
Chi Ching Chi, Ben Juurlink, Cor Meenderinck

Evaluation of parallel H.264 decoding
strategies for the Cell Broadband Engine

Conference Object, Postprint version
This version is available at http://dx.doi.org/10.14279/depositonce-6263

Suggested Citation
Chi, C. C.; Juurlink, B.; Meenderinck, C.: Evaluation of parallel H.264 decoding strategies for the Cell Broadband
Engine. - In: ICS '10 Proceedings of the 24th ACM International Conference on Supercomputing. - New York, NY:
ACM, 2010. - ISBN: 978-1-4503-0018-6. - pp. 105-114. DOI: 10.1145/1810085.1810102. (Postprint version is cited.)

Terms of Use
© ACM, 2012. This is the author's version of the work. It is posted here by permission of ACM for
your personal use. Not for redistribution. The definitive version was published in ICS '10 Proceedings
of the 24th ACM International Conference on Supercomputing. - New York, NY: ACM, 2010, https://
dl.acm.org/citation.cfm?doid=1810085.1810102.

Powered by TCPDF (www.tcpdf.org)

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DepositOnce

https://core.ac.uk/display/143954631?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.tcpdf.org

Evaluation of Parallel H.264 Decoding Strategies for the
Cell Broadband Engine

Chi Ching Chi
Technische Universität Berlin

Franklinstrasse 28/29
10587 Berlin, Germany
cchi@cs.tu-berlin.de

Ben Juurlink
Technische Universität Berlin

Franklinstrasse 28/29
10587 Berlin, Germany

b.juurlink@tu-berlin.de

Cor Meenderinck
Delft University of Technology

Mekelweg 4
Delft, Netherlands

cor@ce.et.tudelft.nl

ABSTRACT

How to develop efficient and scalable parallel applications
is the key challenge for emerging many-core architectures.
We investigate this question by implementing and compar-
ing two parallel H.264decoders on the Cell architecture. It
is expected that future many-cores will use a Cell-like local
store memory hierarchy, rather than a non-scalable shared

memory. The two implemented parallel algorithms, the Task

Pool (TP) and the novel Ring-Line (RL) approach, both ex-
ploit macroblock-level parallelism. The TP implementation

follows the master-slave paradigm and is very dynamic so

that in theory perfect load balancing can be achieved. The

RL approach is distributed and more predictable in the sense

that the mapping of macroblocks to processing elements is
fixed. This allows to better exploit data locality, to overlap

communication with computation, and to reduce commu-
nication and synchronization overhead. While TP is more

scalable in theory, the actual scalability favors RL. Using

16 SPEs, RL obtains a scalability of 12x, while TP achieves
only 10.3x. More importantly, the absolute performance of
RL is much higher. Using 16 SPEs, RL achieves a through-
put of 139.6 frames per second (fps) while TP achieves only

76.6 fps. A large part of the additional performance advan-
tage is due to hiding the memory latency. From the results
we conclude that in order to fully leverage the performance

of future many-cores, a centralized master should be avoided

and the mapping of tasks to cores should be predictable in

order to be able to hide the memory latency.

Categories and Subject Descriptors

I.4[Image Processing and Computer Vision]: Com-
pression (Coding); D.1.3 [Software]: Programming Tech-
niques—Concurrent Programming

General Terms

Algorithms, Performance

Keywords

H.264, video, decoding, Cell, parallel, programming

1. INTRODUCTION
In the past performance improvements were mainly due to

higher clock frequencies and due to exploiting Instruction-
Level Parallelism (ILP). ILP improvements, however, have
reached their limit and show diminishing returns in terms of
area and power. Power limitations also prevent further fre-
quency scaling. As a result, industry has made a paradigm
shift towards multi-cores.

With the recent move to homogeneous multi-cores we have
witnessed a doubling and quadrupling of processor cores.
This approach, however, is not scalable to the many-core
era. Slow inter-core communication, quadratic complexity
of cache coherency, and shared memory bandwidth limita-
tions [20] will soon create bottlenecks. The IBM Cell proces-
sor is a heterogeneous multi-core, which comes a long way in
addressing these issues. The price is paid in programmabil-
ity, however, as tasks previously handled by hardware, such
as inter-core communication, are moved to software. Never-
theless, it is expected that future processor architectures will
integrate Cell-like features because it is more scalable than
homogeneous multi-cores. Investigating the programmabil-
ity of the Cell processor is therefore important to gain insight
in defining future programming models.

The goal of this paper is to investigate how to leverage the
full performance potential of future many-core architectures.
In order to do so we have implemented two parallel ver-
sions of an H.264 decoder, both exploiting macroblock-level
parallelism, on a 16-SPE Cell Blade platform. The H.264
coder/decoder (codec) [1] is presently the most widespread
and advanced video codec [13]. The first implementation,
referred to as the Task Pool (TP), has been presented pre-
viously [2] and is based on the master-slave programming
paradigm. Slaves request work (in this case macroblocks,
MBs) from the master, which keeps track of the dependen-
cies between the MBs. The second implementation is a novel
approach referred to as Ring-Line (RL). In RL the cores pro-
cess entire lines of MBs rather than single MBs, enabling
distributed control. Furthermore, its static and predictable
mapping of MBs to cores allows to overlap communication
with computation and reduces the memory bandwidth re-
quirements.

