5,908 research outputs found

    Optimization of Process Flowsheets through Metaheuristic Techniques

    Get PDF
    This book presents a multi-objective optimization framework for optimizing chemical processes. The proposed framework implements a link between process simulators and metaheuristic techniques. The proposed approach is general, and there can be used any process simulator and any metaheuristic technique. This book shows how to implement links between different process simulators such as Aspen PlusÂź, HYSYSÂź, SuperPro DesignerÂź, and others, linked to metaheuristic techniques implemented in MatlabÂź, ExcelÂź, C++, or other programs. This way, the proposed framework allows optimizing any process flowsheet implemented in the process simulator and using the metaheuristic technique, and this way the numerical complications through the optimization process can be eliminated. Furthermore, the proposed framework allows using the thermodynamic, design, and constitutive equations implemented in the process simulator to implement any process

    Meta-heuristic algorithms in car engine design: a literature survey

    Get PDF
    Meta-heuristic algorithms are often inspired by natural phenomena, including the evolution of species in Darwinian natural selection theory, ant behaviors in biology, flock behaviors of some birds, and annealing in metallurgy. Due to their great potential in solving difficult optimization problems, meta-heuristic algorithms have found their way into automobile engine design. There are different optimization problems arising in different areas of car engine management including calibration, control system, fault diagnosis, and modeling. In this paper we review the state-of-the-art applications of different meta-heuristic algorithms in engine management systems. The review covers a wide range of research, including the application of meta-heuristic algorithms in engine calibration, optimizing engine control systems, engine fault diagnosis, and optimizing different parts of engines and modeling. The meta-heuristic algorithms reviewed in this paper include evolutionary algorithms, evolution strategy, evolutionary programming, genetic programming, differential evolution, estimation of distribution algorithm, ant colony optimization, particle swarm optimization, memetic algorithms, and artificial immune system

    MULTI-OBJECTIVE DIFFERENTIAL EVOLUTION: MODIFICATIONS AND APPLICATIONS TO CHEMICAL PROCESSES

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    A nature-inspired multi-objective optimisation strategy based on a new reduced space searching algorithm for the design of alloy steels

    Get PDF
    In this paper, a salient search and optimisation algorithm based on a new reduced space searching strategy, is presented. This algorithm originates from an idea which relates to a simple experience when humans search for an optimal solution to a ‘real-life’ problem, i.e. when humans search for a candidate solution given a certain objective, a large area tends to be scanned first; should one succeed in finding clues in relation to the predefined objective, then the search space is greatly reduced for a more detailed search. Furthermore, this new algorithm is extended to the multi-objective optimisation case. Simulation results of optimising some challenging benchmark problems suggest that both the proposed single objective and multi-objective optimisation algorithms outperform some of the other well-known Evolutionary Algorithms (EAs). The proposed algorithms are further applied successfully to the optimal design problem of alloy steels, which aims at determining the optimal heat treatment regime and the required weight percentages for chemical composites to obtain the desired mechanical properties of steel hence minimising production costs and achieving the overarching aim of ‘right-first-time production’ of metals

    Ensemble Differential Evolution with Simulation-Based Hybridization and Self-Adaptation for Inventory Management Under Uncertainty

    Full text link
    This study proposes an Ensemble Differential Evolution with Simula-tion-Based Hybridization and Self-Adaptation (EDESH-SA) approach for inven-tory management (IM) under uncertainty. In this study, DE with multiple runs is combined with a simulation-based hybridization method that includes a self-adaptive mechanism that dynamically alters mutation and crossover rates based on the success or failure of each iteration. Due to its adaptability, the algorithm is able to handle the complexity and uncertainty present in IM. Utilizing Monte Carlo Simulation (MCS), the continuous review (CR) inventory strategy is ex-amined while accounting for stochasticity and various demand scenarios. This simulation-based approach enables a realistic assessment of the proposed algo-rithm's applicability in resolving the challenges faced by IM in practical settings. The empirical findings demonstrate the potential of the proposed method to im-prove the financial performance of IM and optimize large search spaces. The study makes use of performance testing with the Ackley function and Sensitivity Analysis with Perturbations to investigate how changes in variables affect the objective value. This analysis provides valuable insights into the behavior and robustness of the algorithm.Comment: 15 pages, 6 figures, AsiaSIM 2023 (Springer

    Application of nature-inspired optimization algorithms to improve the production efficiency of small and medium-sized bakeries

