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ABSTRACT 

 

Firefly algorithm is an evolutionary algorithm that can be used to solve complex multi-

parameter problems in less time. The algorithm was applied to design digital filters of different 

orders as well as to determine the parameters of complex neural network designs. Digital filters 

have several applications in the fields of control systems, aerospace, telecommunication, 

medical equipment and applications, digital appliances, audio recognition processes etc. An 

Artificial Neural Network (ANN) is an information processing paradigm that is inspired by the 

way biological nervous systems, such as the brain, processes information and can be simulated 

using a computer to perform certain specific tasks like clustering, classification, and pattern 

recognition etc. The results of the designs using Firefly algorithm was compared to the state 

of the art algorithms and found that the digital filter designs produce results close to the Parks 

McClellan method which shows the algorithm’s capability of handling complex problems. 

Also, for the neural network designs, Firefly algorithm was able to efficiently optimize a 

number of parameter values. The performance of the algorithm was tested by introducing 

various input noise levels to the training inputs of the neural network designs and it produced 

the desired output with negligible error in a time-efficient manner. Overall, Firefly algorithm 

was found to be competitive in solving the complex design optimization problems like other 

popular optimization algorithms such as Differential Evolution, Particle Swarm Optimization 

and Genetic Algorithm. It provides a number of adjustable parameters which can be tuned 

according to the specified problem so that it can be applied to a number of optimization 

problems and is capable of producing quality results in a reasonable amount of time. 
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Chapter 1   

Introduction 

 

As the technology is reaching its heights, there’s a lot of research work continuing in the 

field of digital filters in order to increase their performance, speed and reduce the size, 

power, and cost of the end products. Digital filters are discrete time devices used to perform 

operations on an input signal to obtain an output sequence according to a pre-designed 

difference equation. Inside a digital filter, every sample from input to output sequences 

with their coefficient values are quantized to a definite word length and are then presented 

in the form of a binary sequence. 

 

The block diagram representing the working of a digital filter can be seen in fig 1.1. 

 

Figure 1.1  Digital filter working sequence (ADC: Analog to Digital Conversion; DAC: 

Digital to Analog Conversion; DF: Digital filter; LP: Analog lowpass filter). (Kwan [3], 

2016, pg 6) 
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1.1 Why Digital filters? 

Digital filters offer a number of applications with many advantages over analog filters. 

These advantages of digital filters affect the speed and performances of the overall system 

as compared to the same system being used with analog filters which require advanced 

mathematical knowledge and an understanding of the processes involved in the system 

affecting the filter. Few of the many good characteristics of digital filters as described in 

Kwan [3] are given below: 

 Reliability: Digital filters are reliable that is there is no tolerance problem or aging 

in them. 

 Accurate: By adjusting the digital word length, one can precisely control the 

accuracy of digital filters. It can be made approximately equal or extremely close 

to the ideal values by adjusting the characteristics of a digital filter. 

 Flexible: By having another set of coefficient values, one can easily change the 

characteristics of a digital filter. 

 Accommodating: It is possible to filter input sequences without any hardware 

replication. 

 Efficient: Digital filters have a superior performance-to-cost ratio and do not drift 

with temperature or humidity or require precision components. 

 Simplicity: Digital filters are software programmable, which makes them easy to 

build and test. Digital filters require only the arithmetic operations of addition, 

subtraction, and multiplication. 

 

 

Digital filters are extremely stable due to their inherent mathematical construction. The 

frequency response does not change with time. On the other hand, due to the finite 

tolerances involved in the manufacture of electronic components, the frequency 

responses of similar analog filters are never exactly same. Also, the values of 

capacitors, resistors, etc. used in the analog filters may change with aging, resulting in 

the change in filter characteristics. 
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1.2 Types of filters  

1.2.1 Based on the frequency response 

Based on the frequency response, the filters can be categorized in the following 4 common 

types, as shown in the Fig. 1.1. 

 

Figure 1.2 Types of filters based on the frequency response  

 

These are described below: 

1. Low pass filter: The low pass filter allows low frequencies to pass while removing the 

high frequencies.  

2. High pass filter: The high pass filter allows high frequencies to pass while removing 

the low frequencies.  

3. Bandpass filter: The bandpass filter allows only a certain band of frequencies to pass.  

4. Bandstop filter: The bandstop filter allows all frequencies to pass except a band which 

it removes. 
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In addition to these basic types, there are other types such as notch filters, comb filters, etc. 

The slanted part of the frequency response of the filters is called the transition region, in 

which the frequency response transitions from the pass band to stop band or vice versa. A 

good filter must have a narrow transition band.  

1.2.2 Based on the impulse response 

Based on the impulse response, there are 2 categories of digital filters, namely, finite 

impulse response (FIR) and infinite impulse response (IIR) filters. As the names suggest, 

when an impulse input is given to the FIR filter, the output decays to 0 in a finite amount 

of time. On the other hand, the output takes an infinite amount of time to decay to 0 in the 

case of an IIR filter. This is due to the recursive nature of an IIR filter, where the output is 

fed back to the filter, resulting in an output even when the input has been stopped.   

 

1.3 Digital FIR filter design  

FIR is short for finite impulse response and is also called non-recursive filter. This kind of 

digital filter exhibits a finite duration impulse response. An FIR filter is designed by finding 

the coefficients and filter order that meets certain specifications, which can be in the time-

domain (e.g. a matched filter) and/or the frequency domain (most common). Matched 

filters perform a cross-correlation between the input signal and a known pulse-shape. The 

FIR convolution is a cross-correlation between the input signal and a time-reversed copy 

of the impulse response. Therefore, the matched filters impulse response is "designed" by 

sampling the known pulse-shape and using those samples in reverse order as the 

coefficients of the filter For an FIR filter whose impulse response of length 𝑁=𝑅+1, R 

being the order, is given by 𝐡=[ℎ0   ℎ1   ℎ2  …ℎ𝑁−1]T. The transfer function or the z 

transform can be written as equation 1.1.  

 

H(z) = ∑ c(n)z−n                                                     (1.1)
N
n=0                                             

https://en.wikipedia.org/wiki/Matched_filter
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Where H(𝑧) denotes a polynomial written in ascending powers of 𝑧−1. The coefficients (𝑛) 

for 𝑛≥0 represent the impulse response values of the FIR digital filter.  

When a particular frequency response is desired, several different design methods are 

common: 

 Window design method 

 Frequency Sampling method 

 Weighted least squares design 

 Parks-McClellan method  

 

.  

Figure 1.3  Ideal Lowpass digital FIR filter. (Kwan [3], 2016, pg 18) 

 

 

All the four types of linear FIR filters can be achieved by using the properties of their 

coefficients symmetry. Usually, digital filters design involves the four main steps: 

approximation, realization, quantization consideration and implementation. By using 

https://en.wikipedia.org/wiki/Finite_impulse_response#Window_design_method
https://en.wikipedia.org/wiki/Least_squares#Weighted_least_squares
https://en.wikipedia.org/wiki/Parks-McClellan_method
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software simulating, the proper specifications such as amplitude response and phase 

properties can be completed. 

 

Figure 1.4 Practical lowpass digital filter 

 

 

 

Fig. 1.5 shows the direct implementation of an FIR filter. 𝑇 is delay and ℎ0, ℎ1… ℎ𝑁−1 are 

filter coefficients. 𝑥[𝑘], 𝑥[𝑘 − 1], … 𝑥[𝑘 − 𝑁 + 1] are the input and the delayed versions 

of the input. 𝑦[𝑘] is the output of the filter. It can be noted from the figure that there is no 

feedback from the output of the filter.  
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Figure 1.5  FIR direct form 1 

 

 

 

The output of the filter can be written in the following equation form: 

𝑦[𝑘] =   ℎ0𝑥[𝑘] + ℎ1𝑥[𝑘 − 1] + ⋯ + ℎ𝑛−1𝑥[𝑘 − 𝑁 + 1] (1.2) 

 

The transfer function of the FIR filter in the 𝑧-domain can be written as 

𝐻(𝑧) =  ∑ ℎ𝑛𝑧−𝑛

𝑁−1

𝑛=0

  (1.3) 

 

The frequency response of the filter can be found by substituting 𝑧 with 𝑒𝑗𝜔𝑇 as shown 

below, where 𝜔 is the frequency of the input signal. 

𝐻(𝑒𝑗𝜔𝑇 ) =  ∑ ℎ𝑛𝑒−𝑗𝜔𝑛𝑇

𝑁−1

𝑛=0

= ∑ ℎ𝑛cos (𝜔𝑛𝑇)

𝑁−1

𝑛=0

− 𝑗 ∑ ℎ𝑛sin (𝜔𝑛𝑇)

𝑁−1

𝑛=0

  (1.4) 
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Generally, in practical implementations, the direct transposed form is used for the FIR 

filter. This has the advantage, as it does not require the extra shift register for the input.  

 

 

Figure 1.6  FIR filter in transposed direct form 

 

 

1.3.1 Linear Phase Filters 

The equations 1.2-1.4 represent general FIR filters with the arbitrary magnitude and phase 

response. It can be shown that it is possible to construct FIR filters with linear phase 

response. This is possible when the filter coefficients have an even or odd symmetry. 

Depending on the order of the filter and the symmetry of the filter coefficients, the linear 

phase filters can be of four types as shown in Table 1.1. 

 

TABLE 1.1  Symmetric Filters 

 
Type Order Symmetry 𝑯(𝝎)at 𝝎 = 𝟎 𝑯(𝝎) at 𝝎 = 𝝅/𝑻 

Type I even even any any 

Type II odd even any 0 

Type III even odd 0 0 

Type IV odd odd 0 any 
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If ℎ0,ℎ1… ℎ𝑁−1 are the filter coefficients, where 𝑁 is the length of the filter, then the 

following relations hold for the coefficients of the different types of filters. 

Type I:   ℎ𝑘 = ℎ𝑁−𝑘+1,   𝑁 is odd 

Type II:   ℎ𝑘 = ℎ𝑁−𝑘+1,   𝑁 is even 

Type III:   ℎ𝑘 = −ℎ𝑁−𝑘+1, 𝑁 is even 

Type IV:   ℎ𝑘 = −ℎ𝑁−𝑘+1,   𝑁 is odd 

(1.5) 

The amplitude responses of the four types of the filters can be expressed by the following 

equations: 

Type I: 

𝐻(𝜔) = ℎ(𝑀) + 2 ∑ ℎ𝑛cos ((𝑀 − 𝑛)𝜔)

𝑀−1

𝑛=0

 (1.6) 

  

Type II: 

𝐻(𝜔) = 2 ∑ ℎ𝑛cos ((𝑀 − 𝑛)𝜔)

𝑁/2−1

𝑛=0

 (1.7) 

 

Type III: 

𝐻(𝜔) = 2 ∑ ℎ𝑛sin ((𝑀 − 𝑛)𝜔)

𝑀−1

𝑛=0

 (1.8) 
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Type IV: 

𝐻(𝜔) = 2 ∑ ℎ𝑛cos ((𝑀 − 𝑛)𝜔)

𝑁/2−1

𝑛=0

 (1.9) 

Where 𝑀 = (𝑁 − 1)/2 

 

It can be seen that Type I can be used to construct both low and high pass filters, Type II 

can be used to construct only low pass filters, Type IV can be used to construct only high 

pass filters and Type III can be used to construct only bandpass filters. Due to this, Type I 

filters are most common. 

In the following figure, coefficient values of a Type I linear phase filter are shown: 

 

Figure 1.7  Type I FIR filter coefficients 
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The coefficients are symmetric around the central coefficient, as can be seen in the above 

figure. The phase response of a linear phase filter is shown in the following figure 

 

Figure 1.8  Phase response of a linear phase filter 

 

 

We can see that the phase response of the filter varies linearly. The discontinuities are due 

to two reasons: 

1. 2𝜋 + 𝜃 = 𝜃, resulting in the phase being confined from−𝜋 to 𝜋. 

2. The sign reversal of the frequency response. 
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1.4 Design of FIR filters 

FIR filters can be designed using various methods. The most common of these methods 

are: 

1. Equi-ripple (minimax) design in which the maximum frequency response error from 

the specified frequency response is minimized. Parks-McClellan method can be used 

to design FIR filters based on minimax criterion. 

2. Least mean square design, in which the mean square error is minimized from the 

desired frequency response. 

3. Window-based methods based on inverse DFT. 

Here, we will focus on the minimax design of FIR filters, as this is the criterion on which 

the work in this thesis is based. 

 

1.4.1 Equi-ripple design of linear phase FIR filters 

The transfer function of the Type 1 filter is shown in equation (2.1) as 

 

H(𝐜, w) = e−j(
M−1

2
)wT {h (

M−1

2
) + ∑ 2h(n)

M−3

2
n=0 cos [(

M−1

2
− n) wT]}               (1.10) 

 

H(𝐜, w) = e−j(
M−1

2
)wTA(𝐜, w)                                               (1.11) 

 

Where,  

A(𝐜, w) = 𝐜T𝐜𝐨𝐬 (w)                                                        (1.12) 

And,  

𝐜𝐨𝐬(w) = [1 cos(wT) cos(2wT) ⋯ cos (
M−1

2
wT)]

T

                            (1.13) 
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The coefficient vector 𝐜T is optimized initially starting with the random values and then 

following the structure of the algorithm used to reduce the objective function value at every 

iteration which I reduced by minimizing the error value at every iteration. To calculate the 

error, the minimax error approximation method is used. It takes the error between the 

frequency response of the ideal and designed filter. An ideal filter has a magnitude of 1 on 

the passband and 0 on the stopbands. So, the error of the iteration values is given by the 

absolute difference between the ideal magnitudes and the actual filter coefficient values in 

that iteration. The expression of the minimax function is given by  

 

ep(𝐜) = [∑ Wp(wi)||A(𝐜, wi)| − Ad(wi)|
2pIp

i=1
]

1/2p

for Wp(wi) ≥ 0;  0 ≤ wi ≤ wp

                        (1.14) 

 

es(𝐜) = [∑ Ws(wi)||A(𝐜, wi)| − Ad(wi)|
2pIs

i=1 ]
1/2p

for Ws(wi) ≥ 0; ws ≤ wi ≤ π 
                       (1.15) 

 

Where ep(𝐜) and es(𝐜) are the error values in the passband and stopband respectively. 

A(𝐜, wi) is the magnitude response of the ideal filter and Ad(wi) is the magnitude response 

of the desired filter. and i is the number of samples used to calculate the error. The minimax 

optimization problem is to search for an optimal coefficient vector 𝐜 that minimizes the 

objective function e(𝐜) as  

 

min
𝐜

e(𝐜) (1.16) 

 

Ws(wi) represents the weighting function which is given by: 

 

Ws(wi) = {
1  passband and stopband

0                              elsewhere
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Weighting scores may vary depending on the error values and if the error of passband and 

stopband values differs by quite a margin then the weight values can be increased or 

decreased accordingly.  

 

Figure 1.3 represents the desired filter response, which corresponds to an ideal low-pass 

filter, with cut-off frequency 𝜔𝑐. The response is exactly 1 in the passband and drops to 0 

in the stopband sharply. In practical filters of finite length, the frequency response deviates 

from the ideal response as shown in the solid curve in the figure 1.4. Therefore, the 

specifications of practical filters are relaxed compared to the ideal filters. 

The interval 0-𝜔𝑝 is the pass-band and 𝜔𝑐-1 is the stop-band of the filter. For the designed 

filter, in the pass-band, the response can vary from 1-𝛿𝑝 to 1+𝛿𝑝 and in the stopband from 

-𝛿𝑠 to 𝛿𝑠. In the transition region, which is from 𝜔𝑝 to 𝜔𝑠 the response can take any value. 

𝛿𝑝 is called the pass-band ripple and 𝛿𝑠 the stop-band ripple. The tighter the filter 

specifications are, the higher the filter length, 𝑁 is required to design the filter. 

