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Abstract

Current scheduling techniques fail to provide suitable solutions for the integrated pro-
duction and distribution scheduling problem with sequence-dependent setup times, dynamic
order arrival and uncertainty. Therefore, real-life production and distribution scheduling is
done manually and separately, which leads to hiccups in the operation. We present a novel
deep reinforcement learning approach to solve the given problem automatically. First, the
problem was formulated as a Semi-Markov Decision Process and modelled in a simulation
model. Then, a Proximal Policy Optimization algorithm was trained by interacting with the
simulation model. Due to the sequential decision making in the production and distribution
process, multi-discrete actions were included. Furthermore, action masking was applied to
accelerate the learning process. To evaluate the performance of the algorithm, two greedy
algorithms were developed. Different experiments showed that the deep reinforcement learn-
ing algorithm outperformed the greedy algorithms when uncertainty was included. The deep
reinforcement learning algorithm was able to reduce the makespan by 25.63% when low un-
certainty was included, which resulted in 15.13% more on time delivered orders compared
to the best performing benchmark. For the high uncertainty case, the deep reinforcement
learning algorithm reduced the makespan by 53.70%. However, it failed to deliver more or-
ders on time, which indicates that the distribution part could be improved. In addition, the
deep reinforcement learning algorithm appeared to be a robust solution that can be applied
to comparable situations as its training environment.

Keywords: Deep Reinforcement Learning, Flow-shop Scheduling, Semi-Markov Decision
Process (SMDP), Premix Manufacturers
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Executive summary

Problem context

This thesis concerns the integration and automation of production and distribution scheduling at
premix feed manufacturers and is conducted at KSE Process Technology (KSE). A novel deep rein-
forcement learning (DRL) approach is designed to solve the problem. Premix feed manufacturers
produce a crucial feed additive for animal compound feed. Nowadays, livestock food is more than
solely residual product from corn or grain. Nutrition is carefully selected and composed of different
ingredients to enhance animal welfare. Adequate nutrition requires feed composition consisting of
macro-ingredients (such as corn or grain) and micro-ingredients (such as vitamins, minerals and
amino acids). To ensure homogeneous distribution of micro-ingredients with macro-ingredients,
the micro-ingredients are premixed by special premix factories. Premix production is mostly done
in bulk, which requires different material handling than regular cargo.

KSE provides machines and software for the production of premix feed. Their machines are used
to dose, weight and transport bulk material. Besides, the software package automatically manages
and monitors the whole production process. KSE noticed that the production and distribution
schedules of their customers (premix feed producers) are not aligned. The mismatch leads to
hiccups in the operation as trucks have to wait for production to be finished and production waiting
for trucks to arrive. One of the reasons for the mismatch is the fact that both schedules are made
separately. Current planning software packages are incompetent to deal with the dynamism of
the premix production and distribution environment. Moreover, most premix producers manually
schedule both operations.

Premix manufacturers have asked KSE for a solution, i.e. to have an automated and combined
production and distribution planning. As mentioned before, current solutions are inadequate
since the premix production environment is highly dynamic. Schedules are made on a daily basis
while orders arrive throughout the day. Furthermore, schedules are adapted based on the most
recent information. Additionally, unexpected events occur such as equipment downtime, lack of
raw materials and truck delay. Moreover, contamination of raw materials makes the production
schedule challenging as this constrains production sequences.

Research approach

In recent years, studies have shown that DRL is well suited to solve comparable problems. Es-
pecially dynamic problems were information becomes available over time and where uncertainty
occurs (Zhou et al., 2020), (L. Wang et al., 2021) & (Kardos et al., 2021). DRL algorithms train
themselves by interacting with an environment. The algorithm chooses an action and observes
the subsequent state of the environment and feedback in the form of a reward. Based on these
interactions, it defines a policy. To study the applicability of DRL on the given problem, the
following research question is defined:

How can the production and distribution schedule of premix feed producers be automated and in-
tegrated by means of deep reinforcement learning, while accounting for unforeseen events?

Integrated production & distribution scheduling at premix feed producers using deep
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Method

DRL algorithms require a specific formulation of the environment to interact with it. Based on
the work of Rummukainen and Nurminen (2019), the decision was made to model the environ-
ment as a Semi-Markov Decision Process (SMDP). SMDP’s have the advantage over MDP’s that
they transition to the next state based on an event, instead of a fixed time interval. Therefore,
transitions only occur when an action from the DRL algorithm is required. Consequently, the
learning process is accelerated as it eliminates the transitions where the DRL algorithm learns
nothing. The environment is represented by a simulation model that allows interaction with the
DRL algorithm. The simulation model is based on an actual premix feed factory.

During the production and distribution process, four discrete actions are required. (i) Order from
queue to mixing machine allocation, (ii) order from mixing machine to sacking machine allocation,
(iii) order from sacking machine to storage space allocation and (iv) order from storage space to
truck allocation. The state space includes information about orders in the system, resources and
delivered orders. Furthermore, the reward function rewards on time delivered orders and penalizes
the makespan of each order. The relative weight of each reward component is optimized with a
Tree-structured Parzen Estimator optimizer. The Proximal Policy Optimization (PPO) algorithm
(Schulman et al., 2017) is implemented, which is one of the most advanced DRL algorithms
available. Besides, the PPO algorithm is one of the few DRL algorithms that handles multi-
discrete actions. In addition, action masking is applied because many actions are invalid at each
decision moment which is a consequence of the sequential action design and the choice for the
SMDP framework. At each transition, an action is required at a specific part of the process, i.e.
one of the four actions. For the other parts of the process, no action is required at that moment
in time, making those actions invalid.

Two greedy algorithms are developed to benchmark the PPO algorithm on various experiments,
one which accounts for contamination and one which did not account for contamination. The
experiments include a situation with overcapacity, undercapacity, low uncertainty and high un-
certainty. Uncertainty is modelled through machine breakdown and truck delay. Besides, a case
study is conducted which is based on real data. For each setting, the DRL algorithm is trained sep-
arately. Therefore, a robustness analysis is included to asses the general applicability of the DRL
algorithm. Moreover, the offline reinforcement learning algorithms Batch-Constrained Q-learning
and Conservative Q-learning were trained on transition datasets acquired by the overcapacity DRL
agent.

Results

The results show that the DRL algorithm is able to learn a stable policy for all experiments.
Besides, the DRL algorithms learn the contamination rules in all experiments. Contamination
is an important aspect of the manufacturing process in premix feed production and therefore
crucial to be learned by a scheduling algorithm. The results show that the agent outperforms the
greedy algorithms when uncertainty is included. Especially for the low uncertainty case, where
the makespan is reduced by 25.63% and the on time delivered orders increased by 15.13%. In
the high uncertainty case, the number of delivered orders are comparable, while the makespan
is 53.70% lower for the DRL algorithm. The same results are observed for the case study. The
DRL agent schedules the production part significantly better than the benchmarks (58.83% lower
makespan), yet fails to deliver more orders on time (71.75% more tardy orders). Furthermore,
the robustness experiments show that the DRL algorithm can handle comparable cases as its
training environment. Besides, the robustness analysis shows that the low uncertainty trained
DRL algorithm performs better than the other DRL algorithms, including the DRL algorithms
that were trained on the environment. The results of the offline reinforcement learning algorithms
show that these algorithms were not able to find a good policy.

iv Integrated production & distribution scheduling at premix feed producers using deep
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Conclusion & recommendation

This thesis presents a novel automated solution for the integrated production and distribution
scheduling problem. The results show that the DRL algorithm learns a good policy and outper-
forms the benchmark algorithms on the low uncertainty case. Furthermore, the DRL algorithm
outperforms the benchmark algorithms on the production part of the high uncertainty case. How-
ever, this advantage is not reflected in the number of on time delivered orders for the high uncer-
tainty case. Therefore, it can be concluded that the distribution part of the DRL framework should
be adapted before the DRL agent can be used in real-life scheduling situations. Improving the
distribution part of the DRL framework can be done by postponing the order - truck allocation or
allowing rescheduling after unforeseen events. Furthermore, certain assumptions were made during
the study, which should be relaxed in future research. Nevertheless, the fundamental properties
of DRL show promising applicability to the scheduling environment of premix manufacturers. Es-
pecially through its ability to deal with dynamic order arrival and uncertainty, it is well suited for
scheduling on a daily basis. Therefore, we recommend KSE to continue with research on DRL.
Specifically with expanding the distribution part and extending the contamination modelling. In
addition, enabling rescheduling and making the DRL algorithm’s policy explainable are directions
for future research.

Integrated production & distribution scheduling at premix feed producers using deep
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1 Introduction

This report is the Master’s thesis for the study Operations Management & Logistics at the TU/e
and was conducted at KSE Process Technology. In the study, deep reinforcement learning was
used to schedule the production and distribution process at premix feed manufacturers. The
first section provides an introduction to the industry where KSE Process Technology is active in.
After that, the stakeholders are discussed and the problem description is provided. Based on the
problem description, the research questions and the outline of the thesis are given.

1.1 Industry

KSE Process Technology is, among others, active in the premix feed industry. The premix feed
industry is the facilitator of premix for the production of livestock food. Nowadays, livestock
food is more than just residual product from corn or grain. Nutrition is carefully selected and
composed of different ingredients to enhance animal welfare. Besides nutritional composition,
price and animal characteristics are the main criteria to compile premix feed (Zahari & Alimon,
2005). Often nutritional value comes from micro-ingredients such as vitamins, minerals and amino
acids. To ensure equal distribution of these ingredients in the feed, they are premixed by special
premix factories. The premix can be added to premix feed by compound feed producers or directly
by farmers. Nutritional composition is matched to animal type and growth stage. Therefore, up
to 300 different types of feed are produced by premix manufacturers. Profit margins for premix
manufacturers are small. Consequently, production of premix is done in large quantities of multiple
tonnes and production plants operate around the clock to be profitable. Raw material costs account
for the largest part of production costs (Ness & Walker, 1995). Therefore, the production process
is highly automated and optimized to a great extent. Due to the variety of products in the market
and relatively small lead time, most products are made to order (MTO) although fast selling
products are made to stock (MTS). The ratio MTO versus MTS differs per producer. Producers
which make more specialized premix feed tend to be MTO focused, while producers of general
premix feed are MTS focused.

Production, shipment and storage of most raw materials are done in bulk due to large volumes.
This requires different material handling than normal cargo. Transportation of bulk material
inside a production plant is done with conveyor belts, bucket elevators and pneumatic conveying
(transportation based on gasses). Raw material are stored in silos. These silos are filled at the
top and emptied by gravity at the bottom. Due to different handling of bulk materials, special
equipment is required for the production and transportation. Shipment of finished product can
be done in small bags (15 kg up to 25 kg) or big bags (1000 kg) as well in bulk.

1.2 KSE Process Technology

KSE Process Technology (hereafter named KSE) is solely active in animal feed industries such as
premix, compound feed, pet food and aquafeed. It serves the premix industry with two types of
products. First of all, KSE makes specialized machines under the name Alfra. Alfra is machinery
used for precisely dosing and weighing bulk material and is used at multiple stages in the produc-
tion process of premix. Dosing and weighing is a process in which bulk material is retrieved from
a silo or machine and carefully dosed and weighed to obtain the exact required amount. This is
important because finished products should contain the same ratio of ingredients as the recipe.
Besides, premix producers want to deliver the exact ordered amount to customers due to the small
profit margins. Furthermore, Alfra makes machines which are used to transport bulk material in-
side the production plant from silos to machines or from silos to trucks. Secondly, KSE makes
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the factory automation software Promas ST. Promas ST is specialized for animal feed production
facilities. The software is used to automatically manage and monitor the whole production process
from manufacturing execution system (MES) to real time control. It can control both Alfra and
third party machinery. Since KSE provides machines and software for the premix producers, they
are not directly involved in the production of premix although KSE works closely with producers
to innovate the industry.

1.3 Stakeholders

Stakeholders in the industry are customers, premix producers and suppliers. Customers are premix
feed producers or farmers who order premix at the producers. Premix producers produce the
product at production plants. Suppliers can be divided into suppliers of raw material and suppliers
of equipment or services for the production of premix. KSE is a supplier of both equipment and
services as it provides dosing and weighing machines and factory automation software.

1.4 Problem statement

KSE noticed that the production and distribution schedules of their customers (premix feed produ-
cers) are not aligned. This leads to hiccups in the operation as trucks have to wait for production
to be finished and production waiting for trucks to arrive. One of the reasons for the mismatch
between production and distribution is the fact that both schedules are made separately. Current
planning software packages are incompetent to deal with the dynamism of the premix production
and distribution environment. Moreover, most premix producers manually schedule both opera-
tions. This leads to another problem; premix feed manufacturers heavily rely on a few employees
who know the scheduling rules by heart. Due to the complexity of the scheduling process, no
documentation is available about the scheduling procedures. Thus, sickness or retirement of one
of those employees could have drastic consequences for the premix manufacturers.

Premix manufacturers have asked KSE for a solution, i.e. to have an automated and combined
production and distribution planning. As mentioned before, current solutions are inadequate since
the premix production environment is highly dynamic. Schedules are made on a daily basis while
orders arrive throughout the day. Furthermore, schedules are adapted based on the most recent
information. Additionally, unexpected events occur such as equipment downtime, lack of raw
materials and truck delay. During the early literature review, the machine learning technique
deep reinforcement learning (DRL) showed promising results in comparable problems. Especially
in dynamic problems were information becomes available over time and where uncertainty occurs.
Therefore, this thesis will investigate if and how DRL could be used to solve the integrated
production and distribution problem of premix feed manufacturers.
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1.5 Research questions

Based on the problem description, the main research question is formulated as follows:

How can the production and distribution schedule of premix feed producers be automated and in-
tegrated by means of deep reinforcement learning, while accounting for unforeseen events?

Before the main research question can be answered, the following sub-questions should be answered
first:

1. How to define the integrated production and distribution process?
A mathematical formulation is used to define the scope of the study.

2. Which existing solution methods are used to solve given problem?
A literature review is conducted to investigate which current solutions are used to solve the
given problem. This could help with defining a novel solution.

3. Which deep reinforcement learning techniques are used to solve the given problem?
A literature review is done to get an understanding of the capabilities of deep reinforcement
learning and how this can be applied to the given problem.

4. How to formulate the integrated and automated production and distribution scheduling prob-
lem at premix feed producers as a Markov Decision Process?
This sub-question helps to define the problem as a MDP, which is the basis of a DRL model.

5. Which of the deep reinforcement learning algorithms is most suitable for the solving the
scheduling problem?
Before designing a DRL model, different DRL algorithms are compared to find the most
suitable algorithm for solving the given problem.

6. What is the performance of the deep reinforcement model compared to a heuristic scheduling
techniques?
This sub-question helps to evaluate the proposed DRL model. By comparing the model with
a heuristic scheduling technique, the quality can be assessed.

1.6 Outline

The thesis is structured as follows. First, an extensive literature review is done to get a general
understanding of the problem, existing solution methods, DRL and applications of DRL. Then,
the problem description is provided. An overview of the production and distribution process
is given, followed by a description of the current scheduling process and the desired scheduling
process. Based on this information and a mathematical problem formulation, the scope of the
problem is defined. Then, the solution method is described. This includes an overview of the
states, actions and rewards design, simulation model and the tested algorithms. Subsequently,
data from a customer of KSE is analysed to capture the real-life dynamics of the environment.
Then, the experimental setup is described, the parameter settings of the simulation environment,
training setup, scenario analysis, case study and robustness analysis. Furthermore, the results of
the experiments are described, after which the conclusions are drawn. Here, the research questions
are answered, as well as a discussion of the thesis and directions for future research.
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2 Literature review

A literature review is conducted to find a suitable solution for the problem statement given in
the first section. To start, an introduction to the problem in current literature is given. Then,
deep reinforcement learning is explained by providing an overview of the terms used in deep
reinforcement learning, neural networks and the different deep reinforcement learning algorithms.
Last, existing deep reinforcement learning methods are discussed in the field of scheduling and
other applications.

2.1 Existing approaches in the literature

This subsection provides an introduction to the integrated production and distribution scheduling
problem in the literature. First, the problem is defined based on the terms used in the literature.
Afterwards, existing solution approaches are reviewed and elaborated on.

2.1.1 Production & distribution scheduling in the literature

Scheduling premix feed production matches the characteristics of flow shop scheduling. Flow shop
scheduling is a variant of the classical job scheduling problem. The job scheduling problem is about
scheduling n jobs Ji (i = 1, ..., n) which have to be processed on m machines Mi (i = 1, ...,m). In
job scheduling the following assumptions are made:

1. each job can be processed on one machine at the time;

2. each machine can process one job at a time;

3. processing times are deterministic and schedules are static;

4. jobs may vary in processing time per machine and machines may have different processing
power.

For flow shop scheduling, the first assumption is substituted with:

1. each job must be processed on multiple machines and in an identical machine ordering.

The properties of flow shop scheduling are true for premix producers, since jobs must be processed
on different machines in identical order. Other variants of the multi-machine job scheduling
problem are job shop scheduling and open shop scheduling. In job shop scheduling, jobs can
have distinct machine ordering, whereas in open shop scheduling jobs the order of operations is
immaterial (Graham et al., 1979). Based on the research by Graham et al. (1979) ample extensions
of the classical job shop scheduling problem are investigated in the literature, such as Baker et al.
(1983), Baker and Scudder (1990) and Raghavachari (1988).

In this study, the flow shop scheduling problem is combined with a distribution schedule. Combined
production and distribution scheduling is studied thoroughly in the literature. Mostly on high level
such as strategic and tactical level, whereas operational scheduling is relatively new (Z.-L. Chen,
2009). Since the goal of this thesis is to find a daily planning, the focus will be on operational
schedules. Furthermore, combined production and distribution scheduling problems can be divided
in three categories based on the used distribution scheduling method (Karaoğlan & Kesen, 2017):
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1. Direct shipping of a production batch to one customer immediately after production;

2. Predetermined departure time of the trucks;

3. Routing trucks in a distribution schedule.

This study focuses on the production schedule while including order to truck allocation with pre-
determined departure times. Finished products are shortly stored before shipment to customers,
therefore storage between production and distribution should be considered as well. Integrated
production and distribution scheduling problems often consider a storage stage in between pro-
duction and distribution because intermediate storage connects production and distribution (Z.-L.
Chen, 2009). A dynamic setting will be considered due to the dynamic nature of the scheduling
environment. To conclude, the problem is defined as a dynamic integrated permutation flow shop
and truck allocation problem.

2.2 Existing approaches

In this section, articles are reviewed which have at least some aspect of the integrated production
and distribution scheduling problem. The section is divided per component of the problem and a
distinguish is made between static and dynamic scheduling due to the different solution approaches.
First, integrated production and distribution scheduling studies, which are closely related to the
problem, are discussed. Then, permutation flow shop scheduling studies are reviewed because
this subcategory of job shop scheduling relates the most to KSE’s problem. Followed by general
flow shop scheduling problems. After that, fixed vehicle departure times, sequence-dependent
setup times and perishability are elaborated on, because those are rare subjects in job shop
scheduling literature yet important aspects of the problem. The static section is concluded by
studies conducted in other domains with similar characteristics of at least one component of the
problem. In the dynamic scheduling section, different sorts of job shop scheduling studies are
discussed.

2.2.1 Integrated production & distribution scheduling

The integrated production and distribution scheduling problem is the most overlapping problem
with the case of this thesis. Unfortunately, there are only a few articles in current literature
who studied this problem with characteristics that match the type of production and distribution
scheduling as described in the previous section.

• Hou et al. (2022) studied the integrated production and distribution scheduling problem with
a distributed flow shop and delivery time windows. Multiple factories are considered, each
with a flow shop production process. Jobs are assigned to trucks and trucks are routed to
the customers. A brain storm optimization algorithm is applied to solve the problem, which
is a swarm intelligence method inspired by swarm behavior of humans during brainstorm
processes. At the production stage, each job is assigned to the factory with the smallest
makespan and all jobs are processed in the determined sequence. For the distribution stage,
jobs are assigned and loaded to vehicles based on the production sequence. To asses the
quality of the algorithm, it was compared to a solver and other meta heuristics. Results
showed that the heuristic outperformed the solver for instances from 6 jobs onward and was
able to find a better objective value for large instances than the meta heuristics.

• K. Li et al. (2015) studied the integrated production and distribution scheduling problem
in a parallel batching setting where profit is maximized. They showed that problems with
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identical job sizes can be solved optimally in an efficient way, while nonidentical job sizes
cannot be solved exact. Since the problem considered in this thesis does not have identical
job sizes this will not be addressed further. A heuristic was used to solve the problem where
jobs are scheduled in descending order of their profit versus size. Delivery is done by the
first-fit method (Garey & Johnson, 1981), meaning latest produced job j is delivered first.
If job j does not fit in the truck next job j is delivered.

• Furthermore, Mortazavi et al. (2015) proposed a chaotic imperialist competitive algorithm
(CICA) for the production and distribution scheduling problem with a single machine and air
transportation. The CICA solves the proposed problem sequentially, first the transportation
sub-problem and then the production sub-problem. Chaos theory has three principles: a
simple system exposes a complex behavior, complex systems expose a seemingly random
behavior yet it follows a predictable sequence and third the system behavior is related to the
initial state. The chaotic version of ICA algorithms prevent premature convergence. Results
were compared with a GA and it was shown that the CICA outperformed the GA in both
solution quality and robustness.

From these works can be concluded that the integrated production and distribution scheduling
problem is a difficult problem and requires advanced meta-heuristics to get a good solution for
larger instances.

2.2.2 Permutation flow shop

The permutation flow shop scheduling problem (PFSP) has been studied by several researchers and
is the sub-category of job shop scheduling that best matches the characteristics of this problem.
The permutation flow shop differs from the standard flow shop scheduling problem because the
processing order of all jobs is the same for each subsequent step of processing. This does not have
to be the case for flow shop scheduling problems.

• Marsetiya Utama et al. (2020) developed a hybrid antlion optimization algorithm (HALO)
for the PFSP. The objective was to minimize the mean tardiness. The HALO algorithm
mimics the interaction between antlions and ants. Ants move randomly in the search space
(similar to individuals in GA) whereas antlions hunt them and become fitter using traps
(Mirjalili, 2015). The HALO algorithm found slightly better solution compared to other
(meta)heuristics although it required much more computational time.

• Besides, a discrete artificial bee colony (ABC) algorithm was used to optimize the PFSP
by Deng et al. (2016). They considered buffers in between machines and minimized the
makespan. According to the authors, their ABC outperformed two earlier developed ABC
algorithms and both evolution and greedy algorithms.

• Mishra and Shrivastava (2018) studied this problem while optimizing the inventory holding
and batch delay costs. Multiple meta heuristics were compared to one another and it was
found that the jaya heuristic performed best for large (500 jobs, 20 machines) instances. Jaya
is based on the idea that solutions should move towards the best solution while it goes away
from the worst solution. First it initializes the population, followed by the identification of
the best and worst solutions. The other solutions are modified based on the best and worst
solutions and then compared to each other. If the updated solution is better it replaces the
previous solution. These steps are repeated until the termination criteria are met.

• In the work of Rifai et al. (2021), a combination is made of the permutation flow shop
and sequence-dependent setup times. An adaptive large neighborhood search algorithm was
proposed in order to minimize the makespan, production costs and tardiness. Since this is
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a multi-objective optimization problem, there is no unique optimal solution. Instead, the
algorithm creates a set of non-dominating solutions.