    Get PDF
    Increasing production efficiency through schedule optimization is one of the most influential topics in operations research that contributes to decision-making process. It is the concept of allocating tasks among available resources within the constraints of any manufacturing facility in order to minimize costs. It is carried out by a model that resembles real-world task distribution with variables and relevant constraints in order to complete a planned production. In addition to a model, an optimizer is required to assist in evaluating and improving the task allocation procedure in order to maximize overall production efficiency. The entire procedure is usually carried out on a computer, where these two distinct segments combine to form a solution framework for production planning and support decision-making in various manufacturing industries. Small and medium-sized bakeries lack access to cutting-edge tools, and most of their production schedules are based on personal experience. This makes a significant difference in production costs when compared to the large bakeries, as evidenced by their market dominance. In this study, a hybrid no-wait flow shop model is proposed to produce a production schedule based on actual data, featuring the constraints of the production environment in small and medium-sized bakeries. Several single-objective and multi-objective nature-inspired optimization algorithms were implemented to find efficient production schedules. While makespan is the most widely used quality criterion of production efficiency because it dominates production costs, high oven idle time in bakeries also wastes energy. Combining these quality criteria allows for additional cost reduction due to energy savings as well as shorter production time. Therefore, to obtain the efficient production plan, makespan and oven idle time were included in the objectives of optimization. To find the optimal production planning for an existing production line, particle swarm optimization, simulated annealing, and the Nawaz-Enscore-Ham algorithms were used. The weighting factor method was used to combine two objectives into a single objective. The classical optimization algorithms were found to be good enough at finding optimal schedules in a reasonable amount of time, reducing makespan by 29 % and oven idle time by 8 % of one of the analyzed production datasets. Nonetheless, the algorithms convergence was found to be poor, with a lower probability of obtaining the best or nearly the best result. In contrast, a modified particle swarm optimization (MPSO) proposed in this study demonstrated significant improvement in convergence with a higher probability of obtaining better results. To obtain trade-offs between two objectives, state-of-the-art multi-objective optimization algorithms, non-dominated sorting genetic algorithm (NSGA-II), strength Pareto evolutionary algorithm, generalized differential evolution, improved multi-objective particle swarm optimization (OMOPSO) and speed-constrained multi-objective particle swarm optimization (SMPSO) were implemented. Optimization algorithms provided efficient production planning with up to a 12 % reduction in makespan and a 26 % reduction in oven idle time based on data from different production days. The performance comparison revealed a significant difference between these multi-objective optimization algorithms, with NSGA-II performing best and OMOPSO and SMPSO performing worst. Proofing is a key processing stage that contributes to the quality of the final product by developing flavor and fluffiness texture in bread. However, the duration of proofing is uncertain due to the complex interaction of multiple parameters: yeast condition, temperature in the proofing chamber, and chemical composition of flour. Due to the uncertainty of proofing time, a production plan optimized with the shortest makespan can be significantly inefficient. The computational results show that the schedules with the shortest and nearly shortest makespan have a significant (up to 18 %) increase in makespan due to proofing time deviation from expected duration. In this thesis, a method for developing resilient production planning that takes into account uncertain proofing time is proposed, so that even if the deviation in proofing time is extreme, the fluctuation in makespan is minimal. The experimental results with a production dataset revealed a proactive production plan, with only 5 minutes longer than the shortest makespan, but only 21 min fluctuating in makespan due to varying the proofing time from -10 % to +10 % of actual proofing time. This study proposed a common framework for small and medium-sized bakeries to improve their production efficiency in three steps: collecting production data, simulating production planning with the hybrid no-wait flow shop model, and running the optimization algorithm. The study suggests to use MPSO for solving single objective optimization problem and NSGA-II for multi-objective optimization problem. Based on real bakery production data, the results revealed that existing plans were significantly inefficient and could be optimized in a reasonable computational time using a robust optimization algorithm. Implementing such a framework in small and medium-sized bakery manufacturing operations could help to achieve an efficient and resilient production system.Die Steigerung der Produktionseffizienz durch die Optimierung von ArbeitsplĂ€nen ist eines der am meisten erforschten Themen im Bereich der Unternehmensplanung, die zur Entscheidungsfindung beitrĂ€gt. Es handelt sich dabei um die Aufteilung von Aufgaben auf die verfĂŒgbaren Ressourcen innerhalb der BeschrĂ€nkungen einer Produktionsanlage mit dem Ziel der Kostenminimierung. Diese Optimierung von ArbeitsplĂ€nen wird mit Hilfe eines Modells durchgefĂŒhrt, das die Aufgabenverteilung in der realen Welt mit Variablen und relevanten EinschrĂ€nkungen