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ABSTRACT

Video coding follows the trend of demanding higher per-
formance every new generation, and therefore could utilize 

many-cores. A complete parallelization of H.264, which is 
the most advanced video coding standard, was found to be
difficult due to the complexity of the standard. In this pa-
per a parallel implementation of a complete H.264 decoder 
is presented. Our parallelization strategy exploits function-
level as well as data-level parallelism. Function-level paral-
lelism is used to pipeline the H.264 decoding stages. Data-
level parallelism is exploited within the two most time con-
suming stages, the entropy decoding stage and the mac-
roblock decoding stage. The parallelization strategy has
been implemented and optimized on three platforms with 

very different memory architectures, namely an 8-core SMP, 
a 64-core cc-NUMA, and an 18-core Cell platform. Evalua-
tions have been performed using 4k×2k QHD sequences. On 

the SMP platform a maximum speedup of 4.5× is achieved. 
The SMP-implementation is reasonably performance por-
table as it achieves a speedup of 26.6× on the cc-NUMA sys-
tem. However, to obtain the highest performance (speedup 

of 33.4× and throughput of 200 QHD frames per second), 
several cc-NUMA specific optimizations are necessary such 

as optimizing the page placement and statically assigning
threads to cores. Finally, on the Cell platform a near ideal 
speedup of 16.5× is achieved by completely hiding the com-
munication latency.

Categories and Subject Descriptors

D.1.3 [Software]: Programming Techniques—Concurrent
Programming ; I.4 [Image Processing and Computer
Vision]: Compression (Coding)

General Terms

Algorithms, Design, Performance

Keywords

H.264, 4k × 2k, decoding, Cell, NUMA, SMP, parallel

1. INTRODUCTION
A major concern for moving to many-core architectures is

the usefulness from an application point-of-view. As a recent
study shows [6], contemporary desktop applications rarely
require more compute power to justify the parallelization
effort. Video decoding, however, is one of the application
domains that follow the trend of demanding more perfor-
mance every new generation [15].

With the introduction of the H.264 video coding stan-
dard, compression rate, quality, but also the computational
complexity have significantly increased over previous stan-
dards [12, 24]. For H.264 video decoding, contemporary
multicores can be used to deliver a better experience. Next-
generation features like 4k×2k Quad High Definition (QHD),
stereoscopic 3D, and even higher compression rates, on the
other hand, will demand full multicore support.

A full parallelization of the H.264 decoder, however, is not
obvious. Higher compression is achieved by removing more
redundancy, which in turn complicates the data dependen-
cies in the decoding process. Most previous works, therefore,
focused mainly on the Macroblock Decoding (MBD) stage,
which exhibits fine-grained data-level parallelism. Attempts
at parallelizing the Entropy Decoding (ED) stage are rare
and have not resulted in a scalable approach. The ED stage
is about as time consuming as the MBD stage and has, there-
fore, been found to be the main bottleneck [5, 8, 10, 13,
19]. Furthermore, previous works have not evaluated their
parallelization strategies on several parallel platforms, and
therefore have not evaluated the performance portability of
their approaches.

In this paper a fully parallel, highly scalable, QHD-capable
H.264 decoding strategy is presented. The parallel decoding
strategy considers the entire application, including the ED
stage. The parallelization strategy has been implemented
and optimized on three multicore platforms with signifi-
cantly different memory architectures. The main contribu-
tions of this work can be summarized as follows.

• We propose a fully parallel and highly scalable H.264
decoding strategy, which is compliant with all the H.264
coding features for higher compression rate and qual-
ity. Function-level parallelism is exploited at the high-
est level to pipeline the decoder stages. In addition,
data-level parallelism is exploited in the ED stage and
the MBD stage.

• We target QHD resolution, while all previous works
targeted FHD or lower resolutions. QHD is more mean-
ingful, because contemporary high performance pro-



cessors, e.g., Intel Sandybridge or AMD Phenom II,
can achieve the computational requirements of FHD
using a single thread, while for QHD this is not the
case.

• We implement and evaluate the parallel decoding strat-
egy on three platforms with significantly different mem-
ory hierarchies, namely an 8-core SMP, an 64-core cc-
NUMA, and an 18-core Cell platform. Optimization
for the memory hierarchy are performed and compared
for each platform.

This paper is organized as follows. Section 2 provides an
overview of related work. Section 3 describes the parallel
H.264 decoding strategy. Section 4 details the experimental
setup. Sections 5 to 7 present the implementations, opti-
mizations, and experimental results for each platform. Fi-
nally, in Section 8 conclusions are drawn.

2. RELATED WORK
Roitzsch [19] proposed a slice-balancing approach to im-

prove the load balance of exploiting slice-level parallelism.
Slice-level parallelism, however, is impaired by a reduced
compression rate due to adding more slices in a frame. Fin-
chelstein et al. [10] addressed this by line interleaving the
slices. The coding inefficiency of regular slicing is in this
approach reduced by allowing context selection over slice
boundaries. This approach, however, would require a change
of the H.264 standard.

Baik et al. [4] combined function-level parallelism (FLP)
with data-level parallelism (DLP) to parallelize an H.264 de-
coder for the Cell Broadband Engine. The entropy decod-
ing, motion compensation, and deblocking filter kernels are
pipelined at the granularity of macroblocks (MBs), and the
motion compensation of the MB partitions are performed in
a data-parallel fashion using three SPEs. Nishihara et al. [18]
and Sihn et al. [21] used similar approaches for embedded
multicores. Nishihara et al. investigated prediction based
preloading for the deblocking filter to reduce memory ac-
cess contention. Sihn et al. observed memory contention
in the parallel motion compensation phase and introduced
a software memory throttling technique to reduce this. The
parallelism in these approaches is limited, however.