The above design problem can be formulated as a linear program shown in the following 

equations: 

Minimize 𝜹 

Such that: 1 −  𝛿 ≤ 𝐻(𝜔) ≤ 1 + 𝛿, for 𝜔 ∈ [0,  𝜔𝑝] 

−(𝛿𝑠𝛿)/𝛿𝑝 ≤ 𝐻(𝜔) ≤ (𝛿𝑠𝛿)/𝛿𝑝, for 𝜔 ∈ [ 𝜔𝑠, 1] 

 

 

(1.17) 

Where, 𝐻(𝜔) is the frequency response of the filter and is given by 

𝐻(𝜔) = ∑ ℎ(𝑛)Trig(𝜔, 𝑛)

⌊
𝑁−1

2
⌋

𝑛=0

 (1.18) 
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Where N is the filter length and Trig is a trigonometric function depending on the type of 

the filter and whether the filter length is odd or even (See equations 1.6-1.9). 

Solving the linear program (LP), we can find the values of the filter coefficients ℎ(𝑛) and 

the ripple 𝛿. 

The filter can be instead designed using Parks-McClellan method which is very efficient. 

This is an iterative algorithm, reducing the maximum error in each iteration. The MATLAB 

function firpm is based on the Parks-McClellan method and can be used to design linear-

phase FIR filters with a given length and specified pass and stop bands. The syntax of the 

function is shown below: 

b = firpm(n,f,a,w) 

where, n is the filter order, which is one less than the filter length, 

f and a define the pass and stop bands. For example, f = [0 0.3 0.5 1], and a = [1 1 0 0] 

represents a low pass filter with passband from 0 to 0.3𝜋 and stop band from 0.5𝜋 to 𝜋. 

w is the weight vector of length equal to the number of bands. Each value in the vector 

represents the weight assigned to the corresponding band of the filter. 

 

1.4.2 Advantages of FIR filters 

An FIR filter has a number of useful properties which sometimes make it preferable to 

an infinite impulse response (IIR) filter. FIR filters: 

 Require no feedback. This means that any rounding errors are not compounded by 

summed iterations. The same relative error occurs in each calculation. This also 

makes implementation simpler. 

 Are inherently stable because the output is a sum of a finite number of finite 

multiples of the input values. 

https://en.wikipedia.org/wiki/Infinite_impulse_response
https://en.wikipedia.org/wiki/BIBO_stability
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 Can easily be designed to be linear phase by making the coefficient sequence 

symmetric. This property is sometimes desired for phase-sensitive applications, for 

example, data communications, seismology, crossover filters, and mastering. 

 

The main disadvantage of FIR filters is that considerably more computation power in a 

general purpose processor is required compared to an IIR filter with similar sharpness 

or selectivity, especially when low frequency (relative to the sample rate) cut offs are 

needed. However many digital signal processors provide specialized hardware features to 

make FIR filters approximately as efficient as IIR for many applications. 

  

1.5 Quantization of coefficients 

The continuous filter coefficients can be quantized using either uniform quantization or 

non-uniform quantization. The uniform quantization can be achieved by the following 

number representations: 

1.5.1 Signed magnitude representation 

In this representation, the magnitude of the number is represented by the bits excluding the 

MSB and the sign of the number is represented by the MSB. 

For example: (0101)2 = +510 and (1010)2 = -210  

The number 0 has 2 possible representations in this system, which are (0000)2 and (1000)2. 

1.5.2 One’s complement representation 

In this representation, the negative of a number is equal to bitwise OR of the number. 

For example: (0110111)2 = +5510  and (1001000)2 = -5510 

In order to add two one’s complement numbers, it is necessary to add the end-around carry 

to the result to obtain the correct answer. For example: 

https://en.wikipedia.org/wiki/Linear_phase
https://en.wikipedia.org/wiki/Seismology
https://en.wikipedia.org/wiki/Audio_crossover
https://en.wikipedia.org/wiki/Audio_mastering
https://en.wikipedia.org/wiki/Selectivity_(electronic)
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(1110001)2 + (0010000)2 = (1 0000001)2 

To obtain the correct answer the carry bit is added to the remaining number, which gives 

 (1)2 + (0000001)2 = (0000010)2 

1.5.3 Two’s complement representation 

To avoid the task of adding the carry bit after the addition of two one’s complement 

numbers, in the two’s complement representation the negative of a number is formed by 

taking bit-wise not of the number and then adding 1 to the result.  

For example: -5510 is represented by (1001000)2 + (1)2 = (1001001)2 

The addition of two 2’s complement numbers is straightforward and can be done using 

normal addition. 

1.5.4 Signed digit format 

In signed digit format each digit of the number has a sign associated with it. One example 

is balanced ternary, whose base is 3 and the digits can take the values from {-1, 0, 1}. 

For example: (1 0 -1 -1)2 = 23 - 21 -20 = 8 – 2 – 1 = 5 

The signed digit format is not unique. 

1.5.5 Canonical signed digit representation 

If in the signed digit representation no two consecutive digits are non-zero, then the 

resulting representation is called canonical signed digit representation (CSD). The CSD 

representation of a number is unique. 

1.5.6 Non-uniform quantization 

There are a number of quantization representations in which the difference between 2 

consecutive values in the range of the representation does not remain uniform. An example 

is limiting the number of signed non-zero digits in the representation of the filter 
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coefficients. Limiting the number to 2, the filter coefficients are then represented by the 

following equation 

ℎ𝑛 = 𝑐𝑛12−𝑏𝑛1 + 𝑐𝑛22−𝑏𝑛2 (1.19) 

Where, 

𝑐𝑛1, 𝑐𝑛2 ∈ {−1,0,1} and 𝑏𝑛1, 𝑏𝑛2 ∈ {1,2, … 𝑏} 

1.5.7 Integer representation of coefficients 

The coefficients are quantized to a certain number of bits in an algorithm. The number of 

digits in binary format of a coefficient, proceeding initial zeros after quantization is called 

the effective word-length of the coefficient. For example, consider a filter with 3 

coefficients with values 0.4569, -0.2438 and 0.1211. The binary values of these coefficients 

are  

0.01110100111101110110…, -0.00111110011010011010… and 

0.00011111000000000110… 

If these are rounded to 9 digits after the binary point, then the values become 

0.011101010, -0.001111101 and 0.000111110 

The EWL of each coefficient is then equal to the number of digits of each coefficient after 

the initial zeros, which is 8, 7 and 6 respectively. 

Instead of working on these values which are binary, these can be multiplied by a number 

which is a power of 2, i.e. 2n, such that the resulting values become integers. In the above 

example, it can be easily seen that this number is 29. Multiplying the coefficients by 29, we 

get 

11101010, -1111101 and 111110, which in decimal are 234, -125 and 62. 
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1.6 Initial Coefficients 

The FIR filters and neural network designs selected for optimization has the Initial 

coefficients set such that it maximizes the randomization so that all the filter designs can 

be started from the scratch giving algorithm most of the work which ensures the quality of 

the design. The initial coefficients used for the designs in this thesis are given as follows:  

 

Let  𝐶𝑘
[𝑈]

and  𝐶𝑘
[𝐿]

denote the upper bound and the lower bound of the 𝑘th coefficient 𝐶𝑘 of 

a LP or HP or BP or BS used in the equations such that  

 

𝐶𝑘
[𝐿]

≤ 𝐶𝑘 ≤ 𝐶𝑘
[𝑈]

 𝑓𝑜𝑟 1 ≤ 𝑘 ≤
𝑁

2
+ 1   (1.20) 

The initial coefficient value of 𝐶𝑝𝑘 for a population member p is computed by 

 

𝐶𝑝𝑘 = 𝐶𝑘
[𝐿]

+ 𝑟𝑎𝑛𝑑 ∗ (𝐶𝑘
[𝑈]

− 𝐶𝑘
[𝐿]

) 𝑓𝑜𝑟 𝑝 = 1: 𝑃, 𝑘 = 1: 𝐾                             (1.21) 

 

Where 𝑟𝑎𝑛𝑑 is a uniformly distributed value between [0, 1]. 

 

1.7 General FIR Filters 

GFIR filters known as General Finite Impulse Response filters are also a kind of filter 

design which is used where a constant group delay is required in the system. That is, a 

phase shift is not required between input and output of the filter. Such a filter is no longer 

a symmetric filter because it will not acquire same coefficients on the left and the right-

hand sides, therefore each coefficient in a GFIR filter is different from the other. It makes 

it difficult to optimize and get a better result because there are nearly twice as many 

coefficients to be optimized and also a group delay factor is also there which needs to be 

taken care of. Because of the complex nature of the design, only passband group delay is 

taken into account and only the part in the frequency band where passband resides is 

optimized. The passband and stopband errors of the GFIR filters are calculated in the same 
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manner as the FIR filters given by the equations 1.14 and 1.15. The transfer function of an 

N-th order FIR digital filter consisting of N+1 coefficients can be written as  

𝐻(𝑧) =  ∑ 𝑐(𝑛)𝑧−𝑛 =  𝒄𝑇𝒛

𝑁

𝑛=0

(𝑧)                                              (1.22) 

From (1.20), it can be seen that c is the coefficient vector and H(z) denotes a polynomial 

written in ascending powers of  𝑧−1. The magnitude response |𝐻(𝑤)| of GFIR filter is 

equal to  

|𝐻(𝑤)| = {[∑ 𝑐𝑛cosnwT

𝑁

𝑛=0

]

2

+ [∑ 𝑐𝑛sinnwT

𝑁

𝑛=0

]

2

}

1
2⁄

                             (1.23) 

The phase response, 𝜃(𝑤) is given by,  

𝜃(𝑤) =  −𝑡𝑎𝑛−1 [
∑ 𝑐𝑛sinnwT𝑁

𝑛=0

∑ 𝑐𝑛cosnwT𝑁
𝑛=0

]                                   (1.24) 

From (1.22), the group delay 𝜏(𝑤) can be expressed as 

𝜏(𝑤) = −
𝜕𝜃(𝑤)

𝜕𝑤𝑇
=  

1

1 + 𝑐2
 

𝜕𝑐

𝜕𝑤𝑇
                                              (1.25) 

where 

𝑐 =
∑ 𝑐𝑛sinnwT𝑁

𝑛=0

∑ 𝑐𝑛cosnwT𝑁
𝑛=0

                                                        (1.26) 

Taking partial derivative of (1.24), we have 

𝜕𝑐

𝜕𝑤𝑇
=  

[∑ 𝑐𝑛cosnwT𝑁
𝑛=0 ][∑ 𝑛𝑐𝑛cosnwT𝑁

𝑛=0 ]

[∑ 𝑐𝑛cosnwT𝑁
𝑛=0 ]2

+  
[∑ 𝑐𝑛sinnwT𝑁

𝑛=0 ][∑ 𝑛𝑐𝑛sinnwT𝑁
𝑛=0 ]

[∑ 𝑐𝑛cosnwT𝑁
𝑛=0 ]2

                                                  (1.27) 
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1.8 Optimization algorithms 

A number of optimization algorithms have been discussed in [3] which integrates important 

FIR filter designs with optimization algorithms. In the following section, some important 

deterministic and heuristic algorithms from the literature are reviewed. 

1.8.1 Deterministic algorithms 

In computer science, a deterministic algorithm is an algorithm which, given a particular 

input, will always produce the same output, with the underlying machine always passing 

through the same sequence of states. Deterministic algorithms are by far the most studied 

and familiar kind of algorithm, as well as one of the most practical since they can be run 

on real machines efficiently. 

Formally, a deterministic algorithm computes a mathematical function; a function has a 

unique value for any input in its domain, and the algorithm is a process that produces this 

particular value as output. If the system is deterministic, this means that from this point 

onwards, its current state determines what its next state will be; its course through the set 

of states is predetermined. Note that a system can be deterministic and still never stop or 

finish, and therefore fail to deliver a result. 

If the feasible range of any coefficient is found to be empty at any stage, the algorithm 

backtracks to the previous quantized coefficient and quantizes it to the next nearest 

quantization value from the center of its feasible range. 

First, the lower and upper bound of each coefficient is calculated [5]. This is done by 

solving the following linear program problem: 

minimize:  𝑓 = ℎ(𝑘) and 𝑓 = −ℎ(𝑘) 

such that:  𝑏 − 𝛿 ≤ 𝐻(𝜔) ≤ 𝑏 + 𝛿, for 𝜔 ∈ [0, 𝜔𝑝] 

− (𝛿𝑠𝛿) 𝛿𝑝⁄ ≤ 𝐻(𝜔) ≤ (𝛿𝑠𝛿) 𝛿𝑝⁄ , for 𝜔 ∈ [𝜔𝑠,𝜋]  

𝑏𝑙 ≤ 𝑏 ≤ 𝑏ℎ 

(2.1) 

https://en.wikipedia.org/wiki/Computer_science
https://en.wikipedia.org/wiki/Algorithm
https://en.wikipedia.org/wiki/Function_(mathematics)
https://en.wikipedia.org/wiki/Function_domain
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Where  𝑏 is the passband gain and 𝛿𝑝 and 𝛿𝑠 are the maximum allowed pass and stop-band 

ripple. 𝐻(𝜔) is the magnitude of the frequency response of the filter. 

After this, a depth-first search is done and filter coefficients are fixed to integers one by 

one. Once a coefficient is fixed the remaining un-quantized one are re-optimized. 

These algorithms are guaranteed to return an optimum set of filter coefficients, but for 

filters with high word-lengths, the algorithm takes very long time to finish the search and 

becomes impractical. The run-time increases exponentially with the increase of the filter 

length. 

A variety of factors can cause an algorithm to behave in a way which is not deterministic, 

or non-deterministic: 

 If it uses external state other than the input, such as user input, a global variable, a 

hardware timer value, a random value, or stored disk data. 

 If it operates in a way that is timing-sensitive, for example, if it has multiple 

processors writing to the same data at the same time. In this case, the precise order 

in which each processor writes its data will affect the result. 

 If a hardware error causes its state to change in an unexpected way. 

Although real programs are rarely purely deterministic, it is easier for humans as well as 

other programs to reason about programs that are. For this reason, most programming 

languages and especially functional programming languages make an effort to prevent the 

above events from happening except under controlled conditions. 

Deterministic algorithms are capable of finding solutions which, in most of the cases, are 

optimal or near optimal. 

 

https://en.wikipedia.org/wiki/Randomness
https://en.wikipedia.org/wiki/Programming_language
https://en.wikipedia.org/wiki/Programming_language
https://en.wikipedia.org/wiki/Functional_programming
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1.8.2 Heuristic algorithms  

The term heuristic is used for algorithms [11] which find solutions among all possible ones, 

but they do not guarantee that the best will be found, therefore they may be considered as 

approximately and not accurate algorithms. These algorithms, usually find a solution close 

to the best one and they find it fast and easily. Sometimes these algorithms can be accurate, 

that is they actually find the best solution, but the algorithm is still called heuristic until 

this best solution is proven to be the best. The method used from a heuristic algorithm is 

one of the known methods, such as greediness, but in order to be easy and fast the algorithm 

ignores or even suppresses some of the problem's demands.  

In [5], GA is used to design FIR filter with coefficients which are constrained to the sums 

of two numbers, which are powers of two. In order to constrain the search space, a specific 

coefficient coding scheme is used. Instead of coding the values of the coefficients directly, 

the differences from some leading values are chosen and coded. The leading values are 

chosen as the coefficients obtained after quantizing the optimal continuous coefficients. In 

the case, when the sum of the power of two terms is used, the quantization is done such 

that the quantized value is the nearest value in the domain. As the optimal discrete filter 

coefficients are generally relatively not far away from the continuous filter coefficients, 

therefore the differences to be encoded are not very large and can be encoded using lesser 

number of bits, compared to encoding the full coefficient values. 

Usually, heuristic algorithms are used for problems that cannot be easily solved [34]. 

