
A 249 Mpixel/s HEVC Video-Decoder Chip for

4K Ultra HD Applications

Mehul Tikekar, Student Member, IEEE, Chao-Tsung Huang, Member, IEEE,

Chiraag Juvekar, Student Member, IEEE, Vivienne Sze, Member, IEEE,

Anantha Chandrakasan, Fellow, IEEE

Abstract

High Efficiency Video Coding, the latest video standard, uses larger and variable-sized coding

units and longer interpolation filters than H.264/AVC to better exploit redundancy in video signals.

These algorithmic techniques enable a 50% decrease in bitrate at the cost of computational complexity,

external memory bandwidth, and, for ASIC implementations, on-chip SRAM of the video codec. This

paper describes architectural optimizations for an HEVC video decoder chip. The chip uses a two-stage

sub-pipelining scheme to reduce on-chip SRAM by 56k bytes – a 32% reduction. A high-throughput

read-only cache combined with DRAM-latency-aware memory mapping reduces DRAM bandwidth

by 67%. The chip is built for HEVC Working Draft 4 Low Complexity configuration and occupies

1.77 mm2 in 40nm CMOS. It performs 4K Ultra HD 30 fps video decoding at 200 MHz while consuming

1.19 nJ/pixel of normalized system power.

Index Terms

High Efficiency Video Coding, ultra high definition, video-decoder chip, motion compensation

cache, inverse discrete cosine transform, entropy decoder, DRAM bandwidth reduction

Author for Correspondence:

Mehul Tikekar

50 Vassar Street, Room 38-107, Cambridge, MA 02139.

Email: mtikekar@mit.edu

M. Tikekar, C. Juvekar, V. Sze and A. Chandrakasan are with Massachusetts Institute of Technology (MIT), Cambridge, MA

02139 USA

C.-T. Huang is with National Tsing Hua University, Taiwan

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace@MIT

https://core.ac.uk/display/78059109?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2

A 249 Mpixel/s HEVC Video-Decoder Chip for

4K Ultra HD Applications

I. INTRODUCTION

The decade since the introduction of H.264/AVC in 2003 has seen an explosion in the use

of video for entertainment and work. Standard Definition (SD) and High Definition (720p HD)

broadcasts are making way for Full HD (1080p), which in turn, are expected to be replaced

by Ultra HD resolutions like 4K and 8K. Video traffic over the internet is growing rapidly and

is expected to be about 86% of the global consumer internet traffic by 2016 [1]. These factors

motivated the development of a new video standard that provides high coding efficiency while

supporting large resolutions. High Efficiency Video Coding [2] (H.265/HEVC) is the successor

video standard to the popular H.264/AVC. The first version of HEVC was ratified in January

2013 and it aims to provide a 50% reduction in bitrate at the same visual quality [3]. HEVC

achieves this compression by improving upon existing coding tools and developing new tools.

While both standards use the basic scheme of inter-frame and intra-frame prediction, inverse

transform, loop filter, and entropy coding, HEVC improves upon AVC in the following respects:

1) Hierarchical Coding Units: The picture is broken down into raster-scanned coding tree

units (CTU) which are fixed to 64×64, 32×32 or 16×16 in each picture. The CTU may be split

into four partitions in a recursive fashion down to coding units as small as 8×8. This recursive

split into 4 partitions is called quad-tree. Within a CTU, the coding units may use a mix of

intra and inter prediction which introduces new dependencies between intra and inter prediction

processing. AVC, on the other hand, uses a fixed macroblock size of 16×16 which may use

either all-inter or all-intra prediction.

2) Transform units (TU): Each coding unit is further recursively split into transform units.

HEVC Main Profile uses square TUs from 32×32 down to 4×4 with discrete cosine transform

for all sizes and discrete sine transform for 4×4. In addition, the pre-standard Working Draft

4 (WD4) [4] version implemented in this work also uses non-square TUs such as 32×8 and

16×4. This compares to the 8×8 and 4×4 transforms in AVC.

3

3) Prediction Units (PU): In HEVC, each CU may be partitioned into one, two or four

prediction units. In all, up to 7 different types of partitions are possible. Compared to AVC,

HEVC introduces 4 new asymmetric partitionings. Of these, only the square PUs may use

intra-prediction, and all PUs can use inter-prediction. The diversity in CU sizes combines

multiplicatively with the diversity in partitions thus giving 24 different PU sizes in HEVC

Main Profile. On the other hand, the AVC macroblock can be partitioned into square blocks and

symmetric blocks giving 7 types of macroblock partitions.

4) Intra Prediction: HEVC Main Profile uses 35 intra-prediction modes including planar, DC

and 33 angular modes. HEVC WD4 uses one more mode called LMChroma where luma pixels

are used to predict the chroma pixels. In comparison, AVC uses 10 intra-prediction modes.

5) Inter Prediction: PUs may be predicted from either one (uni-prediction) or two (bi-

prediction) reference locations from up to 16 previously decoded frames. For luma prediction,

HEVC uses an 8-tap interpolation filter compared to the 6-tap filter in AVC. The memory

bandwidth overhead of longer interpolation filters is largest for the smallest PUs. The smallest

PU in WD4 is 4×4, which would require up to two 11×11 reference pixel blocks. This is a 49%

increase over the 9×9 reference block required for AVC. To alleviate this worst-case memory

bandwidth increase, HEVC Main Profile does not use 4×4 PUs (i.e. partitioning an 8×8 CU

into four 4×4 PUs is disallowed). Also, 8×4 and 4×8 PUs may only use uni-prediction.

6) Loop Filter: The deblocking filter in HEVC is significantly simpler than in AVC. The

deblocking filter can use up to 4 input pixels on either side of the edge, and the edges lie on

an 8×8 grid. As a result, adjacent edges can be filtered independently. In WD4, dependencies

between computation of filter parameters of adjacent edges prevent parallel deblocking of 8×8

pixel blocks. This has been fixed in HEVC Main Profile. A new loop filter called “Sample

Adaptive Offset” (SAO) is introduced by HEVC. This work does not implement the SAO filter.

7) Entropy Coding: AVC entropy coding uses either context-based adaptive binary arithmetic

coding (CABAC) or context-adaptive variable length coding (CAVLC). In comparison, HEVC

Main Profile uses only CABAC to simplify the design of compliant decoders.

HEVC’s decoding complexity is found to be between 1.4× – 2× of AVC [5] when measured

in terms of cycle count for software. In hardware, however, the increased complexity of HEVC

entails significant increase in hardware complexity over traditional H.264/AVC decoders, both

at the top-level of the video decoder, and in the low-level processing blocks. For example, the

4

largest coding tree unit (CTU) is 16× larger than the AVC macroblock which increases on-

chip SRAM required for pipelining. Similarly, the inverse transform block needs a 16× larger

transpose memory and must be implemented in SRAM rather than registers to avoid a large area

cost. The main contributions of this work, detailed in the following sections, can be summarised

as follows:

1) A variable-size system pipeline is developed to reduce on-chip SRAM and handle different

CTU sizes.

2) Unified processing engines for prediction and transform are designed to manage the large

diversity of PU and TU sizes.

3) A four-parallel motion compensation (MC) cache is designed to address the increased

DRAM requirements.

Results for an ASIC test chip with these ideas are presented. The chip supports HEVC

Working Draft 4 Low Complexity mode without Sample Adaptive Offset. It has a throughput of

249 Mpixel/s when operating at 200 MHz, thus supporting 4K Ultra HD resolutions (3840×2160)

at 30 fps.

