
Decoder Hardware Architecture for HEVC

Mehul Tikekar, Chao-Tsung Huang, Chiraag Juvekar, Vivienne Sze, and Anantha
Chandrakasan

Abstract This chapter provides an overview of the design challenges faced in the
implementation of hardware HEVC decoders. These challenges can be attributed to
the larger and diverse coding block sizes and transform sizes, the larger interpola-
tion filter for motion compensation, the increased number of steps in intra prediction
and the introduction of a new in-loop filter. Several solutions to address these im-
plementation challenges are discussed. As a reference, results for an HEVC decoder
test chip are also presented.

Acknowledgements The authors gratefully acknowledge the support of Texas Instruments for
sponsoring the HEVC decoder test chip project and Taiwan Semiconductor Manufacturing Com-
pany (TSMC) University Shuttle program for manufacturing the chip.

1 Introduction

HEVC presents several new challenges for a hardware decoder implementation.
HEVC’s decoding complexity is found to be between 1.4× – 2× of H.264/AVC [1]
when measured in terms of cycle count for software. In hardware, however, the
increased complexity of HEVC entails significant increase in hardware cost over
traditional H.264/AVC decoders, both at the top-level of the video decoder, and in
the low-level processing blocks. Some of the challenges are listed below.

• The diverse sizes of Coding Tree Units (CTU), Coding Units (CU), Prediction
Units (PU) and Transform Units (TU) require complex state machines to control
the system pipeline and data paths in the individual processing blocks.

Mehul Tikekar · Chiraag Juvekar · Vivienne Sze · Anantha Chandrakasan
Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA

Chao-Tsung Huang
National Tsing Hua University, Taiwan

1

2 Mehul Tikekar et al.

• The largest CTU (64×64) is 16× larger than the H.264/AVC macroblock (16×16),
which means that the memories in pipeline stages need to be proportionately
larger.

• The inverse transform block is considerably more complicated due to the large
TU sizes and higher precision of the transform matrix. The largest TU size
(32×32) requires a 16× larger transpose memory.

• HEVC uses an 8-tap luma interpolation filter for motion compensation as com-
pared to the 6-tap filter in H.264/AVC. This increases the bandwidth required
from the decoded picture buffer.

The architecture of the video decoder depends strongly on parameters such as
the required throughput (i.e. pixel rate defined by the level limit in the HEVC spec-
ification), technology node, area and power budgets, control and data interface to
the external world and memory technology used for the decoded picture buffer.
In this chapter, we describe the architecture for an HEVC decoder for 4K Ultra
HD decoding at 30 fps designed in 40 nm CMOS technology with external DDR3
memory for the decoded picture buffer. The decoder operates at 200 MHz and is
frequency-scalable for lower resolutions and picture rates. Along with techniques
used in H.264/AVC decoders, such as frame-level parallelism [2] and reference
frame compression [3], and general VLSI techniques such as pipelining and dy-
namic voltage and frequency scaling, HEVC decoders can benefit from architectural
techniques like:

• Variable-size pipelining to reduce on-chip SRAM and handle different CTU
sizes.

• Unified processing engines for prediction and transform to manage the large di-
versity of PU and TU sizes.

• High-throughput motion compensation (MC) cache to address increased DRAM
requirements for the longer interpolation filters.

2 System Pipeline

The granularity of the top-level pipeline is affected by processing dependencies be-
tween pixels. For example, computing the luma residue at any pixel location requires
all transform coefficients in the TU that contains the pixel. Hence, it is not possible
for the inverse transform block to use, say, a 4×4 pixel pipeline; the pipeline gran-
ularity must be at least one TU in size. In general, it is desirable to minimize the
pipeline granularity to reduce processing latency and memory sizes.

The largest CTU needs 6 kB to store its luma and chroma pixels with 8-bit pre-
cision. The transform coefficients and residue are computed with higher precision
(16-bit and 9-bit, respectively) and require larger storage accordingly. Other infor-
mation such as intra-prediction mode, inter-prediction motion vectors, etc. needs to
be stored at a 4×4 granularity. All of these require large pipeline buffers in SRAM
and several techniques can be used to reduce their size as described in this chapter.

Decoder Hardware Architecture for HEVC 3

Line buffers are required to handle data dependencies between CTUs in the verti-
cal direction. For example, the deblocking filter needs to store 4 rows of luma pixels
and 2 rows of chroma pixels (per chroma component) due to the deblocking filter’s
support. The size of these buffers is proportional to the width of the picture. Fur-
ther, if the picture is split into multiple tile rows, each tile row needs a separate line
buffer if the rows are to be processed in parallel. Tiles also need column buffers to
handle data dependencies between them in the horizontal direction. Traditionally,
line buffers have been implemented using on-chip SRAM. However, for very large
picture sizes, it may be necessary to store them in the denser off-chip DRAM. This
results in an area and power trade-off as communicating to the off-chip DRAM takes
much more power.

Also, off-chip DRAM is used most commonly to store the decoded picture
buffer. The variable latency to the off-chip DRAM must be considered in the system
pipeline. In particular, buffers are needed between processing blocks that talk to the
DRAM to accommodate the variable latency. Motion compensation makes the most
number of accesses to the external DRAM and a motion compensation cache is typ-
ically used to reduce the number of accesses. With a cache, the best-case latency
for a memory access is determined by a cache hit and it can be as low as one cycle.
However, the worse-case latency, determined by a cache miss, remains more or less
unchanged thus increasing the overall variability seen by the prediction block.

To summarize, the top-level system pipeline is affected by:

1. Processing dependencies
2. Large CTU sizes
3. Large line buffers
4. Off-chip DRAM latency

2.1 Variable-sized Pipeline Blocks

Compared to the all-intra or all-inter macroblocks in H.264/AVC, the Coding Tree
Units (CTU) in HEVC may contain a mix of inter and intra-coded Coding Units.
Hence, it is convenient to design the pipeline granularity to be equal to the CTU
size. If the pipeline buffers are implemented as multi-bank SRAM, the decoder can
be made power-scalable for smaller CTU sizes by shutting down the unused banks.
However, it is also possible to use the unused banks and increase the pipeline gran-
ularity beyond the CTU size. For example, a CTU-adaptive pipeline granularity
shown in Table 2.1 is employed by [4].

The Variable-sized Pipeline Block (VPB) is as tall as the CTU but its width is
fixed to 64 for a unified control flow. Also, by making the VPB larger than the
CTU (for CTU 32×32 and 16×16), motion compensation can predict a larger block
of luma pixels before predicting the chroma pixels. This reduces the number of
switches between luma and chroma memory accesses which, as explained later in
Section 6, can have benefits on the DRAM latency.

4 Mehul Tikekar et al.

Table 1 CTU-adaptive pipeline granularity

Coding Tree Unit Variable-sized Pipeline Block
(CTU) (VPB)
64×64 64×64
32×32 64×32
16×16 64×16

2.2 Split System Pipeline

To deal with the variable latency of the cache+DRAM memory system, elastic
pipelining can be used between the entropy decoder, which sends read requests to
the cache, and prediction, which reads data from the cache. As a result, the system
pipeline can be broken into two groups. The first group contains the entropy decoder
while the second contains inverse transform, prediction and the subsequent in-loop
filters. This scheme is shown in Fig. 1.

Line Buffer for
Entropy Decoder

Coeff In-loop
Filters

MC
Cache

Rec
DMA

Ref Pixels

Line Buffer for
Prediction and In-loop Filters

Line Buffers

ResidueInverse
Transform Prediction

MV Info Group II

Memory Interface Arbiter

Top
Control

ColMV

ColMV
DMA

Group I

Entropy
Decoder

MV
Dispatch

VPB/Top Info

Pixel flow

Info flow

SRAM

Processing
Engine

DMA flow

Legend

Fig. 1 System pipelining for HEVC decoder. Coeff buffer saves 20 kB of SRAM by TU pipelining.
Connections to Line Buffers are omitted in the figure for clarity (see Fig. 3 for details).

Entropy decoder uses collocated motion vectors from decoded pictures for mo-
tion vector prediction. A separate pipeline stage, ColMV DMA is added prior to
entropy decoder to read collocated motion vectors from the DRAM. This isolates
entropy decoder from the variable DRAM latency. Similarly, an extra stage, recon-
struction DMA, is added after the in-loop filters in the second pipeline group to
write back fully reconstructed pixels to DRAM. Processing engines are pipelined
with VPB granularity within each group as shown in Fig. 2. Pipelining across the
groups is explained next.

Decoder Hardware Architecture for HEVC 5

ColMV DMA
Entropy Decoder

MV Dispatch

0 1 2 3
0 1 2

0 1 2 3
0 1 2

0 1
0

Accommodate MC Cache
Latency

Inverse Transform
Prediction

Deblock
REC DMA

Variable-size
Pipeline Block (VPB)Elastic pipelining

using Coeff buffer
as a 2-TU FIFO

0 1 2 3 4

G
ro

u
p

 I
G

ro
u

p
 II

Fig. 2 Split system pipeline to address variable DRAM latency. Within each group, variable-sized
pipeline block-level pipelining is used.

The entropy decoder must send residue coefficients and transform information
such as quantization parameter and TU size to the inverse transform block. As
residue coefficients use 16-bit precision, 12 kB of SRAM is needed for luma and
chroma coefficients of one VPB. For full pipelining, storage for two VPBs is needed
so that entropy decoder can write coefficients and inverse transform can read coeffi-
cients of the previous VPB simultaneously. Thus, VPB pipelining would need 24 kB
of SRAM. But this can be avoided by using the fact that the largest TU size is 32×32
(a 64×64 CU must split its transform quadtree at least once). Hence, it is possible
to use a 2-TU buffer instead. The entropy decoder writes to one TU while inverse
transform reads from the previous TU. This buffer requires only 4 kB, thus saving
20 kB of SRAM.

In the first pipeline group, a line buffer is used by entropy decoder for storing
prediction information of upper row VPBs. In the second pipeline group, the 9-bit
residues are passed from inverse transform to prediction using 2 VPB-sized SRAMs
in ping-pong configuration. (Inverse transform writes one VPB to one SRAM while
prediction reads the previous VPB from the other SRAM. When both modules are
finished processing their respective VPBs, the two SRAMs switch roles.) Prediction,
in-loop filters and reconstruction DMA communicate using 3 VPB-sized SRAMs in
a rotating buffer configuration as shown in Fig. 3. Another line buffer is used to
communicate pixels and parameters across VPB rows. The line buffer must store:

• 4 luma and 2 chroma rows (pre-deblocking) for deblocking filter. Of these, 1
luma and 1 chroma rows are also used as top neighbor pixels for intra prediction.

