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Abstract – Collecting, processing, analyzing, and driving knowledge from large-scale real-time data is now realized with the emergence 
of Artificial Intelligence (AI) and Deep Learning (DL). The breakthrough of Industry 4.0 lays a foundation for intelligent manufacturing. 
However, implementation challenges of scheduling algorithms in the context of smart manufacturing are not yet comprehensively 
studied. The purpose of this study is to show the scheduling No.s that need to be considered in the smart manufacturing paradigm. 
To attain this objective, the literature review is conducted in five stages using publish or perish tools from different sources such as 
Scopus, Pubmed, Crossref, and Google Scholar. As a result, the first contribution of this study is a critical analysis of existing production 
scheduling algorithms' characteristics and limitations from the viewpoint of smart manufacturing. The other contribution is to suggest 
the best strategies for selecting scheduling algorithms in a real-world scenario.
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1. INTRODUCTION

In smart manufacturing industries, huge amounts 
of data are generated from heterogeneous sources 
such as sensors, Radio Frequency Identification (RFID), 
and networked machines [1], [2]. Moreover, inherently 
stochastic processes exist in industrial processes [3]. 
The advancement of Industry 4.0 and industrial intel-
ligence leads to increased complexity, dynamics, and 
uncertainty on the shop floor [4]. This behavior paves 
the way for production scheduling challenges.

Scheduling algorithms should consider competing 
requirements to achieve a high-quality solution while 
remaining computationally efficient. Existing industrial 
scheduling solutions, such as heuristic algorithms, are ef-
ficient but difficult to implement in complex situations [5].

Heuristics, meta-heuristics, and mathematical pro-
gramming are prominent tools to solve scheduling 
problems. However, as the complexity and scale of the 
problem increase, the solution would be unstable or 
might lead to unacceptable computing overhead [3], 
[6], [7]. It requires plenty of time to find a new solu-
tion [8] or needs manual configuration efforts during 
changes because of its model-based implementation 
and static nature [9]. Moreover, it also lacks the adapt-
ability to a stochastic environment and needs a com-
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plex design process [10]. For example, as mentioned 
in [11], genetic algorithm has shown poor local search 
and slow convergence.

Despite the unavailability of scheduling algorithm 
challenges review in the smart manufacturing environ-
ment, there are an increasing number of review articles 
about smart manufacturing scheduling. 

 The purpose of this paper, unlike the previous review 
articles, is to emphasize the challenges of using differ-
ent scheduling algorithms in the production environ-
ment, to introduce current scheduling strategies and 
their characteristics from the viewpoint of complex 
manufacturing and dynamically changing environ-
ment in the context of smart manufacturing, and to 
show the possible future research directions from dif-
ferent perspectives.  The paper consists introduction to 
scheduling algorithms in production scheduling, a re-
view methodology, a literature review, and a discussion 
on the properties and challenges of current scheduling 
solutions followed by a conclusion and future work.

2. REVIEW METHODOLOGY

The review is conducted based on the following five 
criteria: a) semantic areas of the article search; b) repos-
itories used; c) document types; d) subject areas; e) lan-
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guage of the article (English only). The four semantic 
fields on which the article search was based are: a) field 
1: “shop floor scheduling problem”; b) field 2: “smart 
manufacturing”; c) field 3: “Scheduling technology & 
tools”; d) field 4: “Scheduling algorithm”. Terms for each 
semantics are selected based on their relevance after 
individual search and all terms yield a different result 
in each repository because of their difference in their 
query system. Four repositories are considered: a) Sco-
pus; b) Crossref; c) PubMed; d) Google Scholar.

The search results were initially obtained using pub-
lish or perish tool on Scopus, and the other three re-
positories are used to complement the search results. 
Publishers for lots of searched articles are: a) Elsevier; 
b) IEEE; c) Springer; d) SAGE publications; e) Multidisci-
plinary Digital Publishing Institute (MDPI); f ) Hindawi; 
g) Wiley Online Library; h) IOP Publishing. The review is 
conducted based on the following research questions:

a) Which algorithm does the industrial environ-
ment need?

b) What has been done so far in the production 
scheduling field that can contribute to smart 
manufacturing?

c) What still needs to be done for the practical 
implementation of scheduling solutions in the 
smart manufacturing industry?

3. LITERATURE REVIEW

The searched articles, as depicted in Fig. 1., are re-
viewed based on thematic and content analysis.