II. VARIABLE-SIZE SYSTEM PIPELINE

The main considerations for the system pipeline of the HEVC decoder are variable sizes of

the coding tree units (CTU), large size of the largest CTU and variable latency of the DRAM. As

mentioned before, HEVC can use CTUs of sizes 16×16, 32×32 and 64×64. The largest CTU

needs 6KB to store its luma and chroma pixels with 8-bit precision. The transform coefficients

and residue are computed with higher precision (16-bit and 9-bit, respectively) and require

larger storage accordingly. Other information such as intra-prediction mode, inter-prediction

motion vectors, etc. needs to be stored at a 4×4 granularity. Also, buffers are needed between

processing blocks that talk to the DRAM in order to accommodate its variable latency. All of

these require large pipeline buffers in SRAM and we implement several techniques to reduce

their size as detailed below.

A. Variable-size Pipeline Blocks

We call the unit of pipelining between processing engines on the video decoder as variable-

size pipeline block (VPB). VPB size is 64×64 for 64×64 CTU, 64×32 for 32×32 CTU, and

5

64×16 for 16×16 CTU. Thus, the VPB is as tall as the CTU but its width is fixed to 64 for a

unified control flow. In the case of a 16×16 CTU, the VPB stores four of them. The prediction

engine can now predict the luma pixels of the entire VPB before predicting the chroma pixels.

As compared to a CTU sized pipelining, this reduces the number of switches between luma and

chroma processing. As luma and chroma pixels are stored in different DRAM rows, reducing

the number of switches between them helps to reduce DRAM latency.

B. Split system pipeline

The issue of variable DRAM latency is especially problematic for motion compensation which

makes the most number of accesses to the external DRAM. A motion compensation cache is

used to reduce the bandwidth needed at the DRAM. This also improves the best-case latency to 3

cycles, which are needed for hit-miss resolution and cache read. However, the worse-case latency

remains more or less unchanged thus increasing the overall variability seen by the prediction

block. To deal with this, elastic pipelining must be used between the entropy decoder, which

sends read requests to the cache, and prediction, which reads data from the cache. As a result,

the system pipeline is broken into two groups. The first group contains the entropy decoder

while the second contains inverse transform, prediction and the subsequent deblocking filter.

This scheme is shown in Figure 1.

Entropy decoder uses collocated motion vectors from decoded pictures for motion vector

prediction. A separate pipeline stage, ColMV DMA is added prior to entropy decoder to read

collocated motion vectors from the DRAM. This isolates entropy decoder from the variable

DRAM latency. Similarly, an extra stage, reconstruction DMA, is added after deblocking filter

in the second pipeline group to write back fully reconstructed pixels to DRAM. Processing

engines are pipelined with VPB granularity within each group as shown in Figure 2. Pipelining

across the groups is explained next.

1) Pipelining between entropy decoder and inverse transform: The entropy decoder must send

residue coefficients and transform information such as quantization parameter and transform unit

size to the inverse transform block. As residue coefficients use 16-bit precision, 12k bytes of

SRAM is needed for luma and chroma coefficients of one VPB. For full pipelining, storage for

two VPBs is needed so that entropy decoder can write coefficients and inverse transform can read

coefficients of the previous VPB simultaneously. Thus, VPB pipelining would need 24k bytes

6

of SRAM. We avoid this by observing that the largest TU size is 32×32 (A 64×64 CU must

split its transform quadtree at least once). Hence, it is possible to use a 2-TU buffer instead. In

order to accommodate variable latency on the path between entropy decoder and prediction, this

TU buffer is implemented as a FIFO. Further, it requires only 4k bytes, thus saving 20k bytes of

SRAM.

2) Pipelining between entropy decoder and prediction: In HEVC, each CTU may contain

a mix of inter and intra CUs. Intra-prediction of a CU needs CUs to its left and top to be

partially reconstructed (i.e. predicted and residue-corrected but not in-loop filtered). To simplify

the control flow for the various CU quad-trees and respect the previous dependency, we schedule

prediction one VPB pipeline stage after inverse transform. As a side-effect, this increases the

delay between entropy decoder and prediction. To account for this delay, an extra stage called

MV dispatch is added to the first pipeline group after entropy decoder.

In the first pipeline group, a VPB-info line-buffer is used by entropy decoder for storing

prediction information of upper row CTUs. In the second pipeline group, the 9-bit residues are

passed from inverse transform to prediction using 2 VPB-sized SRAMs in ping-pong configura-

tion. Prediction, deblocking and reconstruction DMA communicate using 3 VPB-sized SRAMs

in a rotating buffer configuration as shown in Figure 3. A top-row line-buffer is used to store

pre-deblocked pixels – 4 luma rows and 2 chroma rows from the CTUs above. One row is

used as reference pixels for intra-prediction while all rows are used for deblocking. Deblocking

filter also needs access to prediction and transform information such are prediction mode, motion

vectors, reference picture indices, intra-prediction mode and quantization parameter to determine

filter parameters. These are also stored in the same top-row line-buffer. As a special case, the

last 4 rows in the picture are deblocked and stored in the same buffer without using any extra

space. These are then accessed by the reconstruction DMA block and written out to the DRAM.

DRAM writes are done in units of 8×4 pixels to improve MC cache efficiency, explained later

in section IV. This requires two more rows of chroma to be stored in the line-buffer. The

line-buffer is implemented as an SRAM 16-pixels wide and 2040 entries tall. Of these 2040

entries, four 3840 pixel-wide luma rows take 960 entries, eight 1920 pixel-wide chroma rows

take 960 entries, and one row of prediction and transform information for deblocking takes 120

entries. To reduce area, a single-port SRAM is used and requests from prediction, deblocking

and reconstruction DMA are arbitrated. The access patterns of the three blocks to the SRAM are

7

designed to minimize the amount of collisions and the arbitration scheme gives higher priority to

the deblocking filter as it has a lower margin in the cycle budget. This minimizes the performance

penalty of the SRAM sharing.

III. UNIFIED PROCESSING ENGINES

A. Entropy Coding

This work implements HEVC WD4 Low Complexity entropy decoding using context-based

adaptive variable length coding (CAVLC). The main challenge in HEVC entropy decoding is to

meet the throughput requirement for all sizes of coding units (CU). Large coding units present

a peculiar problem of being faster to decode, owing to better compression, but taking more time

to write out the decoded information. To solve this problem, two methods are proposed.

1) SRAM redirect scheme: Mode information in transferred from entropy decoder to prediction

at a fixed 4×4 pixel granularity, the size of the smallest PU. This simplifies control flow on

the prediction side which can read mode information based only on the current position in

the CTU irrespective of CU hierarchy and PU size. However, on the entropy decoder side,

this is disadvantageous for large PUs as one needs to write multiple copies of the same mode

information. To alleviate this problem, mode information is stored at a variable granularities of

4×4, 8×8, 4×16, 16×4 or 16×16. To keep reads simple, 6 bits per 16×16 block are used to

encode the granularity. Then, based on the pixel location and granularity, the actual address in

the SRAM is computed.

