
Waseda University Doctoral Dissertation

HE, Xun

Graduate School of Information, Production and Systems

 Waseda University

 February 2012

SIMD Based Multicore Processor for Image

and Video Processing

- i -

Abstract

Continuous improvements in image and video processing require high computa-

tional power to deal with the increasing complexity of algorithms and higher definition

video. Meanwhile, development in VLSI technology allows the integration of more

cores on a single chip for achieving higher performance. There are three levels of paral-

lelism in applications: task level, data level and instruction level. Typically, multicore

architecture can obtain high task level parallelism, SIMD can achieve high data level

parallelism, and VLIW architecture can achieve high instruction level parallelism.

However, hardware costs and performance gains of the three methods are quite different

for video processing. Multicore can achieve almost double performance gains with dou-

ble hardware costs for a video encoder. SIMD can achieve double data level parallelism

with less than double gates. VLIW needs more than double gates for double instruction

level parallelism. Based on these technologies, we design and fabricate a 32 cores pro-

cessor, and also evaluate its performance. The results show that this processor can

achieve very high performance for our target applications.

Chapter 1 [Introduction] presents a background introduction of parallel architec-

tures and challenges in multicore processor.

Chapter 2 [SIMD based Core Architecture] presents the SIMD based core ar-

chitecture. For maximizing on-chip parallelism, multicore and 128 bits SIMD architec-

ture is applied. SIMD instruction set is optimized for multimedia applications. The core

is consisted by one small 32 bits RISC core, and SIMD pipelines. RISC is based on

open source project: OR1200. SIMD is divided into two parts for executing two instruc-

- ii -

tions at the same time. Comparing with CELL processor’s SIMD, the proposed work

can reduce by 29% cycle count for video applications.

Chapter 3 [Application Specified Cache Coherence Protocol] proposes a manu-

ally controlled invalid cache coherence protocol (MCI). In multicore system, the cache

coherence problem becomes more and more important with core number. In conven-

tional snooping based protocol, coherence transaction broadcasts to all cache monitors.

M. Ekman’s Experiments in WDDD2002 show that more than 70% percentage of all

snooping operations misses in other caches for conventional MOESI protocol. This

means that most of the snooping induced tag-lookups just waste the power. In the pro-

posed MCI protocol, memory space can be dynamically or statically defined as shared

or private space. The shared spaces can be shared by all cores, clusters or several cores.

A new programming model is proposed for defining the sharing patterns. A snooping

unit is added for each core, which keeps the sharing configurations and sends out inva-

lid messages automatically. For MCI, the cost for coherence is mainly determined by

data sharing method, not the number of cores. Large scale SMP processor can also

achieve good performance in MCI. In our experiments, MCI is compared with Jetty

which is proposed for reduced snooping operations by A. Moshovos in HPCA2001. For

a 32-core processor, snooping operations of MOESI protocol costs more than 50% of

L1 cache’s power. Jetty can reduce about 24.6% snooping operations for MOESI.

Snooping operations in the proposed MCI protocol is about 42.7% less than MOSEI

with Jetty.

Chapter 4 [Communication Network] describes a Core Interconnection Bus

(CIB) for connecting eight cores. In this processor, there are four clusters, and each

cluster is consisted by 8 cores and one shared cache. Data sharing within cluster is sup-

ported by the sharing cache. However, it’s inefficient to use the shared cache for data

- iii -

communication between SIMD cores, as it needs a write back and read operation to

L2.To enhance the data communication ability for SIMD core, CIB is designed for

achieving very low latency data transfer between cores. Vector cores directly exchange

data through CIB. In CIB, every flit has routing header, and they share the links in

time-division multiplexing method. Data transmissions are divided into independent

flits. Each flit can route in CIB independently. CIB can broadcast one flit to all cores,

which is not supported in channel based NoC. Comparing with S. R. Vangal’s NoC de-

sign in JSSC08, CIB doesn’t store data flits, which can save a lot of buffer resources.

Thus CIB can achieve more than 10 GB/s BW for small size vector transfers, which is

more than 2.5 times better than S. R. Vangal’s work. When the injection rate is less than

8%, CIB’s latency is less than 4 cycles in average.

Chapter 5 [Chip implementation and Performance Evaluation] shows the chip

implementation and performance evaluation of the proposed 32 cores processor. Apply-

ing the proposed technology together, a 32 cores processor has been fabricated and veri-

fied in SMIC 65 nm CMOS. This chip is consisted by 32 cores (286KGates per core),

256KB L2 cache, two PLL, and one 64-bit DDR PHY, and the die is about 25 mm2.This

processor can achieve a maximum speed of 750 MHz at 1.2 V core power. The whole

chip can achieve a peak performance of 375 GMACs, or 750 GOPS of 8-bit data opera-

tions. It can achieve 1.9 times higher GMACs performance than D. N. Truong’s 167

RISC cores chip in JSSC09. For SAD (Sum of Absolute Difference) and Matrix Multi-

ply kernels, the proposed work’s cycle count is reduced by 37% than TI C6415 DSP.

Chapter 6 [Extended Processor with Hardware Accelerator] presents a sharing

hardware accelerator for extending the proposed SIMD processor. This multicore plat-

form is designed for high performance multimedia applications by maximizing on-chip

data level and task level parallelism. However, there are limitations for high parallel

- iv -

system: sequential functions with less parallelism become the bottleneck. Hardware ac-

celerators are added for resolving these problems. As the usage rate of accelerators is

very low, it’s unnecessary to add the same accelerator for every core of multicore pro-

cessor. Sharing resources and reducing the cost becomes a hot topic recently for multi-

core processor. The low latency CIB network makes it possible for sharing hardware

accelerators within a cluster. Based on our previous works on 4Kx2K@60fps H.264

Decoder, an intra decoder is added in the multicore platform as a shared hardware ac-

celerator. It can satisfy eight channels parallel HD decoding at 31 MHz.

Chapter 7 [Conclusion] summaries the proposals. Based on this design, the pro-

posed 32-core SIMD processor can be applied for a lot of multimedia applications, such

as video decoding or image processing. The dual-issue SIMD cores can guarantee very

high performance for processing 8-bit pixels. Together with hardware accelerators, the

application fields can be wider.

- v -

Contents

Abstract ... i

Contents ... v

List of Figures ... viii

List of Tables .. x

1 Introduction ... 1

1.1 High Performance Solutions for Multimedia Applications 1

1.1.1 SIMD and Massively-Parallel Processors ... 1

1.1.2 Embedded Multicore Processors for Multimedia Applications 3

1.2 Challenges in Multicore Processors .. 5

1.2.1 Parallel Programming ... 5

1.2.2 Cache Coherence Protocols... 6

1.2.3 Inter-core Communication Challenge ... 10

1.3 Open Source RISC: OR1200 .. 14

1.4 Organization of the Thesis .. 15

2 Dual-issue Vector Core Architecture ... 17

2.1 Background ... 18

2.1.1 Target Applications ... 18

2.1.2 Performance Profile for Different Architectures ... 19

2.2 Architecture Overview .. 20

2.2.1 System Overview .. 21

2.2.2 Vector Core Architecture ... 22

2.2.3 Memory System .. 24

2.2.4 2D-DMA ... 27

2.3 SIMD Instruction Set Architecture.. 30

2.4 Vector Memory Architecture ... 33

- vi -

2.5 Cycle Level Performance for Video Kernels .. 34

2.6 Chapter Summary.. 37

3 Application Specified Cache Coherence Protocol .. 38

3.1 Wasted Energy in Previous Snooping Protocols ... 39

3.2 The Proposed MCI Protocol.. 40

3.3 Programming with MCI .. 43

3.3.1 Synchronization in MCI .. 43

3.3.2 Parallel Programming Model .. 44

3.4 Hardware Supports for MCI ... 46

3.4.1 Snooping Unit ... 46

3.4.2 Cache Design with MCI .. 47

3.5 Performance Evaluations .. 48

3.6 Chapter Summary.. 50

4 Communication Network ... 51

4.1 Background of Interconnection Network .. 51

4.2 Core Interconnection Bus .. 53

4.2.1 Topology of CIB ... 54

4.2.2 Bandwidth Management of CIB ... 56

4.2.3 Data Routing and Transmission in CIB .. 57

4.3 2x2 Mesh Network for Four Clusters ... 60

4.4 Performance Evaluation and Comparisons ... 61

4.4.1 Performance Evaluation of CIB .. 62

4.4.2 Performance Comparisons for Short Transmissions 63

4.5 Chapter Summary.. 67

5 Chip Implementation and Performance Evaluation .. 68

5.1 Chip Implementation and Measurement ... 68

5.2 Performance Evaluation and Comparisons ... 72

5.3 Chapter Summary.. 76

6 Extended Processor with Hardware Accelerator ... 77

6.1 Background ... 77

- vii -

6.2 Introduction of Previous Intra Decoder... 78

6.2.1 Design Requirements of the UHD Decoder .. 79

6.2.2 A high Performance Intra Decoder for UHD .. 82

6.3 Shared Intra Decoder within Cluster ... 86

6.3.1 Interface and Data Flow of the Shared Decoder ... 86

6.3.2 New Pipeline Design for Accelerator .. 87

6.4 Chapter Summary.. 91

7 Conclusion .. 92

Acknowledgement ... 94

References .. 95

Publications .. 104

- viii -

List of Figures

Figure 1-1 Power efficiency comparison of MP-SIMD and CMP processors. 4

Figure 1-2 The cache coherence problem of a snooping based system 7

Figure 1-3 A directory based cache coherent multiprocessor 9

Figure 1-4 Buffer conflicts in a NoC ... 11

Figure 1-5 Virtual channel in NoC... 12

Figure 1-6 Data format of each flit and packet flow in NoC. 13

Figure 2-1 Block diagram of the proposed 32-core processor 21

Figure 2-2 Memory configuration in a four tasks example. 24

Figure 2-3 L2 cache architecture and cache access pipeline 27

Figure 2-4 Configuration of 2D DMA transmission .. 28

Figure 2-5 Basic flow of a DMA transfer .. 29

Figure 2-6 The 32 bits arithmetic unit of ALU0 and ALU1 32

Figure 2-7 The architecture of vector memory with a address generator 33

Figure 2-8 A vertical memory load operation for a 4x4 array. 34

Figure 2-9 The calculation process of 6-tap filtering by SIMD instrcutions 35

Figure 2-10 loading vertical vectors with VM and transpose instructions 36

Figure 3-1 Example of memory configurations and the memory map with MCI . 42

Figure 3-2 The data flow of writes operations with/without synchronization 44

Figure 3-3 Memory configuration in a four tasks example. 45

Figure 3-4 Access of shared data in MCI and SU’s architecture. 46

Figure 3-5 The architecture of Filter cache before L1 cache 48

Figure 3-6 Snoop-used percentage of L1 cache energy. .. 50

- ix -

Figure 4-1 Core Interconnection Bus for a cluster. .. 54

Figure 4-2 Bus Node architecture in CIB .. 56

Figure 4-3 Bandwidth management in CIB ... 57

Figure 4-4 Data format and quick data transfer with CIB. 58

Figure 4-5 The three ports router for connecting CIBs.. 60

Figure 4-6 Maximal BW performance of 2x4 NoC, CIB and EIB 64

Figure 4-7 Latency of CIB and 2x4 NoC at different injection rate 65

Figure 5-1 Test systems and parallel interface between FPGA and processor 69

Figure 5-2 Photograph of SVP in 65nm CMOS (5x5 mm
2
) 70

Figure 5-3 Measured power consumption and maxim frequency 71

Figure 5-4 Architecture of the proposed L2 cache design and unified L2 75

Figure 6-1 Decoding diagram of H.264/AVC UHD decoder [59] 80

Figure 6-2 Zig-Zag MB level decoding order in UHD decoder 81

Figure 6-3 MB and block pipelines of Intra Decoder .. 83

Figure 6-4 Combine PE for Intra Prediction .. 84

Figure 6-5 8x8 Filtering Process in high profile H.264/AVC 85

Figure 6-6 Connecting the shared hardware accelerator in CIB 87

Figure 6-7 The prediction pipeline of intra4x4 modes in accelerator 89

Figure 6-8 The pipelines of accelerator for different cases. 90

- x -

List of Tables

Table 2-1 Profile results of two video encoders on DSPs ... 20

Table 2-2 Performance comparisons of VLIW and SIMD.. 20

Table 2-3 Kernel Instruction Set of SIMD .. 31

Table 2-4 Vector Core’s features and performance (cycles/MB) 37

Table 3-1 Snoop hit distribution in other cache units [52] .. 40

Table 4-1 BW and latency (cycles) for single/dual rings CIB 63

Table 4-2 Hardware costs and architecture comparisons .. 66

Table 5-1 Power consumption of instructions ... 71

Table 5-2 Performance comparison in GMACs/W ... 72

Table 5-3 Cycle count comparison of three applications from [13] 73

Table 5-4 Application level performance and power comparison 74

Table 5-5 Performance comparisons of two L2 cache designs 75

Table 6-1 Performance comparisons of Intra decoders ... 90

 Introduction

- 1 -

1 Introduction

1.1 High Performance Solutions for Multimedia Applications

During the last decade, multimedia technology has witnessed its rapid development

in the world. For example, digital HDTV is widely used in our daily life, such as

Blue-ray disk and TV broadcasting. Continuous improvements in image and video pro-

cessing require high computational power to deal with the increasing complexity of al-

gorithms and higher definition video. Meanwhile, Continuous improvements in VLSI

technology allow the integration of more transistors on a single chip. There are two

popular solutions for achieving higher performance: Single-instruction, multiple-data

(SIMD) and multicore processor. Both of them can explore parallelism at different lev-

els, and then achieve high performance for multimedia applications. According to the

requirements of our target applications, we use dual-issue SIMD core architecture and

design a 32-core SIMD-based Vector Processor (SVP).

1.1.1 SIMD and Massively-Parallel Processors

SIMD is a class of parallel computers, which exploits multiple data streams to

perform operations which may be naturally parallelized. It consists of multiple pro-

cessing elements that perform the same operation on multiple data simultaneously [1].

Thus, such machines exploit data level parallelism. The first use of SIMD instructions

was in vector supercomputers of the early 1970s such as the CDC Star-100 [2], which

could process a vector of data by one by one instruction. In mainstream CPU for PC,

SIMD becomes the basic extension for real-time graphics or games. The first wide-

 Introduction

- 2 -

ly-used desktop SIMD was with Intel's MMX ISA for x86 architecture in 1996 [3], fol-

lowed by SSE/SSE2 [4]. IBM and Motorola also developed AltiVec [5] ISA for POW-

ER architecture. A modern desktop CPU is often a multicore processor, where each core

can execute SIMD instructions.

As multimedia applications have extensive data-level parallelism, there are a lot of

embedded processors are designed with SIMD [6-9]. Massively-parallel sin-

gle-instruction-multiple-data (MP-SIMD) machines [10] [11] are widely used to exploit

as much data-level parallelism (DLP) as possible. Xetal-II [10] is also a SIMD proces-

sor with 320 processing elements (PE), and each PE contains one 16bit MAC. It deliv-

ers a peak performance of 107 GOPS or 27 GMACS on 16-bit data while dissipating

600 mW. They can achieve high DLP with very good power efficiency. However, they

are insufficient in instruction-level-parallelism (ILP) and task-level parallelism (TLP).

The Stream processor [11] contains two cores for main application threads, and a DPU

for vector processing. In the DPU, sixteen SIMD lanes are combined to deliver perfor-

mance of 512 8-bit GOPS or 128 16-bit GMACs with a power efficiency of 12.2

GMACS/W. However, sixteen lanes can only execute one task, and the TLP is limited.

A very long instruction word (VLIW) [12] vector coprocessor (VCP) is proposed

for the computation requirements of image processing [13]. In VCP, the coprocessor

includes three execution pipelines with cascaded SIMD ALUs to exploit the instruc-

tion-level parallelism. 3-way VLIW architecture is used for exploiting high instruc-

tion-level parallelism. 128-bit SIMD architecture is used frequently to exploit high da-

ta-level parallelism. VCP is designed to be a coprocessor for image processing of video

CODECs, thus the width of SIMD ALUs is limited to that of macroblocks of CODECs.

 Introduction

- 3 -

1.1.2 Embedded Multicore Processors for Multimedia Applications

Multi-core processor is a single computing component with two or more inde-

pendent processors (called "cores"), which can read and execute instructions inde-

pendently. Today, multicore design is widely used in high performance processors. Even

our video game consoles are also shifting to this direction. The Xbox 360 uses 3-way

chip multiprocessor (CMP), and PlayStation 3 uses the CELL processor, which have

one PowerPC Element and 8 SIMD Processing Elements [14]. Therefore, it is very im-

portant to understand the benefits of multi-processor systems.

Multicore processors can deliver high task level parallelism (TLP) at low power

consumption, so they can offer higher computational power and design flexibility than

single core processors. As embedded systems always have very limited budget for pow-

er and hardware cost, multicore architectures are very suitable for them. The TILE pro-

cessor [15] is a 64-core SoC targeting at the high-performance demands of a wide range

of embedded applications such as network and multimedia applications. Each core is a

3-wide VLIW machine with a 64-bit instruction word and connected through a scalable

2D mesh network. It attains 384 GOPS and 144 billion instructions per second (GIPS)

with 10.8W. Another processor applies 167 fine-grain cores to build a many-core com-

putational platform for DSP, embedded, and multimedia applications [16]. At a supply

voltage of 1.3 V, the chip achieves 196.8 GIPS (16bit) or 393.6 GOPS (16-bit), while

dissipating 10.2 W. Each core contains 16-bit ALU, multiplier, and a 40-bit accumulator,

which just costs 0.17 mm2 in 65 nm. This fine-grain many-core processor is excellent in

TLP.

 Introduction

- 4 -

100

10

1

1 10 100

100GOPS/W

10GOPS/W

0.1

SODA (65 nm)

Xetal-II (90 nm)

1000
Stream (130 nm)

167 cores CELL

Pentium M

(90 nm)TI C64x

SVP(65 nm) Embedded processor

for Multimedia

Portable processor

for Multimedia

General purpose processor

Gaming

console

P
ea

k
 p

er
fo

rm
an

ce
 (

G
O

P
S

)

Power (W)

TILE 64

 (65 nm) (90 nm)

Figure 1-1 Power efficiency comparison of MP-SIMD and CMP processors.

Figure 1-1 shows the comparison of throughput and power. Compared with

MP-SIMD, multicore architecture requires more instructions and power for vector pro-

cessing. MP-SIMD can achieve better power efficiency, but poor GIPS performance.

GOPS and GIPS are just a common indicator of the performance, and the improvement

in performance gain depends on the software algorithms and implementations. For mul-

ticore processor, gains are limited by the fraction of the task level parallelism. This ef-

fect is described by Amdahl's law. In the best case, it may get a speedup factor near the

number of cores. However, most applications are not accelerated so much which de-

pends on applications. For MP-SIMD designs, gains are limited by the fraction of data

level parallelism of applications. In our target multimedia applications, data level paral-

lelism is higher than other general applications. SIMD based architecture is very suita-

ble for this applications. For general applications, task level parallelism is more com-

mon.

To meet future multimedia system’s requirement, a SIMD based Vector Processor

(SVP) is presented in this thesis. Both SIMD and multicore architecture are used for

 Introduction

- 5 -

achieving higher performance. The target throughput and power budget (Embedded

Processor for Multimedia) is also shown in Figure 1-1. Our target power efficiency is

higher than 100GOPS/W, and power budget is about 3 Watt for a high performance

embedded processor.

1.2 Challenges in Multicore Processors

1.2.1 Parallel Programming

In multicore processors, the cores are always connected for data exchange and of-

ten share an on-chip cache memory. The challenge of programming multi-core proces-

sors is real, but it is not a technical challenge. Since the 1970s, the problems of how to

program multi-core processors and how to write programs for them have been resolved

[17]. Many languages and systems implement dataflow programming for multicore

processor, such as SISAL [18], and other early dataflow languages. MapReduce [19] is

one of the most popular new tools for dataflow based programming.

Open Multi-Processing (OpenMP) [20] is an Application Programming Interface

(API) that supports shared memory multiprocessing programming on most popular op-

erating systems, including Linux, and Microsoft Windows systems. OpenMP is a us-

er-model parallel programming tools, which is widely adopted. It can offer a flexible

interface for developing parallel program [9]. It defines a lot of compiler directives, li-

brary routines, and environment variables for run-time behavior [21][22][23]. For ex-

ample, the section of code which runs in parallel is marked with a preprocessor directive

(such as “#pragma omp parallel”). Then the compiler knows which thread will be works

in parallel and then each thread has an "id" attached to it. The thread id is an integer

 Introduction

- 6 -

value. For master thread, the id is "0". After the execution of the parallelized code, the

threads join back into the master thread, which controls the whole task.