• Gonzalez-Neira et al. (2021) extended this problem by including stochasticity in the pro-
cessing times and sequence-dependent setup times. A sim-heuristic was proposed to solve
this problem by combining a greedy randomized adaptive search procedure (GRASP), a
Monte Carlo simulation, a Pareto archived evolution strategy (PAES) and an analytic hier-
archy process (AHP). Four objective functions were optimized which resulted in a Pareto
frontier. They showed that there is an interaction effect between the coefficient of variation
and the processing times and coefficient of variation of the setup times which underlines
the importance of including uncertainties in the optimization process of production schedul-
ing. The permutation flow shop scheduling problem was combined with a vehicle routing
problem in the work of Yağmur and Kesen (2020). To formulate the problem a MILP was
made, which could not be solved within a reasonable time frame. The authors proposed a
memetic algorithm (MA) to find a near-optimal solution. MA is an adaption of a GA and
uses local search techniques to prevent premature convergence. The results showed that the
MA outperforms the solver for the large instances and converges rapidly.

These articles have, besides the permutation flow shop scheduling, at least one other component of
the problem in the thesis. Therefore, they provide some insight in the performance of the proposed
solutions if they were applied to the thesis’s problem. Unfortunately, none of them included all
aspects of the problem.

2.2.3 Flow shop production scheduling

Even though flow shop scheduling problems are a more general category of the problem in the
thesis, the dynamics of the environment are closely related. Therefore, these articles are still
relevant to get an understanding of possible solutions for KSE.

• Zheng et al. (2021) proposed a hybrid meta heuristic for a flexible flow shop scheduling
problem with limited buffers and deteriorating jobs. The heuristic is a combination of
heuristic components, with a genetic algorithm (GA) as basis. A Nawaz-Enscore-Ham (NEH)
heuristic with bottleneck elimination defines the initial solutions. NEH heuristics suggests
that jobs with greater total processing time should be given a greater priority than jobs with
a smaller total processing time (Nawaz et al., 1983). Furthermore, local search is enhanced
by partially matched crossover and mutation of solutions using various neighborhood search
structures. Besides, a VNS with SA avoids local optima and a modified CDS improves
quality of non-improved solutions during an iteration. The heuristic is compared with a
solver using different instances. On average, the heuristic performs 3.15% worse than the
solver and performs better than other heuristics. For instances that cannot be solved with
the solver, the heuristic outperforms other heuristics in terms of objective value. The orders
arriving at compound feed producers can contain multiple products. Therefore, the jobs in
the production process can have common due dates.

• In the work of Z. Li et al. (2021), a hybrid flow shop with common due dates is investigated.
A GA was proposed to solve the given problem and was compared to existing GA’s and a
PSO algorithm. Results showed that the PSO was better for larger instances (5 products, 5
machines and 5 production lines) while the proposed GA performed best for smaller instances
(3,3,3).

From these articles can be concluded that more complex solution approaches are likely to produce
better results in specific cases, yet fail to deliver good results in multiple instances. This is
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something to consider in the algorithm design for the thesis’s problem since the solution should
handle a variety of cases.

2.2.4 Fixed vehicle departure times

The integrated scheduling problem of production and distribution with fixed vehicle departure
times are scarce in the literature. Therefore, articles which studied some form of combined pro-
duction and distribution via fixed vehicle departure times are included.

• Hajiaghaei-Keshteli et al. (2014) studied an integrated static single machine production and
rail transportation problem with fixed delivery departure times. They developed a GA
and simulated annealing (SA) to solve the proposed problem. Results showed that the GA
outperformed the SA and was more robust in other problem sizes. The GA minimizes the
transportation costs and subsequently the production sequence is determined. Sequentially
solving this problem does not guaranty a global optimum. Therefore, several schedules are
generated and evaluated in an iterative way to find the best solution.

• Stecke and Zhao (2007) developed a MIP model for a static single machine production and
transportation MTO setting with fixed delivery departure times. They showed that the
problem is NP hard and that in an optimal schedule orders are produced non-preemptively
and continuously. To solve the problem, they made a heuristic that gave near optimal
production schedules. The heuristic starts with a non-preemptive earliest due date (NEDD)
schedule based on non-decreasing order of due dates and largest order first when a tie occurs
to satisfy due date and capacity constraints. Then, production order is changed until the
quantity of late products no longer reduces.

These articles showed that an integrated production and distribution scheduling problem is of-
ten solved in an iterative way. Since the departure times are predetermined in this case, the
distribution part is scheduled first.

2.2.5 Sequence-dependent setup times

The described problem in this thesis has sequence-dependent setup times due to contamination
of materials. Many research on production scheduling either ignored setup times completely
or assumed setup times are independent of job sequence. Therefore, the studies that included
sequence-dependent setup times are discussed more in dept in this section.

• Zandieh et al. (2006) proposed an immune algorithm (IA) for a hybrid flow shop scheduling
problem, where the objective is to minimize the makespan. IA is based on the natural
immune system. Antigens refer the the objective function while antibodies refer to candidate
solutions. The steps in an IA are similar to a GA. First, initial antibodies are (randomly)
generated. Then, the fitness function for each antibody is determined. After that, the
mating pool is generated and random crossover is done. The best known antibodies are
retained together with the new offspring. Followed by mutation and fitness evaluation. This
is repeated until the termination criteria is met. The algorithm performs better than a
compared GA, especially for medium and large problem sizes.

• Furthermore, M. Li and Lei (2021) studied a flexible job shop combined with internal trans-
portation and sequence-dependent setup times. The makespan, tardiness and energy con-
sumption are simultaneously minimized by means of an imperialist competitive algorithm
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(ICA). Here, a country represents a solution and the quality is measured by the object-
ive value. The best counties become imperialists and control other countries (colonies).
Then, assimilation take place where colonies get closer to the imperialist state. Followed
by revolution which is a random change in a countries position. Last, there is an action
called competition where imperialists can take control of colonies of the weakest imperialist.
Results showed that the ICA outperformed other meta heuristics.

From these articles can be concluded that including sequence-dependent setup times leads to a
more complex problem and require a tailored solution approach. This could be the reason why
other studied excluded this component although it is not uncommon in real production processes.

2.2.6 Perishable items

Although perishability is not considered in the scope of this thesis, research on integrated produc-
tion and distribution schedule which included perishability may have interesting findings.

• Karaoğlan and Kesen (2017) examined a static combined production and transportation
scheduling problem for perishable items without inventory. A branch-and-cut (B&C) al-
gorithm was proposed which minimized the makespan and delivery time. Upper bounds are
improved by means of a SA local search heuristic. Their algorithm finds a feasible solution
which is 2,4% from the lower bound within an hour and outperforms the compared GA of
Geismar et al. (2008).

• Furthermore, Tangour et al. (2021) investigated a static flow shop scheduling problem for
perishable items. Their objective function was to minimize the makespan and number of
expired products. A GA and ant colony optimization (ACO) was developed to solve the
problem. A B&C algorithm was used to obtain the lower bound of the makespan. The GA
outperforms the ACO in terms of makespan and number of perished items. Furthermore, it
shows similar schedules as found by the exact B&C algorithm.

• The combination of production and distribution for perishable items was examined by Huo
et al. (2010) in a static single machine setting with fixed departure times. The objective
is to maximize profit, which is earned when a job is delivered at its due date. A pseudo
polynomial time algorithm was used to solve the problem exactly. This was possible due to
the small instances that were used. Furthermore, they showed that the same algorithm can
be used when there are an arbitrary number of parallel machines.

• Solina and Mirabelli (2021) studied perishable items in an integrated production and dis-
tribution scheduling problem at a vegetable food supplier, considering identical changeover
times and inventory of finished products. Goal was to minimize energy usage, inventory and
distribution costs. A rolling horizon scheme is used to schedule the production and distri-
bution, at each iteration a bi-weekly planning is made while demand occurs every week. To
find the best optimization solution, a partial rescheduling (current strategy) and complete
rescheduling strategies are tested. Due to the complexity of the problem a near-optimal solu-
tion with a gap of 3% was accepted. Results showed that complete rescheduling could save
the company 4% in terms of total costs and in particular the energy costs. The optimizer
found this within one minute, showing its usability for real life cases.

• Although not many articles have been published about production scheduling in the com-
pound feed industry, Toso et al. (2009) did investigate production scheduling at a compound
feed producer in combination with lot sizing. This differs from this study since lot sizing is
considered out of scope and a static setting was used. They modeled the production process
as a single machine problem with a capacity equal to the bottleneck machine. To solve the
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proposed problem, three variants of the relax and fit heuristic were developed and tested.
The best performing heuristic found a solution within 21 minutes and was just 2.43% worse
than the lower bound.

These articles showed that perishability has a great impact on the solution approach since it is often
included in the objective function. Thus, perishability should be considered once perishability will
be included in the scope of the problem.

2.2.7 Other domains

Studies in other domains may be useful for the thesis when the characteristics of the problem are
approximately the same. This is the case for assembly scheduling problems as assembly production
often can be modeled as a permutation flow shop. Furthermore, the second article is relevant due
to the combination of a production process with fixed vehicle departure times.

• One of the studies that examined a similar problem is the work of K. Li et al. (2006) since they
combined an assembly line with air transportation. Air transportation can be modeled as a
fixed departure time of delivery. Therefore, this problem is similar to the problem examined
in the thesis. A heuristic was proposed to solve a single machine assembly schedule with air
transportation. The problem was divided into two sub problems. First, the transportation
problem is solved and subsequently the production schedule is made. The assembly schedule
accounts for delayed orders due to uncertain events such as equipment downtime. The
heuristic efficiently reschedules jobs that were influenced by the downtime. First, affected
jobs are scheduled based on the longest processing time (LPT) first rule. Then, affected jobs
are inserted into the fixed idle time at the end of a period by the LPT rule. Results show
that the heuristic saves on average 2.5%-4% in delivery costs compared to industry practices
adopted by logistics provides.

• Sequencing the processing of incoming mail in a distribution center such that it matches the
fixed truck departure schedule is relevant for this case as well due to the fixed distribution
departure time. This problem was studied by Q. Wang et al. (2005). A revised greedy
algorithm (RGA) performs best out of all evaluated heuristics. The biggest mail tray is
selected that generates the most mail to the destination with unfilled capacity. As this
might lead to over production for some destinations, unfilled destinations receive a higher
weight such that in the next iteration more mail is assigned to unfilled destinations. This is
repeated until no improvement can be made.

These two articles made it clear that other domains are relevant when studying a scheduling
problem since there are many aspects that overlap with the case in the thesis.

2.2.8 Dynamic scheduling

Scheduling dynamic environments differs from static environment since orders arrive over time
instead of full knowledge of all orders at time zero. Therefore, this section examines different
applications of dynamic scheduling in job shop scheduling environments.

• Rahmani and Ramezanian (2016) examined a flexible flow shop with dynamic order arrivals,
meaning not all orders are known in advance. They start with a deterministic MILP model
to generate an initial schedule. As new orders arrive, the trade-off is made between adapting
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the schedule with a better objective function which may cause disturbance in the system
and keeping the stability of the schedule by not changing it. Therefore, the performance
measures of the model are the weighted tardiness and stability. The latter is measured
as the difference between completion times of the jobs in the initial schedule and modified
schedule. The second part of the model is done by means of a variable neighborhood search.
Furthermore, Nouiri et al. (2018) focused on the energy efficiency of the dynamic flexible job
shop scheduling problem. They considered equipment downtime in their dynamic setting
and minimized the energy consumption and makespan. A PSO algorithm was defined to
solve the given problem.

• X. Zhang and Van De Velde (2010) studied a dynamic order arrival in a two machine job
shop scheduling with time lags between the machines. A greedy algorithm was proposed
to solve the problem. They showed that any greedy algorithm is two competitive for their
problem. Furthermore, a dynamic two machine flow shop scheduling problem was examined
by Liu and Lu (2014). They proposed an algorithm that was able to solve the problem
with instances up to 1000 jobs with a mean error of 0.3%. Dynamic order arrivals in a job
scheduling problem was investigated by Z. Wang et al. (2019) as well. The objective function
and stability of the schedule are measured. A MILP model was made with the objective to
minimize the discontinuity rate of new orders, the makespan deviation of the initial schedule
and the sequence deviation. An order arrival triggers the rescheduling process. The authors
propose a PSO algorithm that deals with the rescheduling, which is benchmarked against
other PSO algorithms and three other meta heuristics. The proposed algorithm outperforms
other solution methods in terms of average fitness value for all order types and sizes. The
optimizer was not able to solve the problem within the time limit for larger instances.
Therefore, the performance of the PSO could not be compared to the optimal value.

• Paprocka et al. (2021) examined a job shop production process with uncertainty in equipment
downtime. A predictive-reactive ACO algorithm was developed to combine the scheduling
of production and maintenance. The ACO made a basic schedule and was adapted with the
minimal impact of disrupted operation on the schedule (MIDOS) rule designed by the au-
thors. To do that, maintenance was predicted based on historical data, which led to adequate
machinery inspections and an extension of machine uptime. Subsequently, the MIDOS rule
assigned the most flexible operation to the bottleneck machine if a disturbance in the job
is predicted to enhance the robustness of the schedule. Results showed that the MIDOS
rule combined with the ACO algorithm performed better than the ACO algorithm alone.
The work of Ghaleb et al. (2020) proposed a real-time scheduling model for dynamic and
stochastic flexible job shops. The model accounts for unexpected order arrivals, downtime of
machines, stochastic completion times. A MILP is made where closed form expressions are
used to model the effect of random downtime. Different rescheduling policies are evaluated
and it was found that event-driven rescheduling (ER) and continuous rescheduling (CR)
performed equally well in terms of objective function. However, ER is computationally more
efficient.

• The permutation flow shop with uncertainty was addressed in the literature as well. Ouchiekh
et al. (2021) studied this problem while accounting for dynamic processing times. A hybrid
intelligent algorithm based on a discrete eagle strategy combined with a sine-cosine algorithm
was developed to solve the problem. Eagle strategy is a two stage optimization which
mimics the hunting behavior of eagles. First, the search space is randomly searched globally.
Then, the most promising area is searched thoroughly by a local optimizer. This process is
repeated until the termination criteria are met. The sine-cosine algorithm is based on random
initialization and updating solutions based on sine and cosine functions. The proposed
algorithm outperformed a standard sine-cosine algorithm in terms of objective function and
standard deviation for a problem instance of 11 jobs on 5 machines.

• Gupta and Maravelias (2020) studied an dynamic production schedule with uncertain pro-
cessing times, batch yield and equipment downtime. This makes scheduling challenging since

Integrated production & distribution scheduling at premix feed producers using deep
reinforcement learning

11



2.3 Limitations of (meta)heuristics 2 LITERATURE REVIEW

these uncertainties are observed once the schedule is already executed, which can result in
infeasibilities. The authors propose a systematic framework that was based on the work
of Gupta and Maravelias (2019). First, the key production characteristics are quantified.
Second, it is determined how these characteristics affect the choice of rescheduling time-step
and horizon length. Then, the role of demand uncertainty is evaluated and how this can
be mitigated through tuning of the scheduling algorithm. The rescheduling model is based
on re-assigning units, re-timing of production start times and adapting batch sizes. All
uncertainties are modeled with appropriate distributions. Task delays are modeled with a
Poisson distribution, equipment downtime with a Bernoulli distribution and yield loss with
an exponential distribution. Furthermore, they choose a finite rolling horizon because oth-
erwise solving the problem would be computationally too expensive. For each uncertainty
the effect on the simulation framework is tested. They found that costs increase with higher
production and rescheduling becomes more important as uncertainty increases.

• In the work of K. Lee et al. (2019), a dynamic flow shop is examined as well where jobs enter
the system over time. The authors propose a greedy heuristic to solve the problem while
minimizing the makespan. They calculated the competitive ratio of their greedy algorithm
for different flow shop settings. The competitive ratio measures the performance of a dynamic
setting with a static setting. If the ratio is bounded, the algorithm is competitive (Atallah
& Blanton, 2009). It was shown that the ratio is much tighter for permutation flow shop
problems than arbitrary flow shops.

Dynamic scheduling is different from static scheduling in the way that the scheduling algorithm
should consider uncertainty in job arrivals and unexpected events. This influences the perform-
ance of the model and requires more advanced solutions than static environments. Furthermore,
there are fewer research articles about dynamic scheduling than static scheduling, providing an
opportunity to contribute to the literature by the thesis.

2.3 Limitations of (meta)heuristics

From the literature review of existing solutions can be concluded that complex optimization prob-
lems can only be solved exact when very small instances are used. Real life situations with a
larger number of jobs, machines and trucks are proven to be NP hard (Garey et al., 1976). To
overcome this problem, researchers have developed (meta)heuristics such as GA, PSO and SA
algorithms. These methods have to reschedule once the environment state changes. This makes
it difficult for (meta)heuristics to deal with dynamic and uncertain events (L. Wang et al., 2021).
Deep reinforcement learning (DRL) could solve this problem due to the advantage of real-time se-
quential decision making. A well trained DRL agent can decide immediately once an (unexpected)
event occurs. By employing deep learning, it is able to transform high dimensional input to useful
output, which is necessary in complex problems (François-lavet et al., 2018). Besides, DRL has
proven to be a good solution for other optimization problems such as bin packing (Kundu et al.,
2019), traveling salesman (Fairee et al., 2019) and vehicle routing (Yu et al., 2019). Therefore,
in the remainder of this literature review it will be investigated if DRL can be used to solve the
given problem.

2.4 Deep reinforcement learning

In this section, the concept of (deep) reinforcement learning is explained based on the works of R.
Sutton and Barto (1998) and François-lavet et al. (2018). The essence of reinforcement learning
is that a learning agent interacts with its environment to achieve a goal. To achieve this goal,
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the agents takes actions that affect the state of the environment, which is illustrated in Figure
1. This is where reinforcement learning differs from other machine learning sub-fields. The agent
is not guided which actions to take, it should try actions and find out which one leads to the
highest reward by trial-and-error. Therefore, an agent does not need complete knowledge of the
environment, instead it should interact with and collect information from the environment. The
following three characteristics are considered the most important distinguishing features of RL.

1. RL is an iterative learning process, which makes it well suited for dynamic settings where
new information becomes available over time;

2. problems are considered closed-loop since actions from the learner influence later inputs;

3. actions taken by the learner do not solely affect immediate reward, but all subsequent re-
wards.

This way of leaning brings certain challenges. One of them is the trade-off between exploration
and exploitation. To maximize its reward, the agent should prefer the actions it took in the past
which turned out to be effective. However, to discover such actions or even better ones it should
try new actions. Therefore, a good agent balances exploration and exploitation. Besides the agent
and its environment, four sub-elements should be explained.

1. Policy. This defines how an agent should behave at any given moment in time. The policy is
a mapping of the environment’s state with corresponding actions when that state is reached.

2. Reward. The objective of the agent is to take actions that ultimately maximize the reward.

3. Value function. the value function determines good actions in the long run. The value of
a state specifies the total expected and discounted reward an agent receives in the future,
while accounting for which states are likely to follow the current state and its corresponding
rewards. This is an important concept in RL as this ensures in a policy that lead to the
highest value in the long run instead of quick rewards. Since estimating future value is much
harder than immediate rewards, finding a method to efficiently predicting values is crucial
for a good RL algorithm.

4. Environment. A good model mimics the behavior of the environment. This enables plan-
ning future actions before they are actually taken. On the other hand, model-free methods
do not use planning. Instead trial-and-error is used to consider situations.

Figure 1: Agent and environment interaction in reinforcement learning (R. Sutton & Barto, 1998)
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2.4.1 Reinforcement learning framework

The RL concept is formalized with a Markov Decision Process (MDP), a stochastic framework
for which theoretical statements can be made. These statements are used in RL models to solve
MDP’s near optimally. A MDP is a 5-tuple (S,A, T,R, γ) where (François-lavet et al., 2018):

1. S is the state space;

2. A is the action space;

3. T : S × A × S → [0, 1] is the transition function (set of conditional transition probabilities
between states);

4. R : S × A× S → R is the reward function, where R is a continuous set of possible rewards
in a range Rmax ∈ R+;

5. γ ∈ [0, 1) is the discounter.

Since MDP’s are used, the Markov property holds. This means the probability distribution of
future states only depends on the current state and therefore does not depend on states in the
past. For RL problems, the transition probabilities are often unknown and thus optimal policies
cannot be determined based on the MDP. As mentioned before, the agent should estimate the
policy based on interaction with the environment.

2.4.2 Why going deep?

The basic Q-learning algorithm (Watkins & Dayan, 1992) which will be explained below, stores
a lookup table of state action pairs. To find the optimal Q-value, Bellman equations are used.
Problems studied with RL often have such a large state space due to the complexity of the problem,
that calculating all value functions is practically impossible. In those cases an approximate solution
is more efficient. Deep Q-learning (Mnih et al., 2015) make use of neural networks to approximate
Q-values for each state-action pair. Neural networks consist of an input layer, hidden layer and
output layer with multiple neutrons in each layer. A deep neural network make use of multiple
successive hidden layers, where each layer transforms the input in a non-linear way. The output
layer has a loss function such as the mean-squared error to minimize the error. This is interesting
for the problem in this thesis since the state and action space will be large.

2.4.3 Neural networks

To explain the concept of neural networks, neurons should be understand first. This is done based
on the work of Nielsen (2021). One of the most basic forms of artificial neurons are perceptrons
(left side of Figure 2). A perceptron takes several binary inputs x1, x2, ... and produces one
binary output. To determine the output, a weight w1, w2, ... is assigned to each input variable to
distinguish importance between input variables for the outcome. The weighted sum of all input
variables is then compared to a threshold value or bias. When the threshold value is exceeded, the
perceptron outputs 1 and 0 otherwise. By varying the weights and thresholds, different decision
making models are produced.

Logically, one layer of neurons cannot make complex decisions since it depends solely on the input
values. Therefore, multiple layers of neurons are used in a network (right side of Figure 2). In the
network, the first layer makes simple decisions by weighting the model’s input. Subsequently, the
second layer weights the output of the first layer, enabling it to make more complex and abstract

14 Integrated production & distribution scheduling at premix feed producers using deep
reinforcement learning



2 LITERATURE REVIEW 2.4 Deep reinforcement learning

decisions than the first layer. The third layer uses the output of the second layer, which is even
more complex and so forth until the output layer translates it to the desired output value.

Figure 2: Perceptron & neural network (Nielsen, 2021)

The neural network is trained with data where both the input and output values are known. By
knowing the output values beforehand, the neural network can adjust the weights and biases such
that it minimizes the difference between the actual output and desired output. This is called the
loss function, and can be calculated in various ways such as the mean squared error or cross-
entropy loss. Commonly, this is optimized with the stochastic gradient descent algorithm, while
weights are updated with back-propagation (Goodfellow, 2016). Learning works by repeatably
changing the weights and biases such that the network better classifies the output value with the
given input. A small change could flip a perceptron from 0 to 1 or vice versa leading to completely
different behaviour in the rest of the network (Nielsen, 2021).

To overcome this problem, nonlinear activation functions are used such as Sigmoid or ReLu
functions. What differs is that the output of a Sigmoid neuron is a float between 0 and 1, while
the ReLu function maps the output in a range of 0 to infinity. In general, Sigmoid functions are
used when the output is a probability. A downside of the ReLu function is that negative input
values are converted to 0 and thus preventing the model from learning of negative inputs. This
problem was solved by introducing the Leaky ReLu, which add a gradual negative part to the
activation function (Sharma, 2020).

2.4.4 Value functions & policy gradient methods

The objective of a DRL algorithm is to find the optimal policy for the agent. As described before,
this is the action it should take given a certain state to maximize the reward. There are roughly
two types of algorithms, value-based and policy gradient methods. The first estimates the value
of each state-action pair to find the optimal policy, while the latter optimizes the policy directly.
Each type will be elaborated below.