2) Zero flag for coefficients: Due to HEVC’s improved prediction, a large number of residue

coefficients in a transform unit are found to be zero. As seen in the histogram in Figure 4, most

transform units have less than 10% non-zero residue coefficients. The zero coefficients have

a large decoding throughput than non-zero coefficients but take the same number of cycles to

write out to the coeff SRAM. To match throughputs of decoding and writing out the non-zero

coefficients, a separate register array is used to store zero flags. At the start of decoding a TU,

all zero flags are set (all coefficients zero by default) and only non-zero coefficients are written

to the coeff SRAM.

Although the final HEVC standard dropped CAVLC in favour of context-based adaptive binary

arithmetic coding (CABAC), these proposed methods are useful for the CABAC coder as well.

8

B. Inverse Transform

The transform unit quad-tree starts from the coding unit and is recursively split into four

partitions. In HEVC WD4, these partitions may be square or non-square. For example, a 2N×2N

quad-tree node may be split into four square N ×N child nodes or four 2N × 0.5N nodes or

four 0.5N × 2N nodes depending upon the prediction unit shape. The non-square nodes may

also be split into square or non-square nodes. HEVC WD 4 uses eight transform unit (TU) sizes

- TU32×32, TU16×16, TU8×8, TU4×4, TU32×8, TU8×32, TU16×4, and TU4×16. All these TUs use

a fixed-point approximation of the type-2 Inverse discrete cosine transform (IDCT) with signed

8-bit coefficients. TU4×4 may also use a 4-point inverse discrete sine transform (IDST) if it

belongs to an intra-predicted CU. The main challenges in designing a HEVC inverse transform

block as compared to AVC are explained next and our solutions are summarized.

1) 1-D Inverse Transform: HEVC IDCT and IDST matrices use 8-bit precision constants as

compared to 5-bit constants for AVC. The constant multiplications can be implemented as shift-

and-adds, where 8-bit constants would need at most 4 adds while the 5-bit constants need at most

2. Further, the largest 1-D transform in HEVC is the 32-point IDCT, compared to the 8-point

IDCT in AVC. These two factors result in an 8×complexity increase in the transform logic. Some

of this complexity increase is alleviated by the fact that the 32-point IDCT can be recursively

decomposed into smaller IDCTs using a partial butterfly structure. However, even after this

simplification, a single cycle 32-point IDCT was found to require 145k gates on synthesis in the

target technology.

In this work, we perform partial matrix multiplication to compute a 1-D IDCT over multiple

cycles. Normally, this would require replacing constant-multipliers by full-multipliers and con-

stant look-up tables. For example, the 4×4 matrix-vector product that corresponds to the odd

decomposition of the 8-pt IDCT can be computed over four cycles using four multipliers and

four 4-entry look-up tables (4-LUTs) as shown in Figure 5. But we observe that the 16 constants

contain only 4 unique numbers differing only in sign and order in each row. This enables us

to use four constant multipliers. Further, these multipliers act on the same input coefficient,

so they can be optimized using multiple constant multiplication [6]. Thus, four multipliers and

four 4-LUTs are replaced by four adders. Similarly, the 8×8 and 16×16 matrix-vector products

corresponding to odd decompositions of 16-pt and 32-pt IDCT can be implemented using 8 and

9

13 adders respectively. With this optimization, the total area of the IDCT is brought down by

over 50% to 71k gates.

2) Transpose Memory using SRAM: In AVC decoders, transpose memory for inverse transform

are usually implemented as a register array with multiplexers for column-write and row-read. In

HEVC, however, a 32×32 transpose memory using a register array takes about 125k gates. To

reduce area, the transpose memory is designed using four single-port SRAMs for a throughput

of 4 pixel/cycle. When processing a new TU, the transpose memory is first written to by all the

column transforms, and then, the row transform is performed by reading from the transpose

memory. The transpose memory uses an interleaved memory mapping to write four pixels

column-wise, but read them row-wise. This scheme suffers from a pipeline stall when switching

from column to row transform due to the latency of writing the last column and the 1 cycle read

latency of the SRAM. To avoid this, a small 36-pixel register store is used in parallel with the

SRAMs.

C. Prediction

As mentioned previously, a coding tree unit (CTU) may contain a mix of inter and intra-

predicted coding units (CU). To support all intra/inter CU combinations in the same pipeline,

we unify inter and intra-prediction blocks into a single prediction block. Their throughputs

are aligned to 4 pixels/cycle allowing them to share the same reconstruction core as shown in

Figure 6.

1) Intra Prediction: HEVC WD4 Intra-prediction uses 36 modes compared to 10 modes in

AVC. Also, the largest PU is 64×64 which is 16 times larger than the AVC macroblock. To

simplify decoding flow for all possible prediction unit (PU) sizes, the largest two VPBs are broken

into 32×32 pipeline prediction blocks (PPB). Within each PPB, all luma pixels are predicted

before chroma irrespective of PU sizes. HEVC WD4 can use luma pixels to predict chroma

pixels in a mode called LMChroma. By breaking the VPB into four PPBs, the reconstructed luma

reference buffer for LMChroma is reduced. A mode-adaptive scheduling scheme is developed

to meet the required throughput of 2 pixels/cycle for all the intra modes.

2) Inter Prediction: Similar to intra-prediction, inter-prediction also splits the VPB into PPBs.

However, fractional motion compensation requires many more reference pixels due to the longer

interpolation filters in HEVC. To reduce SRAM for reference pixels, the PPBs are further broken

10

into sub-PPBs as shown in Figure 7. By avoiding PPB-level pipelining in inter-prediction, the

size of the reference pixel buffer is brought down from 44k bytes to 8k bytes. Depending on

pixel position and luma/chroma, one of 7 filters may be used by the interpolation filter. These

filters are jointly optimized using time-multiplexed multiple constant multiplication for a 15%

area reduction.

IV. MC CACHE WITH TWISTED 2D MAPPING

The 4K Ultra HD specification coupled with HEVC’s longer interpolation filters cause motion

compensation to occupy a significant portion of the available DRAM bandwidth. To address this

challenge we propose a MC cache which reuses reference pixel data shared amongst neighbouring

inter PUs. In addition to reducing the bandwidth requirement of motion compensation, the cache

also hides the variable latency of the DRAM. This provides a high throughput output to the

prediction engine. Table I summarizes the main specifications of the proposed MC cache for our

HEVC decoder.

A. Target DRAM System

Our target DRAM system is composed of two 64M×16-bit DDR3 DRAM modules with a 32

byte minimum access unit (MAU). We map a single MAU to a cache line. Consequently, our

mapping can be reused with any DRAM system that uses 32-byte MAUs. The MAU addresses

are 23-bits long and are split as: 13-bit row, 3-bit bank, 7-bit column. For simplicity, the DRAM

controller and DDR3 interface are implemented on a Virtex-6 FPGA. We use the Xilinx MIG

DRAM controller which supports a lazy precharge policy. Hence a row is only precharged when

an access is made to a different row in the same bank.

B. DRAM Latency Aware Memory Map

An ideal mapping of pixels to DRAM addresses should minimize the number of DRAM

accesses and the latency experienced by each access. We accomplish these goals by minimizing

the fetch of unused pixels and minimizing the number of row precharge/activate operations

respectively. Additionally we map the DRAM addresses to cache lines such that the number of

conflict misses is minimized.