Van der Tol et al. [23] considered FLP as well as DLP
and argued that the most scalable approach is the use of
DLP in the form of MB-level parallelism within a frame.
Alvarez et al. [1] analyzed this using trace driven simulation
with several dynamic scheduling approaches. Meenderinck
et al. [16] showed that a 3D-wavefront strategy, which com-
bines intra- and inter-frame MB-level parallelism, results in
huge amounts of parallelism. Azevedo et al. [3] explored this
further using a multicore simulator and showed a speedup
of 45× on 64 cores. The employed simulator, however, does
not model memory and network contention in detail but as-
sumes that the average shared L2 access time is 40 cycles.

Seitner et al. [20] performed a simulation based compari-
son of several static MB-level parallelization approaches for
resource-restricted environments. Baker et al. [5] used Seit-
ner’s “single row” approach in their Cell implementation.
This approach is promising due to the abundant parallelism
and low synchronization overhead. In our previous work [7]
a variant of the “single row” approach with distributed con-
trol was implemented on the Cell processor. By exploiting
the Cell memory hierarchy a scalability was achieved that

approached the theoretical limit. In most of these works
(e.g., [1, 3, 5, 7, 16, 20, 23]), the entropy decoding was not
considered or mapped on a single core, which causes a scal-
ability bottleneck.
Cho et al. [8] recently presented a parallel H.264 decoder

for the Cell architecture in which the entropy decoding is
also parallelized. They found that the dependencies in the
entropy decoding between MBs in different frames are only
to the co-located MBs. They exploited this using a par-
allelization strategy similar to the Entropy Ring (ER) ap-
proach presented in this paper. Their approach can cause
load imbalance, however, due to high differences in entropy
decoding times of different types of frames, and we intro-
duce the B-Ring (BR) approach to address this. Further-
more, their Cell implementation only uses the PPEs for the
entropy decoding and the SPEs for the MB decoding, which
causes a bottleneck. In our Cell implementation the entropy
decoding can be performed on both the PPEs and any num-
ber of SPEs simultaneously, resolving the entropy decoding
bottleneck.

3. PARALLEL H.264 DECODER
In this section the highly scalable parallel H.264 decoding

strategy is introduced. In this strategy parallelism is ex-
ploited in two directions. Function-level parallelism (FLP)
is exploited to pipeline the decoder stages and data-level
parallelism (DLP) is exploited within the time-consuming
ED and MBD pipeline stages. A MB is a 16×16 pixel block
of the frame, e.g., a QHD frame has 240 MBs in the horizon-
tal direction, forming a MB line, and 135 of such MB lines
in the vertical direction. Previous work mostly exploited ei-
ther the limited FLP or the DLP in the MBD stage. With-
out combining FLP and DLP, however, significant speedup
over the entire application cannot be achieved. First, the
pipelining approach is discussed, followed by the strategies
for exploiting the DLP within the ED and MBD stages.

3.1 Pipelining H.264
Figure 1 depicts a simplified overview of the pipeline stages

of our H.264 decoder. The stages are decoupled by plac-
ing FIFO queues between the stages, buffering the indicated
data structures. The Picture Info Buffer (PIB) and Decoded
Picture Buffer (DPB) are not needed to pipeline the stages,
but for the H.264 decoding algorithm. The PIB is used in
the Entropy Decoding (ED) which needs the Picture Info
(PI) of previous frames. A PIB entry consists of the motion
vectors, MB types, and reference indices of an entire frame.
A DPB entry contains an output frame and is used both as
the reference and display buffer. The PIB and DPB buffer
entries are not released in a FIFO manner, but when they
are no longer needed.
The read stage reads the H.264 stream from memory or

disk and outputs raw H.264 frames. The parse stage parses
the header of the H.264 frame and allocates a PIB entry.
The parsed header and the remainder of the H.264 frame
are sent to the ED stage.
The ED stage reads the H.264 frame and produces a work

unit for each MB of a frame. This stage includes CABAC
decoding, filling prediction caches, motion vector calcula-
tion, deblocking filter parameter calculation, as well as other
calculations. Copies of the motion vector, MB type, and ref-
erence indices of each MB are stored in the allocated PIB
entry. The produced work units for an entire frame are
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Figure 1: Each pipeline stage in the parallel H.264
decoder processes an entire frame. FIFO queues are
placed between the stages to decouple them. Dashed
arrows show the buffer release and allocation signals.

placed in an internal ED buffer entry. At the end of the ED
stage, if the frames are no longer needed, one or more PIB
entries are released and a pointer to the ED buffer entry is
sent to the MBD stage. Pointers are passed as ED buffer
entries are fairly large (43.5MB for QHD sequences). The
internal ED buffer has multiple entries to be able to work
ahead. This reduces the impact of dependency stalls when
the ED stage temporarily takes more time than the MBD
stage and vice versa. In this paper four entries are used as
more did not improve performance.

The MBD stage processes the work units produced by the
ED stage and performs the video decoding kernels that pro-
duce the final output frame. This includes intra prediction,
motion compensation, deblocking filter, and other kernels.
At the start of the MBD stage a DPB entry is allocated
for the output frame. At the end of the stage the used ED
buffer entry is released by sending a signal to the ED stage.
Then one or more reference frames are marked as no longer
referenced or released if they have already been displayed.
Since the DBP functions both as the reference and as the
display buffer, frames must be both displayed and no longer
referenced before they can be released. Finally, a pointer to
the produced frame is sent to the display stage.

