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ABSTRACT 

Digital filters can be divided into finite impulse response (FIR) digital filters and 

infinite impulse response (IIR) digital filters. Evolutionary algorithms are effective 

techniques in digital filter designs. One such evolutionary algorithm is Cuckoo 

Search Algorithm (CSA). The CSA is a heuristic algorithm which emulates a 

special parasitic hatching habit of some species of cuckoos and have been proved 

to be an effective method with various applications.  

This thesis compares CSA with Park-McClellan algorithm on linear-phase FIR 

Type-1 lowpass, highpass, bandpass and bandstop digital filter design. 

Furthermore, a multiobjective Cuckoo Search Algorithm (MOCSA) is applied on 

general FIR digital design with a comparison to Non-dominated Sorting Genetic 

Algorithm III (NSGA-III). Finally, a constrained multiobjective Cuckoo Search 

Algorithm is presented and used for IIR digital filter design. The design results of 

the constrained MOCSA approach compares favorably with other state-of-the-art 

optimization methods. 

CSA utilizes Levy flight with wide-range step length for the global walk to assure 

reaching the global optimum and the approach of local walk to orientate the 

direction toward the local minima. Furthermore, MOCSA incorporates a method of 

Euclidean distance combing objective-based equilibrating operations and the 

searching for the optimal solution into one step and simplifies the procedure of 

comparison. 
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CHAPTER 1 Introduction to Digital Filters 

1.1 Introduction 

      A digital filter is a mathematical system which operates numerical calculation on a discreet-

time sampled signal to extract or remove its specific components. A continuous-time analog 

signal is usually sampled by a certain frequency to be converted into a corresponding set of 

discreet numerical sequences. These sequences can be operated by filtering processing in a digital 

filter system to obtain the desired components of a signal. 

      Compared to analog filters, digital filters contain three representative advantages including: 

Reliability: The characteristics of digital filters stay stable without disadvantages of aging or 

tolerance. The coefficients of a designed digital filters can be permanently fixed and used. 

Accuracy: The word length of filter coefficients can be precisely controlled to assure its 

accuracy. A longer word length, especially with more decimal parts, leads to higher accuracy. 

Approximation of ideal sharp cutoff is available if sufficiently long word length is provided. 

Flexibility: Filtering characteristics are easy to modify by changing the filter coefficients. 

      With these advantages, digital filters play a very important role in nowadays society. Digital 

filters are being used in plenty of practical applications, such as communication, electrical 

systems and astronautic industry, etc.  

In view of the finiteness of impulse response, digital filters can be divided into finite impulse 

response (FIR) digital filters and infinite impulse response (IIR) digital filters. Meanwhile, in 

view of the filter shape, digital filters mainly include four types called lowpass, highpass, 

bandpass and bandstop filters. 

 1.2 Analog-to-digital Conversion 

For a continuous-time analog signal 𝑥(𝑡), its sampled signal 𝑥𝑠(𝑡) with a period of 𝑇 seconds 

can be represented to be a set of numerical impulses that 

𝑥𝑠(𝑡) = 𝑥(𝑡) ∑ 𝛿(𝑡 − 𝑛𝑇)∞
𝑛=−∞ = ∑ 𝑥(𝑛𝑇)𝛿(𝑡 − 𝑛𝑇)∞

𝑛=−∞                 (1.1) 

where 𝛿(𝑡) is a unit impulse function that 

𝛿(𝑡) = {
1        𝑡 = 0
0        𝑡 ≠ 0

                                                    (1.2) 

       The sampling frequency 𝑤𝑠 is calculated by 

𝑤𝑠 =
2𝜋

𝑇
                                                                 (1.3) 
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1.2.1 Limitation of Sampling Frequency 

        An original signal 𝑥(𝑡)  can be decomposed into a series of components with different 

frequencies. Let the highest frequency among those components as 𝑤𝑚 , then the sampling 

frequency 𝑤𝑠 must follow the below limitation that  

𝑤𝑠 ≥ 2𝑤𝑚                                                              (1.4) 

1.2.2 Normalized Frequency 

         For the mathematical expression of a digital filter system, the analog frequency 𝑓 (in 

samples/second) is often normalized with respect to the sampling frequency 𝑓𝑠 (in 

samples/second) such that a normalized digital frequency 𝑣 (in radians/sample) can be derived as 

[1] 

𝑣 = 2𝑓/𝑓𝑠                                                               (1.5) 

When the previous analog frequency is equal to the sampling frequency that 𝑓 = 𝑓𝑠, then we 

have normalized frequency 𝑣 = 2 corresponding to 2𝜋 in radians/sample to represent a cycle of 

the base band in frequency spectrum.  

For convenient visualization due to the periodicity of frequency band with a period of 2 (in 

normalized frequency), the normalized frequency adopts 

 𝑤 =
𝑣

2
,    0 ≤ 𝑣 ≤ 2                                                       (1.6) 

where the half normalized frequency 𝑤 (in half-cycle/sample) is in the range of 0 to 1. 

1.3 Z-transform to A Digital Filter 

A digital filter can be closely expressed by a transfer function in frequency domain for further 

design, optimization and realization. The transfer function of a digital filter can be calculated by 

taking the 𝑧-transform [1] of its impulse response which is a discrete output signal with an 

impulse input of magnitude “1” at the beginning input but “0” at all latter inputs to a digital filter.  

The impulse response of a digital filter can be expressed as 

𝒉 = ∑ ℎ(𝑛𝑇)𝛿(𝑡 − 𝑛𝑇)∞
𝑛=0                                               (1.7) 

where 𝑇 is the sampling period; ℎ(𝑛𝑇) represents the 𝑛th sampled discrete impulse response. For 

simplicity, (1.7) can be simplified as 

𝒉 = ∑ ℎ(𝑛)𝛿(𝑡 − 𝑛𝑇)∞
𝑛=0                                                (1.8) 

Fig. 1.1 shows the input-filtering-output correspondence of a digital filter for its impulse response. 
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Fig. 1.1 Input-filtering-output correspondence of a digital filter for its impulse response 

The z-transform of a digital filter can be expressed as 

𝐻(𝑤) = ∑ ℎ(𝑛)𝑧−𝑛∞
𝑛=0 |𝑧=𝑒𝑗𝑤𝑇 = ∑ ℎ(𝑛)𝑒−𝑗𝑛𝑤𝑇∞

𝑛=0                         (1.9) 

Where 𝐻(𝑤) is named as the frequency response of a digital filter. 

Normally, the coefficients of the transfer function of a digital filter are real numbers, which 

result in an even function of frequency for its magnitude response while an odd function for its 

phase response that [1] 

|𝐻(−𝑤)| = |𝐻(𝑤)|                                                   (1.10) 

𝜃(−𝑤) = −𝜃(−𝑤)                                                   (1.11) 

           Hence, a digital filter can be described entirely over the positive half of the baseband 0 ≤

𝑤 ≤ 1 (in normalized frequency) rather than the whole baseband −1 ≤ 𝑤 ≤ 1. 
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1.4 Four Main Types of Ideal Filter Shapes [1] 

1.4.1 Ideal Lowpass Digital Filter 

           An ideal lowpass digital filter has a magnitude response of one at lower frequencies but 

that of zero at higher frequencies.  The magnitude response of an ideal lowpass digital filter with 

an ideal cutoff frequency 𝑤𝑐 is defined as 

|𝐻𝐿𝑃(𝑤)| = {
1            for  |𝑤| ≤ 𝑤𝑐

0            for  |𝑤| ≥ 𝑤𝑐
                                      (1.12) 

 

Fig. 1.2 Magnitude response of an ideal lowpass digital filter 

The magnitude response of an ideal lowpass digital filter is shown in Fig. 1.2. The magnitude 

response in passband is limited within the range of 1 − 𝛿𝑝 to 1 + 𝛿𝑝 and the magnitude response 

in stopband is limited within the range of 0 to 𝛿𝑠 . 𝛿𝑝  represents the acceptable peak error in 

passband while 𝛿𝑠 represents that in stopband. The ideal cutoff frequency shall normally be 𝑤𝑐 but 

practically the magnitude response can not be strictly sharp at frequency 𝑤𝑐. Hence, a passband 

cutoff frequency 𝑤𝑝 and a stopband cutoff frequency 𝑤𝑠 are used to retain a transition band, which 

formulates a more achievable requirement for approximation.  

1.4.2 Ideal Highpass Digital Filter 

An ideal highpass digital filter has a magnitude response of zero at lower frequencies but that 

of one at higher frequencies.  The magnitude response of an ideal highpass digital filter with an 

ideal cutoff frequency 𝑤𝑐 is defined as 

|𝐻𝐻𝑃(𝑤)| = {
0                     for  |𝑤| ≤ 𝑤𝑐

1            for 𝑤𝑐 ≤  |𝑤| ≤ 𝜋
                                     (1.13) 
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Fig. 1.3 Magnitude response of an ideal highpass digital filter 

The magnitude response of an ideal highpass digital filter is shown in Fig. 1.3. The magnitude 

response in passband is limited within the range of 1 − 𝛿𝑝 to 1 + 𝛿𝑝 and the magnitude response 

in stopband is limited within the range of 0 to 𝛿𝑠 . 𝛿𝑠  represents the acceptable peak error in 

stopband while 𝛿𝑝 represents that in passband. The ideal cutoff frequency shall normally be 𝑤𝑐 but 

practically the magnitude response can not be strictly sharp at frequency 𝑤𝑐. Hence, a stopband 

cutoff frequency 𝑤𝑠 and a passband cutoff frequency 𝑤𝑝 are used to retain a transition band, which 

formulates a more achievable requirement for approximation. 

1.4.3 Ideal Bandpass Digital Filter 

An ideal bandpass digital filter has a magnitude response of zero at lower and higher 

frequencies but that of one at middle frequencies.  The magnitude response of an ideal bandpass 

digital filter with an ideal cutoff frequency 𝑤𝑐 is defined as 

|𝐻𝐵𝑃(𝑤)| = {

0                         for  |𝑤| ≤ 𝑤𝑐1

1            for 𝑤𝑐1 ≤  |𝑤| ≤ 𝑤𝑐2

0                for  𝑤𝑐2 ≤ |𝑤| ≤ 𝜋
                                (1.14) 
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Fig. 1.4 Magnitude response of an ideal bandpass digital filter 

The magnitude response of an ideal bandpass digital filter is shown in Fig. 1.4. The magnitude 

response in passband is limited within the range of 1 − 𝛿𝑝 to 1 + 𝛿𝑝 and the magnitude response 

in stopband is limited within the range of 0 to 𝛿𝑠 . 𝛿𝑠  represents the acceptable peak error in 

stopband while 𝛿𝑝 represents that in passband. The ideal cutoff frequency shall normally be 𝑤𝑐1 

and 𝑤𝑐2 but practically the magnitude response can not be strictly sharp at both frequencies 𝑤𝑐1 

and 𝑤𝑐2 . Hence, two stopband cutoff frequencies 𝑤𝑠1  and 𝑤𝑠2  as well as two passband cutoff 

frequencies 𝑤𝑝1 and 𝑤𝑝2 are used to retain two transition bands on both sides of passband, which 

formulates a more achievable requirement for approximation. 

1.4.4 Ideal Bandstop Digital Filter 

An ideal bandstop digital filter has a magnitude response of one at lower and higher 

frequencies but that of zero at middle frequencies.  The magnitude response of an ideal bandstop 

digital filter with an ideal cutoff frequency 𝑤𝑐 is defined as 

|𝐻𝐵𝑆(𝑤)| = {

1                         for  |𝑤| ≤ 𝑤𝑐1

0            for 𝑤𝑐1 ≤  |𝑤| ≤ 𝑤𝑐2

1                for  𝑤𝑐2 ≤ |𝑤| ≤ 𝜋
                                  (1.15) 
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Fig. 1.5 Magnitude response of an ideal bandstop digital filter 

The magnitude response of an ideal bandstop digital filter is shown in Fig. 1.5. The magnitude 

response in passband is limited within the range of 1 − 𝛿𝑝 to 1 + 𝛿𝑝 and the magnitude response 

in stopband is limited within the range of 0 to 𝛿𝑠 . 𝛿𝑝  represents the acceptable peak error in 

passband while 𝛿𝑠 represents that in stopband. The ideal cutoff frequency shall normally be 𝑤𝑐1 

and 𝑤𝑐2 but practically the magnitude response can not be strictly sharp at both frequencies 𝑤𝑐1 

and 𝑤𝑐2 . Hence, two passband cutoff frequencies 𝑤𝑝1  and 𝑤𝑝2  as well as two stopband cutoff 

frequencies 𝑤𝑠1 and 𝑤𝑠2 are used to retain two transition bands on both sides of stopband, which 

formulates a more achievable requirement for approximation. 

  



 

8 
 

CHAPTER 2 Introduction to Evolutionary Algorithms 

2.1 Introduction 

In this chapter, a special type of practical problems called optimization problems is discussed. 

For solving an optimization problem, an effective kind of methods, evolutionary algorithms, is 

introduced. The basic introduction of evolutionary algorithms includes biological origin, 

correspondence to computational optimization process and development of some typical 

evolutionary algorithms. Finally, the basic methodologies of a general evolutionary algorithm are 

described in detail where Genetic Algorithm (GA) is used as an example for clear illustration.  

2.2 Optimization Problems 

For a computational system, if a specific input is provided, this system would process such 

input through some computational steps and results in a corresponding output [2]. Sometimes this 

computational system may be so complicated that it is not easy to describe its computational steps 

directly. However, once this system is fully configurated, it is very simple to obtain the output from 

a given input. Input, computational steps and output are the three main components of such 

computational system. 

However, some computation systems are mainly forward-going and can not be simply inverted. 

although it is easy to proceed the input-computation-output process, the reversed operation of 

finding the input of an obtained output may be very difficult. It may require much more calculations 

trying to backtrack the original input through a set of reversed computational steps. An optimization 

problem can be expressed as searching for the potential input which leads to a given output. It aims 

at identifying a potentially particular solution by a sufficient search in an enormous space of 

possibilities. Such space of possibilities induces a searching space which contains all possible 

solutions as well as the optimal one that is being looked for. To find the optimal one in a searching 

space, exhausting the whole space can be an inevitably successfully method but it is not realistic 

when the searching space is huge enough. 

 Hence, some special techniques are required in order to find the optimal solution in a 

searching space efficiently and accurately. Evolutionary algorithms are currently the most powerful 

ones in such application. 
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2.3 Evolutionary Algorithms 

Evolutionary algorithm is a popular research area in intelligent computing. It derived from 

biological natural evolution due to the powerful strength that various species overcome natural 

selection in a fierce competing world for millions of years.  

The Darwinian Principles demonstrate the basic process of natural evolution. For a certain 

species in a living area, a population of individuals are always striving for survival and propagation. 

The fitness for survival of each individual depends on the combined effect of environmental 

mildness and its individual abilities of foraging food and protecting itself. That is to say, fitness 

relates to a possibility of survival and reproduction. An individual with higher fitness is more 

capable of surviving and have more chance to breed its offspring. As thousands of generations pass, 

those with higher fitness due to some adaptive characteristics will be predominated and others 

without such benefits would gradually die out. Then it means evolution on this species happens. 

Similarly, in a computational optimization problem, a population of possible solutions from the 

searching space are always being selected depending on their quality on how successful they can 

solve a problem. A better solution has a higher chance to be kept while a worse one is very possible 

to be abandoned. The correspondence between a biological evolutionary process and computational 

optimization process is obvious that an environment corresponds to a problem and each individual 

in a species population is related to a potential solution. The fitness for a biological individual 

correlates with the achievement of a solution in an optimization problem. Such correspondence 

inspired researchers with optimization algorithm based on evolutionary theory. 

In the middle of 1960s, Lawrence Jerome Fogel firstly proposed Evolutionary Programming 

[3] on computer algorithms and established the foundation of the development of further 

evolutionary algorithms. Afterwards, several advancing evolutionary algorithms based on different 

mechanisms had been published. A typical one is called Genetic Algorithm (GA) [4], which 

simulates procedure of inheritance and mutation of genes. There were some prototypes of Genetic 

Algorithm at that time. Holland summarized all related theories and thus put forward the modern 

Genetic Algorithm. Besides Genetic Algorithm, other evolutionary algorithms have also gained a 

lot of achievements. Differential Evolution (DE) [5] and Particle Swarm Optimization (PSO) [6] 

are the very attractive ones. DE adopted differential operation on the changing of the population 

while PSO simulates the movement of microscopic particles. Although these algorithms take 

different theories as simulation models, they share some common points for their methodologies. 
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2.4 Basic Methodologies of An Evolutionary Algorithm 

In this section, basic procedures of a viable evolutionary algorithm are presented. A successful 

evolutionary algorithm should contain these procedures in adapt to any arbitrary optimization 

problem. For clear clarification, Genetic Algorithm is taken as an illustration in which each of its 

steps is illuminated in detail. 

2.4.1 Configuration of Solutions 

An optimization problem is usually based on a practical application. It often contains abstract 

concepts or literal descriptions in the original problem context, which requires some suitable 

operations to transform these information into mathematical expressions so that this problem is 

capable of being numerical optimized. 

First of all, any individual object shall be able to be appropriately converted or mapped into a 

precise numerical expression corresponding to a specific algorithm, which creates a mapping 

relation between the original objects and the population of solutions to be optimized [7]. For all 

types of objects in the context problem, a solution shall contain a number of variables, each of 

which is prescribed to represent a prescribed type of objects. 

Secondly, an efficient optimization should have enough number of competitive solutions to 

increase the efficiency on searching the optimal one. Those solutions are jointly regarded as a 

population.  

In GA, a solution is called a chromosome and all variables in a solution are named as genes. 

Rather than the common decimal system, GA adopts binary system to express genes. The number 

of binary bits for each gene depends on its desired precision. For a given solution, every variable 

is coded by binary operation and afterward the binary bits of all variables will be configured 

together as a single-stranded chromosome. 

For example, a number “10” in decimal system could be represented as “1010” in binary 

system. A number with fractional parts can also be binarily coded so long as the numbers of bits 

for integer part and fractional part has been prescribed respectively in advance. For instance, 

“14.375” can be represented coded by “1110” for integer part and “011” for fractional part. Then a 

binary chain “1110011” can be configured to represent the number “14.375” in decimal system, 

where the former four bits are prescribed for integer part and the rest three bits for fractional part. 