1.2.2 Cache Coherence Protocols

The caches in current distributed shared-memory multiprocessors improve perfor-

mance by decreasing the bandwidth requirements of both the local memory and the

global interconnect. However, the local caching of data introduces the cache coherence

problem. Figure 1-2 shows an example of the cache coherence problem. Memory ini-

tially contains the value 0 for location A, and core 0 and 1 both read location A into

their caches. Next, core 1 writes location A in its cache with the value 1, then core 0’s

cache still contains the old value 0 for location A. Read operation of location A by core

0 will get the old value 0. It isn’t what we expected for a shared memory system. The

expected behavior is to return the most up-to-date copy. In snooping based cache, all of

the caches can get the write operations to L2 cache and then update or invalid them-

selves. For shared L2 cache by all cores, there aren’t duplicated copies in L2 cache. But

if there are private L2 cache as Figure 1-2, then the cache coherence problem also exists

in L2 cache. Private L2 cache units also have to resolve the coherence problem.

 Introduction

- 7 -

core 0 core 1 core n„

A=0 A=1

A=1 A=0

Write A=1

Shared

L2 cache

Private

L2 cache

Snooping bus

L1 cache L1 cache L1 cache

Figure 1-2 The cache coherence problem of a snooping based system

Cache coherence protocol is designed for resolving this problem. It can ensure that

requests for a certain data always return the most recent value. Cache coherence proto-

col is a scheme for coordinating access to shared memory. Current-generation multi-

processors solve the cache coherence problem in hardware by supporting a cache co-

herence protocol. There are two main kinds of cache coherence protocols: snoopy pro-

tocols [24-27] and directory-based protocols [28-30]. Snoopy protocols always use a

broadcast medium in the machine and only apply in small-scale multiprocessors. In

these systems, each cache units “snoop” on the bus and look for transactions which will

affect it. When a snooping unit sees a read request on the bus, it checks to see if it has

the recent copy of the data. When a snooping unit sees a write on the bus, it will take

that line out of its cache if it has that data. These snoopy bus-based systems are easy to

build, and it’s suitable for small scale system and bus based network. However, as the

number of processors increases, the single shared bus becomes a bandwidth bottleneck.

The snoopy protocol’s broadcast mechanism causes a linear increase in the number of

broadcasting operations. Snooping-based protocols may be not scalable, as all requests

 Introduction

- 8 -

must be broadcast to all processors. All processors should monitor all requests on the

shared interconnect. Shared interconnect utilization can be high, leading to very long

wait times.

To resolve the BW and scalability problem of snooping, the distributed shared

memory (DSM) architecture with directory-based cache coherence protocol is proposed

[31]. In a DSM processor, each node contains a core, a distributed memory, and a node

controller. The controller is used for managing the data communication within and be-

tween cores. And the directories are stored in the shared cache. In directory based pro-

tocols, directory maintains coherence state. A simple directory structure is shown in

Figure 1-3, which has one directory entry per block of memory. Each line of the cache

has a corresponding entry directory, and each entry of the cache contains one bit for

each core. The core number determines the width of directory. In addition, some state

bits indicate whether the block is private, shared in multiple caches, or held exclusively

by one cache. Then directory know which caches need to be invalidated when a location

is written. The directory also indicates whether the copy of the block is up to date or

which cache holds the most recent copy. Directory-based cache coherence protocols

work by checking the directory on each cache miss, and then taking the appropriate op-

eration based on the type of request and its state in the directory. For a cache miss, the

cache units send a request to communication network for detecting which cores have

this data. When one core writes to a cache line, the responding data in directory is

checked. And then the core sends out invalidation or update messages to the cores

which have this data according directory’s information.

 Introduction

- 9 -

core 0 core n„

cache Directory
„

cache Directory
„

Communication Network

Figure 1-3 A directory based cache coherent multiprocessor

Thus directory is used to track state of each cache line, which is always stored in

the cache. For each cache line, the directory needs to track, which cache has the latest

copy of the line if the line is held exclusively or which caches have copies of the line.

Maintain of directory is quite complicated, and the hardware cost of directory will in-

crease linear with core number. For large scale multicore processor, both design com-

plexity and hardware cost are very high. For example, a 64 cores processor needs more

than 64 bits for each cache line.

Martin et al. [25] shows that snooping can outperform directories on a medium size

system (<16 cores), at the cost of additional bandwidth. For a 64 cores system [26], one

core needs more than 6 GB/s endpoint BW to achieve the best performance. It means

that the whole system needs to provide about 384GB/s BW for coherence. If there is

enough BW, snooping based protocols can achieve 1.6 times better performance than

directory. However, if the endpoint BW is less than 2GB/s, directory can achieve more

than two times better performance than snooping.

 Introduction

- 10 -

1.2.3 Inter-core Communication Challenge

 As the number of cores increases significantly, the communication solutions also

need to change drastically in order to satisfy the inter-core communication requirements.

In conditional bus architecture, there are two kinds of architectures: shared bus based

[32-35] and crossbar based interconnection [36][37]. Shared bus based systems provides

a shared connection for various peripherals and cores. There is a central arbitrary, which

is used for judging which one can use the bus. When one shared bus can’t satisfy the

BW requirement, multiple shared buses are added to increase bandwidth, decrease sig-

nal latencies [33]. When the core number increases, hierarchical bus architecture is used

[34]. In shared memory multicore systems, a high bandwidth connection is required

between the cores and the cache banks, which needs to allow multiple core ports to

launch operations to the L2 subsystem in the same cycle. Crossbar based network is de-

signed for resolving such kinds of problem. The crossbar system always consists of

crossbar links and controlling logic modules. Crossbar consists of links from each core

to all of the banks (cache’s banks), and links from every bank to the cores.

 A lot of research studies have demonstrated the feasibility and advantages of Net-

work-on-Chip (NoC) over traditional bus-based architectures [37-39]. Networking the-

ory and routing methods are applied in NoC and achieve notable improvements over

shared bus and crossbar interconnections. It’s layered-stack approach to the design of

the on-chip inter-core communications methodology.

In a SoC system, NoC is used as a public information transportation system for

cores and specialized IP blocks. It consists by point-to-point data links and routers. And

then data packages can be delivered from any source point to any destination point over

several links. Routers are in charge of data routing, both source and destination points

can’t control routing. It also needs extra routing information in each package, which is

 Introduction

- 11 -

determined by the size of network. NoC is similar to a modern telecommunications

network, using digital bit-packet switching over multiplexed links.

 NoC is consisted by topology, routing, and channel control [40]. Topology is the

arrangement of nodes and channels into a system. Routing method defines how a packet

chooses a path in these nodes. Channel control deals with the allocation of channel and

buffer resources to a packet. NoC networks are composed of two types of resources:

channels and buffers, and buffers are always associated with channels one by one. Once

the channel and corresponding buffer is allocated for packet P, no other packets can use

the associated channels until they are released. If packet P is blocked by some resource

conflicts while holding the buffers, the allocated channels may be idle and waiting.

However, the other packets can’t use them.

R0 R1 R2 R3

R4 R5 R6

R8 R9 R10 R11

R7

blocked
packet m

packet n

Figure 1-4 Buffer conflicts in a NoC

Figure 1-4 shows such kinds of resource conflicts. In the figure, there are 12 rout-

ers and each router has two links for each direction. Router R3 is sending data to R11,

and the link between R7 and R11 is used. Then R4 sends a packet to R11, and allocated

the links and buffers from R4 to R7. However, the link and buffer of R7 to R12 is occu-

pied, and then R4’s packet is blocked at R7. At this time, if R5 can’t allocate a buffer for

 Introduction

- 12 -

sending data to R6, as R4 has not released the links of R5 to R6. Even that link is idle,

the buffer is full of data from R4, and the other packets can’t use it.

To resolve this problem, virtual channel is proposed. Virtual channels decouple re-

source allocation by providing multiple buffers for each channel in the network [41]. If

a blocked packet holds a buffer associated with a link (channel), another buffer can be

used for allowing other packets to pass this path. Figure 1-5 shows a 4x3 NoC with two

virtual channels. When the buffers of R4 to R7 are allocated by R4 and the links are idle,

the other units can use the idle links with the buffers of another channel.

R0 R1 R2 R3

R4 R5 R6

R8 R9 R10 R11

R7

blocked
packet m

packet n

Channel 0

Channel 1

link
output

crossbar

Figure 1-5 Virtual channel in NoC

If the links are idle and the buffer is allocated, virtual channel can improve the us-

age rate of the links and resolve the deadlock problem in NoC [42]. However, it can’t

resolve the block problem caused by data link resource.

In NoC, all data in one transmission are packaged as one packet. Packet is always

divided into fixed width flits. To build a connection for sending a packet, several extra

 Introduction

- 13 -

flits are needed for sending destination memory address, routing information. Figure 1-6

shows a basic packet and the data format of each flit in [43]. One short data transmis-

sion needs three flits at least: the first one acquires a channel between source and desti-

nation, the second one sends the memory address and the others send the data. The data

flits doesn’t include information of destination, thus flits in one packet can’t be spaced

out. Six bits is used for controlling the channel. As the data packets don’t have any in-

formation of destination, the flits of one packet can’t be broken into pieces. The packet

flow in Figure 1-6 shows that flits in one packet must follow one by one, and then size

of packets is flexible.

Control header

FC0 FC1 L V T H CH DID[2:0]

3bit Destination IDs

NPC PCA SLP REN ADDR

d31 d0

FLIT0

FC0 FC1 L V HT

FC0 FC1 L V T H

FLIT1

FLIT2

32 bits data
FC0/1: Flow control of lane

L: Lane ID
V: valid FLIT

ADDR: memory address
„„

Packet flow:

FLIT0 FLIT1 FLIT2

Packet i

FLIT0 FLIT1 FLIT2

Packet i+1

FLITn„„

Figure 1-6 Data format of each flit and packet flow in NoC.

A lot of research predicts that packet switched networks will replace buses in mul-

ticore and many-core systems [39]. However, most of products are still using shared bus

and crossbar network [36], as the latency of NoC is quite high than crossbar. As wire

delay in high speed clock systems will affect the timing budget, leading to wires that

cannot reach across the chip, several pipelines are used in crossbar network.

 Introduction

- 14 -

1.3 Open Source RISC: OR1200

RISC processors are widely used both in mainstream and embedded computing

due to their high performance and low power computation. A lot of open source RISC

projects are started for improving RISC’s architecture. OpenRISC 1000 is one of open

source RISC projects, which aims to develop a series of general purpose RISC archi-

tectures. OpenRISC 1000 is architecture for a family of free, open source RISC proces-

sor cores. The architectural description is for the OpenRISC 1000, describing a family

of 32 and 64-bit processors with optional floating point and vector processing support

[44]. OpenRISC 1000 allows for a spectrum of chip and system implementations at a

variety of price/performance points for a range of applications. It is a 32/64-bit load and

store RISC architecture designed with emphasis on performance, simplicity, low power

requirements, scalability and versatility.

OR1200 is an implementation of OpenRISC 1000 processor family. OR1200 is a

32-bit scalar RISC with Harvard micro-architecture, 5 stage integer pipelines, virtual

memory support (MMU) and basic DSP extension. In default configuration, it has one

1-way direct-mapped 8KB data cache and 1-way direct-mapped 8KB instruction cache.

And the cache line is 16-byte for both of them. MMUs are also implemented, which are

constructed of 64-entry hash based data TLB and 64-entry hash based instruction TLB.

Supplemental facilities include high resolution tick timer, programmable interrupt con-

troller and power management support. The default OR1200 configuration is about 40k

ASIC gates. When implemented in a 0.18 um process, it can provide over 150 dhrystone

2.1 MIPS at 150MHz and 150 DSP MAC 32x32 operations, at least 20% more than any

other competitor in this class (typical corner 250MHz).

 Introduction

- 15 -

1.4 Organization of the Thesis

The rest of this thesis is organized as follows.

Overview of the whole system is presented in Chapter 2. Some kernels from our

target applications are profiled at first. SIMD and VLIW architectures are compared.

According to the results, dual-issue vector core architecture is proposed. A new vector

memory is designed for storing vectors, which supports word address unaligned access

and vertical vector access. The SIMD instruction set is also presented in this chapter.

Cycle level performance evaluation and optimization process of this ISA is also shown.

Chapter 3 proposes an application specified cache coherence protocol to achieve a

power-efficient embedded SMP processor. It’s a snooping based protocol and resolves

the high BW and energy cost problems for large scale SMP. Software needs to define

the memory sharing spaces and cores. The broadcasting nature of snooping based pro-

tocols can be limited and the useless snooping operations can be avoided.

Chapter 4 presents a hierarchical communication network based on ring and mesh

topologies, which can achieve a high BW and low latency network. Comparing with

conventional NoC, every data flit has a 13 bit header for denoting the destination ad-

dress. The routers don’t have buffers for incoming flits in network. The links works in a

time-division multiplexing (TDM) way. There isn’t deadlock problem as conventional

NoC.

Chapter 5 presents the design flow and test environments of this processor. The

whole chip is fabricated by SMIC 65 nm technology, which can achieve a peak perfor-

mance of 375 GMACs, or 750 GOPS of 8-bit data operations. Performance evaluation

and comparison on some applications are presented in this chapter.

Chapter 6 presents a shared hardware accelerator on this multicore platform. As

SIMD based ISA is poor for serial scalar functions, hardware accelerator is very im-

 Introduction

- 16 -

portant complementarities for this processor. However, it’s a waste to add accelerator

for every core as the usage rate is very low. A shared intra decoder is designed based our

previous design. It can achieve about four times speedup as an accelerator with less

hardware cost.

Chapter 7 concludes the contributions of this thesis.

 Dual-issue Vector Core Architecture

- 17 -

2 Dual-issue Vector Core Architecture

Multimedia applications always have a huge of 8-bit pixels, and the computation

complexity is very high, especially for high definition applications. General processors

such as ARM or X86 are mainly designed for 32-bit tasks, and they also added some

8-bit extension instructions for multimedia applications. However, it’s not enough for

the requirements, and most of systems have to apply hardware accelerators for video

codec. These kinds of solutions lose the programmable flexibility, and other applica-

tions such as face tracking or ray tracing can’t use the accelerators.

In order to design a high performance platform for multimedia processing, we pro-

file two typical multimedia applications on different architectures, and analyses the par-

allelisms of them. We compare the massively parallel single core processor [13], SIMD

based 8 cores processor and 128-bit VLIW single core processor [14]. We found that the

multicore architecture can achieve almost linear performance gains with hardware costs.

The performance of massively parallel or VLIW single core processors is limited by ap-

plication’s data level or instruction level parallelism. Performance gains of them is poor

than multicore architecture. A dual-issue core based on SIMD is proposed in this chap-

ter.

In section 2.1, some target applications are introduced, and then performance pro-

filing of them is presents. VLIW and SIMD are compared for our target applications.

Section 2.2 presents the overview of the whole chip, including core architecture,

memory and 2D-DMA engine.

In section 2.3, the instruction set of this vector core is presented. The ISA of

OR1200 is modified for parallel issuing. RISC and SIMD pipelines share the instruction

 Dual-issue Vector Core Architecture

- 18 -

fetch and decode stages. SIMD ISA is optimized for 8 bits data processing with a lot of

8-bit MAC instructions.

Section 2.4 presents a vector memory, which can support word unaligned access

and vertical vector load/store.

Section 2.5 presents cycle level performance evaluations for some video kernels.

Section 2.6 gives the summary of this chapter.

2.1 Background

2.1.1 Target Applications

Multimedia technologies make our daily life more interesting. Video technologies

can record our past, and digital image technologies can make the world more colorful.

As the HD video system (1080p) has already become popular in our daily life, even

mobile devices need to support HD applications. And even higher definition such as the

4Kx2K format, which delivers about four times data throughput of HD, has been tar-

geted by next-generation video systems. 3D TV and multiview applications [45-46],

which are also becoming popular, also have several times of data processing complexity.

In current systems, video decoding is the most common multimedia applications. How-

ever, general purpose processors such as X86 or ARM, are not capable for HD video

real-time processing, and they have to integrate hardware video codec. In this work, we

try to implement programmable platform for HD or other high complexity multimedia

applications. The instruction set is optimized for 8-bit based pixel processing. Thus ap-

plications based on 8-bit pixels can get good performance with this architecture.

There are a lot of embedded systems which don’t have a complex OS such as

Linux. For the embedded multimedia system, they always deal with single task, and real

 Dual-issue Vector Core Architecture

- 19 -

time requirement is more critical. To reduce the hardware cost, this processor doesn’t

support MMU or multi-thread.

2.1.2 Performance Profile for Different Architectures

As frequency is limited by technology and power, maximizing on-chip parallelism

becomes the way for achieving higher performance. According to Amdahl's law [47],

the speedup of a program using parallel computing is limited by the time needed for the

sequential fraction of the program. Thus we must know well about the target applica-

tion’s feature of parallelism, and then choose the responding architectures.

There are three levels of parallelism in applications: data level, instruction level

and task level. In multimedia applications, one frame has a huge of pixels, and the data

level parallelism is always very high. For example, video applications always bases on

16x16 data blocks, and 16 pixels are often processed by the same operations. SIMD is

known as an efficient architecture for data level parallelism. Instruction level parallel-

ism (ILP) widely exists in applications. VLIW architecture can achieve high instruction

level parallelism. Multicore architecture can obtain high task level parallelism. In our

previous work on CELL processor [55], we found that it can achieve almost linear per-

formance gains with the core number for a video encoder. It means a double resource

can achieve almost double performance.

Profile results of two video encoders on different DSP platform are shown in Table

2-1. The two DSP processors just have one 32-bit ALU. Sum of absolute differences

(SAD) calculation and DCT/IDCT become dominant in video encoding. In order to

compare the efficiency of the SIMD and VLIW architecture for our target applications,

we select SAD and DCT/IDCT as our benchmarks and evaluate the cycle level perfor-

mance of TI’s single core 8-way VLIW DSP (C6415) and 128-bit SIMD processor

(CELL). Table 2-2 shows the performance in cycle. In SAD, one pixel just need one

 Dual-issue Vector Core Architecture

- 20 -

subtract and one add operations. CELL’s SIMD is about two times better than the 8-way

VLIW based DSP for SAD. In DCT/IDCT, one pixel needs more arithmetic than SAD,

and ILP is higher than SAD. CELL’s SIMD can still achieve more than 10% better per-

formance. However, CELL is poor than C6415 DSP when the address of data is una-

ligned for SAD. CELL’s local memory only supports 16 bytes aligned access. It needs

about 4 cycles for loading one unaligned vector. On the other hand, CELL’s SIMD just

needs to fetch and decode one instruction for one 128 bits vector. 8-way VLIW needs to

fetch and decode eight instructions per cycle. The power efficiency of SIMD is also

better than VLIW for video applications.

Table 2-1 Profile results of two video encoders on DSPs

MPEG 4 encoder on TI C55 DSP [48] MPEG 2 encoder on Blackfin DSP [48]

Kernels in H. MPEG 4 Percentage Kernels in MPEG 2 Percentage

Motion estimation (SAD) 35% Motion estimation (SAD) 38.86%

DCT 10% DCT 8.05%

IDCT 20% IDCT 7.11%

Pixel interpolation 16% Run-length Encoding 9.57%

other 20% Format Conversion 8.22%

Table 2-2 Performance comparisons of VLIW and SIMD

Functions IDCT 8x8 DCT 8x8 SAD 16x16 SAD 8x8 MAC/cycle

CELL[14] 126 102 33(78*) 17(40*) 8x16-bit MAC

C6415[48] 154 116 67 31 4x16-bit MAC

*: memory address is unaligned. CELL needs more than three instructions for one unaligned load.

2.2 Architecture Overview

 Dual-issue Vector Core Architecture

- 21 -

2.2.1 System Overview

For embedded processor, low power requirement is not as critical as portable pro-

cessor. But if power consumption exceeds 5 W, we still have to be rather careful about

the thermal problem. Thus our power budget is about 2-4 W for this high performance

embedded processor. Considering flexibility and power efficiency requirements, SMP

based multicore architecture is utilized to achieve scalable performance for computa-

tionally-demanding image and video applications, such as FTV and UHD video. How-

ever, coherence operation increases rapidly with core number, which causes high power

consumption and heavy traffic in communication network. To resolve this problem in

power-efficient embedded SMP processor, an application specified cache coherence

protocol is proposed, called manual control invalid (MCI) protocol. Based on this co-

herence protocol, a SMP processor with a hierarchical network is designed for

high-performance multimedia applications as in Figure 2-1.

4-Port L2 (64KB)

core

CIB

4-Port L2 (64KB)

core

4-Port L2 (64KB)

core

4-Port L2 (64KB)

core

D
D

R
2

-1
0

6
6

 2x2 mesh
router

jtag

32bit message links

128-bit data links

Ring Bus Node

Figure 2-1 Block diagram of the proposed 32-core processor

It contains 32 dual-issue vector cores, 64-bit DDR2 1066Mb/s memory and 1 MB

on chip memory. Each vector core can achieve a maximal frequency as 750 MHz. Du-

 Dual-issue Vector Core Architecture

- 22 -

al-issue vector cores contain two 128-bit SIMD pipelines and one 32-bit RISC pipeline.