nachbildet, um die Produktion zu simulieren. ZusĂ€tzlich zu einem Modell sind Optimierungsverfahren erforderlich, die bei der Bewertung und Verbesserung der Aufgabenverteilung helfen, um eine effiziente Gesamtproduktion zu erzielen. Das gesamte Verfahren wird in der Regel auf einem Computer durchgefĂŒhrt, wobei diese beiden unterschiedlichen Komponenten (Modell und Optimierungsverfahren) zusammen einen Lösungsrahmen fĂŒr die Produktionsplanung bilden und die Entscheidungsfindung in verschiedenen Fertigungsindustrien unterstĂŒtzen. Kleine und mittelgroße BĂ€ckereien haben zumeist keinen Zugang zu den modernsten Werkzeugen und die meisten ihrer ProduktionsplĂ€ne beruhen auf persönlichen Erfahrungen. Dies macht einen erheblichen Unterschied bei den Produktionskosten im Vergleich zu den großen BĂ€ckereien aus, was sich in deren Marktdominanz widerspiegelt. In dieser Studie wird ein hybrides No-Wait-Flow-Shop-Modell vorgeschlagen, um einen Produktionsplan auf der Grundlage tatsĂ€chlicher Daten zu erstellen, der die BeschrĂ€nkungen der Produktionsumgebung in kleinen und mittleren BĂ€ckereien berĂŒcksichtigt. Mehrere einzel- und mehrzielorientierte, von der Natur inspirierte Optimierungsalgorithmen wurden implementiert, um effiziente ProduktionsplĂ€ne zu berechnen. Die Minimierung der Produktionsdauer ist das am hĂ€ufigsten verwendete QualitĂ€tskriterium fĂŒr die Produktionseffizienz, da sie die Produktionskosten dominiert. Jedoch wird in BĂ€ckereien durch hohe Leerlaufzeiten der Öfen Energie verschwendet was wiederum die Produktionskosten erhöht. Die Kombination beider QualitĂ€tskriterien (minimale Produktionskosten, minimale Leerlaufzeiten der Öfen) ermöglicht eine zusĂ€tzliche Kostenreduzierung durch Energieeinsparungen und kurze Produktionszeiten. Um einen effizienten Produktionsplan zu erhalten, wurden daher die Minimierung der Produktionsdauer und der Ofenleerlaufzeit in die Optimierungsziele einbezogen. Um optimale ProduktionsplĂ€ne fĂŒr bestehende Produktionsprozesse von BĂ€ckereien zu ermitteln, wurden folgende Algorithmen untersucht: Particle Swarm Optimization, Simulated Annealing und Nawaz-Enscore-Ham. Die Methode der Gewichtung wurde verwendet, um zwei Ziele zu einem einzigen Ziel zu kombinieren. Die Optimierungsalgorithmen erwiesen sich als gut genug, um in angemessener Zeit optimale PlĂ€ne zu berechnen, wobei bei einem untersuchten Datensatz die Produktionsdauer um 29 % und die Leerlaufzeit des Ofens um 8 % reduziert wurde. Allerdings erwies sich die Konvergenz der Algorithmen als unzureichend, da nur mit einer geringen Wahrscheinlichkeit das beste oder nahezu beste Ergebnis berechnet wurde. Im Gegensatz dazu zeigte der in dieser Studie ebenfalls untersuchte modifizierte Particle-swarm-Optimierungsalgorithmus (mPSO) eine deutliche Verbesserung der Konvergenz mit einer höheren Wahrscheinlichkeit, bessere Ergebnisse zu erzielen im Vergleich zu den anderen Algorithmen. Um Kompromisse zwischen zwei Zielen zu erzielen, wurden moderne Algorithmen zur Mehrzieloptimierung implementiert: Non-dominated Sorting Genetic Algorithm (NSGA-II), Strength Pareto Evolutionary Algorithm, Generalized Differential Evolution, Improved Multi-objective Particle Swarm Optimization (OMOPSO), and Speed-constrained Multi-objective Particle Swarm Optimization (SMPSO). Die Optimierungsalgorithmen ermöglichten eine effiziente Produktionsplanung mit einer Verringerung der Produktionsdauer um bis zu 12 % und einer Verringerung der Leerlaufzeit der Öfen um 26 % auf der Grundlage von Daten aus unterschiedlichen Produktionsprozessen. Der Leistungsvergleich zeigte signifikante Unterschiede zwischen diesen Mehrziel-Optimierungsalgorithmen, wobei NSGA-II am besten und OMOPSO und SMPSO am schlechtesten abschnitten. Die GĂ€rung ist ein wichtiger Verarbeitungsschritt, der zur QualitĂ€t des Endprodukts beitrĂ€gt, indem der Geschmack und die Textur des Brotes positiv beeinflusst werden kann. Die Dauer der GĂ€rung ist jedoch aufgrund der komplexen Interaktion von mehreren GrĂ¶ĂŸen abhĂ€ngig wie der Hefezustand, der Temperatur in der GĂ€rkammer und der chemischen Zusammensetzung des Mehls. Aufgrund der VariabilitĂ€t der GĂ€rzeit kann jedoch ein Produktionsplan, der auf die kĂŒrzeste Produktionszeit optimiert ist, sehr ineffizient sein. Die Berechnungsergebnisse zeigen, dass die PlĂ€ne mit der kĂŒrzesten und nahezu kĂŒrzesten Produktionsdauer eine erhebliche (bis zu 18 %) Erhöhung der Produktionsdauer aufgrund der Abweichung der GĂ€rzeit von der erwarteten Dauer aufweisen. In dieser Arbeit wird eine Methode zur Entwicklung einer robusten Produktionsplanung vorgeschlagen, die VerĂ€nderungen in den GĂ€rzeiten berĂŒcksichtigt, so dass selbst bei einer extremen Abweichung der GĂ€rzeit die Schwankung der Produktionsdauer minimal ist. Die experimentellen Ergebnisse fĂŒr einen Produktionsprozess ergaben einen robusten Produktionsplan, der nur 5 Minuten lĂ€nger ist als die kĂŒrzeste Produktionsdauer, aber nur 21 Minuten in der Produktionsdauer schwankt, wenn die GĂ€rzeit von -10 % bis +10 % der ermittelten GĂ€rzeit variiert. In dieser Studie wird ein Vorgehen fĂŒr kleine und mittlere BĂ€ckereien vorgeschlagen, um ihre Produktionseffizienz in drei Schritten zu verbessern: Erfassung von Produktionsdaten, Simulation von ProduktionsplĂ€nen mit dem hybrid No-Wait Flow Shop Modell und AusfĂŒhrung der Optimierung. FĂŒr die Einzieloptimierung wird der mPSO-Algorithmus und fĂŒr die Mehrzieloptimierung NSGA-II-Algorithmus empfohlen. Auf der Grundlage realer BĂ€ckereiproduktionsdaten zeigten die Ergebnisse, dass die in den BĂ€ckereien verwendeten PlĂ€ne ineffizient waren und mit Hilfe eines effizienten Optimierungsalgorithmus in einer angemessenen Rechenzeit optimiert werden konnten. Die Umsetzung eines solchen Vorgehens in kleinen und mittelgroßen BĂ€ckereibetrieben trĂ€gt dazu bei effiziente und robuste ProduktionsplĂ€ne zu erstellen und somit die WettbewerbsfĂ€higkeit dieser BĂ€ckereien zu erhöhen