We analyze the TP and RL approaches based on the
theoretical scalability as well as experimental results. The
theoretical scalability is higher for the TP implementation.
However, both the actual scalability and the absolute per-
formance of the actual implementations favor the RL ap-

proach. Most of the performance advantage is due to hiding
the memory latency.
Independently, Baker et al. [5] have implemented an ap-

proach similar to Ring-Line on the Cell platform. It is sim-
ilar in the sense that SPEs process entire lines and a dis-
tributed control scheme is used. However, they do not fully
exploit one of the key features of the Cell processor, namely
explicit data management. In contrast to our implementa-
tion, they do not apply pre-fetching nor do they use the pos-
sibility to send data from one SPE to another directly. In our
implementation inter-SPE communication is used to reduce
off-chip bandwidth utilization, while pre-fetching is used to
hide the memory access latency. Compared to Baker’s im-
plementation, our RL implementation is about 50% to 100%
faster, with the caveat that this is derived from comparing
the results at 6 SPEs, since Baker et al. only provided results
for up to 6 SPEs due to limitations of their test platform
(PS3).
This paper is organized as follows. In Section 2 a brief

overview of H.264 and the Cell architecture is provided. In
Section 3 the experimental setup is presented. In Section 4,
the TP and RL implementations are discussed, while they
are evaluated in Section 5. Section 6 concludes this paper.

2. BACKGROUND

2.1 Cell Architecture Overview
The Cell Broadband Engine [14] is a heterogeneous multi-

core consisting of one PowerPC Element (PPE) and eight
Synergistic Processing Elements (SPEs). The PPE is a dual-
threaded general purpose PowerPC core with a 512kB L2
cache. Its envisioned purpose is to act as the control/OS
processor, while the eight SPEs provide the computational
power. Figure 1 shows a schematic overview of the Cell
processor. The processing elements, memory controller, and
external bus are connected to an Element Interconnect Bus
(EIB). The EIB is a bi-directional ring interconnect with a
peak bandwidth of 204.8 GB/s [6]. The XDR memory can
deliver a sustained bandwidth of 25.6 GB/s.
What makes the Cell such an innovative design is not its

heterogeneity, but its scalable memory hierarchy. In con-
ventional homogeneous multi-core processors, each core has
several layers of cache. The caches improve performance, be-
cause they reduces the average latency and bandwidth usage
of the external (off-chip) memory. With multiple cores the
caches need to be kept coherent. The cache coherency ac-
tions grow with a complexity of O(n2), where n is the num-
ber of cores, which quickly become unpractical in many-core
architectures. In the Cell architecture, the SPEs do not fea-
ture a cache and rely on a local store and DMA unit instead
to access the memory. Each SPE has a local store of size
256 kB. The SPEs can only work on data in the local store.
The programmer is responsible for the data transfers using
explicit DMA operations. The programming style is that of
the shopping list model. Instead of loading every data item
separately at the time it is needed (as is the case with cache
based systems), all data required for a task is brought in at
once and before the execution of the task. Moreover, loading
the data of one task should be done concurrently with the
execution of another task in order to fully hide the memory
latency.

2.2 H.264 Decoding
Currently H.264 [1, 18] is the best video coding standard

SPE 1

SPU LS

DMA

SPE 8

SPU LS

DMA

PPE

PPU L1

L2 XDR DRAM
controller

Dual
channel

External
FlexIO bus

Rambus
FlexIO

EIB

Figure 1: Schematic view of the Cell Broadband
Engine architecture.

in terms of compression rate and quality [13]. Also, it is the
most widespread standard for digital video. It is used in Blu-
ray, digital television broadcast, online digital content dis-
tribution, mobile video players, etc. The compression rate
is over two times higher compared to previous standards,
such as MPEG-4 ASP, H.262/MPEG-2, etc. H.264 uses the
YCbCr color space with mainly a 4:2:0 subsampling scheme.
In this subsampling scheme the luma component (Y) has the
same resolution as the frame, while the chroma components
(Cb and Cr) are at a quarter resolution. Throughout the
paper this subsampling scheme is assumed.

This paper focuses on H.264 decoding, of which the block
diagram is depicted in Figure 2. In the entropy decoding the
data of the MBs is extracted from the H.264 stream. The
remaining kernels use the extracted data to decode the MB.
The entropy decoding, motion compensation, and deblock-
ing filter kernels require the most computation time with on
average around 30%, 35%, and 25%, respectively. The intra
prediction, inverse quantization, and inverse discrete cosine
transform kernels account for the remaining 10%.

The entropy decoding can be parallelized on the frame/slice
level using the frame markers. Parallelization of the MB ker-
nels can be done on several levels. The next section briefly
reviews existing parallelization strategies.

2.3 Parallelization Opportunities
A lot of work has been done to parallelize H.264 in general.

However, most works exploit only coarse-grain parallelism
at the Group of Pictures (GOP)-, frame-, and slice-level or
apply function-level decomposition. Using the latter, Gu-
lati et al. [9] described a system for encoding and decod-
ing H.264 videos. Data-level decomposition was applied by,
among others, Rodriguez et al. [15], who proposed an en-
coder that combines GOP- and slice-level parallelism. Chen
et al. [7] proposed a combination of frame- and slice-level
parallelism. Roitzsch [16] proposed a scheme based on slice-

H.264 stream Entropy
decoding

Inverse
quanti-
zation

Inverse
DCT

+
Deblocking

filter
YUV video

Intra
prediction

Motion
compen-
sation

Frame
buffer

Figure 2: Block diagram view of the H.264 decoder.

level parallelism by modifying the encoder. Baik et al. [4]
have implemented a parallel version of H.264 on the Cell
processor. The design utilizes both data- and function-level
decomposition by partitioning MBs from inter coded frames
among the available SPEs in a load balanced fashion, and
dedicating an additional SPE to deblocking. None of these
parallelization strategies, however, are sufficiently scalable
to efficiently utilize emerging many-cores. MB-level paral-
lelization has proven to be much more scalable and is, there-
fore, subject of this paper. The remainder of this section
describes the different strategies to exploit MB-level paral-
lelism.
MB-level parallelism can be exploited in the spatial (within

a frame) and the temporal domain (among frames). Spatial
MB-level parallelism has been introduced by Van der Tol
et al. [17]. Chen et al. [21] evaluated this approach on a Pen-
tium machine with SMT and multi-core capabilities. These
works also suggest the combination of MB-level parallelism
in the spatial and temporal domains. This is explored fur-
ther in the work of Meenderinck et al. [12] and was renamed
to 3D-Wave parallelism. They showed that the amount of
available parallelism is very large. They also renamed spa-
tial MB-level to 2D-Wave parallelism. This naming scheme
is also used within this paper.