Fig. 1. Searches, collection, analysis, and synthesis 
methodology

Thematic Analysis: Based on the search term used in 
the reviewed articles, four thematic areas are identified 
using ATLAS.ti 9. These themes are smart manufactur-

ing, shop floor scheduling problems, scheduling algo-
rithms, and scheduling technology and tools.

Content Analysis: The content analysis is performed 
using the following phases: a) grouping of search ar-
ticles based on the conceptual scheme of the research, 
b) the focus, c) experimental evaluation techniques 
used, and d) contributions and shortcomings of re-
viewed articles.

2.1. SMArT MAnuFACTurInG

The term Smart manufacturing originated in the USA 
[12] and has no commonly accepted definition. Based 
on the study in [12], [13], smart manufacturing is a 
manufacturing operation that manages manufacturing 
processes with networked data. Likewise, the study in 
[14] defines the concept as a creation of manufacturing 
intelligence throughout all parts of the operation. It is a 
new manufacturing prototype in which manufacturing 
devices are entirely linked by wireless connections, su-
pervised by sensors, and managed with cutting-edge 
computational intelligence [15]. 

The key technologies in smart manufacturing involve 
IoT, CPS, cloud computing, machine learning, big data, 
and mobile internet  [14], [16], [17]. 

These technologies are realized through connected 
sensors, data interoperability, multi-scale dynamic 
modeling and simulation, smart digitization, and cus-
tomizable and multi-level network security [18]. Ma-
terials, data, production processes and tools, resource 
sharing and connectivity, predictive engineering, and 
sustainability are considered the fundamental compo-
nents [19]. The main idea behind this paradigm is to ac-
cumulate and evaluate massive amounts of manufac-
turing data to drive knowledge and rules [20].

Smart manufacturing involves the deployment of 
large amounts of sensors and IoTs, which requires the 
handling of big manufacturing data[15]. Big data is a key 
component in transforming today’s manufacturing into 
a smart manufacturing paradigm. It helps companies to 
be competitive using data-driven strategies [21] and sat-
isfy the needs of the manufacturing industry [14]. Deep 
learning, with its feature learning and large modeling 
capabilities, is an advanced analytics method for smart 
manufacturing. Based on the study in [21], smart manu-
facturing is divided into four modules i.e.,  “manufactur-
ing module, data driver module, real-time monitoring 
module, and problem processing module”. In the manu-
facturing module indicated in Fig. 2., the inputs are raw 
materials, and the outputs are finished goods.

Smart manufacturing has a different definition from 
different perspectives. For example, from the engineer-
ing point of view [22], smart manufacturing is charac-
terized by the application of advanced intelligent sys-
tems that enables rapid production of manufacturing 
products, dynamic response to demand, and real-time 
optimization of the production and supply chain net-
works. In other words, the connected manufacturing 
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resources take raw materials as input and produce a 
finished product for a customer. on the other hand, 
from (IoT & CPS) as well as interconnection perspective 
[23], smart manufacturing is defined as the collection 
of all stages of manufacturing data using sensors and 
different communication technologies to increase pro-
duction rate and reduce errors and production waste. 
However, from the viewpoint of predictive analysis and 
decision making [24], smart manufacturing is the op-
timization of planning and control of manufacturing 
activities such as fault diagnosis, risk assessment, re-
source utilization, predictive supply, and manufactur-
ing. Based on the aforementioned definition, this study 
focused on the scheduling approaches in interconnec-
tion and decision-making perspectives.

2.2. Shop Floor SChEDulInG problEMS

Scheduling is the process of assigning machines to 
a set of available jobs to optimize objective functions 
such as earliness or tardiness of jobs, job completion, 
and processing times [25]. By its nature, scheduling 
needs details about tasks to be executed and available 
resources with a set of constraints [17].

Fig. 2. Smart Manufacturing Modules

On the other hand, re-scheduling or pre-reaction 
scheduling is a way of scheduling again during the oc-
currence of new events [26]. It has two stages i.e., the 
pre-scheduling stage (generating scheduling for actual 
production) and the re-scheduling stage (re-configure 
the initial schedule to accommodate dynamic events). 
Robust scheduling forecasts potential future events 
based on the existing manufacturing state and gen-
erates a pre-schedule that includes different dynamic 
events. However, its success will be less effective if the 
dynamic conditions do not happen. Unlike the previ-
ous scheduling, the online scheduling is a real-time 
scheduling technique, that doesn’t prepare a schedule 

in advance and is mainly used after dynamic events 
happen. This scheduling strategy is mostly used in ac-
tual production

In the reactive scheduling approach, decisions at the 
control and scheduling level don’t consider dynamic 
events. As new events happen in production, a contin-
uous recalculation process will take place, which results 
to be computationally expensive [27]. Conversely, the 
preventive scheduling approach considers dynamic 
events and aims at finding robust scheduling solutions 
with and without the presence of disruptions. Schedul-
ing accuracy and performance are greatly influenced 
by the presence of uncertainty [28], [29].