Value-based algorithms
Value-based algorithms try to find a value function which can be used to define a policy. This is
done by estimating the expected return of being in a state. The first algorithm that was based on
this method was the Q-learning model developed by Watkins and Dayan (1992). In this method, a
lookup table is stored with the Q-value of each state-action pair. To find the highest Q-value, the
Bellman equation is used. This method is useful for small problems, though not suitable for larger
state spaces where computing the Q-value for each state-action pair becomes computationally
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infeasible. First the fitted Q-learning (Gordon, 1996) and then the Deep Q-Network (Mnih et al.,
2015) solved this problem by estimating the Q-value of each state-action pair, thus reducing the
computation time.

More specifically, Mnih et al. (2015) used a deep convolutional neural network. The introduction
of neural networks brought certain challenges. Correlation in the sequence of observations, changes
in data distribution due to small Q-value updates and the correlation between the action values
and target values lead to instability of neural networks in RL. DQN tackles this by experience
replay. This is a technique which stores all information of the last N steps where the information
is obtained with an ϵ-greedy policy (Lin, 1992). This removes the correlation in the observation
sequence and smooths over changes in data distribution. Furthermore, an iterative update for
the action values towards the target values reduces correlation between them. When learning,
Q-learning updates are applied to mini-batches of randomly drawn previous experiences with the
following loss function:

Li(θi) = E(s,a,r,s′ )∼U(D)

[
(r + γmaxa′Q(s

′
, a

′
; θ−i )−Q(s, a; θi))

2
]

(1)

In addition, DQN clips rewards between -1 and +1 to ensure proper learning. Mnih et al. (2015)
trained their DQN on several Atari games to test the robustness of the model and results showed
that their model was able to learn different environments without prior knowledge and the same
settings on each game.

Although the DQN by Mnih et al. (2015) was a revolutionary algorithm for DRL, it had some flaws.
Since it used the maximum action value to approximate the maximum expected action value it
was more likely to over-optimistically estimated values in noisy cases, resulting in an upward bias.
Van Hasselt et al. (2015) tackled this problem by presenting a Double Deep Q-Network (DDQN)
with two Q-functions. Each Q-function is updated with a value from the other Q-function for the
next state, thus removing the bias in each function. Other variants of the DQN are proposed in the
literature as well, such as the dueling network architecture (Z. Wang et al., 2016), distributional
reinforcement learning (Bellemare et al., 2017) and prioritized replay (Schaul et al., 2015). Despite
the various improvements on the DQN, some limitations remained. For instance, DQN algorithms
are not useful for large and continuous action spaces and are unable to learn stochastic policies.

Policy gradient algorithms
Contradictory to value-based algorithms, policy gradient methods do not use value functions to
find a good policy. Instead, it optimizes the policy directly by updating the policies parameters
via stochastic gradient ascent. The basic form of a stochastic gradient estimator is:

ĝ = Êt

[
∇θ log πθ(at|st)Ât

]
(2)

where πθ is a stochastic policy with the observed states st and suggested actions at. Ât (the
advantage) is the difference between the actual discounted reward and the estimated discounted
reward from this state onward. Each iteration the advantage is updated, which enables policy
gradient algorithm to update the policy parameters during and episode. The downside of policy
gradient methods is that small parameter updates lead to longer convergence time, while larger
updates could prevent the algorithm from finding the optimal solution. Therefore, a good policy
gradient algorithm balances this trade-off. The simplest form of calculating the policy gradient
estimator is by using the likelihood ratio trick (known as the REINFORCE algorithm (Williams,
1992)), which leads to the following gradient:

πθ(a, s) = πθ(a, s)∇θ log(πθ(a, s)) (3)

Another class of policy gradient algorithms are the actor-critic methods (A2C) (Konda & Tsitsiklis,
1999). The actor is specified as the policy and uses the policy gradient estimator to update
the policy parameters, while the critic estimates the value function corresponding to the policy.
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Therefore, one could define actor-critic algorithms as a combination of policy gradient and value-
based methods. An important actor-critic algorithm is the asynchronous advantage actor-critic
(A3C) (Mnih et al., 2016). While the standard A2C has one actor-learner, the A3C method
combines multiple actor-learners with a CNN that has a distinct output for the policy and the
value function, while all non-output layers are shared among the learners.

In the work of Z. Wang et al. (2016) the A2C method was extended by adding experience replay
(ACER), making it the off-policy counterpart of the A3C algorithm. Controlling the variance and
stability for off-policy estimators can be difficult as the policy gradient is the product of (among
others) unbounded weights. To overcome this problem, the authors propose a new importance
weight truncation technique. For continuous action spaces, they needed another improvement
since the integration of the state-action values cannot be used to derive the value functions.
Therefore, stochastic dueling networks are introduced to estimate both values off-policy while
ensuring consistency between the two estimates.

Additionally, there are natural policy gradients algorithms, introduced in reinforcement learning
by Kakade (2002). The main difference with policy gradient algorithms is that natural gradients
use the steepest direction of the Fisher metric instead of the steepest direction in the parameter
space to get to the optimal solution. This prevents the policy from remaining in local optima
although it is much harder to compute, making it unsuitable for practical usage. To overcome this
problem, Schulman et al. (2015) developed the Trust Region Policy Optimization (TRPO). TRPO
constraints the size of a policy update with the idea that the updated policy should be close to the
current policy where results are known to be acceptable. Schulman et al. (2015) proves that the
maximum update size is a term that depends on the KL divergence. The KL divergence measures
the difference between two probability distributions (Kullback & Leibler, 1951). Therefore, this
term is subtracted from the gradient estimator:

maxθ Êt

[
πθ(at|st)
πθold(at|st)

Ât − βKL[πθold(·|st), πθ(·|st]
]

(4)

Note that the first term has changed to the policy divided by the old policy, instead of the
logarithm of the policy. Although TRPO coverts faster to an optimal solution, it is still quite hard
to implement as β cannot be fixed (making it a multi optimization problem) and the constraint
leads to extra computation time (Schulman et al., 2017). The Proximal Policy Optimization
(PPO) (Schulman et al., 2017) aims to solve this problem. Instead of penalizing the size of the

policy update, it clips the probability ratio rt(θ) = πθ(at|st)
πθold

(at|st) within the interval [1 − ϵ, 1 + ϵ].

Leading to the objective:

LCLIP (θ) = Êt

[
min(rt(θ)Ât, clip(rt(θ), 1− ϵ, 1 + ϵ)Ât)

]
(5)

Then, the minimum of the clipped and unclipped reward is used as lower bound of the final
objective. Since the neural network uses parameters from the policy and value function, an extra
loss function which combines the policy surrogate and value function error is subtracted. Last, an
entropy term is added to ensure exploration resulting in the following objective:

LCLIP+V F+S(θ) = Êt

[
LCLIP
t (θ)− c1L

V F
t (θ) + c2S[πθ](st)

]
(6)

The PPO algorithm was able to outperform other online policy gradient methods on Atari games
and other benchmark tasks. Still, the algorithm is not perfect and criticisers note flaws in design
choices. Hsu et al. (2020) argued that general design choices do not lead to the best results in every
setting and proposed two adaptions for specific cases. For discrete action spaces KL divergence
objectives make PPO more robust, while for continuous action spaces beta distribution lead to
better results than Gaussian policy parameterization.
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2.4.5 Training a deep reinforcement learning agent

Once a deep reinforcement learning algorithm is chosen, it should be trained on a specific task.
To guide the agent towards the optimal policy, several techniques can be applied. First, action
masking is explained, followed by hyperparameter tuning.

Action masking
A disadvantage of reinforcement learning is the relatively long training phase. Especially in more
complex environments with a large action space and multiple actions, such as the flow shop
scheduling problem in this study. In these cases, the major part of the action space is not possible
in a given state. For instance in flow shop scheduling, in the state where machine m is idle and all
other machines are occupied, all actions that assign job j to any machine except machine m are
invalid. When the agent chooses an invalid action, the state does not change and the environment
proceeds to the next step. In these settings the agent does not learn when an invalid action is
chosen because the state does not change. This is done in the field of scheduling by Brammer
et al. (2021), Mao et al. (2016) & W. Chen et al. (2017). From their results can be concluded
that these RL algorithms take relatively longer to convergence than algorithms with some form of
smart action selection. Another option is to design the action space in such a way that all actions
are valid in every state. For instance by choosing between scheduling heuristics (Ren et al., 2021),
(Marchesano et al., 2021) & (H. Wang et al., 2021).

Nevertheless, when one wants to implement an algorithm that actually assigns jobs to machines
instead of choosing the heuristic there will be invalid actions in some states. One of the methods
for guiding the agent towards the optimal policy is penalizing invalid actions (Cals et al., 2021).
Here, a (small) penalty is included in the reward function of the algorithm. Once the agent
chooses an invalid action it receives negative feedback by means of the penalty. In this way, the
agent learns which actions are invalid in a particular state. A drawback of this method is that it
can take a long time before the agent has learned all invalid actions per state. A relatively new
approach for this problem is the masking of invalid actions. With this method the invalid actions
in a given state will be ’invisible’ for the agent. The agent can only select visible actions and thus
the chosen action will always be valid. To use action masking, the agent and environment have to
be modified. The environment should indicate which actions are masked for each state, this can
be hand-crafted or estimated by an algorithm. The agent has to understand which actions are
masked. Often, this is done by a binary value for each action where 0 corresponds to invalid and
1 to valid.

Action masking can be used for both value-based and policy gradient algorithms. (Zahavy et al.,
2018) used action masking for DQN in a game environment. They implemented contextual multi-
armed bandits which estimates if an action is valid in a given state. The masked algorithm found
an optimal policy faster than unmasked comparable algorithms. Furthermore, Wu and Rasmussen
(2019) developed a trainable-action-mask (TAM) to predict if an action should be masked. Their
model predicted the similarity of consecutive states and classified the corresponding action as
invalid if the similarity exceeded a threshold. Policy gradient algorithms can be masked as well.

In the work of Tang et al. (2020), action masking is implemented in a PPO algorithm. Before
masking can be used in PPO algorithms, it needs two modifications. First, only valid action should
be included in the observation space. Second, during the stochastic ascent only valid actions should
be used in the search. Furthermore, the probability of valid actions need to be normalized again in
the output layer of the neural network. To test the performance of the maskable PPO algorithm it
was compared to the original PPO algorithm. Results showed that action masking lead to better
results in terms of reward function and computational time. Since the production and distribution
planning at premix producers exist out of multiple actions, the action space will be relatively large.
Consequently, there will be many invalid actions in some states and thus action masking could be
convenient in this case.
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Hyperparameter tuning
Hyperparameter tuning is important for DRL algorithms and can be time consuming. It is not
only important for the algorithm itself but for comparison with other algorithms as well. Especially
the neural network architecture, learning rate, reward scale, training discount value have a great
impact on the results (François-lavet et al., 2018). Henderson et al. (2018) discussed the role of each
aspect on the outcome of a DRL algorithm. For the neural network design, ReLu and Leaky ReLu
are the best activation functions overall, although there are differences across DRL algorithms.
This shows how the algorithm is interconnected with the neural network design. For instance,
changing the neural network of a PPO algorithm may require changes in the trust region clipping
or learning rate to compensate for architectural changes. Furthermore, reward scaling affects the
results as well. In particular layer normalization influences the result of reward rescaling, which
indicates that neural networks and gradient-based methods are the cause of this phenomena. The
authors showed that the source of the algorithm has a great impact on the outcome as well.

The actual tuning of hyperparameters itself can be done in many different ways. A grid search
is one of the easiest ways but depends on luck and experience of the designer (Rijsdijk et al.,
2021). Other options include automatic hyperparameter optimization (HPO) (B. Zhang et al.,
2021), Bayesian Optimization (BO) (Snoek et al., 2012) or another DRL algorithm (Rijsdijk et
al., 2021). In the work of B. Zhang et al. (2021) the importance of hyperparameter tuning was
once again underlined. Furthermore, they found that their HPO performed much better than
manual hyperparameter selection. In the Bayesian Optimization, the performance of an algorithm
is modeled as a sample from a Gaussian process. This leads to efficient parameter selection for
the next experiments based on the results of previous experiments (Snoek et al., 2012). Again,
this way of hyperparameter tuning outperformed manual selection.

Another method of tuning the algorithm is by means of reward shaping. The reward function is an
excellent way to include domain knowledge into the algorithm. However, expressing knowledge in
numbers is a difficult task due to cognitive biases (Hu et al., 2020). Basic reward shaping modifies
the original reward function by adding a shaped reward function (r

′
= r+F , where r is the original

reward, r
′
the modified reward and F the shaped reward). In early work, researchers focused on the

additive part, ignoring the fact that this may change the optimal policy. Hu et al. (2020) proposed
a new way to shape the reward by implementing parameterized reward shaping. They introduced
a weight zϕ to the equation, which weights each state-action pair. In this way, a distinction can be
made between beneficial and unbeneficial rewards. This results in a bi-level optimization problem
where the policy should be optimized given r

′
and then zϕ should be optimized such that the

acquired optimal policy maximized the reward as well. The results showed that the parameterized
reward shaping method was able to utilize beneficial reward shaping while ignoring unbeneficial
reward shaping, which improved the overall results of the algorithms compared to the baselines.

2.5 Deep reinforcement learning applications

An overview of deep reinforcement learning applications in the literature will be given here. This
includes scheduling problems and applications in other domains.

2.5.1 Scheduling

Deep reinforcement learning is used in production scheduling studies. Zhou et al. (2020) proposed
a DQN algorithm for dynamic scheduling in a smart manufacturing setting. The main reason for
choosing DRL was because DRL can deal with uncertain events. Smart manufacturing is similar
to job shop scheduling due to the large number of tasks, dynamic sate of services and uncertain
events. The model tries to minimize the makespan of all jobs while the system state is modeled
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as the queue times of all jobs. The agent should choose between scheduling rules when a job
arrives. These scheduling rules are Shortest Processing Time (SPT), Longest Processing Time
(LPT), Shortest Queue Time (SQT) and Longest Queue Time (LQT). Once the agent choose a
scheduling rule, the reward and next state is observed. In the case study, a fairly basic problem is
considered of 3 job types and 5 machines to illustrate how the model works. No benchmark was
used and therefore the performance of the model could not be assessed.

The classical job shop scheduling problem was studied by L. Wang et al. (2021) and extended by
dynamic events such as machine breakdown and job rework. To deal with the high dimensional
state and action space, they use the proximal policy optimization (PPO) instead of a value-based
method. The PPO algorithm was chosen because it has been proven to obtain good results by
limiting the policy update and reduce the sensitivity of parameter settings. Furthermore, the
objective of the model is to minimize the makespan. The authors model the job shop problem as
follows: the environment is a set of job lists with assigned machines and processing times. The
state space is the processing status of each job at the designated machine and the action is to
select jobs for idle machines. After the action is done, the agent receives the reward function which
is the machine utilization and makespan. The state, action and reward are stored in a buffer. The
policy is updated according to the stochastic gradient ascent method by mini-batch samples from
the buffer. The DRL algorithm performed better on average than meta-heuristics and obtained
solutions not higher than 10% of the optimal solution. Furthermore, to test the generalization
processing times and machine sequences were changed. The trained optimal policy of the first
experiment was able to find an optimal schedule in seconds. The GA did find a better solution
however it took 28 seconds to find it. This indicates that the DRL model can adapt to changing
environments more quickly.

A permutation flow shop scheduling problem was examined by Brammer et al. (2021) which
included multiple production lines and demand plans, however no uncertainty was included. The
action to be taken by the agent is to decide which job should be sequenced at position t. Afterwards
the environment goes to the next state, which ensures the policy is trained in an iterative way.
When the agents schedules a job to an invalid position the reward will be 0 and the state remains
unchanged. The reward is based on idle time of a machine while the state contains information
about the remaining jobs and remaining processing times on all machines. Furthermore, PPO is
used for policy learning combined with a policy gradient method instead of a DQN. This is done
because policy gradient methods guarantee convergence to a local optimum and allow learning
of a stochastic policy. The method outperformed heuristics and was just 0.42% worse than the
optimal solution.

Marchesano et al. (2021) proposed a deep reinforcement learning model to solve a flow shop
scheduling problem. A DQN was employed to approximate the value function and the representa-
tion of the states and actions. Goal of the agent is to choose the best dispatching rule for a given
state. This is difficult since there is not one dispatching rule that is superior in every situation.
Back propagation is used to calculate the error by means of the loss function. The reward function
is based on the throughput of the production line. The state of the system is modeled as the job
characteristics waiting in the queue and the line’s current production status. The action of the
agent was to choose between three dispatching rules, first in first out (FIFO), shortest processing
time (SPT) and latest processing time (LPT) Results showed that the agent chooses the SPT rule
in most of the cases.

S. Lee et al. (2020) applied DRL to schedule the production process of injection mold. This
process differs from the compound feed industry since each product has a different manufacturing
process. Yet, it shows similarities in the production process as their shared objective is to minimize
the tardiness, products are mostly made to order and sequence dependent setup times occur.
Furthermore, the authors included a dynamic environment in their study. A MDP was proposed
to transform the problem to a DRL model. They included a set of idle machines statuses in
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the state, which is the setup type per machine and dedicated operation type. Furthermore, the
waiting jobs are included. The action of the agent is to choose which job is assigned to an idle
machine. The reward function is the weighted average processing time since the actual completion
time is unknown when the agent acts. A DQN was used to solve the case and results showed that
the DRL model outperformed other dispatching rules once trained without retraining. However,
retraining was needed when the job types, machines and job sequences changed.

Kardos et al. (2021) studied a Q-learning DRL algorithm to solve the dynamic scheduling problem
in a job shop production process. The states included information about the job type and the
number of jobs in the system. With this information the total process and setup times can be
derived. The agent should allocate a job to a machine in order to minimize the total lead time.
The reward of the model is based on the lead time. The actual lead time is compared to a baseline
lead time. Again the DRL algorithm was compared to dispatching rules and results showed that
the DRL algorithm reduced the average lead time compared to dispatching rules and became more
beneficial for more complex production processes.

In the work of Luo et al. (2021) a multi-objective flexible job shop scheduling problem is solved with
a DQN algorithm. The objective is to minimize the weighted tardiness and machine utilization.
The authors extended the original DQN by developing a two hierarchy DQN. The higher-level
DQN determines the temporary goal of the lower-level DQN. The lower-level DQN combines the
current state with the temporary goal to choose a dispatching rule. In the state, the number
of machines, due date tightness and the expected inter arrival time are included. Together with
information about the machine utilization, completion rate of jobs and tardiness. Actions include
various dispatching rules at each rescheduling point. The reward function consists of four differ-
ent goals including estimated total weighted tardiness, actual tardiness, estimated tardiness and
average machine utilization. The higher-level DQN adaptively selects different goals at different
rescheduling point to balance the two objectives. During training, a new job arrival is defined
as a rescheduling point and is based on the DDQN of Van Hasselt et al. (2015). The algorithm
was compared with classical dispatching rules and other RL based methods. Results showed that
the proposed algorithm outperformed the dispatching rules and on most instances the other RL
methods.

Ren et al. (2021) examined a flow shop scheduling problem and proposed a RL algorithm to solve
it. The state included the ratio of waiting jobs per machine, mean processing time of jobs in the
queue per machine, the ratio of minimum and maximum processing time of jobs in the queue per
machine and the ratio of remaining processing time of the jobs per machine. Actions consists
of choosing the dispatching rule that leads to the minimization of the makespan. Therefore, the
reward function is about the makespan and is the negative summation of the idle times of all
machines. A Sarsa algorithm was used to solve the problem and showed good performance even
with bigger instances than the trained set.

In the work of Hoon Lee and Lee (2021), DRL was used to schedule the production in a semicon-
ductor factory. The state denotes information about idle machines, current setup type, number
of setup changeovers, number of jobs in the queue, target production and actual production. The
agent should decide which job to process next on each machine and the reward is designed such
that more reward is received when the agent chooses an idle machine to process next. Furthermore,
negative reward for setup times is included. A DQN was used to solve the problem and results
showed that the algorithm performed equally good compared to dispatching rules. However, with
new instances the algorithm was still able to produce a good schedule. Therefore, the algorithm
could be used for different production processes as well.

The lot scheduling problem is somewhat compared to flow shop scheduling with sequence de-
pendent setup times since setup times are of great importance with lot scheduling as well. Here
standardized products should be scheduled on a single machine that has significant setup times
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between product types. Therefore, producing more of one product at a time is more time efficient
than producing according demand. Rummukainen and Nurminen (2019) studied this problem and
tried to solve it with a PPO algorithm. They modeled their system as a Semi-Markov decision
process (SMDP) instead of a regular MDP. In SMDP the state changes once an event has occurred,
while in MDP the state changes after a predefined time interval. This could enhance the efficiency
of the algorithm since SMDP require the algorithm to decide upon an action once the system state
changes and thus an action is required.

In the case of Rummukainen and Nurminen (2019) this is when an item has been produced or
when an order arrives during idle time. They model the state as the inventory level per product
type and the agent can choose to produce a product or leave the machine idle. A continuous time
discount factor was added to the advantage factor to make it more suitable for SMDP modeling.
Furthermore, they excluded the entropy term in the loss function as they found it ineffective
in practice. In the experiments they compared multiple PPO algorithms and they found that
one of their algorithms outperformed an older version. Although they mentioned it was hard
to find a good neural network architecture and hyperparameters for their problem. This led
to the conclusion that DRL is best suited for problems where no existing scheduling method is
satisfactory.

Hubbs et al. (2020) designed a DRL model to schedule a dynamic chemical production process.
The authors used an Advantage-Actor-Critic (A2C) algorithm to solve the problem which is a
policy gradient algorithm that used both value function approximation (critic) and policy function
(actor). A prediction of the future inventory is used to decrease the action space. Furthermore, the
state includes information about demand, forecast of demand, one-hot encoded current schedule
and simulation time. The reward is the same as the objective of the mathematical model, namely
the profit of the schedule. This includes the discounted standard margin times the shipped amount
per order minus the costs for inventory. Results showed that, once trained, the DRL model
outperforms other more computationally intensive scheduling methods. Moreover, this holds in
new instances, showing the robustness of the model. However, there are drawbacks as well. There
is no guarantee that a global optimum is found and the model required many training sampled to
learn a good policy.

H. Wang et al. (2021) studied a combined job scheduling with preventive maintenance problem
and proposed a Q-learning algorithm to solve the case. The agent should choose between four
dispatching rules for job scheduling and should choose when to execute preventive maintenance.
The state therefore contains information about the mean normal processing time and estimation of
mean lateness of remaining jobs. The reward function consists of immediate and final reward. Im-
mediate reward is the ratio processed jobs divided by the makespan, whereas the final reward is the
difference between the objective value in the current episode and the historically optimal objective
value. Results showed that the Q-learning algorithm performed better than other maintenance
strategies.

From these articles can be concluded that DRL algorithms often perform better than meta-
heuristics in dynamic environments. Furthermore, DRL algorithms are able to schedule com-
parable scenarios once trained, while other solution approaches require retraining. Besides, it is
clear how current studies model the states, actions and reward. In the state space, the jobs in the
queue and resources status are often included. The actions consists of either actual assigning jobs
to machines or a scheduling heuristic. Reward functions have some component for tardy or on
time delivered orders, makespan, throughput and a penalty for setup times. Furthermore, PPO
algorithms are often used, instead of value based algorithms due to their fast convergence and
ability to deal with high dimensional state and action space. Last, modeling the environment as
a SMDP seems interesting due to the fact that it requires less unnecessary state transitions, thus
less computational time.
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2.5.2 Other applications

Deep reinforcement learning was used in other operational domains as well. Although these
problems are not the same as the problem examined in this thesis it is still useful to review these
articles. Cals et al. (2021) studied an order batching and sequencing problem (OBSP). Here it
should be decided how (picked by order or by batch) and when orders should be batched and
picked in a warehouse while minimizing the number of tardy orders. The algorithm contains two
components, the sequencing decisions are done by heuristics while a DRL decides upon the picked-
by-order or picked-by-batch question. Since their model heavily depends on time, a semi-Markov
decision process is used. This relaxes the fixed transition time to a next state constraint. Now,
the transition time is triggered by the arrival of a new order and the agent can react accordingly.