The RISC core is based on OR1200. It has an 8 Kbytes 2-way associative data cache, an

8 Kbytes direct mapped instruction cache. In order to support issue two 32 bits instruc-

tions per cycle, instruction cache is designed as 64 bits wide cache, supporting word

address access. The MMU, 32x32bit MAC and WISHBONE compliant interfaces is

removed for saving gate count. Two SIMD instructions or one SIMD instruction with

one RISC instruction can be issued in one cycle. As 8/16-bit wide data is widely used in

multimedia applications, this SIMD instructions set focuses on 8/16-bit SIMD opera-

tions, including 8-bit MAC instructions. To achieve higher frequency, 32-bit MAC

SIMD operations are not supported (but 16x32-bit MAC is supported). Generally, the

bottlenecks of SIMD system are the data movement and rearranging operations, thus a

flexible Vector Memory (VM) is designed with vertical vector access ability.

Then eight vector cores make up a cluster, and the whole chip consists of four

clusters. Eight cores are connected by Core Interconnection Bus (CIB) in cluster, and

then clusters are connected by 2x2 mesh network. For 128 cores, 4x4 mesh network is

enough. Thus this hierarchical network can offer good flexibility for large-scale SMP.

In this network, data transmission is divided into 16-byte packages, and several bits are

added as package header. The whole chip can achieve about 192 GB/s inter-core BW

(within cluster), and 18 GB/s inter cluster BW. Bandwidth management units (BMU)

are used to allocate BW at heavy traffic case. DDR II controller (MIU) is also optimized

to improve the bandwidth efficiency by eliminating most of the extra overhead as in

[49].

2.2.2 Vector Core Architecture

 Dual-issue Vector Core Architecture

- 23 -

In video applications, high parallel functions can easily achieve more than eight

times speedup in SIMD based processors, but the whole application can’t achieve such

an excellent speedup [50]. There are a lot of functions for scalar data in applications,

which can’t be optimized by SIMD instructions. It’s a waste to use SIMD register and

pipeline to process scalar data. Thus a simple 32-bit RISC pipeline is closely coupled

with SIMD pipelines in SVP. To reduce hardware cost, RISC pipeline doesn’t support

MMU and 32x32bit MAC. It is designed to release vector pipeline from scalar opera-

tions, which only costs 23 K gates (default: 40K).

In [51], average ILP of MPEG2 encoder and decoder are measured by Trimaran

compiler. They are less than 2 ILP on average. Thus dual-issue core architecture is ap-

plied in this processor, including two SIMD instructions or one RISC instruction with

SIMD instruction. SIMD based vector core consists of 32-bit scalar pipeline (SP),

128-bit SIMD based vector pipeline (VP), mixed pipeline (MP), 2D-DMA, Snoopy Unit,

16KB L1 cache and 8KB Vector Memory (VM) as in Figure 2-2. VP supports a lot of

common 8/16/32 bits SIMD instructions, except 32x32 bits MAC. SP is the small RISC

pipeline without MAC. Vector instructions which needs scalar operand (such as Vector

load/store, extract/insert), is executed by MP. As parallelization of MP and VP requires a

5-port register file (RF), Vector RF is divided into two 3-ports RFs as in Figure 2-2.

Compared with unified 5-port RF, it can reduce about 38% power and 31% area. VP can

only access VM by load and store instructions. VP has a special instruction for ex-

change some small data with other cores. 2D-DMA DMA engine is in charge of moving

data between VM and main memory. Both source and destination can have a different

index for x or y directions.

 For most multimedia applications, 8-bit data is used for denoting one pixel. 8-bit

SIMD instructions (including 8-bit MAC) can achieve about 2 times better performance

than 16-bit SIMD instructions for some functions. However, 8-bit SIMD instructions

 Dual-issue Vector Core Architecture

- 24 -

require writing back 256-bit vector to vector register file (V_RF). 256-bit V_RF costs

too much, thus most of processors [11] [16] don’t support 8-bit MAC instructions and

use 16-bit MAC instead. In this architecture, the temporal results of 8-bit SIMD opera-

tions are stored in 256-bit “acc” registers and only saturated 128-bit result can be writ-

ten to V_RF. Then 8-bit MAC instructions are supported with small hardware cost.

MP

core2D-DMA

 16KB

L1 Cache

 8K VM

Snoop

Unit

SP

MP

VP

S_RF

V_RF

I$

D
eco

d
e

32x32

S_RF

32x128

V_RFa

32x128

V_RFb

SDA

VDA

S_WB

VWB

RFDecFE EX0 EX1/DA WB

ALU

acc0 acc1 VP

SP

Pipeline of vector core

ALU0

 32x4

ALU1

 32x4

Figure 2-2 Memory configuration in a four tasks example.

2.2.3 Memory System

 Dual-issue Vector Core Architecture

- 25 -

 For single core chips, L2 cache’s miss rate is the most important things. However,

bandwidth of L2 cache becomes more important for large-scale SMP chips. In this 32

cores processor, DMA units are in charge of moving data between VM and L2 cache.

Memory access delay becomes less important for DMA access. Another problem is that

MCI protocol is just designed for resolving L1 cache’s coherence problem. Adding one

more coherence protocol for L2 cache will increase a lot of hardware cost and com-

plexity. Thus L2 cache in this design doesn’t keep duplicated copies of the same cache

line. It means conventional private L2 cache isn’t suitable for this chip.

High BW unified L2 cache designs such as [36] seems to be satisfied. However, its

crossbar and L2 controller with directories cost a lot of hardware resource. It’s not suit-

able for our low power embedded processor. New low power L2 cache architecture is

proposed to reduce power consumption as in Figure 2-3. The L2 cache is divided into

four units: L2A, L2B, L2C and L2D. Each unit is a private L2 cache for one cluster. L2

cache line (64 bytes) is four times of L1 cache line. To achieve high BW, L2 cache units

are also divided into four data banks (“Ba”~“Bd”), which can be accessed independent-

ly. To save die area and power, only two-way associative architecture is used for L2

cache. L2 cache’s tag unit consists of two dual-port SRAM units and can offer two ac-

cess ports. A duplicated tag unit (“Tb”) which contains almost the same data with “Ta”

is also applied to double the BW. Figure 2-3 shows that the tag units “Ta” and “Tb” can

produce four different addresses for four banks. Then four different data paths “da-

ta/B/C/D” can be accessed. Thus, one L2 cache unit can finish four data requests within

one cycle. L2 cache controller assigns the incoming data access, and arbitrates access

conflictions.

 The disadvantage of private L2 cache is that data sharing between different

clusters becomes inefficient and costs more BW. The MCI protocol can’t guarantee data

coherence for private L2 caches. For resolving the coherence problem and improving

 Dual-issue Vector Core Architecture

- 26 -

the data sharing between L2 caches, special data access paths between different L2

cache units are built for sharing common data. Four L2 units don’t keep duplicated

cache lines. For example, if cache miss occurs at L2A, these paths can be used to check

other L2 cache units one by one as Figure 2-3. In this process, the other L2 cache units

provide data for one private L2 cache like L3 cache. Case “A/B” shows two kinds of

data access pipeline and their cycle counts. “Mux” denotes the crossbar stage, and “L3”

denotes checking other L2 cache units. In this design, it costs 3 cycles to check one L2

cache’s tag unit. If cache miss occurs in all L2 units as case “A”, the whole process

costs about 22~28 cycles. In case “B”, cache hits at the second L2 cache, and it just

costs 10 cycles. The hit data won’t be copied into other L2 cache unit, it’s directly sent

back to cores. However, most of cache misses on private L2 cache can’t be found in

other L2 units. It costs too much resource to send requests to other L2 cache units every

time. In MCI protocol, memory space is divided as shared and private space. Thus, L2

cache units can also use memory shared information to determine whether to send out

data request or not. Case “C” shows that data request is directly sent to MIU for pri-

vate data, which can reduce a lot of redundant data requests. The proposed architecture

can achieve 192 GB/s BW for the 32 cores. The performance of memory access time is

evaluated in Chapter 5.

 Dual-issue Vector Core Architecture

- 27 -

crossbar (8x4x128bit)

Cluster A

L2 A

L2 C L2 D

L2 B

128bit

Ta

addr

dataA

dataB

dataC

dataD

Tb

addr

miss_data_in

L
2B

 C
ontroller

Ba

Bb

Bc

Bd

4 P
orts

L2B

DDR2_MIU(64 bit)

check other L2 units

for missing data

4*128bit

128bit

Mux P_L2 L3 L3 L3 MIU

3(miss)2 3(miss) 3(miss) 3(miss) 8~14

Mux P_L2 L3

3(miss)2 5(hit)

Mux P_L2 MIU

3(miss)2 8~14

ßcache miss

(sharing address)

ß cache hit at L3

ß cache miss (for private data)

L3

L3L3

ßcycles

S1

S2

S1

S2

A:

B:

C:

Figure 2-3 L2 cache architecture and cache access pipeline

2.2.4 2D-DMA

 DMA engine handles all of communications for VM, including data transfer be-

tween main and VM, and data transfer with different VMs. To improve performance of

small size DMA, DMA unit utilizes the L2 cache for access external memory. In this

processor, cores are connected by CIB. Thus DMA between VMs utilizes CIB. DMA

engine supports four channels and is controlled by RISC core. Each channel has two

DMA-configuration registers (DCR0 and DCR1 as in Figure 2-4. DIR flag in DCR0

defines the transmission direction: from “A” to “B” or “B” to “A” as Figure 2-4.

Stride x is index for each data elements per line and Stride y is index for each line’s

start address. 2D DMA consists by several data elements transfers. Address of each

elements is determined by Stride x and Stride y. 2-demenional DMA (2D DMA) is

supported by using stride x and y. Source and destination can be a different

 Dual-issue Vector Core Architecture

- 28 -

2-demenional pattern. For example, this 2D DMA supports transfer a 4x4 array to a

5x4 array by using different stride y for source and destination. This is very useful for

vertical access in vector memory.
y

 elem
en

ts

DCR0 (64 bits): DMA configuration register 0

stride x

B DMA

elements

addr_A: VM’s address 16 bits

Special Instruction for configuration:

SetDMA(Ra, Rb, channel, DCR0/1, En_flag);

0 1 ... x-1

x+0 x+1 ... 2x-1

x+y-1 x+y

„„„„„„

x elements

strid
e y

0 1 ...

x+0 x+1 ...

x+y-1 x+y

„„„„„„

x-1

2x-1

A

SXA SYASXB SYB

7 15 31 47 48

EN RDY

49 50

ERR DIR

51

size

56

DCR1 (64 bits): DMA configuration register 1

x_A x_B y_Baddr_A (16 bits) addr_B (32 bits) y_A

x_A/x_B: number of element in X (4 bits: max 16 elements)
y_A/y_B: number of element in Y (4 bits: max 16 elements)

addr_B: VM/external memory’s address, 16 bits/32 bits

SXA/SXB: stride x of A/B, 8 bits
SYA/SYB: stride y of A/B, 16 bits
size: data size of elements, 7 bits
DIR: direction of DMA, from A to B or B to A

TC

TC: target core, when B is VM.

Figure 2-4 Configuration of 2D DMA transmission

 A lot of information should be sent to DMA engine, which uses a lot of cycles for

small DMA transfers. To reduce the control information of DMA, data size of elements

is limited to 7 bits, which means the maximal size of one element is 128 words (mini-

mal: one word). One 64 bits data path is built between RISC and DMA. RISC has one

special instruction to configure DMA’s channels. It still needs dozens of cycles to

combine all of the information into two 32bit registers and then uses “SetDMA” intrin-

sic instruction to set DMA channel. But if only source address or destination address

should be changed, the configuration process needs only two cycles is enough for

sending one DMA command.

 Dual-issue Vector Core Architecture

- 29 -

SIMD

VM

RISC

cmd

queue

request

queue

Ring Bus

(1)

(2)

(3)

(4)

DMA

engine

N
o

d
e

192GB/s

L2

D
D

R

8.5GB/s

Bank 0

Bank 1

Bank 2

Bank 3

12GB/s

12GB/s

Translation

Data

package

Figure 2-5 Basic flow of a DMA transfer

Figure 2-5 illustrates the basic flow of a DMA transfer between external memory

and VM. The process consists of the following steps: First, RISC sets the En_Flag bit in

DCR0, and then DCR0/1 are sent to “cmd queue”. Second, DMA engine takes one

command from queue and translate it to data request. One DMA command may re-

sponse to a lot of basic data elements. In CELL’s DMA design, every basic data element

needs to fetch one configuration data from its local memory (costs 10 cycles). And all

address of DMA must be translated from virtual to physical address before sending re-

quests to EIB (costs about 30 cycles) [3]. This design just needs about two cycles for

these processes. Third, data request is sent to another queue between DMA engine and

L2 cache. L2 cache selects requests from all of the request queues and checks its miss-

ing-hit status. When cache miss occurs, data request for a whole cache line is sent to

external memory. Then data is sent back to DMA unit for packaging into required for-

mat according to configurations. On the other hand, if DIR bit in DCR0 sets as inter VM

DMA, data request is sent to node of ring bus.

 Dual-issue Vector Core Architecture

- 30 -

2.3 SIMD Instruction Set Architecture

 In this dual-issue core architecture, SIMD instruction just needs to do the arithmetic

calculation. RISC is in charge of controlling peripherals and dispatch instructions for

SIMD and mixed pipelines. Thus SIMD instructions and RISC instructions are mixed in

instruction cache. To make the decode and dispatch process becomes simple, 32 bits

RISC instruction set of OR1200 is reduced to 31 bits by reducing the 16 bits immediate

to 15 bits as below:

RISC instruction: l.addi (add with a 15 bits immediate)

 syntax: l.addi $rD,$rA,$lo15

 format:

bits 31--26 25--21 20--16 15--1 0

l.addi opcode Register 1 Register 2 uimm15 RISC

value 0x27 rD rA lo15 0

SIMD instruction: S.addi16 (16-bit vector add with 14 bits immediate)

 syntax: S.addi16 $VD,$VA,$lo14

 format:

bits 31--28 27--22 21--16 15--2 1 0

S.addi16 opcode register 1 register 2 uimm14 Parallel SIMD

value 0x3 VD VA lo14 1 1

The SIMD instructions have one more bits for denoting parallel status. When the

parallel flag is “1”, then this instruction is executed at the same time with next instruc-

tion. This design supports two instructions (not in the same pipeline) working in parallel.

Fetch unit reads and align instruction according the last bit and parallel flag of SIMD

instructions. Decode unit utilize the last bit for dispatching instructions.

 Dual-issue Vector Core Architecture

- 31 -

This dual-issue vector cores mainly support seven kinds of instructions, which are

executed by VP or MP. SIMD instructions in different pipelines can be executed at the

same time. Arithmetic instructions are mainly executed in VP, and the other instructions

which just need one vector operand are executed in MP. Table 2-3 shows the data types

and cycle delay of them. ALU is fully pipelined to accept sixteen 8x8 bit multiply-add

(MAC), eight 16x16-bit MAC, or four 16x32-bit multiply operation. For add/subtract

operation, 8 bit, 16 bit and 32 bit vector are all supported.

Table 2-3 Kernel Instruction Set of SIMD

To reduce hardware cost of vector register file (RF), 8x8-bit MAC operations just

can write back a 128 bits saturated result back to register file. 8x8-bit MAC instructions

perform integer multiply on each 8-bit elements from source 1 register (Va) with the

corresponding 8-bit word element in the source 2 register (Vb), and accumulate the

16-bit product with the corresponding 16-bit element in the accumulator (Acc). The op-

eration occurs in parallel for all sixteen elements that are found in Va and Vb. The final

result is written to the accumulator (Acc). The saturated results are optionally written

back to register file.

Operations Supported data types and description Unit Cycle

Add, Subtract 16x8b, 8x16b, 4x32b, saturating VP 1,2(32bits)

Multiply+Add 16x8b,8x16b,saturating,accumulation VP 1(8bits),2

Shift arithmetic/logical,16x8b,8x16b, 4x32b MP 1

Logic operation And, Or, Xor, Extract/insert VP 1

Package 4x4 transposes (8bit), pack, unpack MP/VP 1

Load/store word unaligned, with offset per word MP 3

Communication 128 bits+32 bits,128 bits, 32bits,to CIB MP 1

 Dual-issue Vector Core Architecture

- 32 -

MP pipeline has a port for sending data to CIB, which can be used for access the

other core’s VM or exchange data in RF. Package instructions have a special byte based

4x4 matrix transpose instruction, which is designed for vertical memory access.

Figure 2-6 presents details about a 32 bits unit of ALU0 and ALU1 for add, sub-

tract and MAC operations. A0~3 is the four bytes of operand A, and B0~3 is the four

bytes of operand B. C0~3 is the saturated results for 8-bit MAC. C0_16 and C1_16 is

the 16x16-bit results. A vector core has four 32 bits unit, including sixteen 8-bit ad-

ders/multiplier, sixteen 16-bit adders, eight 16-bit multipliers, eight 32 bit adders.

*

+

Acc0_16

+

16

8

*

A1 A0

B1 B0/imm/0

+

Acc1_16

>>+

16

8

*

A1 A0

B1 B0
32

A0

B0/imm

A1

B1

C1 C0

C0_16

+

C0

32

>>

>>16

*

+

Acc0_16

+

16

8

*

A1 A0

B1 B0/imm

+

Acc1_16

>>

+

16

8

*

A3 A2

B1 B0 32

A0

B0/imm

A1

B1

C3 C2

C

0

>>

+

32

<<

C3 C2 C1 C0

C0_32/C0_16

C1_16

Imm_s

Imm_s

Imm_s

Imm_s

C0_16

+0x8000

*

+

/B3 B2

C_mul_0

C_mul_0

C1_16

C1_16

>>16+0x8000

16+*16+ACC output

C1_16_H

C1_16_L

*
+

Acc

C1_16

Acc_w
A

M

M

AM

A

M

A

M

A

M

acc

0

1

S in add

A

A8_A16
AM

ALU0 ALU1

Output from ALU0

A0/A1/A2/A3

B0/B1/B2/B3

Imm

input data:

8 bits

Add/Multply

16

16

Figure 2-6 The 32 bits arithmetic unit of ALU0 and ALU1

 Dual-issue Vector Core Architecture

- 33 -

2.4 Vector Memory Architecture

Vertical vector and unaligned data access widely exist in video or image pro-

cessing. Most of previous designs such as CELL’s SPU just support aligned 128 bits

data access for local memory. To improve the data access ability for vertical vector, one

four banks VM is designed for supporting vertical and unaligned vector types. It costs

too much hardware source for dividing the VM into sixteen banks. In this design, VM is

divided into four addressable banks, which also enable unaligned access (word address)

as in Figure 2-7. Vector data is firstly fetched from external memory by DMA unit.

Figure 2-7 shows an example of vertical vector access.

addr3
addr2

addr1

addr0[15:4]

offset

B0B1B2B3

Address generator

32 bit

128 bit
crossbar

+
Add[15:2]

+ + +

Memory

Figure 2-7 The architecture of vector memory with a address generator

Vertical Load/store instructions include register numbers, address of VM (16 bits)

and Stride value (8 bits). Stride value is used to denote data array’s width. To enable

vertical access, each element of vertical vector must be putted into different banks in

VM. For this design, array (a,b) must be stored as (4n+1,b) in VM (4n-4 < a ≤ 4n), and

then it can be accessed by Vertical Load/store instructions (Stride value: 4n+1).

For example, a 4x4 data array ((0,0)~(3,3)) is stored in VM as 5x4 in Figure 2-8.

2D-DMA unit supports such kind of data movement from external memory to VM. The

fifth column is useless data, which denotes as (x,x). Then address generation unit (AG)

 Dual-issue Vector Core Architecture

- 34 -

can generate four bank addresses for B0~4. To access the first column, “offset” equals

to 5, and then AG outputs 0/1/2/3 for “addr0/1/2/3”, which are 16-byte addresses. And

then data (0,0)~(3,0) is selected. For the second column, address is “1”, and AG outputs

0/1/2/4 (16-byte address) for “addr0/1/2/3”. However, the output data from four banks is

in an order as (3, 1), (0, 1), (1, 1), (2, 1). The crossbar unit reorders them as (0, 1), (1, 1),

(2, 1), (3, 1). For unaligned vector access, “offset” always equals to 1. For example,

when address is “1” and stride value is “0”, AG outputs 1/0/0/0 for “addr0/1/2/3”. This

architecture just can access 32 bit vertical vector.

