4,039 research outputs found

    Random Keys Genetic Algorithms Scheduling and Rescheduling Systems for Common Production Systems

    Get PDF
    The majority of scheduling research deals with problems in specific production environments with specific objective functions. However, in many cases, more than one problem type and/or objective function exists, resulting in the need for a more generic and flexible system to generate schedules. Furthermore, most of the published scheduling research focuses on creating an optimal or near optimal initial schedule during the planning phase. However, after production processes start, circumstances like machine breakdowns, urgent jobs, and other unplanned events may render the schedule suboptimal, obsolete or even infeasible resulting in a rescheduling problem, which is typically also addressed for a specific production environment, constraints, and objective functions. This dissertation introduces a generic framework consisting of models and algorithms based on Random Keys Genetic Algorithms (RKGA) to handle both the scheduling and rescheduling problems in the most common production environments and for various types of objective functions. The Scheduling system produces predictive (initial) schedules for environments including single machines, flow shops, job shops and parallel machine production systems to optimize regular objective functions such as the Makespan and the Total Tardiness as well as non-regular objective functions such as the Total Earliness and Tardiness. To deal with the rescheduling problem, and using as a basis the same RKGA, a reactive Rescheduling system capable of repairing initial schedules after the occurrence of unexpected events is introduced. The reactive Rescheduling system was designed not only to optimize regular and non-regular objective functions but also to minimize the instability, a very important aspect in rescheduling to avoid shop chaos due to disruptions. Minimizing both schedule inefficiency and instability, however, turns the problem into a multi-objective optimization problem, which is even more difficult to solve. The computational experiments for the predictive model show that it is able to produce optimal or near optimal schedules to benchmark problems for different production environments and objective functions. Additional computational experiments conducted to test the reactive Rescheduling system under two types of unexpected events, machine breakdowns and the arrival of a rush job, show that the proposed framework and algorithms are robust in handling various problem types and computationally reasonable

    Analysing the impact of rescheduling time in hybrid manufacturing control

    Get PDF
    Hybrid manufacturing control architectures merge the benefits of hierarchical and heterarchical approaches. Disturbances can be handled at upper or lower decision levels, depending on the type of disturbance, its impact and the time the control system has to react. This paper focuses particularly on a disturbance handling mechanism at upper decision levels using a rescheduling manufacturing method. Such rescheduling is more complex that the offline scheduling since the control system must take into account the current system status, obtain a satisfactory performance under the new conditions, and also come up with a new schedule in a restricted amount of time. Then, this paper proposes a simple and generic rescheduling method which, based on the satisfying principle, analyses the trade-off between the rescheduling time and the performance achieved after a perturbation. The proposed approach is validated on a simulation model of a realistic assembly cell and results demonstrate that adaptation of the rescheduling time might be beneficial in terms of overall performance and reactivity.info:eu-repo/semantics/publishedVersio

    Smart digital twin for ZDM-based job-shop scheduling

    Full text link
    [EN] The growing digitization of manufacturing processes is revolutionizing the production job-shop by leading it toward the Smart Manufacturing (SM) paradigm. For a process to be smart, it is necessary to combine a given blend of data technologies, information and knowledge that enable it to perceive its environment and to autonomously perform actions that maximize its success possibilities in its assigned tasks. Of all the different ways leading to this transformation, both the generation of virtual replicas of processes and applying artificial intelligence (AI) techniques provide a wide range of possibilities whose exploration is today a far from negligible sources of opportunities to increase industrial companies¿ competitiveness. As a complex manufacturing process, production order scheduling in the job-shop is a necessary scenario to act by implementing these technologies. This research work considers an initial conceptual smart digital twin (SDT) framework for scheduling job-shop orders in a zero-defect manufacturing (ZDM) environment. The SDT virtually replicates the job-shop scheduling issue to simulate it and, based on the deep reinforcement learning (DRL) methodology, trains a prescriber agent and a process monitor. This simulation and training setting will facilitate analyses, optimization, defect and failure avoidance and, in short, decision making, to improve job-shop scheduling.The research that led to these results received funding from the European Union H2020 Programme with grant agreement No. 825631 Zero-Defect Manufacturing Platform (ZDMP) and Grant agreement No. 958205 Industrial Data Services for Quality Control in Smart Manufacturing (i4Q), and from the Spanish Ministry of Science, Innovation and Universities with Grant Agreement RTI2018-101344-B-I00 "Optimisation of zero-defects production technologies enabling supply chains 4.0 (CADS4.0)"Serrano Ruiz, JC.; Mula, J.; Poler, R. (2021). Smart digital twin for ZDM-based job-shop scheduling. IEEE. 510-515. https://doi.org/10.1109/MetroInd4.0IoT51437.2021.948847351051