2.3.1 2D-Wave Parallelism

The 2D-Wave parallelization exploits MB-level parallelism
within a frame. The amount of parallelism is limited by the
data dependencies in the spatial domain, referred to as intra
dependencies. Figure 3 illustrates all dependencies in the
spatial domain. To decode the current MB, data from four
surrounding MBs is needed. Therefore, these must be fully
decoded before the current MB can be processed.

MB

Deblocking
filter data

Intra-
prediction
data

Figure 3: MB dependencies in the spatial domain.

As a result of these dependencies, the MBs must be de-
coded in a certain order. As shown in Figure 4, MBs on a

0,0 0,1 0,2 0,3 0,4

1,0 1,1 1,2 1,3

2,0 2,1 2,3 2,4

3,1 3,2 3,3 3,4

4,0 4,1 4,2 4,3 4,4

1,4

2,2

3,0

Processed

Unprocessed

In flight

Figure 4: 2D-Wave parallelization: MBs on a diag-
onal are independent and can be decoded concur-
rently. The arrows represent the dependencies.

diagonal line are independent of each other and can there-
fore be processed parallel. The figure also shows that the
number of parallel MBs is limited by the horizontal resolu-
tion. Only one available MB in an entire line exists at any
time. Therefore, the maximum spatial parallelism is given
by:

ParMBmax,2D = min(⌈NMB,ℎor/2⌉, NMB,ver), (1)

where NMB,ℎor and NMB,ver are the number of horizontal
and vertical MBs in the frame. The maximum 2D-Wave
parallelism for FHD is min(⌈120/2⌉, 68) = 60. The equation
shows that the parallelism increases with the frame size.
In this paper the term parallelism is used interchangeable
with the number of concurrent MBs when discussing wave
parallelization.
In the 2D-Wave the amount of available parallelism is not

constant during the decoding of a frame as it suffers from
ramping and dependency stalls. Ramping stalls occur at the
start and the end of the frame when the number of avail-
able MBs is lower than the number of Processing Elements
(PEs). The dependency stalls are due to variable MB decod-
ing times. On the SPE the MB decoding time varies from
about 5�s to 40�s. Figure 5 illustrates both effects.

2.3.2 3D-Wave Parallelism

MB-level parallelism among frames is referred to as tem-
poral MB-level parallelism. Combining the spatial and tem-
poral parallelism results in the 3D-Wave parallelization. The
amount of parallelism it provides is very large and increases
proportionally with the number of frames in flight. Meen-
derinck et al. [12] showed that the maximum available par-

P1

P2

P3

P4

0,0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 4

1,0 1,1 1,2 1,3 1,4 1,5 1

2,0 2,1 2,2 2,3

3,0 3,1

Time

Ramping stalls Dependency stalls

Figure 5: Ramping and dependency stalls reduce the
scalability and performance of the 2D-Wave paral-
lelization.

allelism for FHD sequences is between 4000 and 7000.
Although the 3D-Wave approach improves the scalability

it is not applied in this work. The 3D-Wave approach incurs
additional overhead which only pays off at very large scale
systems. Our platform has 16 cores, in which case the 2D-
Wave approach provides sufficient parallelism.

3. EXPERIMENTAL SETUP
Evaluation of the parallel implementations was done us-

ing a Cell Blade located at the Barcelona Supercomputing
Center (BSC). The Cell Blade consists of two physical Cell
processors linked via the FLEXIO bus, which has a peak
throughput of 37.6 GB/s. The second Cell processor shares
the memory controller of the first via a FLEXIO bus. The
amount of XDR external memory is 1 GB with a rated band-
width of 25.6 GB/s. The operating system is Fedora Core 7
with kernel version 2.6.22.
The FFmpeg [8] audio/video decoder is used as a base for

our parallel implementations. The FFmpeg build is config-
ured to use all optimizations, including the AltiVec PowerPc
extensions. The SPE compiler optimization setting is -O2.
The PPE and SPE hardware counters, which have a res-
olution of 14.8 MHz and negligible call time, are used to
measure execution times.
The experiments are performed with the Full High Def-

inition (FHD) sequences of the HDVideoBench [3]. These
sequences are encoded with X264 [19] conform the High pro-
file level 4.0 H.264 standard using CABAC as the entropy
decoding scheme. More specifically, the streams are encoded
using two B-frames between I- and P-frames with weighted
prediction. The motion vector range is set to 24 pixels.

4. IMPLEMENTATION ON CELL
FFmpeg, which is used as a base for both the Task Pool

and Ring-Line implementation, provides an highly optimized
H.264 decoder in their libavcodec library. As with the other
codecs in libavcodec, the H.264 decoder is instructed to de-
code on a per frame basis using decode_frame.
To implement the 2D-Wave parallel approaches on the

Cell processor, the SPEs have to apply the MB kernels. The
task of the PPE is to perform the entropy decoding and act
as the controller. In the original decode_frame the MBs
are processed in scan line order. This includes the entropy
decoding, which extracts the parameters for one MB at a
time. Therefore, for both implementations the entropy de-

coding has to be decoupled. Also the MB kernels need to be
ported to SPE code. The motion compensation and IDCT
kernel are ported to use the SPE SIMD engine using the
FFmpeg Altivec code as a base. The deblocking filter and
intra-prediction use scalar code. The difference between the
TP and RL is mainly in the data flow.

4.1 Decouple Entropy Decoding
In this work, as in [10, 12, 17], only the MB processing

is parallelized. We assume that either an entropy decod-
ing accelerator exists or that the entropy decoding has been
parallelized at the slice level.