11

Our latency aware memory mapping is shown in Figure 8. The luma color plane of a picture is

tiled by 256×128 pixel blocks in raster scan order. Each block maps to an entire row across all

eight banks. These blocks are then broken into eight 64×64 blocks which map to an individual

bank in each row. Within each 64×64 block, 32-byte MAUs map to 8×4 pixel blocks that are

tiled in a raster scan order. In Figure 8, the numbered square blocks correspond to 64×64 pixels

and the numbers stand for the bank they belong to. Note how the mapping of 128×128 pixel

blocks within each 256×128 regions alternates from left to right. Figure 8 shows this twisting

behaviour for a 128×128 pixel region composed of four 64×64 blocks that map to banks 0, 1,

2 and 3.

The chroma color plane is stored in a similar manner in different rows. The only notable

difference is that an 8×4 chroma MAU is composed of pixel-level interleaving of 4×4 Cr and

Cb blocks. This is done to exploit the fact that Cb and Cr have the same reference region.

1) Minimizing fetch of unused pixels: Since the MAU size is 32 bytes each access fetches

32 pixels, some of which may not belong to the current reference region as seen in Figure 9.

We minimize these by using an 8×4 MAU to exploit the rectangular geometry of the reference

region. When compared with a 32×1 cache line this reduces the amount of unused pixels fetched

for a given PU by 60% on average.

Since the fetched MAU are cached, unused pixels may be reused if they fall in the reference

region of a neighbouring PU. Reference MAUs used for prediction at the right edge of a CTU

can be reused when processing CTU to its right. However the lower CTU gets processed after

an entire CTU row in the picture. Due to limited size of the cache, MAUs fetched at the bottom

edge will be ejected and are not reused when predicting the lower CTU. When compared to

4×8 MAUs, 8×4 MAUs fetch more reusable pixels on the sides and less unused pixels on the

bottom. As seen in Figure 10(a), this leads to a higher hit-rate. This effect is more pronounced

for smaller CTU sizes where hit-rate may increase by up to 12%.

2) Minimizing row precharge and activation: Our proposed Twisted 2D mapping ensures that

pixels in different DRAM rows in the same bank are at least 64 pixels away in both vertical

and horizontal directions. It is unlikely that inter-prediction of two adjacent pixels will refer to

two entries so far apart. Additionally a single dispatch request issued by the MC engine can at

most cover 4 banks. It is possible to keep the corresponding rows in the four banks open and

then fetch the required data. These two factors help us minimize the number of row changes.

12

Experiments show that twisting leads to a 20% saving in bandwidth over a direct mapping as

seen in Table II

3) Minimizing conflict misses: We set the line index of a cache line to the 7 bit column address

of the MAU. Thus there are no conflicts within a bank in a given row and closest conflicting

addresses are 64 pixels apart. However there is a conflict between the same pixel location across

different pictures. Similarly luma and chroma pixels may conflict if they are stored in the same

column. Both these conflicts are tackled by ensuring sufficient associativity in the cache.

C. Four-Parallel Cache Architecture

This section describes the proposed micro-architecture of the four parallel MC cache. Our

architecture achieves this high throughput through datapath parallelism and by hiding the variable

DRAM latency. As seen in Figure 11, there are four parallel paths each outputting up to 32 pixels

(1 MAU) per cycle. Queues on each path can store up to 32 outstanding requests.

1) Four-Parallel Data Flow: The parallelism in the cache datapath allows up to 4 MAUs in a

row to be processed simultaneously. The MC cache must fetch at most 23×23 reference region

corresponding to a 16×16 sub-PPB. This may require up to 7 cycles as shown in Figure 9.

The address translation unit in Figure 11 reorders the MAUs based on the lowest 2 bits of the

column address. This maps each request to a unique datapath and allows us to split the tag

register file and cache SRAM into 4 smaller pieces. The cache tags for the missed cache lines

are are immediately updated when the lines are requested from DRAM. This pre-emptive update

ensures that future reads to the same cache line do not result in multiple requests to the DRAM.

2) Queue Management and Hazard Control: Each datapath has independent read and write

queues which help absorb the variable DRAM latency. The 32 deep read queue stores pending

requests to the SRAM. The 8 deep write queue stores pending cache misses which are yet to be

resolved by the DRAM. The write queue is shorter because we expect fewer cache misses. Thus

the cache allows for up to 32 pending requests to the DRAM. At the system level the latency

of fetching the data from the DRAM is hidden by allowing for a seperate MV dispatch stage

in the pipeline prior to the Prediction stage. Thus, while the reference data of a given block is

being fetched, the previous block is undergoing prediction.

Since the cache system allows multiple pending reads, a read queue may have two reads for

the same cache line resulting from two aliased MAUs. If the second read results in cache miss

13

a read-after-write hazard can occur when its data is written into the SRAM. The hazard control

unit in Figure 11 avoids this by writing the data only after the first read is complete. This is

accomplished by checking if the address of the first pending cache miss, matches any address

stored in the read queue. Note, we only need to check the entries in the read queue that occur

before the entry corresponding to this cache miss.

3) Cache Parameters: Figure 10(b) and Figure 10(c) shows the hit-rates observed as a function

of the cache size and associativity respectively. A cache size of 16k bytes was chosen since it

offered a good compromise between size and cache hit-rate. We selected a cache associativity of

4 because of the flexibility offered for Random Access frame structures. We observed that the

performance of FIFO replacement is as good as Least Recently Used due to the relatively regular

pattern of reference pixel data access. FIFO was chosen because of its simple implementation.

We selected a unified luma and chroma cache because ensuring sufficient associativity allows

us to accommodate both Random Access frame structures and different color planes.

D. Hit Rate Analysis, DRAM Bandwidth and Power

The rate at which data can be accessed from the DRAM depends on 2 factors: the number

of bits that the DRAM interface can (theoretically) transfer per unit time and the pre-charge

latency caused by the interaction between requests. We introduce the concepts of DATA BW

and ACT BW to normalize the impact of these 2 factors. DATA BW refers to the amount of

data that needs to be transferred from the DRAM to the decoder per unit time for real-time

operation. Thus, a better hit-rate reduces the DATA BW. ACT BW is the amount of data that

could have been transferred in the cycles that the DRAM was executing row change operation.

Thus, a better memory map reduces the ACT BW. The advantage of defining DATA BW and

ACT BW as mentioned above is that (DATA BW + ACT BW) is the minimum bandwidth

required at the memory interface to support real-time operation. The performance of our cache

is compared with two reference scenarios: a raster-scan address mapping and no cache and

a 16KB cache with the same raster scan address mapping. As seen in Figure 12(a), using a

16KB cache reduces the Data BW by 55%. The Twisted 2D mapping reduces ACT BW by

71% of the ACT BW. Thus, our proposed cache results in a 67% reduction of the total DRAM

bandwidth. Note that the theoretical maximum bandwidth of our DRAM system (two pieces

of DDR3 operating at 400 MHz) is 3.2GB/s which cannot support a cacheless system. Using

14

a simplified power consumption model [7] based on the number of accesses, we find that the

proposed cache saves up to 112mW. This is shown in Figure 12(b). The standby power is a

significant fraction of the DRAM power consumption since the Xilinx DRAM controller does

not implement a separate power-down mode.

Figure 12(c) compares the DRAM bandwidth across various encoder settings. We observe that

smaller CTU sizes result in a larger bandwidth because of lower hit-rates. Thus larger CTU sizes

such 64 can provide smaller external bandwidth at cost of higher on-chip complexity. We also

note that the Random Access mode typically has lower hit rate when compared to the Low Delay

mode. This behaviour is expected because the reference pictures are switched more frequently

in the former.