    Scheduling Algorithms: Challenges Towards Smart Manufacturing

    Get PDF
    Collecting, processing, analyzing, and driving knowledge from large-scale real-time data is now realized with the emergence of Artificial Intelligence (AI) and Deep Learning (DL). The breakthrough of Industry 4.0 lays a foundation for intelligent manufacturing. However, implementation challenges of scheduling algorithms in the context of smart manufacturing are not yet comprehensively studied. The purpose of this study is to show the scheduling No.s that need to be considered in the smart manufacturing paradigm. To attain this objective, the literature review is conducted in five stages using publish or perish tools from different sources such as Scopus, Pubmed, Crossref, and Google Scholar. As a result, the first contribution of this study is a critical analysis of existing production scheduling algorithms\u27 characteristics and limitations from the viewpoint of smart manufacturing. The other contribution is to suggest the best strategies for selecting scheduling algorithms in a real-world scenario

    Predicting Completion Time for Production Line in a Supply Chain System through Artificial Neural Networks

    Get PDF
    Completion time in manufacturing sector is the time needed to produce a product through production processes in sequence and it reflects the delivery performance of such company in supply chain system to meet customer demands on time. However, actual completion time always deviated from the standard completion time due to unavoidable factors and consequently affect delivery due date and ultimately lead to customer dissatisfaction. Therefore, this paper predicts completion time based on historical data of production line activities and discovers the most influential factor that contributes to the tardiness or a late jobs due date from its completion time. A well-known company in producing audio speaker is selected as a case company. Based on the review of previous works, it is found that Artificial Neural Networks (ANN) has superior capability in prediction of future occurrence by capturing the underlying relationship among variables through historical data. Besides, ANN is also capable to provide final weight for each of related variable. Variable with the highest value of final weight indicates the most influential variable and should be concerned more to solve completion time issue which has persisted among entities in supply chain system. The obtained result is expected to become an advantageous guidance for every entity in supply chain system to fulfil completion time requirement as requested by customer in order to survive in this turbulent market place

    Rescheduling in job-shop problems for sustainable manufacturing systems

    Full text link
    [EN] Manufacturing industries are faced with environmental challenges, so their industrial processes must be optimized in terms of both profitability and sustainability. Since most of these processes are dynamic, the previously obtained solutions cannot be valid after disruptions. This paper focuses on recovery in dynamic job-shop scheduling problems where machines can work at different rates. Machine speed scaling is an alternative framework to the on/off control framework for production scheduling. Thus, given a disruption, the main goal is to recover the original solution by rescheduling the minimum number of tasks. To this end, a new match-up technique is developed to determine the rescheduling zone and a feasible reschedule. Then, a memetic algorithm is proposed for finding a schedule that minimizes the energy consumption within the rescheduling zone but that also maintains the makespan constraint. An extensive study is carried out to analyze the behavior of our algorithms to recover the original solution and minimize the energy reduction in different benchmarks, which are taken from the OR-Library. The energy consumption and processing time of the tasks involved in the rescheduling zone will play an important role in determining the best match-up point and the optimized rescheduling. Upon a disruption, different rescheduling solutions can be obtained, all of which comply with the requirements but that have different values of energy consumption. The results proposed in this paper may be useful for application in real industries for energy-efficient production rescheduling.This research has been supported by the Seventh Framework Programme under the research project TETRACOM-GA609491 and the Spanish Government under research projects TIN2013-46511-C2-1, TIN2015-65515-C4-1-R and TIN2016-80856-R. The authors wish to thank reviewers and editors for their positive comments to improve the quality of the paper.Salido Gregorio, MA.; Escamilla Fuster, J.; Barber Sanchís, F.; Giret Boggino, AS. (2017). Rescheduling in job-shop problems for sustainable manufacturing systems. Journal of Cleaner Production. 162(20):121-132. https://doi.org/10.1016/j.jclepro.2016.11.002S1211321622

