

gi(λ) = λ|i|g̃i(λ)

The optimal decentralized controllers K have the same structure as Gyu [40, 49], that is,

K(z, λ) =
∞∑

i=−∞

ki(λ)zi (2.20)

ki(λ) = λ|i|k̃i(λ)

which means that the measurements of the jth location will be available at the ith system

after |j − i| time steps delay.

The following proposition asserts that the decentralized constraints on the controller K

can be enforced on the Youla parameter Q using similar convex constraints.
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Proposition 2.3. For open loop stable systems, all stabilizing controllers K with the

structure (2.20) are given by [40, 49]

K = −Q(I −GyuQ)−1 (2.21)

with Q given by

Q(z, λ) =
∞∑

i=−∞

qi(λ)zi (2.22)

qi(λ) = λ|i|q̃i(λ)

where q̃i(λ) is stable.

Using the Youla parameterization, the disturbance transfer function can be recast as

Tzw = T1 − T2Q. The decentralized H2 optimal control problem can then be written as

J := inf
Kstabilizing s.t.(2.20) hold

‖Tzw‖H2

= inf
Q stable s.t.(2.22) hold

‖T1 − T2Q‖H2 (2.23)

The inner-outer factorization of T2 defined as

T2(ejθ, λ) = T2in(ejθ, λ)T2out(e
jθ, λ) (2.24)

where inner function T2in is isometry and outer function T2out is causally invertible.

Therefore, (2.23) reduces to

J = inf
Q stable s.t.(2.22) hold

‖T ∗2inT1 − T2outQ‖L2 (2.25)

Since {zi}∞i=−∞ is an orthogonal basis of L2, T ∗2inT1 can be written as:

T ∗2in(z, λ)T1(z, λ) =
∞∑

i=−∞

T̃i(λ)zi (2.26)
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where T̃i (λ) ∈ L2. The outer function T2out also admits the same cone structure

T2out(z, λ) =
∞∑

i=−∞

vi(λ)zi (2.27)

vi(λ) = λ|i|ṽi(λ)

and ṽi(λ) is stable. Therefore, T2outQ have the following structure

T2out(z, λ)Q(z, λ) =
∞∑

i=−∞

ηi(λ)zi (2.28)

where ηi(λ) can be written as

ηi(λ) =
∞∑

j=−∞

λ|j|q̃j(λ)λ|i−j|ṽi−j(λ)

=
∞∑

j=−∞

λ|j|+|i−j|q̃j(λ)ṽi−j(λ) (2.29)

From triangle inequality, we have

|j|+ |i− j| ≥ |j + i− j| = |i| (2.30)

As a result, for any ηi(λ), there is always a stable term of λ|i| that can be factorized in the

sum. It is important to note that λ|i| has the same index as ηi(λ). Moreover, q̃j(λ) and

ṽi−j(λ) are both stable. Therefore, we can write

ηi(λ) = λ|i|
∞∑

j=−∞

λ|j|+|i−j|−|i|q̃j(λ)ṽi−j(λ)

= λ|i|η̃i(λ) (2.31)
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where η̃i(λ) is stable. Substituting (2.26) and (2.28) into the decentralized optimization

(2.25) yields

J2 = inf
ηi(λ) is cone stable

∣∣∣∣ ∞∑
i=−∞

T̃i(λ)zi −
∞∑

i=−∞

ηi(λ)zi
∣∣∣∣2
L2

= inf
η̃i(λ) is stable

∣∣∣∣ ∞∑
i=−∞

T̃i(λ)zi −
∞∑

i=−∞

λ|i|η̃i(λ)zi
∣∣∣∣2
L2

(2.32)

Using the Parseval’s identity

J2 = inf
η̃i(λ) is stable

∞∑
i=−∞

∣∣∣∣T̃i(λ)− λ|i|η̃i(λ)
∣∣∣∣2
L2

(2.33)

where the following equation gives the optimal (minimal) H2 decentralized cost (Jopt) for

this class of spatially invariant systems

J2
opt =

∞∑
i=−∞

∣∣∣∣ T̃i(λ)

λ|i|
∣∣∣∣2
H2
⊥ (2.34)

The minimum in (2.33) is achieved by choosing η̃i(λ) satisfying

η̃i(λ) = Π

[
T̃i(λ)

λ|i|

]
(2.35)

where i ∈ (−∞,∞) and Π is the orthogonal projection from L2 into H2. The optimal

decentralized Youla parameter is then given by

Q =

∞∑
i=−∞

λ|i|η̃i(λ)zi

T2out(z, λ)
(2.36)

From (2.21), the explicit optimal H2 decentralized controller K(z, λ) is given in the following

closed form

K=−

∞∑
i=−∞

λ|i|η̃i(λ)zi

T2out(z, λ)

I −Gyu(z, λ)

∞∑
i=−∞

λ|i|η̃i(λ)zi

T2out(z, λ)


−1

(2.37)
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To realize the controller K(z, λ), the most straightforward way is to first realize each

element of the transfer functions
∑
λ|i|η̃i(λ)zi, T2out and Gyu individually. Each realization

can be obtained by sum or product of several simply realizable transfer function. Finally,

the optimal H2 decentralized control law K in (2.37) can be combined using basic operations

(2.15)-(2.17) and can be realized by a positive feedback interconnection as follows

G1(z, λ) :=
∞∑

i=−∞

λ|i|η̃i(λ)zi =

 A1(z) B1

C1(z) D1

 (2.38)

G2(z, λ) := T2out(z, λ) =

 A2(z) B2

C2(z) D2

 (2.39)

Gyu(z, λ) =

 A(z) B

C(z) D

 (2.40)

and we have

G2(z, λ)−1 =

 A2(z)−B2D
−1
2 C2(z) −B2D

−1
2

D−1
2 C2(z) D−1

2

 (2.41)

A3︷ ︸︸ ︷ B3︷︸︸︷
G1(z, λ)

G2(z, λ)
=


A1(z) B1D

−1
2 C2(z) B1D

−1
2

0 A2(z)−B2D
−1
2 C2(z)−B2D

−1
2

C1(z) D1D
−1
2 C2(z) D1D

−1
2

 (2.42)

︸ ︷︷ ︸
C3

︸︷︷︸
D3

From Fig. 2.4, it follows that a state space realization of K is given by

K(z, λ) =

 Ak(z) Bk

Ck(z) Dk

 (2.43)
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Figure 2.4: Positive feedback block diagram realization of K.

where Ak, Bk, Ck and Dk are defined in as follows

Ak(z) =

 A3(z) +B3D(I −D3D)−1C3(z) B3(I −DD3)−1C(z)

B(I −D3D)−1C3(z) A(z) +BD3(I −DD3)−1C(z)

 (2.44)

Bk =

 −B3(I −DD3)−1

−BD3(I −DD3)−1

 (2.45)

Ck(z) =
[

(I −DD3)−1C3(z) (I −DD3)−1D3C(z)
]

(2.46)

Dk = −D3(I −D3D)−1 (2.47)

2.4 Numerical Results

In this section, the above framework is applied to design an optimal H2 decentralized

controller and represent the state-space description of the controller. For comparison

purposes, we followed the discrete time example given in [40]obtained by discretizing a

specific partial differential equation. The goal is to compute the optimal H2 disturbance

attenuation for the system with transfer function G(z, λ) and the weighting function W (z, λ)
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as follows

G(z, λ) =
τλ

1− (γ/2)(z−1 + 2α + z)λ
(2.48)

W (z, λ) =
λ

1− (c/2)(z−1 + 2a+ z)λ
(2.49)

The weighting function has similar structure as the plant G(z, λ). Assume that τ = 1,

γ = 1/3, α = 1, c = 1/4 and a = 1. The problem can then be formulated as follows

J = inf
Q stable s.t.(2.22)

∣∣∣∣Tzw∣∣∣∣H2
(2.50)

where

∣∣∣∣Tzw∣∣∣∣H2
=
∣∣∣∣(1−GQ)W

∣∣∣∣
H2

=
∣∣∣∣T1 − T2Q

∣∣∣∣
H2

(2.51)

The transfer function T1(z, λ) and T2(z, λ) are as follows

T1(z, λ) =
λ

1− r(z)λ
(2.52)

T2(z, λ) =
τλ2

(1− ρ(z)λ)(1− r(z)λ)
(2.53)

and

ρ(z) = z/6 + 1/3 + z−1/6 (2.54)

r(z) = z/8 + 1/4 + z−1/8 (2.55)

The following inner-outer factorization is computed as

T2in(z, λ) = λ2 (2.56)

T2out(z, λ) =
τ

(1− ρ(z)λ)(1− r(z)λ)
(2.57)
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where T2in is an isometry and T2out is causally invertible with respect to the temporal variable.

It can be seen that

T ∗2in(z, λ)T1(z, λ) =
λ−1

1− r(z)λ
= λ−1 + r(z)

+ λr2(z) + λ2r3(z) + . . . (2.58)

Using (2.26) and (2.58), T̃i(λ) can be approximated as

T̃0(λ) = λ−1 +
1

4
+

3

32
λ1 +

5

128
λ2 + . . .

T̃±1(λ) =
1

8
+

1

16
λ+

15

512
λ2 +

7

512
λ3 + . . .

T̃±2(λ) =
1

64
λ+

3

256
λ2 +

7

1024
λ3 +

15

4096
λ4 . . . (2.59)

Therefore, η̃i can be calculated as

η̃0(λ) =
1

4
+

3

32
λ1 +

5

128
λ2 + . . .

η̃±1(λ) =
1

16
+

15

512
λ1 +

7

512
λ2 + . . .

η̃±2(λ) =
3

256
+

7

1024
λ1 +

15

4096
λ2 + . . . (2.60)

Note that the problem is infinite dimensional and we have showed the above calculation for

five spatial order. From (2.36), the Youla-parametrization variable Q can then be calculated

as follows

Q(z, λ)=
1

4
− 1

96
(z+1 + 5 + z−1)λ− 1

1536
(2z+2 (2.61)

+21z+1 + 32 + 21z−1 + 2z−2)λ2 + . . .

In general, the transfer function
∑
η̃i(λ)zi has infinite number of terms. As a result,

Q(z, λ) is also infinite dimensional. By computing the transfer function Q(z, λ) for three

terms, the distributed controller K(z, λ) can be calculated as shown in (2.62). The state-

space description of K(z, λ) can also be obtained using the procedure in Section 2.3 as shown

in (2.63).
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Table 2.1: Comparison of Optimal Norm for Different Temporal Orders of the Distributed
Controller.

Temporal Order
J =

∣∣∣∣Tzw∣∣∣∣H2
∑
η̃i(λ)zi Q(z, λ)

0 2 1.0261

1 3 1.0180

2 4 1.0162

3 5 1.0159

4 6 1.0158

5 7 1.0158

6 8 1.0157

Using Relaxed Controller in [40] 1.0659

Optimal Decentralized Norm [40] 1.0157

Using Centralized Controller [40] 1.0000

Table 2.1 shows the resulting closed-loop performance for the optimal decentralized

controller with different approximation order as well as other types of decentralized

controllers. It is interesting to note that our method converges very fast to the optimal

decentralized norm. In [40], the authors had calculated the solution of the relaxed controller

and the optimal decentralized norm numerically. There was no explicit solution on the

non-relaxed decentralized controller K (or Youla parameter Q). It can clearly be seen that

our proposed method achieves better performance in comparison to a suboptimal controller

based on relaxation.

K =
(−2z3 − 11z2 − 26z1 − 34− 26z−1 − 11z−2 − 2z−3)λ3

(12z2 + 42z1 + 60 + 42z−1 + 12z−2)λ3 + (−48z1 − 48− 48z−1)λ2 − 384λ+ 1536

+
(20z2 + 66z1 + 92 + 66z−1 + 20z−2)λ2(16z1 + 80 + 16z−1)λ− 384

(12z2 + 42z1 + 60 + 42z−1 + 12z−2)λ3 + (−48z1 − 48− 48z−1)λ2 − 384λ+ 1536
(2.62)
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2.5 Summary

In this work, we have developed a method to design the optimal H2 decentralized controller

for a class of spatially invariant systems. The decentralized controller assumed the same

structure as the plant whose impulse response admits a cone structure. Using Parseval’s

identity, the optimalH2 decentralized control problem is transformed into an infinite number

of model matching problems with a specific structure that can be solved efficiently. In

addition, the closed-form expression (explicit formula) of the decentralized controller is

derived for the first time. Moreover, a constructive procedure to obtain the state-space

representation of the decentralized controller which is more convenient for implementation.

An illustrative numerical example is presented. In a forthcoming paper, the control design

of optimal H2 decentralized control laws for funnel causal spatially invariant systems will be

studied.
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T−1
out(z, λ) : A(z) =

[
0 −0.125− 0.25− 0.125z−1

0 0

]
, B =

[
−1.0
−1.0

]
, CT (z) =

[
0.167z + 0.333 + 0.167z−1

0.125z + 0.250 + 0.125z−1

]
, D = 1.0∑

i

η̃i(λ)z
i ≈ : A(z) = 0, B = 1.0, CT (z) = 0.0625z + 0.0938 + 0.0625z−1, D = 0.25

G(z, λ) : A(z) = 0.167z + 0.333 + 0.167z−1, B = 1.0, CT (z) = 1.0, D = 0

K(z, λ) : A(z) =


0 −0.125z − 0.25− 0.125z−1 −0.0625z − 0.0938− 0.0625z−1 0.25
0 0 −0.0625z − 0.0938− 0.0625z−1 0.25
0 0 0 −1

−0.167z − 0.333− 0.167z−1 −0.125z − 0.25− 0.125z−1 −0.0625z − 0.0938− 0.0625z−1 0.167z + 0.583 + 0.167z−1



B =


−0.25
−0.25
1.0
−0.25

 , CT (z) =


−0.167z − 0.333− 0.167z−1

−0.125z − 0.250− 0.125z−1

−0.0625z − 0.0938− 0.0625z−1

0.25

 , D = 0.25

(2.63)

282828



Chapter 3

Damping Controllers in the Presence

of Saturation

This chapter presents the analysis and a method to design supplementary damping controllers

(SDCs) for synchronous generators considering the effects of saturation limits. Usually,

such saturation of control signals are imposed in order to enforce practical limitations such

as component ratings. However, to guarantee the stability in the presence of saturation

limits, the state trajectories must remain inside the domain of attraction (DA). In this

chapter, the domain of attraction of a single-machine infinite-bus (SMIB) power system

with saturation nonlinearity is estimated and compared with the exact description of the

null controllable region. Then, both state-feedback and dynamic output-feedback controllers

are designed to enlarge the DA. Our analysis shows that nonlinear effects of saturation

should be considered to guarantee stability and satisfactory performance. Simulation results

on a detailed nonlinear model of a synchronous generator indicate that the DA enlarges with

the proposed controller. The results also indicate that Critical Clearing Time (CCT) and

damping of the system with saturation can be improved by the proposed method. Part of

the results in this chapter appeared in [50].
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3.1 Introduction

Multiple approaches have been proposed in literature to design SDCs for power system

components, including traditional synchronous generators [20, 21, 22, 23], modern FACTS

devices [24, 25], energy storage systems [26] and renewable resources [27]. These efforts

generally do not consider the nonlinear effects of hard saturation limits on control signals.

Moreover, new generation sources connected to the grid through inverters, such as,

photovoltaics, have the ability to provide damping signals but only within a narrow range

dependent on operating conditions. It is critical to consider these actuator constraints for

such components especially distributed generation resources and storage systems [51, 52].

In this chapter, saturation, or a hard limit, is considered for the control signals. Note that

this is different from the traditional magnetic saturation of generators but instead reflects

the practical limitations of equipment ratings and can be expressed using hard saturation

limits restricting the amplitude of the controller output. These limits can be considered in

the excitation to prevent undesirable tripping initiated by over-excitation or under-excitation

of generators [53]. In case of generator SDCs, saturation limits should be considered in the

supplementary control input signal and are usually in the range of ±0.05 to ±0.1 per unit

which guarantee a modest level of contribution [54]. These limits allow an acceptable control

range to provide adequate damping while preventing tripping of the equipment protection.

Moreover, this may minimize the negative effects of SDCs on the voltage regulatory response.

There exists a large body of work in the control literature on stability analysis of systems

with input constraints [16, 17, 18, 19]. However, the effects of saturation have not been

taken into account in previous works for analyzing and designing SDCs [20, 23, 26, 24].

This research also extends the work reported in [55] and [56] in which the nonlinear effects

of saturation on stability has not been considered. Saturation can negatively impact the

performance of SDC since this restriction can limit the control effort available to damp the

oscillation and consequently decreases the damping or leads to instability.

The main goal in this chapter is to propose a new method to design SDCs which results

in a larger domain of attraction (DA) in the presence of saturation. In this chapter, the

DA of a single-machine infinite-bus (SMIB) power system with saturation nonlinearity is
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Figure 3.1: A single-machine infinite-bus power system.

estimated to guarantee a safety region of initial conditions (which may be caused by faults)

and compared with exact description of the null controllable region. Then, state-feedback

and output-feedback controllers are designed to enlarge the guaranteed domain of attraction.

In this way, the stability of the SMIB power system is guaranteed and saturation limits are

represented in the analysis and design procedure. Our analysis shows that nonlinear effects

of saturation should be considered to guarantee the stability and satisfactory performance.

Moreover, enlargement of DA effectively enhances the Critical Clearing Time (CCT) and

damping of the system with saturation can be improved by the proposed method.

The rest of this chapter is structured as follows: preliminaries on dynamic modeling of

the SMIB power system with input saturation nonlinearity are described in Section 3.2.