• 1 luma and 1 chroma rows (post-deblocking) for SAO filter

6 Mehul Tikekar et al.

• Prediction and transform parameters such as prediction mode, motion vectors,
reference picture indices, intra-prediction mode and quantization parameter to
determine deblocking filter parameters

• SAO parameters

To reduce the area of the line buffer, a single-port SRAM is used and requests
from prediction, in-loop filters and reconstruction DMA are arbitrated. The access
patterns of the three modules to the SRAM are designed to minimize the amount of
collisions and the arbitration scheme gives higher priority to the deblocking filter as
it has a lower margin in the cycle budget. This minimizes the performance penalty
of the SRAM sharing.

1 VPB
SRAM

Prediction In-loop
Filters

Rec
DMA

SRAM ArbiterInter ref pixels

DRAM
Write

Intra ref pixels

Line buffer

Rotating Pipeline Buffer (8bits/pixel)

16

1 VPB
SRAM

1 VPB
SRAM

Inverse
Transform

Ref
Pixel

1 VPB
SRAM

1 VPB
SRAM

4 Ping-pong Residue
Buffer (9bits/pixel)

Coeff buffer Pipeline Group II

4 44

Fig. 3 Memory management in second pipeline group. A 2-VPB ping-pong and a 3-VPB rotating
buffer are used as pipeline buffers. A single-port SRAM is used for pixel linebuffer to save area
and access to it is arbitrated. Marked bus widths denote SRAM data width in pixels.

3 Entropy Decoding

HEVC uses a form of entropy coding called Context Adaptive Binary Arithmetic
Coding (CABAC) to perform lossless compression on the syntax elements [5].
Fig. 4 shows the top level architecture of a CABAC entropy decoder. The arithmetic
decoder decompresses the bitstream to generate a sequences of binary symbols
(bins). The context selection finite-state-machine (FSM) determines which prob-

Decoder Hardware Architecture for HEVC 7

ability should be read from the context memory based on the type of the syntax
element being processed, as well as the bin index, neighboring information (top
neighbor is read from a line buffer), and component (i.e., luma or chroma). When
the probability used to decode a bin is read from the context memory, it is referred
to as a regular coded bin; otherwise, a probability of 0.5 is assumed and the bin is
referred to as bypass coded. Bypass coded bins can be decoded much faster than
regular coded bins. After each regular coded bin is decoded, an updated context
with the updated probability estimate is sent back to the context memory. Finally,
the debinarization module maps the sequence of bins to a syntax element.

Arithmetic
Decoder Context

Memory

Context
Selection

FSM

De-
Binarization

Line
Buffer

probability

address

bin

bitstream

syntax elements

bin index

Top Info

Fig. 4 Top-level architecture for CABAC. Memories are shown with grey boxes.

The CABAC in HEVC was redesigned for higher throughput [6]. Specifically,
the CABAC in HEVC has fewer regular coded bins compared to H.264/AVC. In
addition, the context selection FSM is simplified by reducing dependencies across
consecutive states. Both the line buffer and context memory sizes are reduced. The
number of types of binarization has increased in order to account for the reduction in
regular coded bins, without coding loss. More details on this can be found in Chap.
[CABAC]. HEVC uses the same arithmetic decoder as H.264/AVC.

3.1 Implementation Challenges

The challenge with CABAC is that it inherently has a different workload than the
rest of the decoder. The workload of the entropy decoder varies based on bit-rate,
while the rest of the decoder varies based on pixel-rate. The workload of CABAC
can vary widely per block of pixels (i.e. CTU). Thus a high throughput CABAC is
needed to order to handle the peaks of the workload variation to prevent stalls in the
decoder pipeline. However, it is difficult to parallelize the CABAC due to its strong
data dependencies. This is particularly true at the decoder where the data dependen-
cies result in feedback loops. For H.264/AVC CABAC, decoders have throughput
on the order of hundreds of Mbin/sec versus up to Gbin/sec for encoders.

8 Mehul Tikekar et al.

3.2 Solutions

There are several approaches that have been explored to increase the throughput
of CABAC, which is dictated by the number of binary symbols it can decode per
second (bin-rate). One method is to pipeline the CABAC to reduce the critical path
delay [7]. However, the deeper the pipeline, the more stalls or more speculative
computations/branching required. Alternatively, multiple arithmetic decoders are
concatenated to decode multiple bins per cycle [8,9]. As the number of bins per cy-
cle increases, the number of speculative computations increases exponentially and
the critical path delay increases linearly. Finally, another approach is to decode a
variable number of bins per cycle, and assume that the most probable bins are de-
coded each cycle [10]. As the number of bins increases, the number of speculative
computations only increases linearly; however, the critical path delay also increases
linearly and the number of bins decoded per cycle increases less than linearly, which
results in lower bin-rate. More discussion on this can be found in [11]. To address
these challenges, the CABAC in HEVC minimizes dependencies across consecutive
bins, particularly for the residual coding, and has fewer regular coded bins in order
to reduce the amount of speculative computation required when using the pipelining
or multiple bins architectures. In addition, it also groups bypass bins to enable the
decoder to fully leverage that fast decoding of bypass coded bins [12].

To address the imbalance in workload between entropy decoding (Group I in
Fig. 2) and the rest of the decoder (Group II in Fig. 2), a very large buffer can be
inserted after the entropy decoder to average out the workload. Note that the stan-
dard constrains the workload of the entropy decoder at the frame level (using max
BinCountsInNalUnits) and across frames (using max bit-rate in the level limit); thus
using frame level buffering between the entropy coder and the rest of the decoder can
help to address this imbalance. This is commonly referred to as entropy decoupling.
However, this comes at the cost of an additional frame delay and increased memory
bandwidth. The memory bandwidth cost can be reduced if the intermediate values
are stored as binary symbols of the CABAC rather than the reconstructed syntax
elements [13]. An added advantage of having frame level buffering is that multiple
rows of CTU can be decoded in parallel, since all the decoded syntax elements for
the frame can be read from the buffer [14].

If latency cannot be tolerated, HEVC contains high level parallelism tools such
as slices, tiles and wavefront parallel processing, which enable multiple CABAC
decoders to operate in parallel on the same frame. However, there is no guarantee
that these features will be enabled by the encoder.

4 Inverse Transform and Dequantization

Dequantization scales up coefficients decoded by the entropy decoder and inverse
transform converts the scaled coefficients to residue pixels using a 2-D Inverse Dis-
crete Cosine Transform (IDCT) or a 2-D Inverse Discrete Sine Transform (IDST).

Decoder Hardware Architecture for HEVC 9

As compared to H.264/AVC, the HEVC inverse transform involves significant chal-
lenges for hardware implementation. This is the result of the following factors:

1. HEVC uses Transform Units (TUs) of size 4×4, 8×8, 16×16, and 32×32 pix-
els. This variety of TU sizes complicates the design of control logic as TUs of
different sizes take different number of cycles for processing.

2. Like H.264/AVC, the 2-D transforms in HEVC are separable into 1-D transforms
along the columns and rows. An N×N 2-D transform consists of N 1-D column
transforms and N 1-D row transforms, each of which can be viewed as the prod-
uct of an N×N transform matrix with N×1 input coefficients. The total number
of multiplications is thus, 2N3 or 2N per coefficient. Hence, the largest IDCT
in HEVC (32×32) takes 4× the number of multiplications per coefficient as
compared to the largest IDCT in H.264/AVC (8×8). Furthermore, the increased
precision in HEVC transforms doubles the cost of each multiplication. Hence,
HEVC transform logic has 8× the computational complexity of H.264/AVC.

3. An intermediate memory is needed to store the TU between the column and row
transforms operation. This memory must perform a transposition (i.e. columns
are written to it and rows are read out). Previous designs for H.264/AVC used reg-
ister arrays due to the small TU sizes. These do not scale very well to the higher
TU sizes of HEVC and one must look to denser memories such as SRAM to
achieve an area-efficient implementation. However, the higher density of SRAMs
comes at the cost of lower memory throughput and less flexibility in read-write
patterns.

A single-cycle 32-pt 1-D IDCT with Booth encoded shift-and-add multipliers
takes about 145 kgate of logic. For comparison, a complete 1080p H.264/AVC de-
coder can be built in 160 kgate [15]. Hence, aggressive optimizations that exploit
various properties of the transform matrix are necessary to achieve a reasonable
area. Also, a single-cycle 32-pt IDCT provides much higher throughput than what
is required for real-time operation. It is possible to reduce the area by computing
the DCT over multiple cycles using partial matrix multiplication. A 2 pixel/cycle
throughput at 200 MHz is sufficient for 4K Ultra HD decode at 30fps. The follow-
ing subsections describe such a design.

4.1 Top-level Pipelining

In general, two high-level architectures are possible for a 2 pixel/cycle inverse trans-
form [16]. The first one, shown in Fig. 5(a) uses separate stages for row and column
transforms. Each one has a throughput of 2 pixel/cycle and operates concurrently.
The dependency between the row and column transforms (all columns of the TU
must be processed before the row transform) means that the two stages must pro-
cess different TUs at the same time. The transpose memory must have one read and
one write port and hold two TUs - in the worst case, two 32×32 TUs. Also, the two
TUs would take different number of cycles to finish processing. For example, if a

10 Mehul Tikekar et al.

8×8 TU follows a 16×16 TU, the column transform must remain idle after process-
ing the smaller TU as it waits for the row transform to finish the larger one. It can
begin processing the next TU but managing several TUs in the pipeline at the same
time will require complex control logic to avoid stalls.

Column
Transform

Transpose
Memory

Row
TransformDequantize ResidueCoeffs

2 2 2 2 2

(a) Separate row and column transform stages

Transform

Transpose
Memory

Dequantize
Residue

Coeffs

row/column
select

4
4

4

4

(b) 1-D transform stage shared by row and column transform

Fig. 5 Possible high-level architectures for inverse transform with 2 pixel/cycle throughput. Bus-
widths are in pixels.

With these considerations, the second architecture, shown in Fig. 5(b) is pre-
ferred. This uses a single 4 pixel/cycle 1-D transform for both row and column
transform to achieve the desired 2 pixel/cycle 2-D transform throughput. The 1-D
transform works on a single TU at a time, processing all the columns first and then
all the rows. Hence, the transpose memory needs to hold only one TU and can be
implemented with a single port SRAM since row and column transforms do not
occur concurrently.