If a solution contains two variables “10” and “14.375”, its corresponding chromosome with 

same precision for each gene can be represented by “10100001110011” where the former seven 
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bits “1010000” represent “10” with “1010” as integer and “000” as decimal. A detailed 

representation is shown in Figure 2.1. 

 

Fig. 2.1 Configuration of a chromosome in GA 

2.4.2 Objective Function 

An objective function is an indicator which estimates the quality of a solution in an 

optimization problem. It establishes a target for the whole population to aim at. In other words, all 

the solutions collectively pursue the objective function and try to satisfy its requirement as possible 

as they can. Normally, an objective function represents a formulistic measurement by quantizing 

the levels of quality, which replaces abstract comparison. 

In most of the optimization problems, the goal of an optimization procedure is maximizing or 

minimizing the objective function as much as possible. In a maximization problem, the objective 

function is always set as fitness function, which aims at searching for the most competitive solution 

with the largest fitness value. On the other hand, in a minimization problem, the objective function 

is always set as error function, which tries to find the optimum solution resulting in the least 

variance from desired quality. 

Similarly in GA, an objective function is used to evaluate the qualities of a population of 

chromosomes. For example, in a minimization problem, a chromosome that leads to a smaller 

output of the objective function is considered to be better while another chromosome with a larger 

output is regarded as a worse one. 
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2.4.3 Initialization 

It is necessary to provide the first generation of solutions to start a heuristic loop of 

optimization. Generally, they can be initialized by random values drawn from a random function. 

However, some special problems might have constraints or principles that help to generate a more 

applicable set of solutions for initialization at the beginning. This step requires researches to check 

which initialization method is more suitable. 

For initialization of GA, Fig. 2.2 shows how a sample chromosome is initialized by a random 

function. 

 

Fig. 2.2 Initialization of a chromosome in GA 

2.4.4 Elite Selection 

Elite Selection is an important process to select elite solutions with better quality as candidates 

of offspring’s parents. A better solution has a larger opportunity to generate its filial solution in 

order to push quality improvements while a worse one can merely have a rather small possibility 

to do so [7].  

GA introduces a rotatable roulette wheel whose slots are of different sizes based on the 

proportion of fitness value of every chromosome. Then the cumulative proportional value of each 

chromosome is calculated according to their indices. Each time when trying to find an elite 

chromosome, a random number is derived with the range of 0 to 1 representing a random value of 

proportion. One chromosome with the smallest cumulative proportional value among those larger 

than the given random number will be pick up as elite. One with a higher fitness value leads to a 

larger proportion of fitness and a wider range in the cumulative proportional domain. It would 

have a larger possibility to be selected. It should be noted that each round of elite selection is 

independent that one chromosome may have more than one time to be selected. A new configured 
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parent population could have several same chromosomes. This would not cause a problem 

because subsequent operations are designed to re-diversify the population. Fig 2.3 shows a 

sample roulette wheel of a population and Fig. 2.4 shows an example of an elite selection. 

 

Fig. 2.3 Roulette wheel for a population in GA 

 

Fig. 2.4 An example of elite selection in GA 

2.4.5 Variation for New Solutions 

To further optimize a population, it is necessary to create new solutions from the existing ones. 

By taking variation operations on a parent population, new solutions that inherit parts of their 

parents’ characteristics and mutate with some specialities can be generated. In this case, two main 

steps are required for generating a new population. One represents inheritance of parent solutions 

while the other represents mutation of new specialities. 

2.4.5.1 Inheritance 

Inheritance of parent solutions is an operation that merge characteristics from two parent 

solutions into one or two offspring solutions [7]. It decides which two solutions from a population 

are taken as parents at each time and defines a method to proceed a merging operation. Mostly this 
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process is based on stochastic probabilities that parent solutions are randomly chosen and the 

fragments that are being merged on parent solutions are randomly determined. In some algorithms, 

a parthenogenetic principle is adopted that an offspring only inherits from one parent. 

In GA, inheritance of parent solutions is equivalent to crossover on chromosomes. In each 

time crossover is operated, two random parent chromosomes are fetched and one or two random 

crossover points is then determined based on some stochastic decisions. A crossover point locates 

the edge between the reserved parts and merging fragments on a parent chromosome. Afterward, 

the two fetched parent chromosomes switch their merging fragments to each other and reserve the 

rest parts. By mean of this, two new offspring chromosomes are generated with characteristics of 

both of their parents. These operations will cycle until all the parent chromosomes have gone 

through crossover where each one can only take crossover for one time. A new offspring population 

after crossover is then created.  Fig. 2.5 shows a simple crossover operation with one crossover 

point on two sample chromosomes. 

 

Fig. 2.5 Crossover operation in GA 

2.4.5.2 Mutation 

Mutation of new specialities applies on a unary solution and produce a mutant offspring with 

probably slight changes. The mutation operation is always stochastic [7]. The number of mutant 

points and their locations are both relied on a sequence of independent stochastic decisions. Each 

location in one solution has an equal probability to mutate, and their decisions are all independent 

from each other based on their respective deciding variables generated stochastically. The 

probability of mutation is always small which would merely introduce a little new specialities and 

reserve most of the characteristics of the original solution. A large probability of mutation might 

lead to a totally fresh mutant solution with a large number of changes where its original 

characteristics are swept out. 

In GA, each bit of an offspring chromosome after crossover shall go through a mutation-

deciding process. A mutant probability is prescribed before mutation-decision. During this process, 
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each bit is assigned with a random number, called mutation-deciding value, within the range of 0 

to 1. These mutation-deciding values are then compared to mutant probability. If the mutation-

deciding value of a bit is smaller than mutant probability, this bit will mutate to an opposite binary 

value such as “0” to “1” or “1” to “0”. Fig. 2.6 shows a simple mutation operation on a sample 

chromosome. 

 

Fig. 2.6 Mutation operation in GA 

2.4.6 Survivor Determination 

After the offspring solutions are generated, survivor determination which is similar to elite 

selection will be carried out to determine a population of survivors with the highest quality among 

a set of candidate solutions. However, survivor determination is rather deterministic that it only 

concerns about the output of objective function resulting from each candidate solution. In other 

words, survivor determination is a final evaluation of the output of objective functions related to 

candidate solutions. Meanwhile, the set of candidate solutions might contain both the original 

population and its offspring with an objective-based perspective or only reserve the offspring 

solutions with an age-discriminational view. After survivor determination, the obtained population 

of survivors will be taken to next generation and a new loop of evolutionary optimization procedure 

will restart. 

GA technically does not have the step of survivor determination. This is not only because the 

number of offspring chromosomes is exactly the same as that of the original population but also 

GA employs an age-discriminational view such that only the offspring chromosomes are reserved. 

During the described steps in sections 2.4.4 and 2.4.5, GA keeps the same population size of 

original population, selected parent population, offspring population after crossover and offspring 

population after mutation. In this case, in order to deliver a population with the same population 

size to the next generation, all the offspring chromosomes will be taken without one missed. 
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2.4.7 Termination Criterion 

A termination criterion is used to judge whether to stop the optimization procedure in case of 

endless operations. For a practical optimization problem, a stochastic-based searching evolutionary 

algorithm can not guarantee to obtain the global optimum. It is possible that an optimization could 

never reach its goal that the value of objective function never reaches an expected level. This may 

lead to an endless optimization process where time and resource of calculation are being wasted. 

In this case, it is necessary to prescribe a termination criterion in advance to prevent possible 

redundant optimization procedure such as maximum number of iterations or depleted CPU time, 

variation of the output of objective function within a range of time.  
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CHAPTER 3 Linear Phase FIR Digital Filter Design Using Cuckoo Search Algorithm 

3.1 Introduction of CSA 

Cuckoo search algorithm (CSA) [8] - [9] is a successful evolutionary optimization method 

which has been used in a large amount of numerical optimization problems [10]. CSA was first 

proposed by Xin-She Yang in [8], who described the basic framework and internal approaches of 

CSA. Afterward, Milan Tuba developed CSA with an a more sophisticated method for searching 

step [10]. CSA was based on the biological fact that some cuckoo species has a special natural habit 

of parasitic breeding [10]. For example, the Guira and Ani, will lay their eggs in shared nests, and 

they may even take others’ eggs away so that their own eggs would have more chance to be hatched 

[11]. CSA was soon implemented on practical engineering problems that its excellent performance 

on several types of test functions was then presented in [12]. Considering other evolutionary 

algorithms such as Genetic Algorithm and Particle Swarm Optimization, comparison shows that 

CSA is superior to these existing algorithms for multimodal objective functions. On one hand, there 

are fewer parameters to be pre-determined in CSA than in GA and PSO [8]. On the other hand, by 

implementing a combination of global search and local search, CSA is capable of efficiently 

traversing the whole searching space and accurately locating the local minima around a local space. 

Recently, CSA and some other evolutionary algorithms have been successfully applied to the 

designs of some typical types of FIR digital filters [13] - [15], which has raised people’s research 

interest in this field. 

In this chapter, more expansible and updated work on linear phase FIR digital filter design 

using Cuckoo Search Algorithm is presented. This chapter firstly introduces the detailed description 

of CSA including algorithm background, methodologies and calculation steps. Then it proposes the 

configuration process of objective function based on linear-phase type-1 FIR digital filters. Finally, 

lowpass, highpass, bandpass and bandstop digital filters at different order are taken as design 

examples and their design results are compared to Park-McClellan Algorithm [16] - [18].  

3.1.1 Biological Background of CSA 

Cuckoos are some kinds of arboreal birds which have over 100 species. They can be mainly 

classified into three families such as Cuculidae, Opisthocomidae and Musophagidae. Cuckoos have 

widely spread around the world from Africa to east Asia. Their main food resource are forest insects 

but some kinds of molluscs are also accessible [19].  

Some cuckoo species are very reproductive due to their special aggressive brooding parasitism. 

A female cuckoo normally lays around 20 eggs which can be in several different colours and sizes. 
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Most of the cuckoo don’t hatch their own eggs but cheat other host birds for resort [11]. They often 

target at other host birds, who have just laid eggs. Afterward, cuckoos deposit their own deceitful 

eggs into the host nest such that the host bird would take their place to hatch the eggs. Moreover, a 

new born cuckoo chick can be very aggressive to expel the host bird’s egg in order to monopolize 

the host bird’s feeding. 

 

3.1.2 Biological Rules of CSA for Algorithm Realization 

To realize the parasitism behavior of cuckoos into a computer algorithm, the below three rules 

are regulated as 

(1) Each time a cuckoo only lays one egg, and randomly chooses a foreign nest to deposit; 

(2) High-quality eggs are regarded as best ones and will be inherited to next generations;  

(3) The host nests available is limited, and there is a probability 𝑝𝑎 ∈ [0, 1] that a cuckoo egg 

may be discovered by the host bird. In this case, the host bird can either dispose the egg or abandon 

the nest and build a new nest [19]. 

 

3.1.3 Levy Flight 

For random walking approximation, Levy flights [8] is a very competitive algorithm due to its 

heavy-tailed probability distribution. Levy flights can be used to generate random numbers with a 

random direction subjected to a uniform distribution and a step size that is drawn from the Levy 

distribution [13]. In this case, a symmetric Levy stable distribution is a reliable method to generate 

step size. By the use of Mantegna algorithm [8], the Levy flight with a parameter 𝛽  can be 

calculated by 

Levy(𝛽) =
𝑢

|𝑣|1/𝛽                                                                (3.1) 

where 𝑢 and 𝑣 are drawn from normal distributions [8]. Thus, 

𝑢 = 𝑁(0, 𝜎𝑢
2),  𝑣 = 𝑁(0, 𝜎𝑣

2)                                                 (3.2) 

where 

𝜎𝑢 = {
Γ(1+𝛽) sin(𝜋𝛽/2)

Γ[(1+𝛽)/2]∙𝛽∙2(𝛽−1)/2}
1/𝛽

,  𝜎𝑣 = 1                                             (3.3) 
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and 

Γ(𝑥) = ∫ 𝑒−𝑡𝑡𝑥−1 𝑑𝑡
∞

0
                                                                 (3.4) 

 

3.1.4 Random Walk 

A nest corresponds to an existing solution where several nests provide a number of potential 

solutions. Each egg in a nest corresponds to a variable in an existing solution while a cuckoo egg 

corresponds to a new generated value of a specific variable. If a cuckoo egg replaces a host egg, it 

means a better solution with new updated variables in performance substitutes the old one. Usually, 

an optimization problem involves a number of variables to be optimized. Thus, Cuckoo search 

Algorithm has a multiple number of eggs in a nest [13]. A global explorative random walk and 

local random walk is then applied to simulate the parasitic breeding behavior of cuckoos such that 

new potentially better solution can be generated and compared. For a 𝑑 - dimensional optimization 

problem, suppose the 𝑖th solution in iteration 𝑡 as 

 𝐱𝑖(𝑡) = [x𝑖
1(𝑡) x𝑖

2(𝑡) ⋯ x𝑖
𝑑(𝑡)]

𝑇
                                      (3.5) 

 The global walk for exploring the available searching space can be carried out by using Levy 

flight described in (3.1) to (3.4) as  

𝐱𝑖𝑔
(𝑡) = 𝐱𝑖(𝑡) + 𝛼 × 𝐰⨂𝐋𝐞𝐯𝐲(𝛽)⨂(𝐱𝑖(𝑡) − 𝐱𝑏𝑒𝑠𝑡)                       (3.6) 

where 𝛼 is a constant scale factor and 𝐰 is a vector comprised of random numbers subjected 

to the standard normal distribution. 𝐋𝐞𝐯𝐲(𝛽) is a vector comprised of a set of numerical values 

generated by Levy flight. The operator ⨂ means element-wise multiplications. 𝐱𝑏𝑒𝑠𝑡 is the best 

solution that has ever been obtained from the beginning to current iteration [13]. 

On the other hand, the local random walk for searching a local minima is generated by 

𝐱𝑖𝑙
(𝑡) = 𝐱𝑖(𝑡) + 𝑟 × 𝐇(𝜖 − 𝑝𝑎)⨂ (𝐱𝑗(𝑡) − 𝐱𝑘(𝑡))                            (3.7) 

where 𝐱𝑗(𝑡) and 𝐱𝑘(𝑡) are two distinct solutions randomly selected from the current population. 𝑟 

and 𝜖  are random numbers evenly distributed in [0, 1] . 𝐇(𝜖 − 𝑝𝑎)  is a vector comprised of 

constant values either at one or zero determined by a Heaviside function that [13] 

H(𝜖 − 𝑝𝑎) = {
1    𝜖 > 𝑝𝑎

0    𝜖 ≤ 𝑝𝑎
                                                      (3.8) 
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At the end of each iteration, the best solution among 𝐱𝑖𝑔
(𝑡), 𝐱𝑖𝑙

(𝑡), and 𝐱𝑖(𝑡) is selected as 

𝐱𝑖(𝑡 + 1) for the next iteration. 

The pseudocode of CSA is listed in Table 3.1. 

Table 3.1 Pseudocode of Cuckoo Search Algorithm 

Steps Description 

1 Set 𝑡 = 1; Set 𝛼, 𝛽, 𝑝𝑎; Initialize 𝐱(1); 

2 Calculate the fitness values of 𝐱(𝑡); 

3 Generate global walks 𝐱𝑔(𝑡) and calculate their fitness values; 

4 Generate local walks 𝐱𝑙(𝑡) and calculate their fitness values; 

5 Compare 𝐱𝑔(𝑡), 𝐱𝑙(𝑡), and 𝐱(𝑡) and update 𝐱(𝑡 + 1); 

6 Compare each solution in 𝐱(𝑡 + 1) and update 𝐱𝑏𝑒𝑠𝑡; 

7 
If convergence criterion is satisfied, optimization procedure is completed; 

otherwise, return step 2; 

8 Output the obtained optimal solution 𝐱𝑏𝑒𝑠𝑡. 

 

3.2 Design of Linear-phase Type-1 FIR Digital Filters 

An 𝑁th-order linear-phase type-1 FIR (LP-FIR1) filter [1] is an even 𝑁 and even symmetrical 

FIR digital filter consisting of (𝑁 + 1) impulse responses as 

𝐡 = [ℎ(0), ℎ(1), ℎ(2), … , ℎ(𝑛), … , ℎ(𝑁 − 1), ℎ(𝑁)]𝑇                        (3.9) 

According to its characteristic of even symmetry in impulse responses, it can be found that 

 ℎ(𝑛) = ℎ(𝑁 + 1 − 𝑛) for 𝑛 = 0, 1, 2, 3, … , (
𝑁−2

2
)                          (3.10) 

The impulse response vector (3.9) can be represented by a distinct coefficient vector 𝐜 which 

can be expressed as 

𝐜 = [𝑐0, 𝑐1, 𝑐2, 𝑐3, … , 𝑐
(

𝑁

2
)
]

𝑇

= [ℎ (
𝑁

2
) , 2ℎ (

𝑁

2
− 1) , ⋯ , 2ℎ(2), 2ℎ(1), 2ℎ(0)]

𝑇
   (3.11) 

The frequency response 𝐻(𝑤) of the LP-FIR1 filter can be expressed as 

𝐻(𝑤) = 𝑒
−𝑗(

𝑁

2
)𝑤

{ℎ (
𝑁

2
+ 1) + ∑ 2ℎ(𝑛)

𝑁−2

2
𝑛=0 cos [(

𝑁

2
− 𝑛) 𝑤]} = 𝑒

−𝑗(
𝑁

2
)𝑤|𝐻(𝑤)|         (3.12) 
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In (3.12), the magnitude response |𝐻(𝑤)| can be transformed as 

|𝐻(𝑤)| = 𝐜𝑇𝐜𝐨𝐬 (𝑤)                                                    (3.13) 

𝐜𝐨𝐬(𝑤) = [1 cos(𝑤) cos(2𝑤) ⋯ cos (
𝑁

2
𝑤)]

𝑇
                           (3.14) 

The design of LP-FIR1 digital filter is to search for an optimal coefficient vector 𝐜 that 

minimizes the objective function 𝑒(𝐜) in terms of maximum error which is defined as 

min
𝐜

𝑒(𝐜)                                                                (3.15) 

where 

𝑒(𝐜) = max||𝐻(𝑤𝑖)| − 𝐻𝑑(𝑤𝑖)|

for  𝑤𝑖 ∈ Ω𝐼

                                               (3.16) 

where 𝐻𝑑(𝑤𝑖) is the ideal magnitude response of the desired LP-FIR1 digital filter; Ω𝐼 is the union 

of band of interest including both passband and stopband. 