In our implementations, the entropy decoding is decou-
pled from the MB processing. The output of the entropy
decoding is stored in a work unit matrix of H264mb struc-
tures for each MB. A single H264mb has a size of 1.9 kB.
Also a H264slice structure is used for all the slice informa-
tion of 12kB. The H264mb and H264slice are both the min-
imal required subsets of the H264Context originally used by
libavcodec, which has a size of 170 kB. To prevent the en-
tropy decoding from influencing the results, it is performed
entirely before starting the parallel MB processing in both
implementations.

4.2 Task Pool Implementation
In the Task Pool approach a centralized master is used to

distribute the MBs dynamically over the processing elements
(PEs). A high level view of the implementations is shown
in Figure 6. In the figure the master task is handled by the
PPE and the SPEs are the slaves. The master keeps track of
the state of the MBs using a dependency table and serializes
the work available in a task queue.

Pn

Pn−1

P2

P1

M

Dependency table

Task queue

Figure 6: Centralized Task Pool implementation of
2D-Wave.

The dependency table contains a dependency count for
each MB in the frame. Whenever an SPE has processed
a MB, the dependency counts corresponding to the right
and down-left MB are decremented. The MB state is free
when its dependency count drops to zero. Free MBs are
scheduled in a first-in-first-out manner using the task queue.
Figure 7 shows the dependency flow and initial values of
the dependency table. The latter equates to the number of
arrows pointing towards each MB.

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

1 1 1 1 1

1

1

1

1

1

1

1

1

0

Figure 7: Dependency flow and inital values in the
dependency table. After a MB is processed, the
master decrements the dependency count of the
MBs that are pointed to by the arrow(s).

The dependency table and task queue can only be accessed
by the PPE, thus providing synchronized access. Exper-
iments have shown [11] that the direct mapped mailboxes,
which can send a 32-bit message, provide the fastest commu-
nication between PPE and SPE. To issue work to the SPEs,
the PPE sends a MB ID in a mailbox message to the SPE.
On completion, the SPE responds also with a mailbox mes-
sage. Our own experiments, where we also considered mu-
texes and atomic instructions, show that this is the fastest
way to communicate between a master and a slave. How-
ever, this scheme requires the PPE to continuously loops
over the mailbox statuses.
On a shared memory system, the MB kernels have access

to the entire frames located in the external memory. On
the SPEs this is not the case, since the frames are too large
to fit in the local store. Furthermore, to conserve memory
bandwidth, only the relevant parts should be brought in.
A block of 48×20 pixels is allocated in the local store to
serve as the working buffer for the kernels. This block size
is used to store the intra data shown in Figure 3. Although
one row of the actual data is only 24 bytes wide, due to
DMA restrictions a larger buffer is required. Each DMA
must be 16-byte aligned with a size that is a multiple of 16
bytes. Therefore, the width of the buffer spans over three
MBs. For similar reasons the size of the motion data buffer
is larger than the actual data. Figure 8 depicts the DMA
transfers between external memory and local store.
Between the DMA transfers the MB kernels are applied.

Intra-prediction is applied after (2) and motion compensa-
tion after (3), followed by the IQ and IDCT. After (4) the
deblocking filter is applied. In the TP implementations all
the DMA transfers are blocking as the necessary data cannot
be predicted beforehand.

4.3 Ring-Line Implementation
In the novel Ring-Line a more static approach is used to

leverage 2D-Wave parallelism. Instead of individual MBs,
the SPEs process entire scan lines. This allows to better ex-
ploit data locality (because adjacent MBs are processed by
the same SPE), to overlap communication with computation
(because it is known a priori which SPE will need the pro-
duced data), and to reduce synchronization overhead (be-
cause no central master is needed to keep track of the status
of each MB). Figure 9 illustrates the mapping of MBs to
SPEs for the case of 3 SPEs.

External memory

Reference frames

Current frame

Work unit matrix Local Store

H264mb

Working buffer

Motion data buffer

(1)

(2)

(3)

(4)

(5)

Figure 8: DMA transfers needed to decode a single
MB. (1) After receiving the MB ID, the correspond-
ing H264mb structure is transfered to the local store.
(2) This is used to fill the working buffer with the
correct intra data. (3) If motion compensation is
required, the relevant part of the motion data is re-
trieved for each partition. (4) Before applying the
deblocking filter, the unfiltered borders are stored
in the surrounding H264mb structures. (5) After per-
forming all the MB kernels the working buffer is
written back.

The figure shows that only MBs on the same line and the
next line depend on the MBs processed by an SPE. This
static mapping of MBs to SPEs provides predictable targets
for the intra data. Since the MBs are processed in line or-
der, a part of the intra data is kept locally, while the other
part is sent to the next SPE that processes the next line.
The SPEs are, therefore, logically connected in a ring net-
work, hence the name Ring-Line. Furthermore, the control
is no longer centralized but distributed. SPEs signal that
they have processed a MB by sending non-blocking, one-
way control signals to the next SPE, together with the intra
data, rather than to a central master.
To support pre-sending of the intra data, local store buffers

are required. In the chosen implementation a buffer with a

P1

P2

P3

P1

Implicit

Next line

Figure 9: Dependencies in the Ring-Line algorithm.
Dependencies to blocks on the same line are implicit,
i.e., they are satisfied by the order in which each
SPE processes the blocks.

width of an entire line and a height of 20 pixels is used. The
line buffer is used as the working buffer and the target of the
intra data. By directly writing the intra data in the right
place of the line buffer, additional copy steps are avoided.
In the RL implementation all intra data is kept on-chip.
Because of DMA size and alignment restrictions, two ad-

jacent MBs are combined in the write back. Additionally,
the write back step is delayed by one MB. This allows the
deblocking filter to modify the data before writing it back
to the frame. This results in writing each pixel in the frame
only once, while the TP implementation writes it 3 to 6
times. The pre-sending and the write back step are shown
in Figure 10 on the next page.
The static line assignment can also be exploited to per-

form pre-fetching. Since it is known in what order the MBs
are processed the H264mb work units and motion data can
be pre-fetched to the local store to hide the memory la-
tency. Because the motion data depends on the work unit,
triple buffering is used for the work units. The motion data
remains double buffered. The communication parts of the
motion compensation kernel had to be decoupled to allow
for this pre-fetching. Figure 11 shows the scheduling of
the DMA steps and the processing. Each DMA step (non-
rounded rectangles) is non-blocking. Their completion is
checked before issuing the same step in the next time slot.
Using this scheme completely hides the combined DMA la-
tency as long as its execution time is shorter than that of
the MB processing.