    Proactive management of uncertainty to improve scheduling robustness in proces industries

    Get PDF
    Dinamisme, capacitat de resposta i flexibilitat són característiques essencials en el desenvolupament de la societat actual. Les noves tendències de globalització i els avenços en tecnologies de la informació i comunicació fan que s'evolucioni en un entorn altament dinàmic i incert. La incertesa present en tot procés esdevé un factor crític a l'hora de prendre decisions, així com un repte altament reconegut en l'àrea d'Enginyeria de Sistemes de Procés (PSE). En el context de programació de les operacions, els models de suport a la decisió proposats fins ara, així com també software comercial de planificació i programació d'operacions avançada, es basen generalment en dades estimades, assumint implícitament que el programa d'operacions s'executarà sense desviacions. La reacció davant els efectes de la incertesa en temps d'execució és una pràctica habitual, però no sempre resulta efectiva o factible. L'alternativa és considerar la incertesa de forma proactiva, és a dir, en el moment de prendre decisions, explotant el coneixement disponible en el propi sistema de modelització.Davant aquesta situació es plantegen les següents preguntes: què s'entén per incertesa? Com es pot considerar la incertesa en el problema de programació d'operacions? Què s'entén per robustesa i flexibilitat d'un programa d'operacions? Com es pot millorar aquesta robustesa? Quins beneficis comporta? Aquesta tesi respon a aquestes preguntes en el marc d'anàlisis operacionals en l'àrea de PSE. La incertesa es considera no de la forma reactiva tradicional, sinó amb el desenvolupament de sistemes proactius de suport a la decisió amb l'objectiu d'identificar programes d'operació robustos que serveixin com a referència pel nivell inferior de control de planta, així com també per altres centres en un entorn de cadenes de subministrament. Aquest treball de recerca estableix les bases per formalitzar el concepte de robustesa d'un programa d'operacions de forma sistemàtica. Segons aquest formalisme, els temps d'operació i les ruptures d'equip són considerats inicialment com a principals fonts d'incertesa presents a nivell de programació de la producció. El problema es modelitza mitjançant programació estocàstica, desenvolupant-se finalment un entorn d'optimització basat en simulació que captura les múltiples fonts d'incertesa, així com també estratègies de programació d'operacions reactiva, de forma proactiva. La metodologia desenvolupada en el context de programació de la producció s'estén posteriorment per incloure les operacions de transport en sistemes de múltiples entitats i incertesa en els temps de distribució. Amb aquesta perspectiva més àmplia del nivell d'operació s'estudia la coordinació de les activitats de producció i transport, fins ara centrada en nivells estratègic o tàctic. L'estudi final considera l'efecte de la incertesa en la demanda en les decisions de programació de la producció a curt termini. El problema s'analitza des del punt de vista de gestió del risc, i s'avaluen diferents mesures per controlar l'eficiència del sistema en un entorn incert.En general, la tesi posa de manifest els avantatges en reconèixer i modelitzar la incertesa, amb la identificació de programes d'operació robustos capaços d'adaptar-se a un ampli rang de situacions possibles, enlloc de programes d'operació òptims per un escenari hipotètic. La metodologia proposada a nivell d'operació es pot considerar com un pas inicial per estendre's a nivells de decisió estratègics i tàctics. Alhora, la visió proactiva del problema permet reduir el buit existent entre la teoria i la pràctica industrial, i resulta en un major coneixement del procés, visibilitat per planificar activitats futures, així com també millora l'efectivitat de les tècniques reactives i de tot el sistema en general, característiques altament desitjables per mantenir-se actiu davant la globalitat, competitivitat i dinàmica que envolten un procés.Dynamism, responsiveness, and flexibility are essential features in the development of the current society. Globalization trends and fast advances in communication and information technologies make all evolve in a highly dynamic and uncertain environment. The uncertainty involved in a process system becomes a critical problem in decision making, as well as a recognized challenge in the area of Process