    A Model-Based Framework for the Smart Manufacturing of Polymers

    Get PDF
    It is hard to point a daily activity in which polymeric materials or plastics are not involved. The synthesis of polymers occurs by reacting small molecules together to form, under certain conditions, long molecules. In polymer synthesis, it is mandatory to assure uniformity between batches, high-quality of end-products, efficiency, minimum environmental impact, and safety. It remains as a major challenge the establishment of operational conditions capable of achieving all objectives together. In this dissertation, different model-centric strategies are combined, assessed, and tested for two polymerization systems. The first system is the synthesis of polyacrylamide in aqueous solution using potassium persulfate as initiator in a semi-batch reactor. In this system, the proposed framework integrates nonlinear modelling, dynamic optimization, advanced control, and nonlinear state estimation. The objectives include the achievement of desired polymer characteristics through feedback control and a complete motoring during the reaction. The estimated properties are close to experimental values, and there is a visible noise reduction. A 42% improvement of set point accomplishment in average is observed when comparing feedback control combined with a hybrid discrete-time extended Kalman filter (h-DEKF) and feedback control only. The 4-state geometric observer (GO) with passive structure, another state estimation strategy, shows the best performance. Besides achieving smooth signal processing, the observer improves 52% the estimation of the final molecular weight distribution when compared with the h-DEKF. The second system corresponds to the copolymerization of ethylene with 1,9-decadiene using a metallocene catalyst in a semi-batch reactor. The evaluated operating conditions consider different diene concentrations and reaction temperatures. Initially, the nonlinear model is validated followed by a global sensitivity analysis, which permits the selection of the important parameters. Afterwards, the most important kinetic parameters are estimated online using an extended Kalman filter (EKF), a variation of the GO that uses a preconditioner, and a data-driven strategy referred as the retrospective cost model refinement (RCMR) algorithm. The first two strategies improve the measured signal, but fail to predict other properties. The RCMR algorithm demonstrates an adequate estimation of the unknown parameters, and the estimates converge close to theoretical values without requiring prior knowledge

