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Summary 

Industrial problems are complex and often have multiple conflicting objectives. 

Multi-objective optimization (MOO) helps to explore the trade-offs among different 

objectives. There are several stochastic MOO techniques but suitable modifications to 

them are required for more effective solution of application problems. This study 

improves multi-objective differential evolution (MODE) in key aspects such as search 

termination based on the improvement in non-dominated solutions obtained with 

generations, better exploration of search space using taboo list, and handling of 

equality constraints by dynamically relaxing them. The improved/integrated MODE 

(I-MODE) algorithm has been tested on many benchmark functions and then used to 

solve chemical engineering application problems.  

First, current MOO techniques and their use in optimizing chemical engineering 

applications are reviewed. Next, several performance metrics for MOO problems are 

modified and their variations with generations have been assessed on test functions. 

Variance in the values of two selected performance metrics, obtained in recent 

generations, is checked individually, and it is proposed to terminate the search if the 

improvement in both metrics is statistically insignificant. The developed I-MODE 

includes DE with taboo list (DETL) for multiple objectives, self adaptation of 

algorithm parameters, improvement-based termination criterion and taboo list to 

record and avoid recently visited search regions. Use of a suitable termination 

criterion (instead of maximum number of generations) and taboo list improves 

efficiency and reliability of the search algorithm. It has been implemented in MS-

Excel and Visual Basic for Applications (VBA). I-MODE algorithm is tested on 

several constrained benchmark MOO problems, and its performance is compared with 
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best the algorithm (namely, DMOEA-DD) in IEEE Congress on Evolutionary 

Computation 2009.   

Effectiveness of the proposed termination criterion is tested with the elitist non-

dominated sorting genetic algorithm, on several MOO benchmark functions. 

Additionally, I-MODE is combined with a deterministic method for obtaining 

accurate optimal solutions quickly; for this, I-MODE search is terminated using the 

proposed termination criterion, and then normalized normal constraint (NNC) method 

is used to precisely find the optimum. Further, I-MODE algorithm has been evaluated 

on the alkylation, Williams-Otto and fermentation processes.  

In general, feasibility approach works well for solving problem with inequality 

constraints. It may not be effective for solving problems with equality constraints, as 

feasible search space is extremely small for them. For this, all constraints are 

dynamically relaxed, which makes certain individuals temporarily feasible during 

selection of individuals for the next generation in the I-MODE algorithm. The 

adaptive constraint relaxation with feasibility approach is tested on two MOO 

benchmark problems with equality constraints, and then applied to optimize two 

fermentation processes.   

A three-stage fermentation process integrated with cell recycling and 

pervaporation for bio-ethanol is modeled and optimized for multiple objectives, using 

MODE and I-MODE. Improvements in the performance of the fermentation process, 

after integrating with pervaporation and extraction unit, are compared. The obtained 

non-dominated solutions in one optimization case are ranked using the net flow 

method. Subsequently, a bio-diesel production process, using waste cooking oil as the 

feed, is developed, simulated and optimized for environmental and economic 
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objectives. Finally, a membrane distillation module and a desalination process are 

optimized for water production rate and energy consumption simultaneously, using I-

MODE algorithm.  

 The modifications made in MODE to develop I-MODE algorithm are useful for 

solving MOO application problems. The studied applications and findings in this 

thesis are of particular interest because of increasing demand for renewable energy 

and drinking water.    
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Chapter 1 

Introduction 

1.1 Multi-objective Optimization   

Optimization is the process of finding the best possible solution for a given 

problem. The goal of an optimization method or technique is to find the values of 

decision variables which can maximize or minimize the value of a performance 

criterion (i.e., objective function) and also satisfy (process) constraints. Optimization 

has been fruitfully applied to improve the performance in diverse areas such as 

science, engineering and business. Many optimization techniques have been used as 

quantitative tools to improve the performance of chemical processes (Edgar et al., 

2001; Ravindran et al., 2006; Rangaiah, 2009a).  

Profit is the most commonly used criterion for assessing the performance of many 

chemical processes. However, in most of the application problems, there are a number 

of objective functions (e.g., economic criteria, environmental criteria and safety), and 

these are often conflicting or partially conflicting in nature. Multi-objective 

optimization (MOO) is used to find the trade-off among different objectives. A MOO 

optimization problem, with M number of objectives, can be mathematically described 

as follows.      

Min.  {f1(x), f2(x),... fM(x)}     (1.1a) 

Subject to  x
L
 ≤ x ≤ x

U  
    (1.1b) 

 h(x) = 0      (1.1c)  

 g(x) ≤ 0         (1.1d) 
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Here, x is the vector of decision variables, and x
L
 and x

U
 are respectively vectors of 

lower and upper bounds on decision variables. g and h are set of inequality and 

equality constraints, respectively. A set of non-dominated solutions (known as Pareto-

optimal front) can be obtained after solving the above MOO problem. Figure 1.1 

shows such solutions for a MOO problem having 2 objective functions. Each non-

dominated solution is better in one objective and also worse in the other 

objective when compared to the rest of the non-dominated solutions.  

 

Figure 1.1: Pareto-optimal front for a two-objective optimization problem 

1.2 Classification of MOO Methods  

Optimization methods can be classified into two types, namely, deterministic and 

stochastic. Deterministic methods require derivatives of objective functions and 

constraints, and so these can only be applied to solve optimization problems with 

continuous objective functions and constraints. These methods are time-efficient and 

locate optimum exactly, but they may not able to solve optimization problems having 

discontinuous and non-smooth objective and constraints. Conversely, stochastic 

methods can locate the global optimum with high reliability, but they may require 

more computational effort. Additionally, stochastic methods can be applied to black-
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box optimization problems, whose explicit equations and their characteristics are not 

available.  

MOO methods can be classified into two broad categories: 1) Pareto generating 

methods - many non-dominated solutions are generated, and 2) Preference based 

methods - decision maker provides preference before or during optimization (Figure 

1.2).  

 

Figure 1.2: Classification of MOO techniques 

Pareto generating methods are further divided into two categories, namely, no-

preference methods and a posteriori methods. In the no-preference methods, few non-

dominated solutions can be obtained using different metrics; one such method is the 

global criterion method. A posteriori methods either generate Pareto-optimal front 

using scalarized objective function or multi-objective approach. The scalarized single 

objective optimization (SOO) problem can be solved using a suitable method. 

Weighted sum and ε-constraint methods are two classical methods for solving MOO 

problem as SOO problem, and these can generate one single non-dominated solution 

in each run. In the weighted sum method, some scalar weight is assigned to each 

objective. ε-constraint method optimizes the MOO problem for the most important 

objective function, while other objectives are considered as additional constraints in 

MOO methods

Preference based methodsPareto generating methods

No-preference 
methods

A posteriori 
methods

A priori 
methods

Interactive 
methods
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the SOO problem. MOO methods, like non-dominated sorting genetic algorithm-II 

(NSGA-II), multi-objective differential evolution (MODE) and multi-objective 

particle swarm optimization (MO PSO) can generate the complete Pareto-optimal 

front in a single run.  

Preference based methods are also divided into two categories, namely, a priori 

methods and interactive methods. A priori methods require preference of objective 

functions before the optimization starts. For example, goal programming uses 

minimax type formulation to accommodate preference of the decision maker, and 

solves the MOO problem as a SOO problem. Finally, NIMBUS (Miettinen, 1999) is 

an interactive method, which requires preference of the decision maker during 

optimization.    

1.3 Motivation and Scope of Work 

There are a number of stochastic MOO techniques in the literature, but there is 

scope to improve their efficiency and reliability for solving application problems. In 

this thesis, multi-objective differential evolution (MODE) is improved in the 

following aspects.   

 Improving efficiency of stochastic search by terminating search at the right 

generation. 

 Locating global optimum with high reliability for application problems.    

 Reducing number of function evaluations for computationally expensive 

problems.     

 Effective handling of equality constraints often present in application problems.   

MODE, a simple and powerful stochastic search algorithm (Zhang et al., 2009), is 

improved to address the above issues, and these improvements are tested on 
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benchmark and Chemical Engineering application problems in the literature. Further, 

bio-ethanol process, bio-diesel plant and membrane distillation system are modeled, 

simulated and then optimized for multiple objectives. The motivation for studying 

above issues, along with background information, is briefly review below.  

1.3.1 Improved MODE with Termination Criterion  

Maximum number of generations is the most common termination criterion in 

evolutionary algorithms used for solving MOO problems. Solving an optimization 

problem may require less or more computational effort that cannot be identified based 

on the optimization problem characteristics, such as number of decision variables, 

objectives and constraints. For optimal use of computational resources, termination of 

stochastic search at the right generation is necessary. Here, a search termination 

criterion, using the non-dominated solutions obtained in the recent generations, is 

developed and tested. In many applications, evaluation of objective functions and 

constraints is computationally expensive, as complex process model equations have to 

be solved. This study uses taboo list with MODE to avoid revisits and for better 

exploration of the search space (Srinivas and Rangaiah, 2007). Further, different 

problems require different values of algorithm parameters, and hence these are self-

adapted in the developed MOO algorithm. In summary, the improved MODE (I-

MODE) algorithm has taboo list, termination criterion and self-adaptation of 

algorithm parameters.  

1.3.2 Use of Termination Criterion with NSGA-II and NNC 

NSGA-II and its jumping gene adaptations have been used to optimize many 

process design and operation problems. The developed termination criterion has been 

used to check convergence of NGSA-II with four jumping gene adaptations on several 
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test functions. In order to improve the search efficiency without losing search 

reliability, stochastic and deterministic search methods are combined together. 

Normalized normal constraint (NNC) method (Messac et al., 2003) is used as to refine 

the non-dominated solutions obtained using I-MODE algorithm, and termination 

criterion is used to decide the switching of search from I-MODE to NNC.   

1.3.3 Evaluation of Termination Criterion on Application Problems 

Solutions are not known in advance for application optimization problems, and so 

making a decision on the search termination is difficult. In order to evaluate the 

effectiveness of the proposed termination criterion on application problems, I-MODE 

algorithm is used to optimize alkylation, Williams-Otto and fermentation processes, 

and the non-dominated solutions obtained are compared with the Pareto-optimal 

fronts obtained using the maximum number of generations.   

1.3.4 Improved Constraint Handling Technique for MOO  

Constraints besides bounds are frequently present in MOO application problems. 

Penalty function and feasibility approaches are commonly used for handling 

constraints in stochastic MOO methods. Feasibility approach gives higher priority to 

feasibility of the solution over objective function value, and performs well on 

optimization problems with inequality constraints. Feasible search space is extremely 

small for problems with equality constraints. Therefore, feasibility approach is not 

effective to solve such problems. Adaptive constraint relaxation with feasibility 

approach addresses this issue by dynamically relaxing the limits on different 

constraints. In this thesis, adaptive relaxation of constraints with feasibility approach 

is modified for solving constrained MOO problems.  
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1.3.5 Modeling and Optimization of Bio-ethanol, Bio-diesel and Membrane 

Distillation Processes 

These selected applications are of particular interest because of increasing demand 

for renewable energy and drinking water. Bio-ethanol and bio-diesel are two main 

liquid bio-fuels, and they have lower environmental impact compared to fossil fuels. 

Desalination of sea water is essential for addressing water scarcity in many regions of 

the world.  

 Ethanol concentration inside the fermentor inhibits conversion of fermentable 

sugars to ethanol, which leads to low yield and productivity. Ethanol can be 

removed from the fermentor by using extraction or pervaporation. In this work, a 

three-stage bio-ethanol process integrated with cell recycling and pervaporation 

is modeled and optimized for multiple objectives, using MODE and I-MODE 

algorithms. Performance of the three-stage fermentation process integrated with 

pervaporation is compared with that integrated with extraction.  

 Waste cooking oils have significant impact on the environment, and so their use 

to produce bio-diesel is attractive for both economic and environmental reasons. 

The present study optimizes the design of a bio-diesel plant for three important 

objectives (maximum profit, minimum fixed capital investment and minimum 

organic waste), using MODE + taboo list and I-MODE algorithms. Further, one 

process design is selected, and then studied for variation in waste cooking oil 

flow rate.  

 Membrane distillation (MD) is a thermally driven process, where low-grade 

waste heat or renewable energy can be used to produce drinking water. Here, a 

MD system is modeled, simulated and then optimized for multiple objectives.  
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1.4 Outline of the Thesis  

This thesis has ten chapters in total. The next chapter reviews popular stochastic 

and deterministic methods for solving MOO problems. It also reviews recent 

applications of MOO in Chemical Engineering. Chapter 3 describes the development 

of I-MODE algorithm in detail. Performance metrics, their modifications and 

variations with generations on the selected test functions are also presented in this 

chapter. In Chapter 4, the developed termination criterion is used with jumping gene 

adaptations of NSGA-II and NNC methods. I-MODE algorithm is used to optimize 

alkylation, Williams-Otto and fermentation processes in Chapter 5. Chapter 6 

discusses an equality constraint handling technique for constrained MOO problems.  

Chapter 7 models and optimizes a three-stage fermentation process integrated with 

cell recycling and pervaporation. Performance of pervaporation and extraction with 

fermentor, to remove ethanol, are quantitatively compared in this chapter. In Chapter 

8, a bio-diesel plant using waste cooking oils is developed, simulated and then 

optimized for three important objectives. Similarly, a membrane distillation system 

for producing pure water from sea water is modeled, simulated and optimized in 

Chapter 9. The last chapter of this thesis provides conclusions of this work and 

recommendations for future works.   
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Chapter 2 

Literature Review 

2.1 Introduction 

Both deterministic and stochastic MOO techniques have been used to solve 

optimization problems. Weighted sum, ε-constraint, normal boundary intersection and 

normalized normal constraint methods are commonly used deterministic methods for 

solving MOO problems. Stochastic methods are mostly inspired by natural 

phenomena, and many of them employ a population of trial solutions. Evolutionary 

algorithms are inspired by the evolution of different species. They offer robust and 

adaptive search mechanisms based on the rules of selection, recombination, mutation 

and survival. Ant colony optimization and particle swarm optimization are meta-

heuristic searches inspired by social behavior of swarms. Simulated annealing, taboo 

search and differential evolution are other prominent meta-heuristics for solving 

optimization problems. Originally, above stochastic algorithms are proposed for 

solving single objective optimization (SOO) problem; later, these are adapted for 

solving MOO problems. Table 2.1 lists popular stochastic optimization algorithms 

proposed for SOO problems.    

This chapter briefly reviews MOO techniques and their applications in Chemical 

Engineering. In addition, many of the subsequent chapters contain a brief review of 

relevant papers in the Introduction section. The next section of this chapter discusses 

deterministic optimization methods, whereas third section covers the development of 

stochastic techniques for solving MOO problems. Section 4 describes some recent 
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applications of MOO in Chemical Engineering. Finally, conclusions from this chapter 

are summarized in the last section.   

Table 2.1: Popular stochastic optimization algorithms and development timeline 

Algorithm Proposed by 

Genetic algorithm (GA) Holland (1975) 

Simulated annealing (SA) Kirkpatrick et al. (1983) 

Taboo/tabu search (TS) Glover (1986) 

Particle swarm optimization (PSO) Kennedy and Eberhart (1995) 

Differential evolution (DE) Storn and Price (1995) 

Ant colony optimization (ACO) Dorigo and Gambardella (1997) 

2.1 Deterministic Methods for Solving MOO Problems 

Although stochastic algorithms have been commonly applied to solve MOO 

problems, deterministic methods are also used by some researchers for solving these 

problems. Following sub-sections briefly describe main deterministic methods.  

2.2.1 Weighted Sum Method 

In weighted sum (WS) method, M number of objectives are scalarized into a 

single objective, as follows.  

 Min.                 
 
        (2.1a) 

Subject to  x
L
 ≤ x ≤ x

U
      (2.1b) 

            h(x) = 0 and g(x) ≤ 0     (2.1c) 

A set of weights is used to generate a series of SOO problems, wm ∈ [0, 1]. Further, 

sum of weights, for each SOO problem, is equal to one (i.e.,       
   ). Solution 

of each SOO problem gives one Pareto point. Figure 2.1 shows the Pareto-optimal 

points obtained for ZDT1 test function (Zitzler et al., 2000), using WS method. These 
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points are obtained with equidistance weights [A ≡ (0.7, 0.3), B ≡ (0.65, 0.35), …, I ≡ 

(0.3, 0.7)]. It can be seen that Pareto-optimal points are not evenly distributed with 

equidistance weights. Although weighted sum method is intuitive, its disadvantages 

include selection of suitable weights and the need to solve many SOO problems. 

 

Figure 2.1: Pareto-optimal front for ZDT1 test function using weighted sum method  

2.2.2 ε-Constraint Method  

ε-constraint method solves MOO problem as SOO problem for the most 

important objective, while considering the remaining objectives as additional 

inequality constraints in the problem formulation. The SOO problem is solved 

repeatedly for different user specified bounds on the additional inequality constraints 

(i.e., ε-vector), in order to obtain Pareto-optimal points.  

Min.   fm‟(x)       (2.2a) 

Subject to  x
L
 ≤ x ≤ x

U
      (2.2b) 

              h(x) = 0 and g(x) ≤ 0       (2.2c) 

   fm(x) ≤ εm,    m ≠ m‟    (2.2d) 

Here, fm‟ is the objective function, and fm (m ≠ m‟) are the additional inequality 

constraints in the problem formulation.  