Scheduling can be defined as classical scheduling 
and dynamic scheduling. In classical scheduling, all 
machines and constraints such as due date, processing 
time, etc. are available for scheduling [29]. The produc-
tion state usually changes with time. However, the pre-
defined states in this scheduling approach cannot ad-
dress all production states. Moreover, parameters are 
usually found by statistics or calculations [30]. 

Investigation of dynamic scheduling is introduced by 
Jackson in the 1950s [26]. The critical factors in a dy-
namic manufacturing environment are external distur-
bances such as failure and production scheduling plan 
[31]. Despite its advantage over classical scheduling, 
uncertainties in dynamic scheduling are from direct 
assumptions, rather than actual production data [30]. 
As a result, it is not sufficient to provide interactive 
feedback with the real production. Most of the classical 
research focused on classical scheduling, in which all 
system state is known in advance and do not consider 
changing events [32], [33]. However, in a real produc-
tion environment, unexpected events may occur at any 
time. For example, machine breakdown may happen at 
any time. So, it is also necessary to consider a mainte-
nance plan along with real-time scheduling [34]. 

Maintenance activities are usually non-separable 
with production scheduling [32], [33], [35]. Based on 
[34], there are two main groups of maintenance: cor-
rective maintenance (which involves repair during un-
expected machine breakdown) and preventive main-
tenance (a condition where a planned schedule is ex-
ecuted before machine breakdown happens). On the 
other hand, the study in [14] classified the industrial 
maintenance strategies into four: reactive (perform 
maintenance during complete machine failure); correc-
tive (identify and solve failures when it happens before 
total machine failure); preventive (performing regular 
maintenance to prevent partial or complete failure); 
and predictive (anticipate failures before it happens 
and guess the remaining useful life of the machine).

2.3. Job Shop SChEDulInG

Since the 1960s, Job Shop Scheduling Problems 
(JSSP) have been considered NP-hard problems [36], 
[37]. In JSSP, the number of jobs to be scheduled can 
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be processed at a pre-determined set of machines [38]. 
Machines can also be re-visited by the job more than 
once. The Re-entrant Job Shop Scheduling Problem 
(RJSSP) is more complicated than JSSP [39].

To address scheduling problems, many algorithms 
have been used on JSSP machine environments such 
as Hybrid Genetic Algorithm (HGA) [40], multi-agent 
system [41], variable neighborhood search algorithm 
[42], hybrid particle swarm optimization [39], genetic 
algorithm [43], and ant colony optimization [44], [45].

2.4. FlExIblE Job Shop SChEDulInG

Flexible Job Shop Scheduling Problem (FJSSP) is an 
extension of JSSP, where each operation can be oper-
ated beyond a single machine, and each machine is 
capable of performing distinct tasks [46]. As a result, it 
is more complicated than traditional JSSP [47]. It is also 
known as Integrated Process Planning and Scheduling 
(IPPS) [48]. Because of its applicability in different in-
dustrial applications, FJSSP has received wide attention 
from researchers. Based on the study in [48], flexibility 
is classified into three: operation flexibility (a situation 
where a process can be processed by different alterna-
tive machines); process flexibility (a condition where it 
is possible to finish the product by combining different 
operations); and sequence flexibility (when operations 
processing sequence is variable for the product). A flex-
ible job shop can respond quickly to market changes 
and customer demands [49]. In FJSSP, jobs may re-enter 
or visit the center more than once before completing 
the process [38]. This feature is widely known in printed 
circuit board and semiconductor industries. 

Some of the previous research’s objective functions 
and used algorithms are illustrated in Table 1. 

