
Scalability of Parallel Video Decoding on
Heterogeneous Manycore Architectures

Mauricio Alvarez Mesa1, Felipe Cabarcas2,3, Alex Ramirez1,2

Cor Meenderinck4, Ben Juurlink5 and Mateo Valero1,2

1Universitat Politècnica de Catalunya, Barcelona, Spain.
2Barcelona Supercomputing Center, Barcelona, Spain.

3Universidad de Antioquia, Medellı́n, Colombia.
4Delft University of Technology, Delft, The Netherlands.

5Technische Universität Berlin, Berlin, Germany.
Email: alvarez@ac.upc.edu, {felipe.cabarcas, alex.ramirez, mateo.valero}@bsc.es,

cor@ce.et.tudelft.nl, juurlink@cs.tu-berlin.de

Abstract—This paper presents an analysis of the scal-
ability of the parallel video decoding on heterogeneous
many core architectures. As benchmark, we use a highly
parallel H.264/AVC video decoder that generates a large
number of independent tasks. In order to translate task-
level parallelism into performance gains both the video
decoder and the architecture have been optimized. The
video decoder was modified for exploiting coarse-grain
frame-level parallelism in the entropy decoding kernel
which has been considered the main bottleneck. Second,
a heterogeneous combination of cores is evaluated for
executing different type of tasks. Finally, an evaluation of
the memory requirements of the whole system has been
carried out. Experiments conducted using a trace-driven
simulation methodology shows that the evaluated system
exhibits a good parallel scalability up to 68 cores. At this
point the parallel video decoder is able to decode more
than 200 HD frames per second using simple low power
processors.

I. INTRODUCTION

Video coding is one of the key technologies that enable
many digital video applications such as Internet video
streaming, mobile video, DVD and Bluray video play-
back, and others. Currently the highest resolution in use
is Full High Definition (FHD: 1920×1080) but to pro-
vide even better viewing experiences higher definitions,
like Quad-Full High Definition (QFHD: 3840×2160)
or Ultra High Definition (UHD: 7680×4320) are being
proposed [26].

Although frame resolution has been increasing over
time, frame rate has not. Currently most FHD systems
support 25 or 50 frames per second (fps) but it has
been demonstrated that these rates results in insufficient
dynamic resolution generating negative visual effects like
smearing and jerkiness [3]. As a solution, higher frame
rates, like 100 or 200 fps, are being considered for

FHD and higher resolutions. The main limitation for the
adoption of higher frame rates has been the storage and
computing requirements of the resulting videos.

Storage and transmission requirements of high quality
video can be provided with the advanced compression
techniques developed in the last generation video codecs
like H.264/AVC [28]. H.264/AVC has a higher com-
pression performance compared to all previous video
coding standards such as MPEG-2 and MPEG-4. The
compressing gains come at the expense of an important
increase in the computational complexity [18]. Moreover,
the combination of the complexity of this video codec
and the higher quality of HD systems has resulted in an
enormous increase in the computational requirements of
the emerging high-end video coding applications.

On the other hand, performance scaling on current and
future multicores and manycore architectures is based
mainly in the exploitation of Thread-Level Parallelism
(TLP). If the increase in the number of cores continue
with every generation, in the near future there will be
systems with hundreds of cores [7]. In order to exploit
the performance of those parallel architectures fine-grain
parallelization of applications is required.

In this paper we evaluate a heterogeneous manycore
architecture for parallel H.264 decoding. Because en-
tropy decoding has been identified as the main bottleneck
we propose a solution based on the simultaneous ex-
ploitation of multiple levels of parallelism. Moreover we
analyze the impact of using different type of processors
for entropy decoding and macroblock decoding. Finally,
we include an evaluation requirements of main memory
bandwidth and on-chip data cache.

This paper is organized as follows. First, in section II
we present a brief introduction to H.264 and to the

CORE Metadata, citation and similar papers at core.ac.uk

Provided by UPCommons. Portal del coneixement obert de la UPC

https://core.ac.uk/display/132530095?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

parallelization technique that has been implemented.
In section III we present the scalability problems and
proposed solutions. Next, in section IV we present
the methodology used in the experiments, including a
description of the baseline heterogeneous architecture.
Then, in section V we present a discussion of the
experimental results. In section VI we include an analysis
of related work in the field. Finally, in section VII we
present the conclusions and future work.

II. PARALLEL H.264 DECODING

H.264/AVC is based on the same block-based motion
compensation and transform-based coding framework of
prior MPEG and ITU-T video coding standards. It in-
cludes a lot of new coding tools for different application
scenarios but here we present only a summary of the
tools that have more effect on the performance of the
video decoder which are the focus of this work. More
details about the H.264/AVC standard can be found in
the literature [28, 14].

A. H.264 Fundamentals

In H.264/AVC a video sequence consist of multiples
video pictures called frames. Each frame can consist
of several slices, which are self contained partitions of
a frame, that, in turn, contain some number of Mac-
roBlocks (MBlocks). MBlocks, consist of one 16 × 16
pixel block of luma samples and two 8 × 8 blocks of
chroma samples. MBlocks are the basic data unit for
coding and decoding.