I 

A 
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In Figure 2.2, Pareto points are obtained by solving the ZDT1 test function for 

second objectives, while first objective is converted into an inequality constraint [A ≡ 

(f1 ≤ 0), B ≡ (f1 ≤ 0.1)… K ≡ (f1 ≤ 1)]. Similar to weighted sum method, it is difficult 

to obtain evenly distributed Pareto-optimal front with equidistance ε-vector, and also 

requires solution of many SOO problems.   

 

Figure 2.2: Pareto-optimal front for ZDT1 test function using ε-constraints method  

2.2.3 Other Methods 

Weighted sum and ε-constraint methods cannot accommodate preferred values for 

different objectives (Deb, 2001). Some methods, like goal programming and 

compromise programming can accommodate preference of decision maker. Here, the 

desirable solution is the one which gives the smallest difference between different 

objectives and their respective goals. Newton method, Pareto descent method (PDM), 

normal boundary intersection (NBI) and normalized normal constraint method (NNC) 

are other deterministic methods to solve MOO problems (Harada et al., 2006; Das and 

Dennis, 1996; Messac et al., 2003).   

Newton method has been extended to solve unconstrained MOO problems, but the 

objective functions should be convex and twice differentiable, to calculate Hessian 

K 

A 
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matrix (Fliege et al., 2009). PDM can be used as a local search method; it is efficient 

in improving solution near to the search boundaries. PDM finds the feasible Pareto 

descent direction by solving linear programming problems, and search moves in the 

descent direction. Multi-objective steepest descent method (MSDM; Fliege and 

Svaiter, 2000) and combined objective repeated line search (CORL; Bosman and 

Jong, 2005) also work on the similar principle. These deterministic search methods 

require continuous and smooth objective functions and constraints.   

NBI is independent of scales of objectives, and can produce uniformly distributed 

Pareto points. It can work with inexact or approximate Hessian using first order 

derivatives. If the first order derivatives of the objective functions with respect to 

decision variables do not exist at each point in the objective domain (discontinuous or 

non-smooth function), then NBI method may not be suitable to solve this type of 

optimization problems. NNC method can be used for optimization problems with 

discontinuous Pareto-optimal front; it does not assign any weights to different 

objectives, rather includes some additional inequality constraints in the problem 

formulation. If the MOO problem has non-convex search space, NNC method will not 

give solutions from the global Pareto-optimal front. NNC method is described in more 

detail in Chapter 4.   

2.3 Stochastic Methods for Solving MOO Problems  

Although stochastic techniques are time consuming, they are widely applied to 

solve MOO problems due to their ability to provide many Pareto-optimal solutions in 

one run and to locate the global optimum. Generally, stochastic search algorithms 

support exploration in the initial stage of search followed by exploitation in the later 

stage of search. These techniques are briefly reviewed in the subsequent sub-sections.  
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2.3.1 MOO Methods based on Genetic Algorithms 

Genetic algorithm (GA) is inspired by natural evolution phenomenon. Originally, 

binary strings (or chromosomes) were used to implement GA; later, GA is encoded 

using real numbers. In either implementation, each individual in the population is 

randomly initialized. These individuals (or chromosomes) undergo selection, 

crossover and mutation operations. Selection operation ensures diversity of population 

with high probability of selecting better individuals for crossover and mutation 

operations. Crossover operation exchanges information between parent individuals, 

whereas mutation operation adds new information in the offspring.  

In order to solve MOO problems using GA, several researchers have developed 

different procedures to select individuals (ranking procedure) for the subsequent 

generation. In vector evaluated GA (Schaffer, 1985), individuals in the population are 

randomly divided into k sub-populations. Selection of better individuals for the next 

generation is performed based on one objective function in each sub-population. After 

selecting the required number of individuals from each sub-population, the combined 

population is shuffled before applying genetic operations. Multi-objective GA 

(MOGA), niched Pareto GA (NPGA), strength Pareto evolutionary algorithm (SPEA) 

and non-dominated sorting GA (NSGA) are other important variants of GA for 

multiple objectives.  

In MOGA (Fonseca and Fleming, 1993), an individual is ranked based on the total 

number of individuals dominating that individual. This type of ranking puts high 

selection pressure on the dominated individuals; hence, search may end up with 

premature convergence. In NPGA (Horn et al., 1994), selection of individuals is 

performed by a tournament based on niched Pareto dominance; two individuals are 
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randomly chosen from the entire population and compared against a subset of entire 

population. Ericson et al. (2002) used Pareto ranking in place of Pareto dominance, 

and this modified NPGA is called as NPGA 2. In SPEA (Zitzler and Thiele, 1999), an 

external archive is used to preserve the previously found non-dominated solutions. At 

each generation, newly found non-dominated individuals compete with the existing 

individuals in the external archive on the basis of fitness and diversity. A modified 

SPEA, namely, called SPEA 2 (Zitzler et al., 2001), uses a better fitness assignment, 

nearest neighbor density estimation and preserves the boundary solutions.  

Srinivas and Deb (1994) proposed another variant of GA for multiple objectives 

with a modification in the ranking procedure, called non-dominated sorting GA 

(NSGA). In this variant, population is ranked on the basis of non-dominance (Pareto 

rank), and individuals are selected based on the Pareto rank for the subsequent 

generation. If two individuals have the same Pareto rank, shared fitness (a measure of 

solution density) is used for relative ranking of individuals. Deb et al. (2002) modified 

NSGA, called NSGA-II, for the preservation of elite individuals, faster ranking and 

use of crowding distance in place of shared fitness. A macro-macro mutation operator 

(jumping gene) has been used by several researchers to improve the convergence of 

NSGA-II (Kasat and Gupta, 2003; Agarwal and Gupta, 2008a; Ripon et al., 2007).   

2.3.2 MOO Methods based on Differential Evolution 

Differential evolution (DE) was proposed by Storn and Price (1997) for solving 

optimization problems over continuous search space. Chapter 3 provides details on 

classical DE. Several researchers have improved classical DE in different aspects, 

such as use of stochastic sampling method to choose individuals, alternative mutation 

strategies, and binomial and exponential crossover (see Price et al., 2005). DETL uses 
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taboo check to accept or reject trial individuals (Srinivas and Rangaiah, 2007). It took 

fewer number of function evaluations and gave high success rate compared to other 

algorithms, on 16 NLP and 8 MINLP problems (Srinivas and Rangaiah, 2007). 

Chapter 3 briefly discusses these and other improvements of classical DE.     

DE has been successfully adapted by several researchers to solve MOO problems 

(Abbass et al., 2001; Madavan, 2002; Xue et al., 2003). In generalized DE (GDE; 

Kukkonen and Lampinen, 2004a) selection rule of basic DE has been modified. 

Modified GDE (GDE2; Kukkonen and Lampinen, 2004b) makes selection between 

trial and target individuals based on the crowding distance, if both the individuals are 

feasible and non-dominated to each other. GDE3 (Kukkonen and Lampinen, 2007 and 

2009) incorporates a pruning technique to calculate diversity of non-dominated 

solutions. Initially, crowding distance is used in GD3 for crowding estimation; later, 

crowdedness is estimated using nearest neighbors of solutions in Euclidean sense. 

Chen et al. (2008) introduced niche theory to estimate the diversity, time variant 

mutation factor, and modified mutation operator in PDE of Abbass et al. (2001). Ji et 

al. (2008) adapted DE for multiple objectives; contour line and ε-dominance are used 

along with Pareto ranking and crowding distance calculation to select the individuals 

for the subsequent generation.  

Li et al. (2008) proposed an improved DE, called CDE, for MOO problems. In 

this, each trial individual is compared with its neighbor to decide whether to preserve 

it or not for the next generation. This is done on the basis of Pareto ranking followed 

by crowing distance value. Dong and Wang (2009) proposed DE for multiple 

objectives with opposite initialization of population and opposite operations on the 

candidate solutions. Gong and Cai (2009) combined several features of previous 

evolutionary algorithms like orthogonal initialization of population, ε-dominance 
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sorting of individuals stored in external archive, storing and inserting extreme points 

into final archive, and use of random and elitist selection mechanism alternatively. 

Park and Lee (2009) applied an approach similar to Xue et al. (2003), by dividing the 

population into several sub-populations and grouping the external archive into 

clusters. Each cluster is assigned to the nearest sub-population and the best individual 

from each cluster participates in offspring generation. Qu and Suganthan (2010) 

proposed MODE with a diversity enhancement mechanism; here, several randomly 

generated individuals are combined with the current population. Later, Qu and 

Suganthan (2011) replaced non-dominated sorting based selection for the subsequent 

generation by normalized objectives and diversified selection.   

Stochastic algorithms are sensitive to the values of parameters, and hence several 

researchers have tried adaptation of DE parameters. Cao et al. (2007) adapted 

mutation rate (F) and crossover probability (Cr) based on the fitness value of the 

individuals (non-dominated rank and density). Huang et al. (2007) extended their own 

work on self-adapted DE for multiple objectives (MOSaDE) where mutation strategy, 

F and Cr are updated based on results obtained in the previous generations. Huang et 

al. (2009) modified MOSaDE for objective-wise learning, and called it OW-

MOSaDE. Zamuda (2007) adapted MODE parameters similar to the evolutionary 

strategy, whereas Zielinski and Laur (2007) adapted MODE parameters based on the 

design of experiments. Qian and Li (2008) proposed self-adaptive MODE where F is 

modified on the basis of number of current Pareto fronts and diversity of the current 

population. Qin et al. (2008) used strength Pareto approach to extend DE for multiple 

objectives. An adaptive Gauss mutation is used to avoid any premature convergence, 

and Cr value is self-adapted.  
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Zhang and Sanderson (2008) proposed a self-adaptive multi-objective DE 

(JADE2), which utilizes information from inferior solutions to modify the values of 

parameters. Wang et al. (2010) proposed a multi-objective self-adaptive DE 

(MOSADE) with crowding entropy strategy (distribution of a solution along each 

objective) to measure crowding degree of the solutions. Li et al. (2011) improved DE 

for multiple objectives by including tree neighborhood density estimator, strength 

Pareto dominance to promote convergence, and adaptation of Cr and F values. Zhong 

and Zhang (2011) proposed a probability based approach to tune values of DE 

parameters; stochastic coding is applied to improve the solution quality. Qian et al. 

(2012) encoded algorithm parameters as part of solution, which undergo 

recombination operations.  

It can be seen that strategies used for adapting DE for multiple objectives are 

similar to those for GA. Performance of different multi-objective DE algorithms are 

summarized in Table 2.2. In this, performance of GDE3 is comparable to 

NSGA2_SBX (best algorithm in CEC 2007; Suganthan, 2007) on several MOO test 

problems. Further, GDE3 performed comparable to several other evolutionary 

algorithms in CEC 2009 (Zhang et al., 2009). Recently, Adap-MODE (Li et al., 2011) 

and AS-MODE (Zhong and Zhang, 2011) performed better than GDE3, but they have 

self-adaptation of algorithm parameters.  
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Table 2.2: Performance of different multi-objective DE algorithms 

Reference Algorithm 

name 

No. of test 

functions 

Comments on performance 

Abbass et al. (2001) PDE 2 Better than SPEA 

Madavan et al. (2002) - 10 Comparable to NSGA-II 

Xue et al. (2003) MODE 5 Better than SPEA 

Cao et al. (2007) SEA 5 Better than NSGA-II 

Huang et al. (2007) MOSaDE 19 Outperformed by GDE3 

Kukkonen and Lampinen 

(2007 and 2009) 

GDE3 19 

& 23 

Comparable to NSGA-II_SBX (best 

in CEC 2007) and comparable with 

other EAs (e.g., DMOEA-DD, 

MTS) in CEC 2009 

Zamuda (2007) DEMOwSA 19 Outperformed by GDE3 

Zielinski and Laur (2007) MO_DE 19 Outperformed by GDE3 

Chen et al. (2008) MDE 5 Comparable to NSGA-II and 

inferior to CDE 

Ji et al. (2008) IMODE  Comparable to NSGA-II, SPEA2 

and MODE 

Li et al. (2008) CDE 8 Comparable to NSGA-II 

Qian and Li (2008) ADEA 5 Comparable to other EAs 

Qin et al. (2008) ESPDE 5 Better than NSGA-II, SPEA2 and 

MODE 

Zhang and Sanderson 

(2008) 

JADE2 22 Better than NSGA-II 

Dong and Wang (2009) - 5 Better than PDE 

Gong and Cai (2009) paε-ODEMO 10 Better than NSGA-II and SPEA2 

Huang et al. (2009) OW-

MOSaDE 

13 Outperformed by GDE3 

Park et al. (2009) CMDE 2 Better than PDE 

Wang et al. (2010) MOSADE 18 Better than NSGA-II, SPEA2 and 

MOPSO 

Li et al. (2011) Adap-MODE 12 Outperformed GDE3 and NSGA-II 

Qu and Suganthan (2010) MODE-DE 19 Comparable to multi-objective DE 

Qu and Suganthan (2011) SNOV_IS 15 Comparable to NSGA2_SBX, 

GDE3, MOSaDE, DEMOwSA, etc. 

Zhong and Zhang (2011) AS-MODE 10 Outperformed GDE3, OW-

MOSaDE and NSGA-II 

Qian et al. (2012) SADE-αCD 11 Superior or comparable to NSGA-II 
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2.3.3 Other Methods  

SA uses concept of annealing process in metallurgy (Kirkpatrick et al., 1983). At 

each search iteration, a trial point is generated in the neighborhood of the current 

solution, and the current solution is replaced by the trial point if the latter has better 

objective value or satisfies Metropolis criterion. Metropolis criterion is used to avoid 

the SA trapping in local optima. Serafini (1994) modified SA for solving MOO 

problems. Taboo search (Glover, 1986 & 1989) iteratively search for a better solution 

in the neighborhood; very importantly, it maintains a short memory which prohibits 

reverse moves. Gandibleux et al. (1997) adapted taboo search to solve multi-objective 

combinatorial problems. PSO mimics the social behavior of swarms (Kennedy and 

Eberhart, 1995). Here, particles (or swarms) iteratively search for better solutions in 

their neighborhood, and shares their experiences with other particles. Several 

researchers (Moore and Chapman, 1999; Coello Coello and Salazar Lechuga, 2002) 

have adapted PSO for solving MOO problems.  

Initially, ant colony optimization (ACO) was proposed to solve routing problems; 

later it was used to solve job-shop scheduling, batch scheduling and combinatorial 

problems. ACO works on the principle of self organization and transfer of 

information between individual ants through pheromones. Ants always search shortest 

path between nest and available food. Mariano and Morales (1999) adopted ACO for 

multiple objectives; the agents (individuals) are divided into as many families as 

number of objectives, and each family is independently optimized for a single 

assigned objective. Information can be shared between different families. As this 

thesis mainly uses genetic algorithms and differential evolution, recent improvements 

in the remaining algorithms are not reviewed. 
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2.4 Recent Applications of MOO in Chemical Engineering
1
  

MOO approach has been widely applied in design and operation of chemical and 

refinery processes. It has also been used in biotechnology, food technology and 

pharmaceutical industry. Most recently, MOO approach has found applications in new 

areas such as fuel cells, power plants and bio-fuel production plants.  Bhaskar et al. 

(2000) have reviewed applications of MOO in Chemical Engineering. Later, 

Masuduzzaman and Rangaiah (2009) have reviewed over hundred reported 

applications of MOO in Chemical Engineering from the year 2000 until middle of the 

year 2007. Very recently, Sharma and Rangaiah (2012) have reviewed about 220 

MOO articles in Chemical Engineering and related areas, published from the year 

2007 until middle of the year 2012. These articles are summarized under six 

categories (see Table 2.3). Important MOO applications and used objectives in 

different categories are also given in Table 2.3.  

Weighted sum, ε-constraint, NNC, NBI, NSGA-II, NSGA-II-JG, NSGA-II-aJG, 

NSGA-II-sJG, SPEA, SPEA-2, MOEA (multi-objective evolutionary algorithm), 

MOGA, MOTS, MOSA, MOPSO methods have been used to optimize several 

application problems summarized in Table 2.3. Fuzzy approach, NIMBUS, RSM 

(rough set method),  goal attainment, lexicographic goal programming, constraints 

programming, semi-definite programming, linear physical programming and 

compromise programming are also applied to optimize one or two applications. In 

some MOO applications, scalarized SOO problems have been solved using CONOPT, 

                                                           
1
 This section is based on the book chapter: Sharma, S. and Rangaiah, G. P. (2013), Multi-objective 

optimization applications in chemical engineering, Multi-objective Optimization in Chemical 

Engineering: Developments and Applications, Wiley.     
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DICOPT, SQP, BB, CPLEX, LINGO and BARON tools, implemented in GAMS 

platform.   

Tabl3 2.3: Selected MOO applications and used objectives in the period: 2007 to 

mid-2012 

    Applications     Performance objectives 

1. Process design and operation 

Parameter estimation, heat exchanger 

networks, crystallization, pervaporation, 

distillation, reactive distillation, 

simulated moving bed reactors, batch 

plants, supply chain, membrane 

bioreactors and water purification.  

Profit, capital/equipment cost, operating 

cost, cycle time, hot and cold utilities, 

heat recovery, productivity, conversion, 

efficiency, product qualities, recycle 

flow rate, number of equipments, 

pressure drop, eco indicator 99, 

potential environmental impact and 

global warming potential.  

2. Petroleum refining, petrochemicals and polymerization 

 Crude distillation units, steam reformer, 

fuel blending, fluidized bed catalytic 

cracker, thermal cracker, naphtha 

pyrolysis, gas separation, hydrogen 

network and liquefaction of natural gas.  

 Styrene reactor, phthalic anhydride 

reactor system and butadiene 

production. 