4.2 Transpose Memory

The transform block uses a 16-bit precision input for both row and column trans-
forms. The transpose memory must be sized for 32×32 TU which means a total
size of 16 × 32 × 32 = 16.4 kbit. In comparison, H.264/AVC decoder designs re-
quire a much smaller transpose memory - 16 × 8 × 8 = 1 kbit. A 16.4 kbit memory
with the necessary read circuit for the transpose operation takes up a lot of area
(125 kgate) when implemented with registers and multiplexers. Also, the register-
based transpose memory has a much higher throughput than required. SRAMs are
more area-efficient than registers and have a lower throughput, which makes them

Decoder Hardware Architecture for HEVC 11

a good choice for an optimized implementation. The main disadvantage of SRAMs
is that they are less flexible than registers. A register array allows reading and writ-
ing to arbitrary number of bits at arbitrary locations, although very complicated
read(write) patterns would lead to a large output(input) mux size. The SRAM read
or write operation is limited by the bit-width of its port. A single-port SRAM allows
only one operation, read or write, every cycle. Adding extra ports is possible at the
expense of significant area increase.

It is possible to implement the 4-pixel/cycle transpose memory using 4 single-
port banks of 4096 bits each with a port-width of 1 pixel. The pixels in a 32×32
TU are mapped to locations in the 4 banks as shown in Fig. 6. By ensuring that 4
adjacent pixels in any row or column sit in different SRAM banks, it is possible to
write along columns and read along rows by supplying different addresses to the 4
banks.

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0

0 0 0 0 1 1 1 0

8 8 8 8 9 9 9 0

16

0

0

1

9

0

0

0

0

0

0

2

10

24

32

016

24

32

016

24

32

016

24

32

017

25

33

017

25

33

017

25

33

017

25

33

018

26

34

3
2

p
ix

e
ls

32 pixels

0

0

0

Bank 0

Bank 1

Bank 2

Bank 3

0

0

7

15

023

31

39

120 120 120 120 121 121 121 121 122

Fig. 6 Mapping a 32×32 TU to 4 SRAM banks for transpose operation. The color of each pixel
denotes the bank and the number denotes the bank address.

After a 32-pt column transform is computed, the result is saved in a temporary
register and is written to the transpose SRAM over 8 cycles. At the same time, the 1-
D transform module processes the next column. This is shown in cycles 0−7 in Fig.
7(a), where the result of column 30 is written to the SRAM while the 1-D transform
module works on column 31. However, when the last column in a TU is processed,
the transform module must wait for it to be written to the SRAM before it can begin
processing the row. This results in a delay of 9 cycles for 32×32 TU. In general, for
an N×N TU, this delay is equal to N/4 + 1 cycles. This results in a pipeline stall of
1.75% to 25% cycles depending on the TU size. This stall can be avoided through

12 Mehul Tikekar et al.

the use of a row cache that stores the first N + 4 pixels in registers. As shown in Fig.
7(b), the row cache is read for the first 9 cycles of the row transforms while the last
column is being stored in the SRAM.

0 4 8 12 16 20

Transform

Transpose
SRAM

Column 31

Write Column 31 Read Row 0

Row 0Empty cycles

Write Column 30

24

Read
latency

Cycle

(a) Pipeline stall due to transpose SRAM delay for 32×32 TU

0 4 8 12 16 20

Transform

Transpose
SRAM

Column 31

Write Column 31 Read Row 1

Row 0

Write Column 30

24
Cycle

Row 1

Row
cache Read Row 0 R

W W

(b) Row caching to avoid stall

Fig. 7 Eliminate read/write with registers for an SRAM-based transpose memory

This transpose memory design using SRAM scales very well for lower through-
puts. A 2-pixel/cycle transpose memory would need 2 banks each with 512 entries
(16-bit/entry). For higher throughputs, one needs more banks each with fewer en-
tries. Such short SRAM banks have a larger area overhead of sense-amplifiers and
other read-out circuitry. For throughputs higher than 32-pixel/cycle, register based
transpose memory [17] is more area-efficient.

4.3 Inverse DCT Engine

The IDCT engine can be optimized by observing that the N-pt IDCT matrix has at
most N unique coefficients differing only in sign. This is also true of the matrices
obtained by even-odd decomposition of the IDCT matrix, such as the 16×16 matrix
of the 32-pt IDCT. This 256-element matrix contains 15 unique numbers: 90, 88, 85,
82, 78, 73, 67, 61, 54, 46, 38, 31, 22, 13, 4 (and their additive inverses). The matrix
is multiplied with the odd-indexed coefficients in the 32-pt IDCT. In a 4-pixel/cycle
case, only 2 of these inputs are available per cycle. So, it is enough to perform a
partial 2×16 matrix multiplication every cycle and accumulate the outputs over 8
cycles. In general, this would require 32 full multipliers and 32 lookup tables to
store the matrix. However, knowing that the matrix has only 15 unique numbers, we
can simply instantiate 15 constant multipliers with some negators and multiplexers

Decoder Hardware Architecture for HEVC 13

to implement the matrix multiplication. This is shown for the 4×4 odd matrix mul-
tiplication (Eq. 1) of the 8-pt IDCT in Fig. 8(b). The area savings are shown in Table
2.

[
y0 y1 y2 y3

]
=
[
u0 u1 u2 u3

]
89 75 50 18
75 −18 −89 −50
50 −89 18 75
18 −50 75 −89

 (1)

y0 y1 y2 y3

i

18
50
75
89

-50
-89
-18
75

75
18
-89
50

-89
75
-50
18

ui

LUT

MAC

(a) Generic implementation

Permute and
Negate

y0 y1 y2 y3

89 75 50 18

ui

i

ACC

MCM

(b) Exploiting unique operations

Fig. 8 4×4 matrix multiplication in Eq. (1) without and with unique operations

Matrix Area for generic Area exploiting Area
multiplication implementation unique operations savings

(kgates) (kgates)
4×4 10.7 7.3 32%
8×8 23.2 13.5 42%

16×16 46.7 34.4 26%

Table 2 Area reduction by exploiting unique operations

14 Mehul Tikekar et al.

4.4 Implementation Results

Breakdown of the post-synthesis logic area at 200 MHz clock frequency in 40 nm
CMOS is given in Table 3. The total area is 104 kgate of logic (in terms of 2-input
NAND gates) and 16.4 kbit of SRAM.

Table 3 Area breakdown for inverse transform
Module Logic area

(kgates)
Partial transform 71
Accumulator 5
Row cache 4
FIFOs 5
Scaling + Control 19
Total 104

Table 4 Area for different transforms. Partial 32-pt IDCT contains all the smaller IDCTs

Module Logic area
(kgates)

4-pt IDCT 3
Partial 8-pt IDCT 10
Partial 16-pt IDCT 24
Partial 32-pt IDCT 57
4-pt IDST + misc. 14

5 Inter Prediction

HEVC inter prediction uses motion vectors pointing to one reference frame (uni-
prediction) or two reference frames (bi-prediction) to predict a block of pixels. The
size of the predicted block, called Prediction Unit (PU), is determined by the Cod-
ing Unit (CU) size and its partitioning mode. For example, a 32×32 CU with 2N×N
partitioning is split into two PUs of size 32×16, or a 16×16 CU with nL×2N parti-
tioning is split into 4×16 and 12×16 PUs.

For luma pixels, the motion vectors for each PU have a resolution of 1/4-th pixel.
The predicted pixels at non-integer pixel positions are obtained by interpolating
between the reference pixels using an 8-tap FIR filter, first along the horizontal di-
rection and then along the vertical as shown in Fig. 9. (The reverse order, i.e. vertical
followed by horizontal also gives the same result). For chroma, the motion vector
is halved and has a 1/8-th pixel resolution computed using a 4-tap interpolation fil-
ter. From Table 5, which shows the cost of interpolating a block of pixels, we see

Decoder Hardware Architecture for HEVC 15

that smaller pixel blocks have a proportionately higher overhead in the number of
reference pixels and number of horizontal interpolations. To reduce the worst case
overhead, 4×4 PUs are not allowed by the standard and 8×4/4×8 PUs are allowed
to use only uni-prediction.

(x=0, y=0)

(x=1/4, y=3/4)

Reference pixel

Horizontally interpolated pixel

Vertically interpolated pixel

8-tap vertical filter

8-tap horizontal filter

Fig. 9 Interpolation process for a pixel at a fractional location x = 1/4,y = 3/4.

Table 5 Example costs for interpolating a block of pixels. Values in brackets denote overhead over
the block size. Costs are for uni-prediction only. For bi-prediction, all the costs are doubled.

Block type Generic Y64×64 Y16×16 U4x4

Parameters Block size w×h 64×64 16×16 4×4
Filter size n+1 taps 8 taps 8 taps 4 taps

Costs
Reference pixels (w+n)× (h+n) 71×71 (23%) 23×23 (106%) 7×7 (206%)
Horizontal interps. w× (h+n) 64×71 (11%) 16×23 (43%) 4×7 (75%)
Vertical interps. w×h 64×64 (0%) 16×16 (0%) 8×8 (0%)

Compared to H.264/AVC, HEVC uses

1. Larger PUs which require fewer interpolations per pixel but more on-chip SRAM
2. More varied PU sizes which increase complexity of control logic
3. Longer interpolation filters which require more datapath logic and more refer-

ence pixels

Reference frames may be stored in off-chip DRAM for HD and larger picture
sizes, or in on-chip SRAM for smaller sizes. At a PU level, it is observed that ref-
erence pixels of adjacent PUs have significant overlap. Due to this spatial locality,
fetching the reference pixels into a motion-compensation (MC) cache helps reduce
the latency and power required to access external DRAM and large on-chip SRAMs.
Considering this, a top-level architecture (showing only the data-path) for an HEVC
inter-prediction engine would look like Fig. 10.

The Dispatch module generates the position and size of the reference pixel block
according to the decoded motion vectors (MVs). The MC Cache will send read
requests to reference frame buffer over the direct-memory-access (DMA) bus for
cache misses. When all the reference pixels are present in the MC cache, the Fetch
module will fetch them from the cache for the 2-D Filter module. Note that it could

16 Mehul Tikekar et al.

take many cycles to get data from DMA bus, due to latencies of bus arbiters, DRAM
controller, and DRAM Precharge/Activate operations.

Dispatch MC Cache Fetch 2-D Filter

To Reference Picture Buffer
(on-chip SRAM/external DRAM)

Motion Vectors
from

Entropy Decoder

Inter Predicted
Pixels

Fig. 10 System architecture for HEVC inter prediction. Only main data flow is shown.

The following subsections describe techniques used to address the important
challenges of implementing HEVC inter prediction in hardware.