Classes of time complexity are defined to distinguish problems according to their 

“hardness”. Class P consists of all those problems that can be solved on a deterministic 

Turing machine in polynomial time from the size of the input. Turing machines are an 

abstraction that is used to formalize the notion of algorithm and computational complexity. 

Class NP consists of all those problems whose solution can be found in polynomial time 

on a non-deterministic Turing machine. Since such a machine does not exist, practically it 

means that an exponential algorithm can be written for an NP-problem, nothing is asserted 

whether a polynomial algorithm exists or not. A subclass of NP, class NP-complete 

includes problems such that a polynomial algorithm for one of them could be transformed 

to polynomial algorithms for solving all other NP problems. Finally, the class NP-hard can 
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be understood as the class of problems that are NP-complete or harder. NP-hard problems 

have the same trait as NP-complete problems but they do not necessarily belong to class 

NP, that is class NP-hard includes also problems for which no algorithms at all can be 

provided. In order to justify application of some heuristic algorithm, we prove that the 

problem belongs to the classes NP-complete or NP-hard. Most likely there are no 

polynomial algorithms to solve such problems, therefore, for sufficiently great inputs 

heuristics are developed. Some of the very effective heuristic algorithms are described 

below:  

Swarm intelligence was introduced in 1989. It is an artificial intelligence technique, based 

on the study of collective behavior in decentralized, Self-organized, systems [15, 23, 49]. 

Two of the most successful types of this approach are Ant Colony Optimization (ACO) and 

Particle Swarm Optimization (PSO) [3]. In ACO artificial ants build solutions by moving 

on the problem graph and changing it in such a way that future ants can build better 

solutions. PSO deals with problems in which the best solution can be represented as a point 

or surface in an n-dimensional space. The main advantage of swarm intelligence techniques 

is that they are impressively resistant to the local optima problem. 

 

1.8.3 Evolutionary algorithms 

Evolutionary algorithms [10, 54] are methods that exploit ideas of biological evolution, 

such as reproduction, mutation, and recombination, for searching the solution of an 

optimization problem. They apply the principle of survival on a set of potential solutions 

to produce gradual approximations to the optimum. A newest of approximations is created 

by the process of selecting individuals according to their objective function, which is called 

fitness for evolutionary algorithms and breeding them together using operators inspired 

from genetic processes [47]. This process leads to the evolution of populations of 

individuals that are better suited to their environment than their ancestors. The main loop 

of evolutionary algorithms includes the following steps: 

1. Initialize and evaluate the initial population. 

2. Perform competitive selection. 



 

25 

 

3. Apply genetic operators to generate new solutions. 

4. Evaluate solutions in the population. 

5. Start again from point 2 and repeat until some convergence criteria are satisfied.  

 

Sharing the common idea, evolutionary techniques can differ in the details of 

implementation and the problems to which they are applied. Genetic programming 

searches for solutions in the form of computer programs. Their fitness is determined by the 

ability to solve a computational problem. The only difference from evolutionary 

programming is that the latter fixes the structure of the program and allows their numerical 

parameters to evolve. Evolution strategy works with vectors of real numbers as 

representations of solutions and uses self-adaptive mutation rates. The most successful 

among evolutionary algorithms are Genetic Algorithms (GAs) [5]. They have been 

investigated by John Holland in 1975 and demonstrate essential effectiveness. GAs are 

based on the fact that the role of mutation improves the individual quite seldom and, 

therefore, they rely mostly on applying recombination operators. They seek solutions to 

the problems in the form of strings of numbers, usually binary. There are a number of 

different Evolutionary algorithms that are being developed and are consistently being 

research on because of their efficiency and effectiveness to perform a complex task in a 

lesser amount of time.  The evolutionary algorithm chosen for this particular thesis is 

Firefly Algorithm [1] which demonstrates the optimization of complex problems using the 

behavior of fireflies. Another algorithm which is further explained in 1.9 is the Differential 

Evolution (DE) algorithm [6] which is one of the simplest yet effective evolutionary 

algorithms and is globally used to solve various complex problems. Digital filters are 

designed using FA and DE and then compared for performances in the later chapters. 
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1.9 Differential Evolution: 

In the initial research for this thesis, Differential Evolution method was applied in order to 

optimize the filter coefficients and obtain error values as minimum as possible. Differential 

Evolution (DE) [65] is a stochastic parallel search method that can efficiently optimize 

non-differentiable, nonlinear objective functions. DE requires only a few parameters to 

manage its operations. The reason why DE is called a parallel method is that it tries to 

optimize a number of parameter vectors at the same time, thus creating a higher chance of 

finding a global optimum. 

DE creates new members in the solution space by adding and scaling members from the 

existing population. This makes it a self-referential method. Since scaling and addition are 

linear operators, the initial probability distribution of the members is kept the same. This 

property makes the DE scheme completely self-organizing. 

The major characteristics of DE include robust; fast, simple and easy to use, effective with 

good global optimization abilities; inherently parallel; no predefined probability 

distribution is required; amendable to real, integer and mixed-parameter optimization; 

precision limited only by floating-point format; and applicable to noisy objective functions. 

Differential evolution [65] requires only a few parameters to manage its operations. Using 

differential evolution does not require knowledge of its underlining principles and other 

evolutionary optimization techniques. In general, differential evolution is robust; fast; 

simple and easy to use. 

DE algorithm uses mutation operation as a search mechanism and selection operation to 

direct the search toward the prospective location in the search space. It also uses crossover 

operation to increase the diversity of the perturbed coefficient vector, which can take child 

coefficient vector from one parent more often than it does from others. If the new vector 

yields a lower objective function than before, the new vector replaces the target vector in 

the next generation. 
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The main steps of the DE algorithm are given below:  

 𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛  

 𝐸𝑣𝑎𝑙𝑢𝑎𝑡𝑖𝑜𝑛  

 𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛  

 𝑐𝑟𝑜𝑠𝑠𝑜𝑣𝑒𝑟 

 selection 

The crossover probability 𝐶𝑅 controls the fraction of the parameter values that are copied 

from the mutant. Mutation is applied in this way to each member of the population. If an 

element of the trial vector is found to violate the bounds after mutation and crossover, it is 

reset in such a way that the bounds are respected (with the specific protocol depending on 

the implementation). Then, the objective function values associated with the children are 

determined.  

 

1.9.1 Digital Filters Using DE: 

DE algorithm was implemented and results were calculated for a 24th order linear phase 

FIR type-1 filter design. More designs have been implemented and analyzed later in 

chapter 5 for comparison purposes. Here, to provide an understanding of the results 

produced by DE algorithm, some of the filter designs are selected and implemented to see 

how DE can provide good design results. The 24th order Lowpass, Highpass, Bandpass and 

Bandstop filter designs using DE algorithm are shown in figure 1.9 – 1.12. 
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Figure 1.9  lowpass digital FIR filter using DE 

 

 

  Figure 1.10  Bandpass digital FIR filter using DE 
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Figure 1.11 Highpass digital FIR filter using DE 

 

 

Figure 1.12 Bandstop digital FIR filter using DE 
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1.10 Motivation and goals 

The goals of the proposed project are motivated by the need for a fast an effective 

optimization algorithm that is able to optimize complex problems such as designing 

optimized circuits for digital filters and neural networks making filtering processes more 

efficient and noise free. The algorithm analyzed has produced some promising results in 

the initial test runs (described in the later chapters) which motivated me to exploit more 

out of this algorithm applying it on different decent design problems and comparing results 

with those already present algorithms. Digital Filter design problems include digital filter 

coefficients values that need to be determined randomly in such a manner that it produces 

the least amount of noise and error values in the specified domain of coefficient values. 

For a successful digital filter design, the noise reduction is normally carried out by 

optimizing the coefficient values using an optimization algorithm. A neural network is a 

computer system modeled on the human brain and nervous system. Neural networks are 

made up of interconnected processing elements called units, which respond in parallel to a 

set of input signals given to each. The unit is the equivalent of its brain counterpart, the 

neuron. To design a specific network, determination of weights and bias values are the 

main optimization aspects that again, like digital filter coefficients, require an optimization 

algorithm that reduces the gap between the desired values and actual values in such a way 

that the neural network will itself give you the desired output by its own learning despite 

having a certain amount of noise at the input. Optimization algorithm plays an important 

role in determining the weights and biases of the network. Therefore the importance and 

significance of a good digital filter and neural network design operating on an effective 

optimization algorithm is the basic motivation behind the proposed thesis idea.  
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1.11 Thesis organization 

This thesis compromises of a detailed study on Firefly Algorithm and its advantages, It has 

been used to design digital filters and neural networks and the organization of the compiled 

data is given as follows: 

The first chapter has the introduction to the filters, advantages, and disadvantages of using 

digital filters to state a point why this design has been chosen to be implemented using FA. 

The conventional methods of filter designing and the common techniques used to design 

some of the filters. It also contains the motivation and goals of this thesis. The algorithms 

used in the designing of various filters including deterministic and heuristic methods are 

also discussed and explained briefly. In addition, a couple of algorithms such as Genetic 

algorithm and Differential evolution algorithms are also explained which are also used in 

the later chapters to design the same filters for comparison purposes with FA. In addition, 

some of the filter designs using DE are also given in the chapter. 

In the second chapter, some of the state-of-the-art methods for designing linear phase FIR 

filters are discussed and the literature is reviewed. In the third chapter, Firefly algorithm is 

discussed in detail. Its orientation, similarities, advantages, disadvantages and all the 

information regarding the algorithm is discussed. Its applications before filter designs are 

also discussed briefly. Also, the mechanism and flow of algorithm are discussed along with 

its advantages and strong points over other well-known algorithms. 

In the fourth chapter, Neural networks are discussed briefly, the need for implementation 

of neural nets along with its types and applications are discussed. A few described neural 

network problems are also presented in the chapter with their results using FA. 

In the fifth chapter, the results of Firefly algorithm for digital filters and neural networks 

are analyzed. Some benchmark filters are designed using the algorithm and their frequency 

responses are presented. The run-time of the algorithm is also calculated and discussed and 

a comparison is made with the state of the art methods and other algorithms. 

In the sixth chapter, the conclusion is given. 
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The main contribution of the work done here is the implementation of Firefly algorithm 

and adapting it to make it suitable for designing FIR filters and neural network designs. 

The algorithm has not been previously used for the design of digital FIR filters. The 

disadvantage of other algorithms such as GA and PSO is that they require fine-tuning of 

the parameters. Also, there is a problem of early convergence to a local minimum. FA, on 

the other hand, is very flexible with parameters, which are relatively easier to tune. Also, 

it is easy to tune FA such that it doesn’t get trapped in local minima while being a very 

time effective method as well. 
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Chapter 2  

Review of Literature 

 

Filter optimization is not a topic new to us. There have been many advancements in this 

particular field and a lot of research work has been carried out. But more and more work 

is being done on daily basis to improve its performance, speed, adaptability and overall 

efficiency of the system [3]. As discussed in chapter 1, digital filters are an essential part 

and perhaps one of the most important features of the modern day circuit designs so its 

accuracy plays a vital role in the improvement of the overall system producing better 

results.  

There have been many methods used for the optimization purposes but one of the most 

efficient ones have been accomplished using an optimization algorithm [3, 4]. Optimization 

algorithms are easier to execute, cost-effective and can give you results near to real ones. 

The improvement of the digital filter is hence dependent on a good performing optimization 

algorithm [6]. There are a number of high performing optimization algorithms that can be 

classified into different types with each having a certain advantage over the other. The 

main focus of this thesis is on Firefly optimization algorithm [1, 9] later explained in 

Chapter 3 which is a nature-inspired, meta-heuristic algorithm and can solve complex 

mathematical problems with close to ideal results depending on the parameter values set 

rightly according to the given problem.  

There are a number of applications of Firefly algorithm already implemented and compiled 

in the literature. Important industrial applications of Firefly Algorithm which includes 

efficient and reliable power production which is necessary to meet both the profitability of 

power systems operations and the electricity demand, taking also into account the 

environmental concerns about the emissions produced by fossil-fueled power plants, the 

economic emission load dispatch problem has been defined and applied in order to deal 

with the optimization of these two conflicting objectives, that is, the minimization of both 

fuel cost and emission of generating units [11] introduces and describes a solution to this 
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famous problem using firefly algorithm which helps to optimize to the optimal results 

converging in an acceptable time, which for this test system was approximately 3 seconds.  

Xin-She Yang used different complex test functions for FA in [12] to prove the efficiency 

and optimization capabilities of the algorithm. For the standard pressure vessel design 

optimization, the optimal solution found by FA is far better than the best solution obtained 

previously in the literature. In addition, a few new test functions with either singularity or 

stochastic components were also introduced but with known global optimality, and thus 

they can be used to validate new optimization algorithms. The optimization results imply 

that the Firefly Algorithm is potentially more powerful than other existing algorithms such 

as particle swarm optimization such as those described in [13]. X.S.Yang described Firefly 

algorithm along with other nature-inspired algorithm in [14]. He described the behavior of 

fireflies, working on the algorithm, its implementation and different modifications to the 

algorithms [1, 2].  

X.Yang in [15] highlighted the importance of exploitation and exploration and their effect 

on the efficiency of an algorithm. It used the intermittent search strategy theory as a 

preliminary basis for analyzing these key components and ways to find the possibly optimal 

settings for algorithm-dependent parameters. It used the firefly algorithm to find this 

optimal balance and confirmed that firefly algorithm can indeed provide a good balance of 

exploitation and exploration. It also shows that firefly algorithm requires far fewer function 

evaluations. 

Firefly algorithm has attracted much attention since its development and has been applied 

to many applications [20, 23, 27, 30, 37, 28,29]. Horng et al. demonstrated that Firefly-

based algorithm used least computation time for digital image compression [28, 29], while 

Banati and Bajaj used firefly algorithm for feature selection and showed that firefly 

algorithm produced consistent and better performance in terms of time and optimality than 

other algorithms [21].  

In the engineering design problems, Gandomi et al. [26] and Azad and Azad [19] confirmed 

that firefly algorithm can efficiently solve highly nonlinear, multimodal design problems. 

Basu and Mahanti [22] as well as Chatterjee et al. have applied FA in antenna design 
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optimization and showed that FA can outperform artificial bee colony (ABC) algorithm 

[23]. In addition, Zaman and Matin have also found that FA can outperform PSO and 

obtained global best results [41]. Sayadi et al. developed a discrete version of FA which 

can efficiently solve NP-hard scheduling problems [34], while a detailed analysis has 

demonstrated the efficiency of FA over a wide range of test problems, including multi-

objective load dispatch problems [20, 36, 39]. Furthermore, FA can also solve scheduling 

and traveling salesman problem in a promising way [28, 30, 40].  

Classifications and clustering are another important areas of applications of FA with 

excellent performance [25, 33]. For example, Senthilnath provided an extensive 

performance study by compared FA with 11 different algorithms and concluded that firefly 

algorithm can be efficiently used for clustering [35]. In most cases, firefly algorithm 

outperforms all other 11 algorithms. In addition, firefly algorithm has also been applied to 

train neural networks [31]. For optimization in dynamic environments, FA can also be very 

efficient as shown by Farahani et al. [24, 25] and Abshouri [18]. 