 Low density polyethylene tubular 

reactor, polymer filtration, nylon-6 and 

injection molding.  

 Profit, investment cost, energy and 

water consumption, yield, conversion, 

emissions of greenhouse gases and 

hydrocarbon inventory.  

 

 Cost, productivity and selectivity.  

 

 

 Monomer conversion, degree of 

polymerization and batch time. 

3. Food industry, biotechnology and pharmaceuticals 

 Lactic acid production, baking of bread, 

thermal processing and milk 

concentration. 

 Large scale metabolic networks, protein 

recovery, flux balance for metabolic 

networks and bio-synthesis factory.  

 Drug design, bioremediation, antibiotic 

and penicillin V production, scheduling 

and product development. 

 Cost, product quality and water content.  

 

 

 Productivity, conversion, yield, 

metabolic burden and production rate. 

 

 Productivity, conversion, make-span, 

treatment time, cost of production media 

and product concentration. 
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4. Power generation and carbon dioxide emission                                                                                                                          

Pulverized coal power plants and their 

retrofitting, natural gas power plant, 

integrated gasification and combined 

cycle power plant and cogeneration plant. 

Capital cost, fuel cost, emissions of CO, 

CO2 and NOx, exergetic efficiency and 

net power. 

5. Renewable energy 

Bio-diesel, bio-ethanol, biomass 

gasification plant, combined SNG 

(synthetic natural gas) and electricity 

production, solar Rankine cycle and 

reverse osmosis.     

Cost, profit, NPV (net present value), 

operating cost, energy efficiency, water 

consumption, global warming potential, 

eco indicator 99, greenhouse gas 

emissions, productivity and conversion. 

6. Hydrogen production and fuel cells 

 Methane steam reforming, photovoltaic-

battery-hydrogen storage system and 

hydrogen plant with CO2 absorber. 

 Polymer electrolyte membrane fuel cell, 

solid oxide fuel cell, tubular solid oxide 

fuel cell, alkaline fuel cell, fuel cell 

electrode assembly, phosphoric acid fuel 

cell system, molten carbonate fuel cell 

and its system. 

 Hydrogen production rate, energy cost 

and CO2 emissions. 

 

 Cost of fuel cell system, efficiency, 

current density and size of stack. 

2.5 Conclusions 

The stochastic search methods can locate the global optimum with high reliability 

although they may require considerable computational time. NSGA-II has been 

commonly used for solving MOO application problems. Two strategies have been 

mainly used for adapting GAs for MOO; non-dominated sorting followed by 

crowding distance calculation and maintaining an external archive to store non-

dominated solutions. Further, MODE is a reliable and efficient algorithm, based on its 

performance in CEC 2007 and CEC 2009 competitions. Selection strategies used for 

adapting DE for multiple objectives are similar to those for adapting GAs.    
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DETL (Srinivas and Rangaiah, 2007) has proven to be highly reliable and requires 

fewer number of function evaluations. DE has inherent characteristics to exploit the 

search space at the end of search, and so use of taboo check improves its exploration 

capability. Most of the reported adaptations of DE for multiple objective uses 

classical DE; hence, DETL is chosen to develop I-MODE algorithm in the next 

chapter. Similarly, deterministic search methods are likely to be better for obtaining 

the Pareto-optimal front precisely and efficiently. Additionally, termination of a 

stochastic search is very often using maximum number of generations/iterations, 

which is simple but it is unlikely to take a timely decision about the stochastic search 

termination. These provide motivation and scope for developing I-MODE and hybrid 

algorithms in the subsequent chapters.   

 

 

 

 



Chapter 3: Development of I-MODE Algorithm 

 
 

Chapter 3 

An Improved Multi-objective Differential Evolution with a 

Termination Criterion
2
  

3.1 Introduction  

Multi-objective optimization (MOO) is often required due to conflicting 

objectives in engineering applications, and there have been many studies on 

evolutionary algorithms (EAs) for MOO and their applications in the past decade. 

Most of these studies in the literature have used maximum number of generations 

(MNGs) as the search termination criterion. The reliability and efficiency of any 

stochastic search for practical applications depend on the termination criterion used in 

the iterative method. If the optimization problem is easy to solve, the algorithm may 

obtain the global solution quite early in comparison to the given MNGs. But, for 

difficult problems, the specified MNGs can be insufficient for converging to the 

global solution. Further, solving a problem using the same algorithm may require 

different MNGs in different runs due to stochastic nature of evolutionary algorithms. 

So, monitoring the search with generations is important to make the right decision on 

the search termination. 

Although many EAs have been developed and applied, there have been only a few 

studies on the search termination. Furthermore, performance metrics such as 

generational distance, GD
t
 (Van Veldhuizen and Lamont, 1998), spread, SP

t
 (Deb et 

al., 2000), hyper volume, HV (Zitzler and Thiele, 1998) and epsilon indicators 

                                                           
2
 This chapter is based on the manuscript: Sharma, S. and Rangaiah, G. P. (2013), An improved multi-

objective differential evolution with a termination criterion for constrained optimization problems, 

Computers and Chemical Engineering, under review.  
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(Zitzler et al., 2003) have been proposed in the literature. These performance metrics 

have been used to assess the quality of the final non-dominated solutions obtained, for 

comparing the performance of multi-objective EAs (Zhang and Sanderson, 2008; 

Wang et al., 2010). However, to the best of our knowledge, only a few studies 

(reviewed below) have used performance metrics to monitor the search progress and 

to terminate the search.  

Rudenko and Schoenauer (2004) introduced a termination criterion based on the 

density (i.e., crowding distance) of non-dominated solutions. They noticed that 

maximal crowding distance stabilizes last after the minimal and average crowding 

distances; and so the search is terminated if the maximal crowding distance is not 

changing more than a given limit over a fixed number of generations. Trautmann et al. 

(2008) and Wagner et al. (2009) proposed termination criterion using different 

performance metrics to monitor the search progress; if variation in the performance 

metric is small over a fixed number of generations or variance of the performance 

metric values decreases below some specified limit, then search is terminated. 

Recently, a variant of online convergence detection (OCD), based on HV, has been 

studied by Wagner and Trautmann (2010).  

Sindhya et al. (2008) developed local search based evolutionary MOO for fast and 

accurate convergence where some of the newly generated individuals are improved 

using local search. The hybrid search terminates after a fixed number of generations 

or when the local search does not improve the newly generated individuals much. 

Marti et al. (2009) introduced another termination criterion for MOO algorithms, 

which combines the mutual domination rate as an improvement indicator and a 

simplified Kalman filter for evidence gathering. The mutual domination rate is the 

number of non-dominated individuals obtained in the current generation dominating 



Chapter 3: Development of I-MODE Algorithm 

 

27 
 

the individuals obtained in the last generation. The search is terminated when mutual 

domination rate is below a threshold value.  

In the studies reviewed above, termination criteria based on performance metrics 

have been tested on three to six test functions, many of which do not have constraints 

commonly present in engineering application problems. Further, variations in the 

selected performance metrics have not been analyzed, which is required to check their 

suitability for reliable termination of the search. This chapter addresses these issues. 

For this, five performance metrics, namely, GD, SP, HV ratio (HVR), R2 and additive 

epsilon (ε+) are studied for assessing the search progress. Some of these performance 

metrics are modified to avoid the use of the true Pareto-optimal front, yet to be found 

in applications. Variations in the modified performance metrics are observed on five 

test functions, and GD and SP are selected for the development of the termination 

criterion. Based on this analysis, it is proposed to terminate the search if the 

improvement in variance of GD and SP in recent generations is statistically 

insignificant. Then, the proposed termination criterion is tested on nine constrained 

problems from Zhang et al. (2009), which make the findings useful for applications. 

This study is carried out in conjunction with a multi-objective differential evolution 

(MODE) algorithm.          

Differential evolution (DE) was proposed by Storn and Price (1995, 1997) for 

solving optimization problems over continuous search space. Later, several 

researchers have improved classical DE in different aspects such as population 

initialization, mutation, crossover and selection operations (Price et al., 2005; Brest et 

al., 2006; Rahnamayan et al., 2008). A recent review of these developments and 

applications of DE is available in Chen et al. (2010). Srinivas and Rangaiah (2007) 

used DE with taboo list (DETL) to accept or reject trial individuals, which is useful in 
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reducing unnecessary function evaluations. Omran et al. (2009)  proposed bare-bones 

DE (BBDE) which performed better than DE with little or no parameter tuning. Qin et 

al. (2009) proposed self-adaptive DE (SaDE) for adapting learning strategy, mutation 

rate (F) and crossover probability (Cr) values. Li et al. (2010) have used simplified 

quadratic approximation for the enhancing the performance of classical DE; 

performance of the proposed approach is comparable with the state of the art 

stochastic global optimization methods. Recently, Zhang and Rangaiah (2011) have 

presented integrated DE (IDE), which uses taboo list to avoid the revisit of search 

space, parameter adaptation, a new termination criterion and local optimization after 

the global search. IDE performed better than the recent global optimization algorithms 

on 26 test functions.      

DE has been successfully adapted to solve MOO problems. Generalized DE 

(GDE) was proposed by Kukkonen and Lampinen (2004a) with a modified selection 

rule of basic DE. The latest version is GDE3 (Kukkonen and Lampinen, 2007 and 

2009), which incorporates non-dominated sorting of combined population and a 

pruning technique to calculate solution diversity. Performance of GDE3 is 

comparable to many other MOEAs on several MOO test problems (see Table 2.2). 

Similarly, other works (Chen et al., 2008; Ji et al., 2008; Li et al., 2008; Qin et al., 

2008; Dong and Wang, 2009; Gong and Cai, 2009; Park and Lee, 2009) have adapted 

DE for multiple objectives. These works have been reviewed in Chapter 2.  

In many applications, evaluation of objective functions and constraints is 

computationally expensive. Hence, taboo list is used with MODE to avoid revisits and 

for better exploration of the search space. In other words, DETL is adapted and 

improved to solve MOO problems, and the resulting algorithm is referred to as 

integrated multi-objective differential evolution (I-MODE). In brief, features of I-
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MODE include the use of taboo list/check for efficient exploration, self-adaptation of 

parameters based on the strategy of Zhang and Sanderson (2008), and the use of the 

proposed termination criterion. I-MODE is tested on many test functions having 

constraints from Zhang et al. (2009). Additionally, effect of taboo radius on the 

performance of I-MODE is studied. In short, contributions of this chapter are: 

development and assessment of an effective termination criterion for evolutionary 

algorithms, and development and evaluation of I-MODE for constrained MOO 

problems.  

Next section of this chapter discusses the adaptation of DETL algorithm for 

multiple objectives. Section 3.3 describes the self adaptation of algorithm parameters, 

followed by dominance based constraints handling approach. Section 3.4 presents 

different performance metrics and some modifications in them, to avoid the use of 

true Pareto-optimal front. Suitable performance metrics are also selected in Section 

3.4. Section 3.5 presents development of search termination criterion using selected 

performance metrics. Section 3.6 briefly describes I-MODE algorithm. Effect of 

termination parameters on the performance of I-MODE algorithm is explored in 

Section 3.7. Section 3.8 presents the effect of taboo radius on I-MODE performance. 

Conclusions from this work are drawn in the last section of this chapter.  

3.2 Adaptation of DETL for Multiple Objectives 

In this study, DETL of Srinivas and Rangaiah (2007), which was proven to be 

highly reliable and requires fewer NFEs for global optimization, is adapted for 

multiple objectives. DE has inherent characteristics to exploit the solution space 

towards the end of the search, whereas use of taboo list/ check will improve its 

exploration capabilities. DE/rand/1 mutation strategy and binomial crossover are used 
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in the I-MODE algorithm. Classical DE for SOO has four main steps: (i) 

initialization, (ii) mutation, (iii) crossover, and (iv) selection (Price et al., 2005). 

These steps are discussed in the following sub-sections.  

i) Initialization 

In this, a population of N individuals is randomly initialized inside the bounds on 

decision variables.  

xj = xj
L 

+ rand(0,1) ( xj
U
 – xj

L
) j = 1, 2, …, no of DVs  (3.1) 

Here, rand (0, 1) is a random number from uniform distribution between 0 and 1, and 

xj
L
 and xj

U
 are the lower and upper bounds on j

th
 decision variable. For producing a 

single individual, equation 3.1 has to be applied on each decision variable.      

ii) Mutation  

Mutation is performed using different strategies; selection of a strategy depends 

on the type of problem. Price et al. (2005) proposed several DE strategies.  

a) DE/rand/1   vi = xr0 + F(xr1 –xr2)    (3.2a)  

b) DE/best/1   vi = xbest + F(xr1 –xr2)     (3.2b)  

c) DE/rand/2  vi = xr0 + F(xr1 –xr2) + F(xr3 –xr4)  (3.2c) 

d) DE/best/2  vi = xbest + F(xr1 –xr2) + F(xr3 –xr4)  (3.2d) 

e) DE/rand-to-best/1  vi = xi + F(xbest –xi) + F(xr3 –xr4)  (3.2e) 

Here, xbest and xi are respectively the best and target individuals from the parent 

population. xr0, xr1, xr2 and xr3 are randomly selected individuals from the parent 

population. The general convention used in the above strategies is DE/p/q.  Here, p 

stands for perturbation vector (first term on the right hand side) and q is the number of 

difference vectors (remaining terms on the right hand side). Figure 3.1 shows 
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generation of mutant vector using strategy DE/rand/1 in two-dimensional search 

space.  

vi
xr1

xr2

(xr1 – xr2)

xr0

x1

x2

 

Figure 3.1: Generation of a mutant vector based on strategy in equation 3.2a for 

two decision variables  

iii) Crossover 

In the binomial crossover, elements of mutant (v) and target (x) vectors compete 

with each other, with a probability Cr to generate trial vector (u). 

        
                                 
                                                       

    (3.3) 

 

In the exponential crossover, one randomly selected element of mutant vector is 

copied into the trial vector, so that trial vector will be different from the target vector. 

After that, a random number is generated between 0 and 1 using uniform distribution; 

if this random number is lower than Cr, then one randomly selected element of mutant 

vector is copied into trial vector. This process is repeated until the generated random 

number is greater than Cr; then, current and remaining elements of the trial vector are 

copied from the target vector.  
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iv) Selection 

After crossover, the trial vector goes through a check on decision variable 

violation. If the trial vector is above the upper or below the lower bound for any 

decision variable, it is randomly re-initialized within the bounds on that decision 

variable. DE performs selection between the trial and target vectors based on the 

objective function value (in case of minimization of objective). 

       
                

                      
       (3.4)  

Here, xG+1
 is the selected individual for the next generation.  

Mutation, crossover and selection operations are performed for each individual in 

the population. This completes one generation (or iteration) of the algorithm. Many 

generations are performed until the specified termination criterion is met. The 

common termination criterion is the maximum number of generations.   

DETL is adapted for a MOO problem as follows. In the initialization step, 

population is initialized randomly inside the bounds on decision variables. Values of 

objectives and constraints are calculated for each individual in the initial population, 

and the taboo list (TL) is randomly filled using the initial population. In each 

generation, a trial vector for each target vector in the initial/current population is 

generated by mutation of three randomly selected individuals from the population 

followed by binomial crossover. Taboo check is implemented in the evaluation step of 

trial vector; if the trial individual is near to any individual in the TL by a specified 

distance, then it is rejected without calculating values of objectives and constraints 

(Figure 3.2). Accepted trial individual is stored in the child population, and also added 
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to the TL. In each generation, child population is mixed with the current/parent 

population. Pareto dominance ranking with crowding distance calculations of 

combined population is used to select the individuals for the subsequent generation. 

See Deb (2001) for details on Pareto dominance ranking and crowding distance 

calculations.  

 

 

Figure 3.2: Illustration of use of TL: trial individual, near to any individual in the TL 

by a specified distance, is not evaluated for objectives and constraints. 

3.3 Self Adaptation of Algorithm Parameters and Constraints Handling  

Stochastic search algorithms are sensitive to values of their parameters, and 

different problems require different values of parameters for good performance. 

Hence, tuning of parameters requires prior experience on the particular problem 

and/or extensive effort. In the recent past, self-adaption of algorithm parameters in 

MODE has been studied by several researchers. Zamuda (2007) used self-adaptation 

mechanism from evolution strategy to adapt F and Cr values. Zielinski and Laur 

(2007) adapted F and Cr values based on the design of experiments. Cao et al. (2007) 

proposed a performance-based self-adaptation; if fitness values of all individuals in 

the population have become similar, then F and Cr are increased for greater 

exploration of search space; otherwise, they are decreased for greater exploitation. 

Zhang and Sanderson (2008) chose Cr and F values randomly using Normal and 

X1

X2 - Newly generated individuals
- Individuals in taboo list

Accepted 
individuals

Rejected 
individuals
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Cauchy distribution respectively, for generating a trial individual; then, mean value of 

Cr and location parameter of F are updated after each generation. Their algorithm, 

JADE2 outperformed non-dominated sorting genetic algorithm - II (NSGA-II) for 19 

out of 22 test functions, and performed better than GDE3 in terms of HV and epsilon 

performance indicators. Huang et al. (2009) proposed a self-adaptive MODE 

algorithm with objective-wise learning strategies, where mutation strategy and Cr 

value are adapted for each objective separately. Wang et al. (2010) proposed a multi-

objective self adaptive DE, where Cr and F values are randomly reinitialized for an 

individual if it does not produce a better trial vector in certain number of consecutive 

generations.  

The self-adaption in JADE2 is easy to use and has shown good performance. 

Hence, self-adaptation strategy proposed by Zhang and Sanderson (2008) is employed 

in I-MODE. In this strategy, CR and F values are obtained, for generating each trial 

individual, as follows. 