For example, for a lowpass digital filter, the objective function 𝑒(𝐜)  can be further 

decomposed into error functions of magnitude in passband and stopband respectively as 

𝑒(𝐜) = max (𝑒𝑝(𝐜), 𝑒𝑠(𝐜))                                                (3.17) 

When operating on a union set of discrete sampling frequency points, 𝑤 ϵ Ω𝐼 =  [0, 𝑤𝑝] ∪

[𝑤s, 𝜋], the two error functions of magnitude response can be approximated by 

𝑒𝑝(𝒄) = max
𝐼𝑝1 to 𝐼𝑝2

||𝐻(𝒄, 𝑤𝑖)| − 𝐻𝑑(𝑤𝑖)|

for  0 ≤ 𝑤𝑖 ≤ 𝑤𝑝

                                        (3.18) 

𝑒𝑠(𝒄) = max
𝐼𝑠1 to 𝐼𝑠2

||𝐻(𝒄, 𝑤𝑖)| − 𝐻𝑑(𝑤𝑖)|

for 𝑤𝑠 ≤ 𝑤𝑖 ≤ 𝜋 
                                        (3.19) 

where 𝐻𝑑(𝑤𝑖) = 1 in passband and 𝐻𝑑(𝑤𝑖) = 0 in stopband. 

Similarly, the objective function 𝑒(𝒄) of a highpass digital filter can be expressed as 

𝑒(𝒄) = max (𝑒𝑠(𝐜), 𝑒𝑝(𝐜))                                              (3.20) 

The objective function 𝑒(𝒄) of a bandpass digital filter can be expressed as 
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𝑒(𝒄) = max (𝑒𝑝1(𝐜), 𝑒𝑠(𝐜), 𝑒𝑝2(𝐜))                                        (3.21) 

The objective function 𝑒(𝒄) of a bandstop digital filter can be expressed as 

𝑒(𝒄) = max (𝑒𝑠1(𝐜), 𝑒𝑝(𝐜), 𝑒𝑠2(𝐜))                                        (3.22) 

3.3 Design Examples and Results 

In this section, linear-phase type-1 FIR lowpass, highpass, bandpass and bandstop digital 

filters of order 24 and 48 are designed. All the filter coefficients are initialized randomly within a 

specific range of lower bound and upper bound. Design results are compared favourably to Park-

McClellan Algorithm. 

 The linear-phase type-1 FIR lowpass, highpass, bandpass and bandstop digital filter 

specifications, and CSA parameters are listed in Table 3.2. Lowpass, highpass, bandpass and 

bandstop normalized cutoff frequencies are specified in Table 3.3. The adopt frequency grids for 

optimization and for evaluating the peak errors of magnitude are shown in Table 3.4. The design 

optimization is terminated when the value of the objective function from the best solution stays 

unchanged during the last 10% continuous iterations. All the optimization designs are carried out 

using an Intel(R) Core(TM) i7-5500U CPU, 2.40 GHz with 8GB RAM laptop computer.  

Table 3.2 Filter specifications and CSA parameters 

Symbol Description LP HP BP BS 

𝑐𝑘
[𝑈]

 Upper bound of filter coefficients 0.45 0.675 0.45 1.275 

𝑐𝑘
[𝐿]

 Lower bound of filter coefficients -0.95 -0.45 -0.33 -0.185 

𝑁 Filter order  24 48 24 48 24 48 24 48 

𝑁𝑐 Number of distinct coefficients  13 25 13 25 13 25 13 25 

𝜏 Group delay 12 24 12 24 12 24 12 24 

𝑃𝐶 CSA population size 25 25 25 25 

𝛽 CSA parameter 1.5 1.5 1.5 1.5 

𝛼 CSA parameter 0.01 0.01 0.01 0.01 

𝑝𝑎 CSA parameter 0.25 0.25 0.25 0.25 

 

Table 3.3 LP-FIR1 digital filter cutoff frequencies 

 𝑤𝑠1 𝑤𝑝1 𝑤𝑝2 𝑤𝑠2 
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LP 0.4 0.3 - - 

HP 0.45 0.55 - - 

BP 0.25 0.35 0.6 0.7 

BS 0.4 0.3 0.65 0.55 

 

Table 3.4 Frequency grids for LP-FIR1 digital filter design 

Optimization 𝐹𝑜 = [0: 0.001: 1] 

Peak magnitude error evaluation 𝐹𝑚𝑎𝑔 = [0: 0.001: 1] 

 

3.3.1 Lowpass Digital Filters 

3.3.1.1 24th-order Lowpass Digital Filter 

The filter coefficients of obtained by CSA are listed in Table 3.5 and design results are listed 

in Table 3.6. The computational record in terms of CPU seconds and number of iterations for 

reaching convergence are listed in Table 3.7. Plots of the magnitude response, impulse response, 

the passband and stopband errors of the designed lowpass digital filters are shown in Fig. 3.1, and 

its convergence curve is plotted in Fig. 3.2. 

 Table 3.5 Coefficients of 24th-order LP-FIR1 lowpass digital filter 

ℎ(𝑛) Values ℎ(𝑛) Values 

ℎ(0) = ℎ(24) 0.015602222754826 ℎ(7) = ℎ(17) -0.040713665580239 

ℎ(1) = ℎ(23) -0.019662001462534 ℎ(8) = ℎ(16) -0.071172492458704 

ℎ(2) = ℎ(22) -0.026736838577082 ℎ(9) = ℎ(15) -0.016293605259372 

ℎ(3) = ℎ(21) -0.014437347989756 ℎ(10) = ℎ(14) 0.126601433359116 

ℎ(4) = ℎ(20) 0.016516376274050 ℎ(11) = ℎ(13) 0.282601413553978 

ℎ(5) = ℎ(19) 0.036242108746287 ℎ(12) 0.350222576870181 

ℎ(6) = ℎ(18) 0.014078010180280   

 

 

 

Table 3.6 Design results of 24th-order LP-FIR1 lowpass digital filter 
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Algorithm Peak (Passband) Peak (Stopband) 

CSA 0.044526196060964 0.044690412237109 

PM 0.044667506785979 0.044738246884825 

 

Table 3.7 Computational record of 24th-order LP-FIR1 lowpass digital filter 

CPU Seconds Iteration 

122.492415 678099 

 

 

Fig. 3.1 Magnitude response, impulse response, the passband and stopband errors of designed 

24th-order LP-FIR1 lowpass digital filter 



 

25 
 

 

Fig. 3.2 Convergence curve of designed 24th-order LP-FIR1 lowpass digital filter 

3.3.1.2 48th-order Lowpass Digital Filter 

The filter coefficients of obtained by CSA are listed in Table 3.8 and design results are listed 

in Table 3.9. The computational record in terms of CPU seconds and number of iterations for 

reaching convergence are listed in Table 3.10. Plots of the magnitude response, impulse response, 

the passband and stopband errors of the designed lowpass digital filters are shown in Fig. 3.3, and 

its convergence curves is plotted in Fig. 3.4. 

 Table 3.8 Coefficients of 48th-order LP-FIR1 lowpass digital filter 

ℎ(𝑛) Values ℎ(𝑛) Values 

ℎ(0) = ℎ(48) 0.002844114639424 ℎ(13) = ℎ(35) -0.009516655396541 

ℎ(1) = ℎ(47) -0.000302320733241 ℎ(14) = ℎ(34) -0.024552215283222 

ℎ(2) = ℎ(46) -0.003227868508635 ℎ(15) = ℎ(33) -0.013113103176163 

ℎ(3) = ℎ(45) -0.004071333103923 ℎ(16) = ℎ(32) 0.019738384929840 

ℎ(4) = ℎ(44) -0.000346727330479 ℎ(17) = ℎ(31) 0.039589845700028 

ℎ(5) = ℎ(43) 0.005063411205536 ℎ(18) = ℎ(30) 0.014991254801521 

ℎ(6) = ℎ(42) 0.005609968761438 ℎ(19) = ℎ(29) -0.042230715098655 

ℎ(7) = ℎ(41) -0.001359959309635 ℎ(20) = ℎ(28) -0.072755728918604 

ℎ(8) = ℎ(40) -0.009413302078598 ℎ(21) = ℎ(27) -0.016373908625510 
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ℎ(9) = ℎ(39) -0.008230816903790 ℎ(22) = ℎ(26) 0.127344674773362 

ℎ(10) = ℎ(38) 0.004057999776199 ℎ(23) = ℎ(25) 0.282872287617703 

ℎ(11) = ℎ(37) 0.015388182625822 ℎ(24) 0.350020414205919 

ℎ(12) = ℎ(36) 0.010700387342576   

 

Table 3.9 Design results of 48th-order LP-FIR1 lowpass digital filter 

Algorithm Peak (Passband) Peak (Stopband) 

CSA 0.004605917394988 0.004617517614943 

PM 0.004630930079829 0.004620232061237 

 

Table 3.10 Computational record of 48th-order LP-FIR1 lowpass digital filter 

CPU Seconds Iteration 

5065.454939 9637933 

 

 

Fig. 3.3 Magnitude response, impulse response, the passband and stopband errors of designed 

48th-order LP-FIR1 lowpass digital filter 
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Fig. 3.4 Convergence curve of designed 48th-order LP-FIR1 lowpass digital filter 

3.3.2 Highpass Digital Filters 

3.3.2.1 24th-order Highpass Digital Filter 

The filter coefficients of obtained by CSA are listed in Table 3.11 and design results are listed 

in Table 3.12. The computational record in terms of CPU seconds and number of iterations for 

reaching convergence are listed in Table 3.13. Plots of the magnitude response, impulse response, 

the passband and stopband errors of the designed highpass digital filters are shown in Fig. 3.5, and 

its convergence curve is plotted in Fig. 3.6. 

 Table 3.11 Coefficients of 24th-order LP-FIR1 highpass digital filter 

ℎ(𝑛) Values ℎ(𝑛) Values 

ℎ(0) = ℎ(24) 0.000000000042704 ℎ(7) = ℎ(17) -0.057605481098976 

ℎ(1) = ℎ(23) 0.032847061482731 ℎ(8) = ℎ(16) 0.000000000082169 

ℎ(2) = ℎ(22) 0.000000000070915 ℎ(9) = ℎ(15) 0.102388522740894 

ℎ(3) = ℎ(21) -0.025312253861246 ℎ(10) = ℎ(14) 0.000000000082119 

ℎ(4) = ℎ(20) 0.000000000054528 ℎ(11) = ℎ(13) -0.317056595714510 

ℎ(5) = ℎ(19) 0.037271286797722 ℎ(12) 0.500000000076811 

ℎ(6) = ℎ(18) 0.000000000051803   
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Table 3.12 Design results of 24th-order LP-FIR1 highpass digital filter 

Algorithm Peak (Stopband) Peak (Passband) 

CSA 0.045082367262490 0.045082367061960 

PM 0.045265488163783 0.045062116544123 

 

Table 3.13 Computational information of 24th-order LP-FIR1 highpass digital filter 

CPU Seconds Iteration 

46.716542 166583 

 

 

Fig. 3.5 Magnitude response, impulse response, the passband and stopband errors of designed 

24th-order LP-FIR1 highpass digital filter 
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Fig. 3.6 Convergence curve of designed 24th-order LP-FIR1 highpass digital filter 

3.3.2.2 48th-order Highpass Digital Filter 

The filter coefficients of obtained by CSA are listed in Table 3.14 and design results are listed 

in Table 3.15. The computational record in terms of CPU seconds and number of iterations for 

reaching convergence are listed in Table 3.16. Plots of the magnitude response, impulse response, 

the passband and stopband errors of the designed highpass digital filters are shown in Fig. 3.7, and 

its convergence curve is plotted in Fig. 3.8. 

 Table 3.14 Coefficients of 48th-order LP-FIR1 highpass digital filter 

ℎ(𝑛) Values ℎ(𝑛) Values 

ℎ(0) = ℎ(48) 0.000000000274744 ℎ(13) = ℎ(35) 0.020943715816087 

ℎ(1) = ℎ(47) 0.004097749652286 ℎ(14) = ℎ(34) -0.000000000014083 

ℎ(2) = ℎ(46) 0.000000000378644 ℎ(15) = ℎ(33) -0.028567287969460 

ℎ(3) = ℎ(45) -0.003950222433274 ℎ(16) = ℎ(32) 0.000000000212389 

ℎ(4) = ℎ(44) 0.000000000181198 ℎ(17) = ℎ(31) 0.040014057993254 

ℎ(5) = ℎ(43) 0.005811843735690 ℎ(18) = ℎ(30) 0.000000000157791 

ℎ(6) = ℎ(42) -0.000000000166138 ℎ(19) = ℎ(29) -0.059670733860250 

ℎ(7) = ℎ(41) -0.008232450009601 ℎ(20) = ℎ(28) 0.000000000045528 

ℎ(8) = ℎ(40) -0.000000000233253 ℎ(21) = ℎ(27) 0.103671515990105 
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ℎ(9) = ℎ(39) 0.011371368281609 ℎ(22) = ℎ(26) -0.000000000333849 

ℎ(10) = ℎ(38) -0.000000000256773 ℎ(23) = ℎ(25) -0.317492688648257 

ℎ(11) = ℎ(37) -0.015473106864559 ℎ(24) 0.499999999619962 

ℎ(12) = ℎ(36) -0.000000000081171   

 

Table 3.15 Design results of 48th-order LP-FIR1 highpass digital filter 

Algorithm Peak (Stopband) Peak (Passband) 

CSA 0.005058774840816 0.005058774817072 

PM 0.005073979553563 0.005073979553563 

 

Table 3.16 Computational information of 48th-order LP-FIR1 highpass digital filter 

CPU Seconds Iteration 

13757 30000000 

 

 

Fig. 3.7 Magnitude response, impulse response, the passband and stopband errors of designed 

48th-order LP-FIR1 highpass digital filter 
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Fig. 3.8 Convergence curve of designed 48th-order LP-FIR1 highpass digital filter 

3.3.3 Bandpass Digital Filters 

3.3.3.1 24th-order Bandpass Digital Filter 

The filter coefficients of obtained by CSA are listed in Table 3.17 and design results are listed 

in Table 3.18. The computational record in terms of CPU seconds and number of iterations for 

reaching convergence are listed in Table 3.19. Plots of the magnitude response, impulse response, 

the passband and stopband errors of the designed bandpass digital filters are shown in Fig. 3.9, and 

its convergence curve is plotted in Fig. 3.10. 

 Table 3.17 Coefficients of 24th-order LP-FIR1 bandpass digital filter 

ℎ(𝑛) Values ℎ(𝑛) Values 

ℎ(0) = ℎ(24) 0.005873070364878 ℎ(7) = ℎ(17) 0.015522073715187 

ℎ(1) = ℎ(23) -0.003134642021242 ℎ(8) = ℎ(16) 0.114031977173706 

ℎ(2) = ℎ(22) 0.023197161313002 ℎ(9) = ℎ(15) -0.047450432177461 

ℎ(3) = ℎ(21) -0.043449803354569 ℎ(10) = ℎ(14) -0.275836858534444 

ℎ(4) = ℎ(20) -0.053830578635584 ℎ(11) = ℎ(13) 0.025635431280225 

ℎ(5) = ℎ(19) 0.023085898119753 ℎ(12) 0.350012567395827 

ℎ(6) = ℎ(18) 0.011558944930731   
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Table 3.18 Design results of 24th-order LP-FIR1 bandpass digital filter 

Algorithm Peak (Stopband1) Peak (Passband) Peak (Stopband2) 

CSA 0.059582949496635 0.059582949496635 0.059582949496635 

PM 0.059543404896685 0.059740130212373 0.059753172716330 

 

Table 3.19 Computational record of 24th-order LP-FIR1 bandpass digital filter 

CPU Seconds Iteration 

36.923787 103270 

 

 

Fig. 3.9 Magnitude response, impulse response, the passband and stopband errors of designed 

24th-order LP-FIR1 bandpass digital filter 



 

33 
 

 

Fig. 3.10 Convergence curve of designed 24th-order LP-FIR1 bandpass digital filter 

3.3.3.2 48th-order Bandpass Digital Filter 

The filter coefficients of obtained by CSA are listed in Table 3.20 and design results are listed 

in Table 3.21. The computational record in terms of CPU seconds and number of iterations for 

reaching convergence are listed in Table 3.22. Plots of the magnitude response, impulse response, 

the passband and stopband errors of the designed bandpass digital filters are shown in Fig. 3.11, 

and its convergence curve is plotted in Fig. 3.12. 