The display stage reorders the output frames before dis-
playing them because the decoding order and the display
order are not the same in H.264. After a frame has been
displayed, it is released if it is no longer referenced, other-
wise it is marked as displayed.

Pipelining is effective as long as the pipelining overhead,
caused by the buffering operations, does not dominate. The
decoupling of the ED and the MBD stage requires an ED
buffer of 43.5 MB. This is too large to stay in the cache
which causes capacity misses. Further pipelining the ED
or the MBD stages would cause even more capacity misses,
and has, therefore, not been performed. Instead DLP is
exploited in the ED and MBD stages, which is not impaired
by the buffering penalty. As indicated in Figure 1, the ED
and MBD stages of the H.264 decoder take approximately
40% and 50% of the total execution time, respectively. These
percentages have been measured on the SMP platform with
the QHD Park Joy sequence.

3.2 Entropy Decoding Stage
In the ED stage, the CABAC decoding is performed, which

does not exhibit DLP within a frame. The ED stage, how-
ever, does exhibit DLP between frames, but frames are not
fully independent. MBs in B-frames can have a direct en-

coding mode. In this mode the motion vectors of the MB
are not encoded in the stream, but instead the motion vec-
tors of the co-located MB in the closest reference frame are
reused. A potential dependency pattern and the parallelism
between frames are illustrated in Figure 2.

I

1

P

2

B

3

B

4

Frame number in decoding order

Frame type

Figure 2: Parallel ED of consecutive frames. Col-
ored MBs have been entropy decoded. Hashed MBs
are currently being decoded in parallel

Figure 2 shows that frames can be decoded in parallel
as long as the co-located MBs have been decoded before.
This is ensured by Entropy Ring (ER) strategy illustrated
in Figure 3, which is similar to the strategy used by Cho
et al. [8]. In this strategy there are n Entropy Decoding
Threads (EDTs) and EDTi decodes frames i, n+ i, 2n+ i,...
etc. Each EDT performs the same function as the the single
threaded ED stage and has four ED buffers entries to be
able to work ahead. The Dist thread distributes the frames
over the EDTs. The EDTs are organized in a ring structure
to ensure that the co-located MB is decoded before the MB
that depends on it. To ensure this, at any time EDTi+1 is
not allowed to have processed more MBs than EDTi.

EDT1 EDT2 EDT3 EDTn

Dist

ED buf ptrs

Figure 3: In the ER strategy the EDTs are organized
in a ring to maintain dependencies.

The parallelism in the ER strategy scales with the frame
size, since there can be as many EDTs as MBs in a frame.
In addition, the synchronization overhead is low, since it
consists of incrementing a counter containing the number of
decoded MBs. Its efficiency is not optimal, however, due to
load imbalance. Figure 4 depicts the time it takes to entropy
decode each frame in the QHD stream Park Joy [26]. It
shows that I- and P-frames take longer to entropy decode,
which could cause the EDTs that decode B-frames to stall.
To address this load imbalance, we introduce a slightly

more complex B-Ring (BR) strategy, which is illustrated in
Figure 5. In this strategy the Split thread splits the I- and
P-frames from the B-frames. As depicted in Figure 2, only
B-frames have dependencies, since I- and P-frames do not
have MBs with a direct encoding. Because B-frames have
a relatively constant entropy decoding time, the number of
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Figure 4: Entropy decoding times of the different
frames in the QHD Park Joy sequence.

dependency stalls is reduced, increasing the efficiency. Fur-
thermore, this strategy also exploits that I- and P-frames
can be decoded fully in parallel and out-of-order.

The DistB thread distributes the B-frames in a round-
robin fashion over the B-frame EDTs. It stalls when a B-
frame has a dependency to a not completed I- or P-frame,
and then waits for the Reorder thread to signal its comple-
tion. The Reorder thread is responsible for reordering the
produced ED buffers of the I-, P- and B-frames to their origi-
nal decode order, before signaling them to the DistB thread
and submitting them to the MBD stage. The reordering
abstracts the parallel entropy decoding of frames from the
MBD stage, thereby reducing the overall complexity and in-
creasing modularity.

The maximum number of parallel B-frame EDTs is equal
to the number of MBs in a frame. As this number is very
large, we choose to signal the next B-frame EDT after com-
pleting an entire MB line, instead of each MB to reduce the
synchronization overhead.

B1 B2 B3 Bn

DistB

Split

B

IP1 IP2 IPn Reorder
I/P

Ordered I/P pic nums

Figure 5: B-Ring strategy. IP denotes an EDT that
processes I/P-frames and B denotes an EDT that
processes B-frames

3.3 Macroblock Decoding Stage
The MBD stage exhibits DLP within frames as well as

between frames, also referred to as spatial and temporal MB-
level parallelism, respectively. In our previous work [7] we
introduced the Ring-Line (RL) strategy, which exploits only
spatial MB-level parallelism. The spatial MB dependencies
and parallelism are illustrated in Figure 6. For every MB
the data dependencies are satisfied if their upper right and
left MB have been decoded. Due to these dependencies, at
most one MB per MB line can be decoded in parallel.

Decoded MBs

Dependency data

Parallel MBs

Figure 6: Illustration of spatial MB-level parallelism
and dependencies. To decode a MB, data of adjacent
MBs is required. The data is available after the
upper right and left MB have been decoded.