In order to decompress a video, the decoder has to
apply a sequence of kernels on input data, as shown
in Figure 1. The first step is entropy decoding, that
reads from the input compressed bitstream and produces,
as output, a set of quantized transformed coefficients,
motion vectors and side information like MBlock type,
coding options, etc. After entropy decoding an “inverse
quantization” (or more accurately, a re-scaling operation)
is applied to the quantized coefficients in order to pro-
duce a reconstructed version of the original coefficients.
Then, an inverse transform is applied to them for ob-
taining the error signal. For reconstructing the original
block a prediction signal if created. MBlock prediction
is performed with intra- or inter-prediction techniques,
depending on MBlock type. After prediction, the error
signal is added to the prediction signal for generating the
decoded MBlock. Finally, an in-loop deblocking filter is
applied for improving the visual quality of the output
video. This decoded MBlock is sent to the output device
for displaying or storage.

B. H.264 Parallelization

H.264/AVC decoding can be parallelized in many
ways, but few of them are able to scale to manycore
architectures (A comparison of different parallelization

techniques can be found in the literature [16, 23]). In
this work we focus on a parallelization technique that
operates at the MBlock-level. We use the dynamic 3D-
wave algorithm that is a technique that exploits spatial
and temporal MBlock-level parallelism [16]. Below we
present a summary of this technique.

In H.264/AVC, MBlocks in a frame are usually pro-
cessed in scan order, which means starting from the
top left corner of the frame and moving to the right,
row after row. To exploit parallelism between MBlocks
inside a frame it is necessary to take into account the
dependencies between them.

Processing MBlocks in a diagonal wavefront manner
satisfies all these dependencies and, at the same time,
allows to exploit parallelism between MBlocks [12]. This
is shown in the left side of Figure 2. This parallelization
technique (known as 2D-Wave) generates a variable num-
ber of independent MBlocks during frame time reducing
in practice the parallelization efficiency.

Additionally to spatial MBlock-level it is possible
to exploit temporal MBlock-level parallelism in which
multiple frames are being decoded at the same time.
This require to detect and respect the data dependencies
between frames. Inter-frame dependencies are the result
of data accesses in the motion compensation kernel.
This kernel access an area in a previous frame pointed
by a motion vector. When this reference area has been
decoded it is possible to start the processing of a MBlock
of the next frame even if the current frame has not been
completely decoded.

The combination of spatial and temporal MBlock-
level parallelism is what is known as the dynamic 3D-
wave algorithm (see Figure 2). It is dynamic because
the assignment of MBlocks to processors is performed
at run-time based on data dependencies. This algorithm
is able to extract thousands of independent MBlocks
depending on the input content and the number of frames
in flight [16].

III. THE ENTROPY-DECODING BOTTLENECK

Due to data dependencies entropy decoding has to be
performed sequentially for all the macroblocks inside
a frame. The main problem for the parallel 3D-wave
decoder is that performance of the whole application is
dominated by the performance of the entropy decoding
stage, according to Amdahl’s law. But, it is possible to
parallelize entropy decoding at the frame-level because
the context tables that create data dependencies are re-
started every frame [15]. The only dependency that exists
is related to DIRECT MBlocks in B-frames [14]. In this
type of MBlocks there is not data transmitted and the
motion vector is taken from the co-located MBlock in a
subsequent reference frame. If motion vector prediction
is performed at the entropy decoding stage, which is

Fig. 1: H.264/AVC Decoder

Fig. 2: 3D-wave H.264 decoding: spatial and temporal MBlock-level parallelism

usually the case, then entropy decoding of the current
frame should be at least one MBlock in advance of
entropy decoding of the next frame.

In order to parallelize the CABAC decoder it has to
be decoupled from the MBlock decoding kernels. After
decoupling, the video decoder can be seen as a macro-
pipeline with a front-end and a back-end. In the front-
end, there are two stages: a parsing stage that reads the
compressed bitstream and parse the frame headers and a
CABAC decoding stage. In the back-end there are two
stages: one is MBlock decoding and the other is frame
display1. The resulting structure of the application is
shown in Figure3. This macro-pipeline combines coarse-
grain parallelization for the entropy decoder and fine-
grain parallelization for MBlock decoding kernels.

The front-end can use multiple processors to perform
entropy decoding of multiple frames in parallel. It com-
municates with the back-end using a frame-buffer. The
size of this buffer (in frames) defines the maximum
number of frames that can be “in-flight” at any point
in time. Having more frames in-flight improves the
utilization of CABAC processors at the cost of more
memory. Each CABAC frame requires 10.5MB for FHD
resolution.