Section 3.3 is devoted to optimal estimation of the DA for a power system with pre-designed

state-feedback controller. For comparison purposes, exact description of the null controllable

region of the SMIB power system is given in this section. An optimization method to design

state-feedback and output-feedback controllers to enlarge the DA is described in section 3.6

and 3.5. The results are compared through detailed nonlinear simulations. Summary of

remarks are presented in section 3.6.

3.2 Dynamic Model of System with Saturation

In this study, a SMIB power system model is considered. However, the analysis can be

extended to cases of SMIB power system with FACTS devices. As shown in Fig. 3.1, this
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system consists of a synchronous generator connected through two transmission lines to an

infinite bus that represents an approximation of a large system. A flux-decay model of the

synchronous generator equipped with a fast excitation system can be represented by the

following set of dynamic equations:

δ̇ = ωs(ωr − 1) (3.1)

ω̇r =
1

2H

[
TM −

(
E ′qIq + (Xq −X ′d)IdIq +Dωs(ωr − 1)

)]
(3.2)

Ė ′q = − 1

T ′d0

[
E ′q + (Xd −X ′d)Id − Efd

]
(3.3)

Ėfd = −Efd
TA

+
KA

TA

[
Vref − Vt + sat(Vs)

]
(3.4)

while satisfying the following algebraic equations:

ReIq +XeId − Vq + V∞ cos(δ) = 0 (3.5)

ReId −XeIq − Vd + V∞ sin(δ) = 0 (3.6)

Vt =
√
V 2
d + V 2

q (3.7)

where Re and Xe = Xt + 1
2
Xl are the total external resistance and reactance, respectively.

One of the nonlinearities associated with the above model is due to the hard saturation limit

considered on the supplementary control input of the exciter. In this work, the hard limit is

defined as:

sat(Vs) = sign(Vs) min{m, |Vs|} (3.8)

m = V max
s = −V min

s (3.9)

where the nonlinearity is assumed to be symmetric and ±m are the saturation limits. To

design a SDC and study the effects of saturation, the above nonlinear model can be linearized

around the nominal operating point and expressed in the following state-space representation:

ẋ(t) = Ax(t) +Bsat(Vs) (3.10)
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where

x =
[
∆δ ∆ωr ∆E ′q ∆E ′fd

]T

A =



0 ωs 0 0

−K1

2H
−Dωs

2H
−K2

2H
0

−K4

T ′d0
0 − 1

K3T ′d0

1
T ′d0

−KAK5

TA
0 −KAK6

TA
− 1
TA


, B =



0

0

0

KA
TA


(3.11)

and K1–K6 are the well-known linearization constants summarized as follows [57]:

∆e = R2
e + (X ′d +Xe)(Xq +Xe) (3.12)

K1 = − 1

∆e

[
IqV∞(X ′d −Xq)

(
(Xq +Xe) sin(δ)−Re cos(δ)

)
(3.13)

+ V∞
{

(X ′d −Xq)Id − E ′q
}{

(X ′d +Xe) cos(δ) +Re sin(δ)
}]

(3.14)

K2 =
1

∆e

[
Iq∆e −

(
Iq(Xq +Xe) +ReId

)
(X ′d −Xq) +ReE

′
q

]
(3.15)

K3 =
∆e

∆e + (Xd −X ′d)(Xq +Xe)
(3.16)

K4 =
V∞
∆e

(Xd −X ′d)
[
(Xq +Xe) sin(δ)−Re cos(δ)

]
(3.17)

K5 =
1

∆eVt

[
VdXqReV∞ sin(δ) + VdXqV∞(X ′d +Xe) cos(δ)

+ VqX
′
dReV∞ cos(δ)− VqX ′dV∞(Xq +Xe) sin(δ)

]
(3.18)

K6 =
1

∆eVt

[
VdReXq − VdX ′d(Xq +Xe)

]
+
Vd
Vt

(3.19)

Although the large gain of the excitation system KA can reduce the generator terminal

voltage fluctuations, it can also introduce negative damping torque to the system at times

sufficient to result in instability. To increase the guaranteed region of stability, the DA for

this unstable system with saturated feedback controller should be optimized.
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3.3 Estimation of the DA

In this section, we address the problem of estimating the DA for a system with actuator

constraint and a pre-designed state-feedback law. Consider the system of equations (3.10)

with unstable matrix A ∈ <n×n and state-feedback control law defined by Vs = Fx(t), the

closed loop system can be expressed as follows:

ẋ(t) = Ax(t) +Bsat(Fx(t)) (3.20)

where the DA with the above transition map of φ : (t, x0)→ x(t) can be defined as

D :=
{
x0 ∈ <n : lim

t→+∞
φ(t, x0) = 0

}
(3.21)

Without saturation limits, the DA for stable A + BF is <n; however in the presence of

saturation, DA is a subset of <n and needs to be estimated. There are various methods to

approximate the DA [16, 18]. In this research, we follow the work in [19] to obtain the least

conservative estimation based on the Lyapunov function. For a matrix P > 0 and η > 0, we

can define the ellipsoid ε(P, η) representing the DA as follows:

ε(P, η) =
{
x ∈ <n, x′Px ≤ η

}
(3.22)

which is a contractive invariant set inside the DA.

Theorem 3.1. If there exits a symmetric positive definite matrix W ∈ Rn×n, a positive

diagonal matrix S ∈ Rm×m and a matrix X ∈ Rm×n satisfying the following LMIs [19]

W (A+BF )′ + (A+BF )W BS − Z ′

SB′ − Z −2S

 < 0

 W WF ′ − Z ′

FW − Z m2

 > 0

(3.23)

then based on quadratic Lyapunov function, the ellipsoid ε(P, 1), with P = W−1 is the domain

of attraction for the system with input saturation.
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Each eigenvalue of P is related with the length of one axis. Since trace(P ) is the sum of

its eigenvalues, its minimization leads to the largest ellipsoid having the same weight in all

directions. This problem can be formulated indirectly as the following optimization.

min
S,W,Z,Mw

trace(MW )

subject to

MW In

In W

 > 0

W (A+BF )′ + (A+BF )W BS − Z ′

SB′ − Z −2S

 < 0

 W WF ′ − Z ′

FW − Z m2

 > 0

(3.24)

where S, W and MW are symmetric positive definite matrices and the ellipsoid ε(P, η) with

P = W−1 is the estimated DA. In the above optimization, minimizing trace(MW ) implies

the minimization of trace(P ) as the first constraint guarantees that P < MW . The second

and third constraints guarantee asymptotic stability of saturated system via a quadratic

Lyapunov function. Other size criteria such as maximization of the volume or other geometric

characterization can also be considered. The estimated result can be compared with null

controllable region C, which is defined as the region where there exists an admissible bounded

control that can steer the system towards the origin. The null controllable region of an

unstable system can be found using the following theorem [58].

Theorem: Consider the open loop system (3.10) with unstable matrix A and B that

can be partitioned as follows:

A =

A1 0

0 A2

 , B =

B1

B2

 (3.25)

where A1 ∈ <n1×n1 is semi-stable and A2 ∈ <n2×n2 is an unstable subsystem. Then null

controllable region of the system can be written as:

C = <n1 × C2 (3.26)
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where C2 is the null controllable region of the unstable subsystem. Different cases can be

considered to find the boundary of C2; however, in the case of second order subsystems where

A2 has a pair of unstable complex eigenvalues +α± jβ, C2 can be characterized as follows:

∂C2 =

{
±
[
e−A2t(I + e−A2Tp)−1(I − e−A2Tp)

− (I − e−A2t)
]
mA−1

2 B2 : t ∈ [0, Tp)

}
(3.27)

where Tp = π
β

and ∂C2 is the boundary of the null controllable region of the second subsystem.

Example: Throughout this chapter, the SMIB power system is considered to demon-

strate the idea and verify the resulting improvement. Parameters of the machine, excitation

system, transformer and transmission lines are:

Xt = 0.1, Xl = 0.8, Re = 0, V∞ = 1.05∠0◦,

Xd = 2.5, Xq = 2.1, X ′d = 0.39, Vt = 1∠15◦,

T ′d0 = 9.6, H = 3.2, D = 0, ωs = 377,

TA = 0.02, KA = 100, V max
s = −V min

s = 0.05,

Eigenvalue analysis shows that the open loop system has unstable complex eigenvalues of

+0.2423± 7.6064i with frequency of 1.21 Hz and damping of −3.18%. The fault considered

in this work is a three-phase fault to ground at bus 2 which is applied at t = 0.1s with fault

duration of tf and cleared without line tripping. The CCT can be defined as the maximum

allowable time to clear the fault such that system remains stable and gives information

regarding the fault ride-through capability of the generator. First without considering the

saturation, a state-feedback controller is designed using the LQR method [59] to minimize

the following quadratic performance index:

J =
1

2

∫ ∞
0

(xTQx+ uTRu)dt (3.28)

where Q is a positive semi-definite weighted matrix related to state cost and R is a positive

definite weighted matrix related to the control cost. The parameters of the LQR controller
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are chosen to be Q = I4×4 and R = 0.1 and the controller gain can be obtained as follows:

FLQR =
[
−0.7047 9.4825 −3.9325 −3.1523

]
(3.29)

In the practice, these controllers can be implemented based on dynamic state estimation

using PMU measurements [60, 61, 62, 63]. The largest guaranteed DA of the SMIB system

with the above LQR controller can now be estimated from (3.24). The ellipsoidal DA is

given as DLQR = ε(P, 1) with:

P =



1.1072 −0.0679 1.2368 2.5003× 10−4

−0.0679 2844.6 −46.7344 −0.0036

1.2368 −46.7344 19.6725 0.0014

2.5× 10−4 −0.0036 0.0014 9.4678× 10−4


(3.30)

Using the canonical state-space transformation z = Tx [64], the linear system of equation

(3.10) can be transformed to canonical form and then partitioned as stable and unstable parts

similar to (3.25). Fig. 3.2 compares cuts of the guaranteed DA of the closed loop system

with LQR controller and the null controllable region in the presence of saturation. Using

nonlinear simulations, the system with LQR controller has a CCT of 0.081 s. Fig. 3.3

shows the estimated DA and the extremal trajectory of the nonlinear SMIB system, which

demonstrates the accuracy of estimated DA. In the next section, the optimization problem

will be modified to design a state-feedback controller to expand the domain of attraction.

3.4 Enlarging the DA Using State-Feedback Controller

In general, size of the DA depends on the feedback controller and the system constraints,

such as, saturation limits. Consequently, the choice of an optimization criterion should

include the controller design F in order to enlarge the guaranteed DA. This formulation

will introduce bilinear terms of a variable associated with the quadratic Lyapunov function

W = P−1 and the controller matrix F .
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Figure 3.2: Boundary of null controllable region (∂C) and estimated DA for LQR controller
(DLQR) in the presence of saturation.
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Figure 3.3: Boundary of estimated DA and trajectory of nonlinear SMIB system with LQR
controller and critical fault duration of CCT = 0.081s.

By introducing an axillary variable Y = FW , this problem can be transformed into an

LMI problem, namely:

min
S,W,Y,Z,MW

trace(MW )

subject to

MW In

In W

 > 0

WA′ + AW +BY + Y ′B′ BS − Z ′

SB′ − Z −2S

 < 0

 W Y ′ − Z ′

Y − Z m2

 > 0

WA′ + AW + (Y ′Γ+
j + Z ′Γ−j )B′ +B(Γ+

j Y + Γ−j Z) + 2α1W < 0

WA′ + AW + (Y ′Γ+
j + Z ′Γ−j )B′ +B(Γ+

j Y + Γ−j Z) + 2α2W > 0

(3.31)

where controller matrix F can be obtained from F = YW−1. Matrices Γ+ and Γ− ∈ <m×m

are diagonal matrices whose diagonal elements take the value 1 or 0, and Γ− + Γ+ = Im

where j = 1, . . . , 2m. For a single input system, these matrices can be either 0 or 1. The last

two inequalities in optimization (3.31) are to restrict the pole placement region to a strip of
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the complex plane between −α1 and −α2 to avoid high gains in the controller.

Example (continued): Using the above optimization (3.31), a controller can be designed

to enlarge the DA of the SMIB system. Assuming α1 = 0 and α2 = 80, the enlarged DA is

obtained as DEnl = ε(P, 1) with:

P =



0.8411 0.6754 0.6719 0.0015

0.6754 2180.8 −27.7163 −0.0454

0.6719 −27.7163 0.9029 0.0018

0.0015 −0.0454 0.0018 3.7605× 10−6


(3.32)

where the optimized state-feedback controller is:

FEnl =
[
−3.3026 98.2739 −3.9459 −0.0081

]
(3.33)

Fig. 3.4 illustrates the effectiveness of the proposed approach in designing the SDC,

which results in a significantly larger DA toward the boundary of null controllable region

∂C for the closed loop system, in compared to the original LQR controller. Numerical

simulations reveal that system with optimized state-feedback controller shows improvement

in the CCT to 0.109 s. Fig. 3.5 depicts a cut of the enlarged DA and extremal trajectory of

the nonlinear SMIB system with optimized controller, which demonstrates the satisfactory

accuracy.
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Figure 3.4: Boundary of null controllable region (∂C), estimated DA for LQR controller
(DLQR) and enlarged DA (DEnl) in the presence of actuator saturation.
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Figure 3.5: Comparison of estimated DA and trajectory of nonlinear SMIB system with
LQR controller and critical fault duration of CCT = 0.109s.

Moreover, synchronizing and damping components of electrical torque can be used

to compare the dynamic performance of the aforementioned controllers. The damping

component (proportional to speed change) and the synchronizing component (proportional

to angular change) are related to small-signal and transient stability, respectively. The

corresponding coefficients are defined according to the following equation:

∆Te = KDωs∆ωr +KS∆δ (3.34)

where values of parameters KD and KS are estimated using the breaking algorithm [65] based

on the angle, speed and torque response of the nonlinear system with actuator saturation.

As shown in Table 3.1, the system with optimized controller has larger CCT, higher damping

ratio and synchronization coefficient. Fig. 3.6 shows a comparison of the transient response

of the closed loop system for a fault duration of tf = 0.1s in the presence of actuator

saturation. Fig. 3.7 shows that the proposed controllers use the full feasible control range

to enlarge the DA and their performance are close to a bang-bang control law.
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Figure 3.6: Comparison of transient responses for the system with fault duration of tf =
0.1s.
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Figure 3.7: Comparison of supplementary control signals for system with fault duration of
tf = 0.1s.
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Table 3.1: CCT and Coefficient Comparison for SMIB System with Different Controllers.

SDC type CCT KD KS

Without controller 0.0 s -0.00242 pu/(rad/s) 1.0003 pu/rad

LQR controller 0.081 s 0.00223 pu/(rad/s) 0.7078 pu/rad

Optimized output-

feedback controller
0.00740 s 0.7548 pu/(rad/s) 0.8091 pu/rad

Optimized state-

feedback controller
0.109 s 0.00946 pu/(rad/s) 0.8091 pu/rad
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3.5 Enlarging the DA Using Dynamic Output-Feedback

Controller

In practical applications for power systems, the full state vector is not available. Conse-

quently, it is desirable to adopt the dynamic output-feedback controller to directly use the

measured output signals for damping the oscillation. This type of controller can be defined

as:

ẋc(t) = Acxc(t) +Bcy (3.35)

yc(t) = Ccxc(t) +Dcy (3.36)

where xc ∈ <n is the controller states, Ac, Bc, Cc, Dc are to be designed, and yc and y are

the controller and system outputs, respectively. In the presence of saturation, this controller

yields the following closed loop system.

˙̂x(t) = Aclx̂(t) +Bclφ(yc(t)) (3.37)

yc(t) = Cclx̂(t) (3.38)

where φ(yc(t)) = sat(yc) − yc, x̂T = [xT xTc ] is the augmented system states and closed

loop matrices are:

 Acl Bcl

Ccl 0

 =


A+BDcC BCc B

BcC Ac 0

DcC Cc 0

 (3.39)

The optimization problem of (3.30) at the bottom of next page can be formulated for

the augmented system to design an output-feedback controller in order to enlarge DA of

augmented system where S, X and Y are positive definite. These conditions follow with

some modification from the results in [19]. Matrix UV ′ = I − XY and matrix P have the
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following structure:

P =

X U

U ′ X̂

 , P−1 =

Y V

V ′ Ŷ

 (3.31)

According to (3.31), minimization of trace(P ) can be done by minimizing both trace(X)

and trace(X̂). This can be accomplished indirectly by minimizing trace(X) + µ as the first

constraint in the optimization guarantees that X̂ < µI where X̂ = U ′(X − Y −1)−1U . The

last inequality is added to ensure that U will be nonsingular. Therefore, the output-feedback

matrices can be obtained from:

Ac=U
−1(W ′ − A′ − C ′D′cB′ −XBL−XAY − UBcCY )(V ′)−1 (3.32)

Bc=U
−1(F −XBDc) (3.33)

Cc=(L−DcCY )(V ′)−1 (3.34)

To limit the control effort, prevent fast dynamics and avoid high gains in the controller,

pole-placement inside the LMI region is also considered by careful selection of matrices l and

β. This region can be defined as the intersection of a canonic sector with inner angle 2θ

min
S,X,Y,U,L,F,W,Z,Z1,Q,Dc

trace(X) + µ

subject to

µI U ′ 0
U X I
0 I Y

 > 0, U + U ′ > 0

AY + Y A′ +BL+ L′B′ W BS − Z ′
W ′ A′X +XA+ C ′F ′ + FC Q− Z ′1

SB′ − Z Q′ − Z1 −2S

 < 0

 Y I L′ − Z ′
I X C ′D′c − Z ′1

L− Z DcC − Z1 m2

 > 0

ljk

[
Y I
I X

]
+ βjk

[
AY +BL A+BDcC

W ′ − (A+BDcC)′ XA+ FC

]T
+ βkj

[
AY +BL A+BDcC

W ′ − (A+BDcC)′ XA+ FC

]
< 0

(3.30)
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where θ = cos−1(ξ) and a vertical strip of complex plane between −α1 and −α2.