1. A fixed pipelining across the Dispatch, Fetch and 2-D Filter modules for simpler
control and reduced on-chip SRAM

2. A PU-adaptive scheduling within each module to handle the variety of PU sizes
3. Time-multiplexed Multiple Constant Multiplication (TMMCM) [18] to reduce

interpolation filter size

Section 6 describes the design of a motion compensation cache used to reduce
the memory bandwidth requirement and power consumption of the reference picture
buffer.

5.1 Fixed Pipelining across Modules

In HEVC, it is possible to predict a large block of pixels in smaller pipeline blocks
by treating the smaller blocks as independent PUs with the same motion vector
information. So, to deal with all the variety of PU sizes, one can use a constant
block size of 4×4. This drastically reduces the size of pipeline buffers between
the modules in Fig. 10. However, as explained previously, the smaller blocks have
a larger overhead in terms of fetching reference pixels and performing horizontal
interpolations.

In [4], 16×16 pipeline blocks are used to tradeoff SRAM size and computa-
tion overhead. For chroma, since a block of 16×16 luma pixels corresponds to two
8×8 chroma pixels in the 4:2:0 format, chroma pixels from two 16×16 blocks
are combined and used as a single pipeline block of four 8×8 pixels. As com-
pared to a 64×64 CTU granularity, this requires 24× smaller pipeline buffers. The
worst case overhead of this scheme is seen when a 64×64 PU is split into 16×16
pipeline blocks. For luma pixels, this PU originally requires 64× 71 = 4544 hor-
izontal interpolations but processing it in smaller blocks increases that by 30% to
16× (16×23) = 5888. For PU sizes smaller than 16×16, multiple such PUs are
combined into one pipeline block.

Decoder Hardware Architecture for HEVC 17

5.2 PU-Adaptive Pipelining in 2-D Filter

The 2-D Filter must handle PUs of size 16×16 and smaller for luma and chroma
which require different number of interpolations as shown in Table 6. Y16×4 PU
requires the most number of horizontal interpolations (5.5 per pixel) and so, for a
2 pixel/cycle throughput, 11 horizontal filters are required. By a similar analysis,
4 vertical filters are required. However, this would result is a mismatch between
the peak throughput of the horizontal filters (11 pixel/cycle) and the vertical filters.
The designer can choose to add a buffer after the horizontal filters to handle the
mismatch or match the peak throughput with 11 vertical filters.

Table 6 Number of horizontal interpolations for each PU type. Some PU types are restricted to
uni-prediction while other types can use either.

PU Type Uni/bi No. of horizontal interpolations No. of vertical interpolations
directional per PU per pixel per PU per pixel

Y16×16 Uni/bi 2×16×23 2.875 2×16×16 2
Y8×8 Uni/bi 2×8×15 3.75 2×8×8 2
Y16×4 Uni/bi 2×16×11 5.5 2×16×4 2
Y4×16 Uni/bi 2×4×23 2.875 2×4×16 2
Y8×4 Uni 8×11 2.75 8×4 1
Y4×8 Uni 4×15 1.875 4×8 1
UV8×8 Uni/bi 2×8×11 2.75 2×8×8 2
UV4×4 Uni/bi 2×4×7 3.5 2×4×4 2
UV8×2 Uni/bi 2×8×5 5 2×8×2 2
UV2×8 Uni/bi 2×2×11 2.75 2×2×8 2
UV4×2 Uni 4×5 2.5 4×2 1
UV2×4 Uni 2×7 1.75 2×4 1

5.3 TMMCM for Interpolation Filter

The 6-tap interpolation filter in H.264/AVC is easy to optimize due to its symmetry
and simple coefficients [19]. However, HEVC uses longer 8-tap and 4-tap filters for
luma and chroma coefficients respectively, and the filter coefficients are also more
complex. In [20], a 1-D luma filter design with 16 adders and a 2-D filter reuse
scheme for sub-block 4×4 are proposed. A 1-D filter design using only 13 adders
is also possible by unifying the luma and chroma filters into one single design and
optimizing it with time-multiplexed multiple-constant multiplication (TMMCM).
TMMCM is similar to MCM seen in Section 4 on Inverse Transform. However,
exactly one of the MCM outputs is needed every clock cycle and this allows fur-
ther optimizations by placing multiplexers within the MCM adder tree. One such
TMMCM optimization is explained in some detail next.

A reorder of the filter inputs is first applied to reduce complexity based on sym-
metry as shown in Fig. 11. Note that two sets of the chroma filter coefficients are

18 Mehul Tikekar et al.

placed in x1 and x6, instead of x2 and x5, due to the similarity with the luma coef-
ficients 4 and 1. There are only seven cases left. The design principle adopted here
is to optimize TMMCM coefficients for each filter input. As an example, the design
for x3 is shown in Fig. 12.

Selection x0 x1 x2 x3 x4 x5 x6 x7

Y 0, U 0 64

Y 1/4, 3/4 -1 4 -10 58 17 -5 1 0

Y 1/2 -1 4 -11 40 40 -11 4 -1

UV 1/8, 7/8 -2 58 10 -2

UV 1/4, 3/4 -4 54 16 -2

UV 3/8, 5/8 -6 46 28 -4

UV 1/2 -4 36 36 -4

Fig. 11 Unified luma and chroma interpolation filters with inputs reordered. The coefficients for
x3 (in dashed box) can be implemented with 2 adders and 3 multiplexers as shown in Fig. 12.

In the canonical signed digit representation, the coefficients have at most 3 non-
zero digits which determines the number of adders to be 2. The non-zero digits are
partitioned into three groups (n, m and r) such that each group has at most 1 non-
zero digit. Finally, the three partitions are summed with partitions having similar
bitwidths added first.

Compared to algorithmically generated filter designs using [21], this design has
a 5%∼31% lower area as shown in Table 7.

58 = (10 01 010)2

40 = (01 01 000)2

54 = (10 01 010)2

46 = (10 10 010)2

36 = (10 00 100)2

+

+

«6 «5 «4 «3 «2 «10

x3

n

m r

n m r

+/-

+/-

Fig. 12 Time-multiplexed Multiple Constant Multiplication for x3

Combining all the presented techniques, the complete 1-D filter is shown in Fig.
13 using only 13 adders. Regarding the bitwidth increase between the input and
output, the case of luma 1/2-pel position gives the largest values for both unsigned
and signed inputs, and the outputs can be magnified at most by 88 and 112 times
respectively. So, the 1-D horizontal filter has 8-bit unsigned input and 16-bit signed
output, and the vertical one has 16-bit signed input and 23-bit signed output.

Decoder Hardware Architecture for HEVC 19

Table 7 Gate counts of the described and reference designs for the x3, x4, and x2|x5 TMMCM in
the vertical filter based on 40 nm process synthesis results. The reference designs for x3 and x4 are
generated by [21], and the reference for x2|x5 is designing x2 and x5 separately.

Design x3 TMMCM x4 TMMCM x2|x5
Timing 1 ns 2 ns 1 ns 2 ns 1 ns 2 ns

Reference (gates) 1144 547 557 526 2284 845
Proposed (gate) 1036 518 442 361 1578 738
Area reduction 9.4% 5.4% 20.6% 31.4% 30.9% 12.6%

Input Reorder

x3

TMMCM
x4

TMMCM
x2 | x5 x1 | x6 x0 | x7

+ +

+
«6

8 input signals x0 - x7

Filtered output

+/-
-

-

(Integer MV)

Fig. 13 HEVC interpolation filter design using 13 adders.

5.4 Implementation Results

For supporting 4K Ultra-HD 30 fps videos, this architecture is synthesized at 200 MHz
in 40 nm CMOS. The result is shown in Table 8. The total gate count is 69.4k, of
which 50.0k for the 2-D filter. The Fetch module mainly consists of large multiplex-
ers and results in 12.0 kgate. The Dispatch module occupies 4.7 kgate for the block
size and position calculation. The total SRAM size is 31 kbit, including the two-port
2.2 kbit Dispatch Info SRAM and the single-port 28.8 kbit Reference Data SRAM.

Since most of the gates are for the 2-D filter, its gate count is given in more detail
in Table 9. For the 2-D filter, the horizontal and vertical filters occupy the most, and
the area of horizontal ones is nearly one half of that of vertical ones due to their
smaller internal bitwidth. This test-chip does not implement all PU Types used in
the HEVC standard (Asymmetric Motion Partitions 32×8, 8×32, 16×4, 4×16 are
not implemented), and so, uses only 8 horizontal and 8 vertical filters.

6 MC Cache and DRAM Mapping

HEVC’s longer interpolation filters cause a significant increase in the required mo-
tion compensation (MC) bandwidth to the reference picture buffer (a.k.a. decoded

20 Mehul Tikekar et al.

Table 8 Gate count of inter architecture when synthesized at 200MHz in 40 nm CMOS. SRAM
sizes are also summarized.

Module Logic area SRAM (kbit)
(kgates)

Dispatch 4.7 2.2 (two-port)
Fetch 12 28.8 (one-port)
2-D Filter 50.0
Inter Ctrl 2.7
Total 69.4 31

Table 9 Gate count breakdown for the 2-D filter
Sub-module Logic area

(kgates)
Input Mux 4.8
H Filter 12.0
V Filter 21.8
Register Chain 9.4
Bi-Sum 1.2
Ctrl 0.8
Total 50.0

picture buffer - DPB) as compared to H.264/AVC. However, there is significant
overlap in the reference pixel data required by neighboring inter PUs which can
be exploited by a cache. Most video codecs use DRAM based memory to store
the DPB since it can be several megabytes large. In such a scenario, in addition to
reducing the bandwidth requirement, the cache also hides the variable latency of
the DRAM. This section describes the design of a read-only MC cache to support
real-time decoding of 4K Ultra-HD HEVC video.

The target DRAM system is intended to store six reference pictures at 4K Ultra-
HD resolution (corresponding to HEVC level 5) in addition to the collocated motion
vector data. The DRAM system is composed of two 64M×16-bit DDR3 DRAM
modules with a 32 byte minimum access unit (MAU). A single MAU is mapped to
a cache line.

6.1 DRAM Latency Aware Memory Map

An ideal mapping of pixels to DRAM addresses should minimize the number of
DRAM accesses and the latency experienced by each access. This can be achieved
by minimizing the fetch of unused pixels and the number of row precharge/activate
operations respectively. Note that the above optimization only fixes how the pixels
are stored in DRAM and can be performed even in the absence of an MC cache.
Also, the DRAM addresses should be mapped to cache lines such that conflict
misses are minimized. To enable a coherent presentation, we explain these ideas

Decoder Hardware Architecture for HEVC 21

with respect to a specific memory map. The underlying principles are quite general
and can be easily reused.