The state space contains information about remaining orders, available capacity, tardy orders,
number of processed orders and simulation time. Actions include the decision if an order should
be picked by batch or order. The reward function has a small penalty component for infeasible
actions and tardy orders, while the ratio processed orders against all orders accounts for the largest
part of the reward. The PPO algorithm was used to find a (near) optimal policy. To compare the
DRL algorithm, several heuristics were tested as well. Results showed that the proposed algorithm
outperformed the heuristics on most instances. Furthermore, the trained model was able to find
equal results on new instances compared to agents which were trained on these instances showing
the robustness of the proposed algorithm.

In the study of Farahani et al. (2021) a DRL algorithm was used to allocate containers to trucks and
trains in a sequential decision making problem. Goal was to minimize the costs while concerning
the capacity of the trains. Costs of using a truck is far greater than using a train. Therefore, the
algorithm should assign as many containers to trains as possible. Furthermore, unlimited truck
capacity was assumed. The state contains information about train capacities with arrival and
departure time, and information about the next container that must be allocated including earliest
available transportation day and due date. This container is selected by means of a heuristic.
Furthermore, the actions include the allocation of a container to a train or the unconstrained
truck.

The reward function consists of costs incurred with choosing a certain action. First, if the truck or
a train which leads to a delay is chosen, the costs are transportation costs by truck. Second, if a
train is chosen that delivers the container on time only the train transportation costs are incurred.
Note that transportation costs by truck are much higher than delivery by train. The optimal
policy is searched by a DQN. Furthermore, action masking is used to mask infeasible actions such
as allocating containers to trains without capacity or trains which departed before the container
arrived. The actual action is then chosen by a customized epsilon-greedy method. Besides, replay
memory and mini-batch is used to decrease the update variance. To address the performance of
the model it was compared with an earliest due date and first in first out heuristic. Results showed
that it outperformed both heuristics and was just 0.63% worse than the optimal model in the high
uncertainty case. This shows the potential of DRL in uncertain environments.

DRL applied to preventive maintenance in a serial production line is studied by J. Huang et
al. (2020) as well. The state is defined by the machine age which specifies the probability of
random failures, the buffer level of each machine and the remaining maintenance duration for
ongoing maintenance per machine. The agent should decide when to turn off a machine and
perform preventive maintenance. Furthermore, the reward exist of incurred costs corresponding to
maintenance and profit loss due to production loss. A DDQN is used to schedule the maintenance.
The authors normalize the input and output of the NN to ensure all values have the same scale. The
algorithm was compared to various maintenance heuristics and results showed that it outperformed
the heuristics for all instances.
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In the work of Mao et al. (2016), DRL was used for dynamic multi resource cluster scheduling.
Jobs arrive in the system over time and the agent should allocate jobs to resource clusters, where
each cluster is treated as a single machine. The objective is to minimize the normalized makespan,
i.e. completion time divided by the ideal duration. According to the authors, normalizing the
makespan prevents a bias towards large jobs. In the state space, the current allocation of jobs to
clusters and the required clusters by waiting jobs are included in images which serve as input for
the neural network of the DRL algorithm. To have a fixed state representation, only the longest
waiting m jobs are maintained in images. Other arriving jobs are stored in the backlog of the state
space. This appears to be a good solution since longer waiting jobs should be processed first.

An additional advantage is that the action space is constrained, which makes the learning process
more efficient. During the action phase, the time is frozen until the agent chooses otherwise. The
action space consists of choosing which job to process next and the agent is allowed to schedule
multiple jobs at once. When the agent chooses an invalid action or wishes to stop scheduling
during this timestep, time proceeds and newly arrived jobs are revealed to the agent. The agent
only receives a reward at the end of an action and the reward function is minus the sum of the ideal
completion time of all jobs in the system (in process and waiting). A variant of the REINFORCE
algorithm was used to solve the problem and results showed that the algorithm is comparable
to heuristics. W. Chen et al. (2017) improved the work of Mao et al. (2016) by extending the
model with a new reward function and a convolutional input layer. In the new reward function,
a greater penalty is given to waiting jobs. It appeared that the model was able to find better
solution together with a faster convergence rate.

The storage space allocation problem can be compared to the bin packing problem according to
Boland et al. (2011), which is known to be NP-hard (Garey & Johnson, 1979). Even though
multiple heuristics have been proposed to solve the bin packing problem, there is not one general
heuristic that works well on all instances (Gomez & Terashima-Maŕın, 2018). Often single heur-
istics are used to select the next item to be placed, the bin and the position of the item inside the
bin. Therefore, bin packing problems generally exists of two sub-problems: one for item selection
and one for item placement. Since only the first sub-problem is applicable to the problem of this
thesis, the latter will not be discussed. First of all, the first fit heuristic which considers all open
bins in a fixed order and places the next item in the first fitting bin. Variants on the first fit
include sorting all items and then start with largest or smallest item. Furthermore, the next fit
heuristic places the next item in the current bin, if that does not fit a new bin is selected. Again,
all items can be sorted first by largest or smallest item. Other methods are the best/worst fit
heuristic which places the item in the best/worst fitting bin. This can be combined with sorting
the items first in a decreasing or increasing order.

Ouhaman et al. (2020) studied a storage space allocation problem in a bulk material setting. Bulk
material had to be stored in six identical hangers with the same capacity in a seaport. Their
heuristic sorts the products based on the arrival time and subsequently chooses the storage space
that has the least space left such that it fits in the storage area. The heuristic was tested on a
large dataset and was able to find a quick solution (within one minute) although it was not near
the optimal solution.

DRL is used in inventory management as well. De Moor et al. (2022) studied how potential-based
reward shaping can improve the use of DRL in perishable inventory management. Reward shaping
adjusts the reward of the model to guide the algorithm towards the desired outcome. This reduces
the sensitivity of the algorithm. Results showed that reward shaping can transfer knowledge
embedded in the heuristic that is used to teach the reward shaping algorithm, as long as the
teacher performs well on the given problem. Furthermore, reward shaping improves the learning
process since the objective function is better and variability is lower compared to unshaped models.
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2.5.3 Offline reinforcement learning

One of the flaws of reinforcement learning is the dependence on interaction with the environment
to learn the optimal policy (R. Sutton & Barto, 1998). This online learning is impractical when
the agent is trained in the real world since it will make sub-optimal decisions in the early stages
of training, which can be expensive. Training the agent with a simulator overcomes this problem
although this has flaws as well. Building a realistic simulator can be time consuming and difficult,
especially in complex environments. Besides, flaws in the simulator will be exploited by the agent
if beneficial. Offline reinforcement learning could be a solution for this problem since it utilizes
previously collected data to update its policy, without interacting with the environment. The
dataset should include information about the transitions of the MDP, D = {
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Note that sit is the state, ait are the actions and rit is the reward in each transition. The offline
reinforcement learning algorithm has to learn the best policy based on the dataset, which is similar
to classical supervised learning (Levine et al., 2020).

At first glance this seems a promising way to deal with the largest problem of online reinforcement
learning. Unfortunately, challenges arise with offline reinforcement learning as well. To start,
the quality of the algorithm heavily depends on the quality of the dataset and exploration is not
possible. If there are no transitions of high-reward regions in the state space, the algorithm will
not explore these regions. Furthermore, the goal of offline reinforcement learning is to find a
different policy than the policy in the dataset. This is contradictory to current machine learning
techniques where the goal is to find a distribution that matches the distribution of the training
dataset. As a result, the corresponding reward to a new policy remains unknown during training
(Agarwal et al., 2020).

Offline reinforcement learning algorithms are mostly applied to fields where online training is dif-
ficult. One example is the application in visual learning for robots in real world environments,
which requires a massive dataset with all sorts of real world objects (Russakovsky et al., 2015).
Healthcare is another domain where offline reinforcement learning is well suited due to the con-
sequences of errors. Although this brings some extra challenges such as survivor biases in the
dataset (Gottesman et al., 2019). In the work of L. Wang et al. (2018) medical records were used
as input for an offline actor-critic algorithm to determine drug recommendations. Furthermore,
offline reinforcement learning was used in combination with online reinforcement learning in the
work of Nair et al. (2020). They combined an offline sample-efficient dynamic programming al-
gorithm with online fine tuning of the policy by maximum likelihood updates. The algorithm
was able to converge faster and find better policies than other off policy and offline reinforcement
algorithms.

To the authors knowledge, Gabel and Riedmiller (2008) is the only study which used some form of
an offline reinforcement learning algorithm on the job shop scheduling problem. Their algorithm
was not fully trained offline, they used offline reinforcement learning to have less interaction
with the environment. First, a MDP transition dataset was generated by interaction with the
simulation model. Then, an adapted version of the Q-learning algorithm was used to find a policy
on the dataset. Subsequently, the policy was updated by regular Q-learning, thus by interaction
with the simulation model. The adapted Q-learning algorithm outperformed dispatching-rules.
Furthermore, it performed better than the benchmarks on unknown scenarios.

Q-learning tend to overestimate the value functions due to the different distribution in the learned
policy compared to the dataset (Kumar et al., 2020). To overcome this property of Q-learning
algorithms at offline training, some adaptions are proposed in the literature. Kumar et al. (2020)
adapted the Q-learning learning algorithm such that it learns a lower bound of the policy value
and named their algorithm the conservative Q-learning algorithm. Furthermore, Fujimoto et al.
(2018) proposed a batch-constrained Q-learning algorithm, which limits the action space to guide
the agent towards a near-optimal policy.
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Offline reinforcement learning has some useful properties for the case of the thesis. To start,
building a simulation model is time consuming and prone to errors. Offline reinforcement learning
could solve this problem when a dataset with MDP transition is available. Furthermore, online
training requires interaction with the environment. This can be difficult for premix manufactures
since there is no room for errors during the early stage of training. Especially offline reinforcement
learning algorithms that deal with overfitting are interesting for this thesis. Moreover, little
research has been done in applying offline reinforcement learning to scheduling problems which
leaves a gap in the literature.

2.6 Research gap & contributions

The literature review forms a basis and academic motivation for this thesis project. It can be con-
cluded that there are no existing studies which tackled the exact same problem, i.e. production
scheduling with truck and storage allocation in a dynamic setting at premix feed producers. Fur-
thermore, little research has been done on the integrated production and distribution scheduling
problem. Hou et al. (2022), Leung and Chen (2013) and Mortazavi et al. (2015) proposed different
meta heuristics to solve the problem. However, the instances were relatively small and not one of
them included storage of finished products between production and delivery. Moreover, none of
them included a dynamic environment. Leaving a clear gap about research in dynamic integrated
production and distribution scheduling.

During the literature review, separate parts of the dynamic integrated production and distribution
scheduling problem were investigated to get an understanding of the problem and find current
(meta) heuristic solutions. Although the proposed solutions perform well for the studied problems,
they are not suitable for dynamic problems with a high dimensional environment. DRL appears to
be a promising technique to overcome this problem since it can handle large state spaces and deals
with dynamic events through decision making over time. Especially the PPO algorithm (Schulman
et al., 2017) could be a good method to solve the production and distribution scheduling problem
due to its ability to tackle bigger state spaces compared to DQN (Mnih et al., 2015) and other
DRL algorithms. A downside of DRL is the design of states, actions and rewards, which heavily
influence the performance of the model. This should be accounted for in the environment design
in a later stage of the research. Moreover, there are little DRL studies who included multiple
actions in their model during the production scheduling process. Therefore, this research aims to
make two scientific contributions.

1. We are the first to study the integrated production and distribution scheduling problem,
including sequence-dependent setup times in a dynamic and uncertain environment. This
makes the study more realistic as compared to offline equivalent studies. Moreover, larger
instances are included than previous studies, which cannot be solved exact.

2. A novel way to solve this problem will be studied by means of a deep reinforcement learning
based solution. This includes multiple decision moments in the production process and
distribution schedule.

Furthermore, it should be mentioned that the conducted literature review is by no means an ex-
haustive review of the existing literature on the integrated production and distribution scheduling
problem and deep reinforcement learning. Instead, it provides a broad review to get a better
understanding of the topic.
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3 Problem description

This section elaborates on the brief problem statement that was provided in the introduction. First,
the current production and distribution processes at a typical premix feed producer are explained.
Followed by a description of the current production and distribution scheduling process. Then,
the challenges in this problem are discussed, after which the scope of the thesis is defined. Last,
the problem is formulated as a mathematical model.

3.1 Production and distribution process

The production of premix can be described as a permutation flow shop production process. A flow
shop is referred to as an ordered set of stages in a production setting such that the first operation
of each job is executed at stage 1, the second at stage 2 until the mth operation at stage m (Garey
et al., 1976). Furthermore, a flow shop production process is called permutation flow shop if the
processing sequence of jobs cannot change from one machine to the next (Rossit et al., 2018). Each
stage represents a machine in the production process of premix, which performs an operation on
(raw) materials to make the final product. The customer orders form the production requests.
These requests are defined as jobs in a flow shop setting. Before production starts, suppliers
deliver raw materials to the production plant. Delivery is done in bulk and bags. Examples of
raw materials are vitamins, minerals, amino acids and fillers. Ingredients that are used for many
products are delivered in large quantities and in bulk. These materials must be weighed with
dosing and weighing equipment (possibly with Alfra) before storage in silos until usage. Raw
materials that are used less often are stored in bags.

An overview of the production process is given in Figure 3. A real production plant is built in
height because downward transportation of materials can be done by gravity. This reduces energy
usage of the production plant and therefore decreases the production costs. Production starts with
dosing raw materials according to the product’s recipe. Advanced dosing machinery, such as Alfra,
are used to assure the final product has the same proportion of ingredients as the recipe. The dosed
materials are then sequentially processed on a production line with different machines (stages) to
manufacture the product. First, ingredients are mixed with each other at the mixing machine.
Here, bag ingredients are manually added if required. Mixed ingredients are stored in a buffer silo
after mixing. Then, depending on the desired packaging, products are either filled in small bags
or big bags and is called sacking. If a customer requests bulk delivery, the product is temporarily
stored in silos upon loading to bulk trucks. Bagged products are stored in a warehouse on pallets.
The premix production process is done in batches, which means that the whole batch has to be
finished before a new batch can be processed. Dosing takes about 45 minutes and multiple dosing
machines operate at the same time to make sure the mixing machine is not idle when recipes are
dosed. Mixing takes about 6 minutes and it can process 2000 kg per batch. Most factories have
multiple mixing machines operating in parallel. Sacking is a continuous process where 10.000 kg
/ hour can be placed in small bags and 8.000 kg / hour can be placed in big bags.

As stated before, a part of the distribution is done in bulk trucks. These trucks have different
compartments to prevent contamination during transport. Often, trucks transport multiple orders
and thus have to visit multiple customers in one ride. To precisely load the trucks in terms of
product quantity, again dosing machines are used. Loading can be done directly from finished
product silos or via so called ’contrabins’. A contrabin is a smaller silo located right above the
hatch of a truck’s compartment in the loading street. Direct loading is done with either movable
dosing and weighing machines or with a weighbridge. The machine doses the correct amount of
product from a silo and transports it to the truck. Once arrived at the truck, the weighing machine
is placed above the correct compartment and unloads the product directly in the truck. Loading
with weighbridges is the cheapest and the longest option. Here, no dosing and weighing machines
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Figure 3: Production process compound feed producer

are used. Instead, finished product is loaded manually in a compartment until the truck driver
thinks the correct amount is loaded. Then, the truck has to weight on the weighbridge to determine
the actual loaded quantity of finished product. Logically, this process should be repeated until
the requested quantity is loaded. This way of loading is the least precise method. Contrabins
are used to accelerate the loading process and is costlier than direct loading. Products that are
scheduled for the next truck are loaded into the contrabins in advance. For each compartment
of a bulk truck there is one contrabin. In this way, the truck only has to park in the loading
street which is below the contrabins and loading all compartments can be done after one another
without intermediate dosing of products by a dosing machine. Once loaded, the truck delivers the
products to the customers.

3.2 Current planning process

The production and distribution processes are scheduled by planners of the premix producer.
Currently, the distribution planning is scheduled prior to the production planning and this is
often done with third party optimization software. This can be compared to the predetermined
truck departure time scheduling integration definition from Karaoğlan and Kesen (2017), since
the truck’s departure time is not adapted at rescheduling. Instead, the production schedules are
adjusted to the distribution schedule. Input for the distribution planning are the orders, which
have a due date, delivery location and required quantity. The software assigns orders to trucks
and decides upon the departure time at the production plant such that all orders are delivered on
time. Orders do not necessarily contain enough products to fill up exactly one truck, therefore
trucks may contain multiple orders. Furthermore, delivery is done in nearby regions, thus trucks
can do multiple rides on one day. When completed, the distribution planning is loaded into the
Promas ST software system. Promas ST shows the latest production finishing time of a product
such that it can be delivered on time. Based on the distribution planning, planners schedule the
production orders manually. Scheduling includes deciding whether requested products should be
produced or retrieved from stock. If a product has to be be produced, the planner decides when
to produce and on which mixing line and sacking line. Furthermore, planners should allocate
produced products to storage places in the warehouse or silos and compartments of the truck.
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The Promas ST software assists the planner by visualizing the chosen production order in a Gantt
chart and by showing if due dates are met with the current planning in a list. Besides, planners
should schedule production of MTS products. MTS production orders arrive when inventory of a
particular product is below its reorder level. These products are often produced during nighttime
when no customer orders arrive.

3.3 Desired situation

Due to the complexity of the scheduling problem manual (re-)planning leads to sub-optimal sched-
ules. This is reflected in the daily operations as trucks have to wait for production to finish and
vice versa. As a consequence, customers of KSE desire an integrated and automated production
and distribution planning. This has been proven to enhance operational efficiency (Yağmur &
Kesen, 2020). After all, profit margins are small in this industry, thus adequate use of resources
can lead to competitive advantages for premix producers. Previous attempts by KSE to integrate
production and distribution schedules have failed so far. Customers of KSE are therefore sceptical
that this is possible for such a complex scheduling problem. KSE wants to investigate if combining
these schedules is possible so they can implement this in their factory automation software package
Promas ST.

3.4 Challenges

Combining the production and distribution planning brings certain challenges. These challenges
can be divided into general challenges and industry specific challenges.

3.4.1 General challenges

Traditional scheduling tools assume a deterministic and static environment, while in reality this
is never the case. In static settings, all jobs and corresponding processing times are known before
scheduling. On the other hand, in dynamic settings jobs enter the system over time and planners
do not have full knowledge about upcoming jobs (K. Lee et al., 2019). Since not all information
is known in advance, re-planning may be required when new jobs enter the system. In the case
of premix producers, not only new jobs arrive but unforeseen events occur as well such as ma-
chine breakdown, lack of raw materials and truck delay. In previous attempts to automate both
production and distribution schedules, static scheduling methods were used. As these methods
assumed all information was known before scheduling, the schedules were not able to deal with
the dynamic nature of the environment. During the day, various unforeseen events take place
such as changing orders, this includes change in product type or product quantity. Other un-
foreseen events are delay of trucks, equipment downtime and lack of raw materials, which makes
the planning environment dynamic (Jackson, 1957). Planners at premix manufacturers constantly
reschedule the production and distribution planning. They do this based on expert knowledge
gained by experience. There are no clear guidelines for adapting the planning when an unforeseen
event occurs as every situation needs a different approach.

3.4.2 Industry specific challenges

Contamination of raw materials makes the production planning challenging as this constrains
production sequences. For instance, the lowest concentration of copper in sheep feed kills them,
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while copper is an essential nutrition for poultry. Therefore, sheep feed cannot be produced imme-
diately after the production of poultry feed. Either the production line is cleaned by producing a
so called ’flush batch’, which is cheap material that is discarded after it ran through the production
line. Another option is to produce sufficient non-contaminating batches in between the contam-
inating products. This is referred to as sequence-dependent setup times in the literature (Toso
et al., 2009). Furthermore, when a machine or silo is emptied, a small amount of material remains
behind, for instance because it sticks to the walls. Compound feed producers know this ratio for
each material type per machine type or silo. With this information it can be calculated how many
production batches should be between two product types where contamination is dangerous. For
example, when 0.1% of copper remains in a mixing machine every time it operates and sheep are
allowed to have 0.001% of copper in their food, then at least two other batches should be produced
in between the production of sheep and poultry feed.

Another industry specific challenge is limited storage space at production plants. Most produ-
cers of premix do not have enough storage spaces and silos to store each type of product and these
spaces differ in size. Each silo can store one product type at the time to avoid contamination. No
matter what amount is stored in a silo, it is considered full until the silo is emptied. Obviously,
production orders with the exact same production type can be stored in the same silo. Therefore,
planners must smartly assign finished products to silos. Currently, the storage capacity is not used
to their full extent. Often production orders are assigned to silos with ample capacity, blocking
the whole silo and thus using far more storage space than necessary. The same logic can be applied
to storage spaces for bagged products. Storage spaces differ in capacity and one order is stored in
a storage space.

Furthermore, time constraints and delivery expectations in the premix industry makes
combined production and distribution scheduling more challenging. High competition between
premix producers enables compound feed producers and farmers to demand same day delivery
for emergency orders. They will simply go to a competitor if a premix producer cannot meet
its demands. Consequently, new orders arrive during the day which requires re-planning of the
production schedule as well. High competition has made production and distribution schedules
tight already, leaving little room for re-planning.

3.5 Scope

With an introduction to the premix industry and the description of the current production and
distribution planning, the scope of this thesis can be defined. The objective of the study is to
show that an integrated and automated schedule for both production and distribution processes
at premix producers is possible, while accounting for unforeseen events. To make the setting of
the study as realistic as possible within the given timeframe, the following challenges are included
in the project. First, a dynamic setting is assumed. This includes the arrival of new orders
over time and unforeseen events. Unforeseen events consists of machine breakdown and truck
delay. Furthermore, the industry specific challenge of contamination is accounted for by means of
sequence-dependent setup times. In addition, finite storage space is assumed. While incorporating
the aforementioned challenges, the following will be considered out of scope:

1. Routing of trucks. However, it will be assumed that trucks have a departure time and
that orders need to be allocated to trucks.

2. Intake of raw materials. The assumption is made that raw material is always available.

3. Material dosing. It will be assumed that jobs do not require dosing of raw materials, i.e.
they are immediately available for mixing once scheduled.
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4. Multiple product request in one order. It will be assumed that orders contain one
product type.

5. Transportation time within the factory. Transporting jobs between stages in the pro-
duction process are neglected since this does not influence the scheduling process.

6. Perishability. The assumption is made that raw material and finished products do not
spoil over time.

3.6 Problem formulation

This section includes a mathematical model of the integrated production and distribution schedul-
ing problem that will be solved in this thesis. The model helps to precisely define the problem and
is therefore not meant to be exactly solvable. The integrated production and distribution plan-
ning requires simultaneous decisions for production and distribution. For the production part it
should be decided when an order is produced and on which mixing machine and sacking machine.
Furthermore, it should be decided which storage space is used to store a produced product. For
the distribution part, order to truck allocation is considered. These decisions will be modeled as
decision variables. The mathematical model is based on the works of (Hou et al., 2022), (Solina
& Mirabelli, 2021) & (Z. Li et al., 2021), who studied similar problems.

