677 research outputs found

    Performance study of synthetic AER generation on CPUs for Real-Time Video based on Spikes

    Get PDF
    Address-Event-Representation (AER) is a neuromorphic interchip communication protocol that allows for real-time virtual massive connectivity between huge number neurons located on different chips. When building multi-chip muti-layered AER systems it is absolutely necessary to have a computer interface that allows (a) to read AER interchip traffic into the computer and visualize it on screen, and (b) convert conventional frame-based video stream in the computer into AER and inject it at some point of the AER structure. This is necessary for test and debugging of complex AER systems. Previous work presented several software methods for converting digital frames into AER format. Those methods were not feasible for real-time conversion those days because the processor performance was insufficient. Nowadays, Multi-core processor architectures and cache hierarchies have evolved and the performance is much better than Pentium 4 Mobile of those years. In this paper we study frame-to-AER methods for realtime video applications (40ms per frame) using modern processor architectures, compilers, and processors oriented for stand-alone applications (mini-PC processors

    Decoder Hardware Architecture for HEVC

    Get PDF
    This chapter provides an overview of the design challenges faced in the implementation of hardware HEVC decoders. These challenges can be attributed to the larger and diverse coding block sizes and transform sizes, the larger interpolation filter for motion compensation, the increased number of steps in intra prediction and the introduction of a new in-loop filter. Several solutions to address these implementation challenges are discussed. As a reference, results for an HEVC decoder test chip are also presented.Texas Instruments Incorporate

    A 249-Mpixel/s HEVC Video-Decoder Chip for 4K Ultra-HD Applications

    Get PDF
    High Efficiency Video Coding, the latest video standard, uses larger and variable-sized coding units and longer interpolation filters than [H.264 over AVC] to better exploit redundancy in video signals. These algorithmic techniques enable a 50% decrease in bitrate at the cost of computational complexity, external memory bandwidth, and, for ASIC implementations, on-chip SRAM of the video codec. This paper describes architectural optimizations for an HEVC video decoder chip. The chip uses a two-stage subpipelining scheme to reduce on-chip SRAM by 56 kbytes-a 32% reduction. A high-throughput read-only cache combined with DRAM-latency-aware memory mapping reduces DRAM bandwidth by 67%. The chip is built for HEVC Working Draft 4 Low Complexity configuration and occupies 1.77 mm[superscript 2] in 40-nm CMOS. It performs 4K Ultra HD 30-fps video decoding at 200 MHz while consuming 1.19 [nJ over pixel] of normalized system power.Texas Instruments Incorporate

    Scalability of parallel video decoding on heterogeneous manycore architectures

    Get PDF
    This paper presents an analysis of the scalability of the parallel video decoding on heterogeneous many core architectures. As benchmark, we use a highly parallel H.264/AVC video decoder that generates a large number of independent tasks. In order to translate task-level parallelism into performance gains both the video decoder and the architecture have been optimized. The video decoder was modified for exploiting coarse-grain frame-level parallelism in the entropy decoding kernel which has been considered the main bottleneck. Second, a heterogeneous combination of cores is evaluated for executing different type of tasks. Finally, an evaluation of the memory requirements of the whole system has been carried out. Experiments conducted using a trace-driven simulation methodology shows that the evaluated system exhibits a good parallel scalability up to 68 cores. At this point the parallel video decoder is able to decode more than 200 HD frames per second using simple low power processors.Postprint (published version

    Multimedia terminal system-on-chip design and simulation

    Get PDF
    This paper proposes a design approach based on integrated architectural and system-on-chip (SoC) simulations. The main idea is to have an efficient framework for the design and the evaluation of multimedia terminals, allowing a fast system simulation with a definable degree of accuracy. The design approach includes the simulation of very long instruction word (VLIW) digital signal processors (DSPs), the utilization of a device multiplexing the media streams, and the emulation of the real-time media acquisition. This methodology allows the evaluation of both the multimedia algorithm implementations and the hardware platform, giving feedback on the complete SoC including the interaction between modules and conflicts in accessing either the bus or shared resources. An instruction set architecture (ISA) simulator and an SoC simulation environment compose the integrated framework. In order to validate this approach, the evaluation of an audio-video multiprocessor terminal is presented, and the complete simulation test results are reported

    Evaluation of parallel H.264 decoding strategies for the Cell Broadband Engine

    Get PDF
    How to develop efficient and scalable parallel applications is the key challenge for emerging many-core architectures. We investigate this question by implementing and comparing two parallel H.264 decoders on the Cell architecture. It is expected that future many-cores will use a Cell-like local store memory hierarchy, rather than a non-scalable shared memory. The two implemented parallel algorithms, the Task Pool (TP) and the novel Ring-Line (RL) approach, both exploit macroblock-level parallelism. The TP implementation follows the master-slave paradigm and is very dynamic so that in theory perfect load balancing can be achieved. The RL approach is distributed and more predictable in the sense that the mapping of macroblocks to processing elements is fixed. This allows to better exploit data locality, to overlap communication with computation, and to reduce communication and synchronization overhead. While TP is more scalable in theory, the actual scalability favors RL. Using 16 SPEs, RL obtains a scalability of 12x, while TP achieves only 10.3x. More importantly, the absolute performance of RL is much higher. Using 16 SPEs, RL achieves a throughput of 139.6 frames per second (fps) while TP achieves only 76.6 fps. A large part of the additional performance advantage is due to hiding the memory latency. From the results we conclude that in order to fully leverage the performance of future many-cores, a centralized master should be avoided and the mapping of tasks to cores should be predictable in order to be able to hide the memory latency

    A QHD-capable parallel H.264 decoder

    Get PDF
    Video coding follows the trend of demanding higher performance every new generation, and therefore could utilize many-cores. A complete parallelization of H.264, which is the most advanced video coding standard, was found to be difficult due to the complexity of the standard. In this paper a parallel implementation of a complete H.264 decoder is presented. Our parallelization strategy exploits function-level as well as data-level parallelism. Function-level parallelism is used to pipeline the H.264 decoding stages. Data-level parallelism is exploited within the two most time consuming stages, the entropy decoding stage and the macroblock decoding stage. The parallelization strategy has been implemented and optimized on three platforms with very different memory architectures, namely an 8-core SMP, a 64-core cc-NUMA, and an 18-core Cell platform. Evaluations have been performed using 4kx2k QHD sequences. On the SMP platform a maximum speedup of 4.5x is achieved. The SMP-implementation is reasonably performance portable as it achieves a speedup of 26.6x on the cc-NUMA system. However, to obtain the highest performance (speedup of 33.4x and throughput of 200 QHD frames per second), several cc-NUMA specific optimizations are necessary such as optimizing the page placement and statically assigning threads to cores. Finally, on the Cell platform a near ideal speedup of 16.5x is achieved by completely hiding the communication latency.EC/FP7/248647/EU/ENabling technologies for a programmable many-CORE/ENCOR

    SIMD based multicore processor for image and video processing

    Get PDF
    制度:新 ; 報告番号:甲3602号 ; 学位の種類:博士(工学) ; 授与年月日:2012/3/15 ; 早大学位記番号:新595

    On the design of multimedia architectures : proceedings of a one-day workshop, Eindhoven, December 18, 2003

    Get PDF
    corecore