CRi = randni(μCR, 0.1)       (3.5a) 

Fi = randci(μF, 0.1)       (3.5b) 

Here, randn is a random value from the Normal distribution with mean μCR and 

standard deviation of 0.1, whereas randc is a random value from Cauchy distribution 

with location parameter μF and scale parameter of 0.1.  

Initially, μCR = μF = 0.5. Values of Cr and F thus generated for each target 

individual are considered successful if the trial vector is selected for the subsequent 

generation. After each generation, μCR and μF are updated, based on the performance 

of generated Cr and F, as follows. 
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μCR = μCR(1-c) + meanA(SCR)c       (3.6a) 

μF = μF(1-c) + meanL(SF)c       (3.6b) 

Here, parameter c is set to be equal to 0.1, and meanA and meanL denote arithmetic 

and Lehmer mean respectively. SCR and SF are sets of successful crossover 

probabilities and mutation rates in the generation completed. 

Evolutionary algorithms were developed for solving optimization problems with 

bounds on variables but without constraints; later, several approaches have been 

proposed to handle the constraints. Coello Coello (2002) summarized constraints 

handling methods under five categories: penalty function approach; separation of 

constraints and objectives; special representation; repair algorithms; hybrid methods. 

Both penalty function and feasibility approaches are commonly used in the literature 

for constraints handling. Of these two, feasibility approach is an attractive choice as it 

does not have any parameter and its good performance has been shown by Deb et al. 

(2002) for MOO. So, this approach is chosen for handling inequality constraints in I-

MODE.  

In the feasibility approach, number of constraint violations and total constraints 

violation for each individual are calculated and used to select individuals for the 

subsequent generations. The following criteria are employed to handle inequality 

constraints in I-MODE algorithm. 

i) If two individuals A and B have no constraints violation (i.e., feasible solutions), 

then the selection of individual is based on the usual dominance criteria.  

ii) If one individual is feasible and another is infeasible, then the former is selected 

over the infeasible individual.  
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iii) If both the individuals are infeasible, then the individual with less number of 

constraint violations followed by less total constraints violation is selected.  

I-MODE algorithm has been implemented in the commonly available MS-Excel 

and VBA (Visual Basic for Applications) platform. VBA is used to implement the 

algorithm steps, calculation of performance metrics and termination criterion, while 

Excel worksheets are used to calculate objectives, constraints, linking between cells, 

input parameters, and display the results. This organization allows any engineer 

familiar with Excel to use I-MODE for his/her applications. 

3.4 Selection of Performance Metrics for Termination Criteria 

3.4.1 Existing Performance Metrics 

Some performance metrics such as GD
t
 and set convergence ratio are used to 

check the convergence of the non-dominated solutions to the true Pareto-optimal front 

while some others such as SP
t
 and maximum spread are used to check the spread of 

the non-dominated solutions obtained along the Pareto-optimal front. Further, some 

performance metrics use only one Pareto-optimal set, called unary quality indicators. 

Other performance metrics, called binary quality indicators, quantitatively compare 

two approximation sets. Important performance metrics are discussed below; all these 

are defined in the objective function space. For clarity, the phrase “non-dominated 

solutions” is used for the optimal solutions obtained by the numerical algorithm, and 

the phrase “true Pareto-optimal front” refers to the analytical/known Pareto-optimal 

front.  

(i) Generational distance is used to evaluate the closeness of non-dominated solutions 

to the true Pareto-optimal front (Van Veldhuizen and Lamont, 1998).   
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            (3.7) 

Here, N is the number of non-dominated solutions obtained, and di is the Euclidean 

distance of each of these solutions to its nearest point in the true Pareto-optimal front. 

(ii) Spread, introduced by Deb et al. (2000) for bi-objective problems, measures the 

distribution of non-dominated solutions obtained. Its calculation requires the 

Euclidean distance between neighboring solutions in the non-dominated solutions 

obtained, and also between the boundary solutions in the non-dominated solutions and 

those in the true Pareto-optimal front. Zhou et al. (2006) extended spread metric for 

more than two objectives, by considering the distance of each point to its nearest 

point, as follows.   

     
         
             

 
   

         
          

        (3.8a) 

              
   with respect to j = 1, 2,…, N (except j = i) (3.8b) 

Here, M is the number of objective functions, {e1, e2,…, eM} are M extreme/boundary 

solutions from the true Pareto-optimal front, and S is the set of non-dominated 

solutions obtained. Further, d(em, S) is the Euclidean distance between the extreme 

solution of m
th

 objective in the true Pareto-optimal front to its nearest non-dominated 

solution obtained (set S). di is the Euclidean distance of solution, Si in the set S to its 

nearest solution in the same set, and d  is the average of di for all non-dominated 

solutions in set S.           

(iii) Hyper volume (Zitzler and Thiele, 1998) provides a quantitative measure of both 

the convergence to the true Pareto-optimal front and diversity of non-dominated 

solutions obtained. A hypercube is constructed for each point in the Pareto-optimal 
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front (which can be true or obtained as desired), and hyper volume is the amount of 

space occupied by the union of hyper-cubes constructed at all solutions. In the case of 

bi-objective optimization problems, hyper-cubes will be rectangular in shape and 

combined area of these rectangles at different solution points will be the hyper 

volume. For bi-objective optimization problem, width of each rectangle is equal to the 

difference between two consecutive non-dominated solutions obtained, while 

length/height is obtained using nadir point and solution from the obtained Pareto-

optimal front.    

       
                (3.9)  

Here, vhi is the volume of i
th

 hypercube. When ranges of different objectives are 

different from one another, hyper volume ratio (HVR) is used instead of hyper 

volume (see equation 3.10).  

 HVR = HV(obtained Pareto)/HV(reference Pareto)   (3.10) 

(iv) R indicators (Hasan and Jaskiewicz, 1998) compare the true Pareto-optimal front 

with the non-dominated solutions obtained on the basis of a set of utility functions 

(e.g., weighted sum). In this quantification, the mapping domain is the utility function 

and not the set of non-dominated solutions obtained. R indicators require the ideal 

point, nadir point and weight vector (Hasan and Jaskiewicz, 1998). Generally, 

normalized/equidistant weight vectors, which divide the objective space equally, are 

employed. Utility functions are defined as:   

                   
                 

                  
       

      (3.11a) 

                       ∈  
              (3.11b) 
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            (3.11c) 

Here, wk is the set of equidistant weights, and nw is the number of weights. U(wk, Si) 

is the weighted Techebycheff utility function for a particular individual Si in the set S. 

R indicators are defined based on the utility functions in equations 3.11a-c. R1 

indicator is defined as the fraction of total weights where one Pareto-optimal front 

gives better utility function value compared to the other (equations 3.11a-b). It does 

not consider the extent by which a Pareto front is better/worse than other. On the other 

hand, R2 indicator gives the difference between average values of utility function 

obtained for two different Pareto-optimal fronts using complete set of weights (see 

equations 3.11a-c).  

(v) Epsilon indicators (Zitzler et al., 2003) comprise additive and multiplicative 

versions. Both these indicators exist in unary and binary form. The binary 

multiplicative epsilon indicator gives the minimum factor by which each solution 

point in a Pareto-optimal front can be multiplied such that resulting transformed set is 

still weakly dominated by another Pareto-optimal front. Similarly, binary additive 

epsilon gives the minimum factor by which each solution point in a Pareto-optimal 

front can be added such that the resulting transformed set is still weakly dominated by 

another Pareto-optimal front. Equations 3.12a-c below define additive epsilon 

(binary) indicator.  

                       
          (3.12a) 

        
           ∈   

           (3.12b) 

                   ∈   
   }      (3.12c) 
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In these, S1 and S2 are the two different Pareto-optimal fronts, and s1 and s2 are 

individuals from the sets S1 and S2, respectively. For example, S1 can be the true 

Pareto-optimal front and S2 can be the non-dominated solutions obtained.   

3.4.2 Modified Performance Metrics and Their Evaluation   

Pareto-optimal solutions for real world applications are not known in advance, and 

so calculation of performance metrics for search termination should not use true 

Pareto-optimal front. In this work, only the non-dominated solutions obtained as 

search progresses are used to calculate the values of different performance metrics for 

monitoring the search progress. Objectives are normalized using the extreme values of 

each objective in the current (and previous) generation, and then all performance 

metrics are calculated for normalized values of objective functions.  

GD is calculated between the non-dominated solutions obtained in the current 

generation and those in the previous generation, using equation 3.7 where non-

dominated solutions obtained in the current generation are considered as the true 

Pareto-optimal front. In the calculation of SP, extreme solutions of the true Pareto-

optimal front cannot be used. So, SP is calculated for the non-dominated solutions in 

the current generation using the following equations.   

    
        
 
   

   
          (3.13a) 

              
  with respect to j = 1, 2,…, N (except j = i)  (3.13b) 

Here, N and S are the number and set of non-dominated solutions in the current 

generation respectively. The remaining symbols are same as those in equations 3.8a-b.  
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HVR, R2 and additive-ε indicators are calculated using the non-dominated 

solutions obtained in the current and previous generations. Set of non-dominated 

solutions obtained in the current generation is considered as the true Pareto-optimal 

front. Nadir point vector of {1, 1} is used in HVR calculation for two objectives (Deb, 

2001). In R2 indicator calculation, values of ideal and nadir points are {0, 0, …, 0} 

and {1.1, 1.1, ..., 1.1} respectively; these values are taken from source code of R 

indicators available at http://dbk.ch.umist.ac.uk/knowles/ under the GNU. 

Table 3.1 summarizes the number of arithmetic operations (square, multiplication, 

division, square root and subtraction) involved in different modified performance 

metrics for monitoring search progress. M and N are the number of objective 

functions and non-dominated solutions obtained, respectively. nw is the number of 

equidistant weights, which is required in R2 calculation.  

Table 3.1: Arithmetic operations involved in the calculation of performance metrics 

Performance 

metric 

Arithmetic operations involved 

(“square” and “×”) (“/”) (“√”) (“-”) 

GD MN
2
 + N - N

2
 MN

2
 

SP MN(N-1) - N
2
 MN(N-1) + N 

HVR (2-D) 2(N-1) - - 4(N-1) 

R2 2MN(nw) 2MN(nw) - 2MN(nw) 

ε+ - - - MN
2
 

Smallest Euclidean distance calculation between one solution from the non-

dominated set obtained in the previous/last generation and another solution in the 

current generation, requires MN subtraction, MN square and N square root operations. 

In GD calculation, N Euclidean distances are calculated for all non-dominated 

solutions obtained in the last generation. Additional N squares are required in GD 

calculation (see equation 3.7) using N minimum Euclidean distances obtained for all 
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non-dominated solutions in the last generation. In SP calculation, Euclidean distance 

between each individual and its nearest individual is calculated in the latest 

generation; it requires M(N-1), M(N-1) and N subtraction, square and square root 

operations, respectively. The task of finding of minimum Euclidean distance for all 

non-dominated solutions in the current generation needs N times the number of 

mathematical operations required by one individual (i.e., M(N-1) subtractions, M(N-

1) squares and N square roots). Additional N subtractions are used to obtain the 

difference between the obtained minimum Euclidean distance for each individual and 

average Euclidean distance. Table 3.1 does not include one or two mathematical 

operations used in calculation of a metric; for example, GD calculation requires one 

final division by N, which is negligible.        

In HV calculation for two objectives, (N-1) rectangles are formed by one nadir 

point and N non-dominated solutions. In total, 2(N-1) subtraction and (N-1) 

multiplication operations are required to obtain the HV value. So, HVR between non-

dominated solutions in the current and previous generations uses twice the number of 

subtractions and multiplications used in HV calculation. In R2 indicator, utility 

function calculation for N non-dominated solutions on a particular weight requires 

MN multiplications, MN subtractions and MN division. Here, subtractions used in 

(Idealm - Si,m) and (Idealm - Nadirm) are not considered as ideal vector is {0, 0,…,0}. 

Final R2 calculation for two objectives uses 2×nw times the above number of 

mathematical operations. In ε+ indicator, each non-dominated solution in the last 

generation is compared with all the non-dominated solutions obtained in the current 

generation (S1). This comparison is done for all objectives, which takes MN 

subtractions. There are maximum N non-dominated solutions in set S2; hence, total 

subtractions to obtain ε+ indicator value are MN
2
. In summary, HVR is the least 
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computationally expensive performance metrics, whereas GD and SP require nearly 

same computational effort. R2 indicator is the most computationally expensive 

indicator, which requires more than twice compared to GD and SP. Computations 

required by ε+ indicator are in between GD/SP and R2 indicator. 

3.4.3 Selection of Modified Performance Metrics for Search Termination 

Performance of modified performance metrics is assessed on five test functions 

(ZDT3, ZDT4, CF1, CF4, and CF6). These test functions have different 

characteristics, e.g., continuity and discontinuity of objectives, modality and 

convexity of search space, and constraints. These and other test functions used in this 

study are summarized in Table 3.2. ZDT3 and ZDT4 are unconstrained test functions 

proposed by (Zitzler et al., 2000), while CF1-9 are constrained test functions used in 

CEC-2009 (Zhang et al., 2009). Variations in the modified performance metrics with 

generations in solving the selected test functions by I-MODE are shown in Figure 3.3. 

Non-dominated solutions obtained using I-MODE at numerous generations are 

reviewed manually to identify the number of generations required for converging to 

the true Pareto-optimal front, and these are found to be nearly 90, 300, 130, 250 and 

160 generations for ZDT3, ZDT4, CF1, CF4 and CF6 functions, respectively; these 

generations are marked in Figure 3.3 with dotted vertical lines.  

In the selection of suitable performance metrics for termination criterion, 

computational complexity, physical significance, and variation with generations have 

to be considered. Based on the computational effort required, HVR and ε+ indicator 

are most suitable metrics, followed by GD and SP (Table 3.1). Generally, value of nw 

is larger than N, and so use of R2 indicator for termination makes the algorithm slow. 

In HV calculation for two objectives, different areas are approximated as rectangles. 
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HV calculation for more number of objectives requires more approximations, and it is 

also difficult to obtain nadir point for a problem with more than two objectives. Value 

of ε+ indicator will be zero, if some of the solutions are common in both the Pareto-

optimal fronts obtained in the current and previous generations. For termination, a 

good indicator should vary initially before convergence, and then should stabilize at a 

constant value after convergence so that the global search can be terminated at the 

right time (i.e., not too early to avoid approximate solutions or too late for 

computational efficiency). 

GD considers average improvement in the non-dominated solutions obtained in 

the current generation compared to the non-dominated solutions obtained in the 

previous generation. Its values after the generations required for convergence are 

relatively small for the test functions (see Figure 3.3a). Initially, SP varies much for 

all the test functions (Figure 3.3b), later it fluctuates in a narrow range due to change 

in the number of solutions in the best Pareto-optimal front in different generations. In 

particular, SP seems to be a suitable performance metric for monitoring the progress 

of multi-modal test function (i.e., ZDT4). Rudenko and Schoenauer (2004) mentioned 

that distribution of solutions on the Pareto-optimal front improves after the search 

reaches the true Pareto-optimal front. For all the 5 test functions, HVR stabilizes well 

before the generations required for convergence to the global solutions. This indicates 

that use of HVR for termination may lead to poor results. Similar to GD, some 

fluctuation can be seen in HVR for CF4 test function even after 250 generations.   
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Figure 3.3(a): Variations of 

GD with number of generations 

in solving selected test 

functions by I-MODE.  

 

Figure 3.3(b): Variations of 

SP with number of generations 

in solving selected test 

functions by I-MODE.  
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Figure 3.3(c): Variations of 

HVR with number of 

generations in solving selected 

test functions by I-MODE.  

 

Figure 3.3(d): Variations of 

R2 with number of generations 

in solving selected test 

functions by I-MODE. 
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In the case of ZDT4, CF1 and CF4 test functions, R2 indicator points convergence 

early, around generations 190, 90 and 190 respectively, compared to the actual ones 

(Figure 3.3d). Finally, variation in ε+ indicator is fluctuating for constrained functions 

even after the required generations to reach the global solutions (Figure 3.3e). Further, 

ε+ indicator represents minimum weakly dominance of all non-dominated solutions 

whereas GD considers average improvement between the obtained Pareto-optimal 

fronts from two consecutive generations. Hence, ε+ indicator is more sensitive 

compared to GD.  

Both GD and SP have moderate computational complexity, and collectively they 

consider two important qualities of the obtained Pareto-optimal front, i.e., 

convergence of the search and distribution of non-dominated solutions along the 

obtained Pareto-optimal front. Further, GD has relatively small values, and SP 

fluctuates within narrow range after the required number of generations for 

Figure 3.3(e): Variations of 

ε+ with number of generations 

in solving selected test 

functions by I-MODE. 
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convergence to the optimal solutions. On the other hand, use of HVR and R2 for 

termination may lead to pre-mature stopping of the algorithm and hence poorer 

results. The ε+ indicator value is zero if the best Pareto-optimal fronts obtained in two 

consecutive generations have one or more common solutions, and it is also more 

sensitive. Hence, GD and SP are selected for the development of search termination 

criterion.  