Parameter Description
ontimej Binary variable indicating if job j is one time
dj Due date of job j
sjm Start time of job j on machine m
ctjm Completion time of job j on machine m
stjj′m where j ̸= j′ Setup time between job j and j′ on machine m
qj Ordered quantity of job j
caps Capacity of storage space s
captr Truck capacity of truck tr
deptrj Departure time of truck tr and assigned job j
yjmt Job j is assigned to machine m at time t
BigM Big number
Decision variable Description
Xjmixt Assign job j to mixing machine mix at time t
Xjsackt Assign job j to sacking machine sack at time t
Zjst Assign job j to storage space s at time t
Vjtrt Assign job j to truck tr at time t

Table 1: Parameters & decision variables
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Objective function

max
∑
j∈J

ontimej

s.t. ∑
j∈J

yjmt ≤ 1 ∀m ∈M ∀t ∈ T (7)

∑
mix∈Mix

Xjmixt = 1 ∀j ∈ J ∀t ∈ T (8)∑
sack∈Sack

Xjsackt = 1 ∀j ∈ J ∀t ∈ T (9)∑
j∈J

Zjst · qj ≤ caps ∀s ∈ S ∀t ∈ T (10)

∑
j∈J

Vjtrt · qj ≤ captr ∀tr ∈ Trucks ∀t ∈ T (11)

stjj′m ≤ ctj′m − sjm ∀j, j′ ∈ J, j ̸= j′ ∀m ∈M (12)

BigM · ontimej ≥ max (dj − deptrj , 0) ∀tr ∈ Trucks ∀j ∈ J (13)

A textual explanation of the model is given here. Customer orders contain information about the
order due date, ordered product type and quantity. Each order is translated to a job. Thus, jobs
contain information about the due date, product type and quantity as well. Since the objective of
premix manufacturers is to deliver as much orders as possible on time, the objective function is
to maximize the number of on time delivered jobs. The 7th constraint ensures that at most one
job can be processed on a machine at the time. Constraint 8 and 9 ensure that all jobs must be
assigned to a mixing machine and a sacking machine at a given time t. Note that this notation
assumes discrete time. In reality, this is not the case due to the varying processing times of jobs.
Besides, for bulk products the sacking machine is a dummy machine. Furthermore, the capacity
of the storage space and a truck cannot be exceeded when a job or order is allocated (Constraint
10 & 11). Constraint 12 is about sequence-dependent setup times and ensures that the difference
between completion time of job j′ and start time of job j must exceed the setup time between job
j and j′. Finally, job j is considered on time when the departure time of its assigned truck tr is
lesser than its due date (Constraint 13).
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4 Solution method

This section explains the solution method that was implemented. To start, the Semi-Markov
Decision Process framework is discussed. Followed by a description of reward shaping. After that,
the simulation model is explained together with the simulation setup. Furthermore, the DRL
algorithm, offline reinforcement learning and the benchmark algorithm are discussed.

4.1 Semi-Markov Decision Process

In order to use DRL for the given problem in section 3, the problem must be modelled as a Markov
Decision Process. As described in section 2, MDP is a discrete-time stochastic framework which
is used by DRL models to solve an optimization problem. In the work of Rummukainen and
Nurminen (2019), a Semi-Markov Decision Process (SMDP) was used as framework for a DRL
algorithm. In a SMDP, the state transitions to the next state once the state of the environment
changes, i.e. when an event happens and an action from the agent is needed. As a consequence,
time is continuous in SMDP’s. For comparison, in a MDP the state transitions with a fixed time
interval regardless of events. This means that in a MDP the state could transition when no action
is required by the agent. Consequently, the agent experiences many transitions where it learns
nothing, which leads to a longer training phase.

State transition triggered by events, require less state changes when the environment is modelled
as a SMDP and is especially useful when a discrete-event simulation environment is used to
train an agent. For the reason that simulated time requires little computational time. On the
other hand, state transitions require time consuming observation space updates. When less state
transitions are required, the total computaional time descreases which is the case with SMDP’s. A
downside of SMDP modelling is that most DRL algorithms are built for MDP frameworks, which
could affect the DRL agent’s performance. Rummukainen and Nurminen (2019) adapted the PPO
algorithm (Schulman et al., 2017) for the SMDP setting by adding continuous time discounting
in the advantage estimator. Furthermore, they excluded the entropy term while tracking the 100-
rollout interval average reward rate during training. Since these adaptions of the original PPO
algorithm are relatively small, it is likely that the original PPO algorithm produces good results
in combination with a SMDP framework. In addition, the advantage of less state changes and
less training time in SMDP’s outweighs this downside. Therefore, a SMDP framework was used
in this project.

The SMDP formulation requires a state space S, action space A and a reward function R. As
explained in section 2, the transition function T cannot be determined because the transition
probabilities are unknown. Instead, a DRL agent is trained to estimate the policy. Each component
is elaborated on below.

4.1.1 State space

The state space should include all relevant information for the agent to decide the next action.
Although it should be limited to information that is beneficial for learning, since complex state
spaces obstruct the agent in learning the optimal policy (Fu et al., 2017). Furthermore, a larger
state space requires more computational time and could enlarge the action space. In order to find
the best state space, various settings have been investigated. The settings that were not included
in the final state space are discussed at the end of section 7. Here, only the final state space is
discussed. An overview of position of each state space component is given in Figure 4. To start,
the state space was divided into three components:
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1. order information

2. resource information

3. additional information

Order information
Order information itself was divided into jobs waiting in the queue and orders ready for shipment.
Information about an order included the product type, quantity, packing type, status, location
and due date. When an order arrived into the system, it was converted to a job in the queue
waiting to be produced. The state space stored the following information about the jobs in the
queue:

1. Number of jobs per product type. For each product type, there was a variable which
tracked the number of jobs in the queue.

The jobs were grouped by product type, because that was the most important selection criteria
besides the due date. After a job was produced and stored in the warehouse (a job in bulk was
stored in a silo), it was added to the state space again in a new array. Now, all information about
the order was explicitly shown, whereas jobs were grouped per product type. The agent allocated
the finished job to a truck and once this was done the job was removed from the state space. The
top two finished jobs were shown in the state space. For the reason that in each state transition
at most four jobs were finished as there were four sacking lines. Since the probability that all (or
three out of four) sacking lines were ready at the exact same time was small, only two jobs were
shown to limit the state space. If there were less than two orders ready to be allocated to trucks,
dummy jobs were included to have a consistent state space.

Resource information
The resource information was divided into information about the mixing lines, sacking lines,
warehouse storage and trucks. For the mixing and sacking lines the following information was
included:

2. occupied. This is a binary variable which indicated if the mixing line was occupied. Once a
job was assigned to the mixing line, it was set to one until the job was finished and assigned
to a sacking line. Then, the variable was set to zero.

3. contamination history. This is an array with binary variables. A one indicated that the
product type could be produced without setup time, while a zero meant that setup time was
required.

The contamination history was included for the mixing lines and sacking lines to account for the
contamination of subsequent jobs. Which product types contaminate with each other is known
to premix manufacturers. Thus, with the knowledge of the next job’s product type (as explained
above) and the contamination information, it could be determined if consecutive jobs contaminated
and therefore required setup time. If jobs contaminated, an additional setup time was included to
the next job’s production time.

Sacking lines included another variable; the remaining processing time of that particular
machine. This turned out to be beneficial for learning an optimal policy during training. The
warehouse storage was included in the state space as well. For each storage space, the following
information was incorporated:
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Figure 4: Overview of the observation space in the production & distribution process

4. occupied. For the storage spaces the binary occupation variable was included to track its
availability.

5. capacity. The capacity of the storage space was included because some jobs did not fit in
each storage location. Therefore, the agent had to smartly assign jobs to storage spaces.

Last, information about the trucks was included in the state space. Per truck the following
information was included:

6. remaining capacity. The remaining capacity indicated how much space was left in the
truck.

7. departure time. The departure time showed when the truck left the system.

Unlike the storage spaces’ capacity, the trucks’ capacity was decreased each time a job was assigned.
This was done for the fact that multiple jobs could be assigned to a truck, while this was not the
case for storage locations. The departure time was predetermined since scheduling the trucks was
out of scope for this thesis. A job was considered on-time when a job’s due date was on or after
the departure time of its assigned truck.

Additional information
As additional information, the number of delivered orders and the number of tardy orders were
added. It was expected that including these variables explicitly in the state space enhanced the
learning process, since this information embodied the objectives of the model.
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4.1.2 Action space

In the scheduling process, multiple actions are made. Therefore, the action space was modelled
as a multi-discrete action space with four actions. This limited the algorithm choice since not
all DRL algorithms are able to handle multi-discrete action spaces. Converting the multi-discrete
action space to a single discrete action space was not possible since the action space exploded
with all combinations of four different actions. The location of the action in the production and
distribution process is given in Figure 5 with the numbers. The following actions were included:

1. Job in the queue to mixing line allocation

2. Job from mixing line to sacking line allocation

3. Job from sacking line to storage allocation

4. Job in storage to truck allocation

The first action was about choosing which job in the queue to produce next and on which mixing
line. Since delivering orders on time was the most important objective of this problem, it was
logical to schedule jobs based on their due date. Due to contamination of product types, it could be
better to select an other job that had the same product type as its predecessor. Finding a balance
between these scheduling rules had to be learned by the agent to optimize its performance. To
guide the agent towards such a policy, the first action was about deciding which product type to
produce next. Based on this action, the job with that product type and earliest due date was
produced next on the idle mixing line.

All actions were one hot encoded, which means that each product type - mixing line pair was a
separate discrete action. In other words, Aij where i was the product type and j was the mixing
line and resulted in product type - mixing line pairs A11, A12, A21, ... . Therefore, the total number
of actions equaled the number of product types times the number of mixing lines. Moreover, a
’waiting’ action was included which had to be chosen when no other option was available. The
second action allocated a finished job on a mixing line to a sacking line. Bulk products do not need
sacking, thus were directly allocated to a storage space. The third action decided which storage
place was assigned to sacked jobs. Last, the fourth action allocated stored jobs to a truck.

Action masking
As mentioned above, action masking was applied to guide the agent towards the optimal policy.
Action masking was chosen because it has been proven to decrease the training time, simply
because the agent does not have to learn what valid and invalid actions are in a particular state
(S. Huang & Ontañón, 2020). Masking invalid actions required extra computational time, although
the extra computational time did not outweigh the benefits. The choice for SMDP modelling led
to many invalid actions since it was unlikely that all four actions required a decision from the
agent in a state transition. Thus, in many transitions the agent had to select the wait option.
Actions were masked based on the state of the system. For each action the following situations
led to the masking of an action:

1. For the first action busy mixing machines and product types without jobs were masked.

2. For the second action busy or idle mixing machines, occupied sacking machines and non
matching sacking types and sacking machines were masked.

3. For the third action busy or idle sacking lines, occupied storage locations and storage loca-
tions with insufficient capacity were masked.

4. For the fourth action trucks with insufficient capacity were masked.
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4.1.3 Reward function

The reward function is arguably the most important part of the environment design in rein-
forcement learning problems, since the agent defines its policy based on maximizing the reward
function. Therefore, the reward function had to reflect the objective of the actual process. In order
to find the best possible results, multiple reward functions were tested. Negative reward functions
that were analyzed included a penalty for tardy orders, contamination cleaning, makespan and
throughput. Contradictory, positive reward function were tested as well and included a reward
for on time orders, no contamination cleaning, a reward for each valid action and a reward at the
end of an episode for the ratio tardy against delivered orders. All components were analyzed in
different compositions and with different weights in a small experiment. Parameter values were
chosen such that there was under capacity of the resources. Then, for each reward function a
test run was made with 30 episodes. Afterwards, the reward functions, delivered orders, tardy
orders, makespan and setup times required were compared to find the best combination of reward
components.

Shaping the reward function such that the agent is guided towards the intended behavior can
be difficult and negatively influence the performance of the agent (Armstrong et al., 2020). Be-
sides, a complex reward function may prevent the agent from learning the actual dynamics of the
environment. Therefore, reward functions should be as basic as possible without compromising
on functionality (Koenig & Simmons, 1996). Moreover, a simple reward function improves the
generalizability of the DRL agent. It was found that the reward function with a large reward for
on time delivered orders and a small penalty for the makespan led to the steepest learning curve,
although there was not much difference between the reward functions. Therefore, the decision was
made to use the simple reward function as follows:

reward =


1 for each on time delivered order

−0.0001 ∗makespan for each stored job

0 otherwise

(14)

The reward was calculated at the end of each state and given to the agent as feedback for its
behavior. The positive reward ensured that the agent learned to produce and deliver the orders
on time, while maximizing the throughput of the system by minimizing the makespan. The
makespan was calculated as the difference between the time the job was stored in the warehouse
and the arrival time. Where the reward component was awarded is shown in Figure 5.

4.2 Reward shaping

From the literature review came forward that the reward function is one of the most important
design choices in the DRL framework (Armstrong et al., 2020). As discussed in the previous
section, the reward function was carefully selected based on expert knowledge, the literature
review and experiments. It turned out that a multi-component reward function led to the best
results for the integrated production and distribution scheduling problem. Unfortunately, this
brought a new challenge, namely balancing the weights of the two components. During the reward
function selection the order of magnitude for the two components was assessed, yet the best weights
could not be determined. Although this was not surprising, as determining the weights is a time
consuming task. Since the reward function has such a major influence of the performance of the
DRL agent, it pays off to find the best ratio between the reward function components (Ng et al.,
1999).

One of the most promising frameworks to solve a multi-component optimization problem is
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Figure 5: Overview of the action space and reward function in the production & distribution
process

Bayesian optimization (Mockus et al., 1978). This technique uses a surrogate function for the
objective function p(y|x) to track the previous evaluation results. The surrogate function is a
probability model of the actual objective function and is easier to optimize. Each iteration, the
surrogate function is used to find the best parameter values. Then, these values are applied to the
actual objective function and these results are subsequently used to update the surrogate function.
By continuously updating the surrogate function, the optimal parameter settings of this function
will eventually approach the optimal parameter settings of the actual objective function. This is
where Bayesian optimization fundamentally differs from random search or grid search techniques:
the next parameter values depend on past results. Although more time must be spent on selecting
the next values, this will lead to better results in fewer iterations (Bergstra et al., 2013).

Within Bayesian optimization, there are several sub-techniques that are based on this framework.
One of them is sequential model-based optimization (SMBO). There are numerous variants of the
SMBO technique. They differ in the method of building the surrogate function and the criteria of
next parameter value selection. Often, the surrogate function is modelled by Gaussian processes,
random forest regressions or Tree Parzen Estimators (TPE). The decision was made to use TPE
because it yielded better results than non Bayesian optimization techniques and was able to find
the optimal settings faster than GP methods (Bergstra et al., 2011). TPE models applies Bayes
Rule to represent p(y|x). Furthermore, p(x|y), the probability of the parameter values given the
outcome on the actual objective function, is represented by:

p(x|y) =

{
l(x) if y < y∗

g(x) if y ≥ y∗
(15)
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In this equation, y∗ is the threshold value of the objective function, x is the chosen set of parameter
values, y is the outcome of the actual objective function and p(y|x) is the surrogate function. As
can be observed in the equation, two functions are made for the parameter values: one where
the outcome of the objective function is below the threshold (l(x)) and one where the outcome of
the objective value is above the threshold (g(x)). For each parameter, two probability functions
are made. One with the values that lead to an outcome below the threshold and one with the
values that yield outcomes above the threshold. Furthermore, the expected improvement method
is mostly used to select the next parameter values.

EIy∗(x) =

∫ y∗

−∞
(y∗ − y)p(y|x)dy (16)

TPE takes sample parameter values from l(x) and g(x), evaluates them on the expected im-
provement method and returns the values that leads to the best outcome. As stated before, these
values are finally evaluated on the actual objective function. The Bayesian optimization with TPE
sampling is implemented with Optuna (Akiba et al., 2019). This is an easy to implement para-
meter optimization library, which has been proven to efficiently find optimal parameter settings
(Oono & Suzuki, 2019) & (Saito et al., 2020).

4.3 Simulation model

Online RL agents learn by interacting with a real life environment or with a simulated environment.
Although learning via a real life environment is preferred, this is rarely the case. By interacting
with the real life environment, the agent can explore all facets of the environment. However, as
explained in section 2, this can be costly due to the sub-optimal actions the agent chooses in the
early stage of training. Therefore, a simulation model is regularly used to train the RL agent,
after which it can be exploited on real life situations. The downside of simulated environments
is that it is difficult to capture all dynamics of the real life environment in the model. Besides,
flaws in the simulation model can be used by the agent to its advantage. Nevertheless, the
downsides of a simulation model do not outweigh the downsides of training the RL agent on the
real life environment. Thus, a simulation model was made to mimic the environment of a premix
production and distribution process.

4.3.1 Discrete-event simulation

The environment was modelled as a continuous-time discrete-event simulation (DES), which mod-
els the system as a discrete sequence of events over continuous-time. Each event occurs at some
moment in time and changes the state of the system (Robinson, 2008). Time was continuous
due to the use of a SMDP framework (R. S. Sutton et al., 1999), where the state changed based
on events. Therefore, the simulation could immediately advance to the next event. The choice
for DES was made because it is frequently used in scheduling literature (Kardos et al., 2021),
(Waschneck et al., 2018) & (Rummukainen & Nurminen, 2019). Besides, it is an efficient way to
mimic complex, dynamic and stochastic production environments without the need of an analytical
model (Hedtstück, 2013).

4.3.2 Events

There were seven events in the simulation environment that should be discussed. These events
described the journey of an order through the system. Each event is elaborated on below in
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chronological order:

1. Order arrival. Orders were released into the system based on a arrival rate. Once arrived, the
order was transformed to a job in the queue, waiting for production. Orders were production
requests from customers and contained a single product. Included information about the
order were the product type, quantity, packing type and due date.

2. Job to mixing machine allocation. When a mixing machine was idle, a job could be allocated
to the machine. Due to capacity restrictions of the mixing machines, jobs had to be produced
in multiple batches in most cases. Furthermore, transportation time between machines was
neglected in the whole production process.

3. Job operation on mixing machine. Once allocated, the job was produced on the mixing
machine. Due to batch production, the total mixing time depended on the requested quantity
and the mixing machine’s capacity. The mixing time was automatically determined in the
simulation. It was assumed that the whole job was produced in one go, i.e. in a series of
batches before a new job was produced on that particular machine.

4. Job to sacking line allocation. When the mixing machine was done and a sacking machine
was available, the job had to be allocated to a sacking line. Bulk production requests skipped
this step and went directly to the storage location for bulk products.

5. Job operation on sacking machine. After the job was allocated to a suitable sacking machine,
it was packed in bags. Each small bag sacking machine had two buffer silos, which means
that if another job was being processed on the sacking machine, the job had to wait until the
other job was ready. Bulk products skipped this step as well and were immediately stored
upon shipment without sacking.

6. Job to storage allocation. Once the job was bagged, it had to be allocated to a storage
location. The job was then temporarily stored in the warehouse until it was loaded into a
truck.

7. Job to truck allocation. Finally, jobs were allocated to a truck. Once allocated, the job
was immediately transferred to the corresponding truck. Consequently, the storage location
became available for other jobs.

8. Truck departure. When the departure time of a truck was reached, the truck left the system.
For each order in the truck it was determined if it was delivered on time or late.

4.3.3 Entities

Next to the events, there were several entities that contained information about the orders and
resources. These entities were required in the simulation model to keep track of the system’s state.
The following entities were used in the simulation model:

1. Orders. When an order arrived, it was tracked until it left the system. For the agent, only
finished orders in the warehouse were visible.

2. Queue. In the queue, all jobs were listed that are waiting to be scheduled. As mentioned
before, arriving orders were placed in the queue. Jobs in the queue had a product type,
quantity, packing type and due date.

3. Mixing & sacking machines. Since there were multiple mixing and sacking machines op-
erating in parallel in each production stage, the status of each machine was documented
separately.
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Figure 6: DRL agent - environment interaction

4. Warehouse storage. For the storage locations, the capacity and availability was kept track
of.

5. Trucks. For the trucks, the remaining capacity and departure time was recorded.

Besides these entities, there were multiple arrays that were used in the simulation model to track
the status of the system. This included arrays that track jobs that were being processing on all
machines and the status and location of an order. Moreover, there was an entity that tracked
the idleness of machines. This was necessary because the agent made decisions based on the
availability of resources, not on specific orders. For example, the agent observed that a sacking
machine was finished and assigned it to a storage space, without observing which job was actually
on the machine. However, to simulate the environment, the simulation model had to know which
job was transferred between the sacking machine and storage space. Without that information
it remained unknown when a job was finished and thus when an order could be shipped to the
customer. Although this information was required for the simulation model, this was useless for
the agent. Therefore, these arrays were not included in the observable state space to prevent
information overload for the agent.

4.3.4 Interaction of DRL agent & simulation model

Now that the environment was modelled as a SMDP and DES model, a DRL could interact with
it to make the required decisions. An overview of the interaction is shown in Figure 6. In terms
of RL theory: given state s, the agent performed action a, which was received by the model and
simulated until state s changes to state s′. Therefore, the following steps were repeated until the
episode terminates:

• Choose action

• Simulate environment until event occurs

• Return reward and proceed to next state

As mentioned before, the environment was modelled as a SMDP. This means that the state changed
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once an event occurred that required an action from the agent. What these events were depended
on the state itself. Events that led to state change are:

• Order arrival. When mixing machines were idle and no orders were waiting in the queue,
the state changed as soon as an order arrived.

• Resource capacity change. Once a machine was done with processing a job, the state changed
in order to assign the finished job to the next phase of production. Furthermore, the state
changed once a job was stored in the warehouse to enable the agent to allocate the job to a
departing truck.

Once the state has changed, the agent should perform an action. Invalid actions were masked as
explained in section 4.1.2. Although invalid actions were masked, it could still happen that the
chosen action prevented the state from changing due to the wait action. In that case, the state
advanced to the next state until the agent chose an action that led to a state change. The episode
terminated when it reached timestep 2.880, which is three working days. Upon termination, the
simulation model returned several performance metrics, which are discussed in section 7.

4.4 Simulation setup

The agent - simulation model interaction was modelled with the OpenAI Gym framework since
it is widely used in reinforcement learning studies and most algorithms rely on it. The OpenAI
Gym framework requires the following functions:

• Observation space. The observation space is the part of the environment that can be observed
by the agent. This could be the whole environment or a part of it.

• Reset. The reset function initializes the environment when an episodes starts.

• Step. The step function translates the agent’s decision into actual actions.

The step function executes the actions and returns the updated observation space to the agent.
Furthermore, the reward is calculated at the end of the step function and shown to the agent as
well. In addition, the episode termination flag is returned. The OpenAI Gym framework provides
an option to include additional information but this is not used in the thesis.

4.4.1 Initialization

First, the simulation model was initialized. This can be divided into two parts. The initialization
of the whole simulation, which was done only at the start of an entire run and the initialization
of an episode, which was done with the reset function. To start, initializing the whole simulation
included the definition of parameters about the environment. For this case, the number of mixing
lines, sacking lines, storage spaces and trucks were defined, along with their capacity. Furthermore,
the processing time of each machine was defined, as well as the contamination clean time. Besides,
the number of orders and jobs in the observation space were defined.

The reset function initialized episode dependent variables. Here, the simulated time was reset,
as well as the observation space and all KPI’s. Furthermore, a starting point of the environment
was randomly generated to mimic a real life setting. Starting without orders in the system would
give an unrealistic view to the agent. An overview of the environment’s initialization is provided
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in Algorithm 1. The number of initial orders in the system could be chosen by the user, as well
as the number of initial jobs on the mixing lines, sacking lines, storage and queue. To keep the
initialization as simple as possible, five initial orders were generated: two on the mixing lines,
two on the sacking lines and one in the queue. Each variable was chosen based on a probability
distribution. The probability distributions were based on data from a customer of KSE where
possible. This is further elaborated in section 5. After an order was generated, the array that
tracks the state information was updated accordingly.