(0,0)(0,2) (0,1)(0,3)

(x,x)(1,1) (1,0)(1,2)

(1,3)(x,x)(2,0)(2,1)

(2,2)(2,3)(x,x)(3,0)

Add:0

Add:1

Add:2

Add:3

(3,1)(3,2)(3,3)(x,x)Add:4

(0,0) (0,2)(0,1) (0,3)

(1,0) (1,2)(1,1) (1,3)

(2,0) (2,2)(2,1) (2,3)

(3,0) (3,2)(3,1) (3,3)

4x4 data array:

to VM

B0B1B2B3

Figure 2-8 A vertical memory load operation for a 4x4 array.

2.5 Cycle Level Performance for Video Kernels

To achieve high performance for multimedia applications, the proposed vector

core’s SIMD ISA is optimized for processing 8 bits pixels with a lot of 8 bits MAC or

ADD instructions. The vector core is divided into two SIMD pipelines and one RISC

pipeline for better instruction level parallelism. For saving costs, there are no duplicated

units in two SIMD pipelines. The 64 registers are also divided into two groups for

achieving more access ports with less cost.

To verify thee efficiency of the proposed SIMD ISA and core architecture, cycle

level evaluations are performed for five kernel functions of H.264 codec: horizontal

 Dual-issue Vector Core Architecture

- 35 -

6-tap filter, vertical 6-tap filter in ½ pixel interpolation, 16x16 SAD calculation, vertical

deblock, and horizontal deblock. They are the most frequently used functions in a H.264

decoder. Figure 2-9 shows the calculation process of vertical 6-tap filter. The row of “h”

is calculated by six horizontal vectors (A, C, G, M, R, T). With 8-bit MAC instructions,

it just needs six load instructions, six 8-bit MAC instructions and one shift instruction

for calculating 16 pixels. For the SIMD ISA without 8-bit MAC such as CELL, it needs

12 unpack instruction for changing the six 8-bit vectors to sixteen 16-bit vectors. And

then it needs ten 16-bit MAC instructions for calculating. Thus the proposed 8-bit MAC

can save more than two times of cycles in this case.

h=round((A-5*C+20*G+20*M-5*R+T)/32)

Vector

processing

acc<=A*B+acc:

saturate_shift(acc, 5)

Proposed: 8-bit MAC

x6

Intr: S.Sats8 x1

D<=A*B+C
CELL: 16-bit MAC

x10Intr: mpya

Intr: S.MAC8

Intr:shufb
8bit<=two 16bit Vector

x1

Figure 2-9 The calculation process of 6-tap filtering by SIMD instructions

In vertical deblocking process, vertical vectors are calculated. Figure 2-10 shows

how to load vertical vectors in to registers. Firstly the pixels must be loaded into VM as

Section 2.4. Then vertical load instruction can load a 4x4 array into one register. In Fig-

ure 2-x, a 4x16 array is loaded into four registers (R0~3) by four instructions. Next, four

4x4 matrix transpose instructions are applied for transposing the 4x4 array in vectors.

Eight package instructions are needed for packing the pixels of the same column to-

gether and produce four vertical vectors such as V0/V1. For CELL, it needs about 44

instructions for loading four vertical vectors. This design needs sixteen instructions for

loading four vertical vectors, which is about 2.75 times faster.

 Dual-issue Vector Core Architecture

- 36 -

filter(V0,V1,V2)

deblocking filter

0
0

0

0

1
1

1

1

2
2

2

2

3
3

3

3

0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3

0 0 0 1 1 1 1 2 2 2 2 3 3 3 30

0 0 0 1 1 1 1 2 2 2 2 3 3 3 30

0 0 0 1 1 1 1 2 2 2 2 3 3 3 30

0 0 0 1 1 1 1 2 2 2 2 3 3 3 30

4x4 matrix transpose (four instructions)

Load 4x4 with VM

1 2 3 0 1 2 3 0 1 2 3 0 1 2 30

1 2 3 0 1 2 3 0 1 2 3 0 1 2 30

1 2 3 0 1 2 3 0 1 2 3 0 1 2 30

Package R0~R3àS0~S3; eight instructions

0 0 0

1 1 1 1

0 0 0 0

1 1 1 1

0 0 0 0

1 1 1 1

0 0 0 0

1 1 1 1

0

……...

V0

V1

R0

R1

R2

R3

0~3: column number

128bit registers
V0 V2V1

R0

R1

R2

R3

0 1 2 3

0 1 2 3

0 1 2 3

0 1 2 3

0 1 2 3

0 1 2 3

0 1 2 3

0 1 2 3

0 1 2 3

0 1 2 3

0 1 2 3

0 1 2 3

Vertical vector load

Figure 2-10 loading vertical vectors with VM and transpose instructions

All of the features and its benefits are shown in Table 2-4. Before optimization

with the three features of this design (a/b/c), this design is slower than CELL. After op-

timized with the features one by one, it can achieve about 2.3 times speedup in average.

As CELL’s SIMD core doesn’t support 8-bits MAC or non-alignment access, the pro-

posed work can reduce about 29% cycles in average than CELL. However, this design

doesn’t support 32-bit MAC, and target applications are limited.

 Dual-issue Vector Core Architecture

- 37 -

Table 2-4 Vector Core’s features and performance (cycles/MB)

Functions in H.264 without

Features
of Vector
Core

(a).Dual-issue, parallelize data access and scalar instructions

(b). 8b MAC with saturation, 8b add/sub with accumlation

 as:acc<=A*B+acc, acc<=A0 +/- B0+acc; C<=Sat(acc) optional.

(c).Vertical vector access, 4x4 matrix transpose instruction

horizontal deblock

vertical deblock

16x16 SAD

Horizontal

Vertical

504

1027

73

269

495 6-tap filter

 6-tap filter

16x16 (Luma)

16x16 (Luma)

 (a,b,c)

466

983

58

231

447

 (a) CELL

229

331

38

117

225

229

857

38

117

225

53

221

320

488

232

with
(a,b)
with

(a,b,c)
with

2.6 Chapter Summary

To achieve high performance for multimedia applications, the proposed vector

core’s SIMD ISA is optimized for processing 8 bits pixels with a lot of 8 bits MAC or

ADD instructions. The vector core is divided into two SIMD pipelines and one RISC

pipeline for better instruction level parallelism. Results in [51] shows that the average

ILP of target applications is about two, then this architecture supports issuing two in-

structions per cycle. The cost of high ILP is very high, and the performance gain/cost is

poorer than multicore or SIMD architectures. For saving costs, there are no duplicated

units in two SIMD pipelines. The 64 registers are also divided into two groups for

achieving more access ports with less cost. Cycle level performance evaluations prove

that this vector is very efficient for video applications.

 Application Specified Cache Coherence Protocol

- 38 -

3 Application Specified Cache Coherence Protocol

In conventional snoop cache coherence, coherence transaction broadcasts to all

cache monitors. When a processor issues a request to its cache, the other cache control-

lers has to examine the state of its own cache and takes suitable action, which may gen-

erate access operation to tag or data unit of cache. In snoop-based systems, all coher-

ence transactions are broadcasted and therefore seen by all processors in the system. As

a result, snoop protocols are generally limited to small-scale systems. Results in [52]

indicate that more than 70% percentage of all snoop broadcasts miss in other caches.

This means that most of the snoop induced tag-lookups just waste energy. Thus an ap-

plication specified cache coherence protocol is proposed in this chapter, which can re-

duce about 67.8% L1 cache energy for 32 cores SMP processor. In this protocol,

memory should be configured as private or shared spaces. It just sends out invalid mes-

sages when writing operation occurs on sharing spaces. Programmer should be aware

of memory sharing methods, and manually control the protocol. Thus it’s called manu-

ally controlled invalid protocol (MCI).

In section 3.1, the broadcasting nature of conventional snooping protocol is ana-

lyzed. The coherence operations increase rapidly with the core number.

In section 3.2, the MCI protocol is proposed in details.

Section 3.3 shows the programming method with MCI.

In section 3.4, a snooping unit is designed for MCI.

Section 3.5 shows performance evaluation of MCI.

And section 3.6 gives the summary of this chapter.

 Application Specified Cache Coherence Protocol

- 39 -

3.1 Wasted Energy in Previous Snooping Protocols

In small-scale shared memory multicore processor, snooping based protocols are

very popular. In such kinds of processors, lower cache hierarchy levels (such as L2) are

always shared by all cores. In a typical MOESI based consistency model [53], cache

miss on shared cache generates a cache miss request to main memory, and then a state

checking message will be sent to other core. If other cores hold this data, then it will be

marked as shared (“S”) in private cache, otherwise it will be marked as exclusive (“E”).

When a core modify a shared cache line, one more snooping message should be broad-

casting to other cores, then the owner of the new data is changed from “S” to owend

(“O”), and the other cores should change from “S” to invalid (“I”). Two snooping mes-

sage are broadcasted in this case. For a 32 cores system, it means that the other 31 cores

need to check their private cache two times for one data modification. If there are only

two cores have that data, then 60 cache tag checking operations are wasted. It also

means that snooping operations occupy more than 31% of L1 cache with 1% miss rate

in L1 cache (L1 is private, and L2 is shared).

Simulation results show that most of snooping operations missed in all the others

cores as Table 3-1 for an eight cores SMP processor [52]. One snoop operation results a

tag checking operation in one cache. If it doesn’t hit in the cache, then this tag lookup is

useless and doesn’t leads to any response. “0 hit” means the other cores don’t have that

data, and the snooping operations are wasted. “7 hit” means the other cores don’t have

that data, and the snooping operations are wasted. We define a waste rate for snooping

operations as (3.1). Table 3-1 shows that more than 85% snooping operations in private

cache is wasted.

Waste rate =hit operations / total snooping operations (3.1)

 Application Specified Cache Coherence Protocol

- 40 -

Table 3-1 Snoop hit distribution in other cache units [52]

Benchmark 0 hit 1 hit 2 hit 3 hit 4 hit 5 hit 6 hit 7 hit wasted

FFT 99.4% 0.2% 0.1% 0.1% 0.1% 0.1% 0.1% 0% 99.8%

Raytrace 79.1% 11% 3.7% 2.4% 1.8% 1.2% 0.6% 0.2% 94.2%

MPEG 96.4% 1.7% 0.3% 0.2% 0.3% 0.4% 0.5% 0.1% 98.6%

Barnes 53.3% 17% 12% 8.6% 5.2% 2.5% 0.8% 0.1% 85.9%

Radix 99% 0.7% 0.2% 0.1% 0% 0% 0% 0% 99.8%

Average 85.4% 6.2% 3.2% 2.3% 1.5% 0.8% 0.4% 0.8% 95.6%

3.2 The Proposed MCI Protocol

There are a lot of techniques for reduce snoop-induced power in multiprocessors,

such as serial snooping [24] and Jetty [27]. Serial snooping scheme is based on assump-

tion that if a miss occurs in one cache, it is possible to find the block in another cache

without having to check all the other caches. Serial snooping only works for snoops

which are induced by a read miss. Jetty [27] is a prediction structure for filtering out

useless snoop accesses. Before doing a tag lookup, the Jetty is first checked. Jetty can

reduce about 16%~56% snooping used energy for an 8 cores processor [52]. Its perfor-

mance depends on applications and size of prediction structure. For example Jetty’s

performance is very low for Radix application. On the other hand, the prediction struc-

ture costs a lot of extra power and hardware resource.

To resolve the bottleneck of snoopy-based protocol and reduce the hardware cost,

we propose the MCI protocol for large scale processors. MCI doesn’t have “Shared”

state, and it also allows that blocks don’t have any state. MCI just has “M” and “I” state.

In the proposed MCI protocol, memory space can be dynamically or statically defined

 Application Specified Cache Coherence Protocol

- 41 -

as shared or private space. The data blocks in sharing space are treated as shared data in

MCI. If data blocks in sharing space are modified, then the new data block is marked as

“M”, the other data blocks are changed to “I”. If a read request arrives at a block in “I”,

then cache miss occurs and the request will be sent to lower level cache.

The shared spaces can be shared by all cores, clusters or several cores. Only write

operation in shared address will produce an invalid message to the sharing cores, and

the status becomes to “M”. In the proposed architecture, L2 cache units don’t keep du-

plicated cache lines, and duplicated cache lines only occur in private L1 caches in shar-

ing spaces. An extra snooping unit is necessary for managing the sharing configurations

and sending out invalid message. When a core receives an invalid message, it checks its

L1 cache’s tag units and marks the old data as “I”.

Sharing configuration includes three types of information: address ranges (64-bit),

shared clusters (4 bits) and cores (8 bits), and share types. Address range includes start

and end address, which means that it just supports blocks memory. Shared clusters and

cores are used to denote which cores are sharing this space. All of 32 cores can share

data between each other. There is no limitation for data sharing or parallel working. For

example, “shared cluster: 0001, cores: 00111111” means that cores 0~5 in cluster A

share this space. On the other hand, “shared cluster: 1111, cores: 11111111” means this

space is shared by all cores. One sharing space can have more than one sharing config-

uration. Share types include dynamical and static sharing. Static sharing means that the

sharing cores and address range can’t be changed in run time. Dynamical sharing means

the shared spaced or sharing cores can be changed in run time. Statically shared spaces

are always active, and dynamically spaces can be dynamically set as inactive for saving

power.

Figure 3-1 shows an example of memory sharing and configurations. Figure 3-1 (a)

shows that core 1~8 in cluster A have a dynamic sharing space D1, and core 4/8 in clus-

 Application Specified Cache Coherence Protocol

- 42 -

ter A with core 1/2/5/6 in cluster B share dynamic sharing space D2. Eight cores in

cluster a work on the same job, and then they can need share data with each other by D1.

Six cores in cluster A/B work on the same job, and then they can need share data with

each other by D2. In this example, we also define 32 private spaces PA1~PD8 for each

core. Private space can be used for storing private data such as stack or local variables.

A global static shared space S is also defined in Figure 3-1 (b), which can be used for

sharing data with all cores.

1 2 3 4

5 6 7 8

1 2 3 4

5 6 7 8

1 2 3 4

5 6 7 8

1 2 3 4

5 6 7 8

Cluster A Cluster B

Cluster DCluster C

shared area D1 shared area D2

Memory space of the chip:

(a) example of memory sharing method

(b) related memory configuration

PA1 PA2 ... PD8 S D0 D1

PA1~PD8: private spaces for each core;

 PA1 is private space for core 1 of cluster A

S: Static space for all cores, used as global sharing space.

D0/1: dynamic spaces.

core 6 in cluster D

Figure 3-1 Example of memory configurations and the memory map with MCI

Snooping unit (SU) is a critical unit for MCI. Each core must have one SU for

supporting MCI. SU keeps the memory sharing configurations and snoops on the co-

herence messages. When write requests occur at shared space, SU checks every write

request and sends invalid message to sharing cores. For read requests, there are no

 Application Specified Cache Coherence Protocol

- 43 -

snooping operations. Programmer must know well about the memory sharing patterns in

applications, and configure the memory map correctly.

3.3 Programming with MCI

 MCI protocol applies modified-invalid (MI) consistency model, which is a weak

consistency model. If the tasks need sequential consistency, they need to add some syn-

chronization operations in program. An API for parallel programming is also proposed,

which can be used for sharing spaces definition, synchronization and task assignment.

3.3.1 Synchronization in MCI

As L1 cache applies write through policy, a filter cache (FC) is used for combining

small write operations. When dirty cache lines in FC are displaced (LRU replacement

policy), they are written through to L2 cache. It means that write operation may become

out of order. And the delay between write instruction and writing through to L2 is also

uncertain. Figure 3-2 (a) shows the pipeline of three writes operations at shared spaces.

There are three write operations (WR_0~2) in a shared space. But the write through op-

erations (WT_0~2) occur out of order. According to MCI, the snooping unit may send

out invalid messages (MCI0~2) follow the write through operations. Before the invalid

message arrives at the other cores, the read operation will get the old data. And this pe-

riod is also uncertain. If two cores write to the same address at the same cycle, the result

becomes uncertain.

Therefore, data sharing between cores needs to add some synchronization opera-

tions. Figure 3-2 (b) shows the pipeline of two write operations with synchronization

(Syn). FC flushes the dirty data back to L2 cache immediately after the “Syn” instruc-

tion, and then snooping unit sends the invalid message. After FC is empty, a synchroni-

 Application Specified Cache Coherence Protocol

- 44 -

zation message (Syn_0) is sent to the other sharing cores. When other core gets that

message, the new data can be read from L2 cache. It’s inefficient to send synchronize

every write operation at sharing spaces. It’s better to combine the write operation to-

gether, and reduces synchronization process.

WR_0 WR_1 WR_2

WT_0 WT_2 WT_1

MCI_0 MCI_2 MCI_1

Write on shared:

Write Through:

Send invalid message:

(a) write operations without synchronazation

WR_0 SynWR_1

WT_1 WT_0

MCI_0

Write on shared:

Write Through:

Send invalid message:

(b) write operations witht synchronazation

Get invalid message:

(in the other core)

MCI_1 Syn_0

MCI_0MCI_1 Syn_0

Delay on CIB

MCI_*: invalid message

Syn_*: synchronazation message

Figure 3-2 The data flow of writes operations with/without synchronization

3.3.2 Parallel Programming Model

OpenMP provides a relaxed-consistency parallel programming model, based on

shared-memory architecture [22]. Each thread has access to another type of memory

that must not be accessed by other threads, called thread private memory. There are two

kinds of access to variables used in the associated structured block: shared and private.

In MCI, the whole memory map can be configured as shared or private spaces, and

shared spaces also have more attributes than OpenMP. Then we propose a new pro-

 Application Specified Cache Coherence Protocol

- 45 -

gramming model with an additional memory configuration process, and Figure 3-3

shows an example of four parallel tasks.

Two additional steps are needed for memory sharing configurations in MCI. Firstly,

memory map should be defined according to MCI. Directive “#Program Share” is used

to define the sharing memory patterns, including address range, a set of shared cores

and shared type. Shared space “Exchange” is defined as a statically shared space by

cores 0~3 in cluster A. Three dynamically shared spaces “CA*” are defined to be shared

by two cores. Second, the defined memory spaces are assigned to tasks. Directive

“#Program Parallel (C0)” is used to assign task “FuctionA” to core 0, and then two

shared spaced “CA0_1” and “Exchange” are assigned to core 0. “Exchange” is used for

sharing data with all of cores which are working together. Dynamically shared spaces

“CA*” are used to share data between two cores. Undefined space is private.

Figure 3-3 Memory configuration in a four tasks example.

 Application Specified Cache Coherence Protocol

- 46 -

3.4 Hardware Supports for MCI

3.4.1 Snooping Unit

In our chip, each core has 16 sets of sharing space configurations (CF0~15) and 4

active configurations as in Figure 3-4. “AH*” and “AL*” defines the address range. The

chip has four L2 caches and L2 cache can be accessed by the other clusters, providing a

shared L3 cache. When L2 cache miss occurs, L2 cache doesn’t copy the hit cache line

from other L2 caches. Only L1 cache may have duplicated data and the MCI protocol is

applied to reduce coherence message. Compared with conventional snoop or directory

protocol, no extra hardware resources are used to keep the cache line’s share status,

saving a lot of hardware resource for large scale SMP. The overhead of MCI is in soft-

ware development.

Figure 3-4 Access of shared data in MCI and SU’s architecture.

 Application Specified Cache Coherence Protocol

- 47 -

Figure 3-4 also shows an example about how MCI protocol works on shared data

access. At first, Cache line I (CI) in shared space “CA0_1” is required by core 0 and 1,

and then CI is maintained by L2A and two L1 units. When core 1 writes new data (CI`)

to L1, CI` is stored in filter cache (FC) unit. FC unit has eight entries with LRU re-

placement policy and is also used to combine small write operations. When CI` in FC is

replaced and sent back to L2 cache, SU checks the address of this write request. As core

1 writes to a sharing space with core 0 (“CA0_1”), SU of core 1 should send an invalid

message to core 0’s L1 cache (to guarantee data coherence in CA0_1). Address of CI`

and targeted core number are packaged in SU and sent out through CIB. Then the old

data (CI) in core 0’s L1 caches becomes invalid. Core 1 needs to send out a synchroni-

zation message, when core 0 and core 1 need to synchronize the sharing data. In this

example, only one message is sent between two cores, and no broadcasting message is

sent to the other 30 cores. Coherence operations are reduced from 31 to 1.

3.4.2 Cache Design with MCI

In MCI, the invalid state means empty block in L1 cache. A read request at an in-

valid block produces a read miss, and then produces a data request to lower cache. It

means that the new data should be sent to lower cache firstly, and then sends out invalid

messages to other cores. If write back policy is used in L1 cache, then a lot of dirty data

blocks will be stored in L1 cache. Then synchronization operation will have to flush all

dirty data in L1 and then sends out invalid messages. It takes thousands of cycles for

such kind of flush. In MCI, synchronization operation is more frequently than others.

Thus write back is not suitable for MCI.

A write through based L1 cache with a special filter cache (FC) is designed for

MCI as Figure 3-5. FC unit is used to reduce the energy of L1 data cache. FC is differ-

ent from conventional write buffer as it can be used to combine small write operations.