Figure 4 shows a diagram with the general concept of

1In our case uncompressed frames are not displayed on the screen
and we have disabled the writing to an output file, then basically the
display stage is only in charge managing the frame buffer

combination of multiple levels of parallelism. Figure 4a
shows the sequential approach, in which the CABAC
decoding of the next frame waits for the MBlock de-
coding of the current frame to finish. Figure 4b shows
the diagram when pipelining parallelism is exploited. In
this case, CABAC entropy decoding of the next frame
can start just at the end of the CABAC decoding of the
current frame. Finally, Figure 4c shows the combination
of pipelining with data-level parallelism both in CABAC
decoding and MBlock decoding. Multiple frames can be
entropy decoded and MBlock decoded in parallel. Al-
though is not necessary to enforce that MBlock decoding
waits for the end of a whole frame of entropy decoding,
we implemented in this way to reduce the amount of
synchronization operations and to ensure that multiple
threads can work on MBlock decoding without waiting
for CABAC decoding.

A side benefit of this division is that it allows spe-
cialization. That means the use of different types of
processors for different stages of the pipeline.

IV. EXPERIMENTAL METHODOLOGY

We use a fast trace-driven simulation methodology that
allows to simulate systems with large numbers of cores.

A. H.264/AVC decoder and input videos

For these experiments we used the parallel H.264/AVC
decoder that is available from HD-VideoBench [1]. This

Fig. 3: H264 decoder with CABAC decoupling

(a) sequential

(b) pipeline

(c) pipeline+parallelism

Fig. 4: CABAC: multiple frames in flight and frame-level parallelism

code is based on the FFmpeg libavcodec library, and
includes an implementation of the 2D-wave parallel
implementation of the H.264/AVC decoder.

The benchmark includes four input sequences at differ-
ent resolutions but due to space reasons only results for
the 1088p25 pedestrian area test video are presented.
Videos were encoded using the X264 encoder with the
following options: 100 frames, P-frames, 1 reference
frame, hexagonal motion estimation algorithm (hex) with
maximum search range 24, one slice per frame. We
restricted the encoder to produce only P-frames to allow
parallel CABAC decoding without dependencies. One
reference frame was enforced to simplify the tracking
of dependencies for the 3D-wave algorithm. These two
simplifications made a significant reduction in implemen-
tation complexity without losing the general applicability
of the results.

B. Execution, instrumentation and trace generation

The parallel H.264/AVC decoder was executed on a
SGI Altix which is a distributed shared memory (DSM)
machine with a cc-NUMA architecture. The basic build-
ing block is the blade which has two dual-core Intel
Itanium processors, 8GB of RAM and an interconnection
module. The interconnection of blades is done using an
interconnect fabric called NUMAlink-4 capable of 6.4

GB/s peak bandwidth through two 3.2 GB/s unidirec-
tional links. The complete machine has 32 nodes with
2 dual-core processors per node for a total of 128 cores
and a total of 1TB of RAM.

Each processor in the system is a Dual-Core Intel
Itanium2 processor running at 1.6 GHz [8]. Main pa-
rameters of the processor are listed in Table I

The compiler used was gcc 4.1.0 and the operating
system was Linux with kernel version 2.6.16.27. Traces
were obtained in Paraver format using the Mintaka code
instrumentation tool [20].

The code was executed using a 3 thread configuration.
The first thread, called the master thread, is responsible
of the main control of the application, bitstream file
reading, frame parsing and all the slice initialization and
finalization code. The second thread is responsible for
CABAC entropy decoding. CABAC results are stored in
a frame buffer for later use of by the MBlock decod-
ing stage. Finally, the third thread is is responsible of
MBlock decoding (more exactly MBlock reconstruction,
including IDCT, IQ, prediction and deblocking filter).

The code was instrumented to obtain traces with
CPU phases, synchronization operations and memory ac-
cesses. Execution of each thread was divided in different
CPU phases and each phase was instrumented including
a phase identifier and its execution time.

Configuration SGI Altix

ISA Itanium 64-bit
SIMD extensions MMX, SSE, SSE2
Processor Intel Itanium 2 9030
Technology 90nm
Clock frequency 1.6 GHz
Power 104 W
Level 1 I-cache 16 KB / core
Level 1 D-cache 16 KB / core
Level 2 I-cache 1 MB / core
Level 2 D-cache 256 KB / core
Level 3 cache 8 MB

TABLE I: Experimentation platform

Synchronization operations are special instrumentation
marks that identify when a task either waits for some
signal to be ready or posts a signal announcing the
availability of some data. For example, CABAC decoding
posts a signal every time it finishes the entropy decoding
of a frame and the worker thread that process the first
MBlock of a frame issues a wait operation for that signal.

Instrumented memory operations contain contains pa-
rameters such as address in main memory, size of the
transfer in bytes and direction (read or write).

Paraver traces were processed with the prv2ttf tool to
produce another trace with a task format. In the final trace
there is a collection of separated tasks, each one with
information of execution time of kernels, synchronization
information and memory accesses. It is important to note
that these are not instruction traces, but tasks traces. They
contain information of CPU bursts that happen between
synchronization or memory operations. The duration of
these CPU burst are used for simulating systems with
different number of cores as we will explain next. Our
simulation methodology is similar, in concept, to the one
developed by Seitner et al. [24].

