123 research outputs found

    Digital Filters and Signal Processing

    Get PDF
    Digital filters, together with signal processing, are being employed in the new technologies and information systems, and are implemented in different areas and applications. Digital filters and signal processing are used with no costs and they can be adapted to different cases with great flexibility and reliability. This book presents advanced developments in digital filters and signal process methods covering different cases studies. They present the main essence of the subject, with the principal approaches to the most recent mathematical models that are being employed worldwide

    Optimal Piezoelectric Actuators and Sensors Configuration for Vibration Suppression of Aircraft Framework Using Particle Swarm Algorithm

    Get PDF
    Numbers and locations of sensors and actuators play an important role in cost and control performance for active vibration control system of piezoelectric smart structure. This may lead to a diverse control system if sensors and actuators were not configured properly. An optimal location method of piezoelectric actuators and sensors is proposed in this paper based on particle swarm algorithm (PSA). Due to the complexity of the frame structure, it can be taken as a combination of many piezoelectric intelligent beams and L-type structures. Firstly, an optimal criterion of sensors and actuators is proposed with an optimal objective function. Secondly, each order natural frequency and modal strain are calculated and substituted into the optimal objective function. Preliminary optimal allocation is done using the particle swarm algorithm, based on the similar optimization method and the combination of the vibration stress and strain distribution at the lower modal frequency. Finally, the optimal location is given. An experimental platform was established and the experimental results indirectly verified the feasibility and effectiveness of the proposed method

    Designs of Digital Filters and Neural Networks using Firefly Algorithm

    Get PDF
    Firefly algorithm is an evolutionary algorithm that can be used to solve complex multi-parameter problems in less time. The algorithm was applied to design digital filters of different orders as well as to determine the parameters of complex neural network designs. Digital filters have several applications in the fields of control systems, aerospace, telecommunication, medical equipment and applications, digital appliances, audio recognition processes etc. An Artificial Neural Network (ANN) is an information processing paradigm that is inspired by the way biological nervous systems, such as the brain, processes information and can be simulated using a computer to perform certain specific tasks like clustering, classification, and pattern recognition etc. The results of the designs using Firefly algorithm was compared to the state of the art algorithms and found that the digital filter designs produce results close to the Parks McClellan method which shows the algorithm’s capability of handling complex problems. Also, for the neural network designs, Firefly algorithm was able to efficiently optimize a number of parameter values. The performance of the algorithm was tested by introducing various input noise levels to the training inputs of the neural network designs and it produced the desired output with negligible error in a time-efficient manner. Overall, Firefly algorithm was found to be competitive in solving the complex design optimization problems like other popular optimization algorithms such as Differential Evolution, Particle Swarm Optimization and Genetic Algorithm. It provides a number of adjustable parameters which can be tuned according to the specified problem so that it can be applied to a number of optimization problems and is capable of producing quality results in a reasonable amount of time

    On Applications of New Soft and Evolutionary Computing Techniques to Direct and Inverse Modeling Problems