 Application Specified Cache Coherence Protocol

- 48 -

It maintains eight entries for recently accessed data cache line (16-byte). Write-back da-

ta is also temporally kept in FC to combine small write-back data. When dirty cache

lines in FC are displaced (LRU replacement policy), they are written through to L2

cache. Synchronization operation flushes out all of the dirty cache lines to keep the data

coherence. In experiments, it can save about 87% power of L1 data cache in MP3 de-

coder application.

address

L1

cache

T0 Comp

Comp

Comp

EN„
„

„„

„„

„
„

T7

D0

D7

D1

T1

data

Filter Cache

Figure 3-5 The architecture of Filter cache before L1 cache

3.5 Performance Evaluations

 MCI needs to add some memory configurations for every program. Thus it’s not

compatible with conventional software on SMP (memory configurations must be added

for MCI). General CPU for PC can’t use MCI, as software compatibility is necessary.

This is the restriction for our coherence protocol and cache design. Thus we call it as

“Application Specified” protocol. However, all of software can be mapped to MCI

based processor with some modifications. A lot of embedded processors can also use

this protocol, as compatibility isn’t so critical for them. Therefore, we drive the experi-

ments with several application of SPLASH2-benchmark. We select a signal processing

 Application Specified Cache Coherence Protocol

- 49 -

application, e.g., FFT, a multimedia application e.g., Raytrace, and a data sorting appli-

cation, e.g., Radix as our benchmark for L2 and MCI. On the other hand, vector core of

SVP is designed for multimedia applications, thus applications of image/video pro-

cessing are selected for evaluating vector core.

 To evaluate MCI, We use Simics [54] to simulate a 32 cores SMP processor, with

8 KB L1 data cache per core and 1 MB shared L2 cache. In experiments, only snoopy

operations of data cache are measured. In experiments, four tasks are mapped to four

clusters, and each task has eight cores. As snooping based MOESI is widely used in

products, we evaluate the original MOESI, MOESI with Jetty and MCI. Jetty is config-

ured with 16-bit address, 32 entries, 2-way associative [27]. In MCI, we define four

sharing spaces for four tasks, and 32 private spaces are also used for each core. Sharing

data such as “global_memory” in Radix is mapped into one of sharing spaces, and the

other local variables are mapped into private space. Then eight cores within cluster

work together and broadcasting messages are limited by MCI. Snoop-used L1 cache’s

energy is measured for them. In original MOESI, snoopy operations occupy a lot of L1

data cache resource (more than 50%) as in Figure 3-6. Jetty can reduce about 24.6% in

average of snooping used energy. MCI can reduce about 67.8% of L1 cache energy in

average. Snooping operation of MCI is about 43.2% less than MOESI with Jetty.

 Application Specified Cache Coherence Protocol

- 50 -

Figure 3-6 Snoop-used percentage of L1 cache energy.

3.6 Chapter Summary

Jetty just can reduce tag lookup operation caused by snooping; the transmission of

messages can’t be reduced. Compared with Jetty, MCI can reduce both the tag lookup

operations and BW cost. The drawback of MCI is software compatibility and complexi-

ty. In MCI, cost of snooping is mainly determined by data sharing method, not the

number of cores. Large scale SMP processor can achieve good performance in MCI.

The software impacts of MCI are the two configuration steps, and the complexity de-

pends on the memory sharing patterns. Thus it’s not compatible with conventional soft-

ware on SMP (memory configurations must be added for MCI). General CPU for PC

can’t use MCI, as software compatibility is necessary. This is the restriction for our co-

herence protocol and cache design. A lot of embedded processors can also use this pro-

tocol, as compatibility isn’t so critical for them.

 Communication Network

- 51 -

4 Communication Network

In this chapter, we explore the design of the on-chip communication network and

provide insight into its communication method, latency and BW. Section 5.1 presents

the background of interconnection network, including the BW decreasing problem for

small size transmission. Section 4.2 shows the proposed Core Interconnection Bus

(CIB), including topology, data format and packet routing method of CIB. Each flit in

CIB is independent and transmitted by time-division multiplexing. Latency of each

node in CIB is only 1 cycle. Section 4.3 presents how to connect four CIB for the whole

chip. Section 4.4 shows the bandwidth and latency performance of CIB, including a

comparison with CELL’s EIB [33] and NoC. Then section 4.5 gives a summary of this

chapter.

4.1 Background of Interconnection Network

In our previous work on CELL processor, small DMA transmission becomes the

bottleneck of performance [55], as CELL just can provide high BW for large data

transmission. The cost of starting a small size transmission is very critical for effective

BW and latency. This section presents the details of data flow of CELL’s EIB and a typ-

ical NoC design, and then analyses the cost of starting a transmission of them.

There are two kinds of communication networks for multicore processors: shared

bus and NoC. A shared bus based network always consists of bus and central arbitrary.

To build a connection with bus based network, cores need to send a bus request to the

arbitrary, and then the arbitrary dispatches the available bus to each request and also

 Communication Network

- 52 -

manages target and source address of data transmission. For NoC, data packets can

route automatically, and transmissions need some extra flits for allocating a channel.

Therefore, both of them have some extra cost for starting a transmission. For a large

transmission, this cost just occupies every few BW. However, it becomes intolerable for

small data transmissions.

The EIB network of CELL processor is consisted by four 16-byte wide data rings,

and each ring can support three concurrent data transfers at the same time, when their

paths don’t overlap. To initiate a transfer in CIB, bus elements must send a message to

the arbitrary and request data bus at first. Then the arbiter processes these requests and

dispatches the bus. In CELL processor, DMA is used for data transfer between cores.

One transmission needs about 7 steps by EIB, including address translation, bus request

and coherence checks. These process costs more than 50 cycles [33]. It means that the

effective BW for small data is very low. When the data size is less than 16 bytes, EIB

just can provide less than 2 GB/s BW which is just about 8% of maximal BW.

On the other hand, NoC doesn’t have central arbitrary and connection with NoC

becomes simple. NoC is consisted by topology, routing, and channel control. Topology

is the arrangement of nodes and channels into a system. Routing method defines how a

packet chooses a path in these nodes. Channel control deals with the allocation of chan-

nel and buffer resources to a packet. Virtual channel is always used for resolving dead

lock in NoC. As the bus width is fixed in NoC, packet is always divided into flits, which

have the same width with bus. To build a connection, two extra flits are needed for

sending destination memory address in [43], routing information. Figure 1-6 shows a

basic packet and the data format of each flit in [43]. One short data transmission needs

three flits at least. Six bits is used for controlling the channel. Comparing with bus

based network, NoC just needs two extra flits and 6 extra bits for one transmission.

 Communication Network

- 53 -

Theoretically, the effective BW of 4 bytes transmission is about 33% of maximal effec-

tive BW.

NoC is expected to achieve better performance than bus based network for small

transmission, but virtual channels need a lot of buffer resources. The overheads of allo-

cating and managing a channel of NoC are still very high. To resolve this problem, a

combined solution of bus and NoC is proposed. A short routing header is added for

every flit, and then data paths can be used as time-division multiplexing (TDM). Com-

mand and data is transmitted with separated paths. Short data transmission can achieve

the same BW as large data transmission.

4.2 Core Interconnection Bus

To take advantage of all the computation power of this processor, workloads must

be distributed to 32 cores. In this processor, cluster with a shared L2 cache is the basic

processing unit. Data sharing within cluster is supported by the sharing cache. However,

it’s inefficient to use the shared cache for sharing data transfer between VM, as it needs

a write back and read operation to L2. To enhance the data exchange ability for vector

core, a ring based network (CIB) is proposed in this section, which can offer very low

latency data transfer within clusters. In CIB, every flit has routing header, and they

share the links in time-division multiplexing method. One transmission can be divided

into independent flits. Each flit can route in CIB independently. It means that virtual

channel is unnecessary in CIB. The overhead of building a connection is very few. Thus

CIB can achieve more than 10 GB/s BW for all size vector transfers, which is more than

2.5 times better than EIB [33] and NoC [43]. When the injection rate is less than 8%,

CIB’s latency is less than 4 cycles in average.

 Communication Network

- 54 -

4.2.1 Topology of CIB

Clusters need a low latency and high BW network for exchange data within cluster.

Thus latency and BW is the most critical factor of CIB. Bus based network can offers

lower delay, but the bus requirement brings some delay. For example, CELL processor

applies a ring bus based EIB network. It consists of four 16-byte data rings: two running

clockwise and two counterclockwise. To initiate a data transfer, each core must send

requests to a central bus arbiter, which controls all of the data transfers. The set-up pro-

cess of a transfer causes a lot of cycles in EIB. Thus the pure bus based network can’t

satisfy our requirements. In NoC, each data link can be used by all cores, and the data is

routing automatically. And then the set-up process becomes simple. However, NoC ar-

chitectures need a lot of large FIFOs to store data packages in network. In Intel’s 6x4

mesh NoC, one router costs about 1.1 mm2 and 500 mW in 45 nm [56]. Obviously it

can’t be used for this embedded processor.

n
o
d
e

1

n
o
d
e

2

n
o
d
e

3

n
o
d
e

4

M
es

h

ro
u

te
r

L R

n
o
d
e

5

n
o
d
e

6

n
o
d
e

7

n
o
d
e

8

: data paths
: message paths

CIB

core1 core2 core3 core4

core8 core7 core6 core5

Figure 4-1 Core Interconnection Bus for a cluster.

 Communication Network

- 55 -

To take advantage of all the computation power on SVP, CIB is designed to com-

bine bus and NoC together, which can achieve low delay as bus based designs and keep

the scalability as NoC. Figure 4-1 shows the CIB, the heart of the SVP’s communication

architecture.

It consists of two 16-byte data rings and two 4-byte message rings. It supports sep-

arate communication paths for 32-bit commands (use 4-byte message rings) and large

blocks data movement (use 16-byte data rings). Eight bus nodes in a cluster divide CIB

into eight segments. Large data is also divided into 16-byte data elements. Data ele-

ments are packaged together with target cores and cluster tag, and automatically trans-

mitted in CIB. To support broadcasting data to all cores, 14 bits extra package header is

used for automatically routing in the whole communication network. Bus Nodes in CIB

are the basic transfer stations, which can accept four packages (two data packages and

two message/command packages), send the arrived packages to core and send out the

others to next Bus Nodes. Bus node always deals with the received data packages first,

and then sends out the new data packages from core at free slots. Figure 4-2 shows the

details of two data links in Bus Node (message links is similar).

Comparing with conventional NoC, there is no input FIFO for incoming data from

CIB, only a small output FIFO for core. Bus node also doesn’t have large cross bar Data

in CIB isn’t temporarily stored in FIFO unit. Figure 4-2 presents the details of one bus

node. CIB has an output unit, an input unit and a bandwidth management unit (BMU)

for data links. Message links is similar with data links, but without BMU unit. The out-

put unit checks the data of two input links. If the routing tag includes this core, then

output unit sends it to the core. If current core is the only target of the arrived data, then

it will ends in this node. Otherwise, this node needs to modify the routing tag and sends

out the regenerated data. More details are shown in next section about routing tag. If

 Communication Network

- 56 -

current core isn’t the target of the arrived data, arrived data will send out in next cycle

without any modification.

L

R

input

output

16-byte links for data

4-byte

Links

(message)

BMU
fullslow down

message

Data
13 bits

Header tag

Bus Node 4 in CIB

data arrived

core

Data

links

Message

links

DFF
DFF

128 bits

Figure 4-2 Bus Node architecture in CIB

4.2.2 Bandwidth Management of CIB

BMU is used for resolving the resource conflicts and reducing delay for heavy

traffic cases. In CIB, one bus node has two output paths (left and right paths) for send-

ing out data. Bus node selects direction which has the near distance. For example, if

core 6 needs to send data to core 4, then it always uses the right side path. Thus one data

links can be required by four cores at most. For example, the data link from core 4 to

core 5 may be required by core 1/2/3/4. Figure 4-3 shows that nodes 1/2/3/4 need to

send data to node 5, and all of them are full of data in the nodes. If there aren’t BMU,

core 1 keeps on sending data and it can achieve the maxim BW: 12 GB/s. However, the

other cores have to wait until core 1 is all over, as CIB just can send out data at free bus

slots. To smooth the BW and reduce the latency for core 2/3/4, node 2 sends out a slow

down message to left side (including core 1) firstly. As node 2 doesn’t know which

cores are using the bus, slow down message is broadcasted to all possible nodes (nodes

 Communication Network

- 57 -

1/8/7). And then data issue rate (right side only) of node 1 is reduced to 25% (only right

side path). Node 3 and node 4 also send out a slow down message to left side. And then

the whole 12 GB/s BW is assigned to four cores in average. If core 4 doesn’t need to

send data to core 5, and then core 3 can have more BW as in Figure 4-3.

Node8 Node7 Node6 Node5

Node1 Node2 Node3 Node4

L R L L LR R R

Slow down message from core 4 (S4)

Slow down message from core 3 (S3)

Slow down message from core 2 (S2)

core1 core 2 core 3 core 4

BW (GB/s)

cores

12

9

6

3

core1 core 2 core 3 core 4

BW (GB/s)

cores

12

9

6

3

With BMUWithout BMU

Figure 4-3 Bandwidth management in CIB

4.2.3 Data Routing and Transmission in CIB

In NoC, there aren’t dedicate core to core wires, data links are shared by all cores.

NoC applies channels for each packet, and data packets are always divided into small

flits. There are always extra some flits for allocating channels and routing. Data flits

can’t route independently, and they must follow the header one by one. Though virtual

channel can resolve the dead lock problem of channel based communication, hardware

cost is very huge.

 Communication Network

- 58 -

CIB is similar with NoC, routing header and routing algorithm are needed. There

are two kinds of requirement in CIB: point to point transfer and broadcasting. Each flit

can route independently in CIB. It means that each flit should have some extra bits for

routing (In NoC, each flit needs some bits for controlling channels). We define two

kinds of routing headers for broadcasting and point to point transfers as Figure 4-4.

In MCI, broadcasting is a basic operation, thus the proposed network directly sup-

ports to broadcast a packet to all cores or some cores as in Figure 4-4 (a). 14 bits are

used for denoting target cores. Cluster tag denotes the target clusters. In 32 cores system,

it has 4 bits. Each cluster is corresponding to one bit. For example, “0001” means clus-

ter A is the target, and “1111” means this message is broadcasted to all clusters. Within

cluster, eight bits is used for denoting eight cores, which is similar with cluster tag. The

target nodes modify “Dst_B” (set the corresponding bit to “0”), and then send it out to

the next node until that “Dst_B” equals to zero.

Dst_B: (destination of broadcast)

cluster tag core tag

0 3 11

DiD: (id of destination) 5 bits;

SiD: (id of source) 5 bits;

Broadcast to 2 clusters:
To four cores in cluster A:

0011 11111111
0001 00001111

(a) Data format of CIB for 32 cores processor

0 Dst_B Data

1 DiD SiD Datatype

Broadcast:

Point to point:

type: data type of flits, 2 bits

Quick Data transfer:

1 001 011 Address in VM00

1 001 011 Data[127:0]00

Data flits: (13+128 bit)

Header: send address and command (13+32bit)

CMD

(b) Data transfer with CIB (for core 3 to core 1)

1 001 011 Data[127:0]00

cycle i:

cycle j:

cycle k:

(i=< j; i<K)

Figure 4-4 Data format and quick data transfer with CIB.

For point to point data transfer, such kind of target tags is redundant. We have to

define a new format for point to point data transfer. As the two kinds of header route in

 Communication Network

- 59 -

the same bus, the bits of them should be the same. In Vangal, S.R’s 80-Tile processor,

the designed NoC applies 6 bits for controlling NoC, and 30 bits for routing. This kind

of routing header costs too much. In [43], destination's address is presented by its posi-

tion in NoC. For an 8x8 mesh network, destination needs 3 bits for X and 3 bits for Y

coordinate [57]. This method can reduce some overhead for routing and very suitable

for CIB. Thus we define data format for point to point data flits as Figure 4-4 (a).

The header part of a packet includes identification for destination (“DiD”), identi-

fication for source (“SiD”) and data type flag. DiD is used for routing in CIB. SiD is

used for identifying which core sends out this data. CIB supports four kinds of short

message: 16 bits synchronization message, 32 bits message for DMA including VM

memory’s address (16 bits), 32 bits coherence message and user defined command for

hardware accelerators. For 128 bits bus, CIB also supports DMA data flits and hardware

accelerator’s data flits. Type flag is used for denoting the message types. Different units

deal with different type of flits.

A completely DMA transfer needs two flits at least: one 32 bits header flits and one

128 bits data flits. Header flits and data flits use different paths and can transfer in par-

allel. Figure 4-4 (b) shows a small data transfer (two data flits) with CIB. A header in-

cluding 4 bits command (“CMD”) and address (28 bits) are sent out firstly. And then

128 bits data packages can be sent out by 128 data links. Within CIB, 32 bits and 128

bits hops can work at the same time, thus the first 128 bits data package can be sent out

with the 32 bits package at the same cycle (“i=<j”). This supports sending out a 128 bits

vector within one cycle, which means the register file level data exchange instruction

can be supported.

CIB works in a time-division multiplexing method, and there is no dead lock as

NoC. Comparing with NoC, CIB can save a lot of hardware resource by reducing virtu-

 Communication Network

- 60 -

al channel and large crossbar for all input ports. CIB also doesn’t have central arbitrary

unit as EIB, which can simplify the transmission process.

4.3 2x2 Mesh Network for Four Clusters

Comparing with NoC, CIB’s delay is very short (1 cycle per node). However, the

scalability of CIB is very poor. If CIB is extended to 64 cores case, the maxim distance

between cores is 32 hops. Both BW and delay becomes bottleneck. Thus, we apply

mesh network for connecting 8-core CIB. Then the hops can be reduced from 32 to 12.

In this processor, 2x2 mesh NoC is used for connecting four clusters. Figure 4-5 shows

the whole network and routers in mesh NoC.

Mesh router

FIFO BMUfifo status

arbitrary
Cycle 1 Cycle 2

45

bits

141

bits
Package

Regeneration

PR

PR

O2

O3

O1

In1 In2

In3

router1

CIB A CIB B

CIB DCIB C

router2

router4
router3

Whole Network

In1

In2

In3

arbitrary

4 bits

141 bits

PR

PR

PR

O3

O1

O2

Switch

O3: to CIB C/D

O2: to CIB B

O1: to CIB A

A

B

Figure 4-5 The three ports router for connecting CIBs

Each router has 3 data ports and 3 message ports. All input packages are stored in

FIFO and then automatically send to other nodes according to package header. Package

 Communication Network

- 61 -

regeneration (PR) unit is used to modify the cluster tag when the data is arrived. The

router uses fixed routing method. For example, only output port O3 is used for trans-

mission to CIB D. Then, the multiplexer units just need to select one from two input

port as Figure 4-5. For example, two input ports (“In3/In2”) of router 1 may needs to

use output ports “O1” at the same time. On the other hand, input port “In3” may just be

used by CIB C and CIB D. Then CIB D and C may complete for port “In3”. NoC ap-

plies virtual channel for resolving this problem. But virtual channel needs 6 bit for con-

trolling and increases a lot of complexity. In this design, the input FIFO is divided to

two parts “A” and “B”, and they are automatically allocated to two competitors of the

input ports. Arbitrary unit is used for resolving resource conflicts. For example, two in-

put ports (“In3/In2”) of router 1 may needs to use output ports “O1” at the same time.

Then arbitrary unit randomly select one of them. If CIB A is always busy, then the two

input FIFOs may become full. BMU unit is used for broadcasting slow down message

to CIB according to the FIFO’s status.

In this communication network, every data package has destination and source tags.

Every competitor for the ports can have a buffer; data packets don’t have any control

bits for virtual channel. Two level pipelines are enough for our design’s time require-

ment.

4.4 Performance Evaluation and Comparisons

Bandwidth and latency are the most important guideline for a communication net-

work. They are measured in this section for different data sizes. We also measure them

of a single ring based CIB. Results show that two rings CIB can satisfy the requirement

of 128 bits vector cores. In the applications, small size data transmissions are very

common. We also measure the performance of CIB, 2x4 NoC as [43] and CELL’s EIB

 Communication Network

- 62 -

[33] for small size data transmissions. CIB is optimized for quick data transmission.

Transmission process is simple in CIB, and the delay of each node is only one cycle.

Then CIB can achieve about 10 GB/s for 128 bits vectors transfer, which is about 83%

of its maximum BW. The 2x4 NoC just can achieve 4 GB/s for small size transmissions,

which is only 25% of the maximum BW. EIB also just achieve less than 2 GB/s for 16

bytes DMA, which is about 8% of the maximum BW.