C. Trace-driven Simulation of parallel architectures

For our simulations we have used TaskSim. TaskSim
is a trace-driven simulator for accelerator-based multi-
core architectures. It targets the simulation of parallel
applications coded in a master-worker task offload com-
putational model. It uses task traces that contains infor-
mation about the inter-task dependencies. That informa-
tion allows TaskSim to reconstruct the dependencies at
simulation time.

The computational CPU phases (bursts), such as task
execution, are not simulated in detail. The burst duration
is obtained from the trace and is simulated as a single
event with the same runtime as the whole burst. Contrar-
ily, the trace time for phases involving access to shared
resources in the architecture, such as waiting for DMA
transfers or synchronization operations, are discarded,
and their timing is simulated in a cycle-accurate way
by means of detailed simulation of DMA controllers,
caches, interconnection, memory controllers, and DRAM

Fig. 5: Baseline Heterogeneous Multicore Architecture

modules.
On top of the task-level abstraction, TaskSim is built

around an event-driven simulation framework that avoids
unnecessary simulation of inactive hardware components
and idle time. This is accomplished by skipping empty
cycles (cycles with no activity) and selectively executing
only the hardware components with scheduled activity or
receiving external requests in a given cycle. This allows
TaskSim to simulate hundreds of accelerators in less
than an hour without loss of accuracy for architecture
scalability studies[22].

D. The SARC architecture

As a baseline for simulation we have used the SARC
architecture [21]. SARC is a heterogeneous multicore
composed of a set of processors managed at runtime in a
master-worker mode. The architecture includes different
type of cores, an on-chip interconnection network, a
multi-bank shared on-chip data cache, on-chip memory
controllers and external memory as shown in Figure 5.

The Master processors (M) start the main() routine of
the program, and run the core of the application generat-
ing tasks to be off-loaded to the specialized Worker (W)
processors, as indicated by a software runtime scheduler.
In the case of H.264/AVC decoding Master cores are
also responsible for doing frame parsing. Worker cores
execute tasks generated by the Masters ones. In this work
we consider two types of workers: MBlock decoders and
CABAC entropy decoders.

All processors have direct load/store access to the
different scratchpads and the off-chip memory. Workers
also have a DMA controller that can transfer data to/from

Memory controllers 4 x 2 DDR3 channels
Channel bandwidth 12.8 GB/s (DDR3-1600)
Memory latency Real DDR3-1600
MIC policy Closed-page, in-order processing
Shared L2 cache 128 MB (32 x 4 MB), 4-way assoc.
Sync. unit latency 256 cycles
L2 cache latency 40 cycles
Local Store 256 KB, 6 cycles
Interconnection links 8 bytes/cycle (25.6 GB/s)
Intra-cluster NoC 2-bus (51.2 GB/s)
Global NoC 16-bus (409.6 GB/s)

TABLE II: Baseline simulation parameters

the scratchpad memories, overlapping data transfer and
computation.

Figure 5 shows a general diagram of the architecture
and a detailed view of a worker node. The node is
composed of a worker core (W), a local memory (LM),
a DMA controller, a Network Interface Controller (NIC)
that arbitrates the accesses to the bus and a synchro-
nization module (Sync) used for on-chip synchronization
operations.

The architecture has been extended to include a hard-
ware synchronization facility. That includes a sub-unit
in each worker core associated to its DMA controller
for handling semaphore operations, and the addition of a
global synchronization unit that keeps track of semaphore
state.

As shown in Figure 5, workers are organized in clus-
ters of N processors. In a 128-worker configuration, for
example, the global NoC connects together 16 clusters
of 8 processors.

Assuming 128 cores as a maximum we have defined
a baseline configuration. The corresponding parameters
of the simulator are shown in Table II.

V. EXPERIMENTAL RESULTS

In this section we present and discuss the experimental
results for the proposed hardware and software optimiza-
tions.

A. Scalability of 3D-wave parallelization with multiple
CABAC processors

In order to see the effect of having multiple CABAC
processors we have conducted an experiment varying the
number and acceleration of CABAC processors for a 3D-
wave parallel decoder with a maximum of 8 frames in
flight. The resulting performance can be seen in Figure 6
for 1, 2, 3 and 4 CABAC cores.

Figure 6a shows the results for 1 CABAC core. In this
case, and with no CABAC acceleration (1X) a maximum
performance of 80 fps is obtained with 8 MBlock de-
coding cores. In order to obtain more performance some
acceleration on the CABAC core is needed. For example:
100 fps requires one CABAC core at 1.41X acceleration
and 16 worker processors.

Configuration Low power High Perf.