Systems Engineering (PSE). In the context of scheduling, decision-support models developed up to this point, as well as commercial advanced planning and scheduling systems, rely generally on estimated input information, implicitly assuming that a schedule will be executed without deviations. The reaction to the effects of the uncertainty at execution time becomes a common practice, but it is not always effective or even possible. The alternative is to address the uncertainty proactively, i.e., at the time of reasoning, exploiting the available knowledge in the modeling procedure itself. In view of this situation, the following questions arise: what do we understand for uncertainty? How can uncertainty be considered within scheduling modeling systems? What is understood for schedule robustness and flexibility? How can schedule robustness be improved? What are the benefits? This thesis answers these questions in the context of operational analysis in PSE. Uncertainty is managed not from the traditional reactive viewpoint, but with the development of proactive decision-support systems aimed at identifying robust schedules that serve as a useful guidance for the lower control level, as well as for dependent entities in a supply chain environment. A basis to formalize the concept of schedule robustness is established. Based on this formalism, variable operation times and equipment breakdowns are first considered as the main uncertainties in short-term production scheduling. The problem is initially modeled using stochastic programming, and a simulation-based stochastic optimization framework is finally developed, which captures the multiple sources of uncertainty, as well as rescheduling strategies, proactively. The procedure-oriented system developed in the context of production scheduling is next extended to involve transport scheduling in multi-site systems with uncertain travel times. With this broader operational perspective, the coordination of production and transport activities, considered so far mainly in strategic and tactical analysis, is assessed. The final research point focuses on the effect of demands uncertainty in short-term scheduling decisions. The problem is analyzed from a risk management viewpoint, and alternative measures are assessed and compared to control the performance of the system in the uncertain environment.Overall, this research work reveals the advantages of recognizing and modeling uncertainty, with the identification of more robust schedules able to adapt to a wide range of possible situations, rather than optimal schedules for a hypothetical scenario. The management of uncertainty proposed from an operational perspective can be considered as a first step towards its extension to tactical and strategic levels of decision. The proactive perspective of the problem results in a more realistic view of the process system, and it is a promising way to reduce the gap between theory and industrial practices. Besides, it provides valuable insight on the process, visibility for future activities, as well as it improves the efficiency of reactive techniques and of the overall system, all highly desirable features to remain alive in the global, competitive, and dynamic process environment

    Maintenance models applied to wind turbines. A comprehensive overview

    Get PDF
    Producción CientíficaWind power generation has been the fastest-growing energy alternative in recent years, however, it still has to compete with cheaper fossil energy sources. This is one of the motivations to constantly improve the efficiency of wind turbines and develop new Operation and Maintenance (O&M) methodologies. The decisions regarding O&M are based on different types of models, which cover a wide range of scenarios and variables and share the same goal, which is to minimize the Cost of Energy (COE) and maximize the profitability of a wind farm (WF). In this context, this review aims to identify and classify, from a comprehensive perspective, the different types of models used at the strategic, tactical, and operational decision levels of wind turbine maintenance, emphasizing mathematical models (MatMs). The investigation allows the conclusion that even though the evolution of the models and methodologies is ongoing, decision making in all the areas of the wind industry is currently based on artificial intelligence and machine learning models
    corecore