Table 3.2: Characteristics of test functions used in this study (Zitzler et al., 2000; 

Zhang et al., 2009) 

Test 

function 

No. of decision 

variables 

No. of 

constraints 

No of objective 

functions 

ZDT3 10 0 2 

ZDT4 10 0 2 

CF1 10 1 2 

CF2 10 1 2 

CF3 10 1 2 

CF4 10 1 2 

CF5 10 1 2 

CF6 10 2 2 

CF7 10 2 2 

CF8 10 1 3 

CF9 10 1 3 

* http://www.cs.cinvestav.mx/~emoobook/ 

  http://dces.essex.ac.uk/staff/zhang/MOEAcompetition/cec09testproblem0904.pdf 

  3.5 Search Termination Criterion (TC) using GD and SP Metrics 

GD and SP values obtained in the recent generations are statistically checked for 

their variations; for this, χ
2
-test is performed to check the variance of a sample 

(obtained in recent generations) compared to the specified tolerance. Global search is 

terminated if the variance of the performance metric is below some specified value, 

http://www.cs.cinvestav.mx/~emoobook/
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and this condition should be fulfilled for both GD and SP individually at the same 

time. GD and SP values in the latest λ generations are used to apply χ
2
-test, similar to 

Wagner et al. (2009).   

Chi = 
                              

   
         (3.14a) 

p(PM) = χ
2
(Chi, λ-1)         (3.14b) 

Here, PM is the performance metric (i.e., GD or SP), and δPM is the specified 

tolerance for standard deviation of PM. p is the probability that χ
2
-test is supporting 

the hypothesis that variance of PM is lower than the specified tolerance (i.e., δPM
2
). If 

this probability is more than 99% for GD and SP individually, then global search is 

terminated. To avoid indefinite looping, termination criterion based on the MNGs is 

also used.  

A value of 10 is used for λ, which means that GD and SP values obtained in the 

last 10 (i.e., current and 9 previous) generations are used for χ
2
-test. GD and SP are 

calculated from 2
nd

 generation onwards, and first value of probability can be obtained 

in 11
th

 generation. Initially, 0.0001 and 0.05 are used for δGD and δSP; later, a detailed 

study is conducted to obtain suitable value of termination parameters. Similarly, taboo 

radius of 0.01 is used; effect of taboo radius is studied at the end of this study.  

Figure 3.4 presents the probability of supporting χ
2
-test hypothesis for GD and SP 

individually by different test functions; in this figure, GT is the number of generations 

for p(PM) to cross 0.99 for the first time. It can be seen from Figure 3.4 that GD and 

SP do not improve consistently; sometimes their improvements become very slow 

(probability, p reaches near to 1) and then some improvement occurs in the next few 

generations (p reaches near to 0). The proposed termination criterion terminates 
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search at 99, 293, 134, 249 and 154 generations for ZDT3, ZDT4, CF1, CF4 and CF6 

test problems, respectively. These are comparable to the number of generations 

required for converging to the true Pareto-optimal front stated earlier (i.e., nearly 90, 

300, 130, 250 and 160 generations for ZDT3, ZDT4, CF1, CF4 and CF6, 

respectively). This indicates that the proposed termination criterion is successful.  

 

 

 

(b) (a) 

(c) (d) 

(e) 

Figure 3.4:  Probability of 

supporting χ
2
-test hypothesis for 

GD and SP individually at different 

number of generations, for test 

functions: (a) ZDT3, (b) ZDT4, (c) 

CF1, (d) CF4 and (e) CF6. 
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3.6 I-MODE Algorithm 

Figure 3.5 presents the flowchart of I-MODE algorithm. As mentioned earlier, I-

MODE has three important strategies/parts: adaptation of DETL for multiple 

objectives, self-adaptation of parameters, and improvement based termination 

criterion, discussed in Sections 2, 3 and 5 respectively. Self-adaption part of I-MODE 

is not included in the flowchart to avoid additional complexity. Search termination 

criterion can be seen inside the dashed box in Figure 3.5.   

3.7 Effect of Termination Parameters on I-Mode Performance 

I-MODE algorithm with the proposed termination criterion is tested on 9 

constrained test functions (Zhang et al., 2009) (see Table 3.2). Seven of these are bi-

objective problems, while the remaining two are tri-objective problems. Size of TL is 

fixed at half of N, and taboo radius (TR) of 0.01 is chosen. Small values of both 

termination parameters can give better quality solution at the expense of large NFE. 

Sixteen combinations of values of δGD and δSP in the termination criterion are studied 

(see Tables 3 & 4); they cover all combinations of four values of δGD (i.e., 1e-5, 1e-4, 

3e-4, 5e-4) and four values of δSP (i.e., 0.001, 0.01, 0.05, 0.1). Performance of I-

MODE is compared with the performance of the best algorithm for CEC-2009 

problems, namely, DMOEA-DD (Liu et al., 2009). Inverse generational distance 

(IGD
t
; Zhang et al., 2009) is used as the performance metric in this comparison. 

Similar to GD
t
, it is calculated between the true Pareto-optimal front and non-

dominated solutions obtained in the objective function space, as follows.    

      
 

  
   

  
           (3.15) 
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Figure 3.5: Flowchart of I-MODE algorithm. 

Random initialization of population and evaluate values of objective 

functions and constraints of all individuals in the population

Set generation no., G = 1

Non-dominating sorting of combined population 

and calculate crowding distance, if required

Stop

Start Set values N, MNG, TR, δGD and δSP 

Generate a mutant individual and then a 

trial individual as per DE operations.

Check the trial individual for the violation of decision 

variable bounds; if there is any violation, randomly re-

initialize that particular decision variable inside the bounds.

Perform taboo check to reject the trial 

individuals near to those in taboo list

Store the accepted trial individual in the child population

Selection of the population for the next generation

Set individual no., n = 1

Is n < N?
Yes

No

Combine parent and child populations

Is G < MNG?
Yes No

G = G + 1

n = n + 1

Randomly select 50% initial 

individuals and store them in taboo list

If G > 1, then calculate GD & SP

Are p(GD) > 0.99 

& p(SP) > 0.99?

No

Yes

If G > λ , then perform Chi2 test

Evaluate values of objective functions and constraints 

of the accepted trial individual, and update taboo list
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Here, NT is the number of solutions in the true Pareto-optimal front, and di is the 

Euclidean distance of each solution in the true Pareto-optimal front to its nearest 

solution in the non-dominated set obtained. Objective function values of the true 

Pareto-optimal fronts for all constrained test functions are taken from: 

http://dces.essex.ac.uk/staff/qzhang/moeacompetition09.htm (access date: April 

2011).  

A maximum of 300,000 function evaluations are used by DMOEA-DD algorithm 

on all constrained test functions, and the reported IGD
t
 values using DMOEA-DD are 

based on maximum of 100 and 150 non-dominated individuals for two- and three-

objective problems respectively (Liu et al., 2009). In this work, population size and 

maximum number of generations are 200 and 1000 respectively, for all test functions. 

From the final optimal solutions obtained, 100 and 150 least crowded non-dominated 

individuals are used to calculate IGD
t
 for two- and three-objective problems 

respectively, for comparison of I-MODE with DMOEA-DD. I-MODE algorithm is 

terminated using the developed termination criterion.  

For a set of δGD and δSP values, if I-MODE algorithm is terminated before it 

reaches the MNGs and the obtained IGD
t
 value is better than its reported mean value 

from DMOEA-DD, then it is considered to be a successful run. Since random 

numbers are employed in I-MODE, 30 independent runs, each time starting with a 

different random number seed, are performed on each test function. Number of 

successful runs (NSR), mean IGD
t
 (μIGD

t
) and mean number of function evaluations 

(μNFE) values for successful runs in these 30 runs for each problem is reported in 

Tables 3 and 4 for two- and three-objective problems respectively. Taboo radius, TR 

= 0.01 is used for these results.  
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Table 3.3: Effect of termination parameter values on I-MODE performance for two objective test functions  

 δGD = 1e-5 δGD = 1e-4 δGD = 3e-4 δGD = 5e-4 

       δSP = 0.001 0.01 0.05 0. 1 0.001 0.01 0.05 0. 1 0.001 0.01 0.05 0. 1 0.001 0.01 0.05 0.1 

C
F

-1
 

 

NSR 0 20 14 13 0 22 8 9 0 22 10 10 0 22 13 8 

μIGD
t
 0.00000 0.00295 0.00529 0.00544 0.00000 0.00330 0.00679 0.00536 0.00000 0.00354 0.00650 0.00670 0.00000 0.00354 0.00717 0.00691 

μNFE 0 148446 92395 91740 0 134083 32965 28890 0 134340 23030 22770 0 134340 22304 20318 

C
F

-2
 NSR 0 10 30 30 0 16 30 30 0 17 30 29 0 17 30 29 

μIGD
t
 0.00000 0.00031 0.00059 0.00064 0.00000 0.00050 0.00053 0.00049 0.00000 0.00054 0.00054 0.00070 0.00000 0.00054 0.00059 0.00062 

μNFE 0 143147 54292 49310 0 127149 38553 30709 0 121449 33255 23594 0 121449 32373 21842 

C
F

-3
 NSR 5 7 13 21 5 9 16 23 6 10 23 27 6 10 25 27 

μIGD
t
 0.00317 0.00315 0.00344 0.00395 0.00317 0.00317 0.00343 0.00403 0.00322 0.00320 0.00352 0.00389 0.00322 0.00320 0.00350 0.00364 

μNFE 63748 64852 65697 62797 63748 67418 65057 61999 66534 68714 64668 60237 66534 68714 63391 56760 

C
F

-4
 NSR 0 11 30 30 0 17 30 30 0 19 30 29 0 19 30 29 

μIGD
t
 0.00000 0.00045 0.00043 0.00052 0.00000 0.00046 0.00037 0.00056 0.00000 0.00037 0.00048 0.00057 0.00000 0.00037 0.00058 0.00056 

μNFE 0 131320 68008 64132 0 122203 45863 39577 0 120835 41305 34735 0 120835 37533 31187 

C
F

-5
 NSR 5 7 29 30 5 10 30 30 5 12 30 30 5 14 30 29 

μIGD
t
 0.00176 0.00158 0.00128 0.00139 0.00176 0.00158 0.00183 0.00151 0.00176 0.00159 0.00206 0.00149 0.00176 0.00157 0.00203 0.00152 

μNFE 67021 79708 77226 65691 67021 91147 68116 54774 67021 83625 60144 46623 67021 89097 54944 45131 

C
F

-6
 NSR 0 0 14 25 0 3 30 30 0 3 30 30 0 3 30 30 

μIGD
t
 0.00000 0.00000 0.00158 0.00175 0.00000 0.00169 0.00193 0.00196 0.00000 0.00169 0.00180 0.00180 0.00000 0.00169 0.00176 0.00186 

μNFE 0 0 108638 90844 0 134310 32979 24191 0 134310 25042 18671 0 134310 23864 16435 

C
F

-7
 NSR 3 16 29 29 3 21 30 30 3 21 30 30 3 22 30 30 

μIGD
t
 0.00083 0.00110 0.00116 0.00117 0.00083 0.00139 0.00108 0.00129 0.00083 0.00134 0.00119 0.00144 0.00083 0.00128 0.00129 0.00126 

μNFE 47899 86700 72030 64372 47899 92655 61257 49409 47899 92029 56863 42241 47899 91851 51543 41261 

T
o
ta

l PSR 6.2 33.8 75.7 84.8 6.2 46.7 82.9 86.7 6.7 49.5 87.1 88.1 6.7 51.0 89.5 86.7 

AvgNFE 59556 109029 76898 69841 59556 109852 49256 41364 60485 107900 43472 35553 60485 108657 40850 33276 
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Table 3.3 contains percentage of successful runs (PSR) and average of μNFE 

(AvgNFE) for successful runs, for all two-objective problems tested. In other words, 

PSR is the percentage of successful runs for all problems where obtained IGD
t
 value 

using I-MODE is better than the reported mean IGD
t
 value for DMOEA-DD. A set of 

values for the termination parameters is better if it gives larger PSR and requires 

smaller average of AvgNFE.    

Optimal values of termination parameters should give high value of PSR using 

fewer NFE, without compromising the quality of non-dominated solutions obtained. 

Small value of δSP (= 0.001) gives very low value (~ 6) of PSR for all δGD values 

(namely,1e-5, 1e-4, 3e-4, 5e-4) tested (Table 3.3); high δGD value cannot improve the 

PSR, which means that variance in the obtained values of SP in different generations 

is more than 0.001. Further, small value of δGD (= 1e-5) in conjunction with high 

value of δSP can give reasonably good PSR (75.7 and 84.8 for δSP of 0.05 and 0.1 

respectively). It can be seen from Table 3.3 that δSP in the range of 0.05 to 0.1 can 

give high PSR of 75 to 90 for different values of δGD; small δGD value gives small 

values of μIGD
t
 and PSR at the expense of larger AvgNFE.   

For three-objective constrained test functions, six sets of termination parameters 

are able to give some successful runs (see Table 3.4); remaining ten sets of 

termination parameters are not satisfying the χ
2
-test statistics in any of the 30 runs 

(i.e., NSR = 0). Hence, these are not shown in Table 3.4 for brevity. As expected, 

termination parameters with larger magnitude are more successful due to 3-D 

objective space. Sometimes, I-MODE terminates successfully before it reaches the 

MNGs. Successful termination of I-MODE algorithm saves additional NFEs used by 

DMOEA-DD (which has MNGs as the termination criterion). So, I-MODE is efficient 

to locate and reach the global Pareto-optimal front. Suitable δGD and δSP values can be 
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decided based on the required quality and efficiency of solution. Some optimization 

problems are multi-modal in nature; hence slightly conservative values of termination 

parameters will be good for a variety of optimization problems. Hence, δGD and δSP 

values of 3e-4 and 0.1 are appropriate for both two- and three-objective constrained 

problems.   

Table 3.4: Effect of termination parameter values on I-MODE performance for tri-

objective constrained test functions 

 δGD  = 1e-4 δGD  = 3e-4 δGD  = 5e-4 

       δSP = 0.05 0. 1 0.05 0. 1 0.05 0.1 

C
F

-8
 

NSR 1 1 21 28 30 30 

μIGD
t
 0.00009 0.00009 0.00058 0.00051 0.00054 0.00060 

μNFE 187996 187996 74533 62632 52548 36792 

C
F

-9
 

NSR 0 3 30 30 30 30 

μIGD
t
 0.00000 0.00014 0.00011 0.00015 0.00011 0.00014 

μNFE 0 123482 56569 37943 36330 19975 

3.8 Effect of Taboo Radius on I-Mode Performance   

A high value of TR is useful for exploring the search space thoroughly to locate 

the global optimum efficiently and reliably. On the other hand, a low value of TR is 

required to reach the Pareto-optimal solutions precisely. In this section, the effect of 

four values of TR (i.e., 0.0, 0.01, 0.05 and 0.1) on the performance of I-MODE is 

studied. Size of taboo list is fixed at half the population size (= N/2), same as in the 

previous section. PSR and AvgNFE for solving bi-objective constrained test functions 

by I-MODE using different values of TR and termination parameters are presented in 

Table 3.5. These results are based on 30 runs. Performance of I-MODE with δSP of 

0.001 and different values of δGD is not presented in Table 3.5 as it gives very small 

PSR (see Table 3.3). 
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Effect of different values of termination parameters on the performance of I-

MODE with TR of 0.01 has been explored in the previous section (see Tables 3 and 

4); remaining three values of TR (i.e., 0.0, 0.05, and 0.1) along with different values 

of δGD and δSP have similar performance (see Table 3.5). It can be seen that I-MODE 

algorithm with larger TR gives higher PSR in many cases, which proves the better 

exploration of search space. Also, I-MODE generally took fewer NFEs (i.e., AvgNFE) 

as TR increases in the range tested. Hence, TR between 0.01 and 0.05 is suitable for 

the problems studied. 

Table 3.5: Effect of taboo radius on PSR and AVGNFE (based on successful runs) for 

bi-objective constrained test functions 

 TR = 0.0 TR = 0.01 TR = 0.05 TR = 0.1 

δGD δSP PSR AvgNFE PSR AvgNFE PSR AvgNFE PSR AvgNFE 

1e-5 
0.01 23.3 126482 33.8 109029 51.0 93860 68.1 80170 

0.05 74.8 78787 75.7 76898 90.5 63192 91.4 52270 

 
0. 1 79.0 72090 84.8 69841 91.9 58418 90.5 49751 

1e-4 

0.01 36.2 133540 46.7 109852 59.5 87020 76.7 71844 

0.05 84.8 48906 82.9 49256 89.0 43457 86.7 37117 

0. 1 82.4 41681 86.7 41364 87.6 36785 86.2 31984 

3e-4 

0.01 37.6 132559 49.5 107900 63.3 86177 78.1 70550 

0.05 84.3 45127 87.1 43472 89.0 38845 85.7 32916 

0. 1 80.0 36444 88.1 35553 87.6 31339 84.8 26514 

5e-4 

0.01 38.1 131670 51.0 108657 64.8 85693 78.6 70643 

0.05 83.3 42898 89.5 40850 89.5 37056 85.2 31086 

0. 1 81.0 33805 86.7 33276 86.7 28731 83.8 24664 

Table 3.6 presents values of μIGD
t
 and ζIGD

t
 after MNGs (= 1000) using I-MODE 

algorithm with TR of 0.01, based on 30 runs with different random seeds. NFEs for 

different problems for 1000 generations, given in Table 3.6, are less than 200,000 

expected for a population of 200 due to the use of taboo list and check in I-MODE. 
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Values of μIGD
t
 and ζIGD

t
 by DMOEA-DD (Liu et al., 2009) are also given in Table 

3.6 for comparison; these results are using fixed NFEs of 300,000. It is clear from 

Table 3.6 that I-MODE gives smaller μIGD
t
 values, and also uses fewer function 

evaluations than DMOEA-DD for all the problems tested.   