ISA X86-64 X86-64
SIMD extensions SSSE3 SSSE3
Processor Atom 330 Xeon E7310
Cores 2 4
Technology 45 nm 65 nm
Clock frequency 1.6 GHz 1.6 GHz
Power 8 W 80W
Level 1 I-cache 32KB 32KB
Level 1 D-cache 24KB 32KB
Level 2 cache 1 MB 4 MB
Main Memory 1.5 GB 16 GB
Operating System Linux 2.6.32-24 Linux 2.6.32
Compiler gcc-4.4.3 4.4.1
Compiler Optimizations -03 -03

TABLE III: Processor configuration for the heteroge-
neous system

When the number of CABAC cores increases the scal-
ability of the whole application improves. The decoder
is able to reach 266 fps with 4 CABAC cores at 1X
and 48 MBlock decoder cores. With 4 CABAC cores the
CABAC front-end is not longer the bottleneck and the
number of frames in flight starts to become the limiting
factor. This reflects a clear tradeoff between throughput
and latency (and memory usage).

Having multiple CABAC processors with the 3D-wave
algorithm allows to reach a fixed performance target
even with de-accelerated CABAC cores. For example,
FHDp100 can be reached with 16 MBlock decoding
cores and 1 CABAC core at 1.41X, 2 CABAC cores
at 0.71X, or 3 CABAC cores at 0.5X. Multiple de-
accelerated cores use less area and power than one highly
accelerated one.

It should be noted that the performance required to
meet a real-time target depends on the input content
(spatial and temporal characteristics of video). The per-
formance and number of CABAC processors can be
adjusted dynamically depending on the requirements on
the specific execution of the application. This is an open
research area.

B. Case study: low power heterogeneous manycore ar-
chitecture

In this section we provide results for a different con-
figuration of cores. Instead of using the Intel Itanium-2
cores we use low power processors for MBlock decoding
combined with high performance cores for CABAC
decoding. MBlock cores are SIMD processors based
on the Intel Atom architecture which is a low power
processor for mobile devices [13]). Entropy decoding
cores are superscalar processors based on the Intel Xeon
architecture. Both processors run at the same frequency
but have a very different microarchitecture and memory
hierarchy (asymmetric cores). Table III shows the main
parameters for both processors.

Figure 7 shows the resulting performance in terms of

 0

 100

 200

 300

 400

 500

 1 2 4 8 16 32 64 128

F
ra

m
e

s
 p

e
r

s
e

c
o

n
d

 (
fp

s
)

Number of workers

0.5x
0.71x

1x
1.41x

2x
2.83x

4x

(a) 1 CABAC worker

 0

 100

 200

 300

 400

 500

 1 2 4 8 16 32 64 128

F
ra

m
e

s
 p

e
r

s
e

c
o

n
d

 (
fp

s
)

Number of workers

0.5x
0.71x

1x
1.41x

2x
2.83x

4x

(b) 2 CABAC workers

 0

 100

 200

 300

 400

 500

 1 2 4 8 16 32 64 128

F
ra

m
e

s
 p

e
r

s
e

c
o

n
d

 (
fp

s
)

Number of workers

0.5x
0.71x

1x
1.41x

2x
2.83x

4x

(c) 3 CABAC workers

 0

 100

 200

 300

 400

 500

 1 2 4 8 16 32 64 128

F
ra

m
e

s
 p

e
r

s
e

c
o

n
d

 (
fp

s
)

Number of workers

0.5x
0.71x

1x
1.41x

2x
2.83x

4x

(d) 4 CABAC workers

Fig. 6: CABAC acceleration and multiple CABAC processors for the 3D-wave H.264 decoder

frames per second for the homogeneous (Figure 7a) and
the heterogeneous cases (Figure 7b).

First, it is important to note that it is not possible
to decode FHD video in real-time (25 fps) on a single
Atom core. Using a homogeneous system based on Atom
processors requires at least 1 CABAC core and 8 MBlock
cores to go beyond 25 fps. Decoding 50 fps requires 2
CABAC cores and 16 MBlock cores. The system is able
to scale up to 48 MBlock cores with 4 CABAC cores
reaching almost 140 fps. Adding more cores (CABAC
or MBlock) results in diminishing benefits due to the
limit of CABAC frames in flight.

The heterogeneous configuration improves the perfor-
mance of all the simulated configurations by 1.64X in
average. Using asymmetric cores it is possible to decode
50 fps with 1 CABAC core and 16 MBlock cores. As
a maximum, the system is able to decode 213 fps using
64 MBlock cores and 4 CABAC cores (plus one master
core, for 69 cores in total).

C. Memory Requirements

Previous experiments have been conducted using a
powerful configuration of main memory and cache hi-
erarchy as shown in Table II. In this section we eval-
uate the actual memory requirements. As a baseline
we configured a system with 4 CABAC cores and 64
MBlock decoding cores (and 1 master core) using the
heterogeneous configuration presented in the previous
section.

1) Impact of main memory bandwidth: In order to
isolate the effects of main memory bandwidth we have
disabled the L2 cache. Figure 8 shows the results. For
reaching the maximum performance, 212 fps, a minimum
of 102.4 GB/s are required. This can be provided with 4
MICs each one having two DDR-3-1600 modules.