1 2 3 4 5 6

Work
unit

MB 1 MB 2 MB 3 MB 4 MB 5 MB 6

Motion
data

MB 1 MB 2 MB 4 MB 5

Proces-
sing MB 1 MB 2 MB 3 MB 4

Write
back

MB 1,2

Figure 11: Order of DMA steps and processing. The
DMA steps in the non-rounded rectangles are non-
blocking. They are checked for completion in the
next slot.

5. EVALUATION
In this section the performance of the two implemented

solutions is analyzed in detail. First, we investigate the
theoretical scalability limits of the TP and RL implemen-
tations. Second, in Section 5.2, the memory bandwidth
requirements of both implementations are analyzed in or-
der to determine when the memory subsystem becomes the
bottleneck. Third, in Section 5.3, the actual performance
results obtained on a 16-SPE Cell blade platform are pre-
sented and compared to the theoretical scalability. Finally,
in Section 5.4, a qualitative comparison of TP and RL as
well as other existing approaches is provided.

5.1 Theoretical Scalability
As discussed in Section 2.3.1, the amount of parallelism

exhibited by the 2D-Wave approach is not constant as it

suffers from ramping and dependency stalls. The impact of
these stalls is analyzed in this section. Furthermore, we also
investigate the scalability beyond 16 PEs. To derive the the-
oretical scalability a high level algorithm simulator is used
that emulates the scheduling behavior of the TP and RL
implementations. This includes the effects of ramping and
dependency stalls. In the analysis perfect platform parame-
ters, i.e., zero communication and synchronization overhead
are assumed. The scalability is based on real MB decoding
times, extracted from the 100-frame FHD HDVideoBench
sequences. Figure 12 shows the scalability results, i.e., the
speedup of both TP and RL over itself running on a single
core, for 2 to 64 PEs.

0

5

10

15

20

25

30

2 6 10 14 18 22 26 30 34 38 42 46 50 54 58 62

S
ca

la
b
il
it
y

Processing elements

TP
TP Cell
RL
RL Cell

Figure 12: Theoretical scalability of the TP and
RL implementations for FHD HDVideoBench se-
quences. The ‘Cell’ variants include the impact of
the required larger horizontal spacing for satisfying
the DMA alignment and size restriction. In all cases
perfect platform conditions are assumed.

The figure shows two variants for each implementation.
The ‘Cell’ variants simulate the actual implemented schemes
and have lower scalability. The maximum 2D-Wave paral-
lelism, defined in Equation (1), does not fully apply to the
Cell implementations due to DMA alignment restrictions.
In Figure 4 it is shown that in 2D-Wave, free MBs are two
blocks apart in the horizontal direction. This is denoted as
horizontal spacing. However, in the TP implementation a
working buffer with a width of three MBs is written back.
To avoid overlapping frame writes the horizontal spacing was
increased to three MBs. In RL the write back step combines
two MBs and in addition it is delayed a slot, which effec-
tively increases the spacing to four. Equation (2) revises
Equation (1), where the factor 2 is replaced with Spaceℎor.

RevParMBmax,2D = min(⌈NMB,ℎor/Spaceℎor⌉, NMB,ver)
(2)

The equation shows that a larger spacing between MBs
decreases the parallelism. This is expected as the parallelism
is limited by the number of horizontal MBs in a line. The
parallelism is, therefore, higher on architectures with smaller
DMA constraints.

In both cases the TP implementation achieves higher scal-
ability than RL. The TP is less effected by dependency stalls
due to its dynamic scheduling. In other words, because
the TP schedules more fine-grained tasks (single MBs), it

m

m

m

w

w

w

SPE 3

SPE 2

SPE 1 Frame

Figure 10: The intra data (red) is pre-send to the line buffer of the next SPE. The transfer is issued together
with the write back to frame (blue). The motion data (m) and the workunit (w) of the next MBs are
pre-fetched. All DMA transactions take place concurrently to the processing of the current MBs (green).

achieves a better load balancing than RL, which uses coarser
tasks (entire lines of MBs). The Cell variant of RL suffers
relatively more due to its larger spacing. Up to 16 PEs,
however, the effects are small. For 16 PEs, due to DMA
constraints, the scalability decreases from 14.8x to 14.3x for
TP and from 12.0x to 11.7x for RL.

5.2 Memory

5.2.1 Local Store Requirements

The SPE local store of 256 kB is shared by the program
image and the local data structures. The program image
sizes are quite similar with 115 kB for the TP implementa-
tion and 118 kB for RL. This is mostly occupied with the
intra-prediction and motion compensation functions, with
28 and 64 kB, respectively.
The size of the local data structures, however, is very

different. While the TP implementation requires only 25
kB, Ring-Line requires 138 kB which is almost all the re-
maining local store space. For resolution higher than FHD,
larger line buffers are required, which will not fit in the lo-
cal store. This can be solved using a less memory hungry
variant, which only requires 84 kB of local store memory.
The memory requirements can be reduced by separating the
line buffer in a dedicated intra data buffer for pre-sending
and a working buffer whose size is equal to the size of the
working buffer in the TP implementation. In this variant,
however, additional local store copy operations are required,
but a local store size of 256 kB is sufficient to scale up to Su-
per HiVision resolutions (8k× 4k). The performance of this
variant is slightly worse (at most 5%) than the presented RL
implementation. Therefore and for brevity, these results are
omitted.