V. IMPLEMENTATION AND TEST RESULTS

The core size is 1.77mm
2 in 40nm CMOS, comprising 715K logic gates and 124KB of on-

chip SRAM. It is compliant to HEVC Test Model (HM) 4.0, and the supported decoding tools in

HEVC Working Draft (WD) 4 are listed in Table III along with the main specs. This chip achieves

249Mpixels/s decoding throughput for 4K Ultra HD videos at 200MHz with the target DDR3

SDRAM operating at 400MHz. The core power is measured for six different configurations as

shown in Figure 14. The average core power consumption for 4K Ultra HD decoding at 30fps is

76mW at 0.9V which corresponds to 0.31 nJ/pixel. The chip micrograph is shown in Figure 13

and the test system is shown in Figure 15. Logic and SRAM breakdown of the chip is shown in

Figure 16. Similar to AVC decoders, we observe that prediction has the most significant resource

utilization. However, we also observe that inverse transform is now significant due to the larger

transform units while deblocking filter is relatively small due to simplifications in the standard.

Power breakdown from post-layout power simulations with a bi-prediction bitstream is shown

in Figure 17. We observe that the MC cache takes up a significant portion of the total power.

However, the DRAM power saving due to the cache is about six times the cache’s own power

consumption.

Table IV shows the comparison with state-of-the-art video decoders. We observe that the

2× compression efficiency of HEVC comes at a proportionate cost in logic area. The SRAM

utilization is much higher due to larger coding units and use of on-chip line-buffers. Our cache

and 2D twisted mapping help reduce normalized DRAM power in spite of increased memory

15

bandwidth. Despite the increased complexity, this work demonstrates the lowest normalized

system power, which facilitates the use of HEVC on low-power portable devices for 4K Ultra

HD applications.

VI. CONCLUSIONS

A video decoder for the latest High Efficiency Video Coding standard supporting Ultra HD

resolution was presented. The main challenges of HEVC such as large coding tree units, hier-

archical coding and transform units and increased memory bandwidth from longer interpolation

filters were addressed in this work. In particular, a variable-sized split system pipeline was

developed to process the wide range of coding tree unit sizes and account for variable DRAM

latency. Unified processing engines for entropy decoding, inverse transform and prediction were

designed to simplify the decoding flow for the entire range of coding, transform and prediction

units. Mathematical features of the transform matrices were exploited to implement matrix-vector

product with a 50% area reduction. Finally, a high-throughput motion compensation cache was

designed in conjunction with a DRAM-aware memory map to provide 67% bandwidth savings.

A summary of our contributions is given in Table V.

ACKNOWLEDGEMENTS

Funding was provided by Texas Instruments. The authors thank the TSMC University Shuttle

Program for chip fabrication.

REFERENCES

[1] Cisco. (2012, May) Cisco visual networking index: Forecast and methodology, 2011 - 2016. [Online]. Available:

http://www.cisco.com/en/US/solutions/collateral/ns341/ns525/ns537/ns705/ns827/white paper c11-481360.pdf

[2] G. Sullivan, J. Ohm, W.-J. Han, and T. Wiegand, “Overview of the high efficiency video coding (HEVC) standard,” IEEE

Trans. Circuits Syst. Video Technol., vol. 22, no. 12, pp. 1649–1668, 2012.

[3] J. Ohm, G. Sullivan, H. Schwarz, T. K. Tan, and T. Wiegand, “Comparison of the coding efficiency of video coding

standards - including high efficiency video coding (HEVC),” IEEE Trans. Circuits Syst. Video Technol., vol. 22, no. 12,

pp. 1669–1684, 2012.

[4] B. Bross, W.-J. Han, J. Ohm, G. Sullivan, and T. Wiegand, “WD4: Working draft 4 of high-efficiency video coding,”

Document JCTVC-F803, 2011.

[5] J. Vanne, M. Viitanen, T. Hamalainen, and A. Hallapuro, “Comparative rate-distortion-complexity analysis of HEVC and

AVC video codecs,” IEEE Trans. Circuits Syst. Video Technol., vol. 22, no. 12, pp. 1885–1898, 2012.

http://www.cisco.com/en/US/solutions/collateral/ns341/ns525/ns537/ns705/ns827/white_paper_c11-481360.pdf

16

[6] M. Puschel, J. M. F. Moura, J. Johnson, D. Padua, M. Veloso, B. Singer, J. Xiong, F. Franchetti, A. Gacic, Y. Voronenko,

K. Chen, R. Johnson, and N. Rizzolo, “SPIRAL: code generation for DSP transforms,” Proc. IEEE, vol. 93, no. 2, pp.

232–275, 2005.

[7] Micron. DDR3 SDRAM system-power calculator. [Online]. Available: http://www.micron.com/products/support/power-calc

[8] D. Zhou, J. Zhou, J. Zhu, P. Liu, and S. Goto, “A 2Gpixel/s H.264/AVC HP/MVC video decoder chip for super hi-vision

and 3DTV/FTV applications,” in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, 2012, pp. 224–226.

[9] D. Zhou, J. Zhou, X. He, J. Zhu, J. Kong, P. Liu, and S. Goto, “A 530 Mpixels/s 4096x2160@60fps H.264/AVC high

profile video decoder chip,” IEEE J. Solid-State Circuits, vol. 46, no. 4, pp. 777 –788, Apr. 2011.

[10] T.-D. Chuang, P.-K. Tsung, P.-C. Lin, L.-M. Chang, T.-C. Ma, Y.-H. Chen, and L.-G. Chen, “A 59.5mW scalable/multi-

view video decoder chip for Quad/3D full HDTV and video streaming applications,” in IEEE Int. Solid-State Circuits

Conf. (ISSCC) Dig. Tech. Papers, 2010, pp. 330–331.

[11] V. Sze, D. F. Finchelstein, M. E. Sinangil, and A. P. Chandrakasan, “A 0.7-v 1.8-mW H.264/AVC 720p video decoder,”

IEEE J. Solid-State Circuits, vol. 44, no. 11, pp. 2943–2956, Nov. 2009.

[12] C. D. Chien, C. C. Lin, Y. H. Shih, H. C. Chen, C. J. Huang, C. Y. Yu, C. L. Chen, C. H. Cheng, and J. I. Guo, “A

252kgate/71mW multi-standard multi-channel video decoder for high definition video applications,” in IEEE Int. Solid-State

Circuits Conf. (ISSCC) Dig. Tech. Papers, 2007, p. 282603.

[13] C. Lin, J. Guo, H. Chang, Y. Yang, J. Chen, M. Tsai, and J. Wang, “A 160kgate 4.5kB SRAM h.264 video decoder for

HDTV applications,” in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, 2006, pp. 1596–1605.

Mehul Tikekar (S’10) received the B.Tech degree in electrical engineering from the Indian institute of

Technology Bombay, Mumbai, India, in 2010. He received the S.M. degree in electrical engineering and

computer science at the Massachusetts Institute of Technology, Cambridge, in 2012 where he is currently

pursuing the Ph.D. degree.

His research focuses on low power system design and hardware optimized video coding. Mr. Tikekar

was a recipient of the MIT Presidential Fellowship in 2011.

http://www.micron.com/products/support/power-calc

17

Chao-Tsung Huang received the B.S. degree from Department of Electrical Engineering, National Taiwan

University, in 2001, and the Ph.D. degree from Graduate Institute of Electronics Engineering, National

Taiwan University, in 2005. He is now with National Tsing Hua University, Taiwan, as an assistant

professor.