Nature Inspired algorithm is applied with a back-propagation method to train a feed-

forward neural network in [25] and it is incorporated into the back-propagation algorithm 

to achieve fast and improved convergence rate in training feed-forward neural network. A 

different form of neural network designs is discussed in [43, 25, 44, 42] which shows fast 

convergence and better results. Even though the results of Firefly algorithm compared to 

other algorithms have been very efficient in most of the literature present, there is another 

huge gap between small-scale problems and large-scale problems. As most published 

studies have focused on small, toy problems, there is no guarantee that the methodology 

that works well for such toy problems will work for large-scale problems. All these issues 

still remain unresolved both in theory and in practice. As further research topics, most 

metaheuristic algorithms [51] require good modifications so as to solve combinatorial 

optimization properly. Though with great interest and many extensive studies, more studies 

are highly needed in the area of combinatorial optimization using metaheuristic algorithms 

[33, 39]. In addition, most current metaheuristic research has focused on small-scale 

problems, it will be extremely useful if further research can focus on large-scale real-world 

applications 
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Various studies show that PSO algorithms can outperform genetic algorithms (GA) and 

other conventional algorithms for solving many optimization problems. This is partially 

due to that fact that the broadcasting ability of the current best estimates gives better and 

quicker convergence towards the optimality. A comparison of the Firefly Algorithms with 

PSO and genetic algorithms for various standard test functions have been shown in [9]. 

After implementing these algorithms using MATLAB, extensive simulations have been 

carried out and each algorithm has been run at least 100 times so as to carry out meaningful 

statistical analysis. The algorithms stop when the variations of function values are less than 

a given tolerance ≤ 10−5. The results are summarized in the following table (see Table 2.1) 

where the global optima are reached. The numbers are in the format: an average number of 

evaluations (success rate), so 3752 ± 725(99%) means that the average number (mean) of 

function evaluations is 3752 with a standard deviation of 725. The success rate of finding 

the global optima for this algorithm is 99%. We can see that the FA is much more efficient 

in finding the global optima with higher success rates.   

TABLE 2.1  Comparison of algorithm performance for different standard Functions 

Functions/Algorithms GA PSO FA 

Michalewicz’s (d=16) 

Rosenbrock’s (d=16) 

De Jong’s (d=256) 

Schwefel’s (d=128) 

Ackley’s (d=128) 

Rastrigin’s 

Easom’s 

Griewank’s 

Shubert’s (18 minima) 

Yang’s (d = 16) 

89325 ± 7914(95%) 

55723 ± 8901(90%) 

25412 ± 1237(100%) 

227329 ± 7572(95%) 

32720 ± 3327(90%) 

110523 ± 5199(77%) 

19239 ± 3307(92%) 

70925 ± 7652(90%) 

54077 ± 4997(89%) 

27923 ± 3025(83%) 

6922 ± 537(98%) 

32756 ± 5325(98%) 

17040 ± 1123(100%) 

14522 ± 1275(97%) 

23407 ± 4325(92%) 

79491 ± 3715(90%) 

17273 ± 2929(90%) 

55970 ± 4223(92%) 

23992 ± 3755(92%) 

14116 ± 2949(90%) 

3752 ± 725(99%) 

7792 ± 2923(99%) 

7217 ± 730(100%) 

9902 ± 592(100%) 

5293 ± 4920(100%) 

15573 ± 4399(100%) 

7925 ± 1799(100%) 

12592 ± 3715(100%) 

12577 ± 2356(100%) 

7390 ± 2189(100%) 
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Chapter 3  

Firefly Algorithm  

 

3.1 Mathematical model of Firefly algorithm: 

Firefly algorithm is organized in a way that it requires the following steps to be set up 

properly. Not all of these steps are a necessary requirement but helps in implementing the 

algorithm more efficiently. 

  

1. Set initial parameters in the parameter vector [n iterations α β γ]. Set Upper bound 

and Lower bound values. (For Example: For a FIR-1 filter, initial values may be 

set as N=35, iterations=1500, α = 0.25, β = 0.2 and γ=1, Ub=1.5, Lb= -1.5) 

 

2. Generate an initial coefficient vector (say u0). Set the number of coefficients (d) to 

be optimized. 

u0 = Lb + (Ub − Lb) ∗ rand(1, d)   

                                        where d =
n

2
+ 1 for FIR type 1 filter (n=24)  

 

3. Inside the algorithm, calculate the number of evaluations and set up a population 

matrix P with its size equal to  

[number of fireflies, number of filter coefficients to be optimized]  

with random values generated around initial coefficient vector u0. 

Number of Evaluations = N ∗ iterations 

PN,d =  u0 + rand(1, d) 
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4. From the population matrix obtained, obtain a fitness value for every coefficient 

vector. There will be (N x 1) number of fitness values obtained. Sort the fitness 

values of that vector in the ascending order and store the output in an X matrix. 

fi = cost(Pi) 

X = sort (fi) 

5. Obtain fbest value from the X vector (which will always be the topmost value after 

sorting). Compare every value of X with itself (comparing Xi and Xj,). Calculate 

the distance ‘rij’ for each of the two compared value.  

fbest = XN,1 

 

6. Change every coefficient vector from the population P that satisfies Xi > Xj using 

 Pi = Pi + β(Pj –  Pi) + α ∗ [rand(1, d)  −  
1

2
]                                (3.3) 

where                    β =  βoe−γr2
 

and                         rij = ‖Pi − Pj‖ =  √∑ (Pi,k − Pj,k)
2d

k=1                                               

 

7. Check whether the values obtained in the new population are within the range and 

repeat step 4 until the maximum value of iterations is reached. The coefficient 

vector providing the fbest result is the desired result.  

If Pi,k > Ub ,  Pi,k = Ub 

If Pi,k < Lb , Pi,k = Lb 

 

3.2 Background of Firefly algorithm   

Nature-inspired metaheuristic algorithms are becoming powerful in solving modern global 

optimization problems, especially for the NP-hard optimization such as the traveling 
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salesman problem. For example, particle swarm optimization (PSO) was developed by 

Kennedy and Eberhard in 1995, based on the swarm behavior such as fish and bird 

schooling in nature. It has now been applied to find solutions for many optimization 

applications. Another example is the Firefly Algorithm developed by Xin-She Yang [1] 

which has demonstrated promising superiority over many other algorithms. The search 

strategies in these multi-agent algorithms are controlled randomization, efficient local 

search, and selection of the best solutions. However, the randomization typically uses 

uniform distribution or Gaussian distribution. 

The flashing light of fireflies is an amazing sight in the summer sky in the tropical and 

temperate regions. There are about two thousand firefly species, and most fireflies produce 

short and rhythmic flashes. The pattern of flashes is often unique for a particular species. 

The flashing light is produced by a process of bioluminescence, and the true functions of 

such signaling systems are still debating. However, two fundamental functions of such 

flashes are to attract mating partners (communication) and to attract potential prey. In 

addition, flashing may also serve as a protective warning mechanism. The rhythmic flash, 

the rate of flashing and the amount of time form part of the signal system that brings both 

sexes together. Females respond to a male’s unique pattern of flashing in the same species, 

while in some species such as Photuris, female fireflies can mimic the mating flashing 

pattern of other species so as to lure and eat the male fireflies who may mistake the flashes 

as a potential suitable mate. 

 

The flashing light can be formulated in such a way that it is associated with the objective 

function to be optimized, which makes it possible to formulate new optimization 

algorithms. In the rest of this paper, we will first outline the basic formulation of the Firefly 

Algorithm (FA) and then discuss the implementation as well as analysis in detail. 

Now we can idealize some of the flashing characteristics of fireflies so as to develop firefly-

inspired algorithms. For simplicity in describing our Firefly Algorithm (FA), we now use 

the following three idealized rules:  
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1) All fireflies are unisex so that one firefly will be attracted to other fireflies regardless of 

their sex;  

2) Attractiveness is proportional to their brightness, thus for any two flashing fireflies, the 

less bright one will move towards the brighter one. The attractiveness is proportional to the 

brightness and they both decrease as their distance increases. If there is no brighter one 

than a particular firefly, it will move randomly. 

 3) The brightness of a firefly is affected or determined by the landscape of the objective 

function. For a maximization problem, the brightness can simply be proportional to the 

value of the objective function. For a maximization problem, the brightness can simply be 

proportional to the value of the objective function. Other forms of brightness can be defined 

in a similar way to the fitness function in genetic algorithms or the bacterial foraging 

algorithm. 

In the firefly algorithm, there are two important issues: the variation of light intensity and 

formulation of the attractiveness. For simplicity, we can always assume that the 

attractiveness of a firefly is determined by its brightness which in turn is associated with 

the encoded objective function. 

In the simplest case for maximum optimization problems, the brightness I of a firefly at a 

particular location x can be chosen as I(x) ∝ f(x). However, the attractiveness β is relative, 

it should be seen in the eyes of the beholder or judged by the other fireflies. Thus, it will 

vary with the distance rij between firefly i and firefly j. In addition, light intensity decreases 

with the distance from its source, and light is also absorbed in the media, so we should 

allow the attractiveness to vary with the degree of absorption. In the simplest form, the 

light intensity I(r) varies according to the inverse square law I(r) =
Is

r2
 where Is is the 

intensity at the source. For a given medium with a fixed light absorption coefficient γ, the 

light intensity I vary with the distance r. That is  

 

I = I0e−γr2
                                                      (3.1)   
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where I0 is the original light intensity. 

As a firefly’s attractiveness is proportional to the light intensity seen by adjacent fireflies, 

we can now define the attractiveness β of a firefly by  

β = β0e−γr2
                                                     (3.2) 

where β0 is the attractiveness at r = 0. 

3.3 Firefly Algorithm Specifications  

As the literature of firefly algorithms is rapidly expanding, a natural question is ‘why FA 

is so efficient?’. There are many reasons for its success. By analyzing the main 

characteristics of the standard/classical FA, we can highlight the following three points:  

• FA can automatically subdivide its population into subgroups, due to the fact that local 

attraction is stronger than long-distance attraction. As a result, FA can deal with highly 

nonlinear, multi-modal optimization problems naturally and efficiently.  

• FA does not use historical individual best, and there is no explicit global best either. This 

avoids any potential drawbacks of premature convergence as those in PSO. In addition, FA 

does not use velocities, and there is no problem as that associated with velocity in PSO. 

• FA has an ability to control its modality and adapt to problem landscape by controlling 

its scaling parameter such as γ. In fact, FA is a generalization of SA, PSO, and DE. 

 

It is also notable that the firefly algorithm solves different problems by converting the 

multi-objective problem to a single-objective problem by a linear combination of different 

objectives as a weighted sum, while the particle swarm optimization introduces a price 

penalty factor ℎ for the same purpose. Moreover, by using a population of solutions 

(fireflies) in its search, multiple optimal solutions can be found more quickly, even in one 

run, in contrast to particle swarm optimization algorithm where each agent (particle) 

corresponds to one single solution of the problem. Finally, it is important to point out that 

the firefly algorithm converges in an acceptable time. 
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In general, the analysis of the experimental results, explained in later sections, has 

demonstrated that the firefly algorithm performs better than other methods used for the 

same problem, or at least it obtains good quality optimal solutions in significantly low 

computing times. It is characterized by a stable and fast convergence compared to other 

conventional methods and good computation efficiency, as it has been demonstrated by its 

application. This much-improved speed of computation allows for additional searches and 

improvements that could be made in order to increase the confidence and efficiency of the 

generated solutions.  

In addition, the standard firefly algorithm can be considered as a generalization to particle 

swarm optimization (PSO), differential evolution (DE), and simulated annealing (SA).  

 From Eq. (3.3), we can see that when β0 is zero, the updating formula becomes 

essentially a version of parallel simulated annealing, and the annealing schedule is 

controlled by α.  

 

 On the other hand, if we set γ = 0 in Eq. (3.3) and set β0 = 1, FA becomes a 

simplified version of differential evolution without mutation, and the crossover rate 

is controlled by β0.  

 

 Furthermore, if we set γ = 0 and replace Pj with the current global best solution g*, 

then Eq. (3.3) becomes a variant of PSO, or accelerated particle swarm 

optimization, to be more specific.  

Therefore, the standard firefly algorithm includes DE, PSO, and SA as its special cases. As 

a result, FA can have all the advantages of these three algorithms. Consequently, it is no 

surprise that FA can perform very efficiently. 
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Chapter 4  

Neural Networks 

 

4.1 Introduction 

An Artificial Neural Network (ANN) is an information processing paradigm that is inspired 

by the way biological nervous systems, such as the brain, process information. The key 

element of this paradigm is the novel structure of the information processing system. It is 

composed of a large number of highly interconnected processing elements (neurons) 

working in unison to solve specific problems. ANNs, like people, learn by example. An 

ANN is configured for a specific application, such as pattern recognition or data 

classification, through a learning process. Learning in biological systems involves 

adjustments to the synaptic connections that exist between the neurons. This is true of 

ANNs as well. 

Neural networks (or connectionist systems) are a computational model used in computer 

science and other research disciplines, which is based on a large collection of simple neural 

units (artificial neurons), loosely analogous to the observed behavior of a biological brain's 

axons to solve problems in the same way that the human brain would. 

A neural network is typically defined by three types of parameters: 

 The interconnection pattern between the different layers of neurons 

 The weights of the interconnections, which are updated in the learning process. 

 The activation function that converts a neuron's weighted input to its output 

activation. 

An interesting fact of these systems is that they are unpredictable in their success with self-

learning. After training, some become great problem solvers and others don't perform as 

well. In order to train them, several thousand cycles of interaction typically occur. Like 

other machine learning methods, systems that learn from data, neural networks have been 

https://en.wikipedia.org/wiki/Connectionism
https://en.wikipedia.org/wiki/Computational_model
https://en.wikipedia.org/wiki/Artificial_neuron
https://en.wikipedia.org/wiki/Brain


 

44 

 

used to solve a wide variety of tasks, like computer vision and speech recognition, that are 

hard to solve using ordinary rule-based programming.  

Backpropagation is a common method of training artificial neural networks and used in 

conjunction with an optimization method such as gradient descent. The algorithm repeats 

a two-phase cycle, propagation and weight update. When an input vector is presented to 

the network, it is propagated forward through the network, layer by layer, until it reaches 

the output layer. The output of the network is then compared to the desired output, using 

a cost function, and an error value is calculated for each of the neurons in the output layer. 

The error values are then propagated backward, starting from the output, until each neuron 

has an associated error value which roughly represents its contribution to the original 

output. 

Backpropagation uses these error values to calculate the gradient of the cost function with 

respect to the weights in the network. In the second phase, this gradient is fed to the 

optimization method, which in turn uses it to update the weights, in an attempt to minimize 

the cost function. 

The importance of this process is that, as the network is trained, the neurons in the 

intermediate layers organize themselves in such a way that the different neurons learn to 

recognize different characteristics of the total input space. After training, when an arbitrary 

input pattern is present which contains noise or is incomplete, neurons in the hidden layer 

of the network will respond with an active output if the new input contains a pattern that 

resembles a feature that the individual neurons have learned to recognize during their 

training. 

 4.1.1 Historical background 

Neural network simulations appear to be a recent development. However, this field was 

established before the advent of computers and has survived at least one major setback and 

several eras. 

Many important advances have been boosted by the use of inexpensive computer 

emulations. Following an initial period of enthusiasm, the field survived a period of 

https://en.wikipedia.org/wiki/Computer_vision
https://en.wikipedia.org/wiki/Speech_recognition
https://en.wikipedia.org/wiki/Rule-based_programming
https://en.wikipedia.org/wiki/Artificial_neural_networks
https://en.wikipedia.org/wiki/Mathematical_optimization
https://en.wikipedia.org/wiki/Gradient_descent
https://en.wikipedia.org/wiki/Loss_function
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frustration and disrepute. During this period when funding and professional support was 

minimal, important advances were made by relatively few researchers. These pioneers 

were able to develop convincing technology which surpassed the limitations identified by 

Minsky and Papert. Minsky and Papert published a book (in 1969) in which they summed 

up a general feeling of frustration (against neural networks) among researchers, and was 

thus accepted by most without further analysis. Currently, the neural network field enjoys 

a resurgence of interest and a corresponding increase in funding. 

The first artificial neuron was produced in 1943 by the neurophysiologist Warren 

McCulloch and the logician Walter Pits. But the technology available at that time did not 

allow them to do too much. 