Example (continued): Suppose that all of the states are available through measurements

except E ′q and the parameters of the LMI region are assumed to be ξ = 10%, α1 = 0.25 and

α2 = 100. An output-feedback damping controller can be designed based on (3.30) and the

controller matrices will be:

Ac =


−80.01 0.0009 −0.0274 −0.0101

−0.0014 −80.33 −0.0948 1.97

0.0124 −1.684 −564.4 −913.5

−0.037 −5.064 −1082 −2134



Bc =


−155.1 −732.4 −0.0467

0.0515 −139.6 3.944

−187.8 −3746 −2347

−643.2 −973.8 −5269


Cc =

[
0 0.0004 0.1038 0.2

]
Dc =

[
−0.3756 11.77 0.5047

]
(3.35)

In this case, the estimated DA is obtained for an augmented system with twice the number

of state variables of the original system. The results are more usefully compared based

on the CCT as visualization of the DA for the high-dimensional augmented system is

difficult. Moreover, synchronizing and damping components of electrical torque are also

used to compare the performance of the aforementioned controllers.

As shown in Table 3.1, CCT for the closed loop system with optimized output-feedback

damping controller is found to be CCT = 0.103. This CCT is larger than the system with

an LQR controller and it is very close to the system with a full state-feedback controller.

As a result, optimized output-feedback controller has enlarged the DA in compare to LQR

controller. It can also be seen that the system with state-feedback controller has the highest

damping and synchronization coefficient. Fig. 3.8 shows a comparison of the transient

response of the closed loop system with different types of SDCs for a fault duration of

tf = 0.1s.
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Figure 3.8: Comparison of transient responses for the system with fault duration of tf =
0.1s, employing LQR, optimized state-feedback and optimized output-feedback controllers.

Figure 3.9: Comparison of supplementary control signals for the system with fault duration
of tf = 0.1s, employing LQR, optimized state-feedback and optimized output-feedback
controllers.
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It can be seen that the system with LQR controller will be unstable and the optimized

state-feedback controller significantly improves the damping rate. Fig. 3.9 shows that

the proposed state-feedback and output feedback controllers use the full feasible range of[
V min
s , V max

s

]
to enlarge the DA and their performance are close to a bang-bang control law.

3.6 Summary

In this chapter, a new approach to design supplementary damping controllers by taking

into account the effects of saturation limits is introduced. The problem of determining the

optimal estimation of DA for SMIB power in the presence of saturation on the control signal

is considered. To increase the region of stability, state-feedback controllers are designed to

enlarge the guaranteed DA. Consequently, the enlargement of the DA of the post-fault system

effectively increases the CCT, which is an important measure of transient stability. Detailed

dynamic simulation results demonstrate that the proposed controllers use the available

control range to effectively enlarge the DA, improve the damping and enhance the stability

in the presence of hard saturation.
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Chapter 4

Virtual Actuators for Wide-Area

Damping Control

In this chapter, a new approach to design fault-tolerant wide-area damping controllers

(WADCs) is presented. Use of actuator redundancy to achieve higher reliability has always

been an accepted engineering design technique and is used in this study to help ensure power

system security. In our proposed method when an actuator fails or is unavailable (e.g., due

to loss of communication), the supervisory controller redistributes the control signals to the

remaining actuators. The WADC is initially designed to provide satisfactory damping. In

the next step, virtual actuators (VAs) are designed to manage actuator failures without

the need to redesign the nominal WADC. By inserting this reconfiguration block between

the nominal WADC and the new actuator, there is no need to retune the WADC and the

performance of the fault-free system can be recovered. Our proposed block is independent

of the nominal WADC and does not need any information beyond that an actuator is

unavailable. The approach is applied to Kundur’s two-area system, and the 39-bus New

England system. Numerical results show the effectiveness of the proposed method subjected

to different failures. Part of the results in this chapter appeared in [24].
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4.1 Introduction

Development of WADCs includes designs for supplementary control of generator excitation,

high voltage direct current (HVDC) links, and FACTS devices. Various design techniques

and methodology for WADCs have been reported, e.g., [66, 67, 68]. However, still very few

such systems have been deployed in practice at least partly due to the robustness that is

required for any closed loop power system controls. In order to transmit remote feedback

signals to a central WADC and then to the actuators, highly reliable communications and

computations are required. Time delay and communication failures or cyber-attacks can

easily degrade the performance of the aforementioned controllers [28, 25]. Moreover, changes

in scheduling of generators may mean that some actuators are unavailable. The use of

renewable sources to contribute to power system stability may also be limited by the fact

that they are not always available. For example, on calm days wind turbines may not be

generating electric power if there is insufficient wind to drive the turbines.

Redundancy is a common engineering approach to ensure system resiliency and improve

overall reliability. This concept was first introduced by Von Neumann [69] and then

commonly used in large commercial and military aircrafts to increase the safety of flight

control systems [70]. However, the increase in redundancy also increases the costs and

complexity of the system. Increasing interconnections and power demands in modern power

systems lead to greater vulnerability to faults and components failures. Thus, to address this

issue, the concept of redundant actuators to increase reliability is of great interest. Fault-

tolerant control (FTC) systems are needed to maintain nominal controller performance under

different faults in the system [71, 72]. An interesting approach to control reconfiguration

for FTC is the concept of virtual actuators (VAs). A complete reference on VAs, their

applications and details can be found in [73, 74].

This chapter investigates the design of a new fault-tolerant WADC such that the nominal

feedback control remains operational after faults in the actuator. In our approach, WADC

is designed based on fault-free model and VAs appear as dynamic blocks between the

controller and the plant to hide the faults from controller. In normal conditions, the

VAs remain inactive and the nominal WADC operates. When faults occur in the system,
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the VAs will operate and attempt to maintain the same level of damping performance

by redirecting the control signal to other available actuators. This research extends

[75, 25] in which unavailability of nominal WADC actuator as result of permanent faults

or maintenance has not been considered. Our approach also extends [76] as without using

VAs, large communication delay between WADC and actuator can deteriorate the damping

performance.

The remainder of this chapter is organized as follows: preliminaries on modeling of power

systems are briefly described in Section 4.2. In Section 4.3, a multi-objective LMI with pole

placement is presented as one method to design WADC. In Section 4.4, the FTC scheme is

applied to power systems with redundant actuators. Time domain simulation results using

DSATools software [77] are provided in Section 4.5 to demonstrate the proposed method’s

ability to increase system resiliency. Concluding remarks are presented in Section 4.6.

4.2 Power System Dynamic Model

The model for a multi-machine interconnected power system including different actuator

components equipped with supplementary control such as generators, HVDC links and static

VAR compensators (SVCs) is outlined in this section.

4.2.1 Generator Dynamic Model

Each generator is described by the two-axis model [78]:

δ̇ = ω − ωs (4.1)

2H

ωs
ω̇ = TM − IdE

′

d − IqE
′

q − (X
′

q −X
′

d)IqId −D(ω−ωs) (4.2)

T
′

q0Ė
′

d = −E ′d + (Xq −X
′

q)Iq (4.3)

T
′

d0Ė
′

q = −E ′q − (Xd −X
′

d)Id + Efd (4.4)
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In the above equations, the notation is as defined in the Nomenclature. Generators are

assumed equipped with a high-gain excitation system and supplementary control input:

Ėfd = −Efd
TA

+
KA

TA

[
Vref + Vp − V + sat(V EXC

s )
]

(4.5)

Saturation nonlinearity should also be considered in the supplementary input control to

enforce practical limitations and are usually in the range of ±0.05 to ±0.2 per unit which

guarantees a modest level of contribution. These limits allow an acceptable control range

while providing adequate damping and preventing tripping of the equipment. Standard

speed-based PSS model (PSS1A) [79] is used to improve damping of the local modes.

Generators are also equipped with steam turbine governor model (TGOV1) which represents

the motion of steam through the reheater and turbine stages [80].

4.2.2 HVDC Dynamic Model

The HVDC system considered in this research is based on a Line-Commutated Converter

(HVDC-LCC). Supplementary control within the HVDC transmission link is another

effective method to enhance small-signal stability. In particular, damping can be increased by

modulating the reference current at the rectifier. The following represents dynamic variation

of dc power with the supplementary control of HVDC link.

TdcṖdc = −Pdc + Pref + sat(PHVDC
s ) (4.6)

where Pdc will go to the master control system of the HVDC system.

4.2.3 SVC Dynamic Model

Static VAR compensators are mainly used to regulate the voltage and improve voltage

stability. Along with voltage regulation, a supplementary input signal can be added to

SVC’s voltage control loop to provide additional damping for electromechanical modes. In
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this work, the following dynamic model is used for the SVC [77].

T3sẊ1s = −X1s +
Ks(T3s − T1s)

T3s

[
V − Vref + sat(V SV C

s )
]

(4.7)

T4sẊ2s =
Ks(T4s − T2s)

T4s

X1s −X2s +
KsT1s(T4s − T2s)

T3sT4s

[
V − Vref + sat(V SV C

s )
]

(4.8)

T5sḂL =
T2s

T4s

X1s + (X2s −BL) +
KsT1sT2s

T3sT4s

[
V − Vref + sat(V SV C

s )
]

(4.9)

4.3 Multi-Objective Wide-Area Damping Controller

Design

In general, remote signals can provide better observability of inter-area modes and can

supplement the local control as a WADC. We design the nominal controller based on

robust linear control methods but our approach to the VA can accommodate other control

approaches. The linearized MIMO system can be represented as:

ẋ(t) = Ax(t) +Bu(t) +Bdd(t) (4.10)

Z∞(t) = C∞x(t) +D∞2u(t) +D∞1d(t) (4.11)

Z2(t) = C2x(t) +D22u(t) +D21d(t) (4.12)

y(t) = Cx(t) (4.13)

where x ∈ Rn, u ∈ Rm, d ∈ Rq and y ∈ Rp are the vector of state variables, supplementary

input signals, disturbances and measured outputs. In this framework, Z∞ channel relates

to the H∞ performance and is mainly used to guarantee robust performance against model

uncertainties while Z2 relates to the H2 performance and guarantees satisfactory time domain

performance of the system. In our study, a multi-objective damping controller was considered

using the LMI optimization techniques introduced in [81] to minimize both H2 and H∞ norms

concurrently.

Satisfactory closed loop damping can be achieved by using pole-placement objectives to

force the open loop poles to lie within a proper sub-region of the left hand plane. Fig. 4.1

shows that pole-placement in a specified region can guarantee a minimum damping ratio of
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Figure 4.1: Pole-placement in LMI regions.

ζ = cos(θ) along with minimum and maximum decay rate of β1 and β2. However, β1 must

be chosen as a sufficiently small number to avoid large feedback gains and the associated

large control efforts. Large gains can also lead the system into saturation. Moreover, in some

cases where the controller design is based on a reduced-order model, large gains can result

in instability of the full-order system.

In general, our goal for WADC is to design a dynamic output feedback controller

to minimize Γ1‖T∞‖2
∞+Γ2‖T2‖2

2 along with satisfying the pole-placement requirements.

Variables Γ1 and Γ2 are positive weightings and T∞ and T2 denote the transfer functions

from d to Z∞ and Z2, respectively. The choice of these weights depends on the particular

application. The WADC can be written as:

ξ̇(t) = AKξ(t) +BKy(t) (4.14)

ū(t) = CKξ(t) +DKy(t) (4.15)

where ξ and ū are WADC state vectors and outputs (damping signals). In practice, model

reduction must be employed to avoid feasibility problems and to realize practical low-order

controllers. In this research, the Hankel norm approximation [82] is used to reduce the
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open loop model to a lower order. The order of reduction can be determined by comparing

the accuracy of frequency response of the full-order and the reduced-order system in the

frequency range of interest. In our approach, we design the controller based on the reduced-

order model and therefore the controller will have the same order as the reduced model.

Well-known methods such as the geometric measure of controllability gmc and observ-

ability gmo [75] can be used to choose the input location with the highest controllability for a

specific mode and to choose the measurement signals with the highest observability regarding

that mode. It is also recommended that measurement signals should have a relatively small

gmo associated with other modes to reduce interaction between different modes. In our

study:

gmci(k) =
|bTi Ψk|
‖Ψk‖‖bi‖

(4.16)

gmoi(k) =
|ciΦk|
‖Φk‖‖ci‖

(4.17)

where bi is the ith column of input matrix B ∈ Rn×m and ci is the ith row of output matrix

C ∈ Rp×n. Matrices Ψ ∈ Rn×n and Φ ∈ Rp×n are the left and right eigenvectors of matrix A,

respectively. These geometric measures are effective classifiers, even in cases where inputs

and outputs have completely different structures.

Using this concept, outputs regarding H∞ performance are chosen as the system outputs

(measurement signals) to increase the robustness and for H2 performance are chosen as

control inputs (supplementary input signals) of the nominal WADC actuators to limit the

control effort and avoid high gains in the controller. In this research, the basic steps of

WADC design approach includes the following

1. Perform modal analysis to identify low-frequency modes and determine the critical

inter-area modes.

2. Select the nominal damping actuator and remote measurement based on controllability

and observability measures.

3. Formulate the generalized plant and obtain the reduced-order model using the Hankel

norm approximation.
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Figure 4.2: Control reconfiguration block diagram (Fault-hiding approach).

4. Design the robust WADC based on the reduced-order model.

5. Verify and evaluate the WADC performance on the full-order model.

4.4 Fault-Tolerant Control Design

In this section, a fault-tolerant scheme for power systems with actuator redundancy is

proposed. There is a likelihood that failures in some of the actuators during system operation

can deteriorate WADC performance. To achieve a high damping reliability, FTC systems

are required to cope with severe faults and enlarge the set of compensable actuator failures

through other active actuators. In our proposed approach to enhance reliability in power

systems, a greater number of actuation elements along with some reconfiguration control

blocks will be used. We use the concept of virtual actuator to benefit from redundancy in

the actuator’s equipped with supplementary control for our previously designed WADC.

The actuator faults considered arise either when the communication between central
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WADC and actuator is lost due to a significant delay, failure due to a cyber-attacks or simply

when the actuator is off-line due to maintenance or component faults. In these situations,

the actuator is unable to receive the control signal from WADC. A widely used strategy

to detect these failures is to use a protocol with an immediate acknowledgment (ACK) for

the communication links [83]. As a result, the detection of faults is easy and the problem

becomes finding a way to re-route the WADC control signals to other available actuators.

Fault detection and diagnosis [84, 85, 86, 87] issues have been extensively investigated in

control and power system literatures which are beyond the scope of this research.

The corresponding block diagram of the proposed FTC scheme is shown in Fig. 4.2.

The control allocation will depend on the status of different actuators, their controllability

measures and time delay associated with the communication link to a specific actuator.

By inserting this reconfiguration block between the nominal WADC and the new actuator,

there is no need to redesign the WADC to recover the performance of fault-free system.

This block is independent of nominal WADC and does not need any information on design

specifications. In case that a fault or failure occurs in the nominal actuator (B1 = 0n×1)

and the supervisory controller will redistribute the control signals to the remaining fault-free

actuators (B2, B3, ...). The reconfiguration blocks is a bank of VAs that can be described by

following equations:

ẋ∆(t) = A∆x∆(t) +B∆yk(t) (4.18)

ur(t) = Mrx∆(t) +Nryk(t) (4.19)

yr(t) = Cx∆(t) (4.20)

Output yr goes to the input of the nominal controller, ur goes to the redundant actuator

and state variable x∆ is related to the VA internal dynamics. We also have

A∆ : = A−BrMr (4.21)

B∆ : = B1 −BrNr (4.22)
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Both matrix gains Mr and Nr should be chosen for the above virtual actuator dynamics. In

case that fault occurs in the nominal actuator, the corresponding control input changes as

follows:

(Br,Mr, Nr) =



(B1, 01×n, 1) : Nominal Actuator

(B2,M2, N2) : EXC VA

(B3,M3, N3) : SVC VA

(B4,M4, N4) : HVDC VA

(4.23)

Our main goal in designing the VA is to hide the fault from the controller and stabilize

the faulty power system. Here, Mr has to be chosen so that eigenvalues of matrix A−BrMr

have negative real parts. To achieve above objectives, the pair (A,Br) should be stabilizable

and the stabilizing gain Mr can be determined using any state feedback approach such as

pole placement technique to keep the deviation x∆ small. The matrix gain Nr can also be

chosen to increase the speed of healthy actuator through bypassing the integrator. At this

stage, the fault-tolerant control scheme is completed.

After attaching the virtual actuator to the faulty plant and introduce a new state vector

x(t) = x∆(t) + xf (t), combined state equations can be written as follows: ẋ(t)

ẋ∆(t)

 =

A 0

0 A∆

 x(t)

x∆(t)

+

 B1

B∆(t)

 yk(t) +

Bd

0

 d(t) (4.24)

uk(t) =
[
C 0

] x(t)

x∆(t)

 (4.25) x(0)

x∆(0)

 =

x0 + x∆0

x∆0

 (4.26)

where from (4.24-4.26) it can be seen that the reconfigured plant dynamics (x) seen by

the controller (uk, yk) behaves exactly similar to the nominal plant if x∆0 = 0. Therefore, if

x∆0 = 0 holds, then the fault is hidden from the controller. The state x∆(t) = x(t)−xf (t) also

represents the deviation between the nominal and faulty plant. From the above equations,
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Figure 4.3: Two-area power system with WADC and virtual actuators.

it can be seen that the difference system is structurally unobservable from the controller.