Table 3.20 Coefficients of 48th-order LP-FIR1 bandpass digital filter 

ℎ(𝑛) Values ℎ(𝑛) Values 

ℎ(0) = ℎ(48) -0.000338755405739 ℎ(13) = ℎ(35) 0.007146131165616 

ℎ(1) = ℎ(47) -0.001394990601093 ℎ(14) = ℎ(34) 0.023893413054746 

ℎ(2) = ℎ(46) -0.000223744629716 ℎ(15) = ℎ(33) -0.035692925449260 

ℎ(3) = ℎ(45) -0.007159205454750 ℎ(16) = ℎ(32) -0.051306155900774 

ℎ(4) = ℎ(44) 0.000126376524088 ℎ(17) = ℎ(31) 0.027129935902712 

ℎ(5) = ℎ(43) 0.009423794361884 ℎ(18) = ℎ(30) 0.013623715630051 

ℎ(6) = ℎ(42) 0.000942183133334 ℎ(19) = ℎ(29) 0.017359164043243 

ℎ(7) = ℎ(41) 0.000997036008702 ℎ(20) = ℎ(28) 0.117064836295993 

ℎ(8) = ℎ(40) 0.003276936087726 ℎ(21) = ℎ(27) -0.048295198569917 

ℎ(9) = ℎ(39) -0.018635547345007 ℎ(22) = ℎ(26) -0.277215413086399 
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ℎ(10) = ℎ(38) -0.011474111235669 ℎ(23) = ℎ(25) 0.026104018784016 

ℎ(11) = ℎ(37) 0.019676219379267 ℎ(24) 0.350279305243349 

ℎ(12) = ℎ(36) 0.006491066057793   

 

Table 3.21 Design results of 48th-order LP-FIR1 bandpass digital filter 

Algorithm Peak (Stopband1) Peak (Passband) Peak (Stopband2) 

CSA 0.006683137272674 0.006683137272728 0.006683137272208 

PM 0.006700546942702 0.006700259956930 0.006699594292273 

 

Table 3.22 Computational record of 48th-order LP-FIR1 bandpass digital filter 

CPU Seconds Iteration 

7598.309211 13742183 

 

 

Fig. 3.11 Magnitude response, impulse response, the passband and stopband errors of designed 

48th-order LP-FIR1 bandpass digital filter 
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Fig. 3.12 Convergence curve of designed 48th-order LP-FIR1 bandpass digital filter 

3.3.4 Bandstop Digital Filters 

3.3.4.1 24th-order Bandstop Digital Filter 

The filter coefficients of obtained by CSA are listed in Table 3.23 and design results are listed 

in Table 3.24. The computational record in terms of CPU seconds and number of iterations for 

reaching convergence are listed in Table 3.25. Plots of the magnitude response, impulse response, 

the passband and stopband errors of the designed bandstop digital filters are shown in Fig. 3.13, 

and its convergence curve is plotted in Fig. 3.14. 

Table 3.23 Coefficients of 24th-order LP-FIR1 bandstop digital filter 

ℎ(𝑛) Values ℎ(𝑛) Values 

ℎ(0) = ℎ(24) 0.016290826914678 ℎ(7) = ℎ(17) -0.041240368449089 

ℎ(1) = ℎ(23) -0.033316831641946 ℎ(8) = ℎ(16) -0.145571615427783 

ℎ(2) = ℎ(22) -0.023409617184792 ℎ(9) = ℎ(15) 0.044425868837146 

ℎ(3) = ℎ(21) 0.007020847526987 ℎ(10) = ℎ(14) 0.223958170306042 

ℎ(4) = ℎ(20) -0.003286142155914 ℎ(11) = ℎ(13) -0.019156949837817 

ℎ(5) = ℎ(19) 0.015749009775587 ℎ(12) 0.744118856875453 

ℎ(6) = ℎ(18) 0.059959014164242   
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Table 3.24 Design results of 24th-order LP-FIR1 bandstop digital filter 

Algorithm Peak (Passband1) Peak (Stopband) Peak (Passband2) 

CSA 0.053091981387982 0.053045049123189 0.053108368921888 

PM 0.053134613120994 0.053022952607939 0.053208962863983 

 

Table 3.25 Computational record of 24th-order LP-FIR1 bandstop digital filter 

CPU Seconds Iteration 

19.038659 81936 

 

 

Fig. 3.13 Magnitude response, impulse response, the passband and stopband errors of designed 

24th-order LP-FIR1 bandstop digital filter 
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Fig. 3.14 Convergence curve of designed 24th-order LP-FIR1 bandstop digital filter 

3.3.4.2 48th-order Bandstop Digital Filter 

The filter coefficients of obtained by CSA are listed in Table 3.26 and design results are listed 

in Table 3.27. The computational record in terms of CPU seconds and number of iterations for 

reaching convergence are listed in Table 3.28. Plots of the magnitude response, impulse response, 

the passband and stopband errors of the designed bandstop digital filters are shown in Fig. 3.15, 

and its convergence curve is plotted in Figs. 3.16. 

 Table 3.26 Coefficients of 48th-order LP-FIR1 bandstop digital filter 

ℎ(𝑛) Values ℎ(𝑛) Values 

ℎ(0) = ℎ(48) 0.003908043927805 ℎ(13) = ℎ(35) 0.009868794246921 

ℎ(1) = ℎ(47) -0.001718752622614 ℎ(14) = ℎ(34) -0.023669026618227 

ℎ(2) = ℎ(46) -0.005084946782733 ℎ(15) = ℎ(33) -0.040010888786738 

ℎ(3) = ℎ(45) -0.000274613515775 ℎ(16) = ℎ(32) 0.039306415789148 

ℎ(4) = ℎ(44) -0.000069566013098 ℎ(17) = ℎ(31) 0.063635673883198 

ℎ(5) = ℎ(43) -0.000610392551288 ℎ(18) = ℎ(30) -0.031177716768294 

ℎ(6) = ℎ(42) 0.009387956456829 ℎ(19) = ℎ(29) -0.043293064617811 

ℎ(7) = ℎ(41) 0.003609177075744 ℎ(20) = ℎ(28) 0.000375177899855 

ℎ(8) = ℎ(40) -0.018809927272693 ℎ(21) = ℎ(27) -0.076051548276449 
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ℎ(9) = ℎ(39) -0.008489112279614 ℎ(22) = ℎ(26) 0.034500875604178 

ℎ(10) = ℎ(38) 0.017470998789566 ℎ(23) = ℎ(25) 0.584390536388135 

ℎ(11) = ℎ(37) 0.006788182462449 ℎ(24) -0.049676563579217 

ℎ(12) = ℎ(36) -0.000945273437220   

 

Table 3.27 Design results of 48th-order LP-FIR1 bandstop digital filter 

Algorithm Peak (Passband1) Peak (Stopband) Peak (Passband2) 

CSA 0.005042621679150 0.005029606571997 0.005057575531740 

PM 0.005861705990205 0.005874023389562 0.005866614940886 

 

Table 3.28 Computational record of 48th-order LP-FIR1 bandstop digital filter 

CPU Seconds Iteration 

5438.547879 13083193 

 

 

Fig. 3.15 Magnitude response, impulse response, the passband and stopband errors of designed 

48th-order LP-FIR1 bandstop digital filter 
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Fig. 3.16 Convergence curve of designed 48th-order LP-FIR1 bandstop digital filter 

3.4 Conclusion 

This chapter has presented the design of linear-phase type-1 FIR digital filters using Cuckoo 

Search Algorithm. 24th and 48th-order lowpass, highpass, bandpass and bandstop digital filters are 

chosen for the design and their results are obtained. The results have shown that the peak errors 

obtained by CSA are mostly smaller than those obtained by the Parks-McClellan algorithm. This 

denotes the effectiveness of CSA and its better performance on the optimal design than those of 

Parks-McClellan algotithm.  

It should be noted that CSA is a meta-heuristic algorithm which requires a sufficient number 

of iterations and therefore it takes relatively more optimization time than that of Parks-McClellan 

algorithm. 

In summary, CSA is capable of reaching the global optimum for it utilizes Levy flight with 

wide-range step length as a special strategy for the global walk. Meanwhile, the local walk is able 

to improve the existing solutions. In the future, more work can focus on the improvement of CSA, 

such as other suitable methods for the global walk or an efficient way for the parameter decision.      
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CHAPTER 4 General FIR Digital Filter Design Using Multiobjective 

 Cuckoo Search Algorithm 

4.1 Introduction 

In the real life, many practical problems are consisted of various interactive but conflicting 

objectives to be satisfied simultaneously. These objectives may be contradictory to each other such 

that an improvement on an objective could lead to serious depravation of some others. It means it 

is impossible to find a solution that satisfies all the objectives to their respective optimum levels at 

the same time. A possible solution for this situation is compromising the objectives and trying to 

optimize them simultaneously until they reach equilibration. A multiobjective optimization 

problem is defined as searching for an optimal solution within a certain of range to optimize 

multiple objectives at a balanced optimum level as optimal equilibration. 

A number of multiobjective optimization algorithms have been proposed so far. Most of them 

share a common method, Pareto Front, to determine the potential optimal solution. The Pareto Front, 

named after a famous mathematician Vilfredo Pareto (1848-1923), is used to find those solutions 

that can not improve an objective without degrading any one of the others. Then the optimal 

solution shall be pick up from the Pareto Front. A typical multiobjective optimization algorithm 

using the Pareto Front is Non-dominated Sorting Genetic Algorithm (NSGA-III) [20]. NSGA-III 

is able to achieve a minimum point in a swift way and obtain a set of solutions with well-

convergence and well-diversity over enough number of iterations. However, the Pareto Front may 

contain more than one candidate solution and require more standards to finalize the most feasible 

one. This requires more preparing work including further model-formulation, formula-derivation 

or objective-based equilibrating methods. 

In this chapter, an improvement on CSA in adapt to multiobjective optimization problems is 

presented as multiobjective Cuckoo Search Algorithm (MOCSA) [21]. MOCSA incorporates a 

technique of Euclidean distance instead of Pareto Front to realize the objective-based optimal 

equilibration and determine the optimal solution by simple comparison. MOCSA and NSGA-III 

are applied on the design of general FIR lowpass, highpass, bandpass and bandstop digital filters 

at order 24 with different group delay values in passband. Their design results are compared with 

each other to demonstrate the effectiveness of MOCSA.  

4.2 Multiobjective Cuckoo Search Algorithm 

Multiobjective Cuckoo Search Algorithm follows the steps of the original CSA described in 

section 3.1 from (3.1) to (3.8). For a minimization problem with 𝑀 (𝑀 ≥ 2) objective functions 
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𝑓𝑚(𝐱) (𝑚 = 1,2, … , 𝑀) and 𝐼 competing solutions, an Euclidean space 𝑺𝑀 can be formulated that 

each dimension corresponds to a respective objective function. An Euclidean spatial point with 

respect to a solution 𝐱 can then be represented by [21] 

𝐟(𝐱) = (𝑓1(𝐱), 𝑓2(𝐱), … , 𝑓𝑀(𝐱))                                                 (4.1) 

The current ideal spatial point 𝐳(𝑡) obtained at the current iteration 𝑡 can be represented by 

𝐳(𝑡) = (𝑧1
min(𝑡), 𝑧2

min(𝑡), … , 𝑧𝑀
min(𝑡))                                        (4.2) 

where 

𝑧𝑚
min(𝑡) = min { min

𝑖=1 to 𝐼
𝑓𝑚(𝐱𝑖(𝑡)) , 𝑧𝑚

min(𝑡 − 1)}

for 𝑚 = 1 to 𝑀
                                 (4.3) 

which represents the minimum value of 𝑓𝑚(𝐱) that has ever reached during the iterative procedure 

so far. For initialization, all the elements in 𝐳(0) should be positively infinite such that the current 

ideal spatial point at the first iteration 𝐳(1) could be consistently updated. 

The Euclidean distance between an Euclidean spatial point 𝐟(𝐱) in the Euclidean Space 𝑺𝑀 

defined in (4.1) and the current ideal spatial point 𝐳(𝑡) at the current iteration 𝑡 is calculated by  

𝑑(𝐱, 𝐳(𝑡)) = √∑ [𝑓𝑚(𝐱) − 𝑧𝑚(𝑡)]2𝑀
𝑚=1                                               (4.4) 

The usage of Euclidean distance is for comparing the qualities of the candidate solutions. A 

solution with a smaller Euclidean distance implies its corresponding Euclidean spatial point is 

closer to the current ideal spatial point in the Euclidean space. It means this solution is more 

qualified to realize the ideal optimization goal. Concerning the 𝑖th population member  𝐱𝑖(𝑡) for 

𝑖 = 1,2, … , 𝐼, the one with the smallest Euclidean distance among the global walk solution 𝐱𝑖𝑔
(𝑡), 

the local walk solution 𝐱𝑖𝑙
(𝑡) and the existing solution 𝐱𝑖(𝑡) is selected as the solution 𝐱𝑖(𝑡 + 1) 

for the next iteration [21]. 

The best solution 𝐱𝑏𝑒𝑠𝑡 for the next iteration is updated by that with the smallest Euclidean 

distance among the new updated population such that the most qualified solution is currently 

restored.  
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4.3 Design of General FIR Digital Filters 

An 𝑁th-order general FIR (G-FIR) digital filter consists of (𝑁 + 1) impulse responses [21]. 

This series of values can be expressed as a distinct coefficient vector 𝐜 as 

𝐜 = [𝑐0, 𝑐1, 𝑐2, 𝑐3, … , 𝑐𝑁]𝑇 = [ℎ(0), ℎ(1), ℎ(2), ℎ(3), … , ℎ(𝑁)]𝑇                 (4.5) 

The frequency response 𝐻(𝑤) of a general FIR digital filter can be represented by 

𝐻(𝑤) = ∑ 𝑐𝑛𝑧−𝑛𝑁
𝑛=0 |𝑧=𝑒𝑗𝑤𝑇 = |𝐻(𝑤)|𝑒𝑗𝜃(𝑤)                                 (4.6) 

The group delay of a general FIR digital filter can be expressed as 

𝜏(𝑤) = −
𝜕𝜃(𝑤)

𝜕𝑤𝑇
                                                            (4.7) 

The objective function for the maximum magnitude error 𝑒𝑚𝑎𝑔(𝐜) is defined by 

𝑒𝑚𝑎𝑔(𝐜) = max
𝐜

||𝐻(𝐜, 𝑤𝑖)| − 𝐻𝑑(𝑤𝑖)|

for ∀𝑤𝑖 ∈ Ω𝐼

                                       (4.8) 

where 𝐻𝑑(𝑤𝑖) = 1 in passband(s) and 𝐻𝑑(𝑤𝑖) = 0 in stopband(s); and Ω𝐼 denotes union of 

frequency bands of interest including both passband and stopband. 

Similarly, the objective function for the peak group delay error in passband 𝑒𝑔𝑑(𝐜) can be 

defined by  

𝑒𝑔𝑑(𝐜) = max
𝐜

|𝜏(𝐜, 𝑤𝑖) − 𝜏𝑑|

for 𝑤𝑝1 ≤ 𝑤𝑖 ≤ 𝑤𝑝2

                                          (4.9) 

where 𝜏𝑑 is the ideal value of group delay in passband. 

The optimization problem for designing FIR lowpass, highpass, bandpass and bandstop digital 

filters is searching for an optimal coefficient vector 𝐜  that minimizes the objective functions 

𝑒𝑚𝑎𝑔(𝐜) and 𝑒𝑔𝑑(𝐜) simultaneously. 

4.4 Design Examples and Results 

In this section, general FIR lowpass, highpass, bandpass and bandstop digital filters of order 

24 with group delay values of 10, 12 and 14 in passband are designed. In each example, MOCSA 

is applied to simultaneously minimizes the objective functions 𝑒𝑚𝑎𝑔(𝐜) and 𝑒𝑔𝑑(𝐜) as given in (4.8) 

and (4.9) that 
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𝑓1(𝐱) = 𝑒𝑚𝑎𝑔(𝐜)                                                         (4.10) 

𝑓2(𝐱) = 𝑒𝑔𝑑(𝐜)                                                            (4.11) 

All the filter coefficients are initialized randomly. NSGA-III is also considered as a compared 

method for the above design. Design results obtained by MOCSA are compared favourably to those 

obtained by NSGA-III. 

The parameters of MOCSA and NSGA-III are listed in Table 4.1. Lowpass, highpass,  

bandpass and bandstop cutoff frequencies are specified in Table 4.2. The adopt frequency grids for 

optimization and for evaluating the peak errors of magnitude as well as group delay in passband 

are shown in Table 4.3. The optimization procedure is terminated when the Euclidean distance 

from the best solution stays unchanged during the last 10% continuous iterations. An Intel(R) 

Core(TM) i7-5500U CPU, 2.40 GHz with 8GB RAM laptop computer is used to carry out all the 

optimization designs.  

Table 4.1 Parameters of MOCSA and NSGA-III 

 Symbol Description LP HP BP BS 

𝑃𝐶 MOCSA population size 25 25 25 25 

𝛽 MOCSA parameter 1.5 1.5 1.5 1.5 

𝛼 MOCSA parameter 0.01 0.01 0.01 0.01 

𝑝𝑎 MOCSA parameter 0.25 0.25 0.25 0.25 

𝑃𝑁 NSGA-III population size 25 25 25 25 

 

Table 4.2 G-FIR digital filter cutoff frequencies 

 𝑤𝑠1 𝑤𝑝1 𝑤𝑝2 𝑤𝑠2 

LP 0.4 0.3 - - 

HP 0.45 0.55 - - 

BP 0.25 0.35 0.6 0.7 

BS 0.4 0.3 0.65 0.55 

 

Table 4.3 Frequency grids for G-FIR digital filter design 

Optimization 𝐹𝑜 = [0: 0.005: 1] 

Peak error evaluation 𝐹𝑚𝑎𝑔 = [0: 0.001: 1] 
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4.4.1 24th-order Lowpass Digital Filters 

4.4.1.1 Lowpass Digital Filter with Group Delay in Passband at 10 

The filter coefficients of obtained by MOCSA and NSGA-III are listed in Table 4.4. Design 

results with respect to magnitude error are listed in Table 4.5 while those with respect to group 

delay error are listed in Table 4.6. The computational record in terms of CPU seconds and number 

of iterations for reaching convergence are listed in Table 4.7. Plots of the magnitude response, 

impulse response, the passband and stopband errors of the designed lowpass digital filter are shown 

in Fig. 4.1 for MOCSA and Fig. 4.2 for NSGA-III, and the convergence curve of MOCSA is plotted 

in Fig. 4.3. 