    Get PDF
    Adaptive direct modeling or system identification and adaptive inverse modeling or channel equalization find extensive applications in telecommunication, control system, instrumentation, power system engineering and geophysics. If the plants or systems are nonlinear, dynamic, Hammerstein and multiple-input and multiple-output (MIMO) types, the identification task becomes very difficult. Further, the existing conventional methods like the least mean square (LMS) and recursive least square (RLS) algorithms do not provide satisfactory training to develop accurate direct and inverse models. Very often these (LMS and RLS) derivative based algorithms do not lead to optimal solutions in pole-zero and Hammerstein type system identification problem as they have tendency to be trapped by local minima. In many practical situations the output data are contaminated with impulsive type outliers in addition to measurement noise. The density of the outliers may be up to 50%, which means that about 50% of the available data are affected by outliers. The strength of these outliers may be two to five times the maximum amplitude of the signal. Under such adverse conditions the available learning algorithms are not effective in imparting satisfactory training to update the weights of the adaptive models. As a result the resultant direct and inverse models become inaccurate and improper. Hence there are three important issues which need attention to be resolved. These are : (i) Development of accurate direct and inverse models of complex plants using some novel architecture and new learning techniques. (ii) Development of new training rules which alleviates local minima problem during training and thus help in generating improved adaptive models. (iii) Development of robust training strategy which is less sensitive to outliers in training and thus to create identification and equalization models which are robust against outliers. These issues are addressed in this thesis and corresponding contribution are outlined in seven Chapters. In addition, one Chapter on introduction, another on required architectures and algorithms and last Chapter on conclusion and scope for further research work are embodied in the thesis. A new cascaded low complexity functional link artificial neural network (FLANN) structure is proposed and the corresponding learning algorithm is derived and used to identify nonlinear dynamic plants. In terms of identification performance this model is shown to outperform the multilayer perceptron and FLANN model. A novel method of identification of IIR plants is proposed using comprehensive learning particle swarm optimization (CLPSO) algorithm. It is shown that the new approach is more accurate in identification and takes less CPU time compared to those obtained by existing recursive LMS (RLMS), genetic algorithm (GA) and PSO based approaches. The bacterial foraging optimization (BFO) and PSO are used to develop efficient learning algorithms to train models to identify nonlinear dynamic and MIMO plants. The new scheme takes less computational effort, more accurate and consumes less input samples for training. Robust identification and equalization of complex plants have been carried out using outliers in training sets through minimization of robust norms using PSO and BFO based methods. This method yields robust performance both in equalization and identification tasks. Identification of Hammerstein plants has been achieved successfully using PSO, new clonal PSO (CPSO) and immunized PSO (IPSO) algorithms. Finally the thesis proposes a distributed approach to identification of plants by developing two distributed learning algorithms : incremental PSO and diffusion PSO. It is shown that the new approach is more efficient in terms of accuracy and training time compared to centralized PSO based approach. In addition a robust distributed approach for identification is proposed and its performance has been evaluated. In essence the thesis proposed many new and efficient algorithms and structure for identification and equalization task such as distributed algorithms, robust algorithms, algorithms for ploe-zero identification and Hammerstein models. All these new methods are shown to be better in terms of performance, speed of computation or accuracy of results

    FIR Digital Filter and Neural Network Design using Harmony Search Algorithm

    Get PDF
    Harmony Search (HS) is an emerging metaheuristic algorithm inspired by the improvisation process of jazz musicians. In the HS algorithm, each musician (= decision variable) plays (= generates) a note (= a value) for finding the best harmony (= global optimum) all together. This algorithm has been employed to cope with numerous tasks in the past decade. In this thesis, HS algorithm has been applied to design digital filters of orders 24 and 48 as well as the parameters of neural network problems. Both multiobjective and single objective optimization techniques were applied to design FIR digital filters. 2-dimensional digital filters can be used for image processing and neural networks can be used for medical image diagnosis. Digital filter design using Harmony Search Algorithm can achieve results close to Parks McClellan Algorithm which shows that the algorithm is capable of solving complex engineering problems. Harmony Search is able to optimize the parameter values of feedforward network problems and fuzzy inference neural networks. The performance of a designed neural network was tested by introducing various noise levels at the testing inputs and the output of the neural networks with noise was compared to that without noise. It was observed that, even if noise is being introduced to the testing input there was not much difference in the output. Design results were obtained within a reasonable amount of time using Harmony Search Algorithm