Therefore, Mr should be determined by pole placement so that the difference system x∆ be

asymptotically stable and the error vanishes asymptotically.

VAs are designed to handle actuator failures without the need to reconfigure the WADC.

In the present work, the reconfigured closed loop is expected to satisfy the nominal control

goal without having to change the original controller. The main advantage is that FTC

design is independent of nominal WADC and therefore usable with any other controller.

It is also more cost efficient than installing new control devices. This FTC scheme will

not change the structure of nominal WADC and only modifies the output control signals

through virtual actuator dynamics. Therefore, the nominal WADC is suitable for damping

purposes via remaining actuators. In summary, this approach will lessen the difficulty of

dealing with a faulty system as the reconfigured system recovers the behavior of fault-free

system. Numerical simulations are performed in next section to illustrate the effects of this

scheme.
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Figure 4.4: Frequency response of full-order and reduced-order system with respect to
inputs and output measurement signals.

4.5 Numerical Results

4.5.1 Case Study I: Kundur Two-Area System

In this subsection, the proposed methodology is applied to a modified Kundur two-area

system. The modified system is shown in Fig. 4.3. Generators are represented in detail by

a fourth-order model and equipped with a high-gain excitation system. Generator G1 has a

turbine-governor model and G3 is equipped with IEEE standard speed-based PSS to damp

the local modes. Area 1 is transferring 550 MW of active power to area 2. An HVDC link

connects buses 7 and 9 and is transferring 100 MW. To improve the voltage profile, an SVC

with a capacity of ±400 MVar is connected at bus 8. Details of the original parameters can

be found in [4].

The modal analysis summarized in Table 7.2 shows that the system without WADC

has a weakly damped inter-area mode at 0.666 Hz and two well-damped local modes. Our

main objective in the WADC design is to meet or exceed 11% damping over all inter-area

and local modes with α = −0.05. Generator supplementary excitation control and speed

deviation are chosen as candidates for actuator input and measurement signals of WADC

system, respectively. As discussed in Section 4.3, G1 is chosen as the nominal actuator (B1)

for the WADC system based on the controllability measure (4.16). Speed deviations of G2

and G3 are identified as the best candidate input signals for controller, as they have the

highest geometric observability measure (4.17) over the first two critical modes.
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Table 4.1: Critical Modes of Two-Area System

Mode type
Coherent

group

Without WADC With WADC

Freq. (Hz) Damp. (%) Freq. (Hz) Damp. (%)

Inter-area 1,2 vs. 3,4 0.666 1.68 0.657 11.37

Local 1 vs. 2 1.092 5.62 0.971 12.96

Local 3 vs. 4 1.125 16.35 1.119 16.23

The open loop model of this system is 29th-order and is reduced based on the

balanced model truncation method. The appropriate order of the reduced-order model can

be determined by comparing the frequency responses. Fig. 4.4 illustrates that the 6th-order

reduced model can approximate the low-frequency oscillation characteristic and has a closer

response to the full-order system relative to the 5th-order model. As a result, the WADC

and VAs can be designed based on this 6th-order reduced model. Table 7.2 with the WADC

included, shows that the controller satisfactorily improves damping of the full-order system.

Details of parameters can be found in Appendix A.1.

In practice, time delay caused by transmission of remote control signal from WADC to

the nominal actuator is one of the key factors influencing the performance and stability of

the closed loop system. Time delay (Td) with transfer function e−sTd can be substituted by

a second-order Padè approximation based on minimization of the truncation errors [88] as

follows:

e−sTd ≈
1− Td

2
s+

T 2
d

12
s2

1 + Td
2
s+

T 2
d

12
s2

(4.27)

The time delay characteristics expressed by the above model can also be considered in the

open loop system model to design a controller which can efficiently suppress the negative

effects of small time delay. However, delays in communication are often vary within an

unbounded range instead of a fixed point and relatively large delay may even cause instability

in power systems.

To validate the performance of the designed WADC on the nonlinear system, one of the

inter-area lines between bus 7 and 8 trips at t = 1s and then successfully re-closes at t = 2s.

Second-order Padè approximation is also considered to demonstrate the effects of delay
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Figure 4.5: Dynamic response of two-area power system to tripping and re-closing one of
the tie-lines.

between WADC and the corresponding actuator. Fig. 4.5 shows the active power of one of

the tie lines without any control and with WADC in the presence of different communication

delays. This figure illustrates the large improvement in the dynamic response of the nonlinear

system with WADC even in case of small delay. However, a delay can negatively affect the

damping performance and in this case, time delay more than 0.22s may lead to instability.

Therefore reconfiguration in the control loop is needed to handle these failures.

Next we assume the primary actuator fails. The reconfiguration block redistributes the

control signal to other redundant actuators in the system. We should note that the redundant

actuator set is chosen as G2, SVC and HVDC link. To evaluate the effects of using this FTC

scheme, Fig. 4.6-4.8 illustrate system responses where the WADC signal is redirected by

using virtual actuators to supplementary control of G2, SVC and HVDC link, respectively.

The results reveal the effectiveness of using VAs to damp the oscillations and recovery the

performance of fault-free system.
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Figure 4.6: Dynamic response of two-area system to tripping and re-closing one of the
tie-lines with WADC signal redirected to G2.
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Figure 4.7: Dynamic response of two-area system to tripping and re-closing one of the
tie-lines with WADC signal redirected to SVC.
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Figure 4.8: Dynamic response of two-area system to tripping and re-closing one of the
tie-lines with WADC signal redirected to HVDC.

4.5.2 Case Study II: New England 39-Bus System

To investigate the performance of the proposed approach on a more complex system, the New

England ten-machine 39-bus test system was considered. Original details regarding network

data, operating conditions and other parameters are given in [89]. The system is modified to

have lightly damped inter-area modes. Overview of the proposed system with WADC and

virtual actuators is shown in Fig. 4.9. All generators are modeled via a fourth-order model

and equipped with an excitation system except for G10 which is an equivalent of another

large power system. In addition, PSSs are also tuned based on local modes for generators G1

to G8, G8 has a turbine-governor model and loads are represented as constant power loads.

Since bus 16 has the lowest voltage among other buses, an SVC with the capacity of ±400

MVAr is installed to improve the voltage profile. Furthermore, an HVDC link is installed

between bus 3 and 19 to increase the transfer capacity by transferring 100 MW power.

Table 4.2 shows two critical inter-area modes with frequency of 0.5716 Hz and 0.7247

Hz. The overall goal in WADC design is to at least achieve 11% damping over all inter-area

modes with α = −0.05 while reducing the required control efforts. Similar to before, both

generators’ excitation supplementary control and generators’ speed deviation are chosen as

candidates for actuator input and measurement signals for WADC.
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Figure 4.9: New England 10-machine 39-bus system with WADC and virtual actuators.

Figure 4.10: Frequency response of full-order and reduced-order system with respect to
inputs and output measurement signals.
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Table 4.2: Modes of New England Ten-Machine 39-Bus System

Mode type
Coherent

group

Without WADC With WADC

Freq. (Hz) Damp. (%) Freq. (Hz) Damp. (%)

Inter-area 1,8,9 vs. 4-7 0.5716 6.99 0.5574 11.09

Inter-area 10 vs. 1-9 0.7247 1.27 0.7069 16.46

Figure 4.11: Dynamic responses of New England system to three-phase fault at bus 1.

To obtain the highest damping contribution, G5 is chosen as nominal actuator (B1) for

WADC system based on controllability measure (4.16). Speed deviations of G9 and G10

are selected as the best candidate signals for our controller, as they have highest geometric

observability measure (4.17) over inter-area modes. As shown in following simulations, these

two measurement signals are enough to damp out the oscillations.

The open loop model of this system is of 79th-order and has been reduced to an 8th-order

using the balanced model truncation method. The appropriate order of the reduced-order

model is determined by comparing the frequency responses. Fig. 4.10 depicts that the

8th-order reduced model can cover concerned low-frequency oscillations characteristic and

has a close response to the full-order system. Next, according to section 4.3, WADC can

be designed based on the 8th-order model. Table 7.2 with WADC included shows that the

controller significantly improves damping of the full-order system by achieving at least 11%

damping over all inter-area modes. Details of parameters can be found in Appendix A.2.
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Figure 4.12: Dynamic responses of New England system to three-phase fault at bus 1 when
VA redirected WADC signal to G6.

To evaluate performance, a symmetrical three-phase fault is applied at bus 1 at t = 1s

and cleared after 150 ms. Fig. 4.11 shows the active power of the inter-area line 3-4 for

the nonlinear system without any control and with WADC in the presence of different

communication delays. According to this figure, the designed WADC remarkably enhances

the stability and shows good damping performance. However, large delay can negatively

affect the damping performance and in this case communication delay or other severe faults

in the actuator may lead to instability. Therefore reconfiguration in the control loop is

needed to handle WADC actuator failures.

The redundant actuator set is chosen as G6 (highest controllability after G5), SVC, and

HVDC link. The pairs (A,Br) are stabilizable, Nr is assumed to be zero and Mr is chosen

by pole placement techniques to stabilize the faulty system. To evaluate the effects of using

this FTC scheme, Fig. 4.12-4.14 illustrate the system responses when the WADC signal

is redirected by using VAs through G6, SVC and HVDC link, respectively. The nonlinear

simulation results reveal the effectiveness of the proposed method to damp the oscillations

when the communication between central WADC and G5 is lost or in case that sever fault

happens in the nominal WADC actuator.
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Figure 4.13: Dynamic responses of New England system to three-phase fault at bus 1 when
VA redirected WADC signal to SVC.
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Figure 4.14: Dynamic responses of New England system to three-phase fault at bus 1 when
VA redirected WADC signal to HVDC.
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4.6 Summary

This research has presented a new fault-tolerant WADC such that nominal controller

remain operational after faults in the actuator. Geometric measures of controllability and

observability were used to select the most effective measurements and control locations for

WADC. The design of nominal WADC carried out using multi-objectiveH2/H∞ optimization

with pole placement region to achieve high damping performance. The proposed approach

introduces redundancy in actuators to enhance the power system resiliency. The problem of

actuator faults is addressed by inserting VAs between the faulty plant and nominal WADC

to re-route the control signals to other healthy actuators and recover performance of fault

free system without the need to retune the WADC. The design of the proposed method

was analyzed in two detailed case studies. Simulation results demonstrate that the proposed

approach provides sufficient damping when the system suffers from actuator failures. Further

studies will focus on managing actuator redundancy by distributing the control efforts among

a redundant set of actuators based on optimal control allocation.
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Chapter 5

Dynamic Control Allocation for

Damping of Inter-area Oscillations

Use of actuator redundancy to achieve higher reliability is a widely accepted engineering

design technique and is used in this study to build resiliency and ensure power system

stability in the presence of high levels of renewables. This work presents a new design

method for fault-tolerant wide-area damping controllers (WADCs) using modal-based control

allocation (MB-CA), which coordinates a set of actuators to contribute to damping of inter-

area oscillations. In our proposed method, when an actuator fails or is unavailable (e.g.,

due to communication failure), the supervisory MB-CA distributes the control signals to

the remaining healthy actuators based on effects on the modal system, desired control

actions and actuator constraints. Our proposed block offers the benefits of modular

design where it is independent of the nominal WADC. The proposed method consists

of mainly two design steps. The first step is to design a WADC based on a fault-free

model using robust control methods. The second step is to design an MB-CA to manage

actuator availability and constraints. To validate the feasibility and demonstrate the design

principles, a set of comprehensive case studies are conducted on a modified 192-bus Western

Electricity Coordinating Council (WECC) system. Numerical results verify the effectiveness

of the proposed approach in ensuring resiliency to different actuator failures and actuator

availability. Part of the results in this chapter appeared in [56].
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5.1 Introduction

Small-signal instability problems such as inter-area oscillations have become increasingly

common in large power grids and may restrict the available transmission capacity between

different areas [90]. In recent years, wide-area measurement systems (WAMSs) have been

deployed that allow inter-area modes to be easily observed and identified [7]. As a result,

low frequency oscillations can be observed globally and then appropriately designed wide-

area damping controllers (WADCs) can be deployed. Many control strategies and design

techniques have been reported for WADCs including designs for supplementary damping

control of generators [75, 91, 24], renewable sources [92, 93, 94, 95, 96], high-voltage

direct current (HVDC) links [68, 97, 98] and FACTS devices [76, 99, 66]. Still, the

practical implementation of such WADCs face significant challenges to satisfy the reliability

requirements of modern grids.

In order to transmit remote feedback signals to a WADC and then to the actuators,

highly reliable communications and computations are required. Communication failures,

measurement distortions, time delays or cyber-attacks can degrade the performance of the

aforementioned controllers [25, 76]. Moreover, changes in scheduling of generators may mean

that some actuators are temporarily unavailable. Recently, the use of doubly-fed induction

generator (DFIG) wind farms for damping inter-area oscillations through active/reactive

power modulation has been discussed in literatures [95, 96].

However, the availability of these weather dependent renewable resources could cause

significant reliability issues. If the wind blows strongly, wind farms may efficiently contribute

to damping of inter-area oscillations while on calm days the turbines may be below cut-

in speeds and so actuation must come from conventional generators. Moreover, mode

switching [100, 101] may also affect the capability limits of the DFIG wind farm. Therefore,

the controller should be capable of maintaining the stability and acceptable damping

performance in the event of these actuator unavailabilities.

Redundancy is a common engineering approach to ensure safety, resiliency and improve

overall reliability and was first introduced by Von Neumann [69]. The increase in actuator

redundancy also increases the complexity of the system and control allocation (CA)
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techniques are needed for distributing a given control action to individual actuators and

maintaining the nominal performance under different actuator faults. Considerable research

has been conducted in this area primarily for commercial and military aircraft [102, 103, 104],

spacecrafts [105, 106, 107] and marine vessels [108, 109]. Similarly, modern power systems

have been equipped with various actuators that are useful for distinct purposes. These

actuators can contribute to damping inter-area oscillations (through supplementary controls)

based on size of the plant (rating), operating mode, location, and how their controls impact

system dynamics. We wish to take advantage of this existing built-in redundancy in power

system to enhance the reliability and satisfy security requirements.

In this research, a new modal-based control allocation (MB-CA) method is proposed

to coordinate multiple actuators to optimally contribute to damping of inter-area modes

and achieve a fault-tolerant WADC. In our approach, WADC is designed based on a fault-

free model and the supervisory MB-CA distributes the control signals to healthy actuators

based on the effects on different modes, desired control actions, total cost, and actuator

limitations. This work generalizes the control allocation methods reported in [102, 103, 104]

by considering the effects of virtual control on a modal system and extending its application

to damping low-frequency oscillations in power systems.

This technique allows us to give the highest priority to the control efforts associated with

the critical inter-area modes. Moreover, to the best knowledge of the authors, this is the first

time the control allocation concept has been applied to inter-area oscillations. This work

also extends the work in [75, 91, 94, 95, 96] in which unavailability of a nominal WADC

actuator as a result of permanent faults, maintenance, large communication delay or loss

of communication has not been considered. To validate the feasibility and demonstrate the

design principles, a set of comprehensive case studies are conducted on a modified 192-bus

Western Electricity Coordinating Council (WECC) system with high wind penetration.

The reminder of this chapter is as follows: a multi-objective LMI with pole-placement

is presented in section 5.2 as one approach for WADC design. In section 5.3, a modal-

based control allocation method is proposed for over-actuated systems. Section 5.4 briefly

discusses the dynamic model of the test system. Time domain simulation results are provided
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in section 5.5 to verify the feasibility of the proposed method and its ability to increase

resiliency. Finally, concluding remarks are made in section 5.6.

5.2 Multi-Objective Wide-area Damping Controller

Design

In general, remote signals can provide better observability of inter-area modes and

supplement the local control through WADC. We design the nominal WADC based on

robust multi-objective LMI optimization technique described in chapter 4.3. However, our

approach to CA in section 5.3 can accommodate other methods. The controller is designed

based on the reduced order model to avoid feasibility problems and realize practical low-order

controllers. Although the above WADC is designed using robust control methods, failure in

the communication links or in the actuators will lead to poor damping performance

5.3 Modal-based Control Allocation

Control allocation is an approach to manage actuator redundancy and faults for an over-

actuated system, where the number of actuators (m) is greater than the number of states (n).

Considering the input matrix B ∈ Rn×m in equation (7.7), a group of redundant actuators

rank(B) = n < m needs to be available to guarantee a set of feasible control commands. In

general, this assumption is not true for the full-order model of many practical systems, and in

particular power grids. As a result, we consider the CA problem based on the reduced-order

model described in the previous section. It is assumed that the reduced-model captures the

dominant contribution of damping actuators to the low-frequency modes of interest. Using

an appropriate transformation matrix z = ψx where ψ ∈ Rn×n, the modal realization can
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Figure 5.1: Control block diagram of the feedback loop with Supervisory MB-CA
embedded.

be obtained as

ż(t) = Λz(t) + ψBu(t) (5.1)

Λ =


σ1 ω1 0 . . .

−ω1 σ1 0

0 0 ι1
...

. . .

 (5.2)

where Λ = ψAψ−1 is a block diagonal matrix having the complex eigenvalues of σi± ωij or

real eigenvalue ιi along its diagonal. Introducing a new virtual control input v ∈ Rn, (5.1)

can be separated into two components which leads to a modular design.