4.4.1 Performance Evaluation of CIB

 With a clock speed of 750MHz, One Bus Node can support a peak bandwidth of

24 GB/s for inter-core data transfers. However, one data transfer from core 1 to core 4

needs to be propagated three times in CIB. It means that the effective BW for each core

depends on the transfer distance. In experiments, we use random traffic pattern to

measure the actual BW in a CIB. The destination is also randomly selected. Moreover,

we assume that any packet injected in the network is independent, and the arrived pack-

ets are consumed immediately. The average packet latency is measured under different

packet injection rate (16-byte data packets per cycle). Table 4-1 shows that latency in-

crease rapidly, when injection rate is larger than 70%. When injection rate is less than

50%, latency is less than 8 cycles. It means that each core has 6 GB/s low latency in-

ter-core communication BW in average (192 GB/s for whole chip). This is enough for

most of applications. If we just use one 16-byte data ring in CIB, the latency becomes

very large when injection rate is larger than 20%. The maximum BW decreases more

than 3 times for single ring case, as the average core distance is also increased than dual

rings case.

 Communication Network

- 63 -

Table 4-1 BW and latency (cycles) for single/dual rings CIB

Injection Rate* 1% 30% 40% 50% 70% 75% 80% 85%

Dual Rings 3.2 5.1 6.5 7.5 18 40 140 490

Dual Rings+BMU 3.2 4.8 5.7 6.8 14 27 78 218

Injection Rate* 1% 8% 12% 16% 18% 20% 23% 25%

Single Ring 4.8 5.35 6.4 8.7 13 27 121 448

SingleRing+BMU 4.8 5.32 6 7.8 11 21 87 210

*: BW= Injection Rate x 16x0.75 GB/s. (45 bits short messages are excluded for this

injection rate, as it can sends in parallel)

4.4.2 Performance Comparisons for Short Transmissions

Previous work about parallel HD encoding on CELL processor shows that small

size data transfers are very common in a video encoder, which occupies about 13% of

whole process time. However, both NoC and CELL’s EIB can’t provide enough BW for

small size data transfers. When data size is less than 16 bytes, EIB just can achieve less

than 8% of maximal BW (when message size larger than 1024 bytes) [33]. In this sec-

tion, we measure the BW and latency performance of NoC and CIB for short transmis-

sions.

Noxim NoC simulator is used for simulating a 2x4 NoC. The frequency of NoC,

latency of router and data format is configured as [43]. As the packets size of Noxim is

limited to 10 flits per packet, data size per packet is measured from 1 to 8 words in this

experiment. XY routing algorithm and random spatial distribution of traffic is applied.

Figure 4-6 shows the maximal BW comparisons at different data size. The 2x4 NoC op-

erates at 4 GHz as in [43], and the width of bus is 38 bits. Without considering the

 Communication Network

- 64 -

channel and buffer conflict, it can achieve about 16 GB/s (4 GHz*4 bytes) for large

packets. However, it achieves less than 4 GB/s in these experiments.

EIB operates at 1.6 GHz with 128 bits ring bus. It can achieve 25.6 GB/s for local

memory access, when data size is larger than 1024 bytes. However, it just can provide

less than 2 GB/s for a 128 bits vector.

CIB operates at 750 MHz with 128 bits bus. Without considering the resource con-

flict, it can achieve a maximal BW as 12 GB/s (0.75 GHz x 16 bytes). In experiments,

we measure the BW of different data size from 1 to 8 words at a random spatial distri-

bution of traffic. It can achieve more than 10 GB/s for vector data transfer. The BW also

decreases when the data size is less than bus’s width. For small vector data transfers,

CIB can achieve more than 2.5 times better performance than EIB and NoC.

Figure 4-6 Maximal BW performance of 2x4 NoC, CIB and EIB

We also measure latency of NoC and CIB at different flits injection rate. Figure 4-7

shows the results. When the injection rate is less than 8%, the latency of CIB is less than

4 cycles in average. For NoC, the latency is more than 8 cycles in average. Thus CIB

 Communication Network

- 65 -

can achieve more than 2 times better performance in latency, when the injection rate is

less than 8%. This is very important for instruction level data exchange and sharing

hardware accelerator. As EIB is based on conventional shared bus architecture, there is

no injection rate concept in EIB. We can’t compare it with NoC and CIB. But one

transmission in EIB needs 50 cycles at least [33]. Thus the proposed network can

achieve lower latency than NoC and EIB.

Figure 4-7 Latency of CIB and 2x4 NoC at different injection rate

On the other hand, hardware costs of CIB based network is less than other NoC

based network. Table 4-2 shows the costs and architecture detail of them. As there are

no details about the hardware costs of EIB, we can’t compare with it. Comparing with

[43], one bus node in CIB can save about 61% of transistors. Router in the 2x2 mesh

network also can save about 30% of transistors. The latency and transmission overhead

are lower in our work. And the data format is also defined according to NoC’s bus

width. In [43], routing information needs 30 bits, and the destination memory address

needs about 32 bits. Then one data transmission needs three packages at least: one for

 Communication Network

- 66 -

routing information (FLIT0), one for memory address (FILT1) and one for data. It

means that BW for small data transmissions is reduced by 75%. In CIB, 128 bit vector

core needs to send 128 bit data, and then the width of bus in CIB is 141 bits (13 bits

header+128 bits data). The 45 bits bus can be used to send the destination memory ad-

dress. Thus the BW for small data transmissions is the same as huge data transmissions.

Table 4-2 Hardware costs and architecture comparisons

Networks NoC [43] CIB’s Bus Node

Input FIFOs
5 ports x 2 FIFO

(2 virtual channels)
1 FIFO

Crossbar
Five

5 to 1 multiplexer
Two

2 to 1 multiplexer

Pipelines
(=latency)

5
(cycles)

1
(cycles)

Transistors 210K 81 K

Overhead per
flit*

6 bits for control 13 bits for routing

*: overhead for data flits. NoC needs two flits for allocating a channel, and the data

packet also needs 6 bits for routing. The proposed network needs 13 bits for routing and

a 45 bits header for one packet.

In CELL’s EIB bus, there are also similar problem for small DMA transmission. A

DMA transmission consists of DMA issue, DMA to EIB, List element fetch and Coher-

ence protocol steps, which costs more than 50 cycles. Our previous works about parallel

encoding on CELL show that EIB is poor for small data transmissions and DMA costs

about 25% of the whole encoding time [55]. In CIB, one 45 bits packages with one 141

bits data package can be sent out at the same cycle, and routing in CIB independently.

DMA and MP pipeline in vector core can issue a transmission directly to other core.

There aren’t steps such as Coherence protocol or List element fetch steps. Vector core

can exchange data in instruction level.

 Communication Network

- 67 -

4.5 Chapter Summary

In this chapter, a time-division multiplexing based communication network is in-

troduced. It applies ring bus based topology and low latency bus nodes. Two kinds of

data format are designed for supporting core to core communication and broadcasting.

With a 13 bits header, data flits can route automatically and independently in CIB. Then

the data paths can be used by different cores in a time-division multiplexing way. Bus

nodes accept new data flit at free bus slot, and then the flits in CIB wouldn’t be stopped

or blocked. Input flits can be sent forward immediately. BMU is applied for allocating

the BW for each core.

Comparing with conventional NoC [43], CIB can save a lot of hardware resource

by reducing virtual channel and large crossbar for all input ports. One bus node in CIB

can save about 61% of transistors than a 5 ports router in [43]. As the delay of CIB’s bus

nodes is only one cycle, CIB’s latency is more than two times better than a 2x4 NoC or

EIB. CIB can achieve more than 10 GB/s BW for all 128 bits vector transfers. Compar-

ing with EIB, CIB just uses half wire resource and achieve more than 2.5 times higher

BW for small size data transfers (<32 bytes).

In this communication network, every data package has destination and source tags.

Every competitor for the ports can have a buffer; data packets don’t have any control

bits for virtual channel. Two level pipelines are enough for our design’s time require-

ment. Broadcasting is supported in CIB, which is very importing for snooping based

cache coherence protocols. Channel based NoC designs, can’t support this.

 Chip Implementation and Performance Evaluation

- 68 -

5 Chip Implementation and Performance Evaluation

After functional check with Modelsim, the chip was synthesized by Synopsys De-

sign Compiler in bottom-up compile strategy. The final pos-layout simulation also per-

formed with Modelsim to check the timing requirements. The design is fabricated in

SMIC 65 nm CMOS technology. This chip can achieve 750 MHz at 1.2 V core power.

Section 5.1 presents the design flow and measured results. In Section 5.2, application

level performance is presented and compares with some common DSP processors and a

massive-parallel SIMD processor.

5.1 Chip Implementation and Measurement

The whole design flow mainly contains four steps: RTL level design and function

verification, synthesis and formal verification, back-end design including floorplan and

routing, and post-layout simulations. After these steps, the designed are fabricated in

factory. The first step performs the functional verification with Modelsim SE. Then the

finished modules are synthesized by Synopsys Design Compiler with SIMC 65 nm. If

the modules can satisfy the timing constrains, then they are finished in these steps. Oth-

erwise, we have to modify the RTL to reduce the delay. When all modules satisfy these

time constrains, a bottom-up compile strategy is applied for compiling the whole chip.

We also need to do the formal verification by using the Standard Delay Format file

again for the whole chip. And then the netlist file and Synopsys Design Constrain files

are fed into back-end design steps. Synopsys IC Compiler is used for floorplan, place-

 Chip Implementation and Performance Evaluation

- 69 -

ment and routing. After all Design Rule Check (DRC) errors are fixed, the post-layout

simulation is performed for checking the function and timing again.

To verify the fabricated chips, a test unit is added. We also design a testboard as

Figure 5-1. A FPGA is used for testing in the testboard. A parallel test port through

which a host can access the processor’s memory space and registers is designed for

testing. FPGA can control the processor by this test port. PLL units are configured by a

dedicated I
2
C serial port. Four test modes are supported: repeating single instruction,

repeating a short code, accessing register files and memory. The first mode is used for

measuring power of each instruction. The second mode is used for the average power

measuring power of some small applications. Accessing register files and memory can

be used for verification the function.

FPGA
Processor

Processor

DDR

JATG

Current

probe tool

Power

PC
UART

FPGA

CS

W/R

Mode

Data

PAS

Ready

Test_out
„

HCS

HW/R

HMode

HD

HAS

HRDY

out
Processor

Figure 5-1 Test systems and parallel interface between FPGA and processor

 Chip Implementation and Performance Evaluation

- 70 -

Figure 5-2 shows the die micrograph of the 32-core dual-issue processor. The die

occupies 25 mm2, including 32 vector cores, 256 KB L2 cache, 64-bit DDRII’s PHY

and two PLL units. Each cluster with CIB and a mesh router occupies 4.4 mm2. Exten-

sive clock gating is applied at cluster level, core level, and register level to reduce the

power consumption. The power consumption at different supply voltage is measured by

the evaluation board.

Figure 5-2 Photograph of SVP in 65nm CMOS (5x5 mm
2
)

Figure 5-3 shows measured power and frequency from 0.8 to 1.2V. The power

consumption is measured with 100% utilization rate of 32 cores and about 50% utiliza-

tion rate of L2 caches at 25°C. The maximum speed of 750 MHz is achieved at 1.2 V

with 3.7 W. DDRII PHY is also verified at 533MHz, 800MHz and 1066MHz. The pow-

er consumption of different instructions is also measured by forcing all cores to repeat

 Chip Implementation and Performance Evaluation

- 71 -

the same instruction. The chip can also achieve better power efficiency at lower power

supply. It’s not stable at 0.8 Voltage. Then the recommended power condition for better

power efficiency is 0.9 Voltage. This chip consumes about 0.5 W while operating at 220

MHz and 0.9 V. There are two PLL units for cores and DDRII PHY unit respectively.

To save power consumption, clusters can work at lower frequency. DDRII can also

work at lower frequency to save power by configuring the other PLL.

100

200

300

500

750MHz

400

600

700

1

2

3

4

0
0.8 0.9 1.0 1.1 1.2 1.3

Freqency
Power

800

560MHz

350MHz

220MHz

3.7W

2.1W

0.9W

0.5W

P
o

w
e
r
 (

W
)

F
r
e
q

e
n

c
y

 (
M

H
z
)

Vcc (V)

Figure 5-3 Measured power consumption and maxim frequency

Table 5-1 also shows average power consumption (per core) of several instructions,

including L2 cache’s power (about 50% utilization rate of L2 caches). They are meas-

ured by repeating single instruction for each core. 16-bit SIMD MAC operations cost

more power than the others. The RISC pipeline is idle for measuring SIMD instructions,

except the instruction fetch and decoding stages.

Table 5-1 Power consumption of instructions

Instructions
16-bit MAC

SIMD

8-bit MAC

SIMD

16-bit ADD

SIMD

Vector

Load

Vector

Store

RISC

ALU
NOP

Power(mW) 149 131 105 116 129 51 29

 Chip Implementation and Performance Evaluation

- 72 -

5.2 Performance Evaluation and Comparisons

The performance of MAC instruction is widely used in marketing literature as an

indicator of processor’s performance [48], which is also widely offered. Then we meas-

ured the GMAC performance of this chip, considering the overhead of setting up data

for processing. The whole chip can achieve a peak performance of 375 GMACs, or 750

GOPS of 8-bit data operations. GMACs/W is treated as a general indicator of power

efficiency. The power of GMACs is measured with a loop of several 8-bit MAC instruc-

tions (Utilization rate of L2: 0%), and then this large-scale SMP processor can achieve

98 GMACs/W at 1.2V. Table 5-2 shows performance and power efficiency comparison

in GMACs/W. The chip is compared with two similar high performance processors,

which are also designed for multimedia applications. For eight bits pixel based data

processing, it can achieve 1.9 times higher GMACs performance than the 167 many

core chip. For 16 bit GMACs/W, this chip can still achieve about 60% lower power

consumption than [16].

Table 5-2 Performance comparison in GMACs/W

*: don’t support 8-bit MAC instructions

Comparison Proposed JSSC09[16] ISSCC07[11]

Cores 32 cores 167 cores 16 SIMD

Architecture SIMD & SMP RISC(16bit MAC) SIMD Plane

Frequency 750MHz/1.2V 1.2GHz/1.3V 800MHz/1.0V

Performance 375GMACs 197GMACs* 128GMACs*

Technology 65nm 65nm 130nm

GMACs/W 98 19 12

 Chip Implementation and Performance Evaluation

- 73 -

The proposed SIMD core architecture is designed for multimedia applications.

Max Baron’s report [48] shows that DCT and SAD kernels occupy about 45% of total

cycles for MPEG4 codec. SAD becomes dominant in video codec. Thus, we select SAD,

DCT and a 3x3 matrix multiply [48] as our benchmark for evaluating cycle level per-

formance. VCP [13] and several common used DSP processors [48] are compared with

proposed design. Table 5-3 shows the cycle count comparison. For SAD and 3x3 Matrix

Multiply, the proposed work’s cycle count is reduced by 37% than TI C6415 DSP. As

instruction parallelism of DCT 8x8 is very high, VLIW based DSP can achieve better

performance than our design. VCP has three RISC and SIMD pipelines which is three

times of our design, thus it’s excellent in both data and instruction parallelism. As most

of applications don’t have enough parallel SIMD instructions and sequential parts be-

come the bottleneck. Thus, it just can achieve about 1.5 times better performance than

the proposed work in this experiment.

Table 5-3 Cycle count comparison of three applications from [13]

Details of performance and power of an edge detection application (frame:

720x480) are presented in [13]. We also measure time and power of this application and

compare with VCP in Table 5-4. Application level energy efficiency is defined as the

energy cost for processing one frame in uJ. Table 5-4 shows that VCP (3 RISC + 3

SIMD) is about 4.4 times larger than our design. Our design uses smaller architecture

and higher frequency for achieve higher application level performance. Time cost per

Kernels

/Primitive

VCP
[13]

(3-SIMD)

TI C6415

(8-VLIW)

TI C5502

(2 MAC)

BF533

(2 MAC)

Proposed

(1 SIMD)

DCT 8x8 113 116 1078 293 171

3x3 Matrix

Multiply
14 38 57 143 24

SAD 8x8 14 31 N/A 190 15

 Chip Implementation and Performance Evaluation

- 74 -

frame is about 1.4 times better than VCP. Then proposed work can achieve about 2.1

times better energy efficiency than VCP.

Table 5-4 Application level performance and power comparison

To evaluate the performance of the proposed L2 cache, we compare it with a uni-

fied L2 cache as [36]. To guarantee fairness, they are designed with the same number of

ports, bank architecture and capacity for the same L2 BW. The same bank architecture

as Figure 5-4 is also used in this experiment. The architectures of them are shown as

Figure 5-4. Unified L2 cache is organized as 256 bytes per line, which may get better

performance for some applications.

Hardware cost, average memory access delay (in cycles) and miss rate (MR) are

evaluated. Hardware cost only includes the arbitrary and multiplexer units. Overhead of

cache coherence for unified L2 cache design is not considered in this experiment. The

same applications as Section 3 are used. Applications work in parallel within 32 cores.

Table 5-5 shows that unified L2 cache uses a lot of hardware resource for the crossbar

and arbitrary. Cache miss rate of proposed work increases about 0.12%, comparing with

unified L2. In proposed work, cache miss needs about 3~9 extra cycles. In all, the pro-

posed work sacrifices 0.08 cycles memory access time for reducing 63% hardware cost

in average. As DMA can hide the memory access delay for vector data, this cost be-

comes acceptable.

Edge Detection Time/frame Power Energy Frequency Gates

VCP[13] 3.52ms 173mW 610 uJ 300MHz 1268K

Proposed 2.55ms 112mW 285 uJ 750MHz 286K

 Chip Implementation and Performance Evaluation

- 75 -

crossbar (8x4x128bit)

Cluster A

L2 A L2 C L2 DL2 B

128bit

DDR2_MIU(64 bit)

4*128bit

crossbar

Cluster B Cluster C Cluster D

(a) Proposed L2: 256KB, 16 ports, 64 bytes per line

crossbar

Mux P_L2 L3 L3 L3 MIU

3(miss)2 3(miss) 3(miss) 3(miss) 8~14

Mux P_L2 L3

3(miss)2 5(hit)

Mux P_L2 MIU

3(miss)2 8~14

 cache hit at L3:

cache miss (for private data):
ßcycles

cache miss in all:

crossbar (32x16x128bit)

Cluster A

L2 A L2 C L2 DL2 B

128bit

DDR2_MIU(64 bit)

16*128bit

Mux P_L2 MIU

3(miss)2 8~14
Mux P_L2

3(hit)2

cache miss

cache hit at L2

Cluster B Cluster C Cluster D

(b) Unified L2: 256KB, 16 ports, 256 bytes per line

Figure 5-4 Architecture of the proposed L2 cache design and unified L2

Table 5-5 Performance comparisons of two L2 cache designs

Applications

Unified [8]

Gate count: 233.6K

Proposed

Gate count: 87.1K

MR delay

MR delay

Radix 1.84% 2.35 cycles 1.92% 2.44 cycles

FFT 1.31% 2.21 cycles 1.47% 2.30 cycles

Raytrace 0.41% 2.12 cycles 0.53% 2.17 cycles

 Chip Implementation and Performance Evaluation

- 76 -

5.3 Chapter Summary

A large-scale SMP computational platform that is well-suited for video and image

processing has been fabricated and verified in 65 nm CMOS. Details about design flow

and testing system are also introduced. This processor can achieve a maximum speed of

750 MHz at 1.2 V core power. The whole chip can achieve a peak performance of 375

GMACs, or 750 GOPS of 8-bit data operations. This vector core provides widely SIMD

instructions for multimedia applications. For eight bits pixel based data processing, it

can achieve 1.9 times higher GMACs performance than the 167 RISC cores chip. Three

typical kernels of multimedia applications are also evaluated. For SAD and Matrix Mul-

tiply kernels, the proposed work can achieve more than 1.5 times better performance

than the other DSPs. Though it costs more cycles than the massive parallel SIMD pro-

cessor (VCP), VCP costs about 4.4 times gate counts than our design. To evaluate the

energy efficiency, an edge detection application is evaluated. Then proposed work can

achieve about 2.1 times better energy efficiency than VCP with less SIMD plane per

core.

 Extended Processor with Hardware Accelerator

- 77 -

6 Extended Processor with Hardware Accelerator

A high performance multicore processor has been designed for multimedia applica-

tions by maximizing on-chip data level and task level parallelism. However, there are

limitations for high parallel system: sequential functions with less parallelism become

the bottleneck, and floating point based functions becomes very slow for this integer

processor. In previous single core processors, hardware accelerators are added for re-

solving these problems. As the usage rate of accelerators is very low, it’s unnecessary to

add the same accelerators for every core of multicore processor. Sharing resources and

reducing the cost becomes a hot topic recently. AMD also proposed a new architecture

for desktop PC, which can share the floating point units. Section 6.1 presents the back-

ground of this area.

Section 6.2 introduces our previous intra decoding engine for Ultra HD video de-

coder. Section 6.3 shows how to use it as a hardware accelerator in this platform and

how to share it within cluster. As the shared intra decoder processes MB without data

dependency problem, it can achieve about 4 times better performance with less gate

counts and SRAM. It can process one MB within 16 cycles, which means it can satisfy

eight channels HD decoding with 32 MHz. And section 6.4 gives the summary of this

chapter.