5.2.2 Memory Bandwidth

The memory bandwidth requirements of the SPEs are de-
termined by the DMA operations. Most of them are list
DMAs, which provide strided access to main memory. The
throughput of list DMA transfers is around 5 times lower
than normal DMAs [6]. Furthermore, small sized DMA
transfers also have a much lower throughput compared to
large size transfers. Therefore, when measuring the band-
width utilization, we do not count the number of bytes trans-
ferred, but use a relative metric instead. This metric rep-

resents the load on the memory subsystem per second in
percentages. To determine the load of a particular DMA
step, we measured the throughput of such DMA operations
using micro-benchmarks. Table 1 shows the bandwidth uti-
lization per frame.

Table 1: Relative memory bandwidth requirements
per frame per second.

DMA List Task Pool Ring-Line

Intra data L 0.28% -

Write back L 0.26% 0.10%

Motion data L 0.07-0.50% 0.07-0.50%

Unfiltered borders - 0.07% -

Work unit - 0.07% 0.07%

Total 0.75-1.18% 0.24-0.67%

The tables shows that RL is between 1.75x to 3x more
efficient in terms of memory bandwidth requirements. This
factor depends on the number of MBs in which motion com-
pensation is used. The BlueSky sequence (0.50%) uses a
lot of motion compensation while the RiverBed sequence
(0.07%) uses only very little. The bandwidth utilization
puts a limit on the maximum achievable performance of the
decoders. The BlueSky sequence uses 1.18% (TP) and 0.67%
(RL) of the bandwidth per frame on average. Thus a per-
formance of 84.7 and 149.2 fps (frames per second) is the
maximum achievable for TP and RL, respectively. For the
RiverBed sequence this is much higher at 133.3 and 416.7
fps. These values should be regarded as optimistic. The ef-
fects of imbalanced memory load due to parallelism ramping
and variable requirements of P- and B-frames are neglected.

5.3 Experimental Results
The experimental results have been obtained on the Cell

Blade platform described in Section 3. The performance in
frames per second (fps) of both implementations are shown
for up to 16 SPEs in Figure 13.

The figure shows that the RL implementation achieves a
much higher performance. On 16 SPEs, RL achieves on av-
erage 139.6 fps while the TP implementation attains only

0

20

40

60

80

100

120

140

160

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

F
ra
m
es

p
er

se
co

n
d

SPEs

RL Pedestrian
RL BlueSky
RL RiverBed
TP RiverBed
TP Pedestrian
TP BlueSky

Figure 13: Performance in frames per second of
the HDVideoBench FHD BlueSky, Pedestrian and
RiverBed sequences.

76.6 fps. We also see that the base performance of a single
SPE is higher, which partly explains the performance differ-
ence. The other factor is the obtained scalability, which is
depicted in Figure 14. In this figure the average scalability
of TP and RL over their respective single SPE performance
results and the theoretical expected scalability are shown.

0

2

4

6

8

10

12

14

16

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

S
ca

la
b
il
it
y

SPEs

TP theoretical
RL
RL theoretical
TP

Figure 14: Average scalability of the TP and RL
implementations compared to the theoretical scala-
bility results obtained using the simulator.

The average scalability of RL at 16 SPEs is about 15-
20% higher than the scalability of TP. This is somewhat
surprising as the theoretical scalability obtained using the
simulator shows that TP is more scalable than RL. In re-
ality, however, the TP implementation cannot achieve the
theoretical scalability due to shared memory contention and
the central master, which provides synchronized access to
the shared data structures. The actual scalability of RL, on
the other hand, almost exactly follows the theoretical scal-
ability due to hiding the memory latency and a distributed
control mechanism.
We further investigate the performance advantage of RL

over TP in detail by profiling the execution of the BlueSky
sequence, which uses a lot of motion compensation. Fig-
ures 15 and 16 show the profiling results for TP and RL,
respectively. The figures break down the average MB de-

coding time into processing time, DMA startup cost and
waiting time, time needed for synchronization and depen-
dency stalls, and time lost due to parallelism ramping. In
both figures the MB processing time stays constant, as ex-
pected. The relative time lost due to parallelism ramping
is also as expected and similar for both implementations.
The DMA cost and the time needed for synchronization and
dependency stalls, however, are much higher for TP and,
furthermore, increase with the number of SPEs.

0

5

10

15

20

25

30

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
A
v
g
.
M
B

ex
ec
u
ti
o
n
ti
m
e
(u

s)

SPEs

Processing
DMA steps
Sync. + Dep.
Ramping

Figure 15: Breakdown of the average MB execution
time in the TP implementation using BlueSky.

0

5

10

15

20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

A
v
g
.
M
B

ex
ec
u
ti
o
n
ti
m
e
(u

s)

SPEs

Processing
DMA steps
Sync. + Dep.
Ramping

Figure 16: Breakdown of the average MB execution
time in the RL implementation using BlueSky.

The DMA cost consists of the time needed to set up DMA
operations and the time waiting for completion. In RL,
the DMA waiting time is hidden by the computation so the
DMA cost depicted in Figure 16 is due to time needed for
setting up DMA operations. For more than 13 SPEs, the
DMA cost starts to increase slightly, which indicates that
the DMA latency has increased to a point where it cannot
be completely hidden. To put the results into perspective,
the obtained performance for 16 SPEs of 136.1 fps is at 91%
of 149.2 fps, at which point the memory bandwidth is sat-
urated. With 68.8 fps, TP has saturated 81% of the band-
width. Since for the TP implementation the DMA latency
is not hidden, the memory contention adds directly to the
average MB execution time.