0 1

2 3

4 5

6 7

0 1 4 5 0 1

2 3

0 1

2 3

1

2 3

4 5

6 7

4 5

6 7

0

2 3

5

7

0 1

2 3

4 5

6 7

2

0

4

6

3 6 7

1

0x00 0x01 0x02 0x03 0x04 0x05 0x06 0x07
0x08 0x09 0x0A 0x0B 0x0C 0x0D 0x0E 0x0F
0x10 0x11 0x12 0x13 0x14 0x15 0x16 0x17

0x78 0x79 0x7A 0x7B 0x7C 0x7D 0x7E 0x7F

... Col Addr: 0x17
7b00101 11

Twisting of 128x128 pixel blocks
Reduces Precharge & Activate

256x128 pixel block
8 Banks in 1 Row

64x64 pixel block (1 Bank: 128 MAU)
DRAM Latency Aware
Memory Mapping

8x4 pixel MAU Tiling
7bit Column Address

Last 2bits: Cache Datapath

0 1 2 3 0 1
Cache Datapath Index

2 3

Fig. 14 Latency Aware DRAM mapping. 128 8×4 MAUs arranged in raster scan order make up
one block. The twisted structure increases the horizontal distance between two rows in the same
bank. Note how the MAU columns are partitioned into 4 datapaths (based on the last 2 bits of
column address) for the four-parallel cache architecture.

Fig. 14 shows an example latency aware memory map. The luma color plane of
a picture is tiled by 256×128 pixel blocks in raster scan order. Each block maps to
an entire row across all eight banks. These blocks are then broken into eight 64×64
blocks which map to an individual bank in each row. Within each 64×64 block, 32-
byte MAUs map to 8×4 pixel blocks that are tiled in a raster scan order. In Fig. 14,
the numbered square blocks correspond to 64×64 pixels and the numbers stand for
the bank they belong to. Note how the mapping of 128×128 pixel blocks within each
256×128 regions alternates from left to right. Fig. 14 shows this twisting behavior
for a 128×128 pixel region composed of four 64×64 blocks that map to banks 0, 1,
2 and 3.

The chroma color plane is stored in a similar manner in different rows. The only
notable difference is that an 8×4 chroma MAU is composed of pixel-level interleav-
ing of 4×4 U and V blocks. This is done to exploit the fact that U and V have the
same reference region.

Minimizing fetch of unused pixels Since the MAU size is 32 bytes, each access
fetches 32 pixels, some of which may not belong to the current reference region
as seen in Fig. 16. These can be minimized by using an 8×4 MAU to exploit the
rectangular geometry of the reference region. When compared with a 32×1 cache
line this reduces the amount of unused pixels fetched for a given PU by 60% on
average.

Since the fetched MAU are cached, unused pixels may be reused if they fall in the
reference region of a neighboring PU. Reference MAUs used for prediction at the
right edge of a CTU can be reused when processing CTU to its right. However the

22 Mehul Tikekar et al.

lower CTU gets processed after an entire CTU row in the picture. Due to limited size
of the cache, MAUs fetched at the bottom edge will be ejected and are not reused
when predicting the lower CTU. When compared to 4×8 MAUs, 8×4 MAUs fetch
more reusable pixels on the sides and less unused pixels on the bottom. As seen in
Fig. 15(a), this leads to a higher hit-rate. This effect is more pronounced for smaller
CTU sizes where hit-rate may increase by up to 12%.

40%

50%

60%

70%

CTU-64 CTU-32 CTU-16

MAU 8x4

MAU 4x8

Hit
Rate

(a) Cache line Geometry

40%

50%

60%

70%

4KB 8KB 16KB 32KB

Hit
Rate

(b) Cache Size

40%

50%

60%

70%

1-way 2-way 4-way 8-way

Hit
Rate

(c) Cache Associativity

Fig. 15 Cache hit rate as a function of CTU size, cache line geometry, cache-size and associativity.
Experiments averaged over six sequences - Basketball Drive, Park Scene, Tennis, Crowd Run, Old
Town Cross and Park Joy. The first are Full HD (240 pictures each) and the last three are 4K Ultra
HD (120 pictures each). CTU size of 64 is used for the cache-size and associativity experiments.

Minimizing row precharge and activation The Twisted 2D mapping of Fig. 14
ensures that pixels in different DRAM rows in the same bank are at least 64 pixels
away in both vertical and horizontal directions. It is unlikely that inter-prediction
of two adjacent pixels will refer to two entries so far apart. Additionally a single
dispatch request issued by the MC engine can at most cover 4 banks. It is possible
to keep the corresponding rows in the four banks open and then fetch the required
data. These two factors help minimize the number of row changes. Experiments

Decoder Hardware Architecture for HEVC 23

show that twisting leads to a 20% saving in bandwidth over a direct mapping as
seen in Table 10.

MAU

16x16 Predicted

28 Cachelines Fetched
23 x23 Reference Region

0 1 2 3 0 1
Cache Datapath Index

Fig. 16 Example of MC cache dispatch for a 23×23 reference region of a 16×16 PU. 7 cycles
are required to fetch the 28 MAU at 4 MAU per cycle. Note that the dispatch region and the four
parallel cache datapaths may be misaligned, thus requiring a reordering. For example, the region
in this figure starts from datapath #1.

Table 10 Comparison of Twisted 2D Mapping and Direct 2D Mapping

Encoding Mode LD RA

CTU Size 64 32 16 64 32 16

ACT BW Direct 2D 272 227 232 690 679 648

(MBytes/s) Twisted 2D 219 183 204 667 659 636

Gain 20% 20% 12% 3% 3% 2%

Minimizing conflict misses A conflict miss occurs when two locations in mem-
ory map to the same cache line. To mitigate this, we need to select an appropriate
mapping between the DRAM addresses and the cache line indices. Setting the line
index to the 7 bit column address of the MAU ensures that two conflicting pixel
location in the same picture are at least 64 pixels apart. However, the same pixel
location across two pictures will map to the same cache line. Similarly a luma and
an unrelated chroma address may also map to the same cache line. Using 4-way set
associativity in the cache helps resolve both these conflicts.

Alternative techniques to tackle conflict misses include having separate luma and
chroma caches. Similarly offsetting the memory map such that the same location in

24 Mehul Tikekar et al.

successive frames maps to different cache lines can also reduce conflicts. For our
chosen configuration, the added complexity for these techniques outweighed the
observed hit-rate increases.

6.2 Four-Parallel Cache Architecture

This section describes a four parallel MC cache architecture. Datapath parallelism
and outstanding request queues for hiding the variable DRAM latency ensure a high
throughput. As seen in Fig. 17, there are four parallel paths each outputting up to 32
pixels (1 MAU) per cycle.

Address
Translation

Hit/Miss
Resolution

Read &
Write

Queues Cache
SRAM
Banks

DMA
ControlTag

Register File

Memory Interface ArbiterDMA
Bus

Four-Parallel MC Cache

From
Dispatch

To
Prediction

Hazard
Detection
Circuit

WR Queue

RD Queue

...Hn
H1 H0

To SRAM

Hazard
Detected

RD index at
WR queue

head

<i =

RD
Addr

WR
Addr

Hit

AND

Hazard at ith RD: Hi

Fig. 17 Proposed four-parallel MC cache architecture with 4 independent datapaths. The hazard
detection circuit is shown in detail.

6.2.1 Four-parallel data flow

The parallelism in the cache datapath allows up to 4 MAUs in a row to be processed
simultaneously. The MC cache must fetch at most 23×23 reference region corre-
sponding to a 16×16 PU, which is the largest PU processed by Inter Prediction (see
Section 5.1). This may require up to 7 cycles as shown in Fig. 16. The address trans-
lation unit in Fig. 17 reorders the MAUs based on the lowest 2 bits of the column
address. This maps each request to a unique datapath and allows us to split the tag
register file and cache SRAM into 4 smaller pieces. Note that this design cannot out-
put 2 MAUs in the same column on the same cycle. Thus our design trades unused
flexibility in addressing for smaller tag-register and SRAM sizes.

Decoder Hardware Architecture for HEVC 25

The cache tags for the missed cache lines are immediately updated when the lines
are requested from DRAM. This preemptive update ensures that future reads to the
same cache line do not result in multiple requests to the DRAM. Note that behavior
is similar to a simple non-blocking cache and does not involve any speculation.
Additionally since the MC cache is a read only cache there is no need for write-
back in case of eviction from the cache.

6.2.2 Queue management and hazard control

Each datapath has independent read and write queues which help absorb the variable
DRAM latency. The 32 deep read queue stores pending requests to the SRAM. The
8 deep write queue stores pending cache misses which are yet to be resolved by
the DRAM. The write queue is shorter because fewer cache misses are expected.
Thus the cache allows for up to 32 pending requests to the DRAM. At the system
level the latency of fetching the data from the DRAM is hidden by allowing for a
separate motion vector (MV) dispatch stage in the pipeline prior to the Prediction
stage. Thus, while the reference data of a given block is being fetched, the previous
block is undergoing prediction. Note that the queue sizes here are decided based on
the behavior of the target DMA arbiter and DRAM latency, and for different systems
they should be optimized accordingly.

Since the cache system allows multiple pending reads, write-after-read hazards
are possible. For example, consider two MAUs A and B that are mapped to the same
cache line. Presently, the cache line contains A, the write queue contains a pending
cache miss for B and the read queue contains pending requests for A and B in that
order. If B arrives from the DRAM, it must wait until A has been read from the
cache to avoid evicting A before it has been read. The Hazard Detection Circuit in
Fig. 17 detects this situation and stalls the write of B.

6.2.3 Cache parameters

Figs. 15(b) and 15(c) show the hit-rates observed as a function of the cache size and
associativity respectively. A cache size of 16 kB was chosen since it offered a good
compromise between size and cache hit-rate. The performance of FIFO replacement
is as good as Least Recently Used replacement due to the relatively regular pattern of
reference pixel data access. FIFO was chosen because of its simple implementation.
The cache associativity of 4 is sufficient to accommodate both Random Access GOP
structures and the three component planes (Y, U, V).