2) Impact of L2 cache: In the baseline architecture
each processor is equipped with two types of individual
memories: a scratchpad and a L1 data cache. In the case
of the 3D-wave decoder all the accesses to main memory
have been implemented using explicit DMA commands.

 0

 50

 100

 150

 200

 250

 1 2 4 8 16 32 64 128
 0

 10

 20

 30

 40

 50

F
ra

m
e

s
 p

e
r

s
e

c
o

n
d

 (
fp

s
)

S
p

e
e

d
u

p

Number of workers

1 cabac core
2 cabac cores
3 cabac cores
4 cabac cores

(a) homogeneous

 0

 50

 100

 150

 200

 250

 1 2 4 8 16 32 64 128
 0

 10

 20

 30

 40

 50

F
ra

m
e

s
 p

e
r

s
e

c
o

n
d

 (
fp

s
)

S
p

e
e

d
u

p

Number of workers

1 cabac core
2 cabac cores
3 cabac cores
4 cabac cores

(b) heterogeneous

Fig. 7: Parallel H.264 decoder with different type of cores

 0

 50

 100

 150

 200

 250

 12.8 25.6 51.2 102.4 204.8 409.6 819.2

F
ra

m
e

s
 p

e
r

s
e

c
o

n
d

 (
fp

s
)

Main memory bandwidth [GB/s]

64 cores

Fig. 8: Impact of memory bandwidth

As a result all the local accesses use the scratchpad
memory but not the L1 data cache.

A shared multi-bank L2 cache is included in the
architecture as it has been explained in section IV-D. The
shared cache maintains a significant part of the memory
accesses on-chip by capturing the references made by
DMA controllers. With a multi-bank structure and a
careful mapping of accesses to banks it is possible to
provide high on-chip bandwidth and low latency access.

In order to determine the best cache configuration we
change both the number of banks and the cache size.
The latencies of cache banks with difference sizes have
been estimated using CACTI 5.3 [27], for 45nm memory
technology and the system is simulated with a main
memory composed of 1 MIC with two DDR3 channels
(12.8 GB/s). Figure 9 shows the effect of cache banks.
The maximum performance of 212 fps can be reached
either having a big cache (4MB) with small number of
banks (2 banks), or having a smaller cache (1 MB) with a

 0

 50

 100

 150

 200

 250

 0.5 1 2 4 8 16 32 64 128 256

F
ra

m
e

s
 p

e
r

s
e

c
o

n
d

 (
fp

s
)

L2 Cache size [MB]

1 bank 2 banks 4 banks 8 banks

Fig. 9: Impact of L2 cache

high number of banks (8 banks). In the first case a larger
cache means a higher access latency, while in the second
case a banked cache has lower latency but requires more
bandwidth on the on-chip interconnection network.

VI. RELATED WORK

der Tol et al.proposed the 2D-Wave algorithm for
parallelization of the H.264/AVC decoder [12]. Chen
et al. evaluated a similar approach: a combination of
MB parallelism and frame-level parallelism for the H.264
encoder on Pentium machines with SMT and CMP
capabilities [9]. Zhao and Liang presented a combination
of frame-level parallelism and MBlock-level parallelism
for H.264 encoding [29]. This scheme is a static variation
of the 3D-Wave algorithm. Baik et al. developed a hybrid
approach combining function-level parallelism and data-
level parallelism for the H.264 decoder on the Cell B.E.
architecture [5].

Alvarez et al. reported a scalability analysis of the 2D-
wave algorithm on a cc-NUMA architecture [2]. Meen-
derinck et al. presented the original idea of the dynamic
3D-wave algorithm but without any real implementa-
tion [16]. Azevedo et al. reported an implementation of
the 3D-wave algorithm for embedded media processors
that scales up to 64 processors but not taking into account
the CABAC stage [4].

Seitner et al. presented a comparison of different data-
level parallelization approaches based on slice-level, and
MBlock-level parallelism [23]. Nishihara et al. presented
an implementation of the row-order MB-level paral-
lelization of the decoder combined with function-level
parallelism [17]. Sihn et al. applied a similar technique
in which a combination of function-level and MB-level
parallelism is optimized for better load balancing and a
reduction of memory accesses [25].

Baker et al. implemented the row variant of intra-frame
MB-level parallelism described by Seitner et al. on the
Cell B.E. architecture. They mapped entropy decoding
onto the PPE processor and MBlock decoding onto the
SPE processors [6]. Chi et al. implemented a variant
of the MB-level row approach and compared it with
a centralized task-pool implementation [10]. Cho et al.
implemented a similar approach on the cell processor
but included a frame-level parallelization of the entropy
decoder. In their implementation the master processor
(PPE) runs a parser thread and two entropy decoding
threads [11].

GPUs are also heterogeneous multicore architectures
but some attempts to use them for video decoding ex-
hibit limited performance gains because of the irregular
behavior of H.264 decoding [19].

Our work make the following new contributions. First,
we present a scalability analysis for architectures with
manycores taking into account and solving the entropy
decoding bottleneck. Previous works on highly parallel
versions of the H.264 decoder did not consider CABAC
or were clearly limited by its performance. Finally, we
have analysed the suitability of heterogeneous architec-
tures that use few high performane cores and many
low power simple processors for providing the required
performance for high quality video applications.