Algorithm 1 Initialize

1: for number of initial orders do
2: product type ← probability distribution
3: packing type ← probability distribution
4: quantity ← probability distribution
5: due date ← probability distribution
6: for first two initial orders do
7: location ← random sacking line
8: update sacking line
9: end for

10: for third and fourth initial orders do
11: location ← random mixing line
12: update mixing line
13: end for
14: for remaining orders do
15: location ← queue
16: update jobs in queue
17: end for
18: end for
19: update total orders

4.4.2 Step function

After the episode was initialized, the step function executed the actions in the simulation environ-
ment (Algorithm 2). The agent made a decision for each of the four sub-actions. The sub-actions
were executed when the agent did not decide to wait for that particular sub-action. Each action is
explained below. Once all actions were carried out, the step function entered a loop were produc-
tion was executed until an event occurred that led to a state change. These events were explained
in section 4.3.2. Each time the loop was executed, one minute of simulated time passed by. Then,
the reward was calculated and the state was updated and presented to the agent.

4.4.3 Action execution

The action execution function was triggered by the step function. The first action assigned jobs
from the queue to mixing lines. The pseudocode is shown in Algorithm 3. First, it was checked
if the mixing line was available and if the chosen product type had jobs in the queue. These
checks were not necessary if action masking was used. Then, it was checked which mixing line was
selected. If the second mixing line was selected, bulk jobs could not be produced. After that, the
contamination criteria were checked, which is further elaborated on in section 6.1. If the successive
jobs contaminated each other, an additional cleaning time was added to the production time and
the contamination history was reset. After that, the job was removed from the queue and the
mixing line was set to occupied.
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Algorithm 2 Step

1: action ← agent decision
2: if first action is not wait then
3: execute first action
4: end if
5: if second action is not wait then
6: execute second action
7: end if
8: if third action is not wait then
9: execute third action

10: end if
11: if fourth action is not wait then
12: execute fourth action
13: end if
14: while (all mixing lines are busy or no jobs in queue or successive sacking lines are
15: occupied) and (current producing sacking lines are not ready or no jobs in queue
16: or storage is full) and (current busy storage spaces are not ready or trucks are full) do
17: process jobs on mixing lines
18: process jobs on sacking lines
19: process jobs to storage spaces
20: if departure time of truck equals current time then
21: depart truck
22: end if
23: if inter arrival time plus arrival time previous order equals current time then
24: generate order
25: end if
26: end while
27: calculate reward
28: update state

Algorithm 3 First action

1: if mixing line is idle then
2: if allocated product type has jobs in queue then
3: if mixing line id is 1 then
4: if contamination criteria are met then
5: assign job with chosen product type and earliest due date to
6: mixing line without cleaning time
7: else
8: assign job with chosen product type and earliest due date to
9: mixing line with cleaning time
10: end if
11: else
12: if contamination criteria are met then
13: assign job with chosen product type, no bulk packing and
14: earliest due date to mixing line without cleaning time
15: else
16: assign job with chosen product type, no bulk packing and
17: earliest due date to mixing line with cleaning time
18: end if
19: end if
20: remove job from queue and set mixing line to occupied
21: end if
22: end if
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The second action assigned jobs from the mixing line to the sacking line (Algorithm 4). Again,
the initial checks were not required when action masking was used. First, it was checked if the
mixing line was done and if the sacking line was unoccupied. Note that there was a difference
between occupied and ready: a job could be ready with producing on a particular machine, yet still
occupying the machine when it was not assigned to its subsequent machine. For sacking lines, the
contamination criteria were checked as well, and production time was adapted accordingly. The
contamination history of the mixing line was updated once the job was transferred to the sacking
line. Last, the mixing line was set to unoccupied while the sacking line was set to occupied.

Algorithm 4 Second action

1: if mixing line is ready and sacking line is unoccupied then
2: if contamination criteria are met then
3: assign job to mixing line without cleaning time
4: update contamination history mixing line
5: else
6: assign job to mixing line with cleaning time
7: reset contamination history
8: end if
9: set mixing line to unoccupied and set sacking line to occupied

10: end if

The third action assigned finished jobs on sacking lines to storage spaces and its pseudocode is
shown in Algorithm 5. It was checked if the job was ready and if the storage space had sufficient
capacity. The job was assigned to the storage space and the contamination history of the sacking
line was updated. Furthermore, the sacking line was set to unoccupied while the storage space
was set to occupied.

Algorithm 5 Third action

1: if sacking line is ready then
2: if storage space capacity is sufficient then
3: assign job to storage space
4: update contamination history sacking line
5: set sacking line to unoccupied and storage space to occupied
6: end if
7: end if

The fourth action was the final step in the production process and assigned orders to trucks. The
pseudocode is shown in Algorithm 6. The action was triggered once orders were in a storage
space. First, the algorithm checked if there was sufficient capacity remaining in the truck. Then,
the order was assigned to a truck and the storage space was set to unoccupied. Furthermore, the
truck’s capacity was updated.

Algorithm 6 Fourth action

1: if order is in storage then
2: if truck’s remaining capacity is sufficient then
3: assign order to truck
4: set storage space to unoccupied and update truck’s capacity
5: end if
6: end if
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4.4.4 Production process

The production process was simulated until the state changes. The process was simulated by
subtracting one minute of simulated time from the remaining processing time each time the pro-
cessing function was called. This can be seen in the pseudocode for the mixing lines (Algorithm
7), sacking lines (Algorithm 8) & storage spaces (Algorithm 9). Logically, this was only done for
machines that were actually producing, which was checked at the second line of the pseudocode
(Algorithm 7 & 8).

Algorithm 7 Process jobs on mixing lines

1: for each mixing line do
2: if mixing line producing then
3: subtract processing time with one
4: end if
5: end for

Algorithm 8 Process jobs on sacking lines

1: for each sacking line do
2: if sacking line producing then
3: subtract processing time with one
4: end if
5: end for

Algorithm 9 Process jobs to storage space

1: for each storage space do
2: if storage space is busy then
3: subtract processing time with one
4: end if
5: end for
6: if storage space is ready then
7: update order information
8: end if

4.4.5 Order generation

When the inter arrival time plus the arrival time of the previous order equaled the current time,
a new order was generated (pseudocode in Algorithm 10). All variables were chosen based on a
probability distribution, as was explained in section 6.1. The chosen quantity depended on the
packing type since it was found that the ordered quantity differs for each packing type. Once an
order was generated, it was added to the queue and total orders in the system. Furthermore, a
new inter arrival time was generated. The distribution of the inter arrival time will be explained
in section 5.2. If the inter arrival time was greater than zero, the while loop ended.

4.4.6 Truck departure

When the departure time of a truck equaled the current simulated time, the truck departed. The
orders that were assigned to the truck left the system. If their due date equaled or was after
the current time, the order was considered delivered on time, while orders with a due date after
the departure time were considered tardy. Based on this information, the KPI’s were calculated.
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Algorithm 10 Order generation

1: while generate order is True do
2: product type ← probability distribution
3: packing type ← probability distribution
4: if packing type is bulk then
5: quantity ← probability distribution
6: end if
7: if packing type is small bag then
8: quantity ← probability distribution
9: end if

10: if packing type is big bag then
11: quantity ← probability distribution
12: end if
13: due date ← probability distribution
14: add order to total orders and include job in queue
15: generate new inter arrival time
16: if current time + new arrival time is not current time then
17: generate order ← False
18: end if
19: end while

The KPI’s are discussed in dept in section 6.5. Then, the orders were removed from the system
and the truck’s capacity was set to the original capacity. Furthermore, a new departure time was
generated for the truck. The pseudocode of the truck departure is shown in Algorithm 11.

Algorithm 11 Truck departure

1: for each truck do
2: if departure time equals current time then
3: calculate tardiness for each order in truck
4: update KPI’s
5: remove all orders in that truck from system
6: restore truck’s capacity and generate new departure time
7: end if
8: end for

4.4.7 Action masking

At the end of each step, invalid actions for the next iteration were masked by the action masking
function. The pseudocode is shown in Algorithm 12. As was explained in section 4.1.2, all invalid
actions were masked through hardcoding. For the first action, busy mixing lines and product types
without jobs in the queue were masked. In addition, bulk jobs were masked for the second mixing
line. For the second action, options were masked when the mixing line was either not ready or
idle, if the sacking line was not suitable for the packing type of the mixing line’s job. The options
of the third action were masked when the sacking line was not ready or idle and if the storage
space was occupied or has insufficient capacity. For the fourth action, dummy jobs were masked,
as well as trucks with insufficient remaining capacity.
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Algorithm 12 Action masking

1: for first action do
2: if mixing line is busy then
3: mask mixing line
4: end if
5: if job in queue is dummy then
6: mask job
7: end if
8: if job is bulk product then
9: mask second mixing line

10: end if
11: if real action is available then
12: mask wait action
13: end if
14: end for
15: for second action do
16: if mixing line not ready or idle then
17: mask mixing line
18: end if
19: if sacking line not suitable for packing type or occupied then
20: mask sacking line
21: end if
22: if real action is available then
23: mask wait action
24: end if
25: end for
26: for third action do
27: if if sacking line not ready or idle then
28: mask sacking line
29: end if
30: if Storage space is occupied or has insufficient capacity then
31: mask storage space
32: end if
33: if real action is available then
34: mask wait action
35: end if
36: end for
37: for fourth action do
38: if order is dummy then
39: mask order
40: end if
41: if truck has insufficient capacity then
42: mask truck
43: end if
44: if real action is available then
45: mask wait action
46: end if
47: end for
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4.5 PPO algorithm

From the literature review could be concluded that there are three classes of DRL algorithms:
value-based, policy-based and actor-critic-based methods. Each class has their own (dis)advantages
and there is not one algorithms that outperforms other algorithms in all cases. Therefore, an al-
gorithm had to be chosen based on their features. There is no unambiguous answer for this question
in the literature. Some DRL scheduling studies implement a value-based algorithm (Zhou et al.,
2020) & (Marchesano et al., 2021), while others used a policy-based (L. Wang et al., 2021) &
(Brammer et al., 2021) or actor-critic-based algorithm (Hubbs et al., 2020).

For this case, it was decided to implement the PPO algorithm (Schulman et al., 2017), which was
described in detail in section 2. The PPO algorithm was chosen because it is the latest major
development in DRL algorithms, based on the TRPO (Schulman et al., 2015). It convergences
faster than value-based an actor-critic algorithms and requires less computational time because
it updates just the policy instead of the estimated Q-values. Furthermore, the PPO algorithm
has been proven to be better suitable for high dimensional state space as compared to value-
based or actor-critic-based algorithms. Due to the complex problem of this thesis, the state
space becomes large and high dimensional. Another reason for choosing the PPO algorithm is
its ability to handle multi-discrete action spaces. In early experimentation it was found that
converting the multi-discrete actions to a single action leads to an explosion of the action space
and therefore a memory error on regular notebooks. Last, the PPO algorithm is able to use action
masking. Considering the high number of invalid actions in each state, this is useful for training
the algorithm.

The maskable PPO algorithm of Stable Baselines 3 (S. Huang & Ontañón, 2020) was implemented
for this thesis since it is able to handle both multi-discrete action spaces and action masking.
Furthermore, Stable Baselines is known for its easy implementation and uses OpenAI Gym as
framework for the simulation environment. Moreover, the package has an option to include action
masking when the agent is exploited on new situations. It is likely that this leads to better results
since there are many invalid actions in this particular case, thus a higher chance of invalid action
selection by the trained agent.

4.6 Offline reinforcement learning

During the literature review, it became clear that offline reinforcement learning is a promising and
powerful technique that can be used to train an RL agent when interaction with the environment
is difficult. However, the technique is relatively new and little research has been done in applying
offline RL to scheduling problems. Moreover, no studies have been found that investigated such a
complex problem as the case in this thesis. This makes it difficult to predict the performance of
these algorithms. Furthermore, not one algorithm appeared to be superior to other algorithms in
all studies, as was expected since this is similar to online RL. Therefore, two offline RL algorithms
were trained and compared in order to assess their performance. Based on the literature review,
conservative Q-learning and batch-constrained Q-learning were selected and implemented for this
project.

Both algorithms were implemented with the d3rlpy library (Kumar et al., 2020) & (Fujimoto et
al., 2019). The d3rlpy library is one of the most popular offline RL python package. It is easy to
implement due to the ready to use algorithms. The algorithms use the standard transitions dataset
as input and provide various metrics to assess the quality of the algorithm. Furthermore, the
trained agent can be tested on online environments. The only disadvantage of these algorithms is
the fact that multi-discrete action spaces are not supported. However, it should be mentioned that
no existing offline RL algorithm can handle multi-discrete action spaces. Therefore, the dataset
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required an extra pre-processing step before it could be used to train the offline RL algorithms.
From the collected transition datasets, all unique actions were retrieved. Each unique action got
its unique identifier. With this identifier, the multi-discrete actions were transformed to single
actions. Subsequently, these single actions could be used to train the offline algorithms. After
training, the single actions that were chosen by the agent had to be transformed to multi-discrete
actions before they could be used.

4.7 Benchmark algorithm

In order to assess the quality of the proposed DRL algorithm, a benchmark algorithm was de-
veloped. Ideally, this was the current scheduling technique of premix manufacturers. However,
as was described in the problem statement, the lack of clear schedules rules was the reason for
the study. Instead, the current production and distribution scheduling is done by expert know-
ledge. Nevertheless, the main considerations are known and these rules were incorporated in the
benchmark algorithm. To start, the job sequence is determined based on order due date and con-
tamination. Furthermore, the storage allocation is done based on best fitting storage space. Last,
the truck allocation is determined based on the best match between truck departure and order
due date. These scheduling rules were, where possible, included in the benchmark algorithm.

The benchmark algorithm was based on a greedy algorithm, since greedy algorithms produce a
reasonable solution in a short amount of time and are relatively easy to implement. An algorithm
is greedy when it makes local optimum decisions at each decision moment (Cormen et al., 2022).
Generally, this does not lead to an optimal solution, instead it leads to an approximation of the
global optimum. Therefore, this type of algorithm design is suitable for assessing the quality of
the proposed DRL algorithm. When the results of the greedy algorithm approximate the results
of the DRL algorithm, it can be concluded that the DRL algorithm is at least near the global
optimum. Due to the different nature of the actions in the thesis’s case, a greedy algorithm was
developed were each action was decided with a different rule. The four actions can be divided into
the following sub-problems:

1. dispatching problem, deciding which job to produce next on a machine.

2. machine allocation problem, deciding which machine to allocate a job to.

3. bin packing problem, deciding which storage space to store a finished job.

4. bin packing problem, deciding which truck to allocate an order to.

The decision rules were chosen based on expert knowledge from (customers of) KSE and the lit-
erature. Two greedy algorithms were developed. One where contamination was not accounted
for in the first decision and one algorithm were contamination was accounted for in the first de-
cision. This was done to assess the impact of contamination on the performance of the algorithms.
The pseudocode of the greedy algorithms is shown in Algorithm 13. Each action was triggered
when a decision was required in the simulation environment. The greedy algorithm which did not
consider contamination in the first action scheduled the subsequent job based on the earliest due
date. The earliest due date dispatching rule was chosen, since the objective of the model was to
maximize the on time delivered orders. An exception was made for the second mixing line since
it could not produce bulk products. Therefore, the first small or big bag job was scheduled on the
second mixing line. The greedy algorithm that considered contamination scheduled the job with
the earliest due date if its due date was lesser than the total production time plus contamination
cleaning time. Otherwise, it scheduled the first non contaminating job.
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The second action was allocated based on the shortest processing time and chose the sacking line
that had no setup time. If that was not possible, the first available sacking line was chosen. The
shortest processing time was chosen because shorter processing time leads to earlier order delivery
and thus a smaller chance of late delivery. Furthermore, shorter processing time leads to a higher
throughput, which leads to more on time delivered orders. Although the third and fourth action
were both a bin packing problem, they were scheduled based on a different rule. The third action
was scheduled based on the best fitting storage space, i.e. the storage space that led to the least
loss of capacity. This was consulted with a customer of KSE. To find the best fitting storage
space, the quantity of the job was subtracted from the storage space’s capacity. Then, from all
positive values (including zero) the first match was chosen. For the fourth action, the first fitting
truck was chosen, since that truck had the earliest departure time. Thus the highest chance of
delivering the order on time. In addition, ample truck capacity was assumed. Therefore, optimal
usage of truck capacity was less needed than optimally using storage space.
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Algorithm 13 Greedy method

1: for Earliest due date greedy algorithm do
2: for idle mixing machine do
3: if idle mixing machine is first mixing machine then
4: schedule job with earliest due date
5: else
6: schedule first non bulk job with earliest due date
7: end if
8: end for
9: end for

10: for Contamination greedy algorithm do
11: for idle mixing machine do
12: if idle mixing machine is first mixing machine then
13: if job with earliest due date contaminates and its due date > total production
14: time + contamination cleaning time then
15: schedule first non contaminating job
16: else
17: schedule job with earliest due date
18: end if
19: else
20: if first non bulk job with earliest due date contaminates and its due date >
21: total production time + contamination cleaning time then
22: schedule first non bulk and non contaminating job
23: else
24: schedule first non bulk job with earliest due date
25: end if
26: end if
27: end for
28: end for
29: for finished mixing machine do
30: retrieve possible sacking machines based on packing type of job
31: calculate total production time for each sacking machine
32: choose first sacking machine with least production time
33: end for
34: for finished sacking machine do
35: calculate fit for each available for storage space
36: choose first available storage space with least capacity waste
37: end for
38: for order in storage do
39: sort trucks based on departure time
40: choose first truck with sufficient capacity
41: end for

52 Integrated production & distribution scheduling at premix feed producers using deep
reinforcement learning



5 DATA DESCRIPTION

5 Data description

Data from a customer of KSE was analysed in order to capture the real environment’s dynamics
in the simulation model. The data was obtained from a premix manufacturer based in the Neth-
erlands and includes information about the factory layout, production and distribution process.
The parameters of the simulation environment were chosen based on the data. Furthermore, order
data was used for the case study to make the experiment as realistic as possible.

5.1 Production & distribution setting

The factory has two mixing lines with a capacity of 2.000 kg per mixing line and a processing time
of 6 minutes per batch. Each mixing line is connected to one big bag sacking line and one small
bag sacking line. Big bag sacking lines have one buffer silo, while small bag sacking lines have two
buffer silos. The big bag sacking lines have a processing rate of 8.000 kg per hour, while the small
bag sacking lines have a processing rate of 10.000 kg per hour. During the startup phase and at
the end of sacking, the machine cannot produce at full power due to faltering supply of materials.
In the experiments, hitches in the sacking process were neglected due to its minimal influence on
the planning. There are 30 storage spaces for bagged products with a capacity varying between 6
and 13 pallets and one pallet can hold up to 1.000 kg of bagged product. Only one batch of bulk
product can be stored in the warehouse after it is mixed. This factory layout was copied in the
simulation model to get the most useful results for KSE.

5.2 Orders

To get a general understanding of the number of orders arriving during the day, the ordered
quantity per order and product type per order, order data was analysed. The dataset included
arriving orders in a time interval of two months. There were 493 orders in the dataset with columns
containing information about arrival date, quantity, packing type and due date. 44% of the orders
requested big bags, 40% of the orders requested small bags and 16% of the orders requested bulk
shipment. As shown in Figure 7, the ordered quantity depends on the requested packing type; bulk
products are ordered in larger quantities than bagged products. Within bagged products, small
bag orders tend to have a larger requested quantity than big bag orders. Therefore, a distinction
was made between the packing types when assessing the quantity of a typical order. Based on
these distributions, a weight was given to each possible quantity in the simulation model.

Based on the order type distribution, the following discrete distribution was used (Table 2). Please
note that these weights are relative to each other. Although there were orders in the dataset with
a quantity larger than 13, it was decided to exclude these values from the simulation. Orders with
larger quantities would have to be stored in multiple storage locations before shipment, which is
out of scope for this thesis.

The due dates were determined based on the difference between arrival date and due date in the
dataset. It was found that orders arrive most often seven days before the due date, followed by

Table 2: Quantities with weights used in simulation model

Quantity (weight)
Bulk products 4 (5) 6 (8) 8 (8) 10 (5) 16 (2) 20 (1)
Small bags 1 (5) 2 (5) 4 (2) 8 (2) 10 (2) 12 (8)
Big bags 1 (7) 2 (2) 4 (3) 6 (2) 8 (2) 10 (2)
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Figure 7: Histograms of ordered quantities per packing type

Table 3: Due dates with weights used in simulation model

Due date (weight)
Due date 1 (1) 4 (5) 5 (5) 7 (8) 8 (5) 9 (3)

eight days and four days (Figure 8). Furthermore, it is noticeable that some orders arrive 21
days or even 28 days in advance. After consultation with KSE’s customer, it became clear that
these orders were from foreign customers. Since the experiments will be executed for 3 working
days, these orders were excluded from the simulation model. The due dates that were used in the
simulation model, together with the weights, are shown in Table 3.

To determine the order arrival rate, the orders were grouped and counted based on their arrival
day (Figure 8). The arrival rate of incoming orders was modelled with a Poisson distribution.
The Poisson distribution is well suited to model the occurrence of an event within a fixed time
interval when certain assumptions hold. The assumption that events occur independently was
violated in this case, since orders could be from the same customer and therefore affect each other.
Nevertheless, the Poisson distribution is a good approximation of the arrival rate of incoming
orders. To find the arrival rate, the mean number of orders arriving per day was used. This
turned out to be 15,9 orders per day. By using this value for the arrival rate together with all
other parameter settings (as described in the data description), all orders were delivered on time.
This was likely due to less product types in the simulation model as compared to the real life
situation. Less product types lead to less contamination cleaning time and therefore a higher
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Figure 8: Due dates & number of orders arriving per day

production rate. To overcome this problem, a different value for the arrival rate was used. The
used arrival rate was based on the perfect situation where no contamination cleaning time is
required. The highest arrival rate which led to almost no tardy orders by a trained DRL agent
was used. By trial and error, 64 orders per day was found as arrival rate.
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6 Experiment description

This section elaborates on the experiments that were conducted to asses the performance of the
DRL algorithm and benchmarks. To start, the parameter values of the simulation environment
are discussed. Followed by the training setup of the DRL algorithm and the reward shaping.
Furthermore, the scenario analysis is explained. Last, the objective metrics are elaborated on.

6.1 Simulation environment

The simulation environment had various parameters that had to be defined in order to have
consistent experiments. General parameters included the total simulation time, which was set
to three working days and time was measured per minute. This value was chosen because the
production and distribution schedules are made on a daily bases and are adapted throughout the
day. Other parameters can be divided into production-, distribution- and order parameters. These
parameter settings will be discussed below.

Production parameters
The factory layout from KSE’s customer was used during all experiments. Furthermore, the
processing time for mixing and sacking was copied from the data. Thus, 6 minutes per mixing
batch and 8.000 kg / hour for big bag sacking and 10.000 kg / hour for small bag sacking. On the
other hand, some parameters could not be used due to the scope and time limits of the thesis. To
start, the cleaning time between contaminating jobs was defined. Between contaminating jobs, the
machine had to be cleaned, this took as long as producing a regular job. Therefore, the cleaning
time equaled the production time plus dosing and transportation time, to make this as realistic
as possible. In total, this was 50 minutes. Thus, 50 minutes was used as cleaning time between
contaminating jobs for both mixing machines and sacking machines, although transportation time
was neglected. An exception was made for the storage of finished jobs, because the job to storage
decision and order to truck decision would be made at the same time if transportation time was
left out. Therefore, a job handling time of 15 minutes was included. In other words, there was at
least 15 minutes between the third action and the fourth action for each job.

Distribution parameters
In addition, this decision was made because of the distribution process design. It was assumed
that a job is transferred to a truck once it was assigned to a truck and thereby removed from the
storage location. As a consequence, the storage and truck allocation action would be at the exact
same moment in time without storage transportation time. Furthermore, the capacity per truck
and number of trucks were chosen in a way that there was ample truck capacity for delivery. For
the fact that optimal truck capacity usage was out of scope for the thesis. In the experiments,
eight trucks with a capacity of 100 pallets per truck were used. Each truck left the factory exactly
one time per day while the departure times were deterministic and spread throughout the day.