26 Mehul Tikekar et al.

1627

738 738

1874

1475

428

0

1000

2000

3000

4000

RS Mapping

 + No Cache
RS Mapping

+ 16KB Cache

Proposed

Cache

ACT

Data

BW (Mbyte/s)

3501

2213

1166

-21%

-55%

-71%

(a) Bandwidth Comparison

90.4 90.4 90.4

123.5

56.0 56.0

57.0

44.9

0.0

100.0

200.0

300.0

RS Mapping

 + No Cache
RS Mapping

+ 16KB Cache

Proposed

Cache

ACT
Data
Standby

Power (mW)

270.9

191.3

158.9

(b) Power Comparison

528 553
685

822 850
989

219 183

204

667 659
636

0

400

800

1200

1600

CTU-64

LD

CTU-32

LD

CTU-16

LD

CTU-64

RA

CTU-32

RA

CTU-16

RA

ACT

Data

BW (Mbyte/s)

747

889

1489

736

1509

1625

(c) BW across sequences

Fig. 18 Comparison of DDR3 bandwidth and power consumption across 3 scenarios. RS mapping
maps all the MAUs in a raster scan order. ACT corresponds to the power and bandwidth induced
by DRAM Precharge/Activate operations.

6.3 Hit Rate Analysis, DRAM Bandwidth and Power

The rate at which data can be accessed from the DRAM depends on two factors: the
number of bits that the DRAM interface can (theoretically) transfer per unit time
and the precharge latency caused by the interaction between requests. The precharge
latency can be normalized to bandwidth by multiplying with the bitwidth. This nor-
malized figure (called ACT BW) is the bandwidth lost in the precharge and activate
cycles - the amount of data that could have been transferred in the cycles when the
DRAM was executing row change operation. The other figure, Data BW, refers to
the amount of data that needs to be transferred from the DRAM to the decoder per
unit time for real-time operation. Thus, a better hit-rate reduces the Data BW and
a better memory map reduces the ACT BW. The advantage of defining Data BW
and ACT BW as mentioned above is that (Data BW + ACT BW) is the minimum
bandwidth required at the memory interface to support real-time operation.

Decoder Hardware Architecture for HEVC 27

The performance of the cache and the twisted address mapping is compared with
two reference scenarios: raster-scan address mapping with no cache and raster scan
address mapping with the cache. As seen in Fig. 18(a), using a 16 kB cache reduces
the Data BW by 55%. The Twisted 2D mapping reduces ACT BW by 71%. Thus, the
cache results in a 67% reduction of the total DRAM bandwidth. Using a simplified
power consumption model [22] based on the number of accesses, this cache is found
to save up to 112 mW, a 41% reduction in DRAM access power as shown in Fig.
18(b).

Fig. 18(c) compares the DRAM bandwidth across various encoder settings.
Smaller CTU sizes result in a larger bandwidth because of lower hit-rates. Thus,
larger CTU sizes such 64 can provide smaller external bandwidth at the cost of
higher on-chip complexity. Also, Random Access mode typically has lower hit rate
when compared to Low Delay. This behavior is expected because the reference pic-
tures are switched more frequently in the former.

6.4 Implementation Results

This design is synthesized at 200 MHz in 40 nm CMOS. The total area is 90.4 kgate
of logic and 16 kB (or 131.1 kbit) of SRAM. The bulk of the logic area is taken by
the 8960 bit tag register file and can be replaced by a 2-port SRAM (which is denser
than register file) at the cost of an extra access cycle. Breakdown of the logic area is
presented in Table 11.

Table 11 Breakdown of logic area for motion compensation cache

Module Logic area
(kgate)

Address Translation 1.1
Hit/Miss Resolution 3.9
Queue 20.5
Tag Register File 64.9
Total 90.4

7 Intra Prediction

Intra prediction predicts a block of pixels based on neighboring pixels in the same
picture. The neighboring pixels are extrapolated into the block to be predicted along
one of 33 directions or using two other intra modes - DC and Planar. The neigh-
boring pixels are taken from one row of pixels to the top and one column to the
left.

The key operations in intra-prediction are:

28 Mehul Tikekar et al.

1. Read neighboring pixels and perform padding for unavailable pixels
2. Reference preparation: filter neighboring pixels to obtain intra reference pixels

and extend the top-left reference pixels for angular modes
3. Prediction: bilinear interpolation for angular and planar modes, and pixel copy

for DC, horizontal and vertical modes

When the current block of pixels is predicted, its residues need to be immediately
added so that it can be used as neighboring pixels for the next block. This results
in a tight feedback loop for intra-prediction as shown in Fig. 19. As a result of this
feedback loop, it is not possible to pipeline the above three operations, which in-
creases the throughput requirement from these blocks. It should be noted that the
feedback loop operates at a TU granularity and not a PU granularity. For exam-
ple, for a 16×16 CU with a 2N×2N intra partition (i.e. a single 16×16 PU) and a
residue quad tree (RQT) of four 8×8 TUs, the 8×8 blocks must be predicted serially
and the intra neighboring pixels must be updated after every block’s prediction and
reconstruction.

This dependency also has implications for the top-level pipelining - in order to
keep inverse transform and prediction decoupled, the inverse transform must be
performed one pipeline granularity before prediction.

TU0 TU1

Pixels from TU0 used
 as reference for TU1

TU2

Pixels from TU0 and TU1

used as reference for TU2

(a) Intra-prediction dependency between
neighboring pixel blocks

Intra
Prediction

Inverse
Transform

+

Intra reference
pixels

Inter
Prediction

(b) Dependency results in a tight feed-
back loop

Fig. 19 Tight feedback loop in intra prediction due to dependency between neighbors

The 35 intra prediction modes in HEVC are well designed to reduce complexity.
The planar mode is much simpler than the one in H.264/AVC, and the 33 angular
modes are also well organized to avoid increasing the complexity when increasing
the angular precision. However, the larger TU sizes increase the hardware complex-
ity due to larger pipeline and reference buffers. In H.264/AVC, one macroblock can
contain only one kind of intra block size, which can be used to design optimized
pipeline schedules as in [23, 24]. Since a CTU in HEVC can have a variety of TUs

Decoder Hardware Architecture for HEVC 29

and a mix of intra and inter CUs, such pipeline schedules will be too complex to
optimize for every possible combination.

As the result, designing a data-flow that respects across-TU dependencies and
provides high throughput is a bigger challenge than the pixel computation involved
in reference preparation and prediction. In this chapter, we focus on the data-flow
management used in [25], which uses a hierarchical memory deployment for high
throughput and low area. The intra engine operates on blocks of 32×32 luma pixels
and two 16×16 chroma pixels since those are the largest TU sizes. In the complete
decoder pipeline, it communicates with entropy decoder and inverse transform at a
Variable-sized Pipeline Block (VPB) granularity. (The mapping between VPB and
CTU is shown in Table 2.1. For 16×16 CTU, four CTUs are combined into one
intra pipeline block.)

7.1 Hierarchical Memory Deployment

The bottom row pixels of all VPBs in a row of VPBs needs to be stored since they
are top neighbors for VPBs in the row below. This buffer must be sized propor-
tional to the picture width and may be implemented in on-chip SRAM or external
DRAM. Storing VPB-level neighboring pixels in registers as previous designs for
H.264/AVC have done can provide the required high-throughput access. But this
will require a lot of area as the VPB can be as large as 64×64. This issue can be
addressed by storing the neighboring pixels in SRAM to save area and storing them
in registers at a TU level for higher throughput. A memory hierarchy is thus formed:

1. VPB-row-level top neighbors in SRAM or external memory
2. VPB-level neighboring pixels in SRAM
3. TU-level reference pixels in registers

The hierarchical memory deployment is shown in Fig. 20 and the memory ele-
ments are explained next:

1. VPB-Row top neighbors: In [4], this buffer is implemented in an on-chip SRAM
that is shared with deblocking filter. The deblocking filter stores 4 top rows of
which, intra prediction uses one row.

2. VPB top neighbors: This buffer is implemented using a pair of SRAMs in a ping-
pong fashion. One SRAM is used in the intra-prediction of the current VPB. It
is updated every TU with neighboring pixels for the next TU. At the same time,
the other SRAM updates the VPB-Row top SRAM with pixels from the previous
VPB and loads top row pixels for the next VPB. The size of each SRAM is 192
pixels (64 Y top + 32 Y top-right + 64 UV top + 32 UV top-right).

3. VPB left neighbors: This buffer is implemented using one SRAM containing 128
pixels (64 Y + 64 UV). It is updated every TU with neighboring pixels for the
next TU. Because the TUs are processed in z-scan order, at the end of all TUs in
the current VPB, it automatically contains the left neighbors for the next VPB.

30 Mehul Tikekar et al.

4. VPB top-left neighbors: The TU-based update scheme for VPB top and left
neighbors could overwrite some pixels which will be the top-left neighbor of
some following TUs. The VPB top-left neighbor buffer is introduced to solve
this problem. As shown in Fig. 20, pixels on the 4×4 grid are written to the VPB
top-left neighbor buffer.

5. Reference pixels: At the start of every TU, neighbors are read from the VPB-level
SRAMs into registers. Padding and preparation operations are then performed on
the registers to obtain reference pixels. Using registers allows for these operations
and the final intra prediction to be performed at a high throughput. A total of
129 reference pixels (32 bottom-left, 32 left, 1 top-left, 32 top, 32 top-right)
are needed for all angular modes. But since only one angular mode is used at a
given time, the horizontal modes can be treated as vertical modes by swapping x
and y axes to reduce the number of reference pixels to 99. Reference pixels are
read by both preparation and prediction, and a combined read-out circuit shared
between the two operations can reduce the number of multiplexers by exploiting
similarities in their access patterns.

VPB top neighbors

Current VPB

Current TU

VPB-Row top neighbors

VPB left
neighbors

VPB
top-left

TU top ref. pixels

TU left ref.

VPB-level SRAM

TU-level registers

VPB-Row-level
SRAM/DRAM

4 pixels

Fig. 20 Hierarchical memory deployment with VPB-Row level SRAM/DRAM and VPB-level
SRAM for neighboring pixels, and TU-level registers for reference pixels

7.2 Reference Preparation and Prediction

As mentioned in Section 7, due to the tight dependency loop in Intra processing it
is hard to pipeline the three pixel processing operations of reference padding, refer-
ence preparation and prediction. Another factor is that the three operations require
different amount of computation. For an N×N TU, reference padding and prepara-
tion require O(N) computation while prediction is O(N2).

Decoder Hardware Architecture for HEVC 31

The reference preparation operation in HEVC varies depending on the prediction
mode. DC mode requires the accumulation of the reference pixels in order to com-
pute the DC value. An angular extension of the reference pixels is required before
prediction can begin. A mode dependant intra smoothing (MDIS) filter is applied to
the reference pixels for TU sizes 8, 16 and 32 depending on the intra mode.