ż(t) = Λz(t) + Inv(t) (5.3)

v(t) = ψBu(t) (5.4)

Virtual control v(t) will be generated based on the WADC in Section 5.2 and MB-CA

distributes the effort among available actuators via the command vector u(t). The overall

structure of the feedback loop with supervisory MB-CA is illustrated in Fig. 5.1. In this work,

we consider analytical or model-based redundancy in the actuators as physical redundancy

(e.g. replicating an actuator) is not cost effective in power systems. Given an nth-order

reduced model where n < m, matrix ψ is full rank and rank(ψB) = n. Hence, the system

can now represent an over-actuated system and the resulting matrix ψB has null space
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of dimension m − n in which u can be perturbed without significant impact on dynamic

response.

The proposed modal-based control allocation method with proper filtering to reduce the

variations can be formulated as the following constrained optimization problem

min
ut

∥∥Wuut
∥∥2

+
∥∥Ws

(
ut − ut−Ts

)∥∥2

s. t. ψBut = vt

umin ≤ ut ≤ umax

(5.5)

where Wu ∈ Rm×m (resp. Ws ∈ Rm×m) is a positive definite diagonal matrix, and represent

the weighting for distributions (resp. variations) of the control signal and Ts is the time step.

In the proposed method, the virtual control vector vt (derived from the nominal WADC at

time t) is distributed among all actuators considering the total cost, modal effects, actuator

rates and limitations such as, saturation. This technique allows us to give the highest priority

to the control efforts associated with the critical inter-area modes and obtain the feasible

regions in modal coordinates.

In general, the key to control allocation is to take advantage of all the healthy actuators

without having to redesign the WADC system. For power systems, the most likely actuators

for damping inter-area oscillations are conventional generators, wind farms and FACTS

devices equipped with supplementary control input. In case that a fault or failure occurs

in the ith actuator, the ith column of matrix B can be substituted by (1 − Σ)bi where

Σ ∈ [0, 1] denotes the loss of effectiveness. For example, a complete communication failure

to an actuator can be modeled by choosing Σ = 1 and the ith column will be equal to zero.

To simplify the optimization problem (5.3), the cost function can be computed as follow

and constant terms which do not affect the optimal minimizer can be omitted.

∥∥Wuut
∥∥2

+
∥∥Ws(ut − ut−Ts)

∥∥2
(5.6)

= uTt W
2
uut + (ut − ut−Ts)TW 2

s (ut − ut−Ts)

= uTt (W 2
u +W 2

s )ut − 2uTt W
2
s ut−Ts + const.

=
∥∥W (ut − ud)

∥∥2
+ const.
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where

ud = W 2
s (W 2

u +W 2
s )−1ut−Ts , W = (W 2

u +W 2
s )

1
2 (5.7)

The optimization can then be written in the form of a constrained least square problem

min
ut

∥∥W(ut − ud)∥∥2

s. t. ψBut = vt

umin ≤ ut ≤ umax

(5.8)

with ud and W from (5.7). Utilizing the Lagrangian multiplier ρ2, the cost function can be

expressed in the form

∥∥W(ut − ud)∥∥2
+ ρ2

∥∥Wv

(
ψBut − vt

)∥∥2
=∣∣∣∣∣∣

∣∣∣∣∣∣
 ρWvψB

W

ut −

 ρWvvt

Wud

∣∣∣∣∣∣
∣∣∣∣∣∣
2

(5.9)

Finally, the augmented cost function (5.9) yields the following optimization problem.

min
ut

∣∣∣∣∣∣
∣∣∣∣∣∣
 ρWvψB

W

ut −

 ρWvvt

Wud

∣∣∣∣∣∣
∣∣∣∣∣∣
2

s. t. umin ≤ ut ≤ umax

(5.10)

Assuming there is no saturation constraint, it is possible to find the optimal distribution

of control signals. With saturation constraints, the above optimization can be solved

using algorithm 1 which is based on active set method [102, 110]. This algorithm can

be implemented to be solved in real-time as this active set algorithm has a high efficiency

given estimates of the output ut and the set of saturated actuators S are available. In our

optimization problem for damping the low-frequency modes, the optimal solution at each step

does not change much from the previous sampling time based on the low frequency range of

the critical inter-area modes. Therefore, a hot-start can be used to initialize the optimization
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using the previous results and the number of iterations can be reduced significantly.

In summary, the following major steps are involved in supervisory MB-CA

1. Select a redundant set of actuators based on the controllability measure and identify

their limits.

2. Choose appropriate weightings for (5.10).

3. Construct the virtual control block based on the WADC design structure to generate

vector v(t) from WADC.

4. Design the MB-CA block based on (5.10) and run the algorithm 1 in real-time to obtain

vector u(t).

5. Send the control command ui(t) to the ith actuator.

5.4 Dynamic Model of the WECC Test System

A modified WECC power grid with high level of wind penetration rate (20% by energy)

is considered in this work to verify the effects of redundant damping actuators over low-

frequency modes. Original details regarding network data, operating conditions and dynamic

parameters are given in [111]. The system with WECC boundaries can be seen in Fig. 5.2.

It consists of 31 conventional generators with total generation of 48.49 GW and 11 wind

farms with generation of 13.5 GW. Loads are considered to be constant power. In the

following, dynamic models of different actuator components equipped with supplementary

control inputs are outlined to formulate the problem of actuator constraints and failures.

5.4.1 Generator Dynamic Model

Generators are represented by a two-axis model described in chapter 4.2. The notation is

as defined in the Nomenclature. Standard speed-based PSS model (PSS1A) [79] is used

to improve damping of the local modes and governors are modeled by the IEEEG1 steam

turbine model [80].
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Algorithm 1 Active set algorithm for optimization (5.10):
1. Initialization:

Let ut = (umax + umin)/2, the set of free actuators be R := {1, 2, ...,m} and the set of saturated
actuators be S := {∅}

2. Main loop:

begin repeat

Compute the unconstrained optimum in free variables:

min
d

∣∣∣∣∣∣∣∣( ρWvψB
W

)
(ut + d)−

(
ρWvvt
Wud

)∣∣∣∣∣∣∣∣2
where di = 0, i ∈ S

if umin ≤ ut + d ≤ umax for all R

Set ut = ut + d and for free actuators, compute the Lagrange multiplier λ as

λ :=

(
ρWvψB
W

)T [(
ρWvψB
W

)
ut −

(
ρWvvt
Wud

)]
if S = ∅ or all λ ≥ 0

Go to step 3 and vector ut is optimal.

else

Move the index associated to the most negative λ from R to S.

else

Compute the maximum step length α such that umin ≤ ut + αd ≤ umax and move the index of
primary bounding constraint into S.

end

3. Hot-start:

Use the previous optimal solution ut and working sets R and S as the initial conditions in step 2.

The generators are assumed to be equipped with high-gain AVR systems and supplemen-

tary control inputs as shown in Fig. 5.3. Saturation nonlinearity on the field voltage Efd

is also considered in the design process. In high-gain excitation systems, typical values of

time constant TA are in the range of 0.01 − 0.05 s. Therefore, TA is negligible and limits

on the field voltage can be modeled by limits of K−1
A Efdmin −K−1

A Efdmax pu on the output

of summation block. As a result, the following saturation limits can be considered on the

supplementary input ui.

ηK−1
A Efdmin ≤ ui ≤ ηK−1

A Efdmax (5.11)
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Figure 5.2: Single-line diagram of the modified 192-bus WECC system with DFIG wind
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Figure 5.5: Normalized controllability measure associated with inter-area mode 3 for all
possible actuators.
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Mode 1 Mode 2 Mode 3 Mode 4

Figure 5.6: Normalized observability measure associated with modes 1-4.

where η ∈ [0, 1] should be chosen to allow an acceptable control range and provide

adequate damping while prevent tripping of the generator. Moreover, these limits also

minimize the negative effects of damping controllers on voltage regulatory response and are

usually in the range of ±0.05 to ±0.1 pu which guarantees a modest level of contribution.

5.4.2 DFIG-based Wind Farm Model

A large wind farm may consist of several hundred DFIG wind turbines. Representing each

individual unit in the wind farm model can be difficult and unnecessary for large system

studies. By aggregation, an equivalent lumped model of a wind farm can be represented by

a large DFIG. In this work, the base power of each wind farm is scaled based on the total

number of wind turbines while the parameters are assumed to be constant. Each DFIG unit

considered in this research is rated at 1.67 MVA and 1.5 MW. It is also assumed that the

reactive power capability of each DFIG unit is in the range of −0.432 to 0.29 pu and more

comprehensive parameters can be found in [112]. Details of the wind farms outputs are given

in Table 5.1 There are different options in DFIG wind farms to add a damping controller. In

this study, we consider the reactive power modulation for supplementary damping proposes.

Fig. 5.6 illustrates the reactive power control loop where Qord is input to the master control

system of the DFIG. The limits on the supplementary input u are typically in the range of
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Table 5.1: DFIG Wind Farms Outputs in the WECC Test System.

Bus No. Base MVA MW MVAr PF

182 600 400 -114 -0.96

183 1500 1062 164 0.98

184 1410 1000 175 0.98

185 1050 700 41 0.99

186 1410 1000 -317 -0.95

187 1140 880 183 0.97

188 3600 2369 576 0.97

189 3600 3000 423 0.99

190 1500 1068 -36 -0.99

191 1500 1050 235 0.97

192 1350 980 148 0.98

±0.1 pu. However, depending on the grid requirements for power factor (PF), the amount

of available reactive power might be limited by the active power.

5.5 Numerical Results

To illustrate the design principles and verify the effectiveness of the proposed approach,

simulations and analysis are carried out on a detailed nonlinear model of the WECC test

system described in previous section.

5.5.1 Modal Analysis

In practice, phasor measurement units (PMUs) can be used for identification of power

system dynamic models and critical modes of instability [113]. In this research, however,

the nonlinear system is linearized around the nominal operating point using the SSAT

program [114] to perform modal analysis. Table 5.2 shows a summary of low frequency

oscillation modes where the mode 3 with frequency of 0.570 Hz and low damping ratio of

1.047%, represents the critical inter-area mode between area 2 vs. 4. Fig. 5.5 illustrates

the controllability measure (4.16) for all possible actuators and the set of actuators with

strong enough controllability (assume the threshold variable 0.4) over mode 3 can be chosen
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Table 5.2: Modal Analysis of the WECC Test System with 20% Wind Penetration.

Mode Participating Without WADC With WADC

Index Generators f (Hz) ζ (%) f (Hz) ζ (%)

1 Area 1 vs. Area 2, 4 0.359 9.946 0.367 8.741

2 G35 vs. G65 0.483 15.14 0.481 14.04

3 Area 2 vs. Area 4 0.570 1.047 0.569 7.804

4 Area 2 vs. Area 3, 4 0.722 5.065 0.715 5.918

as follow

A =
{
G6, G9, G11, G13, G18, G140, G159,W182,W190,W191,W192

}
(5.12)

where the ith element of vectorA is associated with the ith column of matrix B. Hence, there

will always be a trade-off between the degree of fault-tolerance and infrastructure costs such

as communication links. To obtain the highest damping contribution, G140 (associated with

b6) with the highest controllability measure is chosen as the nominal actuator for WADC.

Based on observability measure (4.17), the speed deviations of G9 is selected as the remote

measurement since it has a high observability over the critical mode 3 and also relatively

small observability to other modes.

5.5.2 Model Reduction and Design of WADC

With previously identified candidate signals as input and output of the system, the original

417th-order model can be reduced while preserving the larger Hankel singular values. The

appropriate order of the reduced-order model is determined by comparing the frequency

responses. Fig. 5.7 shows that the 6th-order reduced model represents the low-frequency

characteristics of mode 3 and has a close frequency response to the full-order system for

interesting input candidates. The nominal WADC is designed based on the 6th-order model

to meet or exceed 7% damping mainly over the critical mode 3. The design parameters of

the multi-objective WADC are given as Γ1 = 1, Γ2 = 10, β1 = −0.005, β2 = −50. The

controller matrices can be found in equation (5.13). The choice of design variables usually

depends upon the individual application and design requirements, such as, low control effort.
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Figure 5.7: Frequency response of the full-order and reduced order models of the WECC
system from supplementary inputs.

Table 5.2 also shows a significant improvement in damping ratio of the critical mode 3 with

WADC while only slightly affecting the other modes. Since MB-CA offers the advantages of

modular design, the output of the WADC controller ū(t) can be used to generate the virtual

control vector v(t) = ψb6ū(t). This block is just a gain matrix and depends on the WADC

design structure.

5.5.3 Design of Modal-Based Control Allocation

The proposed MB-CA is implemented as a user-defined model (UDM) [112] in TSAT

[77] by using dynamically linked blocks (DLBs) and the optimization algorithm 1 is

implemented using C/C++ with fixed time step of Ts = 0.02 s. The weighting functions

and gains are chosen as follows: Wu := diag(1, 1, 1, 1, 1, 0.5, 1, 1, 1, 1, 1), Ws := 5Wu,

Wv := diag(2, 2, 4, 4, 8, 8) and ρ := 10. The weighting Wu is chosen such that deviation

of the nominal actuator is penalizing less than other actuators. This choice of weighting

matrix prioritizes the use of the nominal WADC actuator in normal condition to reduce the
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AK =


−0.757 0.460 −0.343 6.254 0.182 −0.405
−0.460 −0.144 5.981 −2.658 −0.173 0.320
−0.343 −5.981 −0.244 19.66 0.195 −0.488
−6.254 −2.658 −19.66 −51.20 −4.252 7.237

0.182 0.173 0.195 4.252 −0.501 6.998
0.405 0.320 0.488 7.237 −6.998 −3.321

 ,

BK =


−1.682
−0.376
−0.475
−5.745

0.207
0.443

 , CK =


−1.682

0.376
−0.475

5.745
0.207
−0.443



T

, DK = 0 (5.13)

cost. Moreover, the choice of Wv gives the highest priority to the control efforts regarding the

critical mode 3. We choose TR = 0, TA = 0.02, KA = 50, η = 0.5, Efdmax = −Efdmin = 7.5

pu so hard limits for the generators are umax = −umin = 0.075 pu. Additionally, hard limits

of umax = −umin = 0.1 pu are imposed on the supplementary damping signals of wind farms.

5.5.4 Discussion

Nonlinear time domain simulations are conducted using TSAT program. Different variables

are monitored and Prony analysis is performed based on the nonlinear response to estimate

damping ratio and frequency of the critical modes. To evaluate the performance, different

faults are considered in both actuators and the physical system. A symmetrical three-phase

fault is applied to bus #14 (marked in Fig. 5.2) near the tie-line connecting the areas 2 and

4. The fault occurs at t = 1 s and is cleared after 10 cycles. In this study, the time frame

of analysis (oscillation) is restricted to a few seconds and so reasonable to assume that the

wind speed remains constant throughout the simulation period.

Without control allocation, the system responses are as been shown in Fig. 5.8 and

5.9. Using Prony analysis of the nonlinear response, it can be observed that WADC can

significantly improve the damping from 1.149% to 7.806%. If there is any failure in the

nominal WADC actuator, the system will illustrate a similar response to the no control

system with damping of 1.149%. Note that results from Prony analysis are slightly different

from the linearized results in Table 5.2 because of the nonlinear nature of the system.
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Figure 5.8: Dynamic response of the system to three-phase fault at bus #14.
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Figure 5.9: Power flow on the tie-line connecting the areas 2 and 4 after a three-phase fault
at bus #14.
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In case with modal-based control allocation, the system responses are shown in Fig. 5.10

and 5.11 for the following cases.

• Case A: No faulty actuators F = {∅};

• Case B: Faults in the nominal actuator F = {G140}, hard limits umax = −umin = 0.05

pu for all wind farms;

• Case C: Faults in six random actuators F = {G6, G13, G18, G140,W182,W192};

It can be seen that in case A, where there is no faulty actuator, MB-CA mainly use the

nominal damping actuators and can compensate the effects of hard limits on the actuators.

In case B, the nominal WADC actuator suffers a loss of communication and hard limits

on wind farms are narrowed by 50%. MB-CA successfully recovers the performance of the

system. In case C, where more than half of the actuators have failed, the wind farm W182 is

disconnected and the rest face a communication failure, MB-CA will damp the oscillations

by distributing the control signal to healthy actuators and maintain a sufficient damping of

4.035%. Comparing these results, it can be seen that even though the damping performance

in case C is not as good as Case A and B, it is far better than without MB-CA. The proposed

method clearly enhances fault tolerance of the WADC system. Figs. 5.12, 5.13 and 5.14

illustrate the MB-CA outputs in Case A, B and C, respectively and effects of actuator faults

and limits are clearly observed.

88



0 5 10 15 20 25
59.8

59.85

59.9

59.95

60

60.05

60.1

60.15

60.2

Figure 5.10: Dynamic response of the system to three-phase fault at bus #14 when MB-CA
redirects the WADC signal to healthy actuators.
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Figure 5.11: Power flow on the tie-line connecting areas 2 and 4 to a three-phase fault at
bus #14 when MB-CA redirects WADC signal to healthy actuators.
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Figure 5.12: Supplementary signals (MB-CA outputs) in Case A.
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Figure 5.13: Supplementary signals (MB-CA outputs) in Case B.
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Figure 5.14: Supplementary signals (MB-CA outputs) in Case C.
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Figure 5.15: Effects of actuator faults on feasible virtual control region for inter-area mode
3.

Various results with respect to different controllers and fault combinations are included

in Table 5.3. In all cases, the nominal WADC actuator G140 is assumed to be faulty. It

is shown that the proposed MB-CA tolerates multiple failures and maintains the minimum

acceptable damping of 3.329% over the critical mode in compare to 1.467% damping in

case where all modes have identical weights. In general, the optimal solution may not be

feasible for all virtual control inputs, constraints and failures. Fig. 5.15 visualizes the average

feasible virtual control regions in modal coordinates for the critical mode 3 considering all

failure scenarios. These regions can be obtained considering the actuator constraints in (5.5)

and provides insight to the degree of fault tolerance. Different faults in the actuators or

adding more constraints can further reduce the area of feasible region, which is related to

the attainable damping ratio.