From 2005 to 2011, he worked for Novatek Microelectronics Corp., Taiwan, as a team leader responsible

for developing multi-standard image and video codecs. He performed postdoctoral research on an HEVC

decoder chip at Massachusetts Institute of Technology, Cambridge, from March 2011 to August 2012. He then worked on

light-field camera design as his postdoctoral research at National Taiwan University, Taiwan, until July 2013.

His research interests include light-field signal processing and high performance video coding, especially from algorithm

exploration to VLSI architecture design, chip implementation, and demo system. He received the MediaTek Fellowship from

2003 to 2005.

Chiraag Juvekar (S’12) received the B.Tech and M.Tech degrees in electrical engineering from the Indian

institute of Technology Bombay, Mumbai, India, in 2012. He is currently pursuing the S.M. and Ph.D.

degrees at Massachusetts Institute of Technology, Cambridge. His research focuses on low power system

design, hardware optimized video coding and hardware security. Mr. Juvekar was a recipient of the MIT

Presidential Fellowship in 2012.

18

Vivienne Sze (S’04-M’10) received the B.A.Sc. (Hons) degree in electrical engineering from the University

of Toronto, Toronto, ON, Canada, in 2004, and the S.M. and Ph.D. degree in electrical engineering from

the Massachusetts Institute of Technology (MIT), Cambridge, MA, in 2006 and 2010 respectively. She

received the Jin-Au Kong Outstanding Doctoral Thesis Prize, awarded for the best Ph.D. thesis in electrical

engineering at MIT in 2011.

Since August 2013, she has been with MIT as an Assistant Professor in the Electrical Engineering and

Computer Science Department. Her research interests include energy efficient algorithms and architectures for portable multimedia

applications. From September 2010 to July 2013, she was a Member of Technical Staff in the Systems and Applications R&D

Center at Texas Instruments (TI), Dallas, TX, where she designed low-power algorithms and architectures for video coding.

She also represented TI at the international JCT-VC standardization body developing HEVC, the next generation video coding

standard. Within the committee, she was the primary coordinator of the core experiment on coefficient scanning and coding.

Dr. Sze was a recipient of the 2007 DAC/ISSCC Student Design Contest Award and a co-recipient of the 2008 A-SSCC

Outstanding Design Award. She received the Natural Sciences and Engineering Research Council of Canada (NSERC) Julie

Payette fellowship in 2004, the NSERC Postgraduate Scholarships in 2005 and 2007, and the Texas Instruments Graduate

Woman’s Fellowship for Leadership in Microelectronics in 2008. In 2012, she was selected by IEEE-USA as one of the “New

Faces of Engineering”.

19

Anantha P. Chandrakasan (M’95-SM’01-F’04) received the B.S, M.S. and Ph.D. degrees in Electrical

Engineering and Computer Sciences from the University of California, Berkeley, in 1989, 1990, and

1994 respectively. Since September 1994, he has been with the Massachusetts Institute of Technology,

Cambridge, where he is currently the Joseph F. and Nancy P. Keithley Professor of Electrical Engineering.

He was a co-recipient of several awards including the 1993 IEEE Communications Society’s Best

Tutorial Paper Award, the IEEE Electron Devices Society’s 1997 Paul Rappaport Award for the Best

Paper in an EDS publication during 1997, the 1999 DAC Design Contest Award, the 2004 DAC/ISSCC Student Design Contest

Award, the 2007 ISSCC Beatrice Winner Award for Editorial Excellence and the ISSCC Jack Kilby Award for Outstanding

Student Paper (2007, 2008, 2009). He received the 2009 Semiconductor Industry Association (SIA) University Researcher Award.

He is the recipient of the 2013 IEEE Donald O. Pederson Award in Solid-State Circuits.

His research interests include micro-power digital and mixed-signal integrated circuit design, wireless microsensor system

design, portable multimedia devices, energy efficient radios and emerging technologies. He is a co-author of Low Power Digital

CMOS Design (Kluwer Academic Publishers, 1995), Digital Integrated Circuits (Pearson Prentice-Hall, 2003, 2nd edition), and

Sub-threshold Design for Ultra-Low Power Systems (Springer 2006). He is also a co-editor of Low Power CMOS Design (IEEE

Press, 1998), Design of High-Performance Microprocessor Circuits (IEEE Press, 2000), and Leakage in Nanometer CMOS

Technologies (Springer, 2005).

He has served as a technical program co-chair for the 1997 International Symposium on Low Power Electronics and Design

(ISLPED), VLSI Design ’98, and the 1998 IEEE Workshop on Signal Processing Systems. He was the Signal Processing Sub-

committee Chair for ISSCC 1999-2001, the Program Vice-Chair for ISSCC 2002, the Program Chair for ISSCC 2003, the

Technology Directions Sub-committee Chair for ISSCC 2004-2009, and the Conference Chair for ISSCC 2010-2012. He is the

Conference Chair for ISSCC 2013. He was an Associate Editor for the IEEE Journal of Solid-State Circuits from 1998 to 2001.

He served on SSCS AdCom from 2000 to 2007 and he was the meetings committee chair from 2004 to 2007. He was the

Director of the MIT Microsystems Technology Laboratories from 2006 to 2011. Since July 2011, he is the Head of the MIT

EECS Department.

20

LIST OF FIGURES

1 System pipelining for HEVC decoder . 22

2 Split system pipeline groups to address DRAM latency 23

3 Memory management in second pipeline group . 24

4 Transform coefficient statistics . 25

5 4×4 matrix-vector product optimization . 26

6 Unified Prediction Engine Architecture . 27

7 Sub-PPB pipelining for inter-prediction . 28

8 Latency Aware DRAM mapping . 29

9 Example MC cache dispatch order . 30

10 Cache hit rate as a function of cache parameters 31

11 Four-parallel cache architecture . 32

12 Comparison of DDR3 bandwidth and power consumption 33

13 Chip Micrograph . 34

14 Core Power Measurements . 35

15 Test Setup for HEVC Video Decoder . 36

16 Logic and SRAM utilization . 37

17 Post-layout power simulation . 38

21

LIST OF TABLES

I Overview of MC Cache Specifications . 39

II Comparison of Twisted 2D Mapping and Direct 2D Mapping 40

III Chip Specifications . 41

IV Comparison with state-of-the-art video decoders 42

V Summary of contributions . 43

FIGURES 22

VPB Info for
Entropy Decoder

Coeff Deblock

MC
Cache

Rec
DMA

Ref
Pixel

4 Pixel Rows for
Prediction, Deblock, Rec DMA

Line Buffers

Residue
Inverse

Transform
Prediction

MV Info Group II

Memory Interface Arbiter

Top
Control

ColMV

ColMV
DMA

Group I

Entropy
Decoder

MV
Dispatch

DB InfoVPB/Top Info

Pixel flow

Info flow

SRAM

Processing
Engine

DMA flow

Legend

Fig. 1. System pipelining for HEVC decoder. Coeff buffer saves 20k bytes of SRAM by TU pipelining. Connections to Line

Buffers are omitted in the figure for clarity (see Figure 3 for details).