4.1.2 Why use neural networks? 

Neural networks, with their remarkable ability to derive meaning from complicated or 

imprecise data, can be used to extract patterns and detect trends that are too complex to be 

noticed by either humans or other computer techniques. A trained neural network can be 

thought of as an "expert" in the category of information it has been given to analyze. This 

expert can then be used to provide projections given new situations of interest and answer 

"what if" questions. Other advantages include: 

1. Adaptive learning: An ability to learn how to do tasks based on the data given for 

training or initial experience. 

2. Self-Organization: An ANN can create its own organization or representation of 

the information it receives during learning time. 

3. Real-Time Operation: ANN computations may be carried out in parallel, and 

special hardware devices are being designed and manufactured which take 

advantage of this capability. 

4. Fault Tolerance via Redundant Information Coding: Partial destruction of a 

network leads to the corresponding degradation of performance. However, some 

network capabilities may be retained even with major network damage. 
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4.1.3 Neural networks versus conventional computers 

Neural networks take a different approach to problem-solving than that of conventional 

computers. Conventional computers use an algorithmic approach i.e. the computer follows 

a set of instructions in order to solve a problem. Unless the specific steps that the computer 

needs to follow are known the computer cannot solve the problem. That restricts the 

problem-solving capability of conventional computers to problems that we already 

understand and know how to solve. But computers would be so much more useful if they 

could do things that we don't exactly know how to do. 

Neural networks process information in a similar way the human brain does. The network 

is composed of a large number of highly interconnected processing elements (neurons) 

working in parallel to solve a specific problem. Neural networks learn by example. They 

cannot be programmed to perform a specific task. The examples must be selected carefully 

otherwise useful time is wasted or even worse the network might be functioning 

incorrectly. The disadvantage is that because the network finds out how to solve the 

problem by itself, its operation can be unpredictable. 

On the other hand, conventional computers use a cognitive approach to problem-solving; 

the way the problem is to solved must be known and stated in small unambiguous 

instructions. These instructions are then converted to a high-level language program and 

then into machine code that the computer can understand. These machines are totally 

predictable; if anything goes wrong is due to a software or hardware fault. 

Neural networks and conventional algorithmic computers are not in competition but 

complement each other. There are tasks are more suited to an algorithmic approach to 

arithmetic operations and tasks that are more suited to neural networks. Even more, a large 

number of tasks, require systems that use a combination of the two approaches (normally 

a conventional computer is used to supervise the neural network) in order to perform at 

maximum efficiency. 

Much is still unknown about how the brain trains itself to process information, so theories 

abound. In the human brain, a typical neuron collects signals from others through a host of 

fine structures called dendrites. The neuron sends out spikes of electrical activity through 
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a long, thin stand known as an axon, which splits into thousands of branches. At the end of 

each branch, a structure called a synapse converts the activity from the axon into electrical 

effects that inhibit or excite activity from the axon into electrical effects that inhibit or 

excite activity in the connected neurons. When a neuron receives excitatory input that is 

sufficiently large compared with its inhibitory input, it sends a spike of electrical activity 

down its axon. Learning occurs by changing the effectiveness of the synapses so that the 

influence of one neuron on another change.  

4.1.4 Feed-forward networks 

Feed-forward ANNs allow signals to travel one way only; from input to output. There is 

no feedback (loops) i.e. the output of any layer does not affect that same layer. Feed-

forward ANNs tend to be straightforward networks that associate inputs with outputs. They 

are extensively used in pattern recognition. This type of organization is also referred to as 

bottom-up or top-down. 

4.1.5 Feedback networks 

Feedback networks can have signals traveling in both directions by introducing loops in 

the network. Feedback networks are very powerful and can get extremely complicated. 

Feedback networks are dynamic; their 'state' is changing continuously until they reach an 

equilibrium point. They remain at the equilibrium point until the input changes and a new 

equilibrium needs to be found. Feedback architectures are also referred to as interactive or 

recurrent, although the latter term is often used to denote feedback connections in single-

layer organizations. 

The commonest type of artificial neural network consists of three groups, or layers, of 

units: a layer of "input" units is connected to a layer of "hidden" units, which is connected 

to a layer of "output" units. 

 The activity of the input units represents the raw information that is fed into the 

network. 

 The activity of each hidden unit is determined by the activities of the input units and 

the weights on the connections between the input and the hidden units. 
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 The behavior of the output units depends on the activity of the hidden units and the 

weights between the hidden and output units. 

This simple type of network is interesting because the hidden units are free to construct 

their own representations of the input. The weights between the input and hidden units 

determine when each hidden unit is active, and so by modifying these weights, a hidden 

unit can choose what it represents. 

We also distinguish single-layer and multi-layer architectures. The single-layer 

organization, in which all units are connected to one another, constitutes the most general 

case and is of more potential computational power than hierarchically structured multi-

layer organizations. In multi-layer networks, units are often numbered by layer, instead of 

following a global numbering. 

The memorization of patterns and the subsequent response of the network can be 

categorized into two general paradigms: 

 Associative mapping in which the network learns to produce a particular pattern on the 

set of input units whenever another particular pattern is applied to the set of input units. 

The associative mapping can generally be broken down into two mechanisms:  

 Auto-association: an input pattern is associated with itself and the states of input 

and output units coincide. This is used to provide pattern completion, i.e. to produce 

a pattern whenever a portion of it or a distorted pattern is presented. In the second 

case, the network actually stores pairs of patterns building an association between 

two sets of patterns. 

  hetero-association: is related to two recall mechanisms: 

 

o nearest-neighbor recall, where the output pattern produced corresponds to 

the input pattern stored, which is closest to the pattern presented, and 

 

o  Interpolative recall, where the output pattern is a similarity dependent 

interpolation of the patterns stored corresponding to the pattern presented. 

Yet another paradigm, which is a variant associative mapping is 
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classification, ie when there is a fixed set of categories into which the input 

patterns are to be classified. 

 Regularity detection in which units learn to respond to particular properties of the input 

patterns. Whereas in associative mapping the network stores the relationships among 

patterns, in regularity detection the response of each unit has a particular 'meaning'. This 

type of learning mechanism is essential for feature discovery and knowledge 

representation. 

 Every neural network possesses knowledge which is contained in the values of the 

connections weights. Modifying the knowledge stored in the network as a function of 

experience implies a learning rule for changing the values of the weights. 

Information is stored in the weight matrix W of a neural network. Learning is the 

determination of the weights. Following the way learning is performed, we can distinguish 

two major categories of neural networks: 

 Fixed networks in which the weights cannot be changed, ie dW/dt=0. In such 

networks, the weights are fixed a priori according to the problem to solve. 

 

 Adaptive networks which are able to change their weights, ie dW/dt not= 0. 

All learning methods used for adaptive neural networks can be classified into two major 

categories: 

 Supervised learning which incorporates an external teacher, so that each output 

unit is told what its desired response to input signals ought to be. During the 

learning process, global information may be required. Paradigms of supervised 

learning include error-correction learning, reinforcement learning, and stochastic 

learning. 

An important issue concerning supervised learning is the problem of error 

convergence, i.e. the minimization of error between the desired and computed unit 

values. The aim is to determine a set of weights which minimizes the error. One 
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well-known method, which is common to many learning paradigms is the least 

mean square (LMS) convergence. 

 

 Unsupervised learning uses no external teacher and is based on only local 

information. It is also referred to as self-organization, in the sense that it self-

organizes data presented to the network and detects their emergent collective 

properties. Paradigms of unsupervised learning are Hebbian learning and 

competitive learning. From Human Neurons to Artificial Neurons the aspect of 

learning concerns the distinction or not of a separate phase, during which the 

network is trained, and a subsequent operation phase. We say that a neural network 

learns off-line if the learning phase and the operation phase are distinct. A neural 

network learns on-line if it learns and operates at the same time. Usually, supervised 

learning is performed off-line, whereas unsupervised learning is performed on-line. 

 

4.2 Neural Networks in Practice 

Given this description of neural networks and how they work, what real-world applications 

are they suited for? Neural networks have broad applicability to real-world business 

problems. In fact, they have already been successfully applied in many industries. 

Since neural networks are best at identifying patterns or trends in data, they are well suited 

for prediction or forecasting needs including: 

 sales forecasting 

 industrial process control 

 customer research 

 data validation 

 risk management 

But to give you some more specific examples; ANN is also used in the following specific 

paradigms: recognition of speakers in communications; diagnosis of hepatitis; recovery of 

telecommunications from faulty software; interpretation of multi-meaning words; undersea 
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mine detection; texture analysis; three-dimensional object recognition; hand-written word 

recognition; and facial recognition. 

 The computing world has a lot to gain from neural networks. Their ability to learn by 

example makes them very flexible and powerful. Furthermore, there is no need to devise 

an algorithm in order to perform a specific task; i.e. there is no need to understand the 

internal mechanisms of that task. They are also very well suited for real-time systems 

because of their fast response and computational times which are due to their parallel 

architecture. 

Neural networks also contribute to other areas of research such as neurology and 

psychology. They are regularly used to model parts of living organisms and to investigate 

the internal mechanisms of the brain. 

Perhaps the most exciting aspect of neural networks is the possibility that someday 

'conscious' networks might be produced. There is a number of scientists arguing that 

consciousness is a 'mechanical' property and that 'conscious' neural networks are a realistic 

possibility. Even though neural networks have a huge potential we will only get the best of 

them when they are integrated with computing, AI, fuzzy logic and related subjects. 
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4.3 XOR Neural Network Problem 

One of the common backpropagation problems that can be solved using neural networks is 

the Exclusive-OR problem which requires the network to be trained in such a manner that 

it is able to produce the similar inputs and distinguished input results separately, with 

similar inputs producing 0 at the output and different inputs with 1 at the output. A network 

has been designed for this particular problem with 2 hidden neurons as shown in figure 4.1. 

The network contains 9 parameter values (6 weighing coefficients, 3 bias values) that need 

to be optimized in order for the network to produce successful exclusive-OR results which 

are later tested and verified in order to prove the neural network parameters produce the 

same results for all sort of input noise and values. 

.  

Figure 4.1  Neural network design for two input XOR problem. (Kwan [73], 2016, pg 

18) 
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Results of the coefficient vector for the parameters of two-layer neural network is given in 

Table 4.1 and 4.2. 

TABLE 4.1  2-input one output Neural network design parameters 

Parameters Obtained values 

W1 6.804825634099212 

W2 6.652658888362717 

W3 -6.574292782777339 

W4 -6.874863726533375 

W5 -20 

W6 20 

B1 -3.345630235052796 

B2 3.382454430968793 

B3 -9.994892142234166 

 

 

TABLE 4.2   2-input one output Neural network design 

Iterations Time Elapsed (Sec) Best Cost Value 

1000 10.536342 9.761402898298260e-18 
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To verify the results obtained produce an XOR output, an input grid of 100 by 100 is 

selected of the two inputs X1 and X2 and the output results are plotted at every instant of 

input. The results are shown in Figures 4.2 and 4.3.  

 

Figure 4.2  XOR output with 2 input grid 

 

 

Figure 4.3  2-dimensional view of Figure 4.2 
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4.4 Advanced feedforward Neural Network Problem 

 This is a simple design for an advanced feedforward neural network problem using the 

simplified sigmoid function as defined in H. K. Kwan and C. Z. Tang’s paper [8] The idea 

is to simplify a more complex neural network problem with a large number of inputs and 

weighing function values in order to produce predefined output results. In this particular 

problem, 100 bits are taken as input which may be -1 or +1. There are 10 hidden neurons 

and 4 output neurons. The output of a neuron is the sigmoid activation function produces 

either negative or positive 1. In this multilayer Feedforward neural network system, the 

output of a neuron 𝑗 at a layer ℎ due to a 𝑘th input pattern 𝑋𝑘 can be expressed as: 

𝑦𝑗𝑘
[ℎ]

= F ( ∑ 𝑤𝑖𝑗
[ℎ]

𝑁ℎ−1

𝑖=1

𝑦𝑖𝑘
[ℎ−1]

+ 𝑏𝑗
[ℎ]

)                                             (4.1) 

for 𝑗 = 1 to 𝑁ℎ, ℎ = 1 to 𝐿, and 𝑘 = 1 to 𝐾. 

In eqn. 4.1, 𝑦𝑖𝑘
[ℎ−1]

 is the output of a neuron 𝑖 at the layer ℎ − 1; 𝑤𝑖𝑗
[ℎ]

 is the weight between 

a neuron 𝑖 at the layer ℎ − 1 and a neuron 𝑗 at layer ℎ; 𝑏𝑗
[ℎ]

 is the bias of a neuron 𝑗 at the 

layer ℎ; 𝑁ℎ is the number of neurons at layer ℎ. 

The input pattern as defined in [8] for the neural network problem have ten virtual digits 

each of which is defined by a 10 by 10 grid. So, each number contains 100 input values to 

determine the output of one digit. The desired training pattern is shown in Figure 4.4. 
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Figure 4.4  Training pattern pairs (Kwan[8],1992, pg 2) 

 

The output response defined in Figure 4.4 is given by the four output neurons. Each digit 

has hundred input values which make 100 𝑤1 values to be optimized. 10 digits mean that 

there are 1000 𝑤1 values needing to be optimized. The ten neuron hidden neural network 

layer links to the 4 output neuron with 40 𝑤2 values to be optimized. That makes it 1040 

𝑤𝑖𝑗
[ℎ]

 values to be optimized. Also each neuron has a bias value 𝑏𝑗
[ℎ]

 which helps in shifting 

the neuron output to the desired sigmoid value. There are total 14 bias values corresponding 

to each of the 14 neurons. Therefore, a total of 1054 parameters need to be optimized in 

order to train the neural network system. We have used FA to optimize all the parameters 

such that when a distorted input is received, the neural network should be able to identify 

and produce the desired results. The desired and obtained output of the neural network after 

training the parameters with FA can be seen in Figure 4.5. 
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Figure 4.5  Ten digit problem output pattern. 

The design specifications and results are shown in Table 4.3 

TABLE 4.3  Results table with no input noise. 

DIGITS RESULT 4 – OUTPUT NEURONS TOTAL ERROR TIME ELAPSED 
(Sec) 

One Desired 1 -1 -1 -1 

1.3948e-07 28.137744 

Obtained 1 -1 -1 -1 

Two Desired -1 1 -1 -1 

Obtained -1 1 -1 -1 

Three Desired 1 1 -1 -1 

Obtained 1 1 -1 -1 

Four Desired -1 -1 1 -1 

Obtained -1 -1 1 -1 

Five Desired 1 -1 1 -1 

Obtained 1 -1 1 -1 

Six Desired -1 1 1 -1 

Obtained -1 1 1 -1 

Seven Desired 1 1 1 -1 

Obtained 1 1 1 -1 

Eight Desired -1 -1 -1 1 

Obtained -1 -1 -1 1 

Nine Desired 1 -1 -1 1 

Obtained 1 -1 -1 1 

Zero Desired -1 1 -1 1 

Obtained -1 1 -1 1 



 

58 

 

It can be seen from Figure 4.5 that the neural network returns exactly the same desired 

response and the response time of the training of 1054 parameters using FA is very quick 

considering the number of parameters needing to be optimized. The same problem is 

repeated with 5%, 10% and 20% of input noise in order to check if the same response can 

be obtained with the already trained parameters. The results with error values are shown in 

Table 4.4 – 4.6 respectively.  

TABLE 4.4  Results table with 5% input noise. 