    Multi-Objective Optimization Programs and their Application to Amine Absorption Process Design for Natural Gas Sweetening

    Get PDF
    This chapter presents three MS Excel programs, namely, EMOO (Excel based Multi-Objective Optimization), NDS (Non-Dominated Sorting) and PM (Performance Metrics) useful for Multi-Objective Optimization (MOO) studies. The EMOO program is for finding non-dominated solutions of a given MOO problem. It has both binary-coded and realcoded NSGA-II (Elitist Non-Dominated Sorting Genetic Algorithm), and two termination criteria based on chi-squared test and steady state detection. The known/true Pareto-optimal front for the application problems is not available unlike that for benchmark problems. Hence, a procedure for obtaining known/true Pareto-optimal front is described in this chapter. The NDS program is for non-dominated sorting and crowding distance calculations of the non-dominated solutions obtained from several optimization runs using same or different MOO programs. The PM program can be used to calculate the values of performance metrics between the non-dominated solutions obtained using a MOO program and the true/known Pareto optimal front. It is useful for comparing the performance of MOO programs to find the non-dominated solutions. Finally, use of EMOO, NDS and PM programs is demonstrated on MOO of amine absorption process for natural gas sweetening

    Development of Biomimetic-Based Controller Design Methods for Advanced Energy Systems

    Get PDF
    A biologically inspired optimal control strategy, denoted as BIO-CS, is proposed for advanced energy systems applications. This strategy combines the ant\u27s rule of pursuit idea with multi-agent and optimal control concepts. The BIO-CS algorithm employs gradient-based optimal control solvers for the intermediate problems associated with the leader-follower agents\u27 local interactions. The developed BIO-CS is integrated with an Artificial Neural Network (ANN)-based adaptive component for further improvement of the overall framework. In particular, the ANN component captures the mismatch between the controller and the plant models by using a single-hidden-layer technique with online learning capabilities to augment the baseline BIO-CS control laws. The resulting approach is a unique combination of biomimetic control and data-driven methods that provides optimal solutions for dynamic systems.;The applicability of the proposed framework is illustrated via an Integrated Gasification Combined Cycle (IGCC) process with carbon capture as an advanced energy system example. Specifically, a multivariable control structure associated with a subsystem of the IGCC plant simulation in DYNSIMRTM software platform is addressed. The proposed control laws are derived in MATLAB RTM environment, while the plant models are built in DYNSIM RTM, and a previously developed MATLABRTM-DYNSIM RTM link is employed for implementation purposes. The proposed integrated approach improves the overall performance of the process up to 85% in terms of reducing the output tracking error when compared to stand-alone BIO-CS and Proportional-Integral (PI) controller implementations, resulting in faster setpoint tracking.;Other applications of BIO-CS addressed include: i) a nonlinear fermentation process to produce ethanol; and ii) a transfer function model derived from the cyber-physical fuel cell-gas turbine hybrid power system that is part of the Hybrid Performance (HYPER) project at the National Energy Technology Laboratory (NETL). Other theoretical developments in this work correspond to the integration of the BIO-CS approach with Multi-Agent Optimization (MAO) techniques and casting BIO-CS as a Model Predictive Controller (MPC). These developments are demonstrated by revisiting the fermentation process example. The proposed biologically-inspired approaches provide a promising alternative for advanced control of energy systems of the future

    Optimization Algorithms for Computational Systems Biology

    Get PDF
    Computational systems biology aims at integrating biology and computational methods to gain a better understating of biological phenomena. It often requires the assistance of global optimization to adequately tune its tools. This review presents three powerful methodologies for global optimization that fit the requirements of most of the computational systems biology applications, such as model tuning and biomarker identification. We include the multi-start approach for least squares methods, mostly applied for fitting experimental data. We illustrate Markov Chain Monte Carlo methods, which are stochastic techniques here applied for fitting experimental data when a model involves stochastic equations or simulations. Finally, we present Genetic Algorithms, heuristic nature-inspired methods that are applied in a broad range of optimization applications, including the ones in systems biology
    • 

    corecore