To illustrate the importance and benefit of termination criteria, μIGD
t
, ζIGD

t
, and 

μNFE using I-MODE algorithm with the selected termination parameters (δGD = 3e-4 

and δSP = 0.1) are also presented in Table 3.6. These termination parameter values are 

effective to stop the search in all 30 runs on all 9 problems except for CF-3 and CF-8 

for which the search was stopped in 27 and 28 runs respectively. Generally, μIGD
t
 

values using the proposed termination criterion are slightly worse compared to those 

obtained with MNGs = 1000, but they are satisfactory for engineering applications 

and require significantly fewer NFEs (Table 3.6). Hence, the inclusion of the 

proposed termination criterion in the search algorithm makes it computationally very 

efficient and yet provides satisfactory results.  

In addition to IGD
t
 values, equation 3.7 is used to calculate GD

t
 values. Table 3.6 

presents μGD
t
 and ζGD

t
 for different test problems. Notably, values of μIGD

t
 and μGD

t
 are 

very much different for three-objective test functions although they are comparable 

for five bi-objective problems. Some of the non-dominated solutions obtained can be 

ignored in IGD
t
 calculation due to availability of other nearby non-dominated 

solutions in the obtained Pareto-optimal front while all non-dominated solutions have 

to be considered in GD
t 

calculation. This is probably the reason for differences in 

values of μIGD
t
 and μGD

t
.      
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Table 3.6: Mean-IGD
t
 and Sigma-IGD

t
 values (over 30 runs) using I-MODE and 

comparison with DMOEA-DD 

3.9 General Discussion 

The developed I-MODE algorithm is suitable for application problems. In this 

work, algorithm parameters are self-adapted to avoid their tuning for different 

problems. Further, I-MODE has termination criterion for making a timely decision on 

search termination. Recommended values (δGD = 0.0003, δSP = 0.1, based on this 

study) of termination parameters can be used for a new optimization problem. Similar 

to other stochastic methods, I-MODE can solve problems with moderate number 

(about 30) of decision variables. If the optimization problem has equality constraints, 

these can be converted into inequality constraints. But, it would be good to use 

sequential solution approach for better performance of algorithm. Small taboo radius 

value can be used for an optimization problem with fewer decision variables, whereas 

large taboo radius value can improve exploration capabilities of the algorithm for 

 

DMOEA-DD 

 

NFE = 300,000 

μIGD
t 
         ζIGD

t
 

I-MODE Using TR = 0.01 

MNGs = 1000 

 

μIGD
t
           ζIGD

t
          μNFE 

Termination Criterion 

(δGD = 3e-4 & δSP = 0.1) 

μIGD
t
           ζIGD

t
           μNFE 

MNGs = 1000 

 

μGD
t 
         ζGD

t
 

CF-1 0.0113 0.00276 0.0076 0.00848 183902 0.0384 0.03483 21409 0.0055 0.0024 

CF-2 0.002 0.00045 0.0004 0.00049 194336 0.00078 0.00061 23579 0.0054 0.0074 

CF-3 0.0563 0.00757 0.0037 0.00126 83554 0.0039 0.00155 60237 0.0694 0.0454 

CF-4 0.007 0.00146 0.0005 0.00054 173847 0.0009 0.00187 34649 0.0010 0.0007 

CF-5 0.0158 0.00666 0.0016 0.00085 116862 0.0015 0.00076 46623 0.0138 0.016 

CF-6 0.0150 0.00646 0.0016 0.00049 189432 0.0018 0.00051 18671 0.0007 0.0005 

CF-7 0.0191 0.00612 0.0013 0.00139 117282 0.0014 0.00157 42241 0.0099 0.0133 

CF-8 0.1434 0.02142 0.0005 0.00087 196615 0.0005 0.00138 62632 0.2371 0.2701 

CF-9 0.1621 0.03162 0.0001 0.00007 196456 0.0002 0.00007 37943 0.0605 0.0240 
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optimization problems with large number of decision variables. I-MODE algorithm 

can easily be used for black box problems.   

3.10 Conclusions 

In this chapter, I-MDOE has been developed, to solve MOO problems, by 

adapting computationally efficient DETL. Five performance metrics for MOO are 

studied for their variations with generations, and it is found that GD and SP can 

quantify the improvement in the Pareto-optimal front efficiently and consistently. 

Hence, a termination criterion for stopping the search algorithm based on GD and SP 

in the latest generations is developed and tested on constrained test functions. It does 

not use information about the true Pareto-optimal front, which makes it suitable for 

real world applications. A detailed study has been conducted for different 

combinations of termination parameters, and suitable values for these parameters are 

suggested for constrained optimization problems. Use of taboo list/check improves 

reliability and efficiency for larger values of taboo radius, but it may reduce 

exploitation of search space. Accordingly, obtained IGD
t
 values using I-MODE with a 

larger taboo radius are slightly worse than those obtained with a smaller value of 

taboo radius, but the former are still satisfactory for engineering applications. 

Compared to the results by DMOEA-DD (Liu et al., 2009), I-MODE gives smaller 

IGD
t
 values, and also uses fewer function evaluations for the problems tested. Further, 

use of the proposed termination criterion in I-MODE reduces function evaluations 

even more.   
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Chapter 4 

Use of Termination Criterion with Other Algorithms 

4.1 Introduction  

In this chapter, effectiveness of the proposed termination criterion is tested with 

other algorithms. The developed search termination criterion, based on the 

improvement in the Pareto-optimal front, has been used to check convergence of 

NGSA-II with the selected jumping gene adaptations. Additionally, a hybrid method 

may give both high reliability and computational efficiency; hence stochastic global 

search is integrated with deterministic local search, using termination criterion.  

The elitist non-dominated sorting genetic algorithm (NSGA-II) has been used to 

optimize many process design and operation problems for two or more objectives. In 

order to improve its performance, jumping gene concept from natural genetics has 

been incorporated in NSGA-II. Several jumping gene adaptations have been proposed 

and used to solve mathematical and application problems in different studies. In this 

chapter, four jumping gene adaptations are selected and comprehensively evaluated 

on a number of two-objective unconstrained and constrained test functions. Three 

quality metrics, namely, generational distance, spread and inverse generational 

distance are employed to evaluate the distribution and convergence of the obtained 

Pareto-optimal front. 

Stochastic optimization algorithms can explore the search space comprehensively, 

but they cannot locate global optimum precisely although solutions obtained by 

stochastic search are satisfactory for engineering applications. In the last generations 

of search, these algorithms become very slow due to the similarity of information 

content in most of the individuals. On the other hand, deterministic methods are more 
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efficient in finding the precise optimum, particularly if a very good initial estimate is 

given. Hence, they can be used for local refinement of each Pareto-optimal point 

obtained after stochastic global search. This refinement can be applied on all or some 

selected solutions from the Pareto-optimal front. Several deterministic methods (e.g., 

PDM, NBI and NNC) can be potentially used as local search after stochastic global 

search. These methods are reviewed in Chapter 2 of this thesis. NNC method can be 

used for problems with discontinuous Pareto-optimal front; it does not assign any 

weights to different objectives, rather it includes additional inequality constraints in 

the problem formulation (Messac et al., 2003). Hence, in this work, NNC method is 

chosen and used to refine the non-dominated solutions obtained by the global search.     

The rest of this chapter is organized as follows. The next section of this chapter 

briefly discusses different variants of JG adaptations and their applications. It also 

provides details on constraint handling and program implementation including values 

of algorithm parameters. Finally, performance of selected JG adaptations on many test 

functions is compared in the same section. Section 4.3 describes NNC method with 

termination criterion, and presents performance of hybrid search on several test 

functions. Finally, useful findings of this work are summarized in the last section of 

this chapter.  

4.2 Jumping Gene Adaptations of NSGA-II
3
   

Deb et al. (2002) have developed the elitist non-dominated sorting genetic 

algorithm (NSGA-II) for solving multi-objective optimization (MOO) problems, 

which has found many applications in Chemical Engineering. In order to improve the 

performance of the binary-coded NSGA-II algorithm, Kasat and Gupta (2003) have 

                                                           
3
 This section is based on the book chapter: Sharma, S., Nabavi, S. R. and Rangaiah, G. P. (2013), 

Performance comparison of jumping gene adaptations of elitist non-dominated sorting genetic 

algorithm, MOO in Chemical Engineering: Developments and Applications, Wiley  
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included the jumping gene (JG) operator in it. Following this, several variants of JG 

adaptations have been developed, and applied to solve a number of application 

problems. Guria et al. (2005a) have developed one variant of JG adaptation, referred 

as mJG, for problems having the optimal solutions near to decision variable bounds. 

Bhat et al. (2006) have proposed aJG variant, which was later used with NSGA-II in 

Bhat (2007). Agarwal and Gupta (2008a) have suggested two new variants of JG 

adaptations, namely, sJG and saJG, and studied them with binary-coded NSGA-II. 

NSGA-II-saJG can only be applied if number of binaries used for representing each 

decision variable is same, whereas NSGA-II-sJG completely replaces part of the 

chromosome associated with a particular decision variable and so can be used even if 

the number of binaries used is not same for different variables. Also, Agarwal and 

Gupta (2008a) compared four variants of JG adaptations (namely, JG, aJG, sJG and 

saJG) on three unconstrained test functions. Set convergence ratio, spacing and 

maximum spread are used as performance indicators, and it was found that 

performance of NSGA-II-aJG, NSGA-II-sJG and NSGA-II-saJG is comparable, 

whereas NSGA-II-JG is outperformed by the other three.   

Ramteke and Gupta (2009a) have discussed and evaluated five variants of JG 

adaptations, namely, NSGA-II-JG/mJG/aJG/saJG/sJG on three unconstrained test 

functions. Recently, two more variants of JG adaptations, namely, Alt-NSGA-II-aJG 

(Ramteke and Gupta, 2009b) and biogenetic-NSGA-II-aJG (Ramteke and Gupta, 

2009c) were proposed. Alt-NSGA-II-aJG mimics biological altruism from honey bee 

to solve MOO problems. In biogenetic-NSGA-II-aJG, information/solution from an 

earlier optimization problem is used to solve the modified/new optimization problem. 

This strategy can be used with other JG variants also, and is relevant for modifications 
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in industrial optimization problems, such as increase in number of objectives, decision 

variables and/or ranges of decision variables.  

In order to speed up the convergence, Ripon et al. (2007) and Furtuna et al. (2011) 

applied the concept of jumping gene in real coded NSGA-II. In the work of Ripon et 

al. (RJGGA; 2007), part of the chromosome (i.e., transposon) is copied/cut and pasted 

into the same or different chromosome. Its performance has been compared with 

seven MOO algorithms on five test functions, using set convergence metric, spacing, 

spread and hyper volume as performance metrics. Mostly, RJGGA performed better 

than other algorithms, in terms of diversity of non-dominated solutions and 

convergence to the known Pareto-optimal front. Furtuna et al. (2011) adapted the JG 

proposed by Kasat and Gupta (2003) for the real coded NSGA-II. Additionally, JG 

and aJG variants (of binary coded NSGA-II) are also used with multi-objective 

simulated annealing (Sankararao and Gupta, 2006, 2007a and 2007b). So, jumping 

gene concept has potential for use with other MOO algorithms.  

4.2.1 Use of JG Adaptations to Solve Application Problems 

Several researchers have successfully used one or more variants of JG adaptations 

to solve different application problems; these applications are summarized in Table 

4.1. Mathematical functions tested in these studies are also included in this table. 

Although many applications have been studied using JG adaptations, their evaluation 

using mathematical functions is limited, as can be seen in Table 4.1.   

4.2.2 Selection of JG Adaptations for Comparison   

There are a number of JG adaptations proposed and applied to Chemical 

Engineering problems in the past decade, and some of these are compared on a 
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limited number of problems (Agarwal and Gupta, 2008a; Ramteke and Gupta, 2009a). 

However, there has been no comprehensive and systematic evaluation of these 

adaptations.  

Further, NSGA-II has been popular for solving application problems. Hence, this 

chapter analyzes and compares the performance of four variants of JG adaptations, 

namely, NSGA-II-aJG, NSGA-II-saJG, NSGA-II-sJG and Alt-NSGA-II-aJG, for bi-

objective optimization problems. In this comparison, NSGA-II-mJG and biogenetic-

NSGA-II-aJG are not considered since the former‟s applicability is for a specific type 

of optimization problems and the latter is similar to NSGA-II-aJG except for the 

difference in the approach which can be used with other adaptations/algorithms as 

well. A detailed flow-chart of NSGA-II with JG adaptation for MOO is given in 

Figure 4.1. More details on NSGA-II can be found in Deb (2001).  

A multi-objective optimization for M different objectives: f1, f2, …, fM, can be 

mathematically stated as follows.  

Min.  {f1(x), f2(x), ... fM(x)}         (4.1a) 

Subject to x
L
 ≤ x ≤ x

U
 and g(x) ≤ b      

 (4.1b) 

Here, x is the vector of decision variables between lower (i.e., x
L
) and upper (i.e, x

U
) 

bounds; g is the set of inequality constraints where b is the vector of constants. If an 

optimization problem has equality constraints, then those can be converted into 

inequality constraints by relaxation.   

Penalty function and feasibility criterion are the two popular approaches for 

handling constraints within evolutionary algorithms. In this work, penalty function 

approach is used to handle inequality constraints. In this approach, objective functions 

are penalized (i.e., modified) by adding a penalty term to each of the original 

objective functions, as follows.  
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Table 4.1: Use of different JG adaptations to solve application problems  

Application Test functions Algorithm(s) Reference(s) 

Fluidized-bed catalytic 

cracker 

Schaffer, ZDT4 NSGA-II and 

NSGA-II-JG 

Kasat and Gupta 

(2003) 

Flotation circuits - NSGA-II (binary 

& real coded) and 

NSGA-II-mJG 

Guria et al. (2005a 

& 2006) 

Reverse osmosis 

desalination units 

- NSGA-II, NSGA-

II-JG and aJG 

Guria et al. (2005b) 

Industrial steam 

reformer 

- MOSA, MOSA-

JG, MOSA-aJG, 

NSGA-II, NSGA-

II-JG, NSGA-II-

aJG 

Sankararao and 

Gupta (2006) 

Low density poly-

ethylene reactor 

CONSTR, SRN, 

TNK, WATER 

NSGA-II, NSGA-

II-JG and aJG 

Agrawal et al. 

(2006 & 2007) 

Fuel oil blending - NSGA-II, NSGA-

II-JG and aJG 

Khosla  et al. 

(2007) 

Pressure swing 

adsorbers for air 

separation 

- MOSA-aJG Sankararao and 

Gupta (2007a) 

Fluidized-bed catalytic 

cracker 

ZDT4, two more 

test functions 

NSGA-II, NSGA-

II-JG, NSGA-II-

aJG, MOSA-JG, 

MOSA-aJG 

Sankararao and 

Gupta (2007b) 

Shell and tube heat 

exchangers 

ZDT2, ZDT3, 

ZDT4 

NSGA-II-JG, aJG, 

sJG and saJG 

Agarwal and Gupta 

(2008a & 2008b) 

Industrial phthalic 

anhydride (PA) reactor 

- NSGA-II-aJG and 

guided NSGA-II-

aJG 

Bhat and Gupta 

(2008) 

Nylon-6 semi batch 

reactor 

- NSGA-II, NSGA-

II-aJG, MOSA-

aJG 

Mitra et al. (1998), 

Ramteke and Gupta 

(2008) 

Industrial PA reactor 

system, and simulation 

of cancer  

ZDT2, ZDT3, 

ZDT4 

Alt-NSGA-II-aJG Ramteke and Gupta 

(2009b) 

Industrial PA reactor 

system; nylon-6 

polymerization 

Two modified 

test functions 

NSGA-II-aJG,  

B-NSGA-II-aJG 

Ramteke and Gupta 

(2009c) 

Liquefied petroleum gas 

(LPG) cracker 

- NSGA-II-aJG Nabavi et al. (2009) 

Synthesis of polymeric 

nano-particles 

- NSGA-II (real 

coded), NSGA-

RJG 

Furtuna et al. 

(2011) 

Fixed bed maleic 

anhydride reactor 

- NSGA-II-aJG, 

Alt-NSGA-II-aJG 

Chaudhari and 

Gupta (2012) 
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Figure 4.1: A detailed flow-chart of NSGA-II with JG adaptation for MOO  

Randomly initialize population, and evaluate values of objective 

functions and constraints of all individuals in the population.

Set generation no., G = 1

Selection of N individuals for the next generation – first individuals 

with best ranks (first, second, third, etc.) are selected. If all individuals 

of same rank cannot be selected to complete the population size, then 

less crowded individuals are selected from that rank/front.

Stop

Start Set values of Cr, F, N and MNG

Select N individuals from the current 

population by binary tournament.

Evaluate values of objective functions 

and constraints for N new individuals.

Combine current population and N new individuals; set RK = 0.

Is TC satisfy?
No Yes

G = G + 1

Population of remaining 

individuals (excluding 

previously ranked 

individuals).

Generate N new individuals by cross-over operation

Bit-wise mutation on N new individuals

Jumping gene operation on N new individuals

Find the number of individuals dominating 

each individual (nd) in the population.

Check each individual for violation of decision 

variable bounds; if there is any violation, randomly re-

initialize that decision variable inside the bounds. 

If nd = 0, then rank of individuals = RK + 1

Are 

all individuals 

ranked?

RK = RK + 1

Yes

No
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        (4.2)  

Here, Fm and fm are m
th

 modified and original objective function respectively, Gj(x) is 

j
th

 inequality constraint (defined in equation 4.3 below), Rj is the user-defined penalty 

parameter for j
th

 inequality constraint and ni is the number of inequality constraints. In 

order to use a single penalty parameter for all inequality constraints, they are 

normalized using the following transformation.   