FIGURES 23

ColMV DMA
Entropy Decoder

MV Dispatch

0 1 2 3

0 1 2

0 1 2 3

0 1 2

0 1

0

Accommodate MC Cache
Latency

Inverse Transform

Prediction

Deblock

REC DMA

Variable-size
Pipeline Block (VPB)

Coeff as TU FIFO

0 1 2 3 4

G
ro

u
p

 I
G

ro
u

p
 I
I

Fig. 2. Split system pipeline to address variable DRAM latency. Within each group, variable-sized pipeline block-level pipelining

is used.

FIGURES 24

1 VPB
SRAM

Prediction Deblocking
Rec
DMA

SRAM Arbiter
Inter ref pixels

DRAM
Write

Intra ref pixels Bottom 4 rows in picture

8bits/pixel x 16pixel x 2040

Rotating Pipeline Buffer (8bits/pixel)

4 4 4

16

1 VPB
SRAM

1 VPB
SRAM

Inverse
Transform

Ref
Pixel

1 VPB
SRAM

1 VPB
SRAM

4 Ping-pong Residue
Buffer (9bits/pixel)

Top-row line buffer

TU FIFO Pipeline Group II

Fig. 3. Memory management in second pipeline group. A 2-VPB ping-pong and a 3-VPB rotating buffer are used as pipeline

buffers. A single-port SRAM is used for top row buffer to save area and access to it is arbitrated. Marked bus widths denote

SRAM data width in pixels (bytes).

FIGURES 25

0.0 0.1 0.2 0.3 0.4 0.5
Fraction of non-zero coefficients

0

5

10

15

20

25

30

35

40

N
o
rm

a
liz

e
d
 n

u
m

b
e
r

o
f

T
ra

n
fo

rm
 U

n
it

s

Fig. 4. Histogram of fraction of non-zero coefficients in transform units for Old Town Cross encoded in Random Access with

64×64 CTU and quantization parameter 35 ∼ 39. For this large quantization, most transform units have less than 10% non-zero

coefficients.

FIGURES 26

i

18 75 50 89

Permute and
Negate

xi

<< 8<< 4<< 3

<< 1<< 1

xi

18xi 75xi 50xi 89xi

9xi 25xi

64xi

y0 y1 y2 y3

i = 0..3

18

50

75

89

-50

-89

-18

75

75

18

-89

50

-89

75

-50

18

xi

Generic Implementation

Exploiting features of
HEVC matrix to use
constant multipliers

Further optimization
using MCM

Fig. 5. 4×4 matrix-vector product using multiple constant multiplication. The generic implementation uses four multipliers

and 4-LUTs. HEVC-specific optimizations enable area-efficient implementation using 4 adders.

FIGURES 27

Inter
2-D filter

Fetch
Reorder

Intra
Prediction

Intra
Preparation

LMChroma
PPB buffer

VPB
Boundary

Group II
Pipeline
Buffer

Residue
Buffer

Ref
Pixel Top-row

Line buffer

Inter Core Intra Core Reconstruction

4 4

4

Fig. 6. Unified prediction engine consisting of inter and intra prediction cores sharing the reconstruction core

FIGURES 28

PPB
0

0 1 2 3 4 5

MC

Dispatch

MC Cache

Output

Prediction

Sub-PPB

PPB: Prediction Pipeline Block

PPB
1

0 1 2

PPB
0

0 1 2 3 4 5

PPB
0

0 1 2 3 4 5

0

Cache
Latency

Sub-PPB
Pipelining

Save 36KB Ref Pixel SRAM

PPB
0

PPB
1

PPB
2

PPB
3

PPB
0

PPB
1

PPB
0

VPB 64x64 64x32 64x16

PPB
(Stage 1)

Sub-PPB
(Stage 2)

0 1

2 3

4
5

Y U/V

0 1 2 3

4 5

Fig. 7. Variable-size pipeline blocks are broken down into sub-prediction pipeline blocks to save 36k bytes of SRAM in

reference pixel storage

FIGURES 29

0 1

2 3

4 5

6 7

0 1 4 5 0 1

2 3

0 1

2 3

1

2 3

4 5

6 7

4 5

6 7

0

2 3

5

7

0 1

2 3

4 5

6 7

2

0

4

6

3 6 7

1

0x00 0x01 0x02 0x03 0x04 0x05 0x06 0x07

0x08 0x09 0x0A 0x0B 0x0C 0x0D 0x0E 0x0F

0x10 0x11 0x12 0x13 0x14 0x15 0x16 0x17

0x78 0x79 0x7A 0x7B 0x7C 0x7D 0x7E 0x7F

..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
. Col Addr: 0x17

7b00101 11

Twisting of 128x128 pixel blocks

Reduces Precharge & Activate

256x128 pixel block

8 Banks in 1 Row

64x64 pixel block (1 Bank: 128 MAU)
DRAM Latency Aware

Memory Mapping

8x4 pixel MAU Tiling

7bit Column Address

Last 2bits: Cache Datapath

0 1 2 3 0 1

Cache Datapath Index

2 3

Fig. 8. Latency Aware DRAM mapping. 128 8×4 MAUs arranged in raster scan order make up one block. The twisted

structure increases the horizontal distance between two rows in the same bank. Note how the MAU columns are partitioned into

4 datapaths (based on the last 2 bits of column address) of the four-parallel cache architecture.

FIGURES 30

MAU

16x16 Predicted

28 Cachelines Fetched

23 x23 Reference Region

0 1 2 3 0 1

Cache Datapath Index

Fig. 9. The example MC cache dispatch for a 23×23 reference region of a 16×16 sub-PPB. 7 cycles are required to fetch

the 28 MAU at 4 MAU per cycle. Note that dispatch region need not be aligned with the four parallel cache datapaths, thus

requiring a reordering. In this example, the region starts from datapath #1.

FIGURES 31

40%

50%

60%

70%

CTU-64 CTU-32 CTU-16

MAU 8x4

MAU 4x8

Hit
Rate

(a) Cache line Geometry

40%

50%

60%

70%

4KB 8KB 16KB 32KB

Hit
Rate

(b) Cache Size

40%

50%

60%

70%

1-way 2-way 4-way 8-way

Hit
Rate

(c) Cache Associativity

Fig. 10. Cache hit rate as a function of CTU size, cache line geometry, cache-size and associativity. Experiments averaged

over six sequences - Basketball Drive, Park Scene, Tennis, Crowd Run, Old Town Cross and Park Joy. The first are Full HD

(240 pictures each) and the last three are 4K Ultra HD (120 pictures each). CTU size of 64 is used for the cache-size and

associativity experiments.

FIGURES 32

Address

Translation
Hit/Miss

Resolution

Read &

Write

Queues Cache

SRAM

Banks

DMA

ControlTag

Register File

Memory Interface Arbiter
DMA

Bus

Four-Parallel MC Cache

From

Dispatch
To

Prediction

Hazard

Detection

Circuit

WR Queue

RD Queue

...H
n

H
1

H
0

To SRAM

Hazard

Detected

RD index at

WR queue

head

<
i

=

RD

Addr

WR

Addr
Hit

AND

Hazard at ith RD: H
i

Fig. 11. Proposed four-parallel MC cache architecture with 4 independent datapaths. The hazard detection circuit is shown in

detail.