DIGITS RESULT 4 – OUTPUT NEURONS TOTAL ERROR TIME ELAPSED 
(Sec) 

One Desired 1 -1 -1 -1 

 
 
 
 
 
 
 
 
 
 

0.081378 

 
 
 
 
 
 
 
 
 
 

27.2567 

Obtained 1 -1 -0.6 -1 

Two Desired -1 1 -1 -1 

Obtained -0.2 1 1 -1 

Three Desired 1 1 -1 -1 

Obtained 1 1 -1 -1 

Four Desired -1 -1 1 -1 

Obtained -1 -1 1 -1 

Five Desired 1 -1 1 -1 

Obtained 1 -1 1 -1 

Six Desired -1 1 1 -1 

Obtained -1 1 1 -1 

Seven Desired 1 1 1 -1 

Obtained 1 1 1 -1 

Eight Desired -1 -1 -1 1 

Obtained -1 -1 -1 1 

Nine Desired 1 -1 -1 1 

Obtained 1 -1 -1 1 

Zero Desired -1 1 -1 1 

Obtained -1 1 -1 1 

 

TABLE 4.5  Results table with 10% input noise. 

DIGITS RESULT 4 – OUTPUT NEURONS TOTAL ERROR TIME ELAPSED 
(Sec) 

One Desired 1 -1 -1 -1 
 

 

 

0.15603 

 

 

 

29.4525 

Obtained 1 -1 -1 -1 

Two Desired -1 1 -1 -1 

Obtained -1 1 1 -1 

Three Desired 1 1 -1 -1 

Obtained 1 1 1 -1 

Four Desired -1 -1 1 -1 

Obtained -1 -1 1 -1 
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Five Desired 1 -1 1 -1 

Obtained 1 -1 0.5 -1 

Six Desired -1 1 1 -1 

Obtained -1 1 0.65 -1 

Seven Desired 1 1 1 -1 

Obtained 1 1 1 -1 

Eight Desired -1 -1 -1 1 

Obtained -1 -1 -1 1 

Nine Desired 1 -1 -1 1 

Obtained 1 -1 -1 1 

Zero Desired -1 1 -1 1 

Obtained -1 1 -1 1 

 

TABLE 4.6  Results table with 20% input noise. 

DIGITS RESULT 4 – OUTPUT NEURONS TOTAL ERROR TIME ELAPSED 
(Sec) 

One Desired 1 -1 -1 -1 

0.26998 27.3941 

Obtained 1 -1 1 -1 

Two Desired -1 1 -1 -1 

Obtained -1 1 -1 -1 

Three Desired 1 1 -1 -1 

Obtained 1 1 -0.3 -1 

Four Desired -1 -1 1 -1 

Obtained -1 -0.9 1 -1 

Five Desired 1 -1 1 -1 

Obtained 1 -1 1 -1 

Six Desired -1 1 1 -1 

Obtained -1 1 1 -1 

Seven Desired 1 1 1 -1 

Obtained 1 1 1 -1 

Eight Desired -1 -1 -1 1 

Obtained -1 1 -1 1 

Nine Desired 1 -1 -1 1 

Obtained 1 -1 1 1 

Zero Desired -1 1 -1 1 

Obtained -1 1 1 -1 

It can be seen from the results tables that the error values increase with the increasing 

noise in the input pattern. But once the parameters are trained it can point to the output 

response really fast with the minimum error possible which makes neural network 

designs very effective where fast processing is needed. The training is also very fast with 

FA and gives accurate results which make FA a very effective algorithm to work with 

neural network designs.  
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Chapter 5  

Results 

 

For simulation of filter designing using Firefly algorithm, FIR type 1 filter was chosen as 

it is suitable for implementing all 4 basic types (Lowpass, Highpass, Bandpass, Bandstop) 

of filters. 2 different filter orders (24 & 48 orders) were chosen to show the complexity 

handling of the algorithm and the filters were designed and compared with the results of 

DE and PM. The simulation of the aforementioned designed and their analysis is given in 

this chapter.  

This chapter gives a complete picture of how the algorithm performs with different designs 

and specifications and how much time does it take to produce the results. It is divided into 

several sections. The LP-FIR designs for 24 order are given in 5.1. All the designs are then 

compared to DE results provided earlier in chapter 2 in section 5.2. The results are then 

compared with state-of-the-art designs of PM algorithm in section 5.3. Similarly, the 48th 

order LP-FIR designs are provided in section 5.4. The 48th order filter designs of FA are 

then compared with DE and PM in section 5.5 and 5.6 respectively. The General FIR design 

results are presented in section 5.7.  
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5.1 FIR 24 order Filter Results Obtained Using FA 

For Type 1 LP-FIR filter of order 24, Filter designs using FA are given below:  

 

Figure 5.1  24 order Lowpass digital FIR filter using FA 

 

TABLE 5.1  Coefficients of 24th-order type1 Lowpass LP-FIR filter by FA 

h(n) Coefficients h(n) Coefficients 

h(1) = h(25) -0.015522008933653 h(8) = h(18) 0.041237502939032 

h(2) = h(24) 0.016486080444651 h(9) = h(17) 0.072079031708125 

h(3) = h(23) 0.026248621788878 h(10) = h(16) 0.017485734410618 

h(4) = h(22) 0.011646728361479 h(11) = h(15) -0.122801217633660 

h(5) = h(21) -0.018764773645612 h(12) = h(14) -0.281650153767307 

h(6) = h(20) -0.037309926526026 h(13) = -0.345426609420225 

h(7) = h(19) -0.015878216920711   
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Figure 5.2  24 order Highpass digital FIR filter using FA 

 

 

TABLE 5.2  Coefficients of 24th-order type1 Highpass LP-FIR filter by FA 

h(n) Coefficients h(n) Coefficients 

h(1) = h(25) 0.000260047828761 h(8) = h(18) -0.057430962743755 

h(2) = h(24) 0.030529809103280 h(9) = h(17) -0.002419357765453 

h(3) = h(23) -0.000429243385549 h(10) = h(16) 0.101126670449230 

h(4) = h(22) -0.027462082232009 h(11) = h(15) -0.000640410712477 

h(5) = h(21) -0.002089836305828 h(12) = h(14) -0.319934972869165 

h(6) = h(20) 0.037157890650607 h(13) = 0.500420471134895 

h(7) = h(19) -0.003287213256156   
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Figure 5.3  24 order Bandpass digital FIR filter using FA 

 

 

 

 

TABLE 5.3  Coefficients of 24th-order type1 Bandpass LP-FIR filter by FA 

h(n) Coefficients h(n) Coefficients 

h(1) = h(25) 0.006539698675755 h(8) = h(18) 0.022251374087707 

h(2) = h(24) -0.000883807845255 h(9) = h(17) 0.119648078224730 

h(3) = h(23) 0.025203886110461 h(10) = h(16) -0.040381104590304 

h(4) = h(22) -0.039184475398611 h(11) = h(15) -0.270395031717470 

h(5) = h(21) -0.050330891221388 h(12) = h(14) 0.032305553853011 

h(6) = h(20) 0.028866262629929 h(13) = 0.355094279682638 

h(7) = h(19) 0.016178791697218   
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Figure 5.4  24 order Bandstop digital FIR filter using FA 

 

 

TABLE 5.4  Coefficients of 24th-order type1 Bandstop LP-FIR filter by FA 

h(n) Coefficients h(n) Coefficients 

h(1) = h(25) -0.017929329230994 h(8) = h(18) 0.039262844253155 

h(2) = h(24) 0.030979466221750 h(9) = h(17) 0.144555430625010 

h(3) = h(23) 0.021042245597871 h(10) = h(16) -0.044486440743630 

h(4) = h(22) -0.010160321400097 h(11) = h(15) -0.223730643349791 

h(5) = h(21) -0.000173841974654 h(12) = h(14) 0.019371489733680 

h(6) = h(20) -0.018582630214610 h(13) = -0.743730083562852 

h(7) = h(19) -0.062225263304964   
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5.2 Comparison of DE and FA results (Order 24) 

 

For 24 order filter designs, Digital filters are designed using FA as seen in 5.1. Also for 

comparing the results, same filters were also designed using Differential Evolution 

algorithm in order to judge the difference in performances of the two algorithms. The 

designs of filters using DE can be seen in 2.3 from Fig. 2.1-2.4. Visual comparison of the 

two algorithms is given in figure 5.5 - 5.8. 

 

 

 

 

 

Figure 5.5   Lowpass FIR filter comparing FA and DE 
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Figure 5.6  Highpass FIR filter comparing FA and DE 

 

Figure 5.7  Bandpass FIR filter comparing FA and DE 
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Figure 5.8  Bandstop FIR filter comparing FA and DE 
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TABLE 5.5  24 order FIR type 1 filter design results comparison (DE: Differential 

Evolution; FA: Firefly Algorithm) 

 

 

 

 

 

 

 

 

 

 

 

Filter Alg Peak(Stopband) Peak(Passband) Peak(Stopband 2) 
CPU 

(Sec) 

 

Lowpass 

FA 0.048261126877512 0.045898650619239 - 61.06 

DE 0.057892831435627 0.024816996495112 - 5905 

Filter Alg Peak(Stopband) Peak(Passband) Peak(Stopband 2) 
CPU 

(Sec) 

 

Highpass 

FA 0.046743317585723 0.050000576593838 - 51.66 

DE 0.052408544937316 0.038951269285244 - 7106 

Filter Alg Peak(Stopband) Peak(Passband) Peak(Stopband 2) 
CPU 

(Sec) 

 

Bandpass 

FA 0.058934863943933 0.062612456660805 0.06168617624984 83.96 

DE 0.018159709479349 0.103707424193301 0.01815970947934 11117 

Filter Alg Peak(Passband) Peak(Stopband) Peak(Passband 2) 
CPU 

(Sec) 

 

Bandstop 

FA 0.051684607201277 0.055622602909391 0.05769081459274 56.19 

DE 0.014716165596515 0.090720149556089 0.01471616559651 7447 
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5.3 FA results compared with FIRPM (24 order) 

 

For 24 order filter designs, Digital filters designs using FA were also compared with the 

state-of-the-art designs of Parks McClellan algorithm. It can be seen from the figure 5.9-

5.12 that the results of FA and PM are almost identical. 

 

 

 

 

Figure 5.9  Lowpass FIR filter comparing FA and FIRPM 
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Figure 5.10  Highpass FIR filter comparing FA and FIRPM 

 

 

 

 

Figure 5.11  Bandpass FIR filter comparing FA and FIRPM 
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Figure 5.12  Bandstop FIR filter comparing FA and FIRPM 
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An overall result of all four LP-FIR digital filters for order 24 obtained by using 

Firefly algorithm compared to both Differential Evolution algorithm and Parks–McClellan 

algorithm can be shown in Table 5.6. 

 

 

TABLE 5.6  24 order FIR type 1 filter design results comparison (FA: Firefly Algorithm, 

FIRPM: Parks–McClellan algorithm; DE: Differential Evolution Algorithm) 

Filter Alg Peak(Stopband) Peak(Passband) Peak(Stopband 2) 
CPU 

(Sec) 

 

Lowpass 

PM 0.04680441780656 0.044663349407852 - 0.049 

DE 0.05789283143562 0.024816996495112 - 5905 

FA 0.04826112687751 0.045898650619239 - 61.06 

Filter Alg Peak(Stopband) Peak(Passband) Peak(Stopband 2) 
CPU 

(Sec) 

 

Highpass 

PM 0.04527382939466 0.048082904678732 - 0.1836 

DE 0.05240854493731 0.038951269285244 - 7106 

FA 0.04674331758572 0.050000576593838 - 51.66 

Filter Alg Peak(Stopband) Peak(Passband) Peak(Stopband 2) 
CPU 

(Sec) 

 

Bandpass 

PM 0.05657992127561 0.061630490482057 0.063817460882562 0.1822 

DE 0.01815970947934 0.103707424193301 0.018159709479349 11117 

FA 0.05893486394393 0.062612456660805 0.061686176249849 83.96 

Filter Alg Peak(Passband) Peak(Stopband) Peak(Passband 2) 
CPU 

(Sec) 

 

Bandstop 

PM 0.05313202024494 0.055140706326915 0.057141822013960 0.1904 

DE 0.01471616559651 0.090720149556089 0.014716165596515 7447 

FA 0.05168460720127 0.055622602909391 0.05769081459274 56.19 
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5.4 FIR 48 order Filter Results Obtained Using FA 

For Type 1 LP-FIR filter of order 48, Filter designs using FA are given below: 

 

Figure 5.13  Magnitude response of 48 order Lowpass digital FIR filter using FA 

 

 

Figure 5.14  48 order Lowpass digital FIR filter using FA 
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TABLE 5.7  Coefficients of 48th-order type1 Lowpass LP-FIR filter by FA 

h(n) Coefficients h(n) Coefficients 

h(1) = h(49)  0.003156991481139 h(14) = h(36)  -0.009002611563698 

h(2) = h(48)    0.000068595895858 h(15) = h(35)   -0.024724309036358 

h(3) = h(47)   -0.003020249400455 h(16) = h(34)   -0.013882774516647 

h(4) = h(46)   -0.004101377999152 h(17) = h(33)    0.019097832049613 

h(5) = h(45)   -0.000432163819737 h(18) = h(32)    0.039719977020496 

h(6) = h(44)    0.005252127754140 h(19) = h(31)    0.015708843665374 

h(7) = h(43)    0.006133847108435 h(20) = h(30)   -0.041730093575953 

h(8) = h(42)   -0.000817695074935 h(21) = h(29)   -0.073077087480593 

h(9) = h(41)   -0.009297338042015 h(22) = h(28)   -0.017168425910954 

h(10) = h(40)   -0.008597220424668 h(23) = h(27)    0.126968291502862 

h(11) = h(39)    0.003638781917081 h(24) = h(26)    0.283447617450385 

h(12) = h(38)    0.015476767707981 h(25) =     0.351071736112283 

h(13) = h(37)    0.011282505001528   

 

 

Figure 5.15  Magnitude response of 48 order Lowpass digital FIR filter using FA 
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Figure 5.16  48 order Highpass digital FIR filter using FA 

TABLE 5.8  Coefficients of 48th-order type1 Highpass LP-FIR filter by FA 

h(n) Coefficients h(n) Coefficients 

h(1) = h(49) 0.000517758207302 h(14) = h(36)    0.020920507913662 

h(2) = h(48)    0.003539481313068 h(15) = h(35)   -0.000523206771986 

h(3) = h(47)   -0.000051994567141 h(16) = h(34)   -0.028173261913607 

h(4) = h(46)   -0.003803752599296 h(17) = h(33)   -0.000075755845606 

h(5) = h(45)   -0.000296720795616 h(18) = h(32)    0.040186029220737 

h(6) = h(44)    0.005998974325234 h(19) = h(31)   -0.000338910621310 

h(7) = h(43)   -0.000312713136642 h(20) = h(30)   -0.059916443717716 

h(8) = h(42)   -0.008273365392330 h(21) = h(29)    0.000661620629984 

h(9) = h(41)    0.000381884059713 h(22) = h(28)    0.103404844582466 

h(10) = h(40)    0.011108103085080 h(23) = h(27)   -0.000428354594165 

h(11) = h(39)   -0.000053897962200 h(24) = h(26)   -0.317116051339188 

h(12) = h(38)   -0.015541505004602 h(25) =     0.499866153122865 

h(13) = h(37)    0.000343275007539   
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Figure 5.17  Magnitude response of 48 order Bandstop digital FIR filter using FA 

 

 

Figure 5.18  48 order Bandstop digital FIR filter using FA 
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TABLE 5.9  Coefficients of 48th-order type1 Bandstop LP-FIR filter by FA 

h(n) Coefficients h(n) Coefficients 

h(1) = h(49) -0.005378250063156 h(14) = h(36) -0.013456511708727 

h(2) = h(48) -0.001921766427042 h(15) = h(35) 0.023661396150739 

h(3) = h(47) 0.004717293141307 h(16) = h(34) 0.044828577667078 

h(4) = h(46) 0.002029385360111 h(17) = h(33) -0.033921696344892 

h(5) = h(45) 0.001336172352747 h(18) = h(32) -0.066087823911229 

h(6) = h(44) 0.000803948846018 h(19) = h(31) 0.025405138893122 

h(7) = h(43) -0.011023484273117 h(20) = h(30) 0.041044183255582 

h(8) = h(42) -0.006600621836804 h(21) = h(29) 0.001488011978820 

h(9) = h(41) 0.017842886607902 h(22) = h(28) 0.080755418812471 

h(10) = h(40) 0.012335177537555 h(23) = h(27) -0.029827622307303 

h(11) = h(39) -0.013662772245499 h(24) = h(26) -0.586625924604684 

h(12) = h(38) -0.008025998718848 h(25) = 0.042338175594954 

h(13) = h(37) -0.001751130090847   

 