In this paper, an improved version of the RL strategy is
introduced, referred to as the Multi-frame Ring-Line (MRL)
strategy. Figure 7 illustrates the MRL strategy. In the MRL
strategy macroblock decoding threads (MBTs) are organized
in a ring. Each MBT decodes a MB line of the frame. By
decoding the lines from left to right the dependency to the
left MB is implicitly resolved. The dependency to the up-
per right MB is satisfied if MBTi+1 “stays behind” MBTi.
More specifically, at any time MBTi must have processed at
least two more MBs than MBTi+1. The MBT processing the
last line of a frame informs the Release thread of the frame
completion. The Release thread releases the ED buffer and
one or more reference frames if they are no longer needed.
Finally, it signals the decoded picture to the display stage.
A separate Release thread is used to be able to quickly con-
tinue with the next frame.

ED bufs
MBT2

MBT1

MBT3

Rel.

ED buf release

Display

Reference
release

Figure 7: Illustration of the MRL strategy.

The previous RL strategy uses a barrier between consec-
utive frames. This results in recurring ramp-up and ramp-
down inefficiency for each frame, because there are only a
few parallel MBs at the beginning and the end of each frame.
The new MRL strategy eliminates this inefficiency by over-
lapping the execution of consecutive frames. Previously this
was not possible because the ED stage was not executed
parallel to the MBD stage, which is solved in this paper.
Overlapping the MBD stage of consecutive frames, how-

ever, may introduce additional temporal dependencies when
using too many MBTs, because the required reference pic-
ture data for the motion compensation might not be com-
pletely available. To ensure that all required reference data
is available, the number of in-flight MB lines, thus the num-
ber of MBTs, needs to be restricted. The maximum number



of MBTs, MBTmax, is given by the following equation:

MBTmax = ⌈(H −MMV )/16⌉, (1)

where H is the vertical resolution in pixels and MMV is
the maximum motion vector length in pixels. For QHD,
assuming that the MMV of QHD will be twice that of FHD,
MBTmax is (2160−1024)/16 = 71. Additionally, the picture
border needs to be extended directly after decoding a MB
line, because areas outside the actual picture can be used as
reference data in H.264.

4. EXPERIMENTAL SETUP
For the evaluation QHD sequences of Xiph.org Test Me-

dia [26] are used. These sequences have a framerate of 50
frames per second (fps) and use a YUV 4:2:0 color space.
The sequences are 500 frames long, but for the evaluation
they have been extended to 10000 frames by replicating
them 20 times. The sequences have been encoded with
x264 [25], using settings based on the High 5.1 profile. The
encoding properties are listed in Table 1. The average bit-
rates of the encoded QHD sequences varied between 77.6
and 259.8 Mbps. In comparison, 16 Mbps FHD sequences
with 25 fps are considered high quality. The parallel H.264
decoder has been evaluated using two QHD sequences, Park
Joy and Ducks Take Off, which have a bitrate of 117.8 Mbps
and 259.8 Mbps, respectively. For conciseness only the re-
sults for the Park Joy sequence, which represents the average
case, are provided. In general higher bitrate sequences trans-
late to lower framerates, but higher speedups compared to
lower bitrate sequences.

Table 1: X264 encode setting for the Ducks and Park
QHD sequences.
Option Value Brief description
–cfr 23 Quality-based variable bitrate
–partition all All MB partition allowed
–b-frames 16 Number of consecutive B-frames
–b-adapt 2 Adaptive number of B-frames
–b-pyramid normal Allow B-frames as reference
–direct auto Spatial and Temporal Direct MB

encoding
–ref 16 Up to 16 reference frames
–slices 1 Single slice per frame

The parallel H.264 decoder is evaluated on three plat-
forms with significantly different memory architectures. An
overview of the platforms is provided in Table 2. To de-
termine the performance the wall clock time of the entire
H.264 decoder is measured. This includes all stages depicted
in Figure 1, except the display stage. The display stage is
disabled since the evaluation platforms do not provide this
feature.

The baseline implementation is the widely-used and open-
source FFmpeg transcoder [9]. FFmpeg offers a high perfor-
mance H.264 decoder implementation with, among others,
SSE and AltiVec optimizations for the MBD kernels and
an optimized entropy decoder. It is one of the fastest sin-
gle threaded implementations [2]. The FFmpeg framework,
however, does not allow a clean implementation of our par-
allelization strategy. The provided codec interface enforces
that only a single frame is in-flight at a time. To solve this,
FFmpeg has been dismantled of everything not related to

Table 2: Platform specifications.
SMP cc-NUMA Cell

Processor Xeon
X5365

Xeon 7560 PowerXCell
8i

Sockets 2 8 2
Frequency 3 GHz 2.26 GHz 3.2 GHz
Cores 8 64 18
SMT - off 2-way PPE
Local store - - 4 MB
Last level $ 16 MB 192 MB 1MB
Interconnect FSB QPI FlexIO
Memory BW 8.5 GB/s 204.8 GB/s 25.6 GB/s
Linux kernel 2.6.28 2.6.36 2.6.18
GCC 4.3.3 4.4.3 4.1.1
Opt. level -O2 -O2 -O2

H.264 decoding and rebuilt in a lightweight parallel version
using the POSIX thread library facilities for parallelization
and synchronization. Based on the decoupled code also a
new sequential version is developed which serves as the base-
line performance.