    Multipurpose Programmable Integrated Photonics: Principles and Applications

    Full text link
    [ES] En los últimos años, la fotónica integrada programable ha evolucionado desde considerarse un paradigma nuevo y prometedor para implementar la fotónica a una escala más amplia hacia convertirse una realidad sólida y revolucionaria, capturando la atención de numerosos grupos de investigación e industrias. Basada en el mismo fundamento teórico que las matrices de puertas lógicas programables en campo (o FPGAs, en inglés), esta tecnología se sustenta en la disposición bidimensional de bloques unitarios de lógica programable (en inglés: PUCs) que -mediante una programación adecuada de sus actuadores de fase- pueden implementar una gran variedad de funcionalidades que pueden ser elaboradas para operaciones básicas o más complejas en muchos campos de aplicación como la inteligencia artificial, el aprendizaje profundo, los sistemas de información cuántica, las telecomunicaciones 5/6-G, en redes de conmutación, formando interconexiones en centros de datos, en la aceleración de hardware o en sistemas de detección, entre otros. En este trabajo, nos dedicaremos a explorar varias aplicaciones software de estos procesadores en diferentes diseños de chips. Exploraremos diferentes enfoques de vanguardia basados en la optimización computacional y la teoría de grafos para controlar y configurar con precisión estos dispositivos. Uno de estos enfoques, la autoconfiguración, consiste en la síntesis automática de circuitos ópticos -incluso en presencia de efectos parasitarios como distribuciones de pérdidas no uniformes a lo largo del diseño hardware, o bajo interferencias ópticas y eléctricas- sin conocimiento previo sobre el estado del dispositivo. Hay ocasiones, sin embargo, en las que el acceso a esta información puede ser útil. Las herramientas de autocalibración y autocaracterización nos permiten realizar una comprobación rápida del estado de nuestro procesador fotónico, lo que nos permite extraer información útil como la corriente eléctrica que suministrar a cada actuador de fase para cambiar el estado de su PUC correspondiente, o las pérdidas de inserción de cada unidad programable y de las interconexiones ópticas que rodean a la estructura. Estos mecanismos no solo nos permiten identificar rápidamente cualquier PUC o región del chip defectuosa en nuestro diseño, sino que también revelan otra alternativa para programar circuitos fotónicos en nuestro diseño a partir de valores de corriente predefinidos. Estas estrategias constituyen un paso significativo para aprovechar todo el potencial de estos dispositivos. Proporcionan soluciones para manejar cientos de variables y gestionar simultáneamente múltiples acciones de configuración, una de las principales limitaciones que impiden que esta tecnología se extienda y se convierta en disruptiva en los próximos años.[CA] En els darrers anys, la fotònica integrada programable ha evolucionat des de considerarse un paradigma nou i prometedor per implementar la fotònica a una escala més ampla cap a convertir-se en una realitat sòlida i revolucionària, capturant l'atenció de nombrosos grups d'investigaciò i indústries. Basada en el mateix fonament teòric que les matrius de portes lògiques programable en camp (o FPGAs, en anglès), aquesta tecnología es sustenta en la disposición bidimensional de blocs units lògics programables (en anglès: PUCs) que -mitjançant una programación adequada dels seus actuadors de fase- poden implementar una gran varietat de funcionalitats que poden ser elaborades per a operacions bàsiques o més complexes en molts camps d'aplicació com la intel·ligència artificial, l'aprenentatge profund, els sistemes d'informació quàntica, les telecomunicacions 5/6-G, en xarxes de comutació, formant interconnexions en centres de dades, en l'acceleració de hardware o en sistemes de detecció, entre d'altres. En aquest treball, ens dedicarem a explorar diverses capatitats de programari d'aquests processadors en diferents dissenys de xips. Explorem diferents enfocaments de vanguardia basats en l'optimització computacional i la teoría de grafs per controlar i configurar amb precisió aquests dispositius. Un d'aquests enfocaments, l'autoconfiguració, tracta de la síntesi automática de circuits òptics -fins i tot en presencia d'efectes parasitaris com ara pèrdues no uniformes o crosstalk òptic i elèctric- sense cap coneixement previ sobre l'estat del dispositiu. Tanmateix, hi ha ocasions en les quals l'accés a aquesta información pot ser útil. Les eines d'autocalibració i autocaracterització ens permeten realizar una comprovació ràpida de l'estat del nostre procesador fotònic, el que ens permet obtener informació útil com la corrent eléctrica necessària per alimentar cada actuador de fase per canviar l'estat del seu PUC corresponent o la pèrdua d'inserció de cada unitat programable i de les interconnexions òptiques que envolten l'estructura. Aquests mecanisms no només ens permeten identificar ràpidament qualsevol PUC o área del xip defectuosa en el nostre disseny , sinó que també ens mostren una altra alternativa per programar circuits fotònics en el nostre disseny a partir de valors de corrent predefinits. Aquestes estratègies constitueixen un pas gegant per a aprofitar tot el potencial d'aquests dispositius. Proporcionen solucions per a gestionar centenars de variables i alhora administrar múltiples accions de configuració, una de les principals limitacions que impideixen que aquesta tecnología esdevingui disruptiva en els pròxims anys.[EN] In recent years, programmable integrated photonics (PIP) has evolved from a promising, new paradigm to deploy photonics to a larger scale to a solid, revolutionary reality, bringing up the attention of numerous research and industry players. Based on the same theoretical foundations than field-programmable gate arrays (FPGAs), this technology relies on common, two-dimensional integrated optical hardware configurations based on the interconnection of programmable unit cells (PUCs), which -by suitable programming of their phase actuators- can implement a variety of functionalities that can be elaborated for basic or more complex operation in many application fields, such as artificial intelligence, deep learning, quantum information systems, 5/6-G telecommunications, switching, data center interconnections, hardware acceleration and sensing, amongst others. In this work, we will dedicate ourselves to explore several software capabilities of these processors under different chip designs. We explore different cutting-edge approaches based on computational optimization and graph theory to precisely control and configure these devices. One of these, self-configuration, deals with the automated synthesis of optical circuit configurations -even in presence of parasitic effects such as nonuniform losses, optical and electrical crosstalk- without any need for prior knowledge about hardware state. There are occasions, though, in which accessing to this information may be of use. Self-calibration and self-characterization tools allow us to perform a quick check to our photonic processor's status, allowing us to retrieve useful pieces of information such as the electrical current needed to supply to each phase actuator to change its corresponding PUC state arbitrarily or the insertion loss of every unit cell and optical interconnection surrounding the structure. These mechanisms not only allow us to quickly identify any malfunctioning PUCs or chip areas in our design, but also reveal another alternative to program photonic circuits in our design from current pre-sets. These strategies constitute a gigantic step to unleash all the potential of these devices. They provide solutions to handle with hundreds of variables and simultaneously manage multiple configuration actions, one of the main limitations that prevent this technology to scale up and become disruptive in the years to come.López Hernández, A. (2023). Multipurpose Programmable Integrated Photonics: Principles and Applications [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/19686