6.1 Background

For mainstream CPUs, power consumption and gate counts determine the perfor-

mance. Shares hardware resources for multicore processor becomes a hot topic recently.

 Extended Processor with Hardware Accelerator

- 78 -

To deliver higher performance with limited budget, Advanced Micro Devices’ Bulldozer

architecture [58] combines two independent cores intended to deliver higher throughput

with less area and power consumption. Bulldozer shares hardware if it’s affordable and

profitable. The floating-point unit (FPU) is treated as affordable for sharing, as integer

instructions are domain in dominated in most applications. Bulldozer module has two

integer pipelines and can execute two threads via a combination of shared and dedicated

resources. The FPU is a coprocessor model shared between two integer cores. The FPU

unit has its own out-of-order engine along with the execution units and register file.

From the software point of view, Bulldozer appears as two fully capable, independent

cores.

Bulldozer is instruction level sharing architecture, and the shared FPU must be

closely coupled with integer cores. Thus, sharing hardware influences timing and com-

plexity of critical hardware paths. The overhead of communication between cores and

shared units becomes the bottleneck. Therefore it’s hard to share a FPU unit between

four cores.

However, hardware accelerators in embedded systems don’t need to be closely

coupled with cores. Accelerators always need dozens of cycles to deal one job. FPU is

instruction level coprocessor, but hardware accelerators are function level coprocessors.

Several cycles delay for communication is accepted. Then it becomes possible for more

cores to share hardware accelerators. In this chapter, a new sharing architecture is pro-

posed.

6.2 Introduction of Previous Intra Decoder

A high profile intra decoder in H.264/AVC video coding standard is firstly de-

signed for 4Kx2K@60fps Ultra High Definition (UHD) Decoder [59] [60]. The pro-

 Extended Processor with Hardware Accelerator

- 79 -

posed architecture can provide very stable throughput, which can predict any H.264 in-

tra prediction mode within 66 cycles [61]. Compared with previous design, this feature

can guarantee the whole decoding pipeline to work efficiently. The intra prediction en-

gine is divided into two parallel pipelines, one is used for 4x4 block prediction loops

and the other is used to prepare data for MB loops. It can overlap data preparing time

with prediction time, which can finish data loading and storing within 2 cycles. Com-

paring with MB pipeline only architecture, it can achieve more than 3.2 times higher

throughput with 29.8K gates cost. The proposed architecture is verified to work at 175

MHz for our UHD Decoder by using TSMC 90 nm technology.

6.2.1 Design Requirements of the UHD Decoder

In our UHD decoder, it’s capable of 4096x2160@60fps H.264 decoding at

175MHz, which is at least 4.3x better than the state-of-the-art [62] [63]. Comparing

with previous decoders, the most important feature is that the external memory band-

width (BW) requirement is very low. As high frequency DDR memory costs a lot of

power, we just used a 64bit 166MHz LPDDR. Comparing with DDR/333MHz, the

power consumption can be reduced a lot. Low BW can save a lot of power. For a

4096x2160 H.264 decoding, even if each pixel is read only twice and written once, the

basic BW requirement is more than 2GB/s. So the 166MHz LPDDR is completely not

enough for UHD. A lot of on-chip memory is also applied to reduce BW requirement.

The decoder core contains 662K logic gates and 59.6KB on-chip memory which is im-

plemented by TSMC 90 nm technology. In intra decoding part, 16K bytes on-chip

memory is used and all of off-chip BW requirement is reduced.

Another feature is that the main decoder is required to process one MB in around

64 clock cycles. This is useful to achieve a stable throughput. In our implementation,

intra decoding time is stable and the pipeline can be fully utilized. Figure 6-1 presents

 Extended Processor with Hardware Accelerator

- 80 -

the decoding diagram of our UHD decoder. Most of pipeline components are designed

to process each MB in around 64 clock cycles. There is only one component with varia-

ble throughput for Intra decoding: the CAVLC block (ED 0 and ED 1) in Figure 6-1. Its

throughput is dependent on the bits of each MB.

CAVLC decoding

External memory bus

Figure 6-1 Decoding diagram of H.264/AVC UHD decoder [59]

Thus CAVLC’s throughput can’t match the other units. To solve above problems, a

ping-pong buffer was applied between CAVLC and Intra Prediction Engine [61]. It ena-

bles the overlapped execution of intra prediction and entropy coding without large cycle

increase. But in our constant throughput Intra decoding pipeline, stable throughput re-

quirement is very critical. Small ping-pong buffer is not enough for our decoder. A new

architecture is proposed for resoling the mismatch problem for CAVLC. In this archi-

tecture, CAVLC decoding is completely asynchronous with Intra decoding. CAVLC

decoding component starts to decode at first, and writes the decoded data to off-chip

memory. After enough MBs have been buffered in off-chip memory, Intra decoding

pipeline will start decode. This asynchronous decoding architecture makes it possible to

design a new decoding order for Intra decoding parts.

In previous works [64] [65], each MB is decoded line by line according to H.264

standard order. They can’t change the MB decoding order as CAVLC part must decode

 Extended Processor with Hardware Accelerator

- 81 -

according to H.264 standard order1). In this decoding order, MB4 is dependent on

MB0/1/2, and MB4 is just decoded behind MB2. Thus, MB pipeline must wait for

MB2’s output before start to decoding MB4. This data dependence problem causes a lot

of pipeline bubbles. It’s impossible for them [64] [65] to resolve the data dependent

problem by changing MB prediction order. In our proposed architecture, CAVLC part is

working asynchronous with Intra prediction. Intra prediction part doesn’t need to follow

the original decoding order. A new Zig-Zag MB level decoding order is proposed as in

Figure 6-2. Four MB lines compose a basic Zig-Zag scanning unit for this decoding or-

der. In each basic unit, MB is decoded in a Zig-Zag scan order. In this new decoding

order, MB4 is decoded behind MB3 and MB0, MB1 and MB2 is decoded before MB3.

When MB pipeline starts to decode MB4, reference pixels from MB2 are available.

Thus, MB pipeline can start to predict new MB when current MB is still under pro-

cessing in our decoding order.

Figure 6-2 Zig-Zag MB level decoding order in UHD decoder

 Extended Processor with Hardware Accelerator

- 82 -

6.2.2 A high Performance Intra Decoder for UHD

In intra prediction decoding process, we need reference pixels from upper and left

MB. Most of proposed Intra Prediction architectures [66] [67] apply a small SRAM

buffer to store current MB’s reconstructed pixels, but don’t apply large internal SRAM

to the upper MB’s reference pixels. In the decoding process, it is used to store recon-

structed pixels and then output them to external memory at the end of decoding. In their

designs, the reconstructed pixels are buffered in the external DRAM. Considering the

writing operation of that reconstructed pixels, about 260 MB/s BW is needed for

4Kx2K@60fps decoder.

In the proposed architecture, a large pixel line buffer is used for luma and chroma

intra decoding. It costs about 16K bytes internal memory to save 10% chip’s BW. As we

have enough area budget but limited memory BW, this approach is very suitable for

UHD. The data loading time is also reduced from 101 cycles [68] to 2 cycles. In the

proposed MB decoding order, last line pixels of MB1 is stored in a short-term buffer in

Figure 6-2, as MB4 needs these pixels soon. Short-term buffer is consisted by several

registers. When MB4 is finished, these pixels are useless and the last line of MB4 will

replace MB1 in short-term buffer. At last short-term buffers are stored in a SRAM unit,

which can save about 260 MB/s BW.

Based on the new decoding order, an Intra decoder is presented as Figure 6-3,

which can provide very stable throughput for the UHD decoder. The intra prediction

engine is divided into two parallel pipelines, one is used for block prediction loops and

the other is used to prepare data for MB loops. The block pipeline is applied for 4x4

blocks prediction and can produce 4 predictors per cycle for all of Intra modes. MB

pipeline is applied to make the data preparing and prediction process work in parallel as

in Figure 6-3. An internal SRAM is utilized to store depended reconstructed pixels.

 Extended Processor with Hardware Accelerator

- 83 -

Figure 6-3 MB and block pipelines of Intra Decoder

The upper part in Figure 6-3 is MB pipeline, including data preparing unit, PE1

unit and data writing back unit. Data backup unit in Figure 6-3 is in charge of choosing

depended reconstructed pixels from Recon unit’s output data and writing back to inter-

nal RAM unit. Reconstructed output data is also sent to input MUX unit in block pipe-

line, as there are serious data dependent problems between blocks. When there is avail-

able input mode data, the data preparing unit will start to read related pixels from RAM

unit. After finishing preparing work, it will send ready signal to block loop if the input

mode is I4x4 mode. If the input mode is I8x8 mode or 16x16 DC/Plane modes, data

preparing unit sends ready signal to PE1 after getting the required pixels for PE1. The

lower part in Figure 6-3 is block pipeline for I4x4 mode, including input MUX, PE0 and

output MUX unit.

In previous designs [66-68], they follow the original MB decoding order and data

dependence problem has not been resolved. Data preparing and prediction can’t work in

parallel, which limits the performance. As we have resolved data dependence problem

in Zig-Zag decoding order, data preparing work and H, V value computation in I16x16

 Extended Processor with Hardware Accelerator

- 84 -

plane mode can work parallel with prediction process. As we apply internal memory for

reconstructed pixels backup, MB setup and end just need two more cycle in our pipeline

architecture. We can reduce the data backup and preparing work from 128 cycles [66] to

2 cycles at the cost a parallel working MB.

And next, we need to design the prediction engines for all intra modes, which must

be able to process one MB with 64 cycles. The prediction engine for 4x4 and 8x8 modes

are presented in details.

After analyzing all of 4x4 modes [61], we found that only 18 adders are needed to

design a combine PE for all 4x4 block prediction. To reduce area cost, we design a

combine PE0 as Figure 6-4. PE0 has nine input ports (I0-I8) and 7 output ports. PE0 can

compute one 4x4 block prediction in only one cycle. Figure 6-4 shows that the whole

4x4 block prediction pipeline is consisted of three stages: Input MUX, PE0 and output

MUX stage. It needs about 13 multiplexers (13 to 1), 4 multiplexers (7 to 1) and 18 ad-

ders.

+

+

+

+

+

+

+

I0

I1

I2

I3

I4

I5

I6

I7

d01

d12

d23

d34

d45

d56

d67

+
I8

d78

+

+

+

+

+

+

+

d0112

d1223

d2334

d3445

d4556

d5667

d6778

I* input

...

A
B
C

K
L

...

...Input

MUX

PE0

Output

MUX

Mode info Mode info

I0
I1

I8

...

d67
+d4567

d45

d0123
d23 +

d01

+d01234567

d* output

pipeline
0 1 2 3

Input MUX PE0
output

0-3

output

4-7

output

8-11

output

12-15

Figure 6-4 Combine PE for Intra Prediction

 Extended Processor with Hardware Accelerator

- 85 -

For 8x8 modes, each 8x8 block need about 25 pixels from adjacent blocks as in

Figure 6-5 and these pixels must be filtered before prediction. Figure 6-5 shows the fil-

tering process and the dependent pixels of first 4x4 block in 8x8 blocks. Most of previ-

ous architectures [65] [68] [69] just used one pipeline for Intra prediction, and the fil-

tering process can’t work parallel with prediction process. The filtering process occu-

pies 7 extra cycles for the four data paths architecture [68] [69] (25 pixels/4 data paths).

The whole MB prediction process for I8x8 modes costs more than 90 cycles in their de-

sign. As our proposed Intra prediction architecture has two pipelines working together,

the filtering process in MB pipeline can work parallel with prediction process in block

pipeline. Thus, MB pipeline has 16 cycles (cycles for prediction one 8x8 block) for fil-

tering process. It means the filtering unit just needs to filter 2 pixels (25pixels/16cycles)

per cycle for each 8x8 block as in Figure 6-5. This filtering process just needs 5 adders

and guarantees the block pipeline to produce one MB within 64 cycles. To combine with

4x4 modes, the output format of 8x8 blocks follows the order as 4x4 modes. And then

the 4x4 modes can share use PE0 of 4x4 modes.

Figure 6-5 8x8 Filtering Process in high profile H.264/AVC

 Extended Processor with Hardware Accelerator

- 86 -

6.3 Shared Intra Decoder within Cluster

Hardware accelerator is a very efficient way for exploring processor’s application

fields. They work in a flow as: receiving tasks from cores, processing received data and

sending back results to cores. Communication with cores is different from the data flow

in ASIC designs. For example, hardware accelerator in an ARM based SoC design

should connect to the AMBA bus. In this processor, accelerators should connect to CIB

bus, and then they can be shared by cores. Data transfers are divided into small flits and

automatically routing in CIB. Therefore, accelerators must have an identifier for routing

and be compatible the data format of CIB. As several cores may send tasks to accelera-

tor in random order, it requires that accelerators must be able to process tasks inde-

pendently.

This section presents how to design a shared accelerator in this multicore platform.

The benefits by sharing accelerators are also shown.

6.3.1 Interface and Data Flow of the Shared Decoder

Data exchange in CIB is based on data routing. Flits of point to point transfer must

have a source identifier and a destination identifier. Data format of CIB determines that

it just can have eight users in one CIB bus. Thus the accelerator can only share identifier

with a core. Figure 6-6 shows the hardware architecture of the interface with CIB. The

output unit in bus node needs one more output port for accelerator (“HA”). As data flits

of core and HA may arrive at this node at the same time from different rings, core and

HA don’t share the output ports. The output unit dispatches the arrived flits to core or

HA, according to the type flag in the header. A cross path is built between input ports

and output ports. Then the core and HA can communicate directly.

 Extended Processor with Hardware Accelerator

- 87 -

L

R
output

16-byte links for data

4-byte

Links

(message)

BMU

Bus Node in CIB

core

Data links

cross path

HA

32 bits path

128 bits path

Figure 6-6 Connecting the shared hardware accelerator in CIB

 HA doesn’t have a SRAM unit as core’s VM, and incoming data is stored in a com-

mand queue. Thus data communication with HA doesn’t need to send out address in-

formation. The core unit keeps the destination address. Both the 32 bit message paths

and 128 bits data paths can be used for sending data to HA. The dual-issue vector core

supports sending out one 32 bits register and one 128 bits register to CIB within one

instruction. In the Intra decoder, 16x16 modes need to send 33 pixels and one mode in-

formation to the accelerator. 8x8 modes need about 17 or 25 33 pixels. 4x4 modes need

9 or 13 pixels. Thus, it just needs only one or two instruction for sending out a task to

the accelerator for sending a task to the accelerator. In this design, cores are in charge of

preparing pixels for prediction. The shared Intra decoder doesn’t have about the data

dependency problem.

6.3.2 New Pipeline Design for Accelerator

In previous design for UHD decoder, a data preparing pipeline and a special output

order are applied. However, they are unnecessary for the accelerator. In accelerator, in-

 Extended Processor with Hardware Accelerator

- 88 -

put data is prepared by the cores, and the output order should be suitable for storing in

vector memory. According these new requirements of accelerator, some parts of the in-

tra decoder engine is redesigned.

The vector core can send out one 16 bytes vector and one 4 bytes scalar by one in-

struction. CIB also supports to send out them at the same time. For Intra4x4 prediction,

neighboring 13 pixels including 8 upper pixels and 4 left pixels are needed for predic-

tion. However, they aren’t used at the same time. For example, I4x4_ Diago-

nal_Down_Left mode just needs 9 upper pixels, and I4x4_ Diagonal_Down_Right

mode just needs 5 upper pixels and 4 left pixels. Considering the mode information,

cores just needs to send ten bytes to the accelerator. For Intra8x8 prediction, cores just

need to send seventeen bytes to the accelerator. For Intra16x16, 34 bytes are needed,

which means two cycles are needed for send out data. On the other hand, accelerator

can send back 16 bytes per cycle to cores.

Thus the output pipeline of Intra4x4 as Figure 6-4 is not suitable for this accelera-

tor. Figure 6-7 shows that the output MUX unit is modified for outputting sixteen pixels

per cycle. The Input MUX and PE0 unit is the same. There are two extra stages: “Core

sends CMD” and “CIB”. The delay of the whole process is about 13 cycles for Intra 4x4

modes. Data transmission causes about 10 cycles delay. Therefore, the latency of com-

munication network is very critical for sharing a hardware accelerator. For conventional

NoC, the communication delay becomes the bottleneck for sharing.

 Extended Processor with Hardware Accelerator

- 89 -

+

+

+

+

+

+

+

I0

I1

I2

I3

I4

I5

I6

I7

d01

d12

d23

d34

d45

d56

d67

+
I8

d78

+

+

+

+

+

+

+

d0112

d1223

d2334

d3445

d4556

d5667

d6778

I* input

...

A
B
C

K
L

...

...Input

MUX

PE0

Output

MUX

Mode info Mode info

I0
I1

I8

...

d67
+d4567

d45

d0123
d23 +

d01

+d01234567

d* output

pipeline
Input

MUX
PE0

output

0-15

„„

Core

Send CMD
CIB

Figure 6-7 The prediction pipeline of intra4x4 modes in accelerator

This accelerator is able to produce 16 pixels per cycle, thus Intra8x8 modes just

have four cycles per block. The filter process in previous work needs more than nine

cycles for one block, which is not enough for this accelerator. Three more filter units are

added for achieving 5 pixels/cycle. Intra8x8 and Intra4x4 modes can share the calcula-

tion unit (PE0) as Figure 6-8. Intra 8x8 needs an extra Filter process per block. Figure

6-8 shows that the accelerator can deal with Intra8x8 and Intra4x4 blocks with out any

pipeline bubble when different cores are using accelerator. If there is only one core is

using the accelerator, the using core needs a lot of cycles for preparing data for the each

block, and the accelerator can’t work with the maximal performance. Therefore this ac-

celerator can achieve the maximal performance as 16 pixels per cycle, when it’s shared

by different cores. It can satisfy eight channels parallel HD decoding at 31 MHz. When

it synthesized by SIMC 65 nm, it can achieve 300MHz at 1.2V, which is more than ten

times of the HD decoding requirements.

 Extended Processor with Hardware Accelerator

- 90 -

4 cycles PE0 PE0 PE0 PE0Filter

MUX PE0 MUX

MUX

MUX PE0 MUX

ß Core a

Core bà

Core cà

MUX PE0 MUX

CIB CoreMUX PE0 MUX

Delay for between two blocks

Processing blocks from different cores:

Only one core is using:

Figure 6-8 The pipelines of accelerator for different cases.

As data preparing work is performed by the cores, accelerator doesn't need any

SRAM unit for storing temporary pixels. The output unit also becomes simple. Table

6-1 shows the proposed accelerator uses less hardware resources and achieves more

than four times throughput than [61].

Table 6-1 Performance comparisons of Intra decoders

 Cycle/MB Gates RAM Modes

[66] 236 14.9K 384 Base profile

[61] 66 29.8K 8K RAM High profile

Proposal 16 21.6K NO

High profile

(without data backup)

 Extended Processor with Hardware Accelerator

- 91 -

6.4 Chapter Summary

A shared hardware accelerator is proposed in this chapter. The interface design for

sharing accelerator is also presented. Comparing with our previous design for UHD de-

coder, the pipeline becomes simple and the throughput is more than four time higher. It

can satisfy eight channels HD decoding with 31 MHz. The CIB network can guarantee a

low latency access cost for sharing accelerators. Together with shared hardware acceler-

ator, this multicore platform can become more powerful for special applications. Com-

paring with dedicated hardware accelerator, sharing hardware accelerator design can

reduce a lot of hardware cost.

 Conclusion

- 92 -

7 Conclusion

A large-scale SMP computational platform that is well-suited for video and image

processing has been fabricated in 65 nm CMOS. This chip contains 32 dual-issue cores,

which supports 128-bit SIMD instructions (including 8-bit MAC) and vertical vector

access. Optimization with these features can achieve 2.3 times speedup in average for

several 2D image processing kernels. A filter cache is utilized to reduce L1 data cache

access and combine write operations. In large-scale SMP systems, traditional snoop

protocols cause a lot of snoopy operations, which occupy a huge BW and L1 cache re-

sources. A new application specified cache coherence protocol is proposed to reduce

BW costs and L1 cache’s energy. Compared with Jetty, MCI can reduce both the tag

lookup operations and BW cost. For a 32-core CMP processor, Jetty with MOESI can

reduce about 24.6% snooping operations, and our proposed MCI can reduce about

67.8% snooping operations. The drawback of MCI is software compatibility and com-

plexity. The software impacts of MCI are the two configuration steps. MCI is not com-

patible with conventional software on SMP (memory configurations must be added for

MCI). General CPU for PC can’t use MCI, as software compatibility is necessary. This

is the restriction for our coherence protocol and cache design.