Table 1. Previous works on FJSSP

references objective Algorithms

[47] Makespan 
and energy

Simulated Annealing (SA) and Artificial 
Immune Algorithm

[49] Energy Ant Colony Optimization (ACO)

[50] Mean 
tardiness Greedy randomized adaptive search

[51] makespan 
and energy simulated annealing

[52] Makespan 
and energy Backtracking search algorithm

[53] Makespan 
and energy Genetic algorithm (GA)

[54] Makespan Quantum algorithm

[38] Makespan Approximation algorithm

[55]
Makespan 
and due 

date
Iterated greedy constructive heuristic

[56]
Makespan, 

machine 
workload

Clustering search metaheuristics

[57] Makespan Jaya algorithm, Monte Carlo

[58] Makespan Genetic algorithm

[37]
Makespan 

& setup 
time

Non-Dominated Searching Genetic 
Algorithm (NSGA-II)

[59] Makespan Constraint Programming (CP)

[60] Makespan Genetic algorithm

2.5. FloW Shop SChEDulInG problEMS

The flow shop is composed of multi-stages, and each 
stage comprises only one machine [61]. In Flow Shop 
Scheduling Problem (FSSP), machines are assumed to 
be available during the entire planning setting [33]. It 
deals with the sequencing of jobs that enters a speci-
fied number of machines usually in the same order. 
Some of the previous studies on the FSSP machine en-
vironment are presented in Table 2.

Table 2. Existing studies on FSSP

references objective Algorithms

[62] Makespan 
and cost Mixed Integer Programming (MIP)

[32] Makespan 
and cost NSGA-II and PSO

[35]

Makespan, 
earliness, 

and 
tardiness

Genetic algorithm and Harmony search

[63] Makespan MIP

[64]
Makespan 

and job 
flow-time

Dispatching rules

[65]
Makespan 
and total 
tardiness

Fruit fly optimization algorithm

[66] Cost MIP

[67] Total flow 
time MIP

[68] Makespan MIP

[61]
Makespan 
and total 
tardiness

Evolutionary algorithm

[69] Makespan Simulated annealing

[70] Makespan Genetic algorithm & tabu search

[25] Makespan NSGA-II

2.6. SChEDulInG AlGorIThMS

The most commonly used scheduling algorithms in 
previous research are meta-heuristics, exact methods, 
reinforcement learning, deep reinforcement learning, 
and multi-agent deep reinforcement learning.

2.6.1. heuristics/ Meta-heuristics

Metaheuristics algorithm usually adopts optimiza-
tion and approximation methods [44]. An optimization 
method is used to find solutions in mathematical com-
putation. However, its application is limited in real-time 
because it takes too much time to find an optimum 
solution. It also requires mathematically sophisticated 
uses so that it is computationally intractable [17]. Con-



591Volume 13, Number 7, 2022

trarily, the approximation method is used when it is dif-
ficult to apply the optimization method. The approxi-
mated optimal solution is found within a specific time 
for a calculation. The approximation algorithm runs in 
linear time. As a result, it is computationally efficient 
[38]. For example, Evolutionary Algorithm (EA) is one 
of the algorithms that is used to find an approximate 
solution [52], [71].

Industrial environment scheduling operation needs 
an efficient algorithm. MIP is an effective approach 
for solving small-scale instances [62]. This approach is 
used to find an optimal solution based on the designed 
constraints. The main weakness of this method is that 
it tries to solve comprehensive problems by breaking 
them down into different sub-problems and then us-
ing the result of one sub-problem as input to the next 
sub-problem [72]. As a result, it could be difficult to find 
the solution in case of different conflicting constraints. 
For small-scale problems, centralized approaches such 
as MIP or CPLEX are well suited [73].

In principle, all metaheuristics can be applied to the 
Flexible Job Shop Problem (FJSP). Due to its fewer pa-
rameters, Particle Swarm Optimization (PSO) is much 
simpler and easier to maintain [46]. Although its con-
vergence speed is fast, PSO will converge to the local 
optimum and will not be able to jump out with a maxi-
mum iteration rate [39]. PSO is known for convenient 
variable neighborhood search and flexible coding 
methods for solving some combinatorial optimiza-
tion problems. Likewise, The Variable Neighborhood 
Search (VNS) algorithm is a metaheuristic optimization 
approach for solving combinatorial problems. It finds 
a solution's neighborhood until a better solution than 
the existing one is found, and moves to another [74].

2.6.2. Multi-Agent Systems (MAS)

The classical MAS method uses only a single dis-
patching rule and doesn’t consider the impact of envi-
ronmental changes in selecting dispatching rules [75]. 
This behavior in turn leads to poor scheduling perfor-
mance. From the viewpoint of scheduling results, Ar-
tificial Intelligence (AI) algorithms perform better than 
MAS [49].