VII. CONCLUSIONS

We have presented an analysis of the scalability of par-
allel video decoding on heterogeneous manycore archi-
tectures. We have shown that it is possible to remove the
entropy decoder bottleneck by exploiting multiple levels
of parallelism such as pipeline parallelism, frame-level
parallelism and macroblock-level parallelism. We have
demonstrated that is possible to achieve the performance
required by high bandwidth applications using processors
with modest or no acceleration at all; even with multiple

simpler cores operated at a reduced rate compared to
the base processor. This allows to process, in real-time,
emerging video applications with higher resolutions and
frame rates.

We also presented the performance of the parallel
H.264 decoder on a heterogeneous manycore architecture
in which simpler low power processors are assigned
to data parallel kernels and high performance cores
for entropy decoding. Using this configuration it was
possible to achieve high performance with a reduced
power consumption.

In this paper we only consider a static combination
of high performance and low power cores. One area of
future work is to consider dynamic systems in which
processor performance can be adjusted at run-time and
tasks can be allocated dynamically to heterogeneous
processors based on task complexity.

REFERENCES

[1] M. Alvarez, E. Salami, A. Ramirez, and M. Valero.
HD-VideoBench: A Benchmark for Evaluating
High Definition Digital Video Applications. In
IEEE Int. Symp. on Workload Characterization,
Sept. 2007. URL http://people.ac.upc.edu/alvarez/
hdvideobench.

[2] Mauricio Alvarez, Alex Ramı́rez, Arnaldo Azevedo,
Cor Meenderinck, Ben Juurlink, and Mateo Valero.
Scalability of Macroblock-level Parallelism for
H.264 Decoding. In The Fifteenth International
Conference on Parallel and Distributed Systems
(ICPADS’09), Dec 2009.

[3] M. Armstrong, D. Flynn, M. Hammond, S. Jolly,
and R. Salmon. High frame-rate television. Tech-
nical report, BBC, 2009.

[4] Arnaldo Azevedo, Cor Meenderinck, Ben Juurlink,
Andrei Terechko, Jan Hoogerbrugge, Mauricio Al-
varez, and Alex Rammirez. Parallel H.264 De-
coding on an Embedded Multicore Processor. In
Proceedings of the 4th International Conference on
High Performance and Embedded Architectures and
Compilers - HIPEAC, Jan 2009.

[5] Hyunki Baik, Kue-Hwan Sihn, Yun il Kim, Se-
hyun Bae, Najeong Han, and Hyo Jung Song.
Analysis and parallelization of h.264 decoder on
cell broadband engine architecture. In 2007 IEEE
International Symposium on Signal Processing and
Information Technology, pages 791–795, 2007.

[6] Michael A. Baker, Pravin Dalale, Karam S. Chatha,
and Sarma B.K. Vrudhula. A scalable parallel
h.264 decoder on the cell broadband engine archi-
tecture. In CODES+ISSS ’09: Proceedings of the
7th IEEE/ACM international conference on Hard-
ware/software codesign and system synthesis, pages
353–362. ACM, 2009.

http://people.ac.upc.edu/alvarez/hdvideobench
http://people.ac.upc.edu/alvarez/hdvideobench

[7] Shekhar Borkar. Thousand core chips: a technology
perspective. In DAC ’07: Proceedings of the 44th
annual conference on Design automation, pages
746–749. ACM, 2007.

[8] McNairy Cameron and Soltis Don. Itanium 2
processor microarchitecture. IEEE Micro, 23:44–
55, March 2003.

[9] Y.K. Chen, E.Q. Li, X. Zhou, and S. Ge. Implemen-
tation of H. 264 Encoder and Decoder on Personal
Computers. Journal of Visual Communications and
Image Representation, 17, 2006.

[10] Chi Ching Chi, Ben Juurlink, and Cor Meenderinck.
Evaluation of parallel H.264 decoding strategies for
the Cell Broadband Engine. In Proceedings of the
24th ACM International Conference on Supercom-
puting, pages 105–114, 2010.

[11] Yongjin Cho, Seungkyun Kim, Jaejin Lee, and
Heonshik Shin. Parallelizing the H.264 decoder
on the cell BE architecture. In Proceedings of the
tenth ACM international conference on Embedded
software, pages 49–58, 2010.

[12] E. B. Van der Tol, E. G. T. Jaspers, and R. H.
Gelderblom. Mapping of h.264 decoding on a mul-
tiprocessor architecture. In Proceedings of SPIE,
2003.

[13] G. Gerosa, S. Curtis, M. D’Addeo, Bo Jiang,
B. Kuttanna, F. Merchant, B. Patel, M. Taufique,
and H. Samarchi. A Sub-1W to 2W Low-Power
IA Processor for Mobile Internet Devices and Ultra-
Mobile PCs in 45nm Hi-k; Metal Gate CMOS. In
IEEE International Solid-State Circuits Conference,
2008. ISSCC 2008, pages 256–611, feb. 2008.