    Digital Filter Design Using Multiobjective Cuckoo Search Algorithm

    Get PDF
    Digital filters can be divided into finite impulse response (FIR) digital filters and infinite impulse response (IIR) digital filters. Evolutionary algorithms are effective techniques in digital filter designs. One such evolutionary algorithm is Cuckoo Search Algorithm (CSA). The CSA is a heuristic algorithm which emulates a special parasitic hatching habit of some species of cuckoos and have been proved to be an effective method with various applications. This thesis compares CSA with Park-McClellan algorithm on linear-phase FIR Type-1 lowpass, highpass, bandpass and bandstop digital filter design. Furthermore, a multiobjective Cuckoo Search Algorithm (MOCSA) is applied on general FIR digital design with a comparison to Non-dominated Sorting Genetic Algorithm III (NSGA-III). Finally, a constrained multiobjective Cuckoo Search Algorithm is presented and used for IIR digital filter design. The design results of the constrained MOCSA approach compares favorably with other state-of-the-art optimization methods. CSA utilizes Levy flight with wide-range step length for the global walk to assure reaching the global optimum and the approach of local walk to orientate the direction toward the local minima. Furthermore, MOCSA incorporates a method of Euclidean distance combing objective-based equilibrating operations and the searching for the optimal solution into one step and simplifies the procedure of comparison