 Table 4.4 Coefficients of lowpass digital filter with group delay in passband at 10 

ℎ(𝑛) MOCSA NSGA-III 

ℎ(0) -0.041198269383307 -0.034890224248738 

ℎ(1) -0.011702538139839 -0.014555370991983 

ℎ(2) 0.020598977457927 0.018330739577806 

ℎ(3) 0.034541783816633 0.044266200345298 

ℎ(4) 0.016182632487573 0.016978063996938 

ℎ(5) -0.043550613642583 -0.048414388981186 

ℎ(6) -0.069194930881171 -0.058180800700933 

ℎ(7) -0.013300686397420 -0.023432311806267 

ℎ(8) 0.120037270622586 0.132565266758704 

ℎ(9) 0.288262477333900 0.286066899227323 

ℎ(10) 0.348928018203073 0.347702950604088 

ℎ(11) 0.280853766720371 0.283737138270304 

ℎ(12) 0.126197531559139 0.133705706158827 

ℎ(13) -0.011966727742320 -0.020992582525051 

ℎ(14) -0.075204626283456 -0.067198567108741 

ℎ(15) -0.039903258233887 -0.034915860013511 

ℎ(16) 0.016977945620325 0.012773558474705 

ℎ(17) 0.033753225785978 0.037815659968352 

ℎ(18) 0.020114139904307 0.021641529999907 

ℎ(19) -0.017070876511376 -0.014942398864603 

ℎ(20) -0.025634981014295 -0.023675360674065 

ℎ(21) -0.018153349567344 -0.016218102844109 

ℎ(22) 0.010905964021526 0.003984628680988 
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ℎ(23) -0.003066466549981 0.006427772194404 

ℎ(24) 0.000168886777214 -0.004177967194567 

 

Table 4.5 Magnitude error of lowpass digital filter with group delay in passband at 10 

Algorithm Peak (Passband) Peak (Stopband) 

MOCSA 0.052596836181376 0.052670823229299 

NSGA-III 0.053154096504146 0.053414337614708 

 

Table 4.6 Group delay error of lowpass digital filter with group delay in passband at 10 

Algorithm Peak (Passband) 

MOCSA 0.000545615619879 

NSGA-III 0.008370524552788 

 

Table 4.7 Computational record of lowpass digital filter with group delay in passband at 10 

Algorithm CPU Seconds Iteration 

MOCSA 8561.143758 12106139 

NSGA-III 248.323372 5863 
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Fig. 4.1 Magnitude response, impulse response, the passband and stopband errors of designed G-

FIR lowpass digital filter with group delay in passband at 10 obtained by MOCSA 

 

Fig. 4.2 Magnitude response, impulse response, the passband and stopband errors of designed G-

FIR lowpass digital filter with group delay in passband at 10 obtained by NSGA-III 
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Fig. 4.3 Convergence curve of designed G-FIR lowpass digital filter with group delay in passband 

at 10 obtained by MOCSA 

4.4.1.2 Lowpass Digital Filter with Group Delay in Passband at 12 

The filter coefficients of obtained by MOCSA and NSGA-III are listed in Table 4.8. Design 

results with respect to magnitude error are listed in Table 4.9 while those with respect to group 

delay error are listed in Table 4.10. The computational record in terms of CPU seconds and number 

of iterations for reaching convergence are listed in Table 4.11. Plots of the magnitude response, 

impulse response, the passband and stopband errors of the designed lowpass digital filter are shown 

in Fig. 4.4 for MOCSA and Fig. 4.5 for NSGA-III, and the convergence curve of MOCSA is plotted 

in Fig. 4.6. 

 Table 4.8 Coefficients of lowpass digital filter with group delay in passband at 12 

ℎ(𝑛) MOCSA NSGA-III 

ℎ(0) 0.013535165952382 0.015505495827124 

ℎ(1) -0.016393810496359 -0.018708779428162 

ℎ(2) -0.030600620180798 -0.026725383036830 

ℎ(3) -0.010080503280016 -0.010466747085602 

ℎ(4) 0.015273870704195 0.017121203568736 

ℎ(5) 0.034053420015863 0.035075752003777 
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ℎ(6) 0.017893649453700 0.018960551230898 

ℎ(7) -0.041290669072793 -0.043499467328951 

ℎ(8) -0.074089875446003 -0.069180971593755 

ℎ(9) -0.013065728020069 -0.016850527607509 

ℎ(10) 0.125652556846760 0.128062517942709 

ℎ(11) 0.281790231556929 0.279319177054130 

ℎ(12) 0.351816277073321 0.351731994357483 

ℎ(13) 0.281709948162901 0.283410310455638 

ℎ(14) 0.127388588638785 0.124616050521326 

ℎ(15) -0.017728601698537 -0.014630030387373 

ℎ(16) -0.070011125795146 -0.072107675093053 

ℎ(17) -0.038552600082401 -0.038793951006955 

ℎ(18) 0.009627522065944 0.012343899315996 

ℎ(19) 0.037673771975495 0.039934633364232 

ℎ(20) 0.022419255078578 0.018971387845592 

ℎ(21) -0.022551958720532 -0.016085139750509 

ℎ(22) -0.021413682706359 -0.025128771298926 

ℎ(23) -0.019957064352162 -0.016212423788601 

ℎ(24) 0.014141129928525 0.013733538043933 

 

Table 4.9 Magnitude error of lowpass digital filter with group delay in passband at 12 

Algorithm Peak (Passband) Peak (Stopband) 

MOCSA 0.046065198313971 0.046185882274220 

NSGA-III 0.046507218020522 0.046464779221026 

 

Table 4.10 Group delay error of lowpass digital filter with group delay in passband at 12 

Algorithm Peak (Passband) 

MOCSA 0.000020504668173 

NSGA-III 0.003718899801981 
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Table 4.11 Computational record of lowpass digital filter with group delay in passband at 12 

Algorithm CPU Seconds Iteration 

MOCSA 1347.678670 1901502 

NSGA-III 468.539187 9834 

 

 

Fig. 4.4 Magnitude response, impulse response, the passband and stopband errors of designed G-

FIR lowpass digital filter with group delay in passband at 12 obtained by MOCSA 
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Fig. 4.5 Magnitude response, impulse response, the passband and stopband errors of designed G-

FIR lowpass digital filter with group delay in passband at 12 obtained by NSGA-III 

 

Fig. 4.6 Convergence curve of designed G-FIR lowpass digital filter with group delay in passband 

at 12 obtained by MOCSA 
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4.4.1.3 Lowpass Digital Filter with Group Delay in Passband at 14 

The filter coefficients of obtained by MOCSA and NSGA-III are listed in Table 4.12. Design 

results with respect to magnitude error are listed in Table 4.13 while those with respect to group 

delay error are listed in Table 4.14. The computational record in terms of CPU seconds and number 

of iterations for reaching convergence are listed in Table 4.15. Plots of the magnitude response, 

impulse response, the passband and stopband errors of the designed lowpass digital filter are shown 

in Fig. 4.7 for MOCSA and Fig. 4.8 for NSGA-III, and the convergence curve of MOCSA is plotted 

in Fig. 4.9. 

 Table 4.12 Coefficients of lowpass digital filter with group delay in passband at 14 

ℎ(𝑛) MOCSA NSGA-III 

ℎ(0) -0.000060451201129 -0.003025624423626 

ℎ(1) -0.001607336153554 0.005645000130130 

ℎ(2) 0.007488600330746 0.002380969367836 

ℎ(3) -0.014122534022961 -0.014142558566336 

ℎ(4) -0.028639071784242 -0.024911757609482 

ℎ(5) -0.014522743300258 -0.016779783444136 

ℎ(6) 0.016116840110976 0.022691547240656 

ℎ(7) 0.038581283547434 0.034813373044536 

ℎ(8) 0.014585982991793 0.013215234212493 

ℎ(9) -0.042420817770733 -0.038454021890381 

ℎ(10) -0.068139325001451 -0.068178187471455 

ℎ(11) -0.021122134913990 -0.019179511118329 

ℎ(12) 0.134859079352017 0.125566433726659 

ℎ(13) 0.273000936725557 0.286473248286585 

ℎ(14) 0.357857722046911 0.346254685530325 

ℎ(15) 0.277879269113579 0.282411082629091 

ℎ(16) 0.128717635127549 0.123678623886700 

ℎ(17) -0.016514209256488 -0.005742433662816 

ℎ(18) -0.072021382900915 -0.083655608750170 

ℎ(19) -0.038289810145093 -0.034035049171870 

ℎ(20) 0.013633870300424 0.013556515691406 

ℎ(21) 0.032650460614725 0.036622107552164 

ℎ(22) 0.023883758338048 0.023542666428628 

ℎ(23) -0.013329393383173 -0.016704975539084 

ℎ(24) -0.041043639974816 -0.036362824312344 
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Table 4.13 Magnitude error of lowpass digital filter with group delay in passband at 14 

Algorithm Peak (Passband) Peak (Stopband) 

MOCSA 0.052752044407466 0.052789311791234 

NSGA-III 0.053034864506350 0.053047188042726 

 

Table 4.14 Group delay error of lowpass digital filter with group delay in passband at 14 

Algorithm Peak (Passband) 

MOCSA 0.000398649157843 

NSGA-III 0.004335033277854 

 

Table 4.15 Computational record of lowpass digital filter with group delay in passband at 14 

Algorithm CPU Seconds Iteration 

MOCSA 5944.458695 7288980 

NSGA-III 227.461914 5058 

 

 

Fig. 4.7 Magnitude response, impulse response, the passband and stopband errors of designed G-

FIR lowpass digital filter with group delay in passband at 14 obtained by MOCSA 
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Fig. 4.8 Magnitude response, impulse response, the passband and stopband errors of designed G-

FIR lowpass digital filter with group delay in passband at 14 obtained by NSGA-III 

 

Fig. 4.9 Convergence curve of designed G-FIR lowpass digital filter with group delay in passband 

at 14 obtained by MOCSA 
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4.4.2 24th-order Highpass Digital Filters 

4.4.2.1 Highpass Digital Filter with Group Delay in Passband at 10 

The filter coefficients of obtained by MOCSA and NSGA-III are listed in Table 4.16. Design 

results with respect to magnitude error are listed in Table 4.17 while those with respect to group 

delay error are listed in Table 4.18. The computational record in terms of CPU seconds and number 

of iterations for reaching convergence are listed in Table 4.19. Plots of the magnitude response, 

impulse response, the passband and stopband errors of the designed highpass digital filter are shown 

in Fig. 4.10 for MOCSA and Fig. 4.11 for NSGA-III, and the convergence curve of MOCSA is 

plotted in Fig. 4.12. 

 Table 4.16 Coefficients of highpass digital filter with group delay in passband at 10 

ℎ(𝑛) MOCSA NSGA-III 

ℎ(0) -0.005494700764422 -0.006988009235285 

ℎ(1) -0.054332513603260 -0.039778146318213 

ℎ(2) -0.005560223944632 -0.003287272768635 

ℎ(3) 0.033499245202198 0.047706603197889 

ℎ(4) -0.000215376569352 -0.003366750570935 

ℎ(5) -0.056124606136280 -0.061645381128061 

ℎ(6) 0.001525094419797 -0.001327633243464 

ℎ(7) 0.103960575926926 0.089985698572622 

ℎ(8) 0.002019908039721 0.000467679828484 

ℎ(9) -0.314916980968963 -0.327400248723325 

ℎ(10) 0.501201679807967 0.509936462868409 

ℎ(11) -0.316754812109805 -0.322219947461521 

ℎ(12) -0.000022654995965 0.008373126212587 

ℎ(13) 0.103055817100247 0.091339766599350 

ℎ(14) 0.001487667379092 -0.004314375769320 

ℎ(15) -0.055996001554253 -0.064313717722716 

ℎ(16) 0.001195236546215 -0.007438567515165 

ℎ(17) 0.039181000699405 0.042965024408293 

ℎ(18) 0.006235548389254 -0.002784913861289 

ℎ(19) -0.038455083041937 -0.027229372842021 

ℎ(20) 0.009521174004298 0.012455796552993 

ℎ(21) 0.010112991551557 0.016649123551283 

ℎ(22) 0.004653338557117 0.006754628323922 
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ℎ(23) 0.001275386196600 -0.000160751804552 

ℎ(24) 0.000111716443124 -0.001327002654798 

 

Table 4.17 Magnitude error of highpass digital filter with group delay in passband at 10 

Algorithm Peak (Stopband) Peak (Passband) 

MOCSA 0.062931212642737 0.062762203035294 

NSGA-III 0.065651068620897 0.065672129767996 

 

Table 4.18 Group delay error of highpass digital filter with group delay in passband at 10 

Algorithm Peak (Passband) 

MOCSA 0.000403657095495 

NSGA-III 0.015430694353999 

 

Table 4.19 Computational record of highpass digital filter with group delay in passband at 10 

Algorithm CPU Seconds Iteration 

MOCSA 12423.586642 14966500 

NSGA-III 272.569767 5447 
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Fig. 4.10 Magnitude response, impulse response, the passband and stopband errors of designed 

G-FIR highpass digital filter with group delay in passband at 10 obtained by MOCSA 

 

Fig. 4.11 Magnitude response, impulse response, the passband and stopband errors of designed 

G-FIR highpass digital filter with group delay in passband at 10 obtained by NSGA-III 
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Fig. 4.12 Convergence curve of designed G-FIR highpass digital filter with group delay in 

passband at 10 obtained by MOCSA 

4.4.2.2 Highpass Digital Filter with Group Delay in Passband at 12 

The filter coefficients of obtained by MOCSA and NSGA-III are listed in Table 4.20. Design 

results with respect to magnitude error are listed in Table 4.21 while those with respect to group 

delay error are listed in Table 4.22. The computational record in terms of CPU seconds and number 

of iterations for reaching convergence are listed in Table 4.23. Plots of the magnitude response, 

impulse response, the passband and stopband errors of the designed highpass digital filter are shown 

in Fig. 4.13 for MOCSA and Fig. 4.14 for NSGA-III, and the convergence curve of MOCSA is 

plotted in Fig. 4.15. 

 Table 4.20 Coefficients of highpass digital filter with group delay in passband at 12 

ℎ(𝑛) MOCSA NSGA-III 

ℎ(0) -0.001675215493034 -0.001640423119196 

ℎ(1) 0.030567589936448 0.028789441239145 

ℎ(2) -0.003153981941076 -0.000789734235811 

ℎ(3) -0.030162804995681 -0.027624301522506 
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ℎ(4) -0.006257470530900 0.002006791503828 

ℎ(5) 0.030944299596606 0.036128094215588 

ℎ(6) -0.004151306791061 0.000560872431347 

ℎ(7) -0.057759642352401 -0.061827799261375 

ℎ(8) 0.002617052520662 0.001339285695101 

ℎ(9) 0.105260561729361 0.105424661593389 

ℎ(10) 0.001196132567202 0.009174624916789 

ℎ(11) -0.317380601702831 -0.313761957206108 

ℎ(12) 0.500190225288344 0.499678839468190 

ℎ(13) -0.315927004908013 -0.325910631942135 

ℎ(14) 0.001091904753222 -0.006185448907321 

ℎ(15) 0.102234681463712 0.097639432621958 

ℎ(16) -0.000078420494503 0.002660561652607 

ℎ(17) -0.055080731938677 -0.056658642671228 

ℎ(18) 0.005484037504044 0.004156502808630 

ℎ(19) 0.044078607965804 0.037875179446759 

ℎ(20) 0.005210137139053 0.004286336782926 

ℎ(21) -0.023189195584276 -0.023592011437525 

ℎ(22) -0.000230886009131 0.003496488274169 

ℎ(23) 0.031338307159961 0.031595554412682 

ℎ(24) -0.001580482608669 -0.000695121954894 

 

Table 4.21 Magnitude error of highpass digital filter with group delay in passband at 12 

Algorithm Peak (Stopband) Peak (Passband) 

MOCSA 0.046374812745406 0.046440998607253 

NSGA-III 0.048021545201132 0.047833401391220 

 

Table 4.22 Group delay error of highpass digital filter with group delay in passband at 12 

Algorithm Peak (Passband) 

MOCSA 0.000027846540165 

NSGA-III 0.001940760275788 
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Table 4.23 Computational record of highpass digital filter with group delay in passband at 12 

Algorithm CPU Seconds Iteration 

MOCSA 2079.008120 2618404 

NSGA-III 586.736733 13099 

 

 

Fig. 4.13 Magnitude response, impulse response, the passband and stopband errors of designed 

G-FIR highpass digital filter with group delay in passband at 12 obtained by MOCSA 
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Fig. 4.14 Magnitude response, impulse response, the passband and stopband errors of designed 

G-FIR highpass digital filter with group delay in passband at 12 obtained by NSGA-III 

 

Fig. 4.15 Convergence curve of designed G-FIR highpass digital filter with group delay in 

passband at 12 obtained by MOCSA 
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4.4.2.3 Highpass Digital Filter with Group Delay in Passband at 14 

The filter coefficients of obtained by MOCSA and NSGA-III are listed in Table 4.24. Design 

results with respect to magnitude error are listed in Table 4.25 while those with respect to group 

delay error are listed in Table 4.26. The computational record in terms of CPU seconds and number 

of iterations for reaching convergence are listed in Table 4.27. Plots of the magnitude response, 

impulse response, the passband and stopband errors of the designed highpass digital filter are shown 

in Fig. 4.16 for MOCSA and Fig. 4.17 for NSGA-III, and the convergence curve of MOCSA is 

plotted in Fig. 4.18. 