Four CIB networks are used for clusters, and providing 192 GB/s inter-core com-

munication BW in average. Fixed rout mesh network is also applied. This hierarchical

network can achieve lower latency and better energy efficiency than NoC. In CIB,

every data flits are independent. There are no channels and buffers for in-network data

flits. Different transmissions can share links in CIB. The overhead of CIB is that the bus

needs about 13 extra wires for routing header. For NoC, 13 routing header is too huge as

 Conclusion

- 93 -

NoC needs to store them in buffer. For 32-bit NoC, the hardware increases about 28%

for more 13 bits.

Based on those architectures, this chip can achieve good energy efficiency and

DLP as MP-SIMD, and also provide high ILP and TLP as CMPs. However, this pro-

cessor is just suitable for vector processing. To explore the application fields of the

proposed SIMD based multicore processor, a shared hardware accelerator is proposed.

For future work, we need to develop a compiler for this processor. For software

development, the efficiency of compiler is very critical. For vector based processor,

compiler can’t automatically make a loop based function to vector instructions. Pro-

grammer needs to spend a lot of time for optimization. Thus, the requirement of com-

piler for this processor is not very high. We also need to add more interface, such as

PCI-E or inter-chip interface. Then different chips can be connected together for

achieving higher performance.

- 94 -

Acknowledgement

First and foremost, I would like to gratefully and sincerely thank Professor Satoshi

Goto of Waseda University for his constant encouragement, guidance, and support dur-

ing my research. Professor Goto has wonderful personal fascination and gives me a

great guide in my growth and research.

I would like to thank Professor Peilin Liu of Shanghai Jiao Tong University for the

continuous encouragement and support throughout my work. I also thank Professor To-

gawa Nozomu, Professor Shinji Kimura and Professor Takahiro Watanabe for giving me

continuous encouragement and precious advices during my research.

I would like to appreciate Dr. Dajiang Zhou and Dr. Jinjia Zhou of Waseda Univer-

sity. They gave me direct guidance and tremendous help during my research. And also

the other students in Goto-Lab, they give me a lot of help both in my research and life.

Under these people’s help, I can enjoy the research life in Waseda University.

I also thank to the support from Waseda University Ambient SoC Global COE

Program of MEXT, Japan, and from the CREST project of Japan Science and Technol-

ogy Agency.

Finally, an honorable mention goes to my family for their understandings and sup-

ports.

- 95 -

References

[1] David A. Patterson and John L. Hennessey, Computer Organization and Design: the

Hardware/Software Interface, 2nd Edition, Morgan Kaufmann Publishers, Inc., San

Francisco, California, p.751, 1998

[2] RG Hintz and DP Tate, "Control data STAR-100 processor design," in Proc.

COMPCON 72, IEEE Comput. Soc. Conf. Proc, pp. 1-4, Sept. 1972

[3] M. Eden, M. Kagan, “The Pentium(R) processor with MMX technology”, IEEE

Compcon '97. Proceedings, pp.260-262, Feb. 1997

[4] Intel Corporation. Intel Developer Web Site. http://developer.intel.com

[5] J. Tyler, J. Lent, A. Mather, Huy Nguyen, “AltiVec: bringing vector technology to

the PowerPC processor family”, PCCC, pp. 437-444, Feb.1999

[6] BTMS320C6414, TMS320C6415, TMS320C6416, Fixed-Point Digital Signal Pro-

cessors, Texas Instruments Incorporated, 2005.

[7] Y. Lin, H. Lee, M. Who, Y. Harel, S. Mahlke, T. Mudge, C. Chakrabarti, and K.

Flautner, “SODA: A low-power architecture for software radio,” in Proc. Int. Symp.

Computer Architecture (ISCA), pp. 89–101, June. 2006

[8] T. Miyamori and K. Olukotun, “REMARC: Reconfigurable multimedia array co-

processor,” IEICE Trans. Inf. Syst., vol. E82-D, no. 2, pp. 389–397, 1999.

- 96 -

[9] K. Schaffer, R. A. Walker, “A Prototype Multithreaded Associative SIMD Proces-

sor,” IEEE International Parallel and Distributed Processing Symposium, pp.1-6,

Jan. 2007

[10] A. Abbo, et al., “Xetal-II: a 107 GOPS, 600 mW massively parallel processor for

video scene analysis”. IEEE Journal of Solid-State Circuits, pp.192–201, Feb. 2008

[11] Khailany, B.K, et al., “A Programmable 512 GOPS Stream Processor for Signal,

Image, and Video Processing,” ISSCC Dig. Tech. Papers, pp.272-273, Feb. 2007

[12] J. A. Fisher, “Very long instruction word architectures and the ELI-52,” in Proc.

10th Annu. Int. Symp. Computer Architecture, pp.140-150, 1983

[13] Wada, T, et al, “A VLIW Vector Media Coprocessor with Cascaded SIMD ALUs,"

in IEEE trans on VLSI Systems, Vol: 17, pp. 1285-1296, 2009

[14] M. Gschwind, H.P. Hofstee, B.K. Flachs, M. Hopkins, Y. Watanabe, T. Yamazaki,

“Synergistic processing in Cell’s multicore architecture,” IEEE Micro 26, pp. 10–24,

Dec, 2006

[15] Bell, S, et al., “TILE64 - Processor: A 64-Core SoC with Mesh Interconnect,”

ISSCC Dig. Tech. Papers, pp.88-598, Feb. 2008

[16] Truong, D.N, et al., “A 167-Processor Computational platform in 65 nm CMOS,”

IEEE Journal of Solid-State Circuits, vol. 44, pp. 310-319, April, 2009

[17] Kahn, Gilles. “The Semantics of a Simple Language for Parallel Programming.” In

IFIP Congress, pp. 471–475, Aug. 1974

- 97 -

[18] D.C. Cann, J.T. Feo, T.M. DeBoni, "SISAL 1.2: high-performance applicative com-

puting ," IEEE Symposium on Parallel and Distributed Processing, pp. 612 – 616,

Dec. 1990

[19] Dean, Jeffrey, and Sanjay Ghemawat. “MapReduce: Simplified Data Processing on

Large Clusters.” In OSDI '04: 6th Symposium on Operating Systems Design and

Implementation, pp 137–150, Dec. 2004

[20] K.Z. Ibrahim, G.T. Byrd, "Extending OpenMP to support slipstream execution

mode" International Parallel and Distributed Processing Symposium, pp. 10-14, Jan.

2003

[21] http://openmp.org/wp/2008/10/openmp-tutorial-at-supercomputing-2008 OpenMP

Tutorial at Supercomputing 2008

[22] Sato, M, "OpenMP: parallel programming API for shared memory multiprocessors

and on-chip multiprocessors", International Symposium on System Synthesis, pp.

109 – 111, Oct. 2002

[23] O. Hernandez, R.C. Nanjegowda, B. Chapman, "Open Source Software Support for

the OpenMP Runtime API for Profiling," International Conference on Parallel Pro-

cessing Workshops, pp. 130 – 137, 2009

[24] C. Saldanha and M. Lipasti. “Power Efficient Cache Coherence,” Workshop on

Memory Performance Issues, in conjunction with ISCA, pp. 63-78, June 2001

[25] M. M. K. Martin, D. J. Sorin, A. Ailamaki, A. R. Alameldeen, R. M. Dickson, C. J.

Mauer, K. E. Moore, M. Plakal, M. D. Hill, and D. A. Wood. “Timestamp Snooping:

An Approach for Extending SMPs,” In Proceedings of the Ninth International Con-

- 98 -

ference on Architectural Support for Programming Languages and Operating Sys-

tems, pp. 25–36, Nov. 2000

[26] M. M. K. Martin, D. J. Sorin, M. D. Hill, and D. A. Wood. “Bandwidth Adaptive

Snooping.” In Proceedings of the Eighth IEEE Symposium on High-Performance

Computer Architecture, pp. 251–262, Feb. 2002

[27] A. Moshovos, G. Memik, B. Falsafi and A. Choudhary. “JETTY: Filtering Snoops

for Reduced Energy Consumption in SMP Servers”. Proceedings of the 7th Interna-

tional Symposium on High-Performance Computer Architecture, pp.85-96, January,

2001

[28] D. Lenoski, J. Laudon, K. Gharachorloo, W.-D. Weber, A. Gupta, J. Hennessy, M.

Horowitz, and M. Lam. “The Stanford DASH Multiprocessor”. IEEE Computer,

25(3), pp:63-79, Mar. 1992

[29] S. S. Mukherjee, P. Bannon, S. Lang, A. Spink, and D. Webb. “The Alpha 21364

Network Architecture,” In Proceedings of the 9th Hot Interconnects Symposium, pp:

35-40, Aug. 2001

[30] W.-D. Weber, S. Gold, P. Helland, T. Shimizu, T. Wicki, and W. Wilcke. “The Mer-

cury Interconnect Architecture: A Cost-Effective Infrastructure for

High-Performance Servers,” In Proceedings of the 24th Annual International Sym-

posium on Computer Architecture, pp: 120-124, Jun. 1997

[31] D. Chaiken, D, C. Fields, K. Kurihara, A. Agarwal, "Directory-based cache coher-

ence in large-scale multiprocessors," Computer, Volume: 23 , Issue: 6, pp:49 – 58,

1990

- 99 -

[32] T. Lovett and S. Thakkar. “The symmetry multiprocessor system,” in ICPP,

pp:21-26, Aug. 1988

[33] M. Kistler, M. Perrone, F. Petrini, “Cell Multiprocessor Communication Network:

Built for Speed” IEEE Micro, pp:10-23, 2006

[34] A.Wilson. “Hierarchical cache/bus architecture for shared memory multiproces-

sors,” In ISCA-14, June 1987.

[35] L. Hammond, B. A. Nayfeh, and K. Olukotun. A single-chip multiprocessor. IEEE

Computer, 30(9), 1997.

[36] Shin, J.L, et al, “A 40 nm 16-Core 128-Thread SPARC SoC Processor,” IEEE

Journal of Solid-State Circuits, Vol : 46 , Issue:1, pp:131 – 144, Jan.2011

[37] D. Bertozzi and L. Benini, “Xpipes: a network-on-chip architecture for gigascale

systems-on-chip,”, vol. 4, no. 2. IEEE in Circuits and Systems Magazine, pp. 18–31,

2004

[38] W. J. Dally and B. Towles, “Route packets, not wires: on-chip interconnection net-

works,” in Proceedings of the Design Automation Conference, Las Vegas, NV, pp.

684–689, June 2001

[39] A. Hemani, A. Jantsch, S. Kumar, A. Postula, J. Oberg, M. Millberg, and D. Lind-

qvist, “Network on chip: An architecture for billion transistor era,” in Proceeding of

the IEEE NorChip Conference, pp.250-255, Nov. 2000

[40] Dally, W.J, “Wire-Efficient VLSI Multiprocessor Communication Networks,” Pro-

ceedings of the Stanford Conference on Advanced Research in VLSI, Paul Losleben,

ed., MIT Press, pp. 391-415, March 1987

- 100 -

[41] W. J. Dally, “Virtual-Channel Flow Control,” In Proceedings of the 17th Annual In-

ternational Symposium on Computer Architecture , pp. 28 –34, Jan .1990

[42] Dally, W.J. and Seitz, C.L, “Deadlock Free Message Routing in Multiprocessor In-

terconnection Networks,” IEEE Transactions on Computers, Vol C-3G, No5, pp.

547-553, May 1987

[43] Vangal, S.R, et al, “An 80-Tile Sub-100-W TeraFLOPS Processor in 65-nm

CMOS,” IEEE Journal of Solid-State Circuits, Vol : 49 , Issue:1, pp. 29 – 41, Oct.

2008

[44] Damjan Lampret et al., "OpenRISC 1000 Architecture Manual", Rev 1.3, 15 Nov

2007. Available from the OpenCores website

[45] P. Merkle, K. Mueller, A. Smolic, and T. Wiegand, “Efficient Compression of Mul-

ti-view Video Exploiting Inter-view Dependencies Based on H.264/MPEG4-AVC”,

ICME, pp. 68-73, July. 2006

[46] A. Smolic, K. Mueller, N. Stefanoski, J. Ostermann, A. Gotchev, G.B. Akar, G.A.

Triantafyllidis and A.Koz: “Coding Algorithms for 3DTV-A Survey,” IEEE Trans.

οn CSVT, Vol 7, Issue 11, pp. 1606-1621, Nov. 2007

[47] Amdahl, Gene, "Validity of the Single Processor Approach to Achieving

Large-Scale Computing Capabilities". AFIPS Conference Proceedings (30), pp.

483–485, 1998

[48] M. Baron, Applications Define DSP Speed, Microprocessor Report, Apr.2005, pp.

3–12.

- 101 -

[49] Jiayi Zhu, Peilin Liu, Dajiang Zhou, “An SDRAM controller optimized for high

definition video coding application”, ISCAS, pp.3518–3521, May. 2008

[50] Yu Shengfa, et al, “Instruction-Level Optimization of H.264 Encoder Using SIMD

Instructions” International Conference on Communications, Circuits and Systems,

pp:126 –129, May, 2006

[51] A.K.Jones, R.Hoare, I.S. Kourtev, J. Fazekas, D. Kusic, J. Foster, S. Boddie, A.

Muaydh, "A 64-way VLIW/SIMD FPGA architecture and design flow," ICECS,

Page(s): 499 – 502, Feb. 2004

[52] M. Ekman, F. Dahlgren, and P. Stenström: “Evaluation of Snoop-Energy Reduction

Techniques for Chip-Multiprocessors,” In Proc. of the First Workshop on Duplicat-

ing, Deconstructing, and Debunking, May 2002.

[53] P. Sweazey and A. J. Smith. “A Class of Compatible Cache Consistency Protocols

and Their Support by the IEEE Future Bus,” Proceedings of the 13th International

Symposium on Computer Architecture, pages 414-423, May 1986.

[54] P. S. Magnusson, F. Larsson, A. Moestedt, B. Werner, F. Dahlgren, M. Karlsson, F.

Lundholm, J. Nilsson, P. tenström, and H. Grahn. SimICS/sun4m: A virtual work-

station. Proceedings of the USENIX 1998 Annual Technical Conference. USENIX

Association, pages 119-130, June 1998.

[55] Xun He, Xiangzhong Fang, Ci Wang, Goto, S, "Parallel HD encoding on CELL,"

ISCAS, Page(s): 1065 – 1068, May. 2009.

[56] Howard, J, et al., “A 48-Core IA-32 Message-Passing Processor with DVFS in

45nm CMOS” ISSCC Dig. Tech. Papers, pp.108 -109, Jan. 2010.

- 102 -

[57] Yiping Dong, Hua Zhang, Zhen Lin, T. Watanabe, “A novel hardware method to

implement a routing algorithm onto Network on Chip,” ICCCAS, July. 2010

[58] M. Butler, L. Barnes, D.D. Sarma, B. Gelinas, "Bulldozer: An Approach to Multi-

threaded Compute Performance ," IEEE, Micro, Volume: 31 , Issue: 2, pp. 6-15 , pp.

6 – 15

[59] Dajiang Zhou, Jinjia Zhou, Xun He, Jiayi Zhu, Ji Kong, Peilin Liu, Goto, S, "A 530

Mpixels/s 4096x2160@60fps H.264/AVC High Profile Video Decoder Chip",

IEEE Journal of Solid-State Circuits, Volume: 46, pp. 777-788, 2011

[60] Dajiang Zhou, Jinjia Zhou, Xun He, Ji Kong, Jiayi Zhu, Peilin Liu, Goto, S, "A

530Mpixels/s 4096×2160@60fps H.264/AVC high profile video decoder chip,"

2010 IEEE Symposium on VLSI Circuits (VLSIC), Page(s): 171 – 172, Feb, 2010

[61] Xun He, Jinjia Zhou, Dajiang Zhou and Satoshi Goto, "High profile intra prediction

architecture for UHD H.264 decoder", IPSJ Transactions on System LSI Design

Methodology, Vol. 3, No. 2, pp. 303-313, Aug. 2010

[62] C.-C. Ju, et al., “A 125Mpixels/sec full-HD MPEG-2/H.264/VC-1 video decoder for

Blu-ray applications,” in A-SSCC Dig. Tech. Papers, pp.9–12, Nov. 2008

[63] C. C. Lin, et al., “A 160k gates/4.5kB SRAM H.264 video decoder for HDTV ap-

plications,” IEEE J. Solid State Circuits, vol. 42, no. 1, pp.170-182, Jan. 2007

[64] E.Sahin, I.Hamzaoglu, “An Efficient Intra Prediction Hardware Architecture for

H.264 Video Decoding,” DSD, pp.448–454, Aug. 2007

- 103 -

[65] T.-A. Lin, S.-Z.Wang, T.-M. Liu, and C.-Y. Lee, “An H.264/AVC decoder with

4x4-block level pipeline,” in Proc. IEEE Int. Symp. Circuits Syst., pp. 1810–1813,

May 2005

[66] C. W. Ku, C. C. Cheng, G. S. Yu, M. C. Tsai, and T. S. Chang, “A high-definition

H.264/AVC intra-frame codec IP for digital video and still camera applications,”

IEEE Trans. Circuits Syst. Video Technol, vol. 16, pp.917–928, Aug. 2006

[67] T.-A. Lin, S.-Z. Wang, T.-M. Liu, “Architecture Design of H.264/AVC Decoder with

Hybrid Task Pipelining for High Definition Videos,” ISCAS, pp.1810–1813, May

2005

[68] Y. Huang, B. Hsieh, T. Chen, and L. Chen, “Analysis, Fast Algorithm, and VLSI

Architecture Design for H.264/AVC Intra Frame Coder”, IEEE Trans. on Circuits

and Systems for Video Technology, vol. 15, Mar. 2005

[69] W.T. Staehler, A.A. Susin, “Real-Time 4x4 Intraframe Prediction Architecture for a

H.264 Decoder,” in ITS, pp.416–421, Feb. 2006

- 104 -

Publications

Journals:

[1] Xun He, Jinjia Zhou, Dajiang Zhou and Satoshi Goto, " A 98 GMACs/W 32-Core

Vector Processor in 65nm CMOS ", IEICE Transactions on Fundamental,

Vol.E94-A, No.12, Dec. 2011.

[2] Dajiang Zhou, Jinjia Zhou, Xun He, Jiayi Zhu, Ji Kong, Peilin Liu, and Satoshi

Goto, "A 530Mpixels/s 4096x2160@60fps H.264/AVC high profile video decoder

chip," IEEE Journal of Solid-State Circuits, Volume: 46 , Issue: 4. Page(s): 777 –

788, 2011

[3] Xun He, Jinjia Zhou, Dajiang Zhou and Satoshi Goto, "High profile intra prediction

architecture for UHD H.264 decoder", IPSJ Transactions on System LSI Design

Methodology, Vol. 3, No. 2, pp. 303-313, Aug. 2010

[4] Jinjia Zhou, Dajiang Zhou, Xun He and Satoshi Goto, "A bandwidth optimized, 64

cycles/MB joint parameter decoder architecture for ultra high definition H.264/AVC

applications", IEICE Transactions on Fundamentals, Vol. E93-A, No. 8, pp.

1425-1433, E93.A.1425, Aug. 2010

- 105 -

International Conference Papers:

[1] Xun He, Dajiang Zhou, Xin Jin and Satoshi Goto, "A 98 GMACs/W 32-Core Vector

Processor in 65nm CMOS ", International Symposium on Low Power Electronics

and Design (ISLPED), pp. 373 – 378, Aug. 2011

[2] Xun He, Xin Jin, Minghui Wang and Satoshi Goto, “A Novel Depth-Image Based

View Synthesis Scheme for Multiview and 3DTV,” The 17th International Confer-

ence on MultiMedia Modeling (MMM), Taipei, Taiwan, Part I, LNCS 6523, pp.

161-170, Jan. 2011

[3] Dajiang Zhou, Jinjia Zhou, Xun He, Ji Kong, Jiayi Zhu, Peilin Liu and Satoshi Goto,

"A 530Mpixels/s 4096x2160@60fps H.264/AVC high profile video decoder chip",

Symposium on VLSI Circuits 2010, pp. 171-172, June, 2010

[4] Gang He, Xun He and Satoshi Goto, "The Hybrid of dynamic and static allocation

directory for cache coherence", ITC-CSCC 2010, pp.154-157, July, 2010

[5] Xun He, Dajiang Zhou, Jinjia Zhou and Satoshi Goto, “A New Architecture for

High Performance Intra Prediction in H.264 Decoder”, International Symposium on

Intelligent Signal Processing and Communication System, pp. 41-44, Dec. 2009

[6] Xun He, Xiangzhong Fang, Ci Wang, Satoshi Goto, "Parallel HD Encoding on

CELL," International Symposium on Circuits and Systems, pp. 1065 – 1068, MAY

2009

[7] Xun He, Xianmin Chen, Peilin Liu, Satoshi Goto, "A New DCT-Domain Distortion

Model for MB-Level Quality Control", ICCMS' 09. 20-22, pp. 69 – 72, Feb. 2009