5. BUS-BASED SMP
The first platform that we consider is a Symmetric Mul-

tiProcessor (SMP) platform. This platform has 8 homo-
geneous cores with symmetric memory access via a single
memory controller through a shared Front Side Bus (FSB).
While it is possible to extend this architecture with more
cores and memory controllers, the shared FSB constitutes
a scalability bottleneck. The programming effort for such
a system, however, is relatively low as there are no or few
specific optimizations required for the memory architecture.
Some general optimizations have been performed to mini-
mize false sharing, such as duplicating the motion compen-
sation scratch pad and the upper border buffers, which im-
proves performance on all cache coherent architectures.
The performance and speedup results are depicted in Fig-

ure 8 for the Park sequence. Each bar in the figure is labeled
by n-m, where n denotes the number of EDTs and m the
number of MBTs. For conciseness, n denotes the combined
number of EDTs and, therefore, has a minimum of two,
corresponding to one IP-frame and one B-frame decoding
thread. The ratio of the number of IP-frame EDTs to B-
frame EDTs does not differ very much and is about 1 to 2
for all platforms. The read, parse, display, split, distribute,
reorder and release threads are not taken into account in
this total thread number. There is one of each such threads.
The SMP platform exhibits reasonable performance and

scalability. A maximum speedup of 4.5× is achieved, with
a performance of 25.9fps. The sequential decoder, which
is based on the decoupled code used for the SMP parallel
version, is slightly slower than the original FFmpeg code in
which the ED and MBD stages are merged. The difference
is around 15% and is observed on all platforms. The per-
formance degradation is caused by additional cache misses
introduced by using the large ED buffers needed to decouple
the ED and MBD stages, as mentioned in Section 3.1.
The figure shows that using more than 4 MBTs reduces

performance considerably. The reason for this is as follows.
Since there are more threads than cores, some MBTs will be
temporarily descheduled. Because MBTs depend on each
other, however, this will stall other MBTs. Here it needs
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to be remarked that thread synchronization has been imple-
mented using busy waiting, because it incurs lower overhead
than blocking. The EDTs are less likely to stall than MBTs
since, as shown in Figure 6, the MBT that decodes a cer-
tain MB line has to stay at least two MBs behind the MBT
that processes the previous MB line. Therefore, MBTs can
tolerate running out of pace for only a few MBs compared
to a few MB lines for EDTs.

The reduced scaling efficiency is mostly caused by the lim-
ited memory bandwidth of this platform. To show that the
FSB is not the bottleneck, Figure 8 also depicts the results
for the Static placement version. In the Static placement
version, consecutive MBTs are placed on the same node to
reduce cache coherence misses and, therefore, FSB traffic.
No performance improvement is observed, however. Other
possible causes for the saturated scalability are insufficient
application parallelism and threading overhead. If either of
these is the cause, it would also limit the scalability on the
other platforms, which is shown to be not the case in the
following sections.

6. CACHE COHERENT NUMA
Our second evaluation platform is an 8-socket cc-NUMA

machine [11] based on the Nehalem-EX architecture. Each
socket contains 8 homogeneous cores, for a total of 64 cores.
Each socket is also a memory node as it accommodates an
individual memory controller. Inter-node cache coherence
and memory traffic use the QPI network with an aggregate
bandwidth of 307.2 GB/s. Together with an aggregate mem-
ory bandwidth of 204.8 GB/s, this platform offers very high
communication bandwidth, per-core 3 to 5× higher than the
SMP platform. To exploit this communication bandwidth,
however, NUMA specific optimizations are required. First,
the NUMA optimizations performed to the SMP implemen-
tation are described, followed by the experimental results.

6.1 cc-NUMA Optimizations
To optimally utilize the NUMA memory hierarchy, the

parallel H.264 decoder requires specific optimizations. Page
placement on the cc-NUMA platform uses the “first touch”
policy. This policy maps a page to the node that accesses it
the first time. A poor initial thread placement can cluster
large parts of the working set in a single memory node. A
way to ensure a balanced memory distribution is to statically
assign threads to cores. For this only the EDTs and MBTs
are considered, since they access most of the working set.

Figure 9 illustrates the static thread placement strategy for
a 4-socket configuration. In the figure, IPi and Bi denote
the IP- and B-frame EDTs, respectively. Mi denotes the
MBTs.

M2 M3 M4 M5

M1 IP1 B1 B5

M6 M7 M8 M9

IP2 B2 B6 M10

IP3 B3 B7 M11

M15 M14 M13 M12

M20 IP4 B4 B8

M19 M18 M17 M16

B-bufs

IP-bufs

Int. Pic

Mem Mem

Mem

Figure 9: Static thread placement on the cc-NUMA
platform.

The EDTs are placed in a round-robin fashion over the
sockets. This ensures that the ED buffers are distributed
evenly over the memory nodes, as the EDTs are the first
to access them. This static thread placement also improves
data locality, since the EDTs always find the ED buffer data
in their local memory node. The MBTs are placed in a block
distributed fashion over the available sockets. This ensures
that the picture data is distributed evenly in a block inter-
leaved manner over the memory nodes. Furthermore, plac-
ing consecutive MBTs on a single node increases locality as
they share an overlapping part of the picture data. In this
way most coherence traffic stays on the same node. Some
MBTs still need to access a remote memory node, but con-
tention is minimized and the node distance is always only
one hop. In addition, the static placement reduces thread
migration as threads are bound to cores. Thread migrations
are expensive on cc-NUMA platforms [14], which can cause
a lot of dependency stalls.
The static thread placement yields a page distribution