 Table 4.24 Coefficients of highpass digital filter with group delay in passband at 14 

ℎ(𝑛) MOCSA NSGA-III 

ℎ(0) 0.000189715927521 -0.002811997041032 

ℎ(1) 0.001669207038640 -0.004663812978790 

ℎ(2) 0.005499364469888 -0.000038354330207 

ℎ(3) 0.010958592132011 0.012616891481055 

ℎ(4) 0.009600026546689 0.012815602164086 

ℎ(5) -0.039965497845766 -0.028304050506209 

ℎ(6) 0.003180190777767 0.004108440286823 

ℎ(7) 0.035566875442294 0.038789665212909 

ℎ(8) -0.001668832776520 -0.002405158505638 

ℎ(9) -0.057556120598075 -0.057228569669737 

ℎ(10) 0.001033324063391 0.000144987203125 

ℎ(11) 0.102871631399112 0.101201928025161 

ℎ(12) -0.000334915169884 0.006524071206849 

ℎ(13) -0.317446706150182 -0.319246223329057 

ℎ(14) 0.500180309880159 0.510111625886739 

ℎ(15) -0.316539768231298 -0.318657631144643 

ℎ(16) -0.000302558623053 0.005331318109345 

ℎ(17) 0.100837486759302 0.100990323208555 

ℎ(18) -0.001821545517062 -0.000643377400120 

ℎ(19) -0.058883535274388 -0.057776779959080 

ℎ(20) -0.001423861277780 0.002538538339181 

ℎ(21) 0.033847584725322 0.045254533956708 

ℎ(22) -0.004419496563109 0.000289917257516 

ℎ(23) -0.053378064545261 -0.046716715795231 

ℎ(24) -0.005100997621485 -0.009417005404971 
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Table 4.25 Magnitude error of highpass digital filter with group delay in passband at 14 

Algorithm Peak (Stopband) Peak (Passband) 

MOCSA 0.062898584873995 0.062725252692288 

NSGA-III 0.063431327828246 0.063420253190410 

 

Table 4.26 Group delay error of highpass digital filter with group delay in passband at 14 

Algorithm Peak (Passband) 

MOCSA 0.000458487903323 

NSGA-III 0.012003326436762 

 

Table 4.27 Computational record of highpass digital filter with group delay in passband at 14  

Algorithm CPU Seconds Iteration 

MOCSA 2808.501259 3511290 

NSGA-III 297.833476 7220 

 

 

Fig. 4.16 Magnitude response, impulse response, the passband and stopband errors of designed 

G-FIR highpass digital filter with group delay in passband at 14 obtained by MOCSA 



 

63 
 

 

Fig. 4.17 Magnitude response, impulse response, the passband and stopband errors of designed 

G-FIR highpass digital filter with group delay in passband at 14 obtained by NSGA-III 

 

Fig. 4.18 Convergence curve of designed G-FIR highpass digital filter with group delay in 

passband at 14 obtained by MOCSA 
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4.4.3 24th-order Bandpass Digital Filters 

4.4.3.1 Bandpass Digital Filter with Group Delay in Passband at 10 

The filter coefficients of obtained by MOCSA and NSGA-III are listed in Table 4.28. Design 

results with respect to magnitude error are listed in Table 4.29 while those with respect to group 

delay error are listed in Table 4.30. The computational record in terms of CPU seconds and number 

of iterations for reaching convergence are listed in Table 4.31. Plots of the magnitude response, 

impulse response, the passband and stopband errors of the designed bandpass digital filter are 

shown in Fig. 4.19 for MOCSA and Fig. 4.20 for NSGA-III, and the convergence curve of MOCSA 

is plotted in Fig. 4.21. 

 Table 4.28 Coefficients of bandpass digital filter with group delay in passband at 10 

ℎ(𝑛) MOCSA NSGA-III 

ℎ(0) 0.005430986389361 0.015428932388912 

ℎ(1) 0.054952478108575 -0.022935152226301 

ℎ(2) -0.012815431447323 -0.076844139219472 

ℎ(3) -0.055880960011280 0.009335195995019 

ℎ(4) 0.002491525400599 0.009031209138254 

ℎ(5) -0.045430651560580 -0.001725745749316 

ℎ(6) -0.014728098727676 0.122564103296319 

ℎ(7) 0.204568644576432 0.014373971552246 

ℎ(8) 0.083307096089843 -0.275101194699403 

ℎ(9) -0.301674005429034 -0.082325312334294 

ℎ(10) -0.153914293976109 0.331929826006284 

ℎ(11) 0.286589801506166 0.127808117363482 

ℎ(12) 0.164946213405713 -0.241727746408794 

ℎ(13) -0.157127644492924 -0.109674944472053 

ℎ(14) -0.078772547017400 0.100205788917136 

ℎ(15) 0.029456683176514 0.030459383566442 

ℎ(16) -0.012720664525222 0.010306905206861 

ℎ(17) 0.028131361844731 0.040924800018907 

ℎ(18) 0.046276693673373 -0.038103742320182 

ℎ(19) -0.021498029938007 -0.042876879513592 

ℎ(20) -0.044795836031356 0.009320452748809 

ℎ(21) 0.002156244151515 0.013939794691290 

ℎ(22) -0.016235989790960 -0.004300401378061 
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ℎ(23) 0.001012831000462 0.006997421717237 

ℎ(24) -0.003592261197915 -0.002295269823873 

 

Table 4.29 Magnitude error of bandpass digital filter with group delay in passband at 10 

Algorithm Peak (Stopband1) Peak (Passband) Peak (Stopband2) 

MOCSA 0.061347203633322 0.061600394139233 0.061511150886210 

NSGA-III 0.062560023935884 0.062691098289941 0.061420797889531 

 

Table 4.30 Group delay error of bandpass digital filter with group Delay in passband at 10 

Algorithm Peak (Passband) 

MOCSA 0.000697242747409 

NSGA-III 0.014194201457874 

 

Table 4.31 Computational record of bandpass digital filter with group delay in passband at 10 

Algorithm CPU Seconds Iteration 

MOCSA 6769.103006 9559146 

NSGA-III 278.407725 6964 
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Fig. 4.19 Magnitude response, impulse response, the passband and stopband errors of designed 

G-FIR bandpass digital filter with group delay in passband at 10 obtained by MOCSA 

 

Fig. 4.20 Magnitude response, impulse response, the passband and stopband errors of designed 

G-FIR bandpass digital filter with group delay in passband at 10 obtained by NSGA-III 
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Fig. 4.21 Convergence curve of designed G-FIR bandpass digital filter with group delay in 

passband at 10 obtained by MOCSA 

4.4.3.2 Bandpass Digital Filter with Group Delay in Passband at 12 

The filter coefficients of obtained by MOCSA and NSGA-III are listed in Table 4.32. Design 

results with respect to magnitude error are listed in Table 4.33 while those with respect to group 

delay error are listed in Table 4.34. The computational record in terms of CPU seconds and number 

of iterations for reaching convergence are listed in Table 4.35. Plots of the magnitude response, 

impulse response, the passband and stopband errors of the designed bandpass digital filter are 

shown in Fig. 4.22 for MOCSA and Fig. 4.23 for NSGA-III, and the convergence curve of MOCSA 

is plotted in Fig. 4.24. 

 Table 4.32 Coefficients of bandpass digital filter with group delay in passband at 12 

ℎ(𝑛) MOCSA NSGA-III 

ℎ(0) -0.001191522217179 0.003048141506459 

ℎ(1) 0.004598371465084 0.003694727434776 

ℎ(2) -0.005612567970243 0.009670519843770 

ℎ(3) 0.069080104983046 -0.055520215034369 
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ℎ(4) 0.016192108603444 -0.010231842605478 

ℎ(5) -0.037135281545443 0.046954401964552 

ℎ(6) -0.003816079934281 0.012168872290850 

ℎ(7) -0.033196033228897 0.033902953514733 

ℎ(8) -0.062685498028068 0.066565263552653 

ℎ(9) 0.163396445194271 -0.165885511551674 

ℎ(10) 0.189157311598212 -0.199642483641960 

ℎ(11) -0.227927076818774 0.222525305976030 

ℎ(12) -0.271305744214396 0.264638528317406 

ℎ(13) 0.185688544724823 -0.183874279706602 

ℎ(14) 0.240091198786329 -0.244940680353214 

ℎ(15) -0.090133388592772 0.083354677069625 

ℎ(16) -0.116037767378840 0.113111448250574 

ℎ(17) 0.011057754035267 -0.012799653148681 

ℎ(18) -0.015159262222159 0.009370466456723 

ℎ(19) 0.005666796885008 -0.003239653434532 

ℎ(20) 0.069134692488655 -0.068845592912893 

ℎ(21) 0.001053440013482 0.000879273693527 

ℎ(22) -0.026020649635451 0.029457978491176 

ℎ(23) -0.000142875101177 0.002338417884990 

ℎ(24) -0.003927234508290 0.003186750469736 

 

Table 4.33 Magnitude error of bandpass digital filter with group delay in passband at 12 

Algorithm Peak (Stopband1) Peak (Passband) Peak (Stopband2) 

MOCSA 0.061075373029417 0.061092632312159 0.060882060538963 

NSGA-III 0.064950122680827 0.065009803502285 0.064084142414154 

 

Table 4.34 Group delay error of bandpass digital filter with group delay in passband at 12 

Algorithm Peak (Passband) 

MOCSA 0.000078604003798 

NSGA-III 0.003807656883316 
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Table 4.35 Computational record of bandpass digital filter with group delay in passband at 12  

Algorithm CPU Seconds Iteration 

MOCSA 6082.247889 7424803 

NSGA-III 219.122628 4970 

 

 

Fig. 4.22 Magnitude response, impulse response, the passband and stopband errors of designed 

G-FIR bandpass digital filter with group delay in passband at 12 obtained by MOCSA 
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Fig. 4.23 Magnitude response, impulse response, the passband and stopband errors of designed 

G-FIR bandpass digital filter with group delay in passband at 12 obtained by NSGA-III 

 

Fig. 4.24 Convergence curve of designed G-FIR bandpass digital filter with group delay in 

passband at 12 obtained by MOCSA 
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4.4.3.3 Bandpass Digital Filter with Group Delay in Passband at 14 

The filter coefficients of obtained by MOCSA and NSGA-III are listed in Table 4.36. Design 

results with respect to magnitude error are listed in Table 4.37 while those with respect to group 

delay error are listed in Table 4.38. The computational record in terms of CPU seconds and number 

of iterations for reaching convergence are listed in Table 4.39. Plots of the magnitude response, 

impulse response, the passband and stopband errors of the designed bandpass digital filter are 

shown in Fig. 4.25 for MOCSA and Fig. 4.26 for NSGA-III, and the convergence curve of MOCSA 

is plotted in Fig. 4.27. 

 Table 4.36 Coefficients of bandpass digital filter with group delay in passband at 14 

ℎ(𝑛) MOCSA NSGA-III 

ℎ(0) -0.000158409309125 0.002517525690715 

ℎ(1) 0.000348117438532 0.007987779790538 

ℎ(2) -0.000836370771046 0.006655256063427 

ℎ(3) 0.005662886311499 0.018583905705376 

ℎ(4) -0.004189957226333 0.021570973713986 

ℎ(5) -0.051407704112385 -0.046034241741658 

ℎ(6) -0.002596945210150 -0.016116544127225 

ℎ(7) 0.058556983789684 0.040725089610432 

ℎ(8) 0.005938654661087 0.014685464534256 

ℎ(9) 0.047413121603937 0.033672573884315 

ℎ(10) 0.050233590169293 0.083943066459743 

ℎ(11) -0.188390876086424 -0.131224468729075 

ℎ(12) -0.124655209211334 -0.231631888604084 

ℎ(13) 0.271593472762251 0.176368041149871 

ℎ(14) 0.219322429154485 0.296888158356687 

ℎ(15) -0.243751088508750 -0.125734103869017 

ℎ(16) -0.206256973414474 -0.269423074812500 

ℎ(17) 0.132109787351743 0.053049463881267 

ℎ(18) 0.093014847013442 0.127020337777304 

ℎ(19) -0.016577613863987 -0.000757823734205 

ℎ(20) 0.002836959499248 0.016622075437980 

ℎ(21) -0.014361352264973 0.006523497156257 

ℎ(22) -0.073272594365190 -0.074275961850852 

ℎ(23) 0.012789535852436 -0.011836120482140 

ℎ(24) 0.022027223026918 0.020102965944567 
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Table 4.37 Magnitude error of bandpass digital filter with group delay in passband at 14 

Algorithm Peak (Stopband1) Peak (Passband) Peak (Stopband2) 

MOCSA 0.064549827064764 0.064826771139864 0.064679591909741 

NSGA-III 0.064395322900485 0.065337185408170 0.061381925336354 

 

Table 4.38 Group delay error of bandpass digital filter with group delay in passband at 14 

Algorithm Peak (Passband) 

MOCSA 0.000008217647183 

NSGA-III 0.010551507581969 

 

Table 4.39 Computational record of bandpass digital filter with group delay in passband at 14 

Algorithm CPU Seconds Iteration 

MOCSA 4407.647963 6403848 

NSGA-III 191.905443 4491 

 

 

Fig. 4.25 Magnitude response, impulse response, the passband and stopband errors of designed 

G-FIR bandpass digital filter with group delay in passband at 14 obtained by MOCSA 
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Fig. 4.26 Magnitude response, impulse response, the passband and stopband errors of designed 

G-FIR bandpass digital filter with group delay in passband at 14 obtained by NSGA-III 

 

Fig. 4.27 Convergence curve of designed G-FIR bandpass digital filter with group delay in 

passband at 14 obtained by MOCSA 
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4.4.4 24th-order Bandstop Digital Filters 

4.4.4.1 Bandstop Digital Filter with Group Delay in Passband at 10 

The filter coefficients of obtained by MOCSA and NSGA-III are listed in Table 4.40. Design 

results with respect to magnitude error are listed in Table 4.41 while those with respect to group 

delay error are listed in Table 4.42. The computational record in terms of CPU seconds and number 

of iterations for reaching convergence are listed in Table 4.43. Plots of the magnitude response, 

impulse response, the passband and stopband errors of the designed bandstop digital filter are 

shown in Fig. 4.28 for MOCSA and Fig. 4.29 for NSGA-III, and the convergence curve of MOCSA 

is plotted in Fig. 4.30. 

 Table 4.40 Coefficients of bandstop digital filter with group delay in passband at 10 

ℎ(𝑛) MOCSA NSGA-III 

ℎ(0) -0.016271549385357 -0.020891759134752 

ℎ(1) -0.044191846217016 -0.035477613233186 

ℎ(2) 0.043218082019522 0.045409950961097 

ℎ(3) 0.061899409244757 0.066796459254471 

ℎ(4) -0.024809584991104 -0.023197149486721 

ℎ(5) -0.034223584964684 -0.040516019189074 

ℎ(6) 0.003295954738433 0.010395978539926 

ℎ(7) -0.072788997928132 -0.076438073724879 

ℎ(8) 0.035313957311492 0.041839816494008 

ℎ(9) 0.588573037871458 0.587726752478754 

ℎ(10) -0.051247116947269 -0.050086769179649 

ℎ(11) 0.588185886275092 0.588043756995448 

ℎ(12) 0.035247287699029 0.042181129053808 

ℎ(13) -0.072453372314697 -0.076627542969019 

ℎ(14) 0.003408699160539 0.009278532554795 

ℎ(15) -0.034470988920656 -0.040492736552718 

ℎ(16) -0.024931937181908 -0.022148847857980 

ℎ(17) 0.062052484982118 0.066934431047521 

ℎ(18) 0.043319253345135 0.044392858866968 

ℎ(19) -0.044268952822797 -0.035619743430210 

ℎ(20) -0.016337443405922 -0.020256613294678 

ℎ(21) 0.000029042311447 0.000143832099586 

ℎ(22) 0.000032479284010 -0.000517808880829 
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ℎ(23) -0.000007654920649 -0.000105274721732 

ℎ(24) -0.000010182566013 0.000220176680256 

 

Table 4.41 Magnitude error of bandstop digital filter with group delay in passband at 10 

Algorithm Peak (Passband1) Peak (Stopband) Peak (Passband2) 

MOCSA 0.060515728320733 0.060603023881225 0.060604469246464 

NSGA-III 0.066005001688474 0.066097315040413 0.065230709820054 

 

Table 4.42 Group delay error of bandstop digital filter with group delay in passband at 10 

Algorithm Peak (Passband) 

MOCSA 0.000041857649093 

NSGA-III 0.003003702849117 

 

Table 4.43 Computational record of bandstop digital filter with group delay in passband at 10  

Algorithm CPU Seconds Iteration 

MOCSA 433.108879 501553 

NSGA-III 463.870783 500001 
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Fig. 4.28 Magnitude response, impulse response, the passband and stopband errors of designed 

G-FIR bandstop digital filter with group delay in passband at 10 obtained by MOCSA 

 

Fig. 4.29 Magnitude response, impulse response, the passband and stopband errors of designed 

G-FIR bandstop digital filter with group delay in passband at 10 obtained by NSGA-III 
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Fig. 4.30 Convergence curve of designed G-FIR bandstop digital filter with group delay in 

passband at 10 obtained by MOCSA 

4.4.4.2 Bandstop Digital Filter with Group Delay in Passband at 12 

The filter coefficients of obtained by MOCSA and NSGA-III are listed in Table 4.44. Design 

results with respect to magnitude error are listed in Table 4.45 while those with respect to group 

delay error are listed in Table 4.46. The computational record in terms of CPU seconds and number 

of iterations for reaching convergence are listed in Table 4.47. Plots of the magnitude response, 

impulse response, the passband and stopband errors of the designed bandstop digital filter are 

shown in Fig. 4.31 for MOCSA and Fig. 4.32 for NSGA-III, and the convergence curve of MOCSA 

is plotted in Fig. 4.33. 

 Table 4.44 Coefficients of bandstop digital filter with group delay in passband at 12 

ℎ(𝑛) MOCSA NSGA-III 

ℎ(0) 0.016265535979122 -0.005812740708079 

ℎ(1) -0.033339532643360 -0.001034575982898 

ℎ(2) -0.023377857044211 -0.021855928360500 

ℎ(3) 0.007037713716130 -0.045151246920947 

ℎ(4) -0.003257233431879 0.039052489436224 

ℎ(5) 0.015763472823043 0.059450970786417 
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ℎ(6) 0.059962584288025 -0.030901174110232 

ℎ(7) -0.041258776391504 -0.039038627031482 

ℎ(8) -0.145589164010783 -0.000663654945662 

ℎ(9) 0.044434826701989 -0.076975751560382 

ℎ(10) 0.223947815053710 0.036369369064707 

ℎ(11) -0.019135381416771 0.582045773050688 

ℎ(12) 0.744099736927598 -0.047870956263024 

ℎ(13) -0.019130806211451 0.581810839499140 

ℎ(14) 0.223948460410035 0.036319485836169 

ℎ(15) 0.044430928129469 -0.076769765268469 

ℎ(16) -0.145590386211484 -0.000611270206111 

ℎ(17) -0.041255898236592 -0.039209994637426 

ℎ(18) 0.059963795480992 -0.030935335698599 

ℎ(19) 0.015761814946817 0.059563171947518 

ℎ(20) -0.003258206770185 0.039083016536470 

ℎ(21) 0.007038533877668 -0.045203122544525 

ℎ(22) -0.023377306845091 -0.021873215240356 

ℎ(23) -0.033339805662092 -0.001010326558913 

ℎ(24) 0.016265343795077 -0.005804285217044 

 

Table 4.45 Magnitude error of bandstop digital filter with group delay in passband at 12 

Algorithm Peak (Passband1) Peak (Stopband) Peak (Passband2) 

MOCSA 0.053306541094266 0.053028576964483 0.053028890630576 

NSGA-III 0.057225380695507 0.057280636850760 0.057000256581570 

 

Table 4.46 Group delay error of bandstop digital filter with group delay in passband at 12 

Algorithm Peak (Passband) 

MOCSA 0.000001568313788 

NSGA-III 0.000200509782880 
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Table 4.47 Computational record of bandstop digital filter with group delay in passband at 12 

Algorithm CPU Seconds Iteration 

MOCSA 674.145400 797335 

NSGA-III 399.544450 1019667 

 

 

Fig. 4.31 Magnitude response, impulse response, the passband and stopband errors of designed 

G-FIR bandstop digital filter with group delay in passband at 12 obtained by MOCSA 
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Fig. 4.32 Magnitude response, impulse response, the passband and stopband errors of designed 

G-FIR bandstop digital filter with group delay in passband at 12 obtained by NSGA-III 

 

Fig. 4.33 Convergence curve of designed G-FIR bandstop digital filter with group delay in 

passband at 12 obtained by MOCSA 
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4.4.4.3 Bandstop Digital Filter with Group Delay in Passband at 14 

The filter coefficients of obtained by MOCSA and NSGA-III are listed in Table 4.48. Design 

results with respect to magnitude error are listed in Table 4.49 while those with respect to group 

delay error are listed in Table 4.50. The computational record in terms of CPU seconds and number 

of iterations for reaching convergence are listed in Table 4.51. Plots of the magnitude response, 

impulse response, the passband and stopband errors of the designed bandstop digital filter are 

shown in Fig. 4.34 for MOCSA and Fig. 4.35 for NSGA-III, and the convergence curve of MOCSA 

is plotted in Fig. 4.36. 