Order parameters
The order characteristics have a huge impact on the performance of the algorithm. Too many
arriving orders may overload the system, while too little arriving orders can make the setting too
easy for the agent. Both scenario’s restrict the agent in learning an optimal policy. Since the
arrival rate has a major impact on the performance of the DRL agent, it was decided to vary with
this rate in the experiments. The investigated arrival rates are explained in the scenario analysis
section. Furthermore, early experiments showed that the due dates influenced the outcome as
well. The data analysis showed that most orders have a due date of about one full week after
arrival, while some have a due date of multiple weeks. This was too late when the simulation ran
for three working days. Therefore, a shorter due date of 260, 320 or 380 minutes was used. A
random choice was made between the three options for each generated order. Furthermore, three
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Table 4: Contamination matrix

Product type 1 Product type 2 Product type 3
Product type 1 1 0 0
Product type 2 1 1 1
Product type 3 0 1 1

Figure 9: Overview of the parameter values in the production & distribution process

different product types were included which contaminated with each other. The contamination
matrix is shown in Table 4. A one indicates that a product can be produced without setup time.
For example, product type 2 and 3 cannot be produced after product type 1 without setup time,
while product type 1 cannot be produced after product type 3 without setup time. Besides, the
quantity of an order was adapted to simplify the experiments. Bulk products were ordered in
quantities of either 6.000 kg or 8.000 kg, while small bag and big bag products were ordered in
quantities of 1.000 kg or 2.000 kg, and 1.000 kg or 4.000 kg respectively. As can be observed
from Figure 7, the used distribution differs from the distribution in the dataset. Furthermore, the
occurrence of each packing type equaled the distribution in the dataset, namely bagged products
were requested 5 times more often than bulk products.

6.2 Training setup

Besides the environment, the parameters of the DRL algorithm had to be defined as well. For
each experiment, a new DRL agent was trained to achieve optimal results. Furthermore, the
robustness of the DRL agents were assessed by testing the trained agents on different scenarios.
The training was done via interaction with the simulation environment. During both training and
exploitation, an episode terminated after three working days. From the dataset could be concluded
that one workday equals two shifts of eight hours. Therefore, an episode equaled 2.880 simulated
minutes. Furthermore, most of the original training parameters in the work of Schulman et al.
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Table 5: Reward shaping: weights per reward component

Overcapacity Undercapacity Low uncertainty High uncertainty
weight on time
delivered orders

0,99 1,46 0,78 1,49

weight makespan 0,74 1,41 0,50 0,78

(2017) were used, because the PPO algorithm does not require much hyperparameter tuning. This
included the batch size of 64, a clipping range of 0.2 and 10 epochs for optimizing the surrogate
loss function. The original discount factor γ = .99 was used as well, while the learning rate was
different. A linear decreasing learning rate was used in order to promote exploration during the
early phase of training. The original parameter was set to .0003, while in the thesis a starting
value of .0005 was included which linearly decreased each policy update until zero. Moreover,
the original neural network design from Schulman et al. (2017) was used. This means that the
neural network contained a fully connected MLP with two hidden layers of 64 units. Besides,
tanh nonlinearities and a mean Gaussian distribution output were used. To get reliable results, all
agents were trained until there was no reward increase for 20 episodes. This termination criteria
was chosen because longer training was not possible with the available resources.

6.2.1 Reward shaping

The Bayesian optimization technique with Tree-structured Parzen Estimator (TPE), as discussed
in section 4, was used to find the optimal weights of each reward function component. For all
previously mentioned scenarios, the Bayesian optimizer was applied. This was done separately for
each scenario because it was expected that the weights of the reward function components would
differ per scenario and therefore led to better results per scenario. In the uncertainty cases it
could be beneficial to provide a bigger weight to the intermediate reward component (makespan),
because it could be harder to find an optimal policy due to the noise of unpredictable events.
Running the optimizer until it has found the optimal results was computationally too inefficient,
therefore it was constraint by limiting the number of runs. Since there are only two components
of the reward function that can be shaped, 20 runs were used to optimize the reward function.
The results are shown in Table 5. In all cases, the on time delivered orders component received a
higher weight, which was expected. The weights in the undercapacity case are almost the same,
while the weights of the high uncertainty case are relatively far apart.

6.2.2 Offline reinforcement learning

In order to train the offline RL algorithms, a training dataset was required. As was explained in
section 2, the dataset required information about observations, actions, reward and termination.
There are five different dataset types that can be used to train an offline RL algorithm: random,
expert, mixed, noisy and replay datasets (Schweighofer et al., 2021). In these experiments, both
expert and mixed datasets were used. Expert datasets are datasets that were generated with a
trained online RL agent. Since the agent is trained, no exploration takes place. This results in a
dataset where only the best actions are included and thus will likely lead to a good performing
offline RL algorithm. However, the goal of the offline RL is to find patterns that the online RL
agent failed to discover. Therefore, it might be beneficial to include random data in the dataset.
This is the definition of a mixed training dataset. The mixed training dataset was made by
collecting training data from the online RL agent. For all offline RL experiments, the data was
split in 80% training data and 20% test data. For offline RL algorithms, there were again many
different hyperparameters to tune. In this case, all default settings were used.
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6.3 Scenario analysis

A scenario analysis was done to assess the performance of the algorithm under different circum-
stances. In all experiments, the factory layout from the case study was used. Varying with the
number of production lines, storage spaces and other factory dependent parameters was not the
priority for KSE. It is in their interest to know how an algorithm performs with different pro-
duction scenarios and under uncertainty. Therefore, an experiment was conducted where the
algorithm and benchmarks were tested against cases with (in)sufficient resources. After that, the
most important experiment was done, namely where uncertainty was introduced.

6.3.1 Under- & overcapacity

The first experiment was about testing the algorithm on a case with undercapacity and a case with
overcapacity. During both experiments, the production time for all machines was deterministic, as
well as the truck departure time. Furthermore, three different product types were included, where
the first product type contaminated with the other products and the third product contaminated
with the first product (Table 4). All three product types had an equal chance of being ordered.
Besides, an arrival rate of 3 orders per hour was used in the overcapacity case. After all, the
arrival rate generally leads to overcapacity of the resources, thus optimal usage of the resources
was not required. Nevertheless, it was interesting to compare the algorithm with the benchmarks
for this case since it gave a quick evaluation of the algorithm. Besides, comparing the results of
the overcapacity case with the undercapacity case gave insights in the robustness of the model.

For the undercapacity case, an arrival rate of 4.8 orders per hour was included. Although this
rate is relatively close to the arrival rate of the small case, it was expected that this rate led to
under capacity of the resources. For the reason that the arrival rate of the small case led to a
balanced system if no setup times were included for contaminating sequential jobs. Besides, more
orders were tardy due to undercapacity of the resources. Therefore, the agent had to find a way
to deliver as much orders on time as possible.

6.3.2 Uncertainty in production & distribution

While in the previous described experiments all events were certain, it was particular interesting
to evaluate the algorithm when unexpected events occur. Apart from the fact that these settings
were closer to reality, deep reinforcement learning has to ability to deal with uncertainty in the
environment. Therefore, it was interesting to compare the performance of the agent against the
benchmarks in scenarios where uncertainty existed. In the experiments, two events occurred with
a certain probability to simulate uncertainty:

1. Equipment downtime. Machines could be down due to equipment failure. These machines
had to be repaired before they could be used to process orders. This was modelled in the
simulation through extra processing time of two hours for the order that was processed at
the time of equipment failure.

2. Truck delay Trucks could be delayed during their route. This led to a later departure time
from the factory than expected. This was modelled in the simulation by an additional 60
minutes to the original departure time of the truck.

These events were included because they happen most often in reality. In the first experiment,
there was relatively low uncertainty and these events occurred with a probability of 3%. In
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the second experiment, there was relatively high uncertainty and these events occurred with a
probability of 15%.

6.4 Case study

Last, a case study was executed to assess the performance of the DRL agent in a situation that
is most comparable to the real life setting of a premix feed producer. In this experiment, most
parameter values that were found in the data analysis were used. This included the due dates and
quantities for the orders. Besides, 15 product types were included to make the contamination part
of the process more realistic. The product types varied in the number of other product types they
contaminated with. Some product types could be produced after any other product types while
others could only be produced after a few other product types. Since the number of product types
was still much lower than reality, a higher order arrival rate was used than the rate in the dataset.
Including over 300 product types would require much more computational time. The order arrival
rate was set to 3 orders per hour. Furthermore, uncertainty was included in the simulation model
to make the experiment as realistic as possible. Machine breakdown and truck delay could occur
with a probability of 3%.

6.5 Performance metrics

This section provides an overview of the objectives and performance metrics for all experiments.
These variables were used to evaluate and compare the algorithm and benchmarks.

1. Number of delivered orders. The number of delivered orders is the most important
objective. This number reflects the performance of the algorithms since an efficient planning
leads to a higher production and distribution. However, this metric alone was not enough
to determine the quality of an algorithm. From the number of delivered orders could not be
determined how many orders were delivered on time.

2. Number of tardy orders. Therefore, the number of tardy orders were included as well.
With this information, the quality of the algorithm could be better assessed. Yet the number
of tardy orders alone did not provide much information. Delivering more orders on time at
the expense of a few extra tardy orders was better.

3. Makespan. The makespan is referred to as the completion time of a job from arrival to
sacking. Comparing the average makespan of all jobs between the algorithm and benchmarks,
provided an understanding of the efficiency of the algorithm. A lower makespan showed that
the algorithm was able to efficiently schedule the jobs.

4. Number of contamination cleaning. The number of contamination cleaning showed
how well the algorithm was able to deal with sequence-dependent setup times. The times
contamination cleaning was required had to be reduced to a minimum in order to maximize
the resource usage.
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7 Results

In this section, the experimental results are showed and discussed. First, the learning behaviour
of the DRL algorithm is discussed. Then, the results of the scenario analysis are elaborated on.
Followed by a discussion of the case study. Afterwards, the offline RL results are shown. Then,
the results of the robustness analysis are elaborated on. Last, a discussion of the results is given.

7.1 Learning behavior

Before the actual results are discussed, the learning behaviour of the DRL agent is assessed for each
experiment. The learning curve is the moving average of the reward over the training episodes and
shows if and how the agent learns throughout the episodes. Furthermore, this provides insights in
the quality of the DRL framework, i.e. if the states, actions and rewards are well designed.

7.1.1 Overcapacity & undercapacity

Starting with the overcapacity case. As can be observed in Figure 10, the reward quickly increased
over the episodes and converged after about 150 episodes around a reward of 120. Then, the reward
function remained stable with a little fluctuations. Randomness in the order generation could
explain the behaviour, since the behaviour was not detected in the experiment where the same
order sequence was used. For the undercapacity case, the agent was able to learn throughout
the episodes as well (Figure 10). However, this case was more difficult to learn for the agent
since the reward increase was more gradual as compared to the overcapacity case. Besides, some
fluctuations can be seen throughout the early stage of training, indicating that the optimal policy
was harder to find. In addition, the variation after convergence was higher than the overcapacity
case, which seems logical since the policy was harder to find for the agent. Last, in both cases the
learning quickly converged (after 150 and 400 episodes respectively) and can be explained by the
fact that action masking was used for all experiments. Learning the same behaviour to a DRL
agent without action masking took much more training episodes during early experimentation.

Figure 10: Moving average episodic reward overcapacity & undercapacity. Both DRL agents
learned throughout the episodes.

Another important learning indicator is the ability of the agent to learn the contamination rules.
Besides scheduling the order with the earliest due date, smartly sequencing orders based on con-
tamination will eventually lead to the best results. Thus, failing to learn this rule will make the
policy sub-optimal. The moving average for the number of contamination cleaning used is shown
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in Figure 11 for the overcapacity and the undercapacity. From these graphs can be concluded that
the agent was able to learn the contamination rules, since the number of contamination cleaning
usage decreased for the undercapacity case. The contamination usage stabilized around 30% al-
though the variance was relatively high. On the other hand, Figure 11 shows a steady number of
contamination cleaning used for the overcapacity case, which can be explained by the fact that
there were little jobs waiting in the queue. In reality, overcapacity will not occur often, therefore
the inability to learn contamination in the overcapacity case is not an issue.

Figure 11: Contamination cleaning usage overcapacity & undercapacity. Clear learning was only
visible for the undercapacity DRL agent.

7.1.2 Uncertainty in production & distribution

For the uncertainty cases, the learning behaviour is discussed as well. Figure 12 shows the learning
curve for the uncertainty cases. From the left graph can be concluded that the agent was able to
learn a good policy in low uncertainty. The reward quickly increased to about 80, followed by a
gradual increase with more variation to about episode 150. After that, the reward stabilized and
fluctuated around a reward of 100. Note that both uncertainty cases were based on the arrival
rate of the overcapacity setting. Logically, the fluctuations after convergence can be explained by
the fact that uncertainty occurred throughout the episodes. The uncertainty made it harder for
the agent to learn the optimal policy, which can be concluded through the fact that convergence
took longer in this case. Regarding the high uncertainty case, an increase in the reward function is
observed as well. The reward function converged around 175 episodes, while it fluctuated during
the early stage of training. Furthermore, heavy oscillations are observed after convergence, which
can be explained by the uncertainty aspect of the experiment again. Besides, it is noticeable
that the reward is much lower than the low uncertainty case, which indicates that there were
significantly less orders delivered on time.

The number of contamination cleaning used is shown in Figure 13 for the uncertainty cases. In
both cases, the agent was able to learn this rule as a significant decrease in the contamination
cleaning usage is observed. Since the uncertainty cases used the same order arrival rate as the
overcapacity case (with all other parameters kept constant), the earlier given explanation for the
lack of learning in the overcapacity case can be confirmed.
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Figure 12: Moving average episodic reward low & high uncertainty. Both DRL agents learned
throughout the episodes.

Figure 13: Contamination cleaning usage low & high uncertainty. Both DRL agents learned to
avoid contamination throughout the episodes.

7.2 Scenario analysis

In order to determine the performance of the DRL agent, the trained agents were tested on the
same environment as their training setting. The difference between training and testing is that
during training the agent intentionally takes exploratory actions, while during testing this is not
the case. Recall from the literature review that this behaviour is meant to find a better policy.
The results of the experiments are shown in tables and figures. The tables include the mean of the
metrics for all episodes, while the figures contain box plots per experiment. This presentation of
results is based on the work of Henderson et al. (2018). Furthermore, the results from the greedy
algorithms that were introduced in section 4 are included for comparison.

Table 6: Results overcapacity: mean of all metrics. Greedy contamination performed best overall.

DRL agent Greedy EED Greedy contamination
Delivered orders (#) 138,05 124,55 140,9
Tardy orders (#) 16,24 25,3 5,39
Makespan (minutes) 124,14 113,86 97,15
Contamination cleaning (%) 41,96 47,05 46,51
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Figure 14: Box plots results DRL agent & greedy algorithms overcapacity. Greedy contamination
showed stable performance, while the DRL agent had a few outliers.

Table 7: Results undercapacity: mean of all metrics. Greedy contamination performed best
overall.

DRL agent Greedy EED Greedy contamination
Delivered orders (#) 198,68 168,38 209,01
Tardy orders (#) 86,60 160,39 37,02
Makespan (minutes) 202,25 393,44 152,18
Contamination cleaning (%) 30,53 47,14 40,11

The DRL agent performed worse than the contamination greedy algorithm in terms of on time
delivered orders (Table 6). The number of delivered orders were comparable, showing that the
DRL agent was able to define a good policy for the production part. However, the number of tardy
orders were worse (16.24 vs 5.39). The higher average makespan (27,78%) could be an explanation,
although the number of contamination cleaning used is 9.79% lower. Since the makespan includes
the time between order arrival and production, the higher average makespan could be a sign that
the DRL does not always schedules the earliest arriving job. Minimizing the makespan itself is
not the overall objective, it is rather a way to deliver as much orders as possible on time. Thus,
choosing between the job with the earliest due date and the non contaminating job is the desired
behaviour. The DRL agent did outperform the earliest due date greedy algorithm in terms of on
time delivered orders. Last, it should be noted that the contamination cleaning used by the greedy
algorithms is somewhat comparable, which is due to the overcapacity. After all, with overcapacity
there are less jobs in the queue, thus less jobs to avoid contamination. The box plots (Figure
14) show that the DRL agent had more outliers than the contamination greedy algorithm. The
number of delivered orders varied for all algorithms, while the number of tardy orders was relatively
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stable, especially for the contamination greedy algorithm. Furthermore, the stable contamination
cleaning usage of the DRL agent is striking, since Figure 11 shows that the agent was not able to
improve the contamination use over the episodes.

Figure 15: Box plots results DRL agent & greedy algorithms undercapacity. Greedy contamination
had many outliers, while the DRL agent performed stable.

For the undercapacity case, the difference between the DRL agent and the contamination greedy
algorithm was more prominent. As can be seen in Table 7, the contamination greedy algorithm
delivered 53.45% more orders on time. Again, the earliest due date algorithm performed worse
than the others on all metrics. Besides, the difference in contamination cleaning usage between the
greedy algorithms became clear in this experiment. The contamination cleaning usage of the DRL
agent was significantly lower than the greedy algorithms, while the number of delivered orders
was lower than the contamination greedy algorithm. The number of contamination cleaning used
shows that the DRL agent was able to make good job scheduling decisions, yet failed to define
an optimal policy for the truck allocation. However, the box plots (Figure 15) show that the
DRL agent defined a more stable policy than the greedy algorithms. Especially the contamination
greedy algorithm had many outliers in the number of tardy orders and makespan.

The results of the low uncertainty experiment are shown in Table 8 and Figure 16. In this case, the
DRL agent was able to outperform the greedy algorithms. Again, the number of delivered orders
from the DRL agent and contamination greedy algorithm were comparable (123.40 vs 120.15),
while the number of tardy orders were 15.13% lower for the DRL agent. The makespan and
number of contamination cleaning usage was lower for the DRL agent, which could explain the
performance gap. The difference between the greedy algorithms is noticeable. The number of
contamination cleaning usage was slightly lower for the contamination greedy algorithm and led
to 27.65 more on time delivered orders. The box plots (Figure 16) show that the variance in
number of tardy orders throughout the episodes was high for all algorithms. On the other hand,

Integrated production & distribution scheduling at premix feed producers using deep
reinforcement learning

65



7.2 Scenario analysis 7 RESULTS

Figure 16: Box plots results DRL agent & greedy algorithms low uncertainty. DRL agent had the
most consistent results.

Table 8: Results low uncertainty: mean of all metrics. DRL agent performed best.

DRL agent Greedy EED Greedy contamination
Delivered orders (#) 123,40 108,89 120,15
Tardy orders (#) 64,92 92,88 76,49
Makespan (minutes) 220,84 355,84 296,96
Contamination cleaning (%) 34,67 48,58 46,13

the makespan of the DRL agent was relatively stable as compared to the greedy algorithms. This
shows that the DRL agent was able to handle the uncertainty in production, while it struggled to
deal with uncertainty in the distribution.

The high uncertainty case shows that none of the algorithms delivered orders on time on average,
which is shown in Table 9. Note that the number of tardy orders included the orders that remained
in the system after episode termination, thus orders could have been delivered on time. The
positive reward function of the DRL agent (Figure 12) indicates that orders were delivered on
time. The DRL agent delivered slightly more orders, although more tardy orders remained in the
system as well. The objective of the optimization problem could explain the behaviour, since the
objective was to maximize the on time delivered orders. Thus, delivering an order on time was more
valuable than delivering more orders late. In addition, the makespan of the DRL agent was more
than twice as low as the makespan of the greedy algorithms (54.39% and 53.70% respectively).
Besides, the contamination cleaning usage of the DRL agent was significantly lower than the greedy
algorithms. The box plots (Figure 17) confirm this belief. The results from the greedy algorithms
were somewhat comparable, while the DRL agent differed. The number delivered and tardy orders
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Table 9: Results high uncertainty: mean of all metrics. All algorithms performed comparable,
while the makespan of the DRL agent was significantly lower.

DRL agent Greedy EED Greedy contamination
Delivered orders (#) 44,69 40,56 42,38
Tardy orders (#) 132,56 126,41 129,74
Makespan (minutes) 471,62 1033,97 1018,51
Contamination cleaning (%) 33,32 54,63 55,07

varied greatly throughout the episodes, while the makespan was relatively stable. Furthermore,
the maximum value of contamination cleaning usage was about the same as the average of the
greedy algorithms. The DRL agent had many outliers, while the greedy algorithms did not show
such behaviour. The characteristics of DRL could explain the behaviour, since DRL agents try
to find a policy within the uncertain environment and are therefore affected by the unforeseen
events. On the other hand, greedy algorithms follow predetermined rules which do not change
throughout the episodes. The high variance in the order metrics and relatively low variance in the
makespan confirm the believe that the DRL agent was able to handle uncertainty in production,
while it could not handle uncertainty in the distribution.

Figure 17: Box plots results DRL agent & greedy algorithms high uncertainty. DRL agent had
many outliers.

7.3 Case study

For the case study, the learning behaviour and the performance of the trained agent are discussed.
As can be seen in Figure 18, the agent learned throughout the episodes since the moving average
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Table 10: Results case study: mean of all metrics. Greedy contamination performed best, although
the DRL agent decreased the makespan significantly.

DRL agent Greedy EED Greedy contamination
Delivered orders (#) 583,49 542,18 582,26
Tardy orders (#) 295,85 312,36 181,38
Makespan (minutes) 1013,52 3867,61 2461,55
Contamination cleaning (%) 47,65 56,92 43,12

reward increased. Although it can be concluded that the agent had difficulties with finding the op-
timal policy, as the reward function fluctuated while gradually moved upwards. These fluctuations
tended to decrease in magnitude over the episodes, which indicates that agent learned a policy
that is applicable in different situations. Regarding the contamination usage (Figure 18), it can
be concluded that the agent gradually learned to avoid contamination during the production. The
contamination cleaning learning curve decreased less steep compared to the previous experiments,
which can be explained by the extra product types in the case study. The number of delivered
orders increased while the number of tardy orders decreased.

Figure 18: Moving average episodic reward & contamination usage case study. DRL agent learned
throughout the episodes and contamination was gradually learned.

The trained agent was evaluated on the same environment to determine its real performance
without exploration. The results are shown in Table 10. Furthermore, the results of the greedy
algorithms were included in the table as well. The number of delivered orders by the DRL agent was
comparable to the contamination greedy algorithm and higher than the earliest due date greedy
algorithm. The number of tardy orders was higher than the contamination greedy algorithm
and lower than the earliest due date greedy algorithm. Furthermore, the makespan of the DRL
agent was 58.83% lower than the greedy algorithms. The contamination cleaning usage was the
lowest for the contamination greedy algorithm. Although the DRL agent was able to avoid some
contamination, as it was better than the earliest due date greedy algorithm.

However, there is room for improvement of the DRL agent since the number of contamination
cleaning is higher than the contamination greedy algorithm. The DRL agents were able to learn
these rules in the other experiments, therefore it is expected that the agent will learn this with more
training time. In addition, there were sufficient jobs waiting in the queue with these parameter
settings. Thus, it is expected that the performance will be even better when less contamination
cleaning is needed. The lower makespan of the DRL agent shows its potential, yet it failed to find
a good policy at the distribution part.
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Table 11: Results offline reinforcement learning: overcapacity case training dataset. Both al-
gorithms did not learn a suitable policy.

CQL BCQ
Advantage -24,68 -14,08
TD error 3,98 2,15
Value scale 1,26 1,44

Table 12: Results offline reinforcement learning: overcapacity case trained dataset. Both al-
gorithms did not learn a suitable policy.