that is optimal for the ED stage and MBD stage separately,
but which is not globally optimal. A single EDT produces
an entire ED buffer entry for a frame, but several parallel
running MBTs consume this ED buffer to process the frame
further. Since complete ED buffers are allocated in a single
node, all MBTs will have to access this node at the same
time, resulting in a temporal memory access hotspot.
This hotspot is avoided by letting the MBTs first touch

the ED buffers, instead of the EDTs. This ensures that
both the input ED buffer entry pages and DPB entry output
pages of each MBT are distributed evenly, as illustrated in
Figure 10. The downside, however, is that now each EDT
will have to write to remote memory nodes. But because
the overall contention is reduced and because read latency
is more important than write latency, this page placement
improves the overall performance.
In addition to letting the MBTs first touch the ED buffer

entries, the MBTs are assigned to process the MB lines cor-
responding to the pages they touched. Without this, de-
pending on the number of MB lines per frame and the num-
ber of MBTs, the MBTs process different MB lines in each
frame. For example, when there are 8 MB lines in a frame
and 3 MBTs, MBT1 decodes MB lines 1, 4, and 7 of the first
frame, MB lines 2, 5, and 8 of the second frame, etc. MB
line 2 of the second frame, however, resides in a different
memory node as it is first touched by MBT2, which results
in a lot of inter-node memory accesses.
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Figure 10: Illustration of the globally optimized
page placement and the MBT to MB lines binding.
The colors denote the thread and page placement to
different nodes.

6.2 cc-NUMA Experimental Results
Four versions of the parallel H.264 decoder have been eval-

uated on the cc-NUMA platform. The first version, referred
to as“SMP parallel”, is the same as the one used on the SMP
platform. The second version, referred to as “Interleaved”
employs a round-robin page placement policy instead of first
touch. The third version, referred to as “Static placement”
uses the static thread placement presented in Section 6.1.
The fourth version, referred to as “NUMA optimized”, ap-
plies in addition to the static thread placement, the globally
optimized page placement of the ED buffers and the MBT
to line binding.

Figure 11 shows the performance and scalability of each
version for 1, 2, 4, and 8 sockets. The figure shows the
results obtained using the best performing thread configu-
rations, which have been found through a design space ex-
ploration. An exception to this is the Interleaved version,
which uses the same thread configuration as the SMP paral-
lel version. The optimal thread configurations are depicted
in Table 3. Figure 11 shows that the parallel H.264 decoder
is able to scale to very high performance levels. The maxi-
mum achieved frame rate is 200 fps with a speedup of 33.4×.
While the performance is very high, the scaling efficiency

decreases with more sockets. For example, the SMP paral-
lel and Interleaved versions exhibit reasonable scaling up to
2 sockets, with a speedup of 11.6× on 16 cores. However,
they become less efficient when deploying 4 and 8 sockets
for which a speedup of 26.6× is observed on 64 cores. When
using a static thread placement the performance and scala-
bility increase considerably for 4 and 8 sockets. For example,
for 8 sockets the performance of the Static placement version
is 200 fps versus 157 fps for the SMP parallel version.

The NUMA optimized version performs slightly better for
4 sockets and slightly worse for 8 sockets compared to the
Static placement version. The reason why the NUMA opti-
mized version is slightly slower on 8 sockets is that only 56
threads (EDTs + MBTs) are used versus 64 threads for the
Static placement version. Because the number of MBTs is
less flexible due to the static binding of MB lines to MBTs
the optimal performance is obtained with a smaller thread
configuration. To increase the performance of the MBD
stage the number of MBTs have to be increased from 27
to 34. This, however, leaves no cores to increase the num-
ber of EDTs. We expect that the performance difference
between the NUMA optimized version and the Static place-
ment version would increase with more sockets and/or cores.

The impact of the NUMA optimized version is, however,
visible in the thread configurations. With more sockets the
ratio between the number of EDTs and the number of MBTs
changes in favor of the number of MBTs in the Static place-
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Figure 11: Performance and scalability on a 8-socket
cc-NUMA machine for the Park sequence.

Table 3: Optimal thread configuration for the Park
sequence. E denotes the combined number of EDTs,
M denotes the number of MBTs.

1 2 4 8
E M E M E M E M

SMP parallel 5 4 8 8 12 19 23 40
Interleaved 5 4 8 8 12 19 23 40
Static placement 5 3 8 8 14 18 24 40
NUMA optimized 5 3 9 7 16 15 29 27

ment version. The efficiency of scaling the number of MBTs,
therefore, decreases considerably with more sockets due to
increased contention when reading from an ED buffer entry.
For the NUMA optimized version this ratio remains fairly
constant because in the globally optimized page placement
the ED buffer entries are read from all memory nodes simul-
taneously, thereby avoiding contention.
Optimizing the thread mapping and page placement yields

performance improvements of up to 27.3%. A static thread
placement, however, is undesirable because other programs
might map their threads to the same cores, while there are
other cores available. Our results indicate, however, that
techniques that give priority to locality over load balancing,
such as resource partitioning, locality-aware scheduling [22],
and runtime page migration [17], can provide significant per-
formance benefits, when increasing the number of cores.

7. CELL BROADBAND ENGINE
Our final platform has a local store memory architecture,

and consists of two Cell Broadband Engines processors with
2 PPE cores and 16 SPE cores. The Cell architecture is
very different from the previous two platform, as it exposes
the on-chip memory hierarchy to the programmer. On the
one hand, the programmer is given control of regulating the
data flow between the cores and the off-chip memory. On the
other hand, the programmer is now responsible for fitting the
data structures in the on-chip memory, which is performed
transparently by the hardware in cache-based processors.
On the Cell architecture the same parallel H.264 decoding

strategy is used. The differences are in the implementations
of the ED and MBD stages. As most of the time is spent in
these stages, it is necessary to port both of them to the SPEs
to gain overall speedup. The other stages of the decoder and
the control threads run on the PPEs using the Pthread base
code. The implementations and optimizations of the ED
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Figure 12: Overview of the SPE EDT implementa-
tion. Data structures in the orange background are
located in the local store. The other data structures
reside in the main memory.

and MBD stages on the Cell SPEs are discussed in the next
two sections, followed by the experimental results.