FIGURES 33

1627

738 738

1874

1475

428

0

1000

2000

3000

4000

RS Mapping

+ sPPB Sharing

RS Mapping

+ 16KB Cache

Proposed

Cache

ACT

Data

BW (Mbyte/s)

3501

2213

1166

-21%

-55%

-71%

(a) Bandwidth Comparison

90.4 90.4 90.4

123.5

56.0 56.0

57.0

44.9

0.0

100.0

200.0

300.0

RS Mapping

+ sPPB Sharing

RS Mapping

+ 16KB Cache

Proposed

Cache

ACT
Data
Standby

Power (mW)

270.9

191.3

158.9

(b) Power Comparison

528 553
685

822 850
989

219 183

204

667 659
636

0

400

800

1200

1600

CTU-64

LD

CTU-32

LD

CTU-16

LD

CTU-64

RA

CTU-32

RA

CTU-16

RA

ACT

Data

BW (Mbyte/s)

747

889

1489

736

1509

1625

(c) BW across sequences

Fig. 12. Comparison of DDR3 bandwidth and power consumption across 3 scenarios. RS mapping maps all the MAUs in a

raster scan order. ACT corresponds to the power and bandwidth induced by DRAM Precharge/Activate operations.

FIGURES 34

Fig. 13. Chip micrograph. Main processing engines are highlighted and light grey regions represent on-chip SRAMs.

FIGURES 35

64x64/LD 32x32/LD 16x16/LD 64x64/RA 32x32/RA 16x16/RA

0

10

20

30

40

50

60

70

80

90

25 MHz
(1280x720 30fps)

100 MHz
(1920x1080 60fps)

200 MHz
(3840x2160 30fps)

Encoding Configuration (CTU Size/Reference picture setting)

P
o
w

e
r

(m
W

)

Fig. 14. Core power is measured for six different combinations - Random Access and Low Delay encoder configurations each

with all three sizes of coding tree units. The core power is more or less constant due to our unified design.

FIGURES 36

Fig. 15. Test setup for HEVC video decoder. The chip is connected to Virtex-6 FPGA on Xilinx ML605 development board.

The decoded 4K Ultra HD (3840×2160) output of the chip is displayed on four Full HD (1920×1080) monitors.

FIGURES 37

MC cache
126

Deblock
49.9

Entropy Decoder
94.5

Inverse Transform
121.1

Memory Interface Arbiter
13.7

Prediction
191.9

RegFiles
75.5

Others
42

(a) Logic utilization in kgates (total 715 kgates)

Pipeline Buffers
447.3

MC-related SRAM
200.4

Line Buffers
337

Others
32.8

(b) SRAM utilization in kbits (total 1018 kbits)

Fig. 16. Logic and SRAM utilization for each processing engine.

FIGURES 38

Prediction
23%

Deblocking
3%

MC Cache
26%

Inverse Transform
17%

Memory Interface Arbiter
2%

Entropy Decoder
3%

Line Buffers
2%

Pipeline Buffers
10%

Others
13%

Fig. 17. Relative power consumption of processing engines and SRAMs from post-layout simulation with bi-prediction

TABLES 39

TABLE I

OVERVIEW OF MC CACHE SPECIFICATIONS

Cache line 32 Bytes (8×4 MAU)

Cache SRAM 16KB (512 cache lines)

Set-Associativity 4 Way

Tag Register File 128×70-bit

Y/UV Scheme Unified cache

Replacement Rule FIFO Policy

DRAM Mapping Twisted 2D Mapping

TABLES 40

TABLE II

COMPARISON OF TWISTED 2D MAPPING AND DIRECT 2D MAPPING

Encoding Mode LD RA

CTU Size 64 32 16 64 32 16

ACT BW Direct 2D 272 227 232 690 679 648

(MBytes/s) Twisted 2D 219 183 204 667 659 636

Gain 20% 20% 12% 3% 3% 2%

TABLES 41

TABLE III

CHIP SPECIFICATIONS

Technology TSMC 40 nm CMOS

Supply Voltage Core: 0.9 V, I/O: 2.5 V

Chip Size 2.18mm×2.18mm

Core Size 1.33mm×1.33mm

Gate Count 715K (2-input NAND)

On-Chip SRAM 124k bytes

Maximum Throughput 249 Mpixel/s @ 200 MHz

Decoding Tools

HEVC/H.265 WD4 (HM 4.0 low complexity w/o SAO)

CTU size: 64×64, 32×32, 16×16

B-frame: Low Delay(LD)/Random Access(RA)

Symmetric and asymmetric motion partitions: 4×4 - 64×64

Square and non-square transform units: 4×4 - 32×32

All intra modes: DC, Planar, 33 Angular, LMChroma

Measured Core Power

76 mW @ 0.9 V 200 MHz, 3840×2160 @ 30fps (average)

51 mW @ 0.9 V 100 MHz, 1920×1080 @ 60fps (average)

31 mW @ 0.9 V 25 MHz, 1280×720 @ 30fps (average)

TABLES 42

TABLE IV

COMPARISON WITH STATE-OF-THE-ART VIDEO DECODERS

This Work ISSCC’12

[8]

JSSC’11

[9]

ISSCC’10

[10]

JSSC’09

[11]

ISSCC’07

[12]

ISSCC’06

[13]

Standard HEVC/H.265

WD4

H.264/AVC

HP/MVC

H.264 HP H.264/AVC

HP

SVC/MVC

H.264/AVC

BP

JPEG,

MPEG-1/2,

MPEG-4,

H.264 BP

H.264/AVC

MP

Max

Specification

3840×2160

@ 30fps

7860×4320

@ 60fps

4096x2160

@ 60fps

4096×2160

@ 24fps

1280×720

@ 30fps

1920×1088

@ 30fps

1920×1080

@ 30fps

Gate count 715K 1338K 662K 414K 315K 252K 160K

On-chip

SRAM

124KB 80KB 60KB 9KB 17KB 5KB 5KB

Technology 40nm/0.9V 65nm/1.2V 90nm/1.0V 90nm/1.0V 65nm/0.7V,

0.85V

130nm/1.2V 0.18µm/1.8V

Core power 76mW 410mW 189mW 60mW 1.8mW 71mW 320mW

Normalized

core power

0.31nJ/pixel 0.21nJ/pixel 0.36nJ/pixel 0.28nJ/pixel 0.07nJ/pixel 1.13nJ/pixel 5.11nJ/pixel

Normalized

DRAM power

0.88nJ/pixel 1.27nJ/pixel 1.11nJ/pixel N/A N/A N/A N/A

Normalized

system power

1.19nJ/pixel 1.48nJ/pixel 1.47nJ/pixel N/A N/A N/A N/A

DRAM

configuration

32b DDR3 64b DDR2 64b DDR N/A ZBT SRAM SDR 32b DDR +

32b SDR

TABLES 43

TABLE V

SUMMARY OF CONTRIBUTIONS

HEVC/System feature Implementation challenge Proposed solution

Diverse CTU sizes Complicated control flow Variable-sized pipeline blocks

Large 64×64 CTU size Large pipeline buffers TU-pipelining between entropy and transform engines

PPB-pipelining within prediction engine

Diverse PU, TU sizes Complicated control flow SRAM redirect scheme in entropy decoder

Sub-PPB pipelining within prediction engine

Unified transform processing engine

32×32 Largest TU size Large area of transform Multiple-constant multiplication for area reduction

Longer interpolation filters High DRAM bandwidth High throughput MC cache design

Variable DRAM latency Pipeline stalls Split system pipeline

DRAM latency aware memory mapping