In this work, the previous optimization results are used as the starting point to solve

the MB-CA problem for the next sampling time. Fig. 5.16 depicts the distribution of the

number of iterations required by the algorithm in Case B, with and without warm-start.

It clearly indicates that in case of warm-start, the algorithm can converge mostly in one

iterations and significantly improve the performance.
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Figure 5.16: Histogram showing the number of iterations required by the optimization
algorithm in Case B from t = 1 s to t = 6 s.

Table 5.3: Damping Ratio of Mode 3 with Respect to Different Controllers and Fault
Combinations.

Faulty Actuator Set F Damping Ratio (%)

MB-CA CA WADC

∅ 7.911 7.907 7.806

G140 5.052 4.759 1.149

G6, G140 4.950 4.624 1.149

G6, G140,W182 4.899 4.353 1.149

G6, G18, G140,W182 4.316 3.744 1.149

G6, G18, G140,W182,W192 4.086 3.103 1.149

G6, G18, G140,W182,W190,W192 3.817 2.949 1.149

G6, G11, G18, G140,W182,W192 3.329 1.467 1.149
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5.6 Summary

In this research, a new approach to designing a fault-tolerant WADC using modal-based

control allocation is proposed to coordinate a group of actuators to optimally contribute

to damping of inter-area oscillations. In our proposed method when an actuator fails or is

unavailable, the supervisory MB-CA distributes the control signals to the remaining healthy

actuators based on the effects on modal system, the desired control action and actuator

constraints. The WADC design is carried out using multi-objective H2/H∞ optimization

with pole-placement region to achieve high damping performance. In the next step, the

MB-CA is designed to manage actuator failures and constraints without redesigning the

nominal WADC. The feasibility and performance of the proposed method is analyzed using

the WECC system. Numerical results have verified the effectiveness of the proposed method

to provide sufficient damping and build in resiliency to different faults.
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Chapter 6

Sparse Control Allocation for Wide

Area Coordinated Damping

In this work, a modal-based sparse control allocation (SMB-CA) is proposed for coordinated

and fault-tolerant wide-area damping controllers (WADCs). In our proposed method, the

supervisory sparse CA only communicates with necessary actuators to achieve the required

damping performance and in case of actuator failures (e.g., due to loss of communication

or scheduling), capabilities of the remaining actuators are fully used before the nominal

performance is degraded. This method offers the advantages of modular design where

WADC is initially designed to achieve satisfactory damping without the detailed knowledge of

actuators. In the next step, sparse CA is designed to manage actuator failures and limitations

without the need to redesign the nominal WADC. The proposed approach is applied to a

modified 286-bus Western Electricity Coordinating Council (WECC) system to verify the

feasibility on a complex power system. Simulation results indicate the effectiveness of the

proposed method in coordinating multiple actuators and building resiliency. The results in

this chapter appeared in [55].
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6.1 Introduction

Traditional power system topology is changing and a large number of small-scale renewable

sources are being installed throughout the system. In this aspect, spatial distributions of

wind farms are crucial to reduce the need for new transmission infrastructure. These wind

farms could be selected as WADC actuators and contribute to damping inter-area oscillations

though active/reactive power modulation [94]. In contrast with a large wind farm in a

concentrated location, deployment of multiple small-scale wind farms will require special

techniques for actuator coordination as none could be used individually to achieve adequate

damping. Moreover, the availability of these weather dependent renewable resources could

pose design challenges for reliability of critical controllers.

Considering reactive power modulation in Type 4 wind turbines (i.e., full converter

asynchronous generators), the amount of available reactive power depends upon the

operating mode, converter rating and grid code requirements. This may mean that some

WADC actuators become temporarily unavailable (failed) or have more limited capabilities.

Moreover, communication failures such as packet loss, excessive time delay and cyber-attacks

may also lead to failures in these geographically-dispersed actuators. Thus, developing robust

controllers to accommodate such failures and maintain the system stability is an important

challenge in deploying WADCs.

In this chapter, a sparse CA method is developed to optimally coordinate a set of

actuators to damp the inter-area modes and achieve a fault-tolerant WADC. In our approach,

the damping controller is designed based on a fault-free model and the supervisory sparse

CA distributes the control signals to necessary actuators based on the desired control

actions, total cost, effects on different modes of the system and actuator constraints. This

chapter generalizes the previous methods chapter on control allocation and previous work

[102, 103, 115, 55] by considering the temporal sparsity and the effects of virtual control

on the modal system. This technique allows us to give the highest priority to the control

efforts associated with the critical inter-area modes. In [94, 116], an attempt to coordinate

multiple wind farms was addressed but without considering the effects of actuator failures,

capabilities and limits. This chapter also extends [7, 75, 23, 25, 117] in which unavailability
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of WADC actuators has not been considered. Feasibility of the proposed approach has been

verified on a modified 286-bus Western Electricity Coordinating Council (WECC) system

with multiple small-scale wind farms.

This chapter is organized as follows. In section 6.2, a modular control allocation technique

is developed for system with redundant actuators and a multi-objective synthesis is presented

as one method to design damping controller. Preliminaries on dynamic modeling of a WECC

system with distributed wind farms are described in section 6.3. Nonlinear time-domain

simulations are presented in section 6.4 to demonstrate the effectiveness of the proposed

method in coordinating multiple actuators. Concluding remarks are given in section 6.5.

6.2 Modal-based Sparse Control Allocation

Similar to chapter 5.3, the Hankel norm approximation [82] can be used to obtain the

reduced-order model and the order of model reduction can be determined by examining the

Hankel singular values. Considering the reduced-order system with state variables xr ∈ Rn,

using an appropriate transformation z = ψxr where ψ ∈ Rn×n, the realization in modal form

can be written as

ż(t) = Λz(t) + ψBru(t) (6.1)

y(t) = Crψ
−1z(t) (6.2)

Λ =


ι1 0 0 . . .

0 σ1 ω1

0 −ω1 σ1

...
. . .

 (6.3)

where Λ = ψArψ
−1 is a block diagonal matrix whose elements are eigenvalues of Ar (assuming

no repeated eigenvalues), u ∈ Rm denotes the input and y ∈ Rp is the measured output.

Real eigenvalue ιi appears on diagonal and complex conjugate eigenvalues σi ± ωij appear

as a 2-by-2 block on the diagonal of Λ. By introducing the virtual control input v ∈ Rn, the
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system equations can be expressed as

ż(t) = Λz(t) + Inv(t) (6.4)

y(t) = Crψ
−1z(t) (6.5)

v(t) = ψBru(t) (6.6)

which decomposes the system into two parts and leads to a modular design where WADC

generates the virtual control signal v and control allocator distributes the effort among the

available actuators. Matrix ψ is full rank and rank(ψBr) = n < m, hence ψBr has null

space of dimension m− n in which u can be perturbed without affecting the response.

Based on the order of the reduced model, the system can now represent an over-actuated

system and the problem of modal-based sparse control allocation with proper filtering to

reduce the variations can be represented as follows

min
ut

‖Wuut‖2
2+‖Ws

(
ut − ut−Ts

)
‖2

2+λ‖ut‖1

s. t. ψBrut = vt

umin ≤ ut ≤ umax

(6.7)

where Wu and Ws are positive definite matrices, usually diagonal, and represent the

weighting for distributions and variations in the control signal, respectively. The term

‖ut‖1=
∑m

i=1 |ut,i| denotes the `1 norm of control vector ut and λ ≥ 0 is the regularization

parameter [118]. Virtual control input vt is derived from the nominal WADC at time t

and Ts denotes the time step. We designed a multi-objective damping controller based

on LMI optimization technique introduced in [81] but our approach to the sparse CA can

accommodate other control approaches. The damping controller designed by the above

methodology can be written as:

ẋk(t) = Akxk(t) +Bky(t) (6.8)

v(t) = Ckxk(t) +Dky(t) (6.9)
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The key feature of the proposed control allocation strategy is that the temporal sparse

control vector ut is directed to actuators considering total cost, actuator rates, modal effects

and actuator limitations, which leads to a constrained optimization problem (6.7). This

method is based on prior knowledge of control limits and sparse CA only communicates with

necessary actuators to achieve the damping requirement.

The cost function of the above optimization can then be simplified to

‖Wuut‖2
2+‖Ws(ut − ut−Ts)‖2

2+λ‖ut‖1 (6.10)

= uTt W
2
uut + (ut − ut−Ts)TW 2

s (ut − ut−Ts) + λ‖ut‖1

= uTt (W 2
u +W 2

s )ut − 2uTt W
2
s ut−Ts + λ‖ut‖1+const.

= ‖W (ut − ud)‖2
2+λ‖ut‖1+const.

where

ud = W 2
s (W 2

u +W 2
s )−1ut−Ts , W = (W 2

u +W 2
s )

1
2 (6.11)

Since constant terms in the objective function will not affect the optimal solution, they can

be removed and the optimization can be cast in the form of least square optimization with

`1 norm regularization

min
ut

‖W
(
ut − ud

)
‖2

2+λ‖ut‖1

s. t. ψBrut = vt

umin ≤ ut ≤ umax

(6.12)

with ud andW from (6.11). The problem can be approximated by utilizing the first constraint

in the cost function using the Lagrangian multiplier ρ and weighting function Wv.

‖W
(
ut − ud

)
‖2

2+ρ2‖Wv

(
ψBrut − vt

)
‖2

2+λ‖ut‖1=∥∥∥∥
ρWvψBr

W

ut −
ρWvvt

Wud

∥∥∥∥2

2

+ λ‖ut‖1 (6.13)
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Finally, we obtain the following optimization problem

min
ut

∥∥∥∥
ρWvψBr

W

ut −
ρWvvt

Wud

∥∥∥∥2

2

+ λ‖ut‖1

s. t. umin ≤ ut ≤ umax

(6.14)

In the control literature, there exist other methods to distribute the control signal based

on cost [103] or actuator limits [115], but these have not considered the effects on modal

system or sparsity. This technique allows us to give the highest priority to the control efforts

associated with the critical inter-area modes by using the weighting function Wv and obtain

the feasibility regions in modal coordinates. By decomposing the control vector ut to positive

and negative components, we introduce nonnegative variables u+
t , u−t and qt =

[
u+
t u−t

]T
such that

ut = u+
t − u−t =

[
Im −Im

]
qt; u+

t , u
−
t ≥ 0 (6.15)

The `1 norm can then be modeled as ‖ut‖1= 1̄T qt (with 1̄ being a vector of ones) and the

`1-regularized least square problem can be transformed into a quadratic programing with

simple box constraints as follow

min
qt

qTt

 ATA −ATA

−ATA ATA

 qt + (2

−ATB
ATB

T + λ1̄T )qt

s. t. 0̄ ≤ qt ≤

 umax

−umin

 (6.16)

where

A =

ρWvψ
TBr

W

 , B =

ρWvvt

Wud

 (6.17)

These quadratic programs can be solved efficiently using interior-point or active-set methods.

Note the transformed problem is an optimization over 2m-dimensional vector space.
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Figure 6.1: One-line diagram of a WECC power system with Type 4 wind farms.
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Figure 6.2: Single-generator representation of aggregated wind farm model.

6.3 Dynamic Model of the WECC Test System

A modified 286-bus WECC system is used in this study to capture the effects of redundant

actuators over the inter-area modes. As shown in Fig. 6.1, this system consists of 31

synchronous generators with generation of 60.25 GW and 35 small-scale wind farms, each

rated at 60 MVA and 50 MW, with total generation of 1.75 GW. Each generator is

represented using a two-axis model equipped with a high-gain AVR system and a power

system stabilizer (PSS1A) to damp the local oscillation modes. All loads are assumed to be

constant power and original parameters regarding the network data and operating conditions

are given in [119].

Wind farms are represented by an aggregated model of Type 4 wind turbines. In this

work, the base power of each wind farm is scaled based on the total number of wind turbines

while the parameters are assumed to be constant. The equivalent circuit is shown in Fig. 6.2

and further details on network and model parameters can be found in [119]. In this study,

the damping controller is performed by adding a supplementary signal u to the reactive

power control loop for reactive power modulation. We assume each wind farm is constrained

to run within a specific power factor range, for example 0.9 lagging to 0.9 leading which is

typical for Type 4 machines [120]. As a result, a hard limits of umax = −umin = 0.4 pu are

imposed on the supplementary signal of each wind farm.
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Table 6.1: Low-Frequency Modes of the Modified WECC System, Base Case with no
Controllers.

Mode No. Participating Generators Freq. (Hz) Damp. (%)

1 Area 1 vs. Area 2,4 0.327 6.99

2 G34 vs. G64 0.442 11.62

3 Area 2 vs. Area 4 0.564 0.98

6.4 Numerical Results

Detailed studies based on a nonlinear model of the WECC system described in the previous

section are performed to verify the performance of the proposed control allocation method.

6.4.1 Linear Analysis and Design of WADC

This system exhibits several low-frequency oscillation modes that are characterized in Table

6.1. Critical mode 3 with frequency of 0.564 Hz and a low damping ratio of 0.98% is of high

interest and represents the inter-area mode between area 2 and 4. Based on an observability

measure, speed deviation of G10 is selected as the best candidate signal for our controller as

it has the highest observability over the critical mode (details of this approach are given in

chapter 4.3). The test system has 490 states and the order of the reduced model is chosen

as n = 6 to preserve the largest Hankel singular values as shown in Fig 6.3. The WADC is

designed based on the 6th-order model to meet or exceed 6% damping over the inter-area

modes.

6.4.2 Design of Modal-Based Control Allocation

The proposed sparse CA is implemented as a user-defined model (UDM) in TSAT [77] and

the optimization algorithm (6.16) is performed using dynamically linked blocks (DLBs) and

MATLAB with a fixed time step of Ts = 0.02 s and interior-point method. The available

small-scale wind farms are chosen as the set of redundant actuators as follows

R =
{
W184,W187,W190, . . . ,W286

}
(6.18)
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Figure 6.3: Hankel singular values of the modified WECC system.

where ith element of vector R is associated with the ith column of matrix Br. The weighting

functions and gains are chosen as Wu := I35, Ws := 2Wu, Wv := diag(2, 2, 4, 4, 8, 8), λ := 1

and ρ := 100. This choice of weighting matrix Wv gives the highest priority to the control

efforts regarding the critical mode 3. Moreover, the weighting Wu can also be chosen based

on the reliability of each actuator and the corresponding communication link.

6.4.3 Nonlinear Simulations

Nonlinear transient studies were performed using TSAT and Prony analysis is used to extract

the damping coefficient of the inter-area oscillation based on the nonlinear response. In this

study, the time frame of analysis (oscillation) is restricted to a few seconds, so it is reasonable

to assume that the wind speed remains effectively constant during this period. Cases of

interest include faults in both the physical system and actuators. In the physical system, a

symmetrical three-phase fault is applied at bus #139, which is a severe disturbance.

To illustrate the benefit of sparse control allocation, three control cases were evaluated

and compared during transient response. First, the system with no control is considered.

Second, a WADC with fixed allocation u(t) = (ψBr)
†v(t) is considered based on pseudo-

inverse calculation. Finally, a sparse control allocation is considered to include hard limits

and actuator status in the design. Active power of the inter-area transmission line 6− 27 is

shown in Figs 6.4, 6.5 and 6.6 for the following cases
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Figure 6.4: Responses of the WECC system to three-phase fault at bus #139 in case A.
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Figure 6.5: Responses of the WECC system to three-phase fault at bus #139 in case B.
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Figure 6.6: Responses of the WECC system to three-phase fault at bus #139 in case C.

• Case A: No faulty actuators and fault duration of 1 cycle;

• Case B: No faulty actuators and fault duration of 6 cycles;

• Case C: Faults in 70% of the actuators and fault duration of 3 cycles;

It can be seen that in case A, where fault duration is short and the required control effort

is less, both sparse CA and fixed allocation method can improve the damping to 7.2%

compared to the open-loop damping of 0.98%. In case B, where fault duration is longer

and requires extensive control efforts, the damping ratio of the fixed allocation method

reduces to 2.82%. However, the sparse CA achieves a damping ratio of 5.55% as it considers

the actuator limitations in control redistribution. In case C with a shorter fault duration

but 70% actuator failures (either from multiple wind farms are disconnected, communication

congestions, changes in wind speed), the sparse sparse CA will again dampen the oscillations

by redistributing the control signal to healthy actuators and maintain sufficient damping of

4.89% compared to 2.03% under a fixed allocation. Comparing these results, it can be seen

that the proposed method enhances fault-tolerance of the WADC system.

Figs. 6.7 and 6.8 illustrate the sparse sparse CA outputs in case A and B, respectively.

It can be seen that the control signal u is temporally sparse relative to the fixed control

allocation method. Additional results for different actuator fault combinations are presented

in Table 6.2. In all cases, the physical fault is assumed to be with a duration of 3 cycles.
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Table 6.2: Damping Ratio of the Critical Mode for Different Actuator Fault Combinations.

Actuator Damping Ratio (%)

Failure (%) sparse CA Fixed Alloc. No Control

0 6.79 5.12 0.97

10 6.56 4.62 0.97

30 6.43 4.01 0.97

50 5.80 3.04 0.97

70 4.89 2.03 0.97

80 4.33 1.59 0.97

It can be observed that our proposed method tolerates various combinations of failures and

maintains a higher damping ratio over the critical inter-area mode.