7.1 Entropy Decoding on the SPE
From the threads in the ED stage depicted in Figure 5

only the I/P- and B-frame entropy decoding threads are
executed on the SPEs. Although the I/P- and B-frame de-
coding threads process different types of frames, their SPE
implementations are quite similar. Therefore, the base SPE
EDT implementation is presented first and the differences
between the two are described later. Figure 12 depicts a
simplified overview of the EDT implementation. The color
of the structures denote the“state”of the data. Blue denotes
that it has been produced in this frame, gray denotes that
is has been produced in a previous frame, red denotes that
it is used for the ED of the current MB, and green denotes
that it is produced by the ED of the current MB.

Each EDT requires access to several data structures that
do not fit in the local store. The required input data struc-
tures are the CABAC tables and buffers, H.264 frame data,
and the reference Picture Info (PI). The output data struc-
tures are the PI and the ED buffer of the current frame. The
CABAC tables and buffers are able to fit in the local store.
The other data structures are too large and, furthermore,
their size increases with the resolution.

Close examination of the ED algorithm reveals that there
is little reuse of data. Performing the ED of a MB only
uses the PI data produced by the ED of the upper and left
neighboring MBs. From the reference PI only the data corre-
sponding to the co-located MB is used. This allows keeping
only a small window (1) of the PI data in the local store.
With a window of two MB lines in the local store, the PI data
produced by decoding the current MB line can be written
back during the decode of the next MB line. Furthermore,
the data of the upper MB stays in the local store until it is
used for decoding the lower MB. For the reference PI also a
buffer of two MB lines (2) is allocated in the local store to
be able to prefetch the next MB line. The motion vectors of
the reference PI, however, cannot be prefetched for a com-
plete MB line due to local store size constraints. Instead,
the motion vectors of 4 MBs are prefetched at a time.

The ED buffer elements are not reused by the EDT. There-
fore, only two buffer elements (3) are required in the local
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Figure 13: Overview of the SPE MBT implementa-
tion. Data structures in the orange background are
located in the local store of SPEi.

store to perform a double buffered write back. The only
data that is not double buffered is the H.264 frame window
(4), because the total amount of traffic for reading the H.264
frame is small. We have, therefore, decided to decrease the
local store usage and code complexity, by keeping a single
H.264 frame window with a size of 4KB in the local store.
The total local store footprint of the described EDT imple-

mentation for QHD resolutions is 238 kB, of which 63 kB is
program code. The ED implementation for I/P-frames does
not require a reference PI window. In the B-frame EDT
implementation, after decoding each line a signal is sent to
the next EDT in the B-ring to maintain the dependencies
between co-located blocks.

7.2 Macroblock Decoding on the Cell
Similar to the ED stage, only the MBTs of the MBD

stage are mapped to the SPEs. The problems of porting
the code and performing the data partitioning have already
been solved for a large part in our previous work [7]. Some
improvements are necessary to support the QHD resolution
and to overlap execution of consecutive frames. A simplified
overview of the data allocation in the SPE MBT implemen-
tation is shown in Figure 13.
Each MBT uses an ED buffer entry and one or more ref-

erence pictures as input to produce the output picture data.
As is the case for the EDTs, these data structures are too
large to fit completely in the local store and several smaller
data windows are allocated in the local store to hold only
the active part of the data structures.
The MBD algorithm only requires one ED buffer element

at a time to decode a MB. Three ED buffer elements (1) and
two motion data buffers (2) are allocated in the local store
to be able to prefetch both the ED buffer elements and the
motion reference data. In Figure 13, element c denotes the
element for the current MB, n denotes the element for the
next MB, and s denotes the element for the second next. El-
ement s and the motion data of element n can be prefetched,
while element c is used to decode the current MB. After de-
coding each MB the roles of the elements rotate. Element
n, of which the motion data has been prefetched, becomes
the current element c, element s becomes the next element
n, and element c can be reused to hold the new second next
element.
To decode a MB, the picture data produced by decoding

the upper-left to upper-right MBs is needed. Each SPE,
therefore, has a buffer (3) to receive the filtered and unfil-
tered lower lines of these upper MBs from the previous MBT



in the ring. In this way the data is kept on chip, reducing
the number of off-chip memory transfers. The buffer has 240
entries, one for each MB in a MB line of a QHD frame.

For the picture data, a working buffer with a size of 32×20
pixels (4) is needed to fit the picture data of two MBs and
their upper borders. Before decoding the MB, the upper
borders are copied into the working buffer. After decoding
the MB, the data of the previously decoded MB, residing
in the left side of the working buffer, is copied to the DMA
buffer (5), then the picture data produced by decoding the
current MB is copied to the left part of the working buffer to
act as the left border of the next MB. The produced picture
data cannot be copied directly to the DMA buffer as the
deblocking filter not only modifies the picture data of the
current MB, but also the picture data of the left MB and
the received upper border data. Therefore, the write back
of the picture data has to be delayed by one MB and also
includes the lower lines of the upper MB.