The time needed for synchronization and the time lost
due to dependency stalls could not be measured separately.
A good estimate of the synchronization overhead of TP is
the difference between TP and RL in this part, as in RL
the synchronization overhead is close to zero. The syn-
chronization overhead incurred by TP increases with the

number of cores due to its centralized execution model. A
larger increase can be noticed after 8 SPEs, partly caused by
the additional off-chip latency to the second Cell processor.
Due to the rapid increase in synchronization overhead, the
TP implementation is not able to scale much further with
more SPEs. In RL, on the other hand, the synchronization
overhead does not increase at all because only consecutively
numbered SPEs need to synchronize. The observable in-
crease is solely due to dependency stalls.

Table 2: Single-core performance in frames per sec-
ond (fps) of the original sequential FFmpeg and par-
allel implementations. The original sequential FFm-
peg results are obtained using the PPE. For the TP
and RL a single SPE is used.

Sequence Sequential Task Pool Ring-Line

BlueSky 11.51 fps 6.84 fps 11.69 fps

Pedestrian 14.82 fps 7.98 fps 13.14 fps

RiverBed 11.50 fps 7.45 fps 10.08 fps

Finally, the base performance of the parallel implementa-
tions is compared to the original sequential FFmpeg running
on the PPE. The results in Table 2 show that the sequential
FFmpeg running on the PPE is faster on average than the
parallel implementations running on a single SPE. The RL
performance is, however, very close and even surpasses the
PPE performance for BlueSky. This is quite good consider-
ing that in terms of chip area the PPE is about three times
as large as a SPE.

5.4 Qualitative Evaluation
In the previous section two parallel H.264 implementa-

tions have been analyzed. The TP implementation is based
on a centralized master-slave model, while RL has a static
distributed execution pattern. However, several other solu-
tions are available that have features of both. In this section
we broaden our evaluation by including three of them.
The first two of the three are variants of the TP imple-

mentation, Tail Submit (TS) [10] and a strategy referred
to as Multiple Task (MT), which add opportunities for pre-
fetching. In TS it is assumed that the next MB to process is
the MB to the right of the current. Often the dependencies
of the right MB are resolved after processing the current.
In this approach the data for the next MB is speculatively
pre-fetched. In MT multiple free MBs are sent to an SPE
when available. This allows for pre-fetching when there is
more than one MB available for the SPE. Compared to TS it
does not speculate and, therefore, does not increase memory
bandwidth requirements. There is, however, less opportu-
nity for pre-fetching as more than one MB has to be available
before the processing starts. In both cases the chances for
pre-fetching diminish when increasing the number of SPEs.
The third is the implementation of Baker et al. [5]. Baker

et al. developed independently and concurrently, an approach
that resembles our RL approach. Similar to RL consecutive
SPEs synchronize and thus the control is distributed. How-
ever, no pre-fetching of motion data and pre-sending of in-
tra data is implemented, which highly increases the memory
bandwidth requirements.
In Table 3 a qualitative comparison of the five implemen-

tations is provided. Adding TS or MT to our TP imple-

mentation requires additional local store space for the pre-
fetching. While they would improve performance, less scal-
ability than TP is expected due to a higher single core base
performance. Baker’s implementation, on the other hand,
has the same theoretical scalability as our Ring-Line. The
obtainable scalability and performance, however, is lower as
it does not hide the memory latency by pre-fetching.

Table 3: Qualitative comparison of four 2D-Wave
parallelism implementations. Obtainable scalability
refers to how much of the theoretical scalability is
obtainable on the Cell. Portability describes in what
manner it is possible to use the implementation on
different architectures.

Criterium TP TP TP Baker RL
(TS) (MT)

LS usage ++ + + − 0

BW usage − −− − 0 ++

Theoretical
scalability

++ + + 0 0

Obtainable
scalability

− 0 0 + ++

Performance − 0 0 0 ++

Portability + + + 0 −

In terms of obtainable scalability and performance RL is
the best solution, because it is almost unaffected by con-
tention effects. As long as the parallelism increases, RL can
scale to any number of cores. For the TP implementations to
scale, the synchronization latency needs to reduced propor-
tionally. From the results we have seen that the scalability
is already less than ideal. It can be concluded that the TP
implementations are not able to leverage much performance
from more cores, unless the synchronization overhead is re-
duced considerably. In addition to more cores, RL is also
able to leverage faster cores. Faster cores imply lower MB
execution times, which in turn increases the significance of
the synchronization performance, much like it is the case
with more cores. In both cases the memory subsystem ca-
pabilities need to improve proportionally.

The TP variants are portable as they can be implemented
on both cache-based and local store architectures, with mi-
nor effect on the other characteristics of Table 3. RL, how-
ever, requires a local store and explicit inter-core commu-
nication as provided by the Cell processor. Without these
elements both performance and scalability are expected to
suffer. This also hold true for Baker’s implementation al-
though the effects are not as severe, since the Cell memory
hierarchy is exploited to a lesser extend.

6. CONCLUSIONS
In this paper we have presented and analyzed two parallel

H.264 decoding strategies on the Cell architecture. Both
the Task Pool (TP) and the novel Ring-Line (RL) approach
exploit 2D-Wave parallelism, but TP relies on a centralized
task pool, while RL has a static but distributed control.

While the TP implementation exhibits higher theoretical
scalability, RL is superior both in terms of performance and
obtainable scalability. The actual scalability of RL follows
the theoretical expectation, resulting in a scalability of 12x
on 16 SPEs. The obtained scalability of TP is, on the other

hand, 10.3x where 14.3x is theoretically expected. This ef-
ficiency loss originates from memory contention and syn-
chronized access contention, both of which increase with the
number of cores. The contention effects limit the scalability
of TP independent of the amount of parallelism and, there-
fore, also limits the applicability of TP to many-cores. The
RL implementation does not suffer from these contention ef-
fects and thus scales effortlessly to many-cores with a Cell-
like memory hierarchy, provided larger resolution inputs are
used and proportional memory subsystem improvements are
made. Whereas the scalability of the two implementations
is rather similar on 16 SPEs, with 12x for RL and 10.3x
for TP, the actual performance of RL is almost two times
as high as that of TP. The former achieves a throughput of
139.6 frames per second (fps) while the latter achieves only
76.6 fps. The additional performance difference in favor of
RL is due to hiding the memory latency by pre-fetching.
We conclude that in order to exploit the full performance

of a Cell-like architecture, the following programming prin-
ciples should be followed. First, a distributed control scheme
should be used. A central control thread easily bottlenecks
the system and therefore limits scalability and reduces per-
formance. Second, a data oriented programming style should
be used in order to minimize off-chip bandwidth require-
ments and to hide the memory latency. This not only im-
proves performance but also scalability. Our RL implemen-
tation shows that for applications with predictable tasks,
static approaches outperform dynamic approaches. Static
approaches reduce the cost of dependence checking and task
distribution, and allow to exploit locality better.