Multi-Agent System (MAS) is an agent-based system 
in which distributed agents make their own decisions 
using available information to ensure the whole sys-
tem runs smoothly [76]. Another type of MAS approach 
is one in which agents negotiate while distributed 
agents make scheduling or production planning deci-
sions. To mention a few, dynamic scheduling algorithm 
for allocating tasks on MAS with ring structure bidding 
method and negotiation method [77]; scheduling of 
distributed machines with negotiation and bidding 
protocol [78], and agent negotiation protocol to cope 
with the dynamic manufacturing environment [79].

However, in negotiation and agreement protocol, 
negotiation between agents is performed through a 

predetermined rule-based mechanism [80]. As a result, 
adaptation to the environment remains a challenge.

The combination of decentralized production sys-
tems and Industry 4.0 complicates production sched-
uling optimization. In comparison to the centralized 
production control system, the decentralized produc-
tion control system has low complexity, improved 
scalability, and real-time capability. Implementation 
of MAS on these problems simplifies the solutions. De-
spite its solution efficiency, multi-agent systems in this 
environment tend to show local optimization [81]. To 
address these challenges, cooperative multi-agents are 
necessary.

2.6.3. reinforcement learning

Reinforcement learning (RL) is concerned with learn-
ing from experiences. It describes how agents learn the 
best policy to achieve the desired objectives by observ-
ing an environment, performing possible actions, and 
obtaining a reward as a result. The agents' goal is to 
maximize cumulative reward [82].

No algorithm is adaptive enough to address all the 
wide area of manufacturing problems. Algorithms in 
previous studies need high computational efforts and 
failed in the real manufacturing industry where there 
are dynamic events and uncertainties [83].

Smart manufacturing scheduling differs from job 
shop scheduling in several ways, including a large 
number of tasks and services, as well as the dynamic 
states and uncertainties. Scheduling is a critical process 
for manufacturing industries to maximize profits while 
lowering costs. Specifically, in a  dynamic and complex 
manufacturing environment, poor scheduling results 
in higher costs, longer production times, and higher 
tardiness [84]. Thereby, to comply with the complexi-
ties of a manufacturing site and improve its effective-
ness, scheduling must be transformed and enhanced 
for sustainability and intelligence.

JSSP has been thoroughly researched over the last 
several decades, and numerous techniques for solv-
ing classical JSSP have been developed. Nevertheless, 
in real manufacturing industries, the environment is 
mostly dynamic, such as new job arrivals and machine 
failure [85]. Dynamic systems begin with the jobs that 
arrive first and are assumed to follow a probabilistic 
rule [86]. 

Task scheduling methods are divided into two: pre-
cise and approximate scheduling methods [87]. The 
precise methods search the entire search space for 
the global optimum solution. consequently, they are 
computationally complex and are inefficient at solving 
complex scheduling problems. Conversely, approxi-
mate methods have lower complexity and get the ap-
propriate solution faster, while having greater advan-
tages in solving complex scheduling problems. Howev-
er, approximate methods cannot ensure an optimum 
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solution to the scheduling. A scheduling algorithm's 
main objective is to use a small number of machines to 
process a specified number of jobs while optimizing an 
objective [88].

The high dynamics, difficulty, and unpredictability 
of the JSSP environment continue to pose significant 
challenges [4]. Most JSSP methods are implemented 
as centralized algorithms with complete knowledge of 
the manufacturing process [88]. In contrast, one of the 
visions of Industry 4.0 is decentralized, self-learning, self-
organizing, and self-optimizing production control [89]. 

The use of RL in JSSP has huge benefits. First, it is 
more adaptable than classical priority dispatching rule 
heuristics. Furthermore, developing such heuristics is 
tiresome because they require a great deal of expertise 
in a scheduling instance to be efficient [8]. RL, unlike 
traditional COP methods like Linear Programming (LP) 
or Constraint Programming (CP), can model dynamic 
uncertainties.