CQL BCQ
Advantage -36,18 -16,54
TD error 3,74 2,38
Value scale 0,75 0,59

7.4 Offline reinforcement learning

The results of the offline RL experiments are shown in Table 11 & Table 12. The table includes
the average discounted sum of advantage, average temporal difference (TD) error and the average
value estimation. These values assess the difference between the value function of the dataset and
the value function of the generated policy (Murphy, 2005). Thus, a large value (both negative and
positive) for these metrics indicate that the learned policy deviates from the policy in the dataset.
Deviation from the dataset is a sign of action-value pair overestimation and overfitting on the
training data. Table 11 & Table 12 show that both algorithms overestimated and overfitted on
the training data, since the values for all metrics were too large. Therefore, it can be concluded
that the algorithms could not find a good policy. The BCQ algorithm performed better than the
CQL algorithm on all metrics except for the value scale of the training dataset case. Furthermore,
the results of the training dataset were better than the trained dataset which indicates that the
algorithms were able to define a better policy with the training dataset. However, the trained
algorithms predicted the same set of four actions on all observations, which indicates that the
training failed.

7.5 Robustness analysis

In the previous experiments, the agent was tested on the same environment as it was trained on.
However, training the DRL agent is costly in terms of time and resources. Not only due to the
time it takes to train the agent, as well as updating the simulation model. Therefore, it is desired
that a trained agent can be used on comparable situations as its training environment. To assess
the robustness of the trained DRL agents, two experiments were conducted. The trained agents
from the previous experiments were used on the other environments. Their performance was then
compared to the other agents. Note that, contradictory to the previous experiments, the agents
were not trained on the new situations.

To start, all trained agents were used to predict the actions of the overcapacity environment. The
objective metrics are shown in Table 13 per agent. The results show that all agents performed
somewhat comparable. The low uncertainty agent performed better on all metrics compared
to the overcapacity agent. This is striking as the overcapacity agent defined its policy on this
environment, while the uncertainty agents defined their policy on the same environment plus
uncertainty. The same procedure was followed for the undercapacity environment. The results of
these experiments are shown in Table 14. The overcapacity agent delivered significantly less orders
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Table 13: Robustness analysis: overcapacity. All DRL agents performed comparable.

Low High Over Under
Delivered orders (#) 140,25 136,56 138,05 138,64
Tardy orders (#) 13,65 16,32 16.24 15,25
Makespan (minutes) 117,45 131,26 124.14 129,88
Contamination cleaning (%) 39,65 42,69 41.96 41,67

Table 14: Robustness analysis: undercapacity. Low uncertainty agent performed best, overcapa-
city agent performed worst.

Low High Over Under
Delivered orders (#) 202,69 188,56 185,71 198,68
Tardy orders (#) 85,32 105,86 131,23 86,60
Makespan (minutes) 203,41 238,46 274,01 202,25
Contamination cleaning (%) 30,96 37,69 33,63 30,53

on time. However, it was able to avoid contamination cleaning since it required cleaning in 33.63%
of the production jobs, which confirms the believe that it was able to learn the contamination rules.
Moreover, the low uncertainty agent outperformed the other agents. However, the performance is
somewhat comparable to the undercapacity agent.

For the low uncertainty case the results are shown in Table 15. The low uncertainty agent per-
formed best. There is a significant difference between the uncertainty agents and other agents,
which seems logical as they experienced uncertainty throughout the training. The low and high
uncertainty agents performed comparable on all metrics. Besides, the undercapacity agent per-
formed better than the overcapacity agent on this case. Last, the high uncertainty environment
will be discussed. The results from all agents are shown in Table 16. Here, the results were closer
to each other. The results from the high uncertainty agent were not significantly better than the
others, showing that all agents were struggling with this environment.

7.6 Early experiments

During early stages of experimentation with the states, actions and rewards formulation, a different
approach for the jobs in the queue was tested. Here, four variables with information about the
product type, quantity, packing type and due date for the top 20 jobs with the earliest due date
were included. However, it turned out that the agent was unable to learn a good policy with
respect to contaminating products. The four variables were stored in the state space for the top
20 jobs with the earliest due date. The number of jobs had to be constant due to the requirement
from the DRL framework to have a constant state space. Once a job was assigned to a mixing
machine it was no longer waiting in the queue and thus removed from the state space. When
there are less than 20 jobs in the queue, dummy jobs were added to the state space to ensure a
consistent state space.

Table 15: Robustness analysis: low uncertainty. Low uncertainty agent performed best, overca-
pacity agent performed worst. Results are close to each other.

Low High Over Under
Delivered orders (#) 123,40 121,85 110,39 112,54
Tardy orders (#) 64,92 69,87 86,95 80,29
Makespan (minutes) 220,84 231,99 262,58 259,65
Contamination cleaning (%) 34,67 32,14 41,96 39,81

70 Integrated production & distribution scheduling at premix feed producers using deep
reinforcement learning



7 RESULTS 7.7 Discussion

Table 16: Robustness analysis: high uncertainty. All DRL agent struggled in this environment.

Low High Over Under
Delivered orders (#) 42,58 43,90 41,25 42,08
Tardy orders (#) 132,96 133,38 138,62 131,65
Makespan (minutes) 506,43 490.31 537,03 500,26
Contamination cleaning (%) 46,20 35.82 45,97 42,76

Furthermore, various approaches were tested to learn the agent to deal with contaminating product
types. First, the most realistic approach was tested. This was modeled by tracking the contam-
ination history per ingredient on each machine. As described in section 3, premix feed producers
keep track of the contaminating ingredients in each product type. Thus, for each product type it is
known which ingredients it contains. Furthermore, it is known how many batches are required to
be produced after a certain ingredient is processed before it is completely removed from a machine.
Moreover, it is known what percentage of an ingredient is allowed to remain in a machine when an
other product type is produced. With this information, it can be determined if a production order
is allowed without intermediate machine cleaning, and the contamination history can be updated.
For example, when a batch of product type x with ingredients y and z is finished on the mixing
machine, the contamination history is updated. For ingredient y and z it is known that it takes
two and three batches respectively to be removed completely from the mixing machine. Thus, the
contamination history variables for ingredient y and z of the mixing machine are set to two and
three, while all other variables are subtracted by one if greater than zero. When assigning the
next job to the mixing line, the contamination history is compared to the ingredient allowance of
the next job’s product type to determine if cleaning is required.

During the experiments with the state space, it became clear that the DRL agent was unable
to find a good policy for this complex process. Even when explicit rewards were given for job
sequences without setup time and a penalty when setup time was required. Therefore, a simpler
way of modeling contamination was investigated. In the new situation, ingredients were left out of
the model. The contaminating product types were included in the contamination history variables
and a contamination matrix was built based on the product types. The state space included an
array binary variables for all product types, one meant that the product type could be produced
without setup time while zero meant the opposite. Unfortunately, this method did not work either.

7.7 Discussion

The results section provides insight in the performance of the different DRL agents, as well as the
greedy algorithms. It can be concluded that DRL agents were able to learn a stable policy for
all experiments as the average reward increased during training to a stable return per episode.
The agents learned to avoid contamination by smartly sequencing jobs. By comparing the trained
agents to the greedy algorithms, the advantage of DRL became clear. The results showed that the
DRL agent outperformed the greedy algorithms when uncertainty occurred. The contamination
greedy algorithm performed better in the over- and undercapacity cases. Greedy algorithms make
local optimum decisions, which are generally good decisions when no uncertainty occurs. The
advantage of DRL is that agents anticipate on unexpected events, while greedy algorithms cannot
do such things.

Especially the uncertainty in production was anticipated for by the DRL agent as the makespan
was relatively low and stable throughout the episodes. The variance in delivered and tardy orders
showed that the DRL agent struggled with uncertainty in the distribution. The states and actions
design could explain the struggle, as the design limited the DRL agent to deal with truck delays.
The order - truck allocation decision was made as soon as the order was stored in the warehouse.
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Once that decision was made it could not be changed, even though the departure time was ahead
in time. On the other hand, the production scheduling decisions where postponed until a machine
became idle, providing ample time to react to uncertainty. The variance between the episodes
showed that the DRL agent was more reliable than the greedy algorithms regarding the makespan
in the uncertainty and undercapacity experiments. Furthermore, it was more reliable than the
contamination greedy algorithm in the undercapacity case in terms of on time delivered orders,
although the performance was worse on average.

The comparison between the greedy algorithms showed that including contamination in the de-
cision making is crucial for the production scheduling in this setting. Besides, it can be concluded
that a lower makespan and less contamination cleaning usage does not necessarily lead to more
on time delivered orders. As there are more decisions that affect the delivery moment of orders,
this conclusion makes sense. Moreover, the makespan includes the time between order arrival and
actual production. Thus, a lower makespan does not necessarily lead to more throughput.

The case study showed that the DRL agent was able to learn a scheduling policy for the case that
approaches the real life setting. The main difference between the case study and other experiments
was the later due date of arriving orders. However, the setting did not encourage the DRL agent
to learn the contamination rules fast as it gradually decreased over time and remained higher than
the contamination cleaning usage of the contamination greedy algorithm. Again, the DRL agent
outperformed the greedy algorithms in terms of makespan, while it failed to deliver more orders
on time. In addition, the robustness experiments showed that all DRL agents performed good
on comparable problems. These findings confirm the expectations as DRL is known to be robust
in comparable settings. From this experiment can be concluded that the low uncertainty agent
performed best over all, it even outperformed DRL agents on the setting that they were trained
for. The low uncertainty agent likely benefited from the uncertainty, making it more robust for
other settings.

Contradictory to the online RL agent, the offline RL algorithms could not find a suitable policy
to schedule the production and distribution process. There could be several reasons for this beha-
viour. To start, the datasets could be too small. In these experiments about 250.000 observations
were used, while in other studies datasets up to 50 million observations were included (Agarwal
et al., 2020). Another option could be that the datasets were not diverse enough. The offline
RL agent requires sufficient understanding of the action-state space to learn a policy, solely the
high return trajectories are not enough (Schweighofer et al., 2021). To increase the diversity, the
transitions dataset from the training phase was used as well. Besides, the datasets included two
times the number of episodes it took the online RL agents to learn a policy.

It is more likely that the problem formulation was the reason for the failed training. Existing
offline RL algorithms are not suited for multi-discrete actions. Therefore, the multi-discrete action
space was transformed to a single discrete action space. Moreover, the decisions in this particular
problem are rather complex with a state space composed of multiple components (order, resource
and additional information). In other studies, offline RL was often applied to simpler decisions
such as image recognition or classification problems (Levine et al., 2020). Last, overfitting is a
general problem in offline RL applications. Specific offline RL algorithms such as CQL and BCQ
avoid overestimation of the behavior policy, yet they are prone to underestimation of undersampled
actions (Levine et al., 2020). Due to the large action space in this case many actions are rarely used,
even though they are necessary to adequately schedule the production and distribution process.
The overfitting problem becomes even bigger through the transformation from multi-discrete to
single-discrete actions.
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8 Conclusion & discussion

This section will draw general conclusions and answer the research question that was given in
section 7. Furthermore, a discussion about the thesis including limitations and future research
directions are given.

8.1 Answer to the research question

The thesis had the objective to find an automated solution for the mismatch in production and
distribution scheduling at premix manufacturers. Based on the problem description that was
provided by KSE, an early literature review was done. Here, DRL came forward as a promising
technique for automating and integrating the production and distribution schedules. Therefore,
the following research question was formulated:

How can the production and distribution schedule of premix feed producers be automated and in-
tegrated by means of deep reinforcement learning, while accounting for unforeseen events?

To answer that question, an extended literature review was conducted first. The literature review
provided insights in existing solutions (both DRL based and others) to comparable scheduling
problems. Furthermore, it showed what DRL is and how it can be applied to scheduling problems.
Based on this knowledge and the problem description, a solution method was developed. The
sparse literature about SMDP in DRL research showed promising results. Therefore, the decision
was made to formulate the environment as a SMDP, which requires less decision moments from
the DRL agent as compared to traditional MDP’s. Furthermore, the action space design was novel
for DRL scheduling problems, since multiple discrete actions were included in the model. Besides,
the agent made actual decisions instead of choosing between heuristic rules. Consequently, the
state space increased as the agent required information about each part of the production and
distribution processes where it had to make a decision. To include all necessary information, a
novel state space design was made. Due to the SMDP formulation and multi-discrete action space,
many actions were invalid during state transitions. Therefore, action masking was applied. The
masking guided to agent towards fast policy learning in the different experiments. To solve the
given problem, the PPO algorithm was chosen because it outperformed other DRL algorithms
in comparable problems. Besides, PPO it computational more efficiency than others and has
the ability to handle multi-discrete action spaces with masking. To assess the performance of
the DRL agent, two greedy algorithms were developed. The greedy algorithms made decisions
based on common scheduling rules in premix manufacturing environments. One greedy algorithm
considered contamination in the first action, while the other did not.

The results showed that the DRL agents were able to learn a policy with the novel state, action
and reward design, since the reward function stabilized after a training phase. Most importantly,
they could learn the contamination rules. The trained agents were tested on their training envir-
onment. These experiments showed that the contamination greedy algorithm performed better in
the over- and undercapacity cases, although the DRL agent produced more reliable results in the
undercapacity experiment. Furthermore, the DRL agent outperformed the greedy algorithms on
the low uncertainty cases in all performance metrics. Besides, it produced better results in the
production part for the high uncertainty case. The makespan of the DRL agent was significantly
lower, although this was not expressed in the number of on time delivered orders. The action
space design is a reason for the lack of extra on time delivered orders, since it failed to enable the
agent to deal with uncertainty in the distributional part of the process. The case study showed
that the agent was able to learn a stable policy in a more complex environment. However, it
failed to significantly decrease the number of contamination cleaning throughout the episodes. It
is expected that the DRL agent can learn the contamination rules with sufficient training time,
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since that happened at the smaller instances. Nevertheless, the DRL agent performed better than
the greedy algorithms in the case study regarding the makespan, although more orders were tardy.
Finally, the robustness analysis showed that the DRL agents defined a policy which can handle
comparable settings. The offline RL experiments showed that these algorithms were not able to
find a suitable policy in the current formulation, which is likely due to the multi-discrete action
space and the complex actions.

In conclusion, DRL appears to be a robust technique to automate and integrate the production
schedule with sequence-dependent setup times, dynamic order arrival and unforeseen events. The
DRL agents outperformed the greedy algorithms on all performance metrics when low uncertainty
was included. In addition, the DRL agent performed equally well on the high uncertainty case
compared to the contamination greedy algorithm in terms of on time delivered orders. However,
the DRL agent reduced the makespan with 53.70% in that case, which showed its potential when
the distribution part is improved. Improving the distribution part of the DRL framework is an
interesting direction for future research. Furthermore, the DRL agent was capable of learning
complex production rules such as contamination between product types. However, it should be
mentioned that this depended on the setting it operates in. The case study showed that the DRL
agent delivers the same number of orders as the contamination greedy algorithm, although more
orders were tardy. Again, the makespan of the DRL agent was much lower (58.83%). The thesis
served as a proof of concept that DRL can be applied to premix manufacturing environments, yet
additional research is required before it can be implemented in real premix factories.

8.2 Contributions

Based on the results, the contributions to the literature and KSE can be given. To start, the study
contributes to the literature in the following way:

1. A unique problem is studied. The integrated production and distribution scheduling prob-
lem, including sequence-dependent setup times in a dynamic and uncertain environment was
never studied before.

2. A novel solution approach is given. A DRL based solution is made, including a multi-discrete
action space and action masking. Furthermore, modelling the environment as a SMDP is
included. Although these solution components themselves are not new, the combination of
SMDP, multi-discrete actions, action masking and DRL is novel.

3. The experiments showed that DRL is especially useful when uncertainty occurs. The agent
produced robust results for the production schedule, where it reduced the makespan with
25.63% for the low uncertainty case and 53.70% for the high uncertainty case compared to
the best performing benchmark. Furthermore, it delivered 15.13% more orders on time for
the low uncertainty case. The high uncertainty case showed that the distribution part left
room for improvement, as the lower makespan could not be used to deliver more orders on
time.

Furthermore, practical contributions for KSE are:

4. The study shows that DRL is a good technique to integrate and automate the production
schedule of premix feed manufacturers when uncertainty occurs. Especially the production
part is scheduled better by the DRL agent than benchmark algorithms. The case study shows
that the DRL agent reduced the makespan by 58.83% compared to the best performing
greedy algorithm. However, this advantage could not be used to deliver more orders on
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time, which leaves room for improvement in the distribution part. Nevertheless, DRL is a
promising solution technique to use in premix manufacturing environment due to its ability to
handle dynamic order arrival and uncertainty. Therefore, it is advised to further investigate
the applicability of DRL on this scheduling problem.

8.3 Limitations & future research

As was discussed above, this project found some interesting results. However, it should be noted
that there are several limitations of this research. These limitations are elaborated on below.

To start, the decision was made to use a simulation model to train the DRL agent instead of
interacting with the real environment. The disadvantage of a simulation model is that certain
design choices have to be made. One of them is the level of detail. The decision was deliberately
made to keep the simulation model abstract, since detailed aspects of the production and distri-
bution planning do not affect the scheduling decisions. However, they do have an effect on the
production and distribution processes. Therefore, the trained agent cannot be immediately used
on real-life scheduling situations at premix manufacturers as it was not trained to handle these
events. Furthermore, flaws in the simulation model may have been exploited by the agent to its
advantage.

Another limitation of the study is that the PPO algorithm (Schulman et al., 2017) was not
adapted for the SMDP setting that was used. The PPO algorithm was specifically designed for
environments that rely on MDP transitions. As was explained before, time is continuous in SMDP
while the time in a MDP is discrete. In particular this property could influence the performance of
the DRL agent. Now, the original PPO algorithm was used which assumes a steady time interval
in each state. In the simulation model, the time in a state differed and this has an effect on the
goodness of a state. After all, remaining longer in a state means that all resources are busy. On
the other hand, immediate state change means that the action was invalid. Rummukainen and
Nurminen (2019) did account for this property by multiplying a continuous time discount factor
with the advantage and found that this led to better results than the PPO algorithm without
adaptions. For future research it would therefore be interesting to investigate how an adapted
PPO algorithm would perform in combination with a SMDP in this environment.

From the uncertainty experiments could be concluded that the action design is not suitable for
dealing with uncertainty in the distribution and is the consequence of lacking rescheduling options.
The action space was designed to allocate jobs to resources. When one of the resources became
unavailable due to unexpected events, the agent could not reacted by changing previously made
decisions. The lack of rescheduling options became clear at the fourth action: allocating orders
to trucks. The design choice was made that once an order was stored in the warehouse, the agent
should allocate the order to a truck regardless of the truck’s departure time. Thus, orders could
have been assigned to a truck while the departure time was way ahead, making it more likely that
the truck delayed. Postponing the allocation until right before the truck departure would give the
DRL agent the ability to react on truck delays, as was done at the production decisions.

Another option would be to change the action design. For instance by enabling the agent to
reallocate orders when they are assigned to a truck. Instead of removing the order from the state
space, the order could still be visible for the agent. When the agent chooses the action where the
order would be reallocated, the action would then be executed. As a result, the agent would have
to learn when to reschedule and when to leave the schedule as it is. It is interesting to investigate
reallocation in future research as it is currently unknown if a DRL agent would be able to learn that
behaviour. Most studies use a dynamic planning design where the actual scheduling is postponed
until a machine is idle to provide the agent more flexibility (Luo, 2020), (L. Wang et al., 2021)
& (Yang et al., 2021). Although postponing this action would tackle the delay problem, it does
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not necessarily lead to the best schedule. As was described by Y. Li et al. (2020), it is always a
trade-off between flexibility and certainty. Moreover, the distribution process in the simulation
model was fairly basic. The distribution planning was prescheduled and ample truck capacity
was assumed. The scope of this research focused on the production process, which was requested
by KSE. Furthermore, the scope had to be narrowed down due to the time limits of the thesis.
Nevertheless, it is interesting how a DRL agent behaves in a truly integrated production and
distribution scheduling environment. Current research is limited in these integrated production
and distribution processes. Let alone DRL studies on this topic, making it even more interesting
to investigate this setting.

In addition, the way contamination between product types was modelled had to be simplified
throughout the project as well. In reality, contamination is tracked on ingredient level and this
was used during early stages of experiments to learn by the agent. Unfortunately, the DRL agent
could not learn this complex task, even when explicit rewards were given. Besides, modelling the
contamination between products on product type level could not be learned by the DRL agent as
well in the way it was modelled in the thesis. Therefore, a simplification was made by letting the
agent decide which product type to produce next instead of choosing the specific job. Although
this led to better results, it constrained the agent in sequencing jobs. After all, the job with
the earliest due date that matched the chosen product type was always scheduled now. This is
sufficient for the scope of the thesis, but may fall short in reality. Therefore, it is interesting to
study how contamination on ingredient level can be integrated in this process in a way that the
agent is able to understand the rules. Moreover, the topic is about a bigger issue in DRL research.
Up until now, the inability of DRL to deal with complex tasks remains unsolved.

Another limitation of the study is the quality of the benchmark. Ideally, the DRL algorithm’s
performance was compared to an optimal solution. The experiments in this thesis could not be
solved exact due to their np-hardness (Garey et al., 1976). However, comparable studies showed
that smaller instances can be solved with a solver (L. Wang et al., 2021), (Ren et al., 2021) &
(Hubbs et al., 2020). Comparing the DRL algorithm with the solver in a small experiment would
give general insights in the performance of the DRL algorithm in experiments with larger instances.
In the current setting, only the relative quality of the DRL algorithm and benchmark algorithms
can be determined. For future research, this is an interesting direction to study.

Furthermore, the results showed that the DRL agent outperformed the greedy algorithms when un-
certainty was included. On the other hand, the greedy algorithm that accounted for contamination
performed better without uncertainty. Therefore, it is interesting to investigate the possibilities to
combine their strengths in a combined algorithm. Not all decisions in the production and distribu-
tion process require DRL. Besides, combining DRL and other methods decreases the computation
and training time of the DRL agent. Last, the DRL agent’s policy remains unknown. It would
be interesting to know which considerations the agents make and which variables influence the
decisions. Research has showed that users do not use algorithms when they do not trust them
(Ribeiro et al., 2016). Trust can be gained when decisions are transparent and explainable (Glass
et al., 2008) and can be done with explainable reinforcement learning (XRL). There are various
XRL methods that will not be discussed in detail here. In future research this is an interesting
direction to investigate. Especially, when DRL is applied to real decision making algorithms where
it requires trust from planners.

8.4 Recommendations

The study has shown that DRL is a good technique to integrate and automate the production
schedule at premix feed manufacturers. The current DRL framework is especially suitable for
scheduling the production part, while the distribution part can be improved. Furthermore, it
should be mentioned that these conclusions were drawn on experiments were certain assumptions
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had to be made. Nevertheless, the fundamental properties of DRL show promising applicability
to the scheduling environment of premix manufacturers. Specifically through its ability to deal
with dynamic order arrival and uncertainty, it is well suited for scheduling on a daily basis. Let
alone, the fact that DRL research is relatively new, thus its full potential is yet to be discovered.
Furthermore, it was concluded that DRL can learn a policy that deals with contamination between
production jobs. However, the way it was incorporated in the simulation model had to be simplified
throughout the study. Therefore, future research is needed before DRL can be applied to real-
life premix scheduling situations. Besides, DRL could be combined with heuristic rules to utilize
the strengths of both techniques. In conclusion, we recommend to continue with research on
DRL based solutions for automating and integrating the production and distribution scheduling
at premix feed producers. The study showed that DRL is well suited for the characteristics of
this environment. A direction for future research is the expansion of the distribution part of the
process. Besides, the contamination part of this study should be extended before it can be used in
actual premix factories. In addition, the simulation model requires more detail before it is suitable
to serve as a digital copy of premix factories.
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