7. ACKNOWLEDGMENTS
The authors would like to thank Barcelona Supercomput-

ing Center (BSC) for making their Cell Blades available.
Also we would like to thank Mauricio Alvarez of UPC for
making his initial implementation available and for the dis-
cussions. Finally, we would like to thank the anonymous
reviewers for their remarks.

8. REFERENCES
[1] International Standard of Joint Video Specification

(ITU-T Rec. H.264∣ ISO/IEC 14496-10 AVC), 2005.

[2] M. Alvarez, A. Ramirez, A. Azevedo, C. Meenderinck,
B. Juurlink, and M. Valero. Scalability of
Macroblock-level Parallelism for H.264 Decoding. In
Proc. Int. Conf. on Parallel and Distributed Systems,
2009.

[3] M. Alvarez, E. Salami, A. Ramirez, and M. Valero.
HD-VideoBench: A Benchmark for Evaluating High
Definition Digital Video Applications. In Proc. IEEE
Int. Symp. on Workload Characterization, 2007.

[4] H. Baik, K. Sihn, Y. Kim, S. Bae, N. Han, and
H. Song. Analysis and Parallelization of H.264
Decoder on Cell Broadband Engine Architecture. In
Proc. Int. Symp. on Signal Processing and
Information Technology. Samsung Electron. Co., 2007.

[5] M. Baker, P. Dalale, K. Chatha, and S. Vrudhula. A
Scalable Parallel H.264 Decoder on the Cell
Broadband Engine Architecture. In Proc. IEEE/ACM
Int. Conf. on Hardware/Software Codesign and
System Synthesis, volume 7, 2009.

[6] T. Chen, R. Raghavan, J. Dale, and E. Iwata. Cell
Broadband Engine Architecture and its First

Implementation: a Performance View. IBM Journal of
Research and Development, 51(5), 2007.

[7] Y. Chen, X. Tian, S. Ge, and M. Girkar. Towards
Efficient Multi-Level Threading of H.264 Encoder on
Intel Hyper-Threading Architectures. In Proc. Int.
Parallel and Distributed Processing Symposium,
volume 18, 2004.

[8] The FFmpeg Libavcodec. http://ffmpeg.org.

[9] A. Gulati and G. Campbell. Efficient Mapping of the
H.264 Encoding Algorithm onto Multiprocessor DSPs.
In Proc. SPIE Conf. on Embedded Processors for
Multimedia and Communications, 2005.

[10] J. Hoogerbrugge and A. Terechko. A Multithreaded
Multicore System for Embedded Media Processing.
Transactions on High-Performance Embedded
Architectures and Compilers, 3(2), 2008.

[11] F. Khunjush and N. Dimopoulos. Extended
Characterization of DMA Transfers on the Cell BE
processor. In Proc. 13th Int. Workshop on High-Level
Parallel Programming Models and Supportive
Environments (HIPS-08), held in conjunction with
IPDPS, 2008.

[12] C. Meenderinck, A. Azevedo, B. Juurlink,
M. Alvarez Mesa, and A. Ramirez. Parallel Scalability
of Video Decoders. Journal of Signal Processing
Systems, 57(2), 2009.

[13] T. Oelbaum, V. Baroncini, T. Tan, and C. Fenimore.
Subjective Quality Assessment of the Emerging
AVC/H.264 Video Coding Standard. In Proc. Int.
Broadcast Conf., 2004.

[14] D. Pham et al. The Design and Implementation of a
First-Generation CELL Processor. In Proc. IEEE Int.
Solid-State Circuits Conference (ISSCC), 2005.

[15] A. Rodriguez, A. Gonzalez, and M. Malumbres.
Hierarchical Parallelization of an H.264/AVC Video
Encoder. In Proc. Int. Symp. on Parallel Computing
in Electrical Engineering, 2006.

[16] M. Roitzsch. Slice-Balancing H.264 Video Encoding
for Improved Scalability of Multicore Decoding. In
Proc. IEEE Real-Time Systems Symposium,
volume 27, 2006.

[17] E. van der Tol, E. Jaspers, and R. Gelderblom.
Mapping of H.264 Decoding on a Multiprocessor
Architecture. In Proc. SPIE Conf. on Image and
Video Communications and Processing, 2003.

[18] T. Wiegand, G. J. Sullivan, G. Bjontegaard, and
A. Luthra. Overview of the H.264/AVC Video Coding
Standard. IEEE Transactions on Circuits and Systems
for Video Technology, 13(7):560–576, July 2003.

[19] X264. A Free H.264/AVC Encoder.
http://www.videolan.org/developers/x264.html.

[20] L. Zhao, R. Iyer, S. Makineni, J. Moses, R. Illikkal,
and D. Newell. Performance, Area and Bandwidth
Implications on Large-Scale CMP Cache Design. Proc.
Workshop on Chip Multiprocessor Memory Systems
and Interconnects, 2007.

[21] X. Zhou, E. Q. Li, and Y.-K. Chen. Implementation of
H.264 Decoder on General-Purpose Processors with
Media Instructions. In Proc. SPIE Conf. on Image
and Video Communications and Processing, 2003.