The existing research summary on RL-based DJSSP is 
presented in Table 3.
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[8] JSSP Makespan Actor-critic Job order and 
processing time

[90] JSSP
Robustness 

to processing 
time

DQN
Random 

processing time 
(RPT)

[91] JSSP Lead time DQN Machine Failure 
(MF)

[92] FMS Makespan PNC & 
DQN No

[93] JSSP Makespan DQN Random Job 
Arrival (RJA)

[85] FJSSP Total 
tardiness DQN New job insertion

[94] FJSSP Makespan Q-learning RPT

[74] JSSP Mean flow 
time Q-learning RJA & MF

[87] FJSSP Makespan DQN RJA

Table 3. Studies on RL-based DJSSP

In dynamic JSSP multi-agent configuration, a Markov 
property which is considered a precondition for conver-
gence will fail because of the independent updating pol-
icy by each agent [93]. However, integrating the whole 
JSSP into a single agent helps to avoid multi-agent inter-
ference with each other and convergence to local opti-
mum. As a result, it has the advantage of stability.

2.6.4. Q-learning

Q-learning is characterized as an off-policy method 
and with its early convergence behavior [82]. In Q-
learning, there are different No.s: the learning process 

could result in a local optimum solution or it could take 
longer to succeed and generalization problem [86]. 
Similarly, the presence of a large number of environ-
mental states limits the accuracy of the applied RL ap-
proach [95]. SARSA and Q-learning are model-free Tem-
poral Difference (TD) algorithms. In SARSA, the action is 
chosen at random with a probability, while in Q-learn-
ing, the action is the one that increases the value. That 
means, Q-learning greedily learns state-action value 
without looking at the policy [96]. If the environment is 
entirely observable, the DP approach could be used to 
infer optimum policy. However, usually, it is unknown, 
and no precise understanding of the environment ex-
ists. Under these scenarios, RL finds the optimum strat-
egy using an iterative process [82].

One of the main challenges of Q-learning in sched-
uling is its limitation on continuous state space. In 
the practical industrial environment, where there is a 
continuous state feature, the total number of states is 
potentially infinite, establishing a massive Q table is un-
realistic [8].

2.6.5. Deep reinforcement learning

Deep Reinforcement Learning (DRL) has been recent-
ly applied from Traveling Salesman Problem (TSP) in a 
graph optimization to Satisfiability problem [97]. DRL 
solutions to scheduling problems, on the other hand, 
are more recent and limited. DRL has the following fea-
tures which are suitable for intelligent scheduling: (1) 
Ability to communicate with its surroundings and utili-
zation of feedback data to optimize its strategy. (2) DRL, 
like different machine learning algorithms, requires 
intensive offline training; however, becomes efficient 
while executed. (3) The synchronization of DNN param-
eters takes advantage of the scheduling policy consis-
tency between the simulation model and a real factory 
[92]. Solving dynamic scheduling problems requires 
the environment to satisfy the MDP requirement.

In DRL, the neural network is used to pick a candidate 
action. The main advantage of DRL is the ability to dem-
onstrate the complex model in a comparatively simple 
manner than RL [84]. Furthermore, the agent learns 
the optimal strategy by trial and error, and this strategy 
helps the agent to decide in a dynamic environment.

2.6.6. Deep Q network

When DNN is utilized to approximate the Q-value, it is 
known as a Deep Q Network (DQN). The problem of RL 
is its inability to converge because of the correlation be-
tween the expected value and Q-value [84]. DQN uses 
experience replay memory, which stores encountered 
data, to choose the data at random during learning to 
eliminate the correlation. The target network's weight 
is also iteratively updated for optimal convergence of 
the anticipated Q-value. The only distinction between 
DQN and Q-learning is; that in DQN, the agent's brain is 
DNN, whereas, in Q-learning, it is Q-table.
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In complex job shop settings, breaking down and 
adjusting global objectives to local Key Performance 
Indicators (KPIs) is difficult. The DQN agent optimizes 
globally rather than locally. This implies that manually 
breaking down production objectives is not essential 
[89]. Regardless of its benefits, DQN has also draw-
backs. First, training is time-consuming. Second, due to 
the black-box nature of the neural network, it is difficult 
to anticipate how DQN agents will behave in uncertain 
situations. It is also incapable to deal with continuous 
action spaces.  Because of the continuous nature of the 
training process, each agent's policy changes regularly. 
This prevents straightforward usage of experience re-
play, which enables DQN to learn stability. Moreover, 
Deep Policy Gradient (DPG) also suffers from high vari-
ance [98]. Experience replay is the agent's huge experi-
ence data pool in which the experience, at each step, 
will be stored [8]. 

2.6.7. Drawbacks of Drl

There are two types of RL: model-free and model-
based. The latter forecast the future state and under-
stand the entire MDP transition model. Conversely, the 
majority of JSSP states are usually huge, if not infinite, 
which makes it impossible to understand the entire 
changing scenario [8].