    Performance comparison of optimal fractional order hybrid fuzzy PID controllers for handling oscillatory fractional order processes with dead time

    Get PDF
    This is the author accepted manuscript. The final version is available from Elsevier via the DOI in this record.Fuzzy logic based PID controllers have been studied in this paper, considering several combinations of hybrid controllers by grouping the proportional, integral and derivative actions with fuzzy inferencing in different forms. Fractional order (FO) rate of error signal and FO integral of control signal have been used in the design of a family of decomposed hybrid FO fuzzy PID controllers. The input and output scaling factors (SF) along with the integro-differential operators are tuned with real coded genetic algorithm (GA) to produce optimum closed loop performance by simultaneous consideration of the control loop error index and the control signal. Three different classes of fractional order oscillatory processes with various levels of relative dominance between time constant and time delay have been used to test the comparative merits of the proposed family of hybrid fractional order fuzzy PID controllers. Performance comparison of the different FO fuzzy PID controller structures has been done in terms of optimal set-point tracking, load disturbance rejection and minimal variation of manipulated variable or smaller actuator requirement etc. In addition, multi-objective Non-dominated Sorting Genetic Algorithm (NSGA-II) has been used to study the Pareto optimal trade-offs between the set point tracking and control signal, and the set point tracking and load disturbance performance for each of the controller structure to handle the three different types of processes

    Modelling and optimisation of solar voltaic system using fuzzy logic

    Get PDF
    There is considerable increase in residential solar grid connected installations with many advantages offered by solar energy. As more solar panels are connected to grid, the Solar Inverter between solar panels and grid have to perform at optimum levels. Modern Inverters consist of DC-DC Converter and DC-AC Inverter. One problem associated with Inverter design is voltage fluctuation, this defect lies in the DC-DC converter Maximum power tracking (MPPT) algorithms responsible for extracting maximum power from the solar panels. The defect is due to large sampling number required for conventional MPPT algorithm. This thesis has proposed a new MPPT algorithm based on Mamdani Fuzzy logic. In research we use 5 parameter one diode model for solar cell modelling. The P-V/I-V characteristics curve is generated. The P-V characteristics curves sectioned and input membership and output membership functions is created. And unique fuzzy rules is used to optimize fuzzy controller output. Mamdani Fuzzy logic algorithm is compared to traditional PI controller hill climbing method. When small sampling number is used hill climbing method response is slow and good at tracking. When big sampling number is used hill climbing method response is fast and not good at tracking. The voltage also fluctuates when sampling number is big. Fuzzy logic provides a compromised solution with best response time and moderate tracking accuracy compared to hill climbing method. Fuzzy Logic based DC-DC converter together with PLL and Recursive Discrete Fourier Transform (RDFT) DC-AC inverter synchronization algorithm is employed and simulated in matlab. The MPPT simulation is conducted for a realistic 2.5KW solar panels in a 8 x 2 Matrix. In addition the MPPT algorithm is analyzed to see if it performs under power quality and voltage level tolerance of utility grid requirements. The Fuzzy Logic MPPT is excellent at tracking power. When temperature is fixed and irradiance is varied, the maximum tracking error is 5.2% in all scenarios with one exception. When irradiance is fixed and temperature varied, the maximum tracking error is 1.98%. Furthermore the Fuzzy Logic MPPT meets the power quality and voltage level tolerance requirements of utility grid for irradiance over 600 W/m2. Power quality and voltage level tolerance requirements for irradiance under 600 W/m2 is not critical as this is outside twilight conditions. Out of all the Synchronization algorithm identified in this Thesis, RDFT achieves synchronization very quickly and in addition it suppresses harmonics and noise. The possibility of future study to extend MPPT is also briefly discussed. The extension of future study is using Takagi-Sugeno fuzzy logic. Takagi-Sugeno uses more sophisticated inference and rule evaluation mathematics
    corecore