7.3 Implementation Results

Table 13 shows the synthesis results for the intra prediction architecture in 40 nm
CMOS. Reference pixel registers and their read-out take the most area. The area
for reference preparation, which is a new feature in HEVC, is about 1.3 kgate. The
design is synthesized at 200 MHz and can support 4K Ultra-HD decoding at 30 fps.

Table 12 SRAMs for neighboring pixels

SRAM Bits
VPB top 3072
VPB left 1024
VPB top-left 768
Total 4864

Table 13 Gate-count (in kgates) breakdown for Intra prediction

Module Logic area
Reference pixel registers and padding 12.1
Reference pixel preparation 1.3
Prediction 8.1
Control 5.5
Total 27.0

8 In-loop Filters

HEVC uses two in-loop filters - deblocking filter and sample adaptive offset (SAO)
- that attempt to reduce compression artifacts and improve coding efficiency. The
deblocking filter in HEVC processes edges on an 8-pixel grid and thus, has lower
computational complexity than H.264/AVC’s deblocking filter which uses a 4-pixel
grid. SAO involves selecting an offset type for each pixel based on its neighboring
pixels and adding the offset. Deblocking and SAO can be implemented in a single
pipeline stage as described in [26].

32 Mehul Tikekar et al.

In [4], a VPB-based pipelining is used between deblocking filter and prediction
stages. This allows the scheduling within the deblocking filter to be scheduled in-
dependent of the coding tree structure. A smaller granularity can also be used to
save pipeline buffer SRAM at the cost of scheduling complexity. Since the in-loop
filtering process for the current block of pixels depends on blocks to the right and
bottom which have not yet been reconstructed, the entire block cannot be processed
completely. The output of the deblocking filter is shifted from the input by 4 luma
pixels and 2 chroma pixels to the left and the top, and the output of SAO is shifted
by another pixel for all color components in both directions.

8.1 Deblocking Filter

Compared to H.264/AVC, HEVC’s deblocking filter has several simplifications re-
lated to processing dependencies. The luma deblocking filter operates on edges lying
on an 8×8 grid and filter takes 4 pixels on either side of the edge as input and writes
up to 3 pixels on either side. As a result, unlike H.264/AVC, filters on adjacent edges
are completely decoupled and it is possible to filter 8×8 pixel blocks independently.
The key challenge in the deblocking filter architecture is designing an efficient data
flow to handle cross-CTU dependencies.

The bottom four rows and right-most four columns of luma pixels (and two rows
and columns of chroma pixels) in a CTU depend on the CTUs to the bottom, right
and bottom-right for their deblocking. Accordingly, their processing must be de-
layed until those CTUs are available and they must be temporarily stored until then.
Along with the pixels, parameters such as prediction mode, motion vectors, TU and
PU boundaries, and quantization parameter which are required for computing the
boundary strength also need temporary storage. The right-most four columns need
a 1-CTU-high buffer (called Last CTU buffer) while the bottom four rows need a
1-Picture-wide buffer (called Line buffer).

The boundary strength parameters are available at a worst-case granularity of
4×4 pixels and take about 78 bits (64 bits for two motion vectors, 4 bits for two
reference list indices, 6 bits for quantization parameter, 2 bits for prediction mode
- intra-prediction, uni-prediction, bi-prediction - and one bit each for TU boundary,
PU boundary). For example, for a 4K Ultra-HD (3840×2160) picture and 64×64
CTU, the Last CTU buffer must hold 64×4 luma pixels, 2×32×2 chroma pixels
and 16 boundary strength parameters resulting in a total of 4320 bits. The Line
buffer must hold 3840×4 luma pixels, 2×1920×2 chroma pixels and 960 boundary
strength parameters resulting in a total of 96 kbit. While the Last CTU buffer can
be stored in registers or SRAM, it might be necessary to store the Line buffer in
external DRAM depending on area constraints. However, due to the regular access
pattern on the Line buffer, it is possible to prefetch the data and hide the DRAM
bandwidth (at the cost of on-chip memory for request and response queues to and
from the DRAM).

Decoder Hardware Architecture for HEVC 33

Last
CTU
buffer

Pipeline
buffer

Transpose
RegFile

Prediction
Params

Transform
Params

Boundary
Strength

Edge
Params

Filter
Process

Line buffer

EP
HFilt

VFilt

Pixels

bS

Logic

Registers

SRAM

Pixels

Params

: Horizontal-edge filtered pixels
: Vertical-edge filtered pixels
: Edge parameter
: Boundary Strength

HFilt
VFilt
EP
bS

Fig. 21 Top-level architecture of deblocking filter

The top-level architecture of the deblocking filter is shown in Fig. 21. The trans-
pose memory needs to be only 8×8 pixels (as compared to 32×32 pixels for inverse
transform). Hence it is possible to implement it using registers. For a very high
throughput design which filters an entire 8×8 block in one cycle [26], it is possi-
ble to eliminate the transpose memory completely and have a purely combinational
design.

8.2 Sample Adaptive Offset (SAO)

SAO classifies each pixel into one of four bands or one of four edge types and adds
an offset to it. For band offsets, the band of each pixel depends on its value and
the position of the four bands. For edge offsets, the edge of each pixel depends on
the whether its value is larger or smaller than two of its neighbors. The selection
between band offsets and edge offsets, position of bands, choice of neighbors for
edge offsets, and values of the offsets are signaled at the CTU level for luma and
chroma separately. For chroma, the offsets are also signaled for the two components
separately.

SAO has dependencies on neighboring pixels similar to intra prediction and
hence, a similar data-flow management must be used. Like intra prediction, a
picture-width sized top row buffer and a CTU-height sized left column buffer are

34 Mehul Tikekar et al.

needed. These buffers store pre-SAO pixels and their SAO parameters. However,
unlike intra prediction, the choice of pipeline granularity is very flexible and can be
chosen based on throughput requirements. Unlike deblocking filter which operates
on a edge basis, SAO operates on a per-pixel basis. So, the two in-loop filters have
a comparable computational complexity even though SAO computation involves
mainly comparison and addition.

[26] describes an architecture for SAO that is capable of 8K Ultra-HD (7680x4320)
at 120 fps. In spite of such high throughput requirement, the design takes only
36.7 kgates in 65 nm technology.

9 Implementation Results for Decoder Test Chip

A decoder test chip was implemented in [4] with a core size of 1.77mm2 in 40 nm
CMOS, comprising 715K logic gates and 124KB of on-chip SRAM. Fig. 22 shows
the micrograph of the test chip. It is compliant to HEVC Test Model (HM) 4.0,
and the supported decoding tools in HEVC Working Draft (WD) 4 are listed in
Table 14 along with the main specs. The main differences from the final version
of HEVC are that SAO is absent and Context-Adaptive Variable Length Coding
(CAVLC) is used in place of CABAC in the Entropy Decoder. This chip achieves
249 Mpixels/s decoding throughput for 4K Ultra HD videos at 200 MHz with the
target DDR3 SDRAM operating at 400 MHz. The core power is measured for six
different configurations as shown in Fig. 23. The average core power consumption
for 4K Ultra HD decoding at 30 fps is 76 mW at 0.9 V which corresponds to 0.31
nJ/pixel. Logic and SRAM breakdown of the chip is shown in Fig. 24. Similar to
H.264/AVC decoders, we observe that prediction has the most significant resource
utilization. However, we also observe that inverse transform is now significant due
to the larger transform units while deblocking filter is relatively small due to sim-
plifications in the standard. Power breakdown from post-layout power simulations
with a bi-prediction bitstream is shown in Fig. 25. We observe that the MC cache
takes up a significant portion of the total power. However, the DRAM power saving
due to the cache is about six times the cache’s own power consumption.

Table 15 shows the comparison with state-of-the-art video decoders. We observe
that the 2× compression efficiency of HEVC comes at a proportionate cost in logic
area. The SRAM utilization is much higher due to larger coding units and use of
on-chip line-buffers.

Decoder Hardware Architecture for HEVC 35

Fig. 22 Chip micrograph. Main processing engines are highlighted and light grey regions represent
on-chip SRAMs.

Table 14 Chip Specifications

Technology TSMC 40 nm CMOS

Supply Voltage Core: 0.9 V, I/O: 2.5 V

Chip Size 2.18mm×2.18mm

Core Size 1.33mm×1.33mm

Gate Count 715K (2-input NAND)

On-Chip SRAM 124 kB

Maximum Throughput 249 Mpixel/s @ 200 MHz

Decoding Tools

HEVC WD4 (HM 4.0 low complexity w/o SAO)

CTU size: 64×64, 32×32, 16×16

B-frame: Low Delay(LD)/Random Access(RA)

Symmetric and asymmetric motion partitions: 4×4 - 64×64

Square and non-square transform units: 4×4 - 32×32

All intra modes: DC, Planar, 33 Angular, LMChroma

Measured Core Power
76 mW @ 0.9 V 200 MHz, 3840×2160 @ 30fps (average)

51 mW @ 0.9 V 100 MHz, 1920×1080 @ 60fps (average)

31 mW @ 0.9 V 25 MHz, 1280×720 @ 30fps (average)

36 Mehul Tikekar et al.

Table 15 Comparison with state-of-the-art video decoders

HEVC test
chip [4]

A-SSCC’13
[3]

ISSCC’12
[2]

JSSC’11
[27]

ISSCC’10
[28]

JSSC’09
[29]

ISSCC’07
[30]

Standard HEVC WD4 HEVC H.264/AVC
HP/MVC

H.264 HP H.264/AVC
HP
SVC/MVC

H.264/AVC
BP

JPEG,
MPEG-1/2,
MPEG-4,
H.264 BP

Maximum
Specification

3840×2160
@ 30 fps

1920×1080
@ 35 fps

7860×4320
@ 60 fps

4096×2160
@ 60 fps

4096×2160
@ 24 fps

1280×720 @
30 fps

1920×1088
@ 30 ps
×1080 @
30 fps

Gate count 715K 447K 1338K 662K 414K 315K 252K

On-chip
SRAM

124KB 10KB 80KB 60KB 9KB 17KB 5KB

Technology 40 nm/0.9 V 90 nm/1.0 V 65 nm/1.2 V 90 nm/1.0 V 90 nm/1.0 V 65 nm/0.7 V,
0.85 V

130 nm/1.2 V

Core power 76 mW 139 mW 410 mW 189 mW 60 mW 1.8 mW 71 mW

Normalized
core power

0.31 nJ/pixel 1.92 nJ/pixel 0.21 nJ/pixel 0.36 nJ/pixel 0.28 nJ/pixel 0.07 nJ/pixel 1.13 nJ/pixel

Normalized
DRAM power

0.88 nJ/pixel N/A 1.27 nJ/pixel 1.11 nJ/pixel N/A N/A N/A

Normalized
system power

1.19 nJ/pixel N/A 1.48 nJ/pixel 1.47 nJ/pixel N/A N/A N/A

DRAM
configuration

32b DDR3 N/A 64b DDR2 64b DDR N/A ZBT SRAM SDR

64x64/LD 32x32/LD 16x16/LD 64x64/RA 32x32/RA 16x16/RA
0

10

20

30

40

50

60

70

80

90

25 MHz
(1280x720 30fps)
100 MHz
(1920x1080 60fps)
200 MHz
(3840x2160 30fps)

Encoding Configuration (CTU Size/Reference picture setting)

P
ow

e
r

(m
W

)

Fig. 23 Core power is measured for six different combinations - Random Access and Low Delay
encoder configurations each with all three sizes of coding tree units. The core power is more or
less constant due to our unified design.