Gj(x) ≡ gj(x)/bj - 1 ≤ 0          (4.3) 

Many application problems have constraints; hence, performance of the above 

four JG adaptations is compared on four constrained and five unconstrained test 

functions. The unconstrained test functions: ZDT1, ZDT2, ZDT3, ZDT4 and ZDT6 

have different characteristics like continuous or discontinuous objective functions, 

multi-modality and convexity of search space. ZDT1 and ZDT2 test functions have 

convex and non-convex Pareto-optimal front respectively. ZDT3 has several non-

continuous convex parts in the Pareto-optimal front. ZDT4 is multi-modal in nature 

and has 99 local optimal fronts (Sindhya et al., 2011), and ZDT6 problem has non-

uniform density of solutions. The constrained test functions: OSY, CONSTR, SRN, 

and TNK are considered for testing since many applications involve constraints. Main 

details of unconstrained and constrained test functions are given in Table 4.2. Search 

termination at the right time improves efficiency of the algorithm; hence, the 

termination criterion, developed in Chapter 3, is also tested with the four selected JG 

adaptations of NSGA-II. Furthermore, several accepted and/or applied performance 

metrics (GD
t
, SP

t
 and IGD

t
, as defined in Chapter 3) are used for performance 

comparison. As in the earlier studies, which proposed these adaptations, binary coding 

is used for representing variables.   
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Table 4.2 : Test functions studied in this work; DVs - decision variables (Deb et al., 

2001; Coello Coello et al., 2007)  

 

 

 

FORTRAN programs for NSGA-II-aJG and Alt-NSGA-II-aJG have been taken 

from http://www.iitk.ac.in/che/skg.htm (access date: October 2011), and then 

 
No of 

DVs 

Range of 

DVs 
Min. f1(x) Min. f2(x, g(x)) g(x) 

ZDT1 30 xi ∈[0, 1]    
        

  

    
      

 

   
   

 
     

ZDT2 30 xi ∈ [0, 1]    
        

  

    
 
 

      
 

   
   

 
     

ZDT3 30 xi ∈ [0, 1]    
        

  

    
 

  

    
       π       

  
 

   
   

 
     

ZDT4 10 x1 ∈ [0, 1], 

xi ∈ [-5, 5] 

   

 
        

  

    
   

          

    
         π    

 
     

ZDT6 10 xi ∈ [0, 1]               

                 
        

  

    
 
 

       
   

 
   

 
 

    

  

 
No of 

DVs 

Range of 

DVs 
Min. f1(x) Min. f2(x) 

KUR 3 xi ∈ [-5, 5]                 
       

      
           

           
    

     

FON 8 xi ∈ [-2, 2]                  
  

                       
  

      

 
Range of  

DVs 
Objectives (Min.) Constraints 

OSY (x1, x2, x6)∈  

[0, 10], 

(x3, x5)∈ [1, 5], 

x4 ∈ [0, 6], 

                           

         

         

          

         
     

    
    

    
 

   
  

          

           

          

            

                

               

CONS

-TR 

x1 ∈ [0.1, 1], 

x2 ∈ [0, 5] 

         

                

             

             

SRN (x1, x2) ∈  

[-20, 20] 

                        

                  

   
    

          

              

TNK (x1, x2) ∈  

[0, π] 

         

         

  
     

                                   

                                

http://www.iitk.ac.in/che/skg.htm
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modified for NSGA-II-sJG and NSGA-II-saJG. All these programs are amended to 

include GD and SP calculations and to implement the χ
2
-test for termination, as 

discussed in Chapter 3. GD
t
, SP

t
 and IGD

t
 calculations are also implemented to 

compare the obtained Pareto-optimal front with the known Pareto-optimal front. 

Parameters used in the termination criterion are: λ = 10, δGD = 0.0002 and δSP = 0.03. 

A fixed and large value of the penalty parameter (R = 10
9
) is used for all constrained 

problems. In this study, values of parameters in these algorithms used are chosen 

based on the values used and/or recommendations in Agarwal and Gupta (2008a) and 

Ramteke and Gupta (2009b), and these are given in Table 4.3.      

Table 4.3: Values of parameters in JG adaptations of NSGA-II used in this study 

Parameter aJG saJG sJG Alt-aJG 

N (population size) 200 200 200 200 

MNG (maximum number of generations) 1500 1500 1500 1500 

pc (crossover probability) 0.9 0.9 0.9 0.9 

pm (mutation probability) 0.001 0.001 0.001 0.001 

pJG (JG probability) 0.5 0.5 0.5 0.5 

fb (arbitrary number used in aJG operator) 25/ 10* - - 25/ 10* 

lstring (no. of bits for each decision variable) 30 30 30 30 

* For constrained problems  

4.2.3 Performance Comparison on Unconstrained Test Functions 

Values of GD
t
 and IGD

t
 vary significantly with generations and also for different 

algorithms, whereas SP
t
 does not change much. Hence, for ease of comparison among 

different algorithms, GD
t
 and IGD

t
 values are normalized using certain GD

t
max and 

IGD
t
max. GD

t
 and IGD

t
 values are larger in the beginning of search, and decrease 

slowly with the progress of search. Further, there can be some fluctuations in GD
t
 and 
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IGD
t
 values at the start of search due to change in the number of non-dominated 

solutions in the best front obtained. However, GD
t
 and IGD

t
 vary smoothly after some 

generations (e.g., 100). Hence, maximum values of GD
t
 and IGD

t 
obtained after 100 

generations using four different algorithms are considered as GD
t
max and IGD

t
max. 

Table 4.4 presents GD
t
max and IGD

t
max for different unconstrained and constrained test 

problems. As mentioned earlier, GD
t
, SP

t
 and IGD

t
 are calculated for original values 

of objectives, and hence significant variation can be observed from problem to 

problem.   

Table 4.4: Maximum values of GD
t
 and IGD

t
 obtained after 100 generations, using 

four different algorithms 

PM  ZDT1 ZDT2 ZDT3 ZDT4 ZDT6 OSY CONSTR SRN TNK 

GD
t
max 0.0046 0.0043 0.0038 0.0118 0.0343 1.5156 0.0008 0.0173 0.0008 

IGD
t
max  0.1155 0.1468 0.1133 0.2631 0.7386 9.1184 0.0341 0.5498 0.0212 

Table 4.5 presents GD
t
/GD

t
max, SP

t
 and IGD

t
/IGD

t
max for unconstrained test 

problems using four selected JG adaptations. Here, search is stopped using the 

termination criterion discussed in Chapter 3; termination generation (GT) of each 

algorithm for each problems is also given in Table 4.5. These values of performance 

metrics are average of 10 runs with different random number seed value (i.e., 0.05, 

0.15, 0.25, 0.35, 0.45, 0.55, 0.65, 0.75, 0.85, 0.95), for each problem with each 

algorithm. Note that random number seed value affects the series of random numbers 

generated, which in turn can affect performance of stochastic algorithms. Same set of 

random seed values and procedure are employed for testing JG adaptations on 

constrained problems. The best values obtained for a problem by different JG 

adaptations are identified in bold in Table 4.5 and subsequent table.  
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Table 4.5: GD
t
/GD

t
max, SP

t
 and IGD

t
/IGD

t
max for unconstrained test functions 

obtained by four JG adaptations; these values are average of 10 runs with random 

number seeds 

 

Algorithm ZDT1 ZDT2 ZDT3 ZDT4 ZDT6 Total 

G
D

t /G
D

t m
a
x
 

NSGA-II-aJG 0.598 0.860 0.675 0.361 0.275 2.768 

NSGA-II-saJG 0.707 0.866 0.778 0.601 0.244 3.196 

NSGA-II-sJG 0.604 0.720 0.651 0.439 0.215 2.629 

Alt-NSGA-II-aJG 0.030 0.020 0.131 0.029 0.003 0.214 

S
P

t  

NSGA-II-aJG 0.829 1.079 0.978 0.797 1.028 4.711 

NSGA-II-saJG 0.855 1.107 0.963 0.885 1.019 4.828 

NSGA-II-sJG 0.802 1.061 0.904 0.814 1.002 4.584 

Alt-NSGA-II-aJG 0.970 0.983 1.177 0.771 1.004 4.906 

IG
D

t /I
G

D
t m

a
x
 

NSGA-II-aJG 0.592 0.733 0.738 0.467 0.287 2.817 

NSGA-II-saJG 0.637 0.763 0.777 0.564 0.280 3.021 

NSGA-II-sJG 0.599 0.627 0.720 0.446 0.223 2.616 

Alt-NSGA-II-aJG 0.026 0.026 0.099 0.031 0.002 0.183 

G
T

 

NSGA-II-aJG 165 136 163 202 466 1132 

NSGA-II-saJG 156 135 163 297 514 1265 

NSGA-II-sJG 181 159 195 251 522 1308 

Alt-NSGA-II-aJG 407 139 116 227 222 1111 

It can be seen in Table 4.5 that Alt-NSGA-II-aJG gives smaller values of 

GD
t
/GD

t
max and IGD

t
/IGD

t
max for the unconstrained functions tested, compared to 

other three JG adaptations. NSGA-II-sJG and Alt-NSGA-II-aJG gives better values of 

SP
t
 on different unconstrained test problems. Alt-NSGA-II-aJG algorithm performs 

well on ZDT3 and ZDT6 problems, based on the closeness of the non-dominated 
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solutions obtained to the known Pareto-optimal front (i.e., smaller GD
t
/GD

t
max and 

IGD
t
/IGD

t
max), and also it takes smallest GT (i.e., 116 and 222). For ZDT2 and ZDT4 

problems, Alt-NSGA-II-aJG is superior to the other three adaptations, based on all 

three performance metrics; here, generations used (i.e., 139 and 227) are also 

comparable to the smallest GT for these problems (i.e., 135 and 202). For ZDT1 

problem, Alt-NSGA-II-aJG gives significantly smaller values of GD
t
/GD

t
max and 

IGD
t
/IGD

t
max but it takes larger number of generations (i.e., 407 compared to the 

smallest GT of 156). NSGA-II-aJG is the second best algorithm for solving ZDT1 

problem, which gives smaller GD
t
/GD

t
max, smaller IGD

t
/IGD

t
max and comparable SP

t
 

than those obtained by NSGA-II-saJG and NSGA-II-sJG; here, the required number 

of generations (i.e., 165) is also comparable to those used by NSGA-II-saJG and 

NSGA-II-sJG algorithms (i.e., 156 and 181 respectively).  

Total values of GD
t
/GD

t
max, SP

t
, IGD

t
/IGD

t
max and GT by four JG adaptations on 

unconstrained functions tested, are shown in the last column of Table 4.5. Overall, 

Alt-NSGA-II-aJG is the best, based on GD
t
/GD

t
max, IGD

t
/IGD

t
max and GT, among the 

adaptations tested. NSGA-II-sJG is better than other adaptations based on SP
t
; Alt-

NSGA-II-aJG gives smallest SP
t
 for ZDT2 and ZDT4 but relatively larger SP

t
 for 

ZDT1 and ZDT3 test functions. NSGA-II-saJG algorithm performs worse than others 

tested, based on all performance metrics. Figure 4.2 shows non-dominated solutions 

obtained by Alt-NSGA-II-aJG (best adaptation) and NSGA-II-saJG (worst adaptation) 

for ZDT3 and ZDT4 test functions. For ZDT3 function, the non-dominated solutions 

obtained by both these adaptations are closer to the known Pareto-optimal front. The 

non-dominated solutions obtained by NSGA-II-saJG for ZDT4 function are away 

from the known Pareto-optimal front, indicating premature convergence to a local 

Pareto-optimal front (as ZDT4 has 100 distinct Pareto-optimal fronts). However, 
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global Pareto-optimal front of ZDT4 problem can be found by NSGA-II-saJG using 

larger number of generations, which means this algorithm is able to escape from the 

local optimal front after some generations of stagnation. On the other hand, Alt-

NSGA-II-aJG gives converged solutions closer to the global Pareto-optimal front in 

fewer generations.     

  

Figure 4.2:  Non-dominated solutions obtained by Alt-NSGA-II-aJG and NSGA-II-

saJG algorithms using random seed of 0.05: (a) ZDT3 and (b) ZDT4 

4.2.4 Performance Comparison on Constrained Test Functions 

Table 4.6 shows values of GD
t
/GD

t
max, SP

t
, IGD

t
/IGD

t
max and GT for constrained 

test problems by four JG adaptations using the termination criterion. As mentioned 

earlier, these results are average of 10 runs with different random seed values. Alt-

NSGA-II-aJG gives smallest GD
t
/GD

t
max values for OSY, CONSTR and TNK 

problems, and close to the smallest value of GD
t
/GD

t
max for SRN problem. It requires 

the smallest GT for OSY, CONSTR and SRN problems, and its GT (= 115) for TNK 

problem is comparable to the best GT value of 105.  

 

(a) (b) 
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Table 4.6: GD
t
/GD

t
max, SP

t
 and IGD

t
/IGD

t
max for constrained test functions obtained 

by four JG adaptations; these values are average of 10 runs, each with a different 

random number seed value 

 

Algorithm OSY CONSTR SRN TNK Total 
G

D
t /G

D
t m

a
x
 

NSGA-II-aJG 0.547 0.946 0.930 0.556 2.979 

NSGA-II-saJG 1.129 0.974 1.108 0.917 4.128 

NSGA-II-sJG 1.248 1.070 1.014 0.627 3.960 

Alt-NSGA-II-aJG 0.233 0.927 0.941 0.168 2.269 

S
P

t  

NSGA-II-aJG 0.921 0.988 0.466 1.001 3.375 

NSGA-II-saJG 0.888 1.009 0.500 1.021 3.418 

NSGA-II-sJG 0.872 0.975 0.484 1.034 3.366 

Alt-NSGA-II-aJG 0.938 0.987 0.515 0.971 3.410 

IG
D

t /I
G

D
t m

a
x
 

NSGA-II-aJG 0.528 0.943 0.976 0.545 2.991 

NSGA-II-saJG 0.824 1.061 1.001 0.706 3.593 

NSGA-II-sJG 0.754 0.920 0.964 0.595 3.233 

Alt-NSGA-II-aJG 0.583 0.987 0.965 0.998 3.533 

G
T

 

NSGA-II-aJG 305 198 317 137 957 

NSGA-II-saJG 223 145 290 120 778 

NSGA-II-sJG 182 161 340 105 788 

 Alt-NSGA-II-aJG 173 95 106 114 488 

All JG adaptations of NSGA-II are comparable based on SP
t
 for different 

problems tested; variation in total value of SP
t
 for different JG adaptations is less than 

2 percent. NSGA-II-aJG gives smallest values of IGD
t
/IGD

t
max for OSY, CONSTR 

and TNK problems, and close to the smallest value of IGD
t
/IGD

t
max for SRN problem. 

Alt-NSGA-II-aJG is computationally more efficient than the other adaptations, while 
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number of generations used by NSGA-II-aJG is significantly more than the best GT 

required for solving these problems. Total of GD
t
/GD

t
max, SP

t
, IGD

t
/IGD

t
max and GT 

by four JG adaptations on constrained functions tested are in the last column of Table 

4.6. Overall, Alt-NSGA-II-aJG and NSGA-II-aJG are the best based on GD
t
/GD

t
max 

and IGD
t
/IGD

t
max respectively. The former is computationally efficient too. NSGA-II-

saJG performs worse than other adaptations, based on all performance metrics. Figure 

4.3 shows the non-dominated solutions obtained by Alt-NSGA-II-aJG and NSGA-II-

saJG for OSY and TNK test functions.  

  

Figure 4.3:  Non-dominated solutions obtained by Alt-NSGA-II-aJG and NSGA-II-

saJG algorithms using random seed of 0.05: (a) OSY and (b) TNK  

The obtained Pareto fronts are visually compared with the known Pareto fronts at 

different generations, and it is found that NSGA-II-saJG algorithm takes about 225 

and 100 generations respectively for OSY and TNK test functions, to reach closer to 

the known solutions. Alt-NSGA-II-aJG takes about 150 generations for OSY test 

function, whereas it requires about 300 generations for TNK test function. The search 

becomes stagnant between 100 to 300 generations, and it can find the middle part of 

the Pareto front around 300 generation. As solution is not improving for many 

generations, so search is terminated at 150 generation as per the developed 

termination criterion.  

(a) (b) 
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4.3 Normalized Normal Constraint Method with TC 

 The non-dominated solutions obtained by stochastic global search can be 

improved by deterministic search method. The search space, near to the global 

solution, can be assumed convex and unimodal in nature. In this study, NNC method 

is used as the local search. Integrated multi-objective differential evolution (I-MODE) 

algorithm is used as global search, which has an improvement based termination 

criterion, taboo list to avoid the revisit of search space, and self-adaptation of 

algorithm parameters. The hybrid approach (I-MODE + NNC) is tested on nine bi-

objective test functions.  