In our previous implementation [7], the upper border buffer
and the picture data buffer were joined to avoid the addi-
tional copy steps performed in the working buffer. This ap-
proach, however, required an entire MB line to be allocated
in the local store, which is not feasible for QHD resolution.
Another difference with our previous implementation is the
DMA buffer. This buffer is enlarged to be able to perform
the picture border extension directly after decoding a MB
line to support the overlapped execution of two consecutive
frames, as mentioned in Section 3.3.

In total, the local store footprint of the SPE MBT im-
plementation is 197 kB, of which 121 kB is program code.
As everything fits in the local store, techniques such as
code overlaying, which have been used in other implemen-
tations [5, 8], are not required in our implementation.

7.3 Cell Experimental Results
To show the efficacy of the optimizations described in the

previous sections, two versions of the Cell implementation
are evaluated. The Non-blocking version employs the DMA
latency hiding, double buffering techniques described in the
previous section. The Blocking version does not use these
techniques, but blocks when fetching data. Furthermore,
in order to evaluate the impact of the available memory
bandwidth, both versions are evaluated with only one and
both memory controllers (MCs) enabled.

Figure 14 presents the performance and scalability re-
sults for the Cell platform. The figure shows that the Non-
blocking version achieves a near ideal speedup of 16.5×. The
speedup is relative to the single-threaded version (without
multi-threading code) running on one PPE. The results are
shown for 4 to 16 SPEs in steps of 4 SPEs. The results for
18 threads are obtained by executing two additional I/P-
frame EDTs on the PPEs. The near ideal speedup implies
that the SPE EDT and MBT implementations are as fast
as their PPE counterparts.

In the Non-blocking version almost all data transfers are
completely overlapped with the computation, which results
in an up to 34% higher performance than the Blocking ver-
sion. Data transfer latencies only reduce the performance
in the Non-blocking version when they actually take longer
than the computation. In our implementation this does not
not occur until the application starts to become bandwidth
limited. The results show that the memory bandwidth of
one MC is saturated at around 20 fps. The performance
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Figure 14: Performance and scalability on the Cell
platform for the Park sequence.

of the Blocking version, however, is already reduced by dis-
abling one MC at a lower frame rate, which indicates the
effect of memory access contention.
For the Cell implementation additionally several FHD se-

quences are evaluated to be able to compare to the imple-
mentation of Cho et al. [8]. To be comparable, these FHD
sequences are encoded using a 2-pass encoding to get an av-
erage bit rate of 16 Mbps instead of the constant quality
mode used for the QHD sequences. Table 4 depicts the per-
formance results of our Cell implementation and the results
obtained by Cho et al. Compared to the work of Cho et al.,
the performance is between 2.5× and 3.3× higher. This dif-
ference is mostly caused by being able to use the SPEs for
parallel entropy decoding, while the implementation of Cho
et al. uses only the two PPEs for that stage.

Table 4: Performance comparison of the Cell imple-
mentation using 16 Mbps FHD sequences.

Sequence EDT-MBT Our decoder Cho et al. [8]
Pedestrian 9-9 91 fps 37 fps
Tractor 10-8 81 fps 31 fps
Station 2 9-9 79 fps 24 fps
Rush Hour 8-10 88 fps 34 fps

8. CONCLUSIONS
In this paper a high-performance, fully parallel, QHD-

capable H.264 decoder has been presented. The employed
parallelization strategy exploits the available parallelism at
two levels. First, function-level parallelism is exploited by
pipelining the decoder stages. This allows several frames to
be processed concurrently in different stages of the decoder.
In addition, data-level parallelism is exploited within the
entropy decoding (ED) and macroblock decoding (MBD)
stages, as these two stages account for more than 90% of
the total execution time. In the ED stage data-level paral-
lelism between frames is exploited using a novel B-ring strat-
egy. By separating the I- and P-frames from the B-frames,
the I- and P-frames can be processed completely in parallel,
while load balancing is improved for the B-frames. In the
MBD stage mostly MB-level parallelism within a frame is
exploited. Limited parallelism at the beginning and end of
each frame is avoided by overlapping the execution of con-
secutive frames.
The parallel decoder has been implemented on three mul-

ticore platform with substantially different memory archi-
tectures. On the 8-core SMP platform the limited memory



bandwidth restricts the scalability to about 4.5×. Further-
more, the SMP parallel version is reasonably performance
portable to the 64-core cc-NUMA platform as it achieves a
speedup of 26.6×. On the cc-NUMA platform, due the non-
uniform memory hierarchy and the large number of cores,
specific optimizations are necessary to obtain the highest
achievable performance and scalability. To efficiently ex-
ploit the distributed memory, a locality-aware static thread
placement and page placement scheme have been presented.
These optimizations yield additional improvements of up to
27.3% over the SMP parallel version, with a maximum per-
formance of 200 fps. Scalability on the Cell platform is close
to ideal with 16.5× on 18 cores. Due to vigorous overlapping
of communication with computation, the Cell implementa-
tion is tolerant to DMA transfer latencies, which allows more
efficient use of the memory bandwidth. Lack of portability
and the required programming effort are known disadvan-
tages of the Cell architecture, however.

The evaluation on the three platforms shows that our par-
allel H.264 decoding strategy scales well on a wide range of
multicore architectures. Furthermore, the performance ob-
tained on the cc-NUMA shows that multicores provide com-
putational headroom that can be used to further innovation
in the video coding domain. Finally, the performance results
also show that exploiting the memory hierarchy becomes in-
creasingly critical when the number of cores increases.
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