6.5 Summary

This work proposes a sparse control allocation technique for fault-tolerant wide-area damping

controllers and coordinated control of multiple actuators. This method leads to a modular

design process where the damping controller generates the virtual control signal and the

supervisory sparse CA distributes the control efforts to the necessary actuators based on

the desired control actions, actuator limits and modal effects. The proposed approach is

applied to a modified 286-bus Western Electricity Coordinating Council (WECC) system

with distributed small-scale wind farms. Simulation results show significant improvement in

resiliency due to various system failures.

106



0 5 10 15 20 25 30
0

5

10

15

20

25

30

35

-0.4

-0.2

0

0.2

0.4

0 5 10 15 20 25 30
0

5

10

15

20

25

30

35

-0.4

-0.2

0

0.2

0.4

Figure 6.7: Supplementary control signal u for different actuators in response to three-
phase fault at bus #139 in case A.

0 5 10 15 20 25 30
0

5

10

15

20

25

30

35

-0.4

-0.2

0

0.2

0.4

0 5 10 15 20 25 30
0

5

10

15

20

25

30

35

-0.4

-0.2

0

0.2

0.4

Figure 6.8: Supplementary control signal u for different actuators in response to three-
phase fault at bus #139 in case B.
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Chapter 7

Stability of Wide Area Controls with

Intermittent Information

Transmission

This chapter investigates the stability problem of wide area damping controllers with

intermittent information transmission. Due to the interruption in communication links

between remote measurements and damping controllers or from the controller to the damping

actuators, the closed loop system might become unstable. To estimate instability, this

chapter uses discrete-continuous time models and the stability conditions are derived using

time scale theory. This method allows us to handle discrete and continuous models under

the same framework on a particular time scale, such that the system switches between a

continuous time subsystem (when the communication occurs) and a discrete-time system

(when the communication fails). The focus of this chapter is on application of the developed

method for power systems and more details on time scale preliminaries and formulations can

be found in [121]. The contribution is in quantifying the maximum time of interruption in

order to guarantee exponential stability.The findings are useful in specifying the minimum

requirements for communication infrastructure and the time to activate remedial action

schemes. Simulations are performed based on both linear and nonlinear systems to validate

the theoretical development.

108



7.1 Introduction

Traditionally, PMU data has been primarily used for off-line post event analysis. However,

with recent advancement in communications (e.g. faster communication channels) and

processing power, it is now possible to use these geographically dispersed PMUs for real-

time applications in power systems [122]. PMUs can be used to address the problem of

inter-area oscillations that may require wide-area supervision and control schemes. In

these applications, usually damping controllers, sensors (e.g., PMUs) and actuators (e.g.,

synchronous generators, FACTS devices and energy storage systems) are located remotely

and can must communicate over a communication network as depicted in Fig. 7.1.

Implementation of damping controllers in a network, such that, portions of the control

system are located remotely, create challenges in analysis as the closed loop performance

is highly dependent on the communication network. In this study, we aim to consider

the effect of the communication intermittency. The main question is what happens when

communication experiences constant or time varying delays [29], packet dropouts [30] or

packet disordering [31]. Hence, the communication introduces additional uncertainty in the

operation of the closed-loop system.

The theory of dynamical systems on an arbitrary time scales appears to be a promising

approach to analyze this problem. By using time scale theory, it will be shown that the

problem can be converted to an asymptotic stabilization problem for a particular switched

system on a non-uniform time domain formed by the union of disjoint intervals with variable

lengths and variable gaps [123, 124]. Indeed, the closed loop system evolves some continuous

time intervals when the communication occurs, and when the communication fails, the

control may not be updated and the system is discretized with a variable step size. Thus, it

would be valuable to have a unified framework for a combined continuous-time and discrete-

time system [125, 126, 127, 128].

In power systems, communication network effects are often ignored [66, 67]. Reference

[129] studied the impact of induced network delays using LMIs and only for state feedback

controllers. In [130, 131], simple models were considered to capture the effects of

communication failure with known lower and upper bounds. In fact, existing methods based
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Figure 7.1: A networked control system with components that are remotely operated over
a communication network.

on LMIs or common quadratic Lyapunov functions lead to highly conservative results. In

this chapter, new stability conditions are derived using time scale theory to determine the

maximum time of interruption in information transmission in order to guarantee exponential

stability of the closed loop power system. The findings are useful in specifying the minimum

requirements for communication infrastructure and the time to activate remedial action

schemes [90]. Moreover, we explore practical cases involving sensor-to-controller and/or

controller-to-actuator communication failures.

The remainder of this chapter is organized as follows. Some background on time scale

theory is presented in Section 7.2. In Section 7.3, it is shown that the stability problem of

linear system with intermittent information transmission is equivalent to the stabilization of a

switched system consisting of a linear continuous-time and linear discrete-time subsystems.

A set of conditions on the maximum time of interruption to guarantee the exponential

stability of the closed-loop power system is derived in Section 7.3. Finally, numerical results

and conclusions are presented in Section 7.4 and Section 7.5, respectively.
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7.2 Preliminaries on Time Scale Theory

Basic notations and properties of time scales theory [121, 132, 125, 123] are presented in

this section. A time scale, noted T is an arbitrary nonempty closed subset of R. The usual

integer subsets Z and N, the real numbers R and any discrete subset or any combination of

discrete points united with closed intervals, are an examples of time scales. For t ∈ T, the

forward jump operator σ(t) : T→ T is defined by

σ(t) := inf{s ∈ T : s > t} (7.1)

The mapping µ : T→ R+, called the graininess function, is defined by

µ(t) = σ(t)− t (7.2)

In particular, if T = R, σ(t) = t and µ(t) = 0 and If T = hZ, σ(t) = h and µ(t) = h. The

∆-derivative of f is defined as

f∆(t) = lim
s→t

f(σ(t))− f(s)

σ(t)− s
(7.3)

The ∆-derivative, unify the derivative in the continuous sense and the difference operator

in the discrete sense. If T = R, σ(t) = t and f∆(t) = ḟ(t). If T = hZ, σ(t) = t + h

and f∆(t) = f(t+h)−f(t)
h

. In particular, if h = 1, f∆(t) = f(t + 1) − f(t) = ∆f(t), the

difference operator. We notice that the ∆-derivative, generalize the continuous and the

discrete derivatives.

A function f : T → R is regressive if 1 + µ(t) f(t) 6= 0, ∀t ∈ Tκ. A matrix A is called

regressive, if ∀t ∈ Tκ, the matrix (I + µ(t)A) is invertible, where I is the identity matrix

(equivalently, if and only if (1 + µ(t)λi) 6= 0, for all λi the eigenvalues of A [132]). Let A be

a regressive matrix. The unique matrix-valued solution of

x∆(t) = A x(t), x(t0) = x0, t ∈ T, (7.4)
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The dynamical system (7.4) is exponentially stable on an arbitrary time scale T, if there

exists a constant β ≥ 1 and a negative constant λ ∈ R+, such that the corresponding

solution satisfies

‖x(t)‖ ≤ β‖x0‖eλ(t, t0), ∀t ∈ T. (7.5)

where the generalized exponential function denoted by eA(t, t0) [121]. This characterization

is a generalization of the definition of exponential stability for dynamical systems defined in

R or hZ. To study the stability of linear dynamical systems on time scale T, a particular

open set of the complex plane called the Hilger circle is defined for all t ∈ T as

Hµ(t) :=

{
z ∈ C : |1 + zµ(t)| < 1, z 6= − 1

µ(t)

}
(7.6)

When µ(t) = 0, we define H0 = {z ∈ C : Re(z) < 0} = C−, the open left-half complex

plane. The smallest Hilger circle (denoted Hmin) is the Hilger circle associated with µ(t) =

µmax = supt∈T µ(t). A regressive time-invariant matrix A is called Hilger stable if spec(A)

⊂ Hmin (i.e all eigenvalues of A are in Hmin) [126].

7.3 Wide Area Control with Intermittent Information

We aim to consider the effects of the communication network in the stability analysis. First,

nonlinear power system models can be linearized around the operating point which leads to

the following generalized form

ẋ(t) = Ax(t) +Bu(t) (7.7)

y(t) = Cx(t) (7.8)

where x ∈ Rn, A ∈ Rn×n and B ∈ Rn×m are constant real matrices such that (A,B) is

stabilizable and u ∈ Rm is the control input. The goal in this section is to estimate the

maximum time of interruption and analyze what happens when the communication network

is no longer perfect due to packet loss, delay or any other common communication failure.

Two general schemes can be found in the literature to compensate for intermittent

112



0 100 200 300 400 500 600 700 800 900 1000

Samples

-0.1

0

0.1

0.2

C
on

tr
ol

S
ig
n
al

(p
u
)

0 100 200 300 400 500 600 700 800 900 1000

Samples

-0.1

0

0.1

0.2

C
on

tr
ol

S
ig
n
al

(p
u
)

Figure 7.2: Sample of control signal with intermittent communication transmissions using
hold strategy (top sub-figure) and zero strategy (bottom sub-figure).

communication as shown in Fig. 7.2: the zero strategy, in which the input/measurement

of the plant is set to zero if a packet is dropped; and the hold strategy, in which the latest

arrived/measured packet is kept constant until the next packet arrives [133]. In this chapter,

the hold strategy is used in control and measurement loops in which the states before

communication failure are held and continues to be used when packet dropouts happen.

If the failure becomes large, the system may become unstable. Hence, the goal is to estimate

the maximum time of interruption in order to maintain the stability of the system.

7.3.1 State Feedback Problem Formulation

Consider the particular time scale T = ∪∞k=0[σ(tk), tk+1], where σ(.) is the forward jump

operator, such that, σ(t0) = t0 and the graininess function µ(tk) = σ(tk) − tk,∀k ∈ N∗.

To solve the power system problem under intermittent information transmission between

generators, we assume that the duration of a communication failure is bounded by a known

value µ ∈ R+. The following switching control law is applied

u(t) =


Kx(t), if t ∈ ∪∞k=0[σ(tk), tk+1)

Kx(tk+1), if t ∈ ∪∞k=0[tk+1, σ(tk+1))

(7.9)
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where K is an appropriate state feedback controller. The union of time intervals over

which the communication occurs is represented by ∪∞k=0[σ(tk), tk+1). The remaining intervals

represent the time intervals over which the feedback does not evolve (i.e., is constant to its

value at the switching times instants tk+1) due to the absence of local information. The

time sequence {t1, t2, t3, . . .} characterizes the time when the communication failure occurs

and suppose that there is no accumulation points. The duration of a communication failure

equal to µ(tk) which is assumed to be variable and bounded, ∀k ∈ N∗. With the control law

(7.9), the dynamical system (7.7) is equivalent to

ẋ(t) =


(A+BK)x(t), if t ∈ ∪∞k=0[σ(tk), tk+1)

Ax(t) +BKx(tk+1), if t ∈ ∪∞k=0[tk+1, σ(tk+1))

(7.10)

Since the feedback does not evolve when local information is not available, the study of

system (7.10) is not trivial. There exist previous works dealing with the stabilization

of linear systems under variable sampling period. The approaches are usually based on

linear matrix inequalities, derived using Lyapunov-Razumikhin stability conditions, which

are rather complex to verify [134]. To reduce the conservatism and facilitate the analysis, the

problem (7.10) is converted to switched system on time scale T = ∪∞k=0[σ(tk), tk+1], such that,

during the communication failures, only the behavior of the solution of (7.10) at the discrete

times {tk+1} and {σ(tk+1)} is considered. The second subsystem of (7.10) is discretized at

times {tk+1}k∈N as follows (for more detail see [135]).

For t ∈ [tk+1, σ(tk+1)), k ∈ N, we have

ẋ = Ax(t) +Bu(tk+1) (7.11)

such that u(tk+1) = Kx(tk+1) is constant on the time interval [tk+1, σ(tk+1)). The solution

of (7.11) is given by

x(t) = eA(t−tk+1)
[
x(tk+1)+A−1Bu(tk+1)

]
−A−1Bu(tk+1)

= eA(t−tk+1)
[
I + A−1BK

]
x(tk+1)− A−1BKx(tk+1)
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At time t = tk+1, the ∆-derivative of x(t) is given by

x∆(tk+1) =
x(σ(tk+1))− x(tk+1)

σ(tk+1)− tk+1

=

(
eAµ(tk) − I
µ(tk)

)
[I + A−1BK]x(tk+1).

By using the above development, the closed-loop system (7.10) is modelled as the following

switched linear system

x∆ =


(A+BK)x(t), t ∈ ∪∞k=0[σ(tk); tk+1)

(
eAµ(t) − I
µ(t)

)
(I + A−1BK)x(t), t ∈ ∪∞k=0{tk+1}

(7.12)

on T = ∪∞k=0[σ(tk); tk+1], where the system commutes between a continuous-time linear

subsystem and a discrete-time linear subsystem during a period of time µ(t), which

corresponds to the interruption time of the control evolution. Notice that, the stability of

switched system (7.12) depend strongly on µ(t). The objective is to determine the maximum

time of interruption of communication to be respected in order to maintain stability of the

switched system.

7.3.2 Stability Criteria

In this subsection, the stability criteria is briefly presented to guarantee the stability of the

switched system (7.12) with respect to the duration of interruption of communication µ(t).

Consider the switched system (7.12), and suppose that the following assumptions are fulfilled

[121]:

i) The matrix control law K is determined such that (A + BK) is stable. Existence of

K is guaranteed since (A,B) is assumed stabilizable.

ii) The discrete subsystem is regressive for all µ(t) and can be Hilger stable or unstable.
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iii) Let τ(ti) = ti+1 − σ(ti) be the duration of each continuous-time subsystem, such that,

∀0 ≤ i ≤ k we have

‖e(A+BK)τ(ti)
[
I +

(
eAµ(ti) − I

)
(I + A−1BK)

]
‖ < 1 (7.13)

Then the switched system (7.12) is exponentially stable.

7.3.3 Extension to Dynamic Output-feedback

In practical applications for power systems, the full state vector is not available. Conse-

quently, it is desirable to adopt the dynamic output-feedback controller to directly use the

measured output signals for damping the oscillations. This type of controller can be defined

as

ẋk(t) = Akxk(t) +Bkuk(t) (7.14)

yk(t) = Ckxk(t) +Dkuk(t) (7.15)

where xk ∈ Rn is the controller states, Ak, Bk, Ck, Dk are an appropriate matrices to be

designed, uk and yk are the controller input and output, respectively. This controller yields

with (7.7) and (7.8) to the following closed loop matrix

Acl =

 A+BDkC BCk

BkC Ak

 (7.16)

where x̂T = [xT xTk ] is the augmented system states. Consider the case where

communication failure happens in control signal as is shown in Fig. 7.3, the augmented

system can be written as

˙̂x(t) =

 A 0

BkC Ak

 x̂(t) +

 B

0

u(t) (7.17)

yk(t) =
[
DkC Ck

]
x̂(t) (7.18)
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and can be reformulated on time scale T = ∪∞k=0[σ(ti), ti+1] as follow

˙̂x(t) =



 A+BDkC BCk

BkC Ak

 x̂(t), if t ∈ ∪∞k=0[σ(ti), ti+1)

 A 0

BkC Ak

 x̂(t) +

 B

0

u(ti+1), if t ∈ ∪∞i=0[ti+1, σ(ti+1))

(7.19)

which is equivalent to

˙̂x(t) =



 A+BDkC BCk

BkC Ak

 x̂(t), if t ∈ ∪∞k=0[σ(ti), ti+1)

 A 0

BkC Ak

 x̂(t) +

B
0

[DkC Ck

]
x̂(ti+1), if t ∈ ∪∞i=0[ti+1, σ(ti+1))

(7.20)

such that the controller yk(ti+1) =
[
DkC Ck

]
x̂(ti+1) is constant on [ti+1, σ(ti+1)). Similarly

to the above analysis, the system can be rewritten as follows

x̂∆(t) =



 A+BDkC BCk

BkC Ak

 x̂(t), if t ∈ ∪∞k=0[σ(ti), ti+1)


e


A 0

BkC Ak

µ(t)
−I

µ(t)


I+

 A 0

BkC Ak

−1 BDkC BCk

0 0

 x̂(t), if t ∈ ∪∞i=0{ti+1}

(7.21)

The stability criteria (7.22) at the bottom of next page can be formulated for the augmented

system with output-feedback controller and communication failures in the control signal.
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Figure 7.3: Block digram of communication failure in control signal.

Similarly, for case where a communication failure happens in the measurement signal, as

is shown in Fig. 7.4, the augmented system can be rewritten as follows

˙̂x(t) =

 A BCk

0 Ak

 x̂(t) +

 BDk

Bk

uk(t) (7.23)

y(t) =
[
C 0

]
x̂(t) (7.24)

such that y(ti+1) =
[
C 0

]
x̂(ti+1) is constant on time interval [ti+1, σ(ti+1)) when the

communication fails. Similarly, the switched system on time scale T = ∪∞i=0[σ(ti), ti+1] will

be

x̂∆(t) =



 A+BDkC BCk

BkC Ak

 x̂(t), if t ∈ ∪∞k=0[σ(ti), ti+1)


e


A BCk

0 Ak

µ(t)
−I

µ(t)


I +

A BCk

0 Ak

−1 BDkC 0

BkC 0

 x̂(t), if t ∈ ∪∞i=0{ti+1}

(7.25)

∥∥∥∥e
[
A+BDkC BCk

BkC Ak

]
τ(ti)

I +
(
e

[
A 0

BkC Ak

]
µ(ti)

− I
)(
I +

[
A 0

BkC Ak

]−1 [
BDkC BCk

0 0

])∥∥∥∥ < 1, ∀0 ≤ i ≤ k

(7.22)
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Figure 7.4: Block digram of communication failure in measurement signal.