 

Figure 5.19  Magnitude response of 48 order Bandpass digital FIR filter using FA 
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Figure 5.20  8 order Bandpass digital FIR filter using FA 

TABLE 5.10  Coefficients of 48th-order type1 Bandpass LP-FIR filter by FA 

h(n) Coefficients h(n) Coefficients 

h(1) = h(49) 0.000786646366987 h(14) = h(36) -0.007530040362122 

h(2) = h(48) 0.001093911308246 h(15) = h(35) -0.023034701024358 

h(3) = h(47) 0.000869133481166 h(16) = h(34) 0.037419157533026 

h(4) = h(46) 0.007005821482122 h(17) = h(33) 0.050245240248314 

h(5) = h(45) -0.000588993480590 h(18) = h(32) -0.028383086351011 

h(6) = h(44) -0.010127401441240 h(19) = h(31) -0.013627050573068 

h(7) = h(43) -0.000220571990600 h(20) = h(30) -0.017994123819306 

h(8) = h(42) -0.001222649435483 h(21) = h(29) -0.116928651804409 

h(9) = h(41) -0.002568195063428 h(22) = h(28) 0.051200919993218 

h(10) = h(40) 0.019460623234224 h(23) = h(27) 0.276415577757441 

h(11) = h(39) 0.010201399517217 h(24) = h(26) -0.026888590456298 

h(12) = h(38) -0.020518581869875 h(25) = -0.350820669057934 

h(13) = h(37) -0.006094767653371   
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5.5 Comparison of DE and FA results (Order 48) 

For 48 order filter designs, Digital filters designs using FA were also compared with the 

Differential Evolution filter designs. The comparison be seen from the figure 5.21-5.25 

and from Table 5.11 

 

Figure 5.21  Lowpass 48 order FIR filter comparing FA and DE 

  

 

Figure 5.22  Highpass 48 order FIR filter comparing FA and DE 
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Figure 5.23  Bandpass 48 order FIR filter comparing FA and DE 

 

 

 

Figure 5.24  Bandstop 48 order FIR filter comparing FA and DE 
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TABLE 5.11  48th order FIR type 1 filter design results comparison (DE: Differential 

Evolution; FA: Firefly Algorithm) 

 

 

 

 

 

 

 

 

 

 

 

 

Filter Alg Peak(Stopband) Peak(Passband) Peak(Stopband 2) 
CPU 

(Sec) 

 

Lowpass 

FA 0.004918920471757 0.005732852275220 - 7458 

DE 0.003493591533472 0.008891830501439 - 22398 

Filter Alg Peak(Stopband) Peak(Passband) Peak(Stopband 2) 
CPU 

(Sec) 

 

Highpass 

FA 0.005698136342156 0.006061880324284 - 760.5 

DE 0.005148454290066 0.016946875805872 - 26037 

Filter Alg Peak(Stopband) Peak(Passband) Peak(Stopband 2) 
CPU 

(Sec) 

 

Bandpass 

FA 0.006804012796994 0.007574117936477 0.0069365942779 3633 

DE 0.004846592046081 0.01688614516569 0.0029581502868 56842 

Filter Alg Peak(Passband) Peak(Stopband) Peak(Passband 2) 
CPU 

(Sec) 

 

Bandstop 

FA 0.007154438758696 0.008353973095570 0.0019619551991 3605 

DE 0.018585510244063 0.002991846446768 0.0145169627263 38289 
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5.6 FA results compared with FIRPM (48 order) 

For 48 order filter designs, Digital filters designs using FA were also compared with the 

state-of-the-art designs of Parks McClellan algorithm. It can be seen from the figure 5.25-

5.28 that the results of FA and PM are almost identical. 

 

Figure 5.25  Lowpass 48 order FIR filter comparing FA and FIRPM 

 

 

Figure 5.26  Highpass 48 order FIR filter comparing FA and FIRPM 
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Figure 5.27  Bandpass 48 order FIR filter comparing FA and FIRPM 

 

 

Figure 5.28  Bandstop 48 order FIR filter comparing FA and FIRPM 
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An overall result of all four LP-FIR digital filters for order 48 obtained by using 

Firefly algorithm compared to both Differential Evolution algorithm and Parks–McClellan 

algorithm can be shown in Table 5.12. 

 

TABLE 5.12  48 order FIR type 1 filter design results comparison (FA: Firefly 

Algorithm, FIRPM: Parks–McClellan algorithm; DE: Differential Evolution Algorithm) 

 

 

Filter Alg Peak(Stopband) Peak(Passband) Peak(Stopband 2) 
CPU 

(Sec) 

 

Lowpass 

PM 0.00454629718373 0.0046315094120 - 0.1855 

FA 0.00491892047175 0.0057328522752 - 7458.7 

DE 0.00349359153347 0.0088918305014 - 22398 

Filter Alg Peak(Stopband) Peak(Passband) Peak(Stopband 2) 
CPU 

(Sec) 

 

Highpass 

PM 0.00415270222262 0.0061844490845 - 0.1909 

FA 0.00569813634215 0.0060618803242 - 760.5 

DE 0.00514845429006 0.0169468758058 - 26037 

Filter Alg Peak(Stopband) Peak(Passband) Peak(Stopband 2) 
CPU 

(Sec) 

 

Bandpass 

PM 0.00608494846052 0.0083788963211 0.0066587444012 0.1904 

FA 0.00680401279699 0.0075741179364 0.0069365942779 3633.2 

DE 0.00484659204608 0.0168861451656 0.0029581502868 56842 

Filter Alg Peak(Passband) Peak(Stopband) Peak(Passband 2) 
CPU 

(Sec) 

 

Bandstop 

PM 0.00521666237529 0.0067739876725 0.0058431362537 0.2106 

FA 0.00715443875869 0.0083539730955 0.0019619551991 3605.1 

DE 0.01858551024406 0.0029918464467 0.0145169627263 38289 
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5.7 General FIR results using FA: 

 

General FIR (GFIR) filters are a special type of non-symmetrical filters specifically 

designed to keep the passband group delay of the filter constant.  In order to keep the group 

delay constant, both magnitudes as well as group delays are optimized using the algorithm 

so the overall results affect the error values of the filters but it gives you a constant group 

delay which can be helpful in a number of applications. For Type 1 GFIR filter of order 

24, Filter designs and passband group delays of filters using FA are given below:  

 

 

Figure 5.29  Lowpass GFIR filter using FA 
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Figure 5.30  Passband Group delay of Lowpass GFIR filter using FA 

 

TABLE 5.13  Coefficients of 24th-order type1 Lowpass LP-GFIR filter by FA 

h(n) Coefficients h(n) Coefficients 

h(1) = -0.012647936205156 h(14) = -0.289090298187066 

h(2) = 0.014258103471751 h(15) = -0.134531923853745 

h(3) = 0.029594275230518 h(16) = 0.017058764791044 

h(4) = 0.011928151573815 h(17) = 0.067056248712457 

h(5) = -0.023300315621584 h(18) = 0.035132578530568 

h(6) = -0.036765348355070 h(19) = -0.005803138746866 

h(7) = -0.017419207409947 h(20) = -0.042526848525596 

h(8) = 0.043592872642109 h(21) = -0.021178295943202 

h(9) = 0.070420412454785 h(22) = 0.013879926589004 

h(10) = 0.010762317812604 h(23) = 0.021108654778234 

h(11) = -0.134152685617516 h(24) = 0.022999641854860 

h(12) = -0.279773650746019 h(25) = -0.015682603266573 

h(13) = -0.352274608106788   
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Figure 5.31  Highpass GFIR filter using FA 

  

 

Figure 5.32  Passband Group delay of Highpass GFIR filter using FA 
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TABLE 5.14  Coefficients of 24th-order type1 Highpass LP-GFIR filter by FA 

h(n) Coefficients h(n) Coefficients 

/h(1) = 0.039849797603173 h(14) = -0.080555514819023 

h(2) = 0.018695840043839 h(15) = 0.076379847444691 

h(3) = -0.021916261014334 h(16) = 0.041968726816746 

h(4) = -0.016956412697173 h(17) = -0.044549079346631 

h(5) = 0.034767744893026 h(18) = -0.027203438122901 

h(6) = 0.025802648830348 h(19) = 0.029606783071643 

h(7) = -0.051446915332656 h(20) = 0.017414782201597 

h(8) = -0.043861037434722 h(21) = -0.019948113484051 

h(9) = 0.092881624954950 h(22) = -0.017359701722941 

h(10) = 0.112686160775050 h(23) = 0.023694691381695 

h(11) = -0.428196623798469 h(24) = 0.002329498906252 

h(12) = 0.470506281241059 h(25) = -0.006033871107464 

h(13) = -0.182699661191621   
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Figure 5.33  Bandpass GFIR filter using FA 

 

 

  Figure 5.34  Passband Group delay of Bandpass GFIR filter using FA 
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TABLE 5.15  Coefficients of 24th-order type1 Bandpass LP-GFIR filter by FA 

h(n) Coefficients h(n) Coefficients 

h(1) = -0.005264442142425 h(14) = -0.309752115931914 

h(2) = -0.003251180048295 h(15) = -0.127019843912715 

h(3) = -0.017057964010024 h(16) = 0.174016579318099 

h(4) = -0.056600976847803 h(17) = 0.067385224044092 

h(5) = 0.025332557516588 h(18) = -0.039710193331936 

h(6) = 0.046003050491257 h(19) = 0.016265014619499 

h(7) = 0.000000289935042 h(20) = -0.041765937423746 

h(8) = 0.037708658061923 h(21) = -0.046313697870373 

h(9) = -0.002763051929089 h(22) = 0.025364363108612 

h(10) = -0.208018565775791 h(23) = 0.032311020087952 

h(11) = -0.035528386024917 h(24) = -0.001113477097570 

h(12) = 0.324828562050157 h(25) = 0.008354772068004 

h(13) = 0.088949149048855   
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z  

Figure 5.35  Bandstop GFIR filter using FA 

 

 

Figure 5.36  Passband Group delays of bandstop GFIR filter using FA 
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TABLE 5.16  Coefficients of 24th-order type1 Bandstop LP-GFIR filter by FA 

h(n) Coefficients h(n) Coefficients 

h(1) = 0.000410104279232 h(14) = 0.573220421065861 

h(2) = -0.021979005473702 h(15) = -0.340155687341897 

h(3) = -0.044774668187071 h(16) = 0.066711038957858 

h(4) = -0.006436500068437 h(17) = -0.059778275610259 

h(5) = 0.055831832982663 h(18) = -0.092363321274940 

h(6) = 0.004001510031709 h(19) = 0.055822010089099 

h(7) = -0.008563906049588 h(20) = 0.079036725701632 

h(8) = 0.012171689799200 h(21) = -0.018976317251613 

h(9) = -0.042274620543853 h(22) = -0.029994890714089 

h(10) = 0.027296746105513 h(23) = 0.009284805984681 

h(11) = 0.320470024533179 h(24) = -0.014668308284967 

h(12) = 0.376280373760145 h(25) = -0.005870395557371 

h(13) = 0.064553050371079   

 

 

Table 5.17 shows the error values of the designed GFIR filters. All four filters of order 24 

are shown in the table. 

 

TABLE 5.17  24 order GFIR filter design results (FA: Firefly Algorithm) 

 

Filter Alg Peak(Stopband) Peak(Passband) Peak(Stopband 2) CPU(Sec) 

Lowpass FA 0.055061161922455 0.054006708974618 - 295.73 

Filter Alg Peak(Stopband) Peak(Passband) Peak(Stopband 2) CPU(Sec) 

Highpass FA 0.050490285441068 0.050309748431140 - 246.01 

Filter Alg Peak(Stopband1) Peak(Passband) Peak(Stopband 2) CPU(Sec) 

Bandpass FA 0.06243906488996 0.061536725079860 0.056918298933613 249.74 

Filter Alg Peak(Passband) Peak(Stopband) Peak(Passband 2) CPU(Sec) 

Bandstop FA 0.0.05356740268252 0.057264335609858 0.051718701381042 250.95 
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Chapter 6  

Conclusions 

 

The algorithm presented in this thesis finds the filter coefficients and neural network 

parameters on par with the state of the art methods. With other evolutionary methods like 

DE, it is very difficult to achieve global optimum solutions in a reasonable amount of time. 

The adjustable parameters of Firefly algorithm helps the user to achieve results according 

to their needs and meets the error constraints accordingly. The design examples shows that 

results are achieved faster using FA and efficient compared to other methods except for the 

Parks McClellan method which is globally considered as the best method for linear phase 

digital filter design but is very complex to execute. FA proves to be a good alternative as 

it gives results near to PM in almost all the designs. The flexibility of the algorithm with 

adjustable parameters means that the algorithm can be implemented and adjusted with ease 

with less expert intervention. 

Although the scope of the thesis is to present a study on Firefly algorithm and extract the 

best possible results for the chosen designs, FA can also be used for different applications 

and it is being used worldwide as a powerful and time efficient optimization algorithm.  

The major limitation, which needs to be further addressed is that, how to deal with complex 

problems without getting stuck in local minima. Due to the sensitivity of some of the 

parameters, it is difficult to avoid the local minima problem if the right parameters are not 

chosen. All in all, it is a good algorithm capable of solving practical problems with ease 

and reduced time compared to the other popular algorithms.  

 

 

 

 



 

94 

 

REFERENCES 

[1]  X. S. Yang, “Firefly algorithm, Levy flights and global optimization,” 

in Research and Development in Intelligent Systems XXVI, pp. 209–218, 

Springer, London, UK, 2010. 

[2]  S. K. Saha, R. Kar, D. Mandal, and Sakti Prasad Ghoshal, B.K. Panigrahi 

Optimal Stable IIR Low Pass Filter Design Using Modified Firefly 

Algorithm, Suman K. Saha, Rajib Kar, Durbadal Mandal, and Sakti Prasad 

Ghoshal, B.K. Panigrahi et al. (Eds.): SEMCCO 2013, Part I, LNCS 8297, 

pp. 98–109, 2013. Springer International Publishing Switzerland 2013 

[3]  H. K. Kwan, Optimization Methods for Digital Filter Design, Edition 1.1, 

dfisp.org, ISBN: 9780993670794, 19 February 2016. 

[4]  H. K. Kwan, Digital filters and system, e-book Edition 1.1, dfisp.org, date? 

[5]  Sabbir U. Ahmad and Andreas Antoniou, "Design of Digital filters using 

Genetic Algorithms," IEEE Transaction on Signal Processing, Vol. 1, No. 1, 

pp. 1-9, 2006. 

[6]  N. Karaboga, and B. Cetinkaya (2006). Design of digital FIR filters using 

differential evolution algorithm. Circuits, Systems and Signal Processing, 

25(5), 649-660 

[7]  N. Karaboga, (2009). A new design method based on artificial bee colony 

algorithm for digital IIR filters. Journal of the Franklin Institute, 346(4), 

328-348. 



 

95 

 

[8]  H.K. Kwan and C. Z.Tang, Designing multilayer feedforward neural 

networks using simplified sigmoid activation functions, ELECTRONICS 

LETTERS 

[9]  X.-S. Yang, “Firefly algorithms for multimodal optimization”, in Stochastic 

Algorithms: Foundations and Applications, SAGA 2009, Lecture Notes in 

Computer Sciences, Vol. 5792, pp. 169-178 (2009). 