The major challenge in model-free DRL is the absence 
of robustness when the environment changes [99]. It 
has less potential for reacting to huge environmental 
uncertainty. These constraints can be solved by retrain-
ing the model on the different distributions before 
deployment. Likewise, combining this approach with 
a model-based strategy enables solving the problem. 
Furthermore, DRL involves a large sample, which could 
be obtained by interacting with the simulator, to learn 
an optimum strategy. This simulation model should be 
efficient, but usually hard to construct.

In the case of Policy Gradients (PG) methods, there 
is no guarantee of optimality [99]. The best strategy to 
train model-free algorithms is by making a deliberate 
mistake early on and then determining which actions 
result in the maximum long-term rewards using a se-
ries of Monte Carlo simulations of the scheduling en-
vironment. Designing a reward is also a big challenge 
in DRL [8]. 

2.7. Scheduling Technology and Tools

The emergence of CPS has led to the development of 
digital twin technology. Digital twins are a digital copy 
of the physical machine and are modeled based on dif-
ferent dimensions such as geometric, physical, behav-
ioral, rule, and data modeling.

2.7.1. Digital Twin

Digital Twin (DT) was first introduced by prof. Michael 
Grieves in 2003 [100]. The main idea of DT is the realiza-
tion of interoperability and interconnection between 

virtual and physical elements of the shop floor [30]. 
There is no commonly agreed definition of a digital 
twin. However, the general definition of DT is a simu-
lation model of a real-world system that is linked to a 
physical twin [101]. This linkage aids in the collection 
of actual data for simulation, and forward responses to 
the physical environment to fine-tune the behavior of 
the actual component [102].

DT can be used in a variety of settings, including 
production and manufacturing processes [31], and 
in all stages of product lifecycle [102], digital product 
development, process planning, lean manufactur-
ing, construction of smart cities, energy, and mining 
solutions [103]. Nevertheless, it is not yet extensively 
implemented in the production stage [102]. The main 
advantage of using DT includes a reflection of the real-
time working process and direction for the subsequent 
operational process of the physical model. Apart from 
simulation, DT is used to showcase unknown problems 
by predictions [103]. DT enables cyber-physical inte-
gration and real-time management between physical 
objects and digital representation [20].

DT is composed of four levels i.e., geometry, physics, 
behavior, and rules [104], and it helps not only to show 
the dynamic and geometric features but also to de-
fine the physical attributes and rules [102]. Using DT in 
production has also some challenges. To monitor com-
posite twin data and extract insights it represents, an 
effective technique is required [31]. In addition to this, 
it is time-consuming and costly and requires experts in 
different areas, for the construction of complete and 
detailed DT [29]. Accurate and highly efficient commu-
nication between physical and digital spaces is needed 
[101]. Moreover, security No.s are also a critical compo-
nent that needs to be considered before applying it to 
a larger scale.   

In previous research, the digital twin has been used 
to assist with a scheduling problems. Machine failure 
detection and performance evaluation [27], [29], analy-
sis of transportation and production processing stages 
[60], process simulation and production scheduling 
[17], and production scheduling for defense weapon 
systems [83] are among the studies. The reason why the 
simulation package becomes better than the stochas-
tic Petri-net package is, because of its convenience, 
timely, and easier to operate nature [102].

Based on the analysis, existing manufacturing para-
digms have the following limitations. Interconnection 
between physical machines and virtual models, the inter-
connection between the virtual model and physical pro-
duction, generation of accurate data by converging the 
data from virtual and physical spaces, a realization of intel-
ligent production simulation and optimization [30]; and 
lack of consideration of actual transportation condition 
in shop floors [60] are among the challenges. Most of the 
existing studies on digital twins focus on individual ma-
chines [83] and remain a challenge on how to construct 
and when to apply them on the shop floor [102].
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2.7.2. petri net

A Petri net (place/transition net) is a directed con-
nected graph that represents a finite set of arcs and 
used as a tool for process transitions. Topologically 
structured graphs or nets, which can represent regula-
tions and connections are more capable of modeling 
production processes than standard tensors [92]. It is a 
popular method of process modeling not for searching 
for optimal scheduling. For example, in heuristic strat-
egies, Petri nets design the manufacturing process, 
while heuristic rules focus on resolving scheduling con-
flicts [95]. The main drawback of PN-based scheduling 
is state space explosion.