[14] h264. ISO/IEC 14496-10 and ITU-T Rec H.264,
Advanced Video Coding, 2003.

[15] D. Marpe, H. Schwarz, and T. Wiegand. Context-
based adaptive binary arithmetic coding in the
H.264/AVC video compression standard. IEEE
Transactions on Circuits and Systems for Video
Technology, 13(7):620–636, July 2003.

[16] Cor Meenderinck, Arnaldo Azevedo, Mauricio Al-
varez, Ben Juurlink, and Alex Ramirez. Parallel
Scalability of Video Decoders. Journal of Signal
Processing Systems, 57:173–194, November 2009.

[17] K. Nishihara, A. Hatabu, and T. Moriyoshi. Par-
allelization of H.264 video decoder for embedded
multicore processor. In 2008 IEEE International
Conference on Multimedia and Expo, pages 329–
332, 2008.

[18] J. Ostermann, J. Bormans, P. List, D. Marpe,
M. Narroschke, F. Pereira, T. Stockhammer, and
T. Wedi. Video Coding with H.264/AVC: Tools,
Performance, and Complexity. IEEE Circuits and
Systems Magazine, 4(1):7–28, Jan 2004.

[19] Bart Pieters, Dieter Van Rijsselbergen, Wesley De
Neve, and Rik Van de Walle. Performance eval-
uation of H.264/AVC decoding and visualization
using the GPU. In Applications of Digital Image
Processing XXX, page 669606, 2007.

[20] V. Pillet, J. Labarta, T. Cortes, and S. Girona.
Paraver: A tool to visualize and analyze parallel
code. In Patrick Nixon, editor, Proceedings of
WoTUG-18: Transputer and occam Developments,
pages 17–31, mar 1995. ISBN 90 5199 222 X.

[21] A. Ramirez, F. Cabarcas, B. Juurlink, M. Al-
varez Mesa, A. Azevedo, C. Meenderinck, G. Gay-
dadjiev, C. Ciobanu, S. Isaza, and F. Sanchez. The
SARC Architecture. IEEE Micro, 30(5):16–29,
Sept/Oct. 2010.

[22] Alejandro Rico, Felipe Cabarcas, Antonio Que-
sada, Milan Pavlovic, Augusto Javier Vega, Carlos
Villavieja, Yoav Etsion, and Alex Ramı́rez. Scalable
Simulation of Decoupled Accelerator Architectures.
Technical Report UPC-DAC-RR-2010-14, Univer-
sitat Politècnica de Catalunya (UPC), 2010.

[23] Florian H. Seitner, Ralf M. Schreier, Michael
Bleyer, and Margrit Gelautz. Evaluation of data-
parallel splitting approaches for H.264 decoding.
In Proceedings of the 6th International Conference
on Advances in Mobile Computing and Multimedia,
pages 40–49, 2008.

[24] Florian H. Seitner, Michael Bleyer, Margrit Gelautz,
and Ralf M. Beuschel. Development of a high-level
simulation approach and its application to multicore
video decoding. IEEE Trans. Cir. and Sys. for Video
Technol., 19:1667–1679, November 2009.

[25] Kue-Hwan Sihn, Hyunki Baik, Jong-Tae Kim, Se-
hyun Bae, and Hyo Jung Song. Novel approaches
to parallel h.264 decoder on symmetric multicore
systems. In IEEE International Conference on
Acoustics, Speech and Signal Processing, 2009.
ICASSP 2009, pages 2017–2020, 2009.

[26] Masayuki Sugawara. Super hi-vision — research
on a future ultra-hdtv system. Technical report,
European Broadcasting Union, 2008.

[27] Shyamkumar Thoziyoor, Naveen Muralimanohar,
and Norman P. Jouppi. Cacti 5.0. Technical Report
HPL-2007-167, Advanced Architecture Laboratory
HP Laboratories, 2007.

[28] T. Wiegand, G. J. Sullivan, G. Bjontegaard, and
A.Luthra. Overview of the H.264/AVC Video
Coding Standard. IEEE Transactions on Circuits
and Systems for Video Technology, 13(7):560–576,
July 2003.

[29] Zhuo Zhao and Ping Liang. Data partition for
wavefront parallelization of H.264 video encoder.
In IEEE International Symposium on Circuits and
Systems., 2006.

	Introduction
	Parallel H.264 Decoding
	H.264 Fundamentals
	H.264 Parallelization

	The entropy-decoding bottleneck
	Experimental Methodology
	H.264/AVC decoder and input videos
	Execution, instrumentation and trace generation
	Trace-driven Simulation of parallel architectures
	The SARC architecture

	Experimental results
	Scalability of 3D-wave parallelization with multiple CABAC processors
	Case study: low power heterogeneous manycore architecture
	Memory Requirements
	Impact of main memory bandwidth
	Impact of L2 cache

	Related Work
	Conclusions