[10]  I. Fister, I. Fister Jr., X.-S. Yang, and J. Brest, A comprehensive review of 

firefly algorithms, Swarm and Evolutionary Computation, vol. 13, pp. 34-

46, 2013. 

[11]  X. S. Yang, Nature-Inspired Meta-Heuristic Algorithms, Luniver Press, 

Beckington, UK, 2008. 

[12]  S. Lukasik and S. Zak, “Firefly algorithm for continuous constrained 

optimization tasks,” in Proceedings of the International Conference on 

Computer and Computational Intelligence (ICCCI '09), N. T. Nguyen, R. 

Kowalczyk, and S.-M. Chen, Eds., vol. 5796 of LNAI, pp. 97–106, 

Springer, Wroclaw, Poland, October 2009. 

[13]  X. S. Yang, “Firefly algorithms for multimodal optimization,” 

in Proceedings of the Stochastic solving the Economic Emissions Load 

Dispatch Problem,” International Journal of Combinatorics, vol. 2011, 

Article ID 523806, 23 pages, 2011. doi:10.1155/2011/523806 

[14]  X .S. Yang, “Firefly algorithm, stochastic test functions and design 

optimization,” International Journal of Bio-Inspired Computation, vol. 2, no. 

2, pp. 78–84, 2010. 



 

96 

 

[15]  L. Cagnina, C. Esquivel, and S. C., Coello, C. A. (2008) ‘Solving 

engineering optimization problems with the simply constrained particle 

swarm optimizer’, Informatica, 32, 319-326 (2008). 

[16]  X. S. Yang, “Firefly algorithms for multimodal optimization,” in Proceedings 

of the Stochastic Algorithms: Foundations and Applications (SAGA '09), vol. 

5792 of Lecture Notes in Computing Sciences, pp. 178–178, Springer, 

Sapporo, Japan, October 2009. 

[17]  T. Apostolopoulos and A. Vlachos, “Application of the Firefly Algorithm 

for Sgshi He, (2013). ‘Firefly Algorithm: Recent Advances and 

Applications’, Int. J. Swarm Intelligence, Vol. 1, No. 1, pp. 36–50. DOI: 

10.1504/IJSI.2013.05580 

[18]  A. A. Abshouri, M. R. Meybodi, and A. Bakhtiari, New firefly algorithm 

based on multiswarm and learning automata in dynamic environments, 

Third Int. Conference on 11 Signal Processing Systems (ICSPS2011), Aug 

27-28, Yantai, China, pp. 73-77 (2011). 

[19]  S. K. Azad, and S. K. Azad, Optimum Design of Structures Using an 

Improved Firefly Algorithm, International Journal of Optimization in Civil 

Engineering, 1(2), 327-340(2011). 

[20]  T. Apostolopoulos and A. Vlachos, Application of the Firefly Algorithm for 

Solving the Economic Emissions Load Dispatch Problem, International 

Journal of Combinatorics, Volume 2011, Article ID 523806. (2011). 

[21]  H. Banati and M. Bajaj, Firefly based feature selection approach, Int. J. 

Computer Science Issues, 8(2), 473-480 (2011). 



 

97 

 

[22]  B. Basu and G. K. Mahanti, Firefly and artificial bees colony algorithm for 

the synthesis of the scanned and broadside linear array antenna, Progress in 

Electromagnetic Research B., 32, 169-190 (2011). 

[23]  A. Chatterjee, G. K. Mahanti, and A. Chatterjee, Design of a fully digital 

controlled reconfigurable switched beam nonconcentric ring array antenna 

using firefly and particle swarm optimization algorithm, Progress in 

Electromagnetic Research B., 36, 113-131 (2012). 

[24]  S. M. Farahani, A. A. Abshouri, B. Nasiri, and M. R. Meybodi, A Gaussian 

firefly algorithm, Int. J. Machine Learning and Computing, 1(5), 448-453 

(2011). 

[25]  S. M. Farahani, B. Nasiri and M. R. Meybodi, A multiswarm based firefly 

algorithm in dynamic environments, in Third Int. Conference on Signal 

Processing Systems (ICSPS2011), Aug 27-28, Yantai, China, pp. 68-72 

(2011) 12 

[26]  A. H. Gandomi, X. S. Yang, and A. H. Alavi, Cuckoo search algorithm: a 

metaheuristic approach to solving structural optimization problems, 

Engineering with Computers, 27, article DOI 10.1007/s00366-011-0241-y, 

(2011). 

[27]  T. Hassanzadeh, H. Vojodi, and A. M. E. Moghadam, An image 

segmentation approach based on maximum variance intra-cluster method 

and firefly algorithm, in Proc. of 7th Int. Conf. on Natural Computation 

(ICNC2011), pp. 1817-1821 (2011). 

[28]  M.-H. Horng, Y.-X. Lee, M.-C. Lee and R.-J. Liou, Firefly metaheuristic 

algorithm for training the radial basis function network for data 

classification and disease diagnosis, in Theory and New Applications of 



 

98 

 

Swarm Intelligence (Edited by R. Parpinelli and H. S. Lopes), pp. 115-132 

(2012). 

[29]  M.-H. Horng, Vector quantization using the firefly algorithm for image 

compression, Expert Systems with Applications, 39, pp. 1078-1091 (2012 

[30]  G. K. Jati and S. Suyanto, Evolutionary discrete firefly algorithm for 

traveling salesman problem, ICAIS2011, Lecture Notes in Artificial 

Intelligence (LNAI 6943), pp.393- 403 (2011). 

[31]  S. Nandy, P. P. Sarkar, and A. Das, Analysis of nature-inspired firefly 

algorithm based back-propagation neural network training, Int. J. Computer 

Applications, 43(22), 8- 16 (2012). 

[32]  S. Palit, S. Sinha, M. Molla, A. Khanra, and M. Kule, A cryptanalytic attack 

on the knapsack cryptosystem using binary Firefly algorithm, in 2nd Int. 

Conference on Computer and Communication Technology (ICCCT), 15-17 

Sept 2011, India, pp. 428- 432 (2011). 

[33]  A. Rajini, and V. K. David, A hybrid metaheuristic algorithm for 

classification using microarray data, Int. J. Scientific & Engineering 

Research, 3(2), 1-9 (2012). 13 

[34]  M. Sayadi, R. Ramezanian, and N. Ghaffari-Nasab, (2010). A discrete 

firefly meta-heuristic with local search for makespan minimization in 

permutation flow shop scheduling problems, Int. J. of Industrial Engineering 

Computations, 1, 1–10. 

[35]  J. Senthilnath, S. N. Omkar, and V. Mani, Clustering using firefly algorithm: 

performance study, Swarm and Evolutionary Computation, 1(3), 164-171 

(2011). 



 

99 

 

[36]  X. S. Yang, Firefly algorithms for multimodal optimization, Proc. 5th 

Symposium on Stochastic Algorithms, Foundations and Applications, (Eds. 

O. Watanabe and T. Zeugmann), Lecture Notes in Computer Science, 5792: 

169-178 (2009). 

[37]  X. S. Yang, Firefly algorithm, stochastic test functions and design 

optimization, Int. J. Bio-Inspired Computation, 2(2), 78-84 (2010). 

[38]  X. S. Yang and S. Deb, Cuckoo search via L´evy flights, Proceedings of 

World Congress on Nature & Biologically Inspired Computing (NaBIC 

2009, India), IEEE Publications, USA, pp. 210-214 (2009) 

[39]  X. S. Yang, Swarm-based metaheuristic algorithms and no-free-lunch 

theorems, in Theory and New Applications of Swarm Intelligence (Eds. R. 

Parpinelli and H. S. Lopes), Intech Open Science, pp. 1-16 (2012) 

[40]  A. Yousif, A. H. Abdullah, S. M. Nor, A. A. Abdelaziz, Scheduling jobs on 

grid computing using firefly algorithm, J. Theoretical and Applied 

Information Technology, 33(2), 155-164 (2011). 

[41]  M. A. Zaman and M. A. Matin, Nonuniformly spaced linear antenna array 

design using firefly algorithm, Int. J. Microwave Science and Technology, 

Vol. 2012, Article ID: 256759, (8 pages), 2012. doi:10.1155/2012/256759 

[42]  T. Samad, 1990, "Back-propagation improvements based on heuristic 

arguments", Proceedings of International Joint Conference on Neural 

Networks, Washington, 1, pp. 565-568. 

[43]  M. T. Hagan and M. B. Menhaj, 1994, "Training feedforward networks with 

the Marquardt algorithm," IEEE Trans. Neural Netw. , vol. 5, no. 6, pp. 

989–993. 



 

100 

 

[44]  C. Charalambous, 1992, "Conjugate gradient algorithm for efficient training 

of artificial neural networks", IEEE Proceedings, Vol. 139, No. 3, pp. 301-

310. 

[45]  E. Bonabeau, M. Dorigo, and G. Theraulaz: Swarm Intelligence: From 

Natural to Artificial Systems. Oxford University Press, (1999) 

[46]  K. Deb, Optimization of Engineering Design, Prentice-Hall, New Delhi, 

(1995). 

[47]  T. Baeck, D. B. Fogel, Z. Michalewicz: Handbook of Evolutionary 

Computation, Taylor & Francis, (1997). 

[48]  D. Shilane, J.  Martikainen, S. Dudoit, and S. J. Ovaska: A general 

framework for statistical performance comparison of evolutionary 

computation algorithms, Information Sciences: an Int. Journal, 178, 2870-

2879 (2008). 

[49]  J. Kennedy, and R.C. Eberhart: Particle swarm optimization. In: Proc. of 

IEEE International Conference on Neural Networks, Piscataway, NJ, pp. 

1942–1948 (1995) 

[50]  J. Kennedy, R. Eberhart, and Y. Shi: Swarm intelligence. Academic Press, 

London (2001) 

[51]  X.S. Yang: Engineering Optimization: An Introduction to Metaheuristic 

Applications. Wiley, Chichester (2010) 

[52] S S. Kirkpatrick, C. Gelatt, and M. Vecchi, “Optimization by simulated 

annealing,” Science, Vol. 220, 671–680, 1983. 



 

101 

 

[53]  M. Panduro, D. H. Covarrubias, and C. Brizuela, “Design of electronically 

steerable linear arrays with evolutionary algorithms,” Applied Soft 

Computing, Vol. 8, 46–54, 2008. 

[54]  A. E. Eiben and J. E. Smith, Introduction to Evolutionary Computing, 

Springer, 2003. 

[55]  J. C. Spall, S. D. Hill and D. R. Stark, Theoretical framework for comparing 

several stochastic optimization algorithms, in: Probabilistic and Randomized 

Methods for Design Under Uncertainty, Springer, London, pp. 99-117 

(2006). 

[56]  D. Corne and J. Knowles, Some multiobjective optimizers are better than 

others, Evolutionary Computation, CEC’03, 4, 2506-2512 (2003). 

[57]  J. He, and X. Yu, Conditions for the convergence of evolutionary 

algorithms, J. Systems Architecture, 47, 601-612 (2001). 

[58]  D. Karaboga, (2005). An idea based on honey bee swarm for numerical 

optimization, Technical Report TR06, Erciyes University, Turkey 

[59]  D.T. Pham, A. Ghanbarzadeh, S.Rahim, S., and M. Zaidi, (2006). The Bees 

Algorithm U A Novel Tool for Complex Optimisation Problems, 

Proceedings of ˝ IPROMS 2006 Conference, pp.454-461 

[60]  J. C. Spall, S. D. Hill, and D. R. Stark, Theoretical framework for comparing 

several stochastic optimization algorithms, in: Probabilistic and Randomized 

Methods for Design Under Uncertainty, Springer, London, pp. 99-117 

(2006). 



 

102 

 

[61]  X. S. Yang, Engineering Optimization: An Introduction to Metaheuristic 

Applications, John Wiley, and Sons, USA (2010). 

[62]  E. Bonabeau, M. Dorigo, G. Theraulaz, (1999). Swarm Intelligence: From 

Natural to Artificial Systems. Oxford University Press. [5] Blum, C. and 

Roli, A. (2003) 

[63]  Blum, Christian, Roli, Andrea, Metaheuristics in combinatorial optimization: 

Overview and conceptual comparison, ACM Computing Surveys (CSUR), 

v.35 n.3, p.268-308, September 2003  [doi>10.1145/937503.937505] 

[64]  M. S. Malhi, “Linear-Phase FIR Digital Filter Design with Reduced 

Hardware Complexity using Extremal Optimization" (2016). Electronic 

Theses and Dissertations. 5746. 

[65]  W. Zhong,"Linear Phase FIR Digital Filter Design Using Differential 

Evolution Algorithms" (2017). Electronic Theses and Dissertations. 5959. 

[66]  H. K. Kwan and Rija Raju, “FIR filter design using multiobjective artificial 

bee colony algorithm”, Proceedings of 2017 IEEE 30th Canadian 

Conference on Electrical and Computer Engineering (CCECE), Windsor, 

Ontario, Canada, 30 April-3 May 2017, 4 pages. 

[67]  H. K. Kwan and  Jiajun Liang, “FIR filter design using multiobjective 

cuckoo search algorithm”, Proceedings of 2017 IEEE 30th Canadian 

Conference on Electrical and Computer Engineering (CCECE), Windsor, 

Ontario, Canada, 30 April-3 May 2017, 4 pages. 

[68]  H. K. Kwan and Miao Zhang, “FIR filter design using multiobjective 

teaching-learning-based optimization”, Proceedings of 2017 IEEE 30th 

https://dl.acm.org/citation.cfm?id=937505&CFID=1011100444&CFTOKEN=75952847
https://dl.acm.org/citation.cfm?id=937505&CFID=1011100444&CFTOKEN=75952847
https://dl.acm.org/citation.cfm?id=937505&CFID=1011100444&CFTOKEN=75952847
http://doi.acm.org/10.1145/937503.937505


 

103 

 

Canadian Conference on Electrical and Computer Engineering (CCECE), 

Windsor, Ontario, Canada, 30 April-3 May 2017, 4 pages. 

[69]  H. K. Kwan, “Asymmetric FIR filter design using evolutionary 

optimization”, Proceedings of 2017 IEEE 30th Canadian Conference on 

Electrical and Computer Engineering (CCECE), Windsor, Ontario, Canada, 

30 April-3 May 2017, 4 pages. 

[70]  H. K. Kwan and Jiajun Liang,  "Design of linear phase FIR filters using 

cuckoo search algorithm", in Proceedings of 8th International Conference on 

Wireless Communications and Signal Processing (WCSP 2016), Yangzhou, 

Jiangsu, China, October 13-15, 2016, pages 1-4. 

[71]  H. K. Kwan and Rija Raju, "Minimax design of linear phase FIR 

differentiators using artificial bee colony algorithm”,  in Proceedings of 8th 

International Conference on Wireless Communications and Signal 

Processing (WCSP 2016), Yangzhou, Jiangsu, China, October 13-15, 2016, 

pages 1-4. 

[72]  H. K. Kwan and Miao Zhang, "Minimax design of linear phase FIR Hilbert 

transformer using teaching-learning-based optimization”, in Proceedings of 

8th International Conference on Wireless Communications and Signal 

Processing (WCSP 2016), Yangzhou, Jiangsu, China, October 13-15, 2016, 

pages 1-4. 

 

 

 

 

 



 

104 

 

VITA AUCTORIS  

 

NAME:  Ghazanfer Ali 

PLACE OF BIRTH: 

 

Windsor, ON 

YEAR OF BIRTH: 

 

1992 

EDUCATION: 

 

 

 

Sir Syed University of Engineering and 

Technology, B.S in Electronics Engineering,  

Karachi, Pakistan, 2013 

 

University of Windsor, MAS Electrical, 

Windsor, ON, 2017 

 


	Designs of Digital Filters and Neural Networks using Firefly Algorithm
	Recommended Citation

	tmp.1519765928.pdf.PHd3z