4. DISCUSSION 

In the era of smart manufacturing, a vast amount of 
data is being generated from different smart products 
and resources, which always provide feedback about 
their status to the system. Despite the extraction of the 
enormous amount of data, machine interoperability 
between shop floor environments is still a challenge.  

The future of IoT objects will be standardized to-
wards everything-as-a-service, which will bring better 
interoperability, re-usability, lower complexity, and 
higher scalability options. However, it will also incur 
high costs, have a lack of standards, lack of knowledge, 
and other limitations. The research findings based on 
the expert ideas in [105] show that service-oriented ar-
chitecture will be the core component of smart manu-
facturing. So, this will help to solve the interoperability 
problems.

The most challenges found in the study are shop floor 
environment challenges related to CPS and handling of 
large amounts of information in adaptive manufactur-
ing, machine pro-activeness (suggesting changes by 
themselves) and scheduling, decentralized and flexible 
decision making, human-robot collaboration, and con-
stant evolution of new technologies.

Moreover, the choice of algorithm for the industrial 
environment is still vague. Usually, academic research 
algorithms' performance is evaluated with existing 
algorithms on the same setting, parameters, and con-
straints. This strategy will not help to implement the 
solution in the real environment. Algorithmic sched-
uling solutions should be evaluated not only with the 
existing algorithm but also with the Key Performance 
Indicators (KPI) of the particular factory.

However, if the solution has to deal with the real in-
dustrial environment, then adaptive scheduling such 
as RL and DRL can be the best fit. Dynamic Program-
ming (DP) operates in fully observable MDP. In other 
words, DP can only be applied in environments with 
fully known transition probability. But in the real world, 
it is difficult to anticipate the entire environment and 
it is also computationally expensive. Similarly, Monte 
Carlo (MC) methods cannot be applied in an expensive 

critical industrial environment. The backup or update 
is performed at the terminal state. To update the value 
function, this approach waits for something to happen. 
In this case, if the machine is broken down, or if it ex-
plodes, it is difficult to reverse the initial working state.

Multi-agent Deep Reinforcement Learning (MADRL) 
scheduling algorithms are used to deal with dynamic 
uncertainty and a huge environment. However, the so-
cial dilemma is the main challenge to implement the 
solution. In another word, if each agent is competing 
with each other in a multi-agent environment, then 
they will waste resources. So, to make them synchro-
nized and achieve a common goal, an appropriate re-
ward function is needed. In MADRL, crafting a reward 
function is the most difficult task.

5. CONCLUSION AND FUTURE WORK 

Scheduling tasks requires a comprehensive account-
ing of jobs and resources which are available with pos-
sible limitations in their use [17]. Scheduling problems 
are not only NP-hard but also computationally difficult 
combinatorial problems.

The common bottlenecks in dynamic scheduling 
include prediction of machine availability, disruption 
detection, and performance evaluation [29], [31]. Dy-
namic events and uncertainties are the main cause of 
scheduling performance deterioration and production 
disruption. The widely used approach of disturbance 
detection is, setting predefined constraints as a bench-
mark to evaluate the change between actual produc-
tion and the anticipated plan. However, manufactur-
ing states always change with time so the predefined 
benchmarks cannot correctly visualize currently an-
ticipated production states. The other limitation of 
existing dynamic scheduling research is that dynamic 
events are considered from direct assumptions or de-
rived by statistics rather than actual production data. 
As a result, it fails to provide interactive feedback and is 
limited in solving real-time problems.

Smart manufacturing system usually fails to achieve 
the desired objective because of non-reasonable de-
sign [106]. Incorporating AI techniques with a digital 
twin-based design approach can be a solution to such 
problems. In the majority of existing scheduling solu-
tions, the machine states are modeled as a binary state 
i.e., up or down. However, it could also be interesting to 
consider the rate of machine performance degradation 
and the time to go to an intermediate state before its 
failure.

States in a job shop environment are infinite. As a re-
sult, applying model-based RL methods that know the 
entire MDP transition model is not recommended. An 
infinite number of states makes it difficult to understand 
the entire transition situation. Moreover, the challenging 
issues in model-based RL scheduling is the exhaustive 
computation of Q values. When the number of machines 
and jobs is more than twenty, the agent will find it hard 
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to find an optimum policy and difficult to converge to 
the global optimum. Because the value has to be com-
puted for every possible state. However, improving the 
policy directly using the policy-based approach leads to 
convergence and an optimum policy.    
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