Finally, the stability criteria (7.26) at the bottom of next page is formulated for the aug-

mented system with output-feedback controller and communication failure in measurement

signal.

7.4 Numerical Results

To verify and evaluate the accuracy of the developed stability conditions, a Single-Machine

Infinite Bus (SMIB) system and Kundur’s two-area systems are considered in this section.

Both systems are modified to have undamped inter-area modes.

7.4.1 Case Study I: SMIB Power System

In this subsection, a SMIB power system model is considered. As shown in Fig. 7.5, simple

power system model consists of a synchronous generator connected through two transmission

lines to an infinite bus that represents an approximation of a large system. More detail on

the dynamic equation can be found in chapter 3.3. The SMIB power system is considered to

demonstrate the idea and verify the resulting improvement. The parameters of the machine,

∥∥∥∥e
[
A+BDkC BCk

BkC Ak

]
τ(ti)

I +
(
e

[
A BCk
0 Ak

]
µ(ti)

− I
)(
I +

[
A BCk
0 Ak

]−1 [
BDkC 0
BkC 0

])∥∥∥∥ < 1, ∀0 ≤ i ≤ k (7.26)
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Figure 7.5: A single-machine infinite-bus power system.

excitation system, transformer and transmission lines are listed as follows

Xt = 0.1, Xl = 0.8, Re = 0, V∞ = 1.05∠0◦,

Xd = 2.5, Xq = 2.1, X ′d = 0.39, Vt = 1∠15◦,

T ′d0 = 9.6, H = 3.2, D = 0, ωs = 377,

TA = 0.02, KA = 100, V max
s = −V min

s = 0.05,

The above nonlinear model can be linearized around the nominal operating point and

expressed in the following fourth order state-space representation with state variables ∆δ,

∆ωr, ∆E ′q and ∆E ′fd.

A =



0 ωs 0 0

−K1

2H
−Dωs

2H
−K2

2H
0

−K4

T ′d0
0 − 1

K3T ′d0

1
T ′d0

−KAK5

TA
0 −KAK6

TA
− 1
TA


, B =



0

0

0

KA
TA


(7.27)

and K1–K6 are the well-known linearizion constants based on the system parameters.

Eigenvalue analysis shows that the open loop system has unstable complex eigenvalues of

+0.2423±7.6064i with a frequency of 1.21 Hz and damping of −3.18%. Using modal transfer,

the system is written into stable and unstable parts and the LQR state-feedback damping

controller is designed [50] to enhance the damping performance by regulating the exciter.
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Figure 7.6: Speed deviation of SMIB power system in case of ideal communication network.

Figure 7.7: Stability criteria for SMIB power system.
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Figure 7.8: Speed deviation of closed loop and open loop SMIB power system in case of
ideal and non-ideal (τ = 0.1 and µ = 0.23) communication network.

K = [−0.22 7.75 − 0.28 − 0.0006] (7.28)

For ideal communications network, the performance of the closed-loop system is shown in Fig.

7.6. First, it is assumed that the perfect communication time is τ = 0.1 s. Then using the

developed stability criteria (7.13), two separate intervals can be found analytically (without

simulation) for the maximum time of interruptions µ as shown in Fig 7.7. In Table 7.1, these

intervals are compared with the real values using trial and error simulations. Compared to

the developed stability criteria, excessive effort is needed to identify the unstable regions.

From Table 7.1 it can be seen that the stability condition is conservative but reasonably

characterizes the limits. The system response for the case of perfect communication time

τ = 0.1 s and communication failure µ = 0.23 s is also shown in Fig 7.8. It can be seen

that the performance of damping controller with non-ideal communication network has been

degraded significantly. In practice, in case of violation of these intervals (e.g., having a longer

communication failure), these stability intervals could be used as thresholds for activating

remedial action [90].
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Table 7.1: Communication Failure Duration for Stable SMIB System.

First Interval µ Second Interval µ

Stability Condition (0, 0.24) (0.92, 1.02)

Simulation (Linear System) (0, 0.48) (0.8, 1.18)

Simulation (Nonlinear System) (0, 0.42) (0.85, 1.12)

Figure 7.9: A two-area Kundur power system.

7.4.2 Case Study II: Kundur’s Two-Area System

In this subsection, the developed stability condition is applied to a modified Kundur two-

area system [4], shown in Fig.7.9. Area 1 is transferring 550 MW of active power to area 2.

Generators are represented by a fourth-order model and equipped with a high-gain excitation

system. Generators G1 and G3 are equipped with IEEE standard speed-based PSS to damp

the local modes. More details of the parameters can be found in [4].

The modal analysis summarized in Table 7.2 show that the system without a controller

has a negatively damped inter-area mode at 0.68 Hz with damping ratio of −2.52% and

two damped local modes. The generator supplementary excitation control and speed

deviation are chosen as candidates for actuator and measurement signals of WADC system,

respectively. G1 is chosen as the nominal actuator for damping controller. Based on the

controllability measure, speed deviation of G3 is identified as the best candidate measurement

signals for the controller, as it has the highest geometric observability over the first critical

mode [24].

Hankel norm approximation [82] is used to obtain the reduced-order model where the

order of the model reduction can be determined by examining the Hankel singular values. The
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Table 7.2: Critical Modes of Two-Area System

Mode type
Without WADC With WADC

Freq. (Hz) Damping (%) Freq. (Hz) Damping (%)

Inter-area 0.68 -2.52 0.78 12.76

Local 1.16 6.64 1.17 6.75

Local 1.12 6.07 1.09 5.74
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Figure 7.10: Speed deviation of two-area Kundur power system in case of ideal
communication network.

linear model is reduced to a second-order model and the following output feedback controller

is designed using multi-objective optimization to meet or exceed 11% damping over all inter-

area and local modes, more details can be found in [24]. For ideal communication network,

the performance of the closed loop system with ideal communication is shown in Fig. 7.10.

Assuming the maximum time of perfect communication as τ = 0.2 s and using the

developed stability criteria (7.22), one interval can be found analytically (without any

simulations) for the maximum time of interruption in control signal as shown in Fig 7.11.The

system response for the case of perfect communication time τ = 0.2 s and communication

failure µ = 0.39 s is also shown in Fig 7.12. It can be seen that the performance of damping

controller with non-ideal communication network has been degraded significantly. In Table

7.3, these intervals are compared with the real values using try and error simulation. It can

be seen that the stability condition is again conservative but reasonably characterizes the

limit.
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Figure 7.11: Stability criteria for two-area Kundur power system.
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Figure 7.12: Speed deviation of closed loop and open loop two-area Kundur power system
in case of ideal and non-ideal (τ = 0.2 and µ = 0.39) communication network.

Table 7.3: Communication Failure Duration for Kundur’s two-area system

First Interval µ Second Interval µ

Stability Condition (0.0, 0.16) (1.60, 1.65)

Simulation (Linear System) (0.0, 0.41) (1.50, 1.81)

Simulation (Nonlinear System) (0.0, 0.40) (1.53, 1.76)
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7.5 Summary

In this research, the problem for wide area control of power systems with intermittent

information transmission is analyzed using time scale theory. This problem is formulated

as the stability of a switched linear system which consists of a set of linear continuous-time

and discrete-time systems on a particular time scale. Using the developed stability criteria,

the upper limit on the communication failure time has been computed which guarantees the

stability of the system in case of state-feedback and output-feedback controllers. Numerical

results show the effectiveness of the proposed scheme. It is also found that the results based

on the linear model are reasonably accurate for the nonlinear system. Further research is

needed to model the stochastic process of intermittent transmission and random packet loss.
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Chapter 8

Conclusion

In this dissertation, decentralized, fault-tolerant and coordinated wide-area controllers have

been developed to improve the reliability of power systems. At the very beginning, this

dissertation introduced the basic introduction that describes the previous works, motivations

and contributions.

Generally, decentralized controllers are the only feasible solution for large-scale power

systems as centralized control architectures are impractical or hard to implement. Hence,

we have developed a method to design the optimal H2 decentralized controller for a class

of spatially invariant systems. Using Parseval’s identity, the optimal H2 decentralized

control problem is transformed into an infinite number of model matching problems with

a specific structure that can be solved efficiently. In addition, the explicit formula of the

decentralized controller is derived for the first time. Moreover, a constructive procedure to

obtain the state-space representation of the decentralized controller which is more convenient

for implementation. An illustrative numerical example is presented.

Most of the new generation resources have limited capability and can contribute to

grid stability within a narrow range depending on operating conditions. Therefore, a new

approach to design supplementary damping controllers by taking into account the effects of

saturation limits is also introduced. The problem of determining the optimal estimation of

DA for SMIB power in the presence of saturation on the control signal is considered. To

increase the region of stability, state-feedback and output-feedback controllers are designed

to enlarge the guaranteed DA. Consequently, the enlargement of the DA of the post-fault
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system effectively increases the CCT, which is an important measure of transient stability.

Detailed dynamic simulation results demonstrate that the proposed controllers use the

available control range to effectively enlarge the DA, improve the damping and enhance

the stability in the presence of hard saturation.

This research has also presented a new fault-tolerant WADC such that nominal controller

remains operational after faults in the actuator. Geometric measures of controllability and

observability were used to select the most effective measurements and control locations for

WADC. The design of nominal WADC carried out using multi-objectiveH2/H∞ optimization

with pole placement region to achieve high damping performance. The problem of actuator

faults is addressed by inserting VAs between the faulty plant and nominal WADC to re-

route the control signals to other healthy actuators and recover the performance of fault

free system without the need to retune the WADC. The design of the proposed method was

analyzed in two detailed case studies. Simulation results demonstrate that the proposed

approach provides sufficient damping when the system suffers from actuator failures.

Further, a new approach to designing a fault-tolerant WADC using modal-based control

allocation is proposed to coordinate a group of actuators to optimally contribute to damping

of inter-area oscillations. In our proposed method when an actuator fails or is unavailable,

the supervisory MB-CA distributes the control signals to the remaining healthy actuators

based on the effects on modal system, the desired control action and actuator constraints.

The MB-CA is designed to manage actuator failures and constraints without redesigning

the nominal WADC. The feasibility and performance of the proposed method is analyzed

using the WECC system. This approach has also been further developed to sparse MB-

CA where supervisory controller only communicates with necessary actuators to achieve the

desired performance. The proposed approaches are applied to a modified Western Electricity

Coordinating Council (WECC) system with high levels of renewables to verify the feasibility

on a complex power system.

In addition, the problem for wide area control of power systems with intermittent

information transmission is analyzed using time scale theory. This problem is formulated

as the stability of a switched linear system which consists of a set of linear continuous-time

and discrete-time systems on a particular time scale. Using the developed stability criteria,
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the upper limit on the communication failure time has been computed which guarantees the

stability of the system in case of state-feedback and output-feedback controllers. Numerical

results show the effectiveness of the proposed scheme. It is also found that the results based

on the linear model are reasonably accurate for the nonlinear system.

The previous communication model is not complex enough to truly capture all the effects

on the stability of power system, however, it can provide enough information to better

understand the effect on stability. Future work will include considering more realistic models

for stochastic process of intermittent transmission and random packet loss.
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[26] Horacio Silva-Saravia, Héctor Pulgar-Painemal, and Juan Manuel Mauricio. Flywheel

energy storage model, control and location for improving stability: The chilean case.

IEEE Transactions on Power Systems, 32(4):3111–3119, 2017. 5, 30

[27] Reza Yousefian, Rojan Bhattarai, and S Kamalasadan. Direct intelligent wide-area

damping controller for wind integrated power system. In Power and Energy Society

General Meeting (PESGM), 2016, pages 1–5. IEEE, 2016. 5, 30

[28] L Jiang, W Yao, QH Wu, JY Wen, and SJ Cheng. Delay-dependent stability for load

frequency control with constant and time-varying delays. IEEE Transactions on Power

Systems, 27(2):932–941, 2012. 6, 51

133



[29] Wei Zhang, Michael S Branicky, and Stephen M Phillips. Stability of networked control

systems. IEEE Control Systems, 21(1):84–99, 2001. 6, 109

[30] Jing Wu and Tongwen Chen. Design of networked control systems with packet

dropouts. IEEE Transactions on Automatic control, 52(7):1314–1319, 2007. 6, 109

[31] Yun-Bo Zhao, Guo-Ping Liu, and David Rees. Design of a packet-based control

framework for networked control systems. IEEE Transactions on Control Systems

Technology, 17(4):859–865, 2009. 6, 109

[32] M Ehsan Raoufat and S. M. Djouadi. Optimal h2 decentralized control of cone causal

spatially invariant systems. In 2018 American Control Conference (ACC), pages 1–7,

2018. 10

[33] Aditya Mahajan, Ashutosh Nayyar, and Demosthenis Teneketzis. Identifying tractable

decentralized control problems on the basis of information structure. In Conf. on

Comm., Control, and Computing, pages 1440–1449, 2008. 11

[34] Aditya Mahajan and Demosthenis Teneketzis. Optimal performance of networked

control systems with nonclassical information structures. SIAM Journal on Control

and Optimization, 48(3):1377–1404, 2009. 11

[35] Ashutosh Nayyar, Aditya Mahajan, and Demosthenis Teneketzis. Optimal control

strategies in delayed sharing information structures. IEEE Trans. on Automatic

Control, 56(7):1606–1620, 2011. 11

[36] Bassam Bamieh, Fernando Paganini, and Munther A Dahleh. Distributed control

of spatially invariant systems. IEEE Trans. on Automatic Control, 47(7):1091–1107,

2002. 11

[37] Michael C Rotkowitz. Parametrization of all stabilizing controllers subject to any

structural constraint. In IEEE Conf. on Decision and Control (CDC), pages 108–113,

2010. 11

134



[38] Michael Rotkowitz and Sanjay Lall. A characterization of convex problems in

decentralized control. IEEE Trans. on Automatic Control, 51(2):274–286, 2006. 11

[39] Jong-Han Kim and Sanjay Lall. Explicit solutions to separable problems in optimal

cooperative control. IEEE Trans. on Automatic Control, 60(5):1304–1319, 2015. 11

[40] Petros G Voulgaris, Gianni Bianchini, and Bassam Bamieh. Optimal h2 controllers

for spatially invariant systems with delayed communication requirements. Systems &

Control Letters, 50(5):347–361, 2003. 12, 13, 14, 15, 18, 19, 23, 26

[41] Bassam Bamieh and Petros G Voulgaris. A convex characterization of distributed

control problems in spatially invariant systems with communication constraints.

Systems & Control Letters, 54(6):575–583, 2005. 12

[42] Seddik M Djouadi and Jin Dong. Duality of the optimal distributed control for spatially

invariant systems. In American Control Conf. (ACC), pages 2214–2219, 2014. 12

[43] Seddik M Djouadi and Jin Dong. Operator theoretic approach to the optimal

distributed control problem for spatially invariant systems. In American Control Conf.

(ACC), pages 2613–2618, 2015. 12

[44] Seddik M Djouadi and Jin Dong. On the distributed control of spatially invariant

systems. In IEEE Conf. on Decision and Control (CDC), pages 549–554, 2015. 12, 15

[45] Jin Dong. Stochastic and Optimal Distributed Control for Energy Optimization and

Spatially Invariant Systems. PhD thesis, University of Tennessee, 2016. 12

[46] PL Duren. Theory of hp spaces. mineola, 2000. 15
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A Controller Parameters

A.1 Controller parameters of case study I:

Ak =



−0.114 0.151 −0.015 −0.017 0.015 3.736

−0.164 −0.144 0.141 0.162 −0.140 −35.39

−0.112 0.304 −1.296 −6.451 0.384 84.66

0.387 −0.999 6.298 −1.574 0.974 251.2

−0.145 0.395 −0.477 0.959 −0.993 −159.7

−24.44 56.62 53.64 −117.9 128.6 −14690


BT
k =

0 0 −0.388 0.605 −0.509 50.710

0 0 0.044 0.496 0.063 −109.30


Ck =

[
0 0 −0.206 −0.238 0.205 51.871

]
M2 =

[
−36.721 −24.778 −9.784 −67.436 1.073 24.891

]
M3 =

[
−0.035 −8.886 −9.185 −1.246 56.375 −9.090

]
M4 =

[
0.137 −0.163 −0.038 0.198 −1.161 1.085

]
× 106
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A.2 Controller parameters of case study II:

Ak =



−0.229 −0.180 0.045 0.023 0.021 −0.035 0.058 −15.30

0.005 −2.362 −0.278 −0.144 −0.129 0.214 −0.358 94.51

0.118 0.323 −0.893 −5.08 −0.815 0.525 −0.573 143.8

−0.001 0.031 4.942 −0.904 −0.326 0.758 −0.407 98.28

−0.069 −0.197 0.948 0.135 −0.671 4.397 −0.751 185.5

−0.018 0.006 −0.531 −0.680 −4.322 −0.709 0.632 −173.2

−0.136 −0.390 0.564 0.013 −0.358 0.302 −1.158 210.0

−20.88 −79.98 142.2 65.18 −165.10 175.7 −163.50 −35200


BT
k =

0 0 0.521 0.29 −0.376 0.391 −0.750 −289.4

0 0 0.518 −0.29 −0.237 −0.534 −0.456 99.48


Ck =

[
0 0 −0.553 −0.286 −0.258 0.427 −0.715 188.5

]
M2 =

[
612.755 −528.161 531.363 450.957 259.774 −264.1 −17.325 −21.36

]
M3 =

[
−1.936 0.228 −1.402 −0.142 −1.107 0.149 −0.039 0.203

]
× 103

M4 =
[
−0.679 0.174 −0.609 −1.142 −0.443 −0.026 −0.015 0.019

]
× 106
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