 Table 4.48 Coefficients of bandstop digital filter with group delay in passband at 14 

ℎ(𝑛) MOCSA NSGA-III 

ℎ(0) 0.000000988620284 -0.000004366673167 

ℎ(1) 0.000000721967853 -0.000004874317294 

ℎ(2) -0.000002984297207 0.000014049071577 

ℎ(3) -0.000002693646043 0.000017529101020 

ℎ(4) -0.022115813827898 -0.016595845190247 

ℎ(5) -0.041499564125230 -0.040567474793168 

ℎ(6) 0.035345901337625 0.040942683054442 

ℎ(7) 0.069891482592116 0.060495481052448 

ℎ(8) -0.032194074387594 -0.034290101426822 

ℎ(9) -0.029748319614457 -0.037528383161795 

ℎ(10) -0.005914109023534 -0.002768034113400 

ℎ(11) -0.075833408564789 -0.069140345772560 

ℎ(12) 0.030781729172188 0.036444745407786 

ℎ(13) 0.587094116939122 0.598006268339232 

ℎ(14) -0.050080069900533 -0.047388249848122 

ℎ(15) 0.587060297909669 0.598206165855378 

ℎ(16) 0.030775581452847 0.036471816108465 

ℎ(17) -0.075803903602138 -0.069310594172484 

ℎ(18) -0.005904161097417 -0.002817098154935 

ℎ(19) -0.029770301332375 -0.037400583905132 

ℎ(20) -0.032204725958382 -0.034236330787208 

ℎ(21) 0.069905116110613 0.060413985042134 

ℎ(22) 0.035354927866158 0.040898331330884 

ℎ(23) -0.041506551273069 -0.040525140294651 

ℎ(24) -0.022121740046043 -0.016566571177104 
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Table 4.49 Magnitude error of bandstop digital filter with group delay in passband at 14 

Algorithm Peak (Passband1) Peak (Stopband) Peak (Passband2) 

MOCSA 0.062527047844484 0.062446888080269 0.062298980092027 

NSGA-III 0.065215870273564 0.064847515014651 0.064917883976956 

 

Table 4.50 Group delay error of bandstop digital filter with group delay in passband at 14 

Algorithm Peak (Passband) 

MOCSA 0.000003997037275 

NSGA-III 0.000020395849166 

 

Table 4.51 Computational record of bandstop digital filter with group delay in passband at 14 

Algorithm CPU Seconds Iteration 

MOCSA 3069.845905 2856016 

NSGA-III 595.107737 8564 

 

 

Fig. 4.34 Magnitude response, impulse response, the passband and stopband errors of designed 

G-FIR bandstop digital filter with group delay in passband at 14 obtained by MOCSA 
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Fig. 4.35 Magnitude response, impulse response, the passband and stopband errors of designed 

G-FIR bandstop digital filter with group delay in passband at 14 obtained by NSGA-III 

 

Fig. 4.36 Convergence curve of designed G-FIR bandstop digital filter with group delay in 

passband at 14 obtained by MOCSA 
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4.5 Conclusion 

This chapter has presented the design of general FIR digital filters using multiobjective 

Cuckoo Search Algorithm. 24th-order lowpass, highpass, bandpass and bandstop digital filters with 

group delay in passband at 10, 12 or 14 are chosen for the design and their results are obtained. The 

design results have shown that the peak errors of both magnitude response and group delay in 

passband obtained by MOCSA are mostly smaller than those obtained by NSGA-III. This denotes 

that the performance of MOCSA compares favorably with that of NSGA-III certifying the validity 

and practicability of MOCSA. 

MOCSA incorporates a method of Euclidean distance rather than Pareto Front used in NSGA-

III. The Pareto Front mainly collects a set of non-dominated solutions but without further objective-

based optimal equilibration such that it is difficult to determine which non-dominated solution is 

the most feasible one that satisfies all the objective functions balancedly at the optimal equilibrating 

level. It requires more comparing standard or objective-configuration which may increase 

uncertainty and inaccuracy of subsequent operations. 

 Nevertheless, the method of Euclidean distance is capable of combining objective-based 

equilibrating operations and the searching for the optimal solution into one simple step. An 

Euclidean space is formulated where each objective function represents one of its dimension. It 

combines separate objective functions into an abstract mathematical spatial model. A changing 

current ideal spatial point is located according to the best values of all the objective functions that 

has ever obtained so far, which has become an ideal goal for the optimized population to pursue. A 

smaller Euclidean distance between the current ideal spatial point and another Euclidean spatial 

point resulting from a candidate solution implies this solution is more qualified as it obtains a set 

of objective outputs closer to the ideal ones. During the calculation of Euclidean distance, each 

objective function has been equilibrated to a coordinative level due to the equal weight for its 

corresponding dimension. Meanwhile, the best solution can be easily determined after a simple 

comparison of distinct Euclidean distances. Thus, MOCSA using a method of Euclidean distance 

shall be a more effective and persuasive technique than NSGA-III using Pareto Front. Design 

results of general FIR digital filters obtained by MOCSA compare favorably with those of NSGA-

III. 
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CHAPTER 5 IIR Digital Filter Design Using Constrained Multiobjective  

Cuckoo Search Algorithm 

5.1 Introduction 

Chapter 4 presents a successful design of general FIR digital filters using multiobjective 

Cuckoo Search Algorithm. In addition, another possible application for MOCSA may be linear-

phase IIR digital filter design. So far several researches on IIR digital filter design using 

multiobjective algorithms have been proposed. Yu Wang introduced a framework to apply different 

multiobjective evolutionary algorithms in [21], then an early multiobjective algorithm, NSGA-II, 

was implemented on a lower-order IIR digital filter design in [22] and the results were persuasive. 

This arises an interest on whether MOCSA can be applied on the same practical application. 

Compared to FIR filter design, IIR filter design requires several limitations to obtain a 

reasonable result. These limitations include stability constraints and magnitude control and so on. 

However, the previous MOCSA only concerns about satisfying the given objective functions. If 

any specific condition is required, MOCSA may not be able to take account of as it is operated 

without limitations. In such case, it is necessary to derive some suitable improvement for MOCSA 

in adapt to such multiobjective optimization problems with specific constraints. 

In this chapter, an improving version of MOCSA called constrained multiobjective Cuckoo 

Search Algorithm is presented for IIR digital filter design. This improving approach adopts a 

constrained Euclidean distance to incorporate other constraints into the evaluation of the quality of 

a solution. As an illustration, several examples of cascade-form IIR digital filter design are 

proposed and their results are compared to those of the state-of-the-art design in [23]. 

5.2 Constrained Multiobjective Cuckoo Search Algorithm 

Constrained multiobjective Cuckoo Search Algorithm follows the steps of the original 

MOCSA described in sections 3.1 and 4.2. Suppose an minimization problem is further subjected 

to 𝑄 inequality constraints, which are expressed in terms of 

g𝑞(𝐱) ≤ 0      for 𝑞 = 1 to 𝑄                                                   (5.1) 

Meanwhile, for any inequality constraint in terms of s(𝐱) ≥ 0, it can be converted into an 

expression of −s(𝐱) ≤ 0 such that 

g(𝐱) = −s(𝐱) ≤ 0                                                        (5.2) 
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which means any arbitrary inequality constraint can be expressed in terms of (5.1). 

To evaluate whether all the inequality constraints are satisfied, a penalty factor 𝜂 is defined by 

𝜂 = ∑ [𝜑 (g𝑞(𝐱))]
2

𝑄
𝑞=1                                                      (5.3) 

where 𝜑(x) is a sectional-continuous function defined as 

𝜑(x) = {
0    x ≤ 0
x    x > 0

                                                             (5.4) 

Then the penalty factor 𝜂 is merged with the original Euclidean distance and a constrained 

Euclidean distance is formulated by 

  𝑑𝑐𝑜𝑛𝑠(𝐳, 𝐱)=√∑ [𝑓𝑚(𝐱) − 𝑧𝑚
min]

2𝑀
𝑚=1 + 𝜂                                         (5.5) 

where (5.5) can be expressed more precisely that 

𝑑𝑐𝑜𝑛𝑠(𝐳, 𝐱)=√∑ [𝑓𝑚(𝐱) − 𝑧𝑚
min]

2𝑀
𝑚=1 + ∑ [𝜑 (g𝑞(𝐱))]

2
𝑄
𝑞=1                        (5.6) 

If any one or more inequality constraints are not satisfied, the penalty factor 𝜂  will be a 

positive value due to a positive quadratic sum, which will enlarge the Euclidean distance. When 

compared with other potential solutions, one with a larger constrained Euclidean distance will be 

less capable to be selected. Otherwise, if all the inequality constraints are satisfied, the penalty 

factor 𝜂 will become zero such that these satisfied constraints will no longer have an effect on the 

Euclidean distance. 

By the use of penalty factor and constrained Euclidean distance, inequality constraints are now 

taken into consideration that those solutions which satisfy the constraints would have a higher 

chance to be chosen. 

5.3 Design of IIR Digital Filters 

For convenience, suppose that both the denominator and the numerator of a transfer function 

are of the same order. The cascade-form transfer function of an even 𝑁th-order IIR digital filter 

can be [1]. 

𝐻(𝑧) = 𝑏0 ∏
1+𝑏1𝑛𝑧−1+𝑏2𝑛𝑧−2

1+𝑎1𝑛𝑧−1+𝑎2𝑛𝑧−2

𝑁/2
𝑛=1                                               (5.7) 
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where 𝑏1𝑛 and 𝑎1𝑛 for 𝑖 = 1,2 and 𝑛 = 1 to 𝑁/2 are real-valued coefficients, and 𝑏0 is a scaling 

constant. The corresponding coefficient vector 𝐜 consisting of (2𝑁 + 1) distinct coefficients can 

be formulated  by 

𝐜 = [𝑏11 𝑏21 𝑎11 𝑎21 ⋯ 𝑎1,𝑁/2 𝑎2,𝑁/2 𝑏0]𝑇                         (5.8) 

The stability condition of an IIR digital filter is 

{

−2 < 𝑎1𝑖 < 2
−1 < 𝑎2𝑖 < 1

𝑎2𝑖 > |𝑎1𝑖| − 1
   for 𝑖 = 1 to 𝑁/2                                        (5.9) 

The group delay 𝜏(𝑤) can be expressed as 

𝜏(𝑤) = −
𝜕𝜃(𝑤)

𝜕𝑤𝑇
                                                        (5.10) 

The relationship between the maximum passband ripple 𝑅𝑝 (in dB) and its corresponding peak 

error in passband magnitude response 𝛿𝑝 [24] is 

𝛿𝑝 = 𝒫(𝑅𝑝) =
10𝑅𝑝/20−1

10𝑅𝑝/20+1
                                                (5.11) 

Similarly, the relationship between the minimum stopband attenuation 𝐴𝑠  (in dB) and its 

corresponding peak error in stopband magnitude response 𝛿𝑠 [24] is 

  𝛿𝑠 = 𝒮(𝐴𝑠) = 10−𝐴𝑠/20                                                 (5.12) 

The max-error function of passband magnitude response 𝑒𝑚𝑎𝑔,𝑝(𝐜) can be calculated by 

𝑒𝑚𝑎𝑔,𝑝(𝐜) = max
𝐜

||𝐻(𝐜, 𝑤𝑖)| − 1|

for 𝑖 = 𝐼𝑤𝑝1
 to 𝐼𝑤𝑝2

;  𝑤𝑝1 ≤ 𝑤𝑖 ≤ 𝑤𝑝2

                                      (5.13) 

Then the objective function of passband magnitude response is derived as 

𝑓𝑚𝑎𝑔,𝑝(𝐜) = 𝜑(𝑒𝑚𝑎𝑔,𝑝(𝐜) − 𝒫(𝑅𝑝0))                                  (5.14) 

where 𝑅𝑝0  is the required maximum passband ripple; 𝜑(𝑥)  is the same sectional-continuous 

function defined in (5.4) that 

𝜑(x) = {
0    x ≤ 0
x    x > 0

                                                            (5.15) 
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Similarly, the max-error function of stopband magnitude response 𝑒𝑚𝑎𝑔,𝑠(𝐜) can be calculated 

by 

𝑒𝑚𝑎𝑔,𝑠(𝐜) = max
𝐜

|𝐻(𝐜, 𝑤𝑖)|

for 𝑖 = 𝐼𝑤𝑠1
 to 𝐼𝑤𝑠2

;  𝑤𝑠1 ≤ 𝑤𝑖 ≤ 𝑤𝑠2

                                      (5.16) 

Then the objective function of stopband magnitude response is derived as 

𝑓𝑚𝑎𝑔,𝑠(𝐜) = 𝜑 (𝑒𝑚𝑎𝑔,𝑠(𝐜) − 𝒮(𝐴𝑠0))                                    (5.17) 

where 𝐴𝑠0 is the required minimum stopband attenuation. 

The max-error function of the group delay response in passband 𝑒𝑔𝑑(𝐜) can be calculated by  

𝑒𝑔𝑑(𝐜) = max
𝐜

|𝜏(𝐜, 𝑤𝑖) − 𝜏𝑑|

for 𝑖 = 𝐼𝑤𝑝1
 to 𝐼𝑤𝑝2

;  𝑤𝑝1 ≤ 𝑤𝑖 ≤ 𝑤𝑝2
                                    (5.18) 

where 𝜏𝑑 is the prescribed group delay in passband. 

Then the objective function of passband group delay response is derived as 

𝑓𝑔𝑑(𝐜) = 𝜑(𝑒𝑔𝑑(𝐜) − 𝛿𝑔𝑑)                                             (5.19) 

where 𝛿𝑔𝑑 is the required passband group delay error. 

From (5.14), (5.17) and (5.19), these three objective functions can be summarized as positive 

excessive errors beyond error-based requirements with respect to maximum errors of magnitude 

response in passband and in stopband as well as that of group delay in passband. While any one of 

the error-based requirements is satisfied, the values of its corresponding objective function would 

be reduced to zero. 

To prevent the magnitude response in the transition band from exceeding its required 

maximum value, a magnitude limitation for transition band can be applied such that 

𝐻(𝐜, 𝑤𝑖) ≤ 1
for 𝑖 = 𝐼𝑤𝑡1

 to 𝐼𝑤𝑡2
; 𝑤𝑖 ∈ 𝑻

                                             (5.20) 

where 𝑻 is the transition band; 

Afterwards, (5.20) can be converted into an inequality constraint that 
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g(𝐜) = max

𝐜
(𝐻(𝐜, 𝑤𝑖) − 1) ≤ 0 

for 𝑖 = 𝐼𝑤𝑡1
 to 𝐼𝑤𝑡2

;  𝑤𝑖 ∈ 𝑻
                                        (5.21) 

The multiobjective optimization problem for the IIR digital filter design is searching for an 

optimal coefficient vector 𝐜  that minimizes the objective functions 𝑓𝑚𝑎𝑔,𝑝(𝐜) , 𝑓𝑚𝑎𝑔,𝑠(𝐜)  and 

𝑓𝑔𝑑(𝐜), subjected to g(𝐜) ≤ 0, simultaneously. 

5.4 Design Examples and Results 

In this section, three examples with respect to cascade-form IIR lowpass, highpass and 

bandpass digital filters are designed. Constrained MOCSA is applied to optimize several randomly 

initialized coefficient vectors 𝐜 described in (5.8) to reach an optimal solution which minimizes the 

objective functions 𝑓𝑚𝑎𝑔,𝑝(𝐜) ,  𝑓𝑚𝑎𝑔,𝑠(𝐜)  and 𝑓𝑔𝑑(𝐜)   subjected to g(𝐜) ≤ 0  simultaneously as 

shown in (5.14), (5.17), (5.19) and (5.21). 

In each iteration during the optimization process, all coefficient pairs (𝑎1,𝑛, 𝑎2,𝑛) for 𝑛 =

1 to 𝑁/2, derived from a coefficient vector 𝐜, is checked by the stability condition as shown in 

(5.9). If one coefficient exceeds any of its bounds, it will automatically be limited to a value that is 

a little deviated from that bound within the available range.  