Decoder Hardware Architecture for HEVC 37

MC cache
126

Deblock
49.9

Entropy Decoder
94.5

Inverse Transform
121.1

Memory Interface Arbiter
13.7

Prediction
191.9

RegFiles
75.5

Others
42

(a) Logic utilization in kgates (total
715 kgate)

Pipeline Buffers
447.3

MC-related SRAM
200.4

Line Buffers
337

Others
32.8

(b) SRAM utilization in kbits (total
1018 kbit)

Fig. 24 Logic and SRAM utilization for each processing engine.

Prediction
23%

Deblocking
3%

MC Cache
26%

Inverse Transform
17%

Memory Interface Arbiter
2%

Entropy Decoder
3%

Line Buffers
2%

Pipeline Buffers
10%

Others
13%

Fig. 25 Relative power consumption of processing engines and SRAMs from post-layout simula-
tion with bi-prediction

10 Conclusion

This chapter presented the key challenges in implementing a hardware decoder for
HEVC and techniques to address the challenges. The architecture of a test chip
was described in detail. The test chip uses a variable-sized split system pipeline to
process the wide range of Coding Tree Unit sizes and account for variable DRAM
latency. The challenge of large and varied sizes of Transform Units can be addressed
using Multiple Constant Multiplication and an SRAM-based transpose memory for
an area-efficient implementation. Similarly, the use of Time-Multiplexed Multiple
Constant Multiplication to optimize HEVC’s longer interpolation filter was de-
scribed. The longer interpolation filter also results in increased bandwidth require-
ment from reference picture buffer which is addressed by a cache and a DRAM-
latency aware memory mapping. The design of a hierarchical memory organization
was described to handle the pixel flow for intra-prediction and the main considera-

38 Mehul Tikekar et al.

tions for designing HEVC’s in-loop filters were enumerated. Finally, simulated and
measured power results for the test chip were shown.

References

1. J. Vanne, M. Viitanen, T.D. Hamalainen, and A. Hallapuro. Comparative rate-distortion-
complexity analysis of HEVC and AVC video codecs. IEEE Trans. Circuits Syst. Video Tech-
nol., 22(12):1885–1898, 2012.

2. Dajiang Zhou, Jinjia Zhou, Jiayi Zhu, Peilin Liu, and S. Goto. A 2Gpixel/s H.264/AVC
HP/MVC video decoder chip for super hi-vision and 3DTV/FTV applications. In IEEE Int.
Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, pages 224–226, 2012.

3. Chang-Hung Tsai, Hsiuan-Ting Wang, Chia-Lin Liu, Yao Li, and Chen-Yi Lee. A 446.6k-
gates 0.55-1.2v h.265/hevc decoder for next generation video applications. In Solid-State
Circuits Conference (A-SSCC), 2013 IEEE Asian, pages 305–308, Nov 2013.

4. Chao-Tsung Huang, M. Tikekar, C. Juvekar, V. Sze, and A. Chandrakasan. A 249Mpixel/s
HEVC video-decoder chip for Quad Full HD applications. In IEEE Int. Solid-State Circuits
Conf. Dig. Tech. Papers, pages 162–163, 2013.

5. D. Marpe, H. Schwarz, and T. Wiegand. Context-based adaptive binary arithmetic coding
in the H.264/AVC video compression standard. IEEE Trans. Circuits Syst. Video Technol.,
13(7):620– 636, July 2003.

6. V. Sze and M. Budagavi. High throughput CABAC entropy coding in HEVC. IEEE Trans.
Circuits Syst. Video Technol., 22(12):1778–1791, 2012.

7. Yongseok Yi and In-Cheol Park. High-Speed H.264/AVC CABAC Decoding. IEEE Trans.
Circuits Syst. Video Technol., 17(4):490 –494, April 2007.

8. Y. C. Yang and J. I. Guo. High-Throughput H.264/AVC High-Profile CABAC Decoder for
HDTV Applications. IEEE Trans. Circuits Syst. Video Technol., 19(9):1395 –1399, September
2009.

9. P.-C. Lin, T.-D. Chuang, and L.-G. Chen. A branch selection multi-symbol high throughput
CABAC decoder architecture for H.264/AVC. In Circuits and Systems, 2009. ISCAS 2009.
IEEE International Symposium on, pages 365–368, 2009.

10. Peng Zhang, Don Xie, and Wen Gao. Variable-bin-rate CABAC engine for H.264/AVC high
definition real-time decoding. IEEE Trans. on Very Large Scale Integration (VLSI) Systems,
17(3):417–426, 2009.

11. V. Sze. Parallel Algorithms and Architectures for Low Power Video Decoding. PhD thesis,
Massachusetts Institute of Technology, 2010.

12. V. Sze and M. Budagavi. A comparison of CABAC throughput for HEVC/H.265 VS.
AVC/H.264. In Signal Processing Systems (SiPS), 2013 IEEE Workshop on, pages 165–170,
2013.

13. Kentaro Kawakami, Jun Takemura, Mitsuhiko Kuroda, Hiroshi Kawaguchi, and Masahiko
Yoshimoto. A 50% Power Reduction in H.264/AVC HDTV Video Decoder LSI by Dynamic
Voltage Scaling in Elastic Pipeline. IEICE Trans. Fundam. Electron. Commun. Comput. Sci.,
E89-A(12):3642–3651, 2006.

14. D.F. Finchelstein, V. Sze, and A.P. Chandrakasan. Multicore Processing and Efficient On-Chip
Caching for H.264 and Future Video Decoders. IEEE Trans. Circuits Syst. Video Technol.,
19(11):1704–1713, November 2009.

15. C.C. Lin, J.I. Guo, H.C. Chang, Y.C. Yang, J.W. Chen, M.C. Tsai, and J.S. Wang. A 160kgate
4.5kB SRAM H.264 video decoder for HDTV applications. In IEEE Int. Solid-State Circuits
Conf. (ISSCC) Dig. Tech. Papers, pages 1596–1605, 2006.

16. Daniel Frederic Finchelstein. Low-power Techniques for Video Decoding. Thesis, Mas-
sachusetts Institute of Technology, 2009.

17. Thucydides Xanthopoulos. Low Power Data-Dependent Transform Video and Still Image
Coding. Thesis, Massachusetts Institute of Technology, 1999.

Decoder Hardware Architecture for HEVC 39

18. P. Tummeltshammer, J. C. Hoe, and M. Puschel. Time-multiplexed multiple-constant mul-
tiplication. IEEE Trans. on Computer-Aided Design of Integrated Circuits and Systems,
26(9):1551–1563, 2007.

19. J.-W. Chen, C.-C. Lin, J.-I. Guo, and J.-S. Wang. Low complexity architecture design of
H.264 predictive pixel compensator for HDTV application. In IEEE International Conference
on Acoustics, Speech and Signal Processing, volume 3, pages 932–935, May 2006.

20. Z. Guo, D. Zhou, and S. Goto. An optimized MC interpolation architecture for HEVC. In
IEEE International Conference on Acoustics, Speech and Signal Processing, pages 1117–
1120, March 2012.

21. Multiplexed Multiplier Block Generator. Available:
http://www.spiral.net/hardware/mmcm.html.

22. Micron. DDR3 SDRAM system-power calculator.
23. K. Xu and C.-S. Choy. A power-efficient and self-adaptive prediction engine for H.264/AVC

decoding. IEEE Trans. on Very Large Scale Integration (VLSI) Systems, 16(3):302–313,
March 2008.

24. X. He, D. Zhou, J. Zhou, and S. Goto. High Profile intra prediction architecture for H.264. In
IEEE International SoC Design Conference, pages 57–60, November 2009.

25. C.-T. Huang, M. Tikekar, and A.P. Chandrakasan. Memory-hierarchical and mode-adaptive
hevc intra prediction architecture for quad full hd video decoding. Very Large Scale Integra-
tion (VLSI) Systems, IEEE Transactions on, PP(99):1–1, 2013.

26. Jiayi Zhu, Dajiang Zhou, Gang He, and Satoshi Goto. A combined SAO and de-blocking
filter architecture for HEVC video decoder. In Image Processing (ICIP), 2013 20th IEEE
International Conference on, pages 1967–1971, Sept 2013.

27. Dajiang Zhou, Jinjia Zhou, Xun He, Jiayi Zhu, Ji Kong, Peilin Liu, and S. Goto. A 530
Mpixels/s 4096x2160@60fps H.264/AVC High Profile video decoder chip. IEEE J. Solid-
State Circuits, 46(4):777 –788, April 2011.

28. Tzu-Der Chuang, Pei-Kuei Tsung, Pin-Chih Lin, Lo-Mei Chang, Tsung-Chuan Ma, Yi-Hau
Chen, and Liang-Gee Chen. A 59.5mW scalable/multi-view video decoder chip for Quad/3D
full HDTV and video streaming applications. In IEEE Int. Solid-State Circuits Conf. (ISSCC)
Dig. Tech. Papers, pages 330–331, 2010.

29. Vivienne Sze, Daniel F. Finchelstein, Mahmut E. Sinangil, and Anantha P. Chandrakasan. A
0.7-V 1.8-mW H.264/AVC 720p video decoder. IEEE J. Solid-State Circuits, 44(11):2943–
2956, November 2009.

30. C. D Chien, C. C Lin, Y. H Shih, H. C Chen, C. J Huang, C. Y Yu, C. L Chen, C. H Cheng, and
J. I Guo. A 252kgate/71mW multi-standard multi-channel video decoder for high definition
video applications. In IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, page
282603, 2007.