Then the cascade-form IIR digital filter design is regarded as a 3-objective and 1-constrained  

minimization problem. The objective functions and inequality constraint are  

𝑓1(𝐜) = 𝑓𝑚𝑎𝑔,𝑝(𝐜)                                                      (5.22) 

𝑓2(𝐜) = 𝑓𝑚𝑎𝑔,𝑠(𝐜)                                                      (5.23) 

𝑓3(𝐜) =  𝑓𝑔𝑑(𝐜)                                                          (5.24) 

g1(𝐜) = g(𝐜) ≤ 0                                                       (5.25) 

To evaluate the performance of the obtained results, maximum passband ripple 𝑅𝑝  and 

minimum stopband attenuation 𝐴𝑠 are used for evaluating the magnitude response. Besides, the 

maximum group delay deviation 𝑄𝜏 is used for evaluating the obtained group delay in passband 

[23]. They can be expressed as 

𝑅𝑝 = 𝒫−1(𝛿𝑝) = 20 log
1+𝛿𝑝

1−𝛿𝑝
     dB                                         (5.26) 

𝐴𝑠 = 𝒮−1(𝛿𝑠) = −20 log 𝛿𝑠      dB                                         (5.27) 
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 𝑄𝜏 =
100(𝜏𝑚𝑎𝑥−𝜏𝑚𝑖𝑛)

2𝜏𝑎𝑣𝑒
                                                      (5.28) 

𝜏𝑎𝑣𝑒 =
𝜏𝑚𝑎𝑥+𝜏𝑚𝑖𝑛

2
                                                          (5.29) 

𝜏𝑚𝑎𝑥 = max
𝑤𝑝1≤𝑤𝑖≤𝑤𝑝2

𝜏(𝐜, 𝑤𝑖)                                              (5.30) 

𝜏𝑚𝑖𝑛 = min
𝑤𝑝1≤𝑤𝑖≤𝑤𝑝2

𝜏(𝐜, 𝑤𝑖)                                                (5.31) 

The parameters of constrained MOCSA are listed in Table 5.1. The adopted frequency grids 

for optimization and for evaluating the peak errors of magnitude response and group delay are 

shown in Table 5.2. The optimization procedure is terminated when the value of constrained 

Euclidean distance from the best solution reaches zero. All the optimization designs are carried out 

using an Intel(R) Core(TM) i7-5500U CPU, 2.40 GHz with 8GB RAM laptop computer. The 

design results obtained by constrained MOCSA is compared with the state-of-the-art methods in 

[23]. 

Table 5.1 Parameters of constrained MOCSA  

Symb

ol 
Description 

Example numer 

1 2 3 

𝑐𝑏𝑛
[𝑈]

 Upper bound of filter numerator 

coefficients 

10 10 10 

𝑐𝑏𝑛
[𝐿]

 Lower bound of filter numerator 

coefficients 

-10 -10 -10 

𝑐𝑎1𝑛

[𝑈]
 Upper bound of filter denominator 

coefficients 

2 2 2 

𝑐𝑎1𝑛

[𝐿]
 Lower bound of filter denominator 

coefficients 

-2 -2 -2 

𝑐𝑎2𝑛

[𝑈]
 Upper bound of filter denominator 

coefficients 

1 1 1 

𝑐𝑎2𝑛

[𝐿]
 Lower bound of filter denominator 

coefficients 

-1 -1 -1 

𝑃𝐶 Constrained MOCSA population size 25 25 25 

𝛽 Constrained MOCSA parameter 1.5 1.5 1.5 

𝛼 Constrained MOCSA parameter 0.01 0.01 0.01 

𝑝𝑎 Constrained MOCSA parameter 0.25 0.25 0.25 

𝑀 Number of objective functions 3 3 3 

𝑄 Number of inequality constraints 1 1 1 
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Table 5.2 Frequency grids for IIR digital filter design 

Optimization 𝐹𝑜 = [0: 0.001: 1] 

Peak error evaluation 𝐹𝑚𝑎𝑔 = [0: 0.001: 1] 

 

5.4.1 Example 1 

A 10th-order IIR lowpass digital filter is taken as Example 1. The filter specification is listed 

in Table 5.3. Performance requirements of the designed lowpass digital filter is listed in Table 5.4. 

Design results obtained by constrained MOCSA and the state-of-the-art methods in [23] are listed 

in Table 5.5. The computational record in terms of CPU seconds and number of iterations for 

reaching convergence are listed in Table 5.6. The filter coefficients are listed in Table 5.7. Plots of 

the magnitude response, group delay response in passband of the designed lowpass digital filter is 

plotted in Fig. 5.1, and its convergence curve is plotted in Fig. 5.2. 

Table 5.3 Filter specification of designed IIR lowpass digital filter in Example 1  

Parameters Values 

Filter order 𝑁 10 

Prescribed group delay in passband 𝜏𝑑 9.794 

Passband cutoff frequency 𝑤𝑝 0.4π 

Stopband cutoff frequency 𝑤𝑠 0.56π 

  

Table 5.4 Performance requirements of designed IIR lowpass filter in Example 1 

Parameters Values 

Maximum Passband Ripple 𝑅𝑝 (in dB) 0.2062 

Minimum Stopband Attenuation 𝐴𝑠 (in dB) 50 

Maximum Passband Group Delay Error 𝛿𝑔𝑑 0.0156 

 

  



 

92 
 

Table 5.5 Design results of the IIR lowpass digital filter in Example 1 

Item Constrained MOCSA Design 6A-2 [23] 

𝜏𝑎𝑣𝑒 9.794399577864011 9.794423016597630 

Peak Error (Passband Magnitude) 0.011868683611219 0.011870695865662 

Peak Error (Stopband Magnitude) 0.003161351898799 0.003162390333019 

Peak Error (Passband Group Delay) 0.015562525173081 0.015596828111102 

Max PB Ripple (in dB) 0.206189834044407 0.206224795410127 

Min SB Attenuation (in dB) 50.002543179060879 49.999690524800108 

Peak Group Delay Deviation 𝑄𝜏 0.158652772086015 0.159006931670001 

 

Table 5.6 Computational record of designed IIR lowpass digital filter in Example 1 

CPU Seconds Iteration 

19452.414738 27405467 

 

Table 5.7 Coefficients of designed IIR lowpass digital filter in Example 1 

Coefficients Constrained MOCSA Design 6A-2 [23] 

𝑏11 0.771233721582970 -3.12106567253477 

𝑏21 0.905174158410587 2.68530049526446 

𝑎11 -1.117788398030811 -0.11179975016549 

𝑎21 0.319475690574235 0.889727435575185 

𝑏12 -1.910332982693807 -1.90790617507112 

𝑏22 2.532382059156775 2.52337146187117 

𝑎12 -1.017729282085868 -0.274378028479404 

𝑎22 0.412836443260116 0.501262056741384 

𝑏13 1.607196259736642 1.5787090685769 

𝑏23 0.858482285837439 0.826473842394122 

𝑎13 -0.255912675115420 -0.54060105290066 

𝑎23 0.504065894027731 0.43671035480304 

𝑏14 0.413684290551802 0.414726315268322 

𝑏24 0.986487015072431 0.987612884176495 

𝑎14 -0.547622269093634 -1.01380963236256 

𝑎24 0.447122449946612 0.40886408235382 

𝑏15 -3.124584784917951 0.774046366958724 

𝑏25 2.691982199025045 0.901783828125454 
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𝑎15 -0.108542060596776 -1.10861455395675 

𝑎25 0.889736068014168 0.313607374418091 

𝑏0 0.007869661374600 0.008027005381132 

 

 

Fig. 5.1 Magnitude, group delay, magnitude errors and group delay errors of designed IIR 

lowpass digital filter in Example 1 obtained by constrained MOCSA 
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Fig. 5.2 Convergence curve of designed IIR lowpass digital filter in Example 1 obtained by 

constrained MOCSA 

5.4.2 Example 2 

A 14th-order IIR highpass digital filter is taken as Example 2. The filter specification is listed 

in Table 5.8. Performance requirements of the designed highpass digital filter is listed in Table 5.9. 

Design results obtained by constrained MOCSA and the state-of-the-art methods in [23] are listed 

in Table 5.10. The computational record in terms of CPU seconds and number of iterations for 

reaching convergence are listed in Table 5.11. The filter coefficients are listed in Table 5.12. Plots 

of the magnitude response, group delay response in passband of the designed highpass digital filter 

is plotted in Fig. 5.3, and its convergence curve is plotted in Fig. 5.4. 

Table 5.8 Filter specification of designed IIR highpass digital filter in Example 2 

Parameters Values 

Filter order 𝑁 14 

Prescribed group delay in passband 𝜏𝑑 18.026 

Passband cutoff frequency 𝑤𝑝 0.4π 

Stopband cutoff frequency 𝑤𝑠 0.6π 
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Table 5.9 Performance requirements of designed IIR highpass filter in Example 2 

Parameters Values 

Maximum Passband Ripple 𝑅𝑝 (in dB) 0.1 

Minimum Stopband Attenuation 𝐴𝑠 (in dB) 73.5 

Maximum Passband Group Delay Error 𝛿𝑔𝑑 0.0048 

 

Table 5.10 Design results of the IIR highpass digital filter in Example 2 

Item Constrained MOCSA Design 2A-2 [23] 

𝜏𝑎𝑣𝑒 18.024797027462974 18.026183112666885 

Peak Error (Passband Magnitude) 0.005755947749258 0.006790271254761 

Peak Error (Stopband Magnitude) 0.000205391481994 0.000211274606277 

Peak Error (Passband Group Delay) 0.004799635706881 0.004808198009012 

Max PB Ripple (in dB) 0.099992158112681 0.117960906457033 

Min SB Attenuation (in dB) 73.748351428970849 73.503053979105616 

Peak Group Delay Deviation 𝑄𝜏 0.026277766619671 0.026673411553407 

 

Table 5.11 Computational record of designed IIR highpass digital filter in Example 2 

CPU Seconds Iteration 

38942.358445 50095881 

 

Table 5.12 Coefficients of designed IIR highpass digital filter in Example 2 

Coefficients Constrained MOCSA Design 2A-2 [23] 

𝑏11 5.060640991321257 2.21835429452429 

𝑏21 -5.019206348621768 2.85636737945374 

𝑎11 1.109283021817947 0.259174061827646 

𝑎21 0.475407010949268 0.891680083261076 

𝑏12 1.306267431645476 2.98641105930971 

𝑏22 1.953911704067707 2.31138312475541 

𝑎12 0.930969293040202 0.45712541764001 

𝑎22 0.537619813502240 0.661037748241962 

𝑏13 -0.670738540599476 2.64495424169767 

𝑏23 1.015415666665229 2.39779691098628 
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𝑎13 1.280377872186614 0.649627461625722 

𝑎23 0.486812281485523 0.548167411024861 

𝑏14 2.263858421551114 1.35635467775126 

𝑏24 2.158583043342977 2.18981357486249 

𝑎14 1.376323244637665 0.904591938293396 

𝑎24 0.481391755065284 0.505675195044766 

𝑏15 -1.069402626965190 -1.82897334812934 

𝑏25 0.939896398151080 1.00853880306649 

𝑎15 0.477038373055354 1.09139256637325 

𝑎25 0.673183430442082 0.476325040367744 

𝑏16 0.907329377690136 -0.663358215601436 

𝑏26 -1.289172501422315 0.998194138629152 

𝑎16 0.660274773066742 1.27777133174557 

𝑎26 0.551753628134415 0.475588825228783 

𝑏17 2.982818383049278 -1.06177430783363 

𝑏27 2.445302046485580 0.990742722296121 

𝑎17 0.278163655075763 1.32115805301893 

𝑎27 0.890352066477236 0.441010398317931 

𝑏0 0.000139015122317 0.000425484520156998 
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Fig. 5.3 Magnitude, group delay, magnitude errors and group delay errors of designed IIR 

highpass digital filter in Example 2 obtained by constrained MOCSA 

 

Fig. 5.4 Convergence curve of designed IIR highpass digital filter in Example 2 obtained by 

constrained MOCSA 
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5.4.3 Example 3 

A 14th-order IIR bandpass digital filter is taken as Example 3. The filter specification is listed 

in Table 5.13. Performance requirements of the designed bandpass digital filter is listed in Table 

5.14. Design results obtained by constrained MOCSA and the state-of-the-art methods in [23] are 

listed in Table 5.15. The computational record in terms of CPU seconds and number of iterations 

for reaching convergence are listed in Table 5.16. The filter coefficients are listed in Table 5.17. 

Plots of the magnitude response, group delay response in passband of the designed bandpass digital 

filter is plotted in Fig. 5.5, and its convergence curve is plotted in Fig. 5.6. 

Table 5.13 Filter specification of designed IIR bandpass digital filter in Example 3 

Parameters Values 

Filter order 𝑁 14 

Prescribed group delay in passband 𝜏𝑑 25.542 

Stopband1 cutoff frequency 𝑤𝑠1 0.2π 

Passband lower cutoff frequency 𝑤𝑝1 0.3π 

Passband higher cutoff frequency 𝑤𝑝2 0.5π 

Stopband2 cutoff frequency 𝑤𝑠2 0.7π 

  

Table 5.14 Performance requirements of designed IIR bandpass filter in Example 3 

Parameters Values 

Maximum Passband Ripple 𝑅𝑝 (in dB) 1 

Minimum Stopband Attenuation 𝐴𝑠 (in dB) 41.37 

Maximum Passband Group Delay Error 𝛿𝑔𝑑 0.000323 

 

Table 5.15 Design results of the IIR bandpass digital filter in Example 3 

Item Constrained MOCSA Design 3A-2 [23] 

𝜏𝑎𝑣𝑒 25.542422471444112 25.542193451951263 

Peak Error (Passband Magnitude) 0.058398293388670 0.059398878295131 

Peak Error (Stopband Magnitude) 0.008544695889586 0.008544696148768 

Peak Error (Passband Group Delay) 0.000322896688463 0.000322978540844 

Max PB Ripple (in dB) 1.015637878550494 1.033080328785178 

Min SB Attenuation (in dB) 41.366067788941137 41.366067525475572 

Peak Group Delay Deviation 𝑄𝜏 0.001264111086021 0.001264490230447 
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Table 5.16 Computational record of designed IIR bandpass digital filter in Example 3 

CPU Seconds Iteration 

40036.549898 50463991 

 

Table 5.17 Coefficients of designed IIR bandpass digital filter in Example 3 

Coefficients Constrained MOCSA Design 3A-2 [23] 

𝑏11 -1.189945600692348 -2.59581077068361 

𝑏21 1.434683922568414 1.6149887104464 

𝑎11 -0.987788975162247 0.153429290303372 

𝑎21 0.737464115433211 0.799478405171291 

𝑏12 1.275283578445253 -1.65640776341346 

𝑏22 1.519471639766574 0.997535372573892 

𝑎12 -0.544357075412447 -0.009433276703322 

𝑎22 0.653531537053280 0.705563625173497 

𝑏13 -2.596205173320341 -1.19002732412408 

𝑏23 1.615988246270158 1.43432461034507 

𝑎13 -0.677654407368676 -1.16782796759126 

𝑎23 0.667832499113604 0.81379190616821 

𝑏14 -1.654703801518034 -0.61539101425476 

𝑏24 0.995533015368855 1.51414977842702 

𝑎14 -0.248341016919758 -0.988004732500114 

𝑎24 0.664962202659086 0.737470179439671 

𝑏15 -0.615218073330092 -0.170279773338488 

𝑏25 1.514065752725853 1.53212350370819 

𝑎15 0.153287665810598 -0.248490595991584 

𝑎25 0.799539136532461 0.665002560048283 

𝑏16 -0.170550311914843 1.27641783778647 

𝑏26 1.533172247905208 1.51984836792041 

𝑎16 -1.167663624736823 -0.677587050173636 

𝑎26 0.813874476772697 0.668071316673186 

𝑏17 1.968299743256314 1.96926336909199 

𝑏27 0.922949856470389 0.923231953452632 

𝑎17 -0.009812603421707 -0.544100922886046 

𝑎27 0.705642536197661 0.653350919814536 

𝑏0 0.002682393295273 0.002680119463696 
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Fig. 5.5 Magnitude, group delay, magnitude errors and group delay errors of designed IIR 

bandpass digital filter in Example 3 obtained by constrained MOCSA 

 

Fig. 5.6 Convergence curve of designed IIR bandpass digital filter in Example 3 obtained by 

constrained MOCSA 



 

101 
 

5.5 Conclusion 

This chapter has presented the design of cascade-form IIR digital filters using constrained 

multiobjective Cuckoo Search Algorithm. Positive excessive errors beyond error-based 

requirements with respect to maximum errors of magnitude response in passband and in stopband 

as well as that of group delay in passband are formulated as three objective functions while a 

limitation of magnitude response in transition band is formulated as single inequality constraint. 

Three filter examples including 10th-order lowpass, 14-order highpass and 14h-order bandpass 

digital filters with prescribed values of group delay in passband are presented. The obtained design 

results including maximum passband ripple, minimum stopband attenuation and maximum group 

delay deviation indicates slightly better results can be obtained as compared to the state-of-the-art 

design results, which has shown the effectiveness of constrained MOCSA. 

 

  



 

102 
 

CHAPTER 6 Conclusion Remarks 

In this thesis, basic background of digital filters and evolutionary algorithms are firstly 

introduced. Multiple versions of Cuckoo Search Algorithm focusing on single objective, 

multiobjective and constrained multiobjective optimization problems are presented, respectively. 

For each version of CSA, comparison on specific digital filter design with other techniques is used 

to illustrate its effectiveness and applicability. 

Chapter 3 has presented the design of linear-phase type-1 FIR digital filters using original 

Cuckoo Search Algorithm. Design results have shown that the peak errors obtained by CSA are 

mostly smaller than those obtained by the Parks-McClellan algorithm. Levy flight with wide-range 

step length is utilized as a special strategy for the global walk to assure reaching the global optimum 

and the local walk is able to improve an existing solution within a small range to orientate the 

direction toward the local minima. 

Chapter 4 has presented the design of general FIR digital filters using multiobjective Cuckoo 

Search Algorithm. Design results with respect to smaller peak error of both magnitude response 

and group delay in passband obtained by MOCSA indicates that MOCSA compares favorably with 

NSGA-III, which verifies its validity. MOCSA incorporates a method of Euclidean distance 

combining objective-based equilibrating operations and the searching for the optimal solution into 

one simple step. During the calculation of Euclidean distance, each objective function has been 

equilibrated to a coordinative level due to the equal weight for its corresponding dimension. 

Meanwhile, the best solution can be easily determined after a simple comparison of distinct 

Euclidean distances. 

Chapter 5 has presented the design of cascade-form IIR digital filters using constrained 

multiobjective Cuckoo Search Algorithm. Slightly smaller peak passband ripple as well as 

maximum group delay deviation and slightly larger minimum stopband attenuation are obtained by 

constrained MOCSA as compared to the state-of-the-art methods, which has shown the 

effectiveness of constrained MOCSA. 
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