NNC formulates the multi-objective optimization (MOO) problem as a single 

objective optimization (SOO) problem based on linear mapping of objectives. In this 

method for two objectives (see Figure 4.4), each objective is normalized in the range 

of 0 to 1 using its minimum and maximum values obtained by SOO. F
A
 and F

B
 are the 

anchor points obtained by successively minimizing the first and second objectives 

respectively (see Figure 4.4), whereas Utopia line (UL) is defined by connecting both 

anchor points. NNC incorporates one additional inequality constraint in the problem 

formulation for bi-objective optimization problem (defined in equation 4.1). Now, F
g
 

is one non-dominated solution obtained by stochastic global search (i.e., I-MODE) 

near the Pareto-optimal front. NNC formulation for this solution can be written as 

follows:   

Min.  f2(x)           (4.4a) 

Subject to x
L
 ≤ x ≤ x

U
, g(x) ≤ b

 
and UL(F - F

g
)

T
 ≤ 0  (4.4b) 

Here F is the optimum solution obtained for F
g
 using NNC method. UL(F - F

g
)

T
 is the 

additional inequality in the problem formulation (with respect to the original problem 
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in equation 4.1) which divides the objective search space into feasible and infeasible 

search spaces (see Figure 4.4). NNC method improves the non-dominated solutions in 

the direction of Pareto-optimal front, whereas ε-constraint method improves the 

obtained solution for one of the objective function. 

0
1

f

2
f

Normal to 
Utopia lineUtopia line, 

UL = [FA – FB]

Feasible 
region

Infeasible 
region

□ 

∆ 

□ 

FA = [1 0]

FB = [0 1]

Fg = [f1
g f2

g]
F = [f1

 f2]

Known Pareto front

 

Figure 4.4: Graphical representation of NNC for two objectives 

The newly formulated constrained SOO problem (equation 4.4) can be solved 

using an efficient SOO method. As mentioned earlier, NNC method is unlikely to find 

the global Pareto-optimal front for non-convex and multi-modal problems. Hence, a 

stochastic global search (i.e., I-MODE) before NNC method is used to escape from 

the local Pareto-optimal fronts. Decision variable vector, corresponds to the non-

dominated solution obtained by stochastic global search, is used as initial point for 

single objective deterministic search method (e.g., simplex, generalized reduced 

gradient, etc.). In the proposed hybrid MOO, stochastic global search is terminated 

when its progress becomes significantly slow, and each Pareto-optimal solution 

obtained is refined using NNC. NNC method can be applied on MOO problems with 

more than two objectives; a general description of NNC method for MOO problems 

can be found in Messac et al. (2003).   
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4.3.1 Test Functions and Algorithm Parameters     

The hybrid algorithm has been tested on 9 bi-objective test functions; of these, six 

are unconstrained problems and remaining three are bi-objective constrained 

problems. These test functions are summarized in Table 4.2 (Deb et al., 2001; Coello 

Coello et al., 2007). KUR and FON have discontinuous and non-convex Pareto-

optimal fronts, respectively. Characteristics of the remaining test problems are 

discussed in the previous section. Here, ZDT1, ZDT2 and ZDT3 test problems are 

tested for 10 number of decision variables. Values of algorithm parameters used for 

these test functions are summarized in Tables 4.7. Cr and F values are self-adapted in 

I-MODE algorithm, whereas values of taboo list size (TLS), taboo radius (TR), λ, δGD 

and δSP are taken based on recommendation in Chapter 3. For ZDT4 problem, fixed 

values of Cr (= 0.3), F (= 0.5) and MNG (= 300) are used.   

Table 4.7: Values of I-MODE parameters for all the test functions 

Parameter Value Parameter Value 

Population size, N 

Maximum number of generations, MNG 

Taboo list size, TLS 

Taboo radius, TR 

100 

200 

N/2 

0.01 

δGD  

δSP 

λ 

0.0003 

0.1 

10 

In this work, generational distance (GD
t
) is used to evaluate the performance of 

hybrid algorithm on the selected test functions. GD
t
 is used to evaluate the closeness 

of the obtained Pareto-optimal front to the known Pareto-optimal front (defined in 

Chapter 3). Objective functions values of known Pareto-optimal fronts for different 

test functions are taken from http://www.cs.cinvestav.mx/~emoobook.   
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4.3.2 Performance Evaluation on Test Functions 

NNC is employed to quickly improve the non-dominated solutions obtained by 

the I-MODE algorithm. The I-MODE algorithm handles the inequality constraint 

using feasibility approach (Deb et al., 2002). As discussed in previous section, NNC 

formulates the MOO problem as a SOO problem which can be solved using an 

efficient SOO method. In this work, the newly formulated SOO problem is solved 

using Excel Solver, which employs generalized reduced gradient (GRG2) method for 

solving nonlinear optimization problems. Number of  iterations used by Solver are not 

available to the user, but these can be obtained manually. It is not possible to get the 

number of iterations used by all the solution points of the obtained Pareto-optimal 

front, in each run for all the test functions. Hence, two extreme points and three 

equally spaced intermediate points in one run for each test functions are used to 

estimate the NFEs used by local search. GRG2 uses first partial derivatives of each 

function (objective function + constraints) with respect to each variable, and these are 

computed by finite difference approximation (User‟s Guide for GRG2 Optimization 

Library, Windward Technologies). Central difference requires two function 

evaluations per partial derivative while forward difference requires only one. In this 

study, forward difference approximation has been used. Table 4.8 present mean 

termination generation (GT) and mean NFE used by I-MODE algorithm (over 30 

runs). It can be seen that use of taboo list reduces NFE used (NFE without use of 

taboo list = GT×N). The I-MODE algorithm has varying exploration capabilities in 

different runs, which results in reasonably high standard deviation of NFEs. The 

estimated NFEs, to refine one solution of the obtained Pareto-optimal front are also 

reported in Table 4.8 for all the test functions.   
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Table 4.8: GT and NFE used by I-MODE search for successful runs, and estimated 

average NFE used by NNC to refine one solution obtained using I-MODE 

Test 

function 

μGT used by 

I-MODE 

NFE used by I-MODE Estimated average NFE used 

by NNC = DV×Iterations Mean Std 

ZDT1 78 7295 734 107 

ZDT2 91 7773 902 86 

ZDT3 75 7072 858 86 

ZDT4 223 18221 2052 200 

CONSTR 42 3169 664 6 

SRN 35 2170 887 6 

TNK 54 3220 1043 11 

KUR 51 2992 543 34 

FON 55 5335 1290 69 

Table 4.9 presents mean SR (success rate) and mean GD
t 
values obtained using I-

MODE and hybrid (I-MODE + NNC) algorithms. SR is the percentage of runs in 

which hybrid search reached the global optimum. NNC search has been used to refine 

the solutions obtained by I-MODE algorithm, and it is able to improve the mean GD
t 

values in all the test functions. NNC is also able to improve the solution obtained for 

optimization problem with discontinuous Pareto-optimal front (e.g., ZDT3, KUR). In 

most of the cases, NNC method is able to reach the nearby Pareto-optimal front, but it 

is not able to escape from the local Pareto-optimal front. In case of ZDT4 (multi-

modal) test function, many times I-MODE is not able to find the correct Pareto-

optimal front, and NNC refined the non-dominated solutions obtained (by I-MODE) 

to the near-by local Pareto-optimal front. So, SR are same for both I-MODE and 

hybrid algorithms.  
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Table 4.9: μGD
t
 and SR using I-MODE and hybrid (I-MODE + NNC) algorithms for 

different test functions. μGD
t
 using MOSADE, NSGA-II-RC, SPEA2 and MOPSO are 

taken from Wang et al. (2010).  

Test 

function 

SR 

(I-

MODE) 

I-MODE I-MODE 

+ NNC 

MOSADE NSGA-II 

-RC 

SPEA2 MOPSO 

μGD
t
 

ZDT1 100 1.50E-03 3.05E-04 1.25E-03 1.34E-03 8.61E-03 1.86E-01 

ZDT2 100 1.77E-03 2.53E-04 9.81E-04 9.81E-04 2.48E-02 5.24E-01 

ZDT3 100 1.27E-03 1.01E-03 2.16E-03 2.48E-03 9.72E-03 4.34E-01 

ZDT4* 70 2.13E-03 1.08E-03 1.20E-03 5.16E-02 9.25E-01 -- 

CONSTR 100 1.46E-03 1.22E-03 4.81E-03 5.13E-03 4.82E-03 4.54E-03 

SRN* 63 5.75E-02 7.18E-03 2.00E-03 3.71E-03 2.11E-03 2.76E-03 

TNK 100 1.55E-03 4.73E-04 3.74E-03 4.05E-03 3.82E-03 5.09E-03 

KUR 100 6.37E-03 2.60E-03 2.44E-02 2.90E-03 7.16E-01 3.01E-02 

FON 100 1.81E-03 1.25E-03 1.24E-03 2.57E-03 1.86E-03 2.14E-02 

* GD
t
 values are based on successful runs, -- cannot converge to the Pareto-optimal 

front 

Recently, Wang et al. (2010) proposed a multi-objective self adaptive differential 

evolution with elitist archive and crowding entropy-based diversity measure 

(MOSADE), and compared its performance with the NSGA-II-RC, SPEA2 and 

MOPSO algorithms on several test functions. For the comparison purpose, Table 4.9 

also presents the obtained values of mean GD
t
 for MOSADE and reported values of 

GD
t 
for NSGA-II-RC, SPEA2, and MOPSO in Wang et al. (2010). 25,000 NFEs were 

used by MOSADE for each test function studied. Performance of I-MODE is 

comparable to MOSADE (see Table 4.9), and also it takes less number of function 

evaluations (see Table 4.8). The GD
t
 values obtained using hybrid (I-MODE + NNC) 

search, are better than those reported for other algorithms (Wang et al., 2010), for 
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many of the test functions (except FON and SRN). The hybrid search uses fewer 

NFEs compared to MOSADE for different test functions using GD
t
 as performance 

indicator; this shows that hybrid search is able to reach the known Pareto-optimal 

front faster in comparison to other existing algorithms.   

In Figure 4.5, box plots are used to show the improvement in GD
t
 values due to 

local search. Here, GD
t
 values obtained only in successful runs are considered. NNC 

not only improves the closeness between the obtained Pareto-optimal front and known 

Pareto-optimal front, but also reduces the variation in GD
t
 values obtained in different 

runs.   

 

 

Figure 4.5: Box plot for different test functions using global (I-MODE) and hybrid 

searches (I-MODE + NNC, which is indicated by *) 

Table 4.10 compared the mean GD
t
 values obtained after termination generation 

(i.e., GT) and MNG using both I-MODE and hybrid algorithms. It can be seen that 

mean GD
t
 using I-MODE algorithm improves between GT and MNG, but this 
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improvement is relatively small. NNC significantly improves the non-dominated 

solutions obtained after I-MODE search, after GT and MNG. The difference, between 

mean GD
t
 values obtained using hybrid search after GT and MNG, is not much. This 

small variation is probably due to difference in the distribution of non-dominated 

solutions along the Pareto-optimal front. Hence, termination criterion can save 

significant amount of computation, and NNC can precisely reach the known solution.  

Table 4.10: μGD
t
 using I-MODE and hybrid (I-MODE + NNC) algorithms after GT 

and MNG 

Test 

function 

μGD
t
 After GT μGD

t
 After MNG 

I-MODE 
I-MODE 

+ NNC 
I-MODE 

I-MODE 

+ NNC 

ZDT1 1.50E-03 3.05E-04 2.51E-04 2.24E-04 

ZDT2 1.77E-03 2.53E-04 1.91E-04 9.73E-05 

ZDT3 1.27E-03 1.01E-03 8.55E-04 8.24E-04 

ZDT4 2.13E-03 1.08E-03 4.57E-04 4.03E-04 

CONSTR 1.46E-03 1.22E-03 1.25E-03 1.23E-03 

SRN 5.75E-02 7.18E-03 5.24E-02 7.95E-03 

TNK 1.55E-03 4.73E-04 7.08E-04 6.14E-04 

KUR 6.37E-03 2.60E-03 2.84E-03 1.36E-03 

FON 1.81E-03 1.25E-03 1.29E-03 1.19E-03 

The mean GD
t
 values in Table 4.10 are based on the successful runs. SR of I-

MODE on SRN and ZDT4 problems are respectively 63 and 70, after GT . In case of 

SRN problem, SR has reached to 73 after MNG, but it does not improve for ZDT4 

test function. Differential evolution (DE) has inherent characteristic of exploiting the 

search space at the later stage of the search. Once the search traps in the local 
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optimum, DE improves the solutions closer to the local optimum. Taboo list is useful 

in exploring the search space in the early stage, but it only improves the solution 

distribution at the end of search. Further, SR of I-MODE on ZDT4 test function drops 

to 60, for zero value of taboo radius.     

4.4 Conclusions  

In this section, performance of four jumping gene adaptations of NSGA-II is 

analyzed on bi-objective test problems. This analysis considers quality of non-

dominated solutions (i.e., convergence to the known Pareto-optimal front measured 

by GD
t
 and IGD

t
, and distribution of non-dominated solutions measured by SP

t
) and 

also computational efficiency measured by the number of generations for satisfying 

the termination criterion (GT). Optimization results confirm that the described 

termination criterion is able to terminate the search at the right time, and so it can 

avoid unnecessary computations. Overall, Alt-NSGA-II-aJG is better than the other 

three JG adaptations for both unconstrained and constrained problems. Since Alt-

NSGA-II-aJG is better than NSGA-II-aJG, other operators such as sJG and saJG can 

be combined with altruism approach in order to improve their performance. 

Normalized normal constraint method is used to improve the closeness between non-

dominated solutions obtained by stochastic and known Pareto-optimal front, in quick 

time. The termination criterion is able to switch the search from I-MODE to NNC at 

the right generation.  

The proposed hybrid optimization approach is robust and computationally 

efficient, which makes it suitable for application problems including real time 

optimization applications. If required, selected number of non-dominated solutions 

can be refined using local search. For this, Pareto front ranking methods (e.g., net 
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flow method, Thibault, 2009) can be used to select some individuals for the 

refinement purpose. As deterministic method is used to refine the non-dominated 

solutions obtained by global search, gradient calculation/estimation is essential for 

hybrid search.  
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Chapter 5 

Evaluation of Developed Termination Criterion on Chemical 

Engineering Application Problems 

5.1 Introduction  

Real world applications often have multiple performance criteria, and stochastic 

optimization techniques are used to generate the set of non-dominated solutions. 

These solutions are not known in advance for new optimization problems, and so 

decision making on search termination is difficult. In the literature, maximum number 

of generations (MNG) has been commonly used as the termination criterion in 

stochastic optimization algorithms. For optimal use of computational resources, 

termination of stochastic search at the right generation is necessary. An improvement 

based termination criterion has been developed in Chapter 3. In this, multi-objective 

differential evolution is combined with termination criterion and taboo list. The 

resulting algorithm is called I-MODE (integrated multi-objective differential 

evolution). The developed termination criterion calculates the improvement in the 

Pareto-optimal front in two consecutive generations, and then statistically checks the 

improvement in a number of latest generations. This improvement based termination 

criterion has been tested on mathematical test problems in Chapter 3.  

In this chapter, I-MODE algorithm with the termination criterion is evaluated on 

Chemical Engineering application problems, namely, alkylation, Williams-Otto and 

fermentation processes. The next section of this chapter describes these processes and 

their MOO problem formulation. Section 5.3 presents optimization results obtained 
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for the three application problems. Finally, Section 5.4 summarizes findings of this 

chapter.   

5.2 Chemical Processes used for Testing of Termination Criterion  

Testing of the developed termination criterion is performed on the application 

problems studied in the literature. The known Pareto-optimal front is not used in 

deciding the search termination, but it is used only to compare the non-dominated 

solutions obtained after search termination as per the developed termination criterion. 

In this study, three process applications, namely, alkylation, Williams-Otto and 

fermentation processes are selected. Alkylation process for single objective has been 

studied by many researchers; Luus (1978) and Rangaiah (2009b) have studied this 

process for multiple objectives. Williams-Otto process, a typical chemical process 

used in numerous studies, was optimized for multiple objectives by Lee et al. (2009). 

Recently, fermentation process was also studied for multiple objectives (Wang and 

Lin, 2010).   

5.2.1 Alkylation Process 

Products of alkylation process are mixed with petroleum refining products to 

enhance their octane number. A simple schematic of alkylation process is shown in 

Figure 5.1. In this process, olefins react with isobutene in the presence of acid inside a 

reactor. Acid present in the reaction mixture settles by gravity, and is removed for 

regeneration. The other outlet stream from the reactor goes to a fractionator where 

isobutene is recovered from the product for recycling back to the reactor.   

Sauer et al. (1964) formulated single objective optimization problem for 

alkylation process, which has 10 decision variables, 7 equality constraints and one 
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objective function (i.e., profit). Recently, Rangaiah (2009b) has optimized alkylation 

process for multiple objectives using ε-constraint method; two different bi-objective 

optimization problems for alkylation process are studied, and these are described 

below.   

 

Figure 5.1: A schematic diagram of alkylation process 

Objectives i) Max. profit and max. octane number (x7)   (5.1a) 

  ii) Max. profit and min isobutane recycling (x2)  (5.1b) 

Subject to Olefin feed, barrels/day    0 ≤ x1 ≤ 2,000  (5.1c) 

  Isobutane recycle, barrels/day   0 ≤ x2 ≤ 16,000  (5.1d) 

  Acid addition rate, 10
3
×pounds/day   0 ≤ x3 ≤ 120   (5.1e) 

  Alkylate production rate, barrels/day  0 ≤ x4 ≤ 5,000   (5.1f) 

  Isobutane feed, barrels/day     0 ≤ x5 ≤ 2,000  (5.1g) 

  Spent acid strength, wt.%    85 ≤ x6 ≤ 93   (5.1h) 

  Octane number     90 ≤ x7 ≤ 95  (5.1i) 

  Isobutane to olefins ratio    3 ≤ x8 ≤ 12  (5.1j) 

  Acid dilution factor     1.2 ≤ x9 ≤ 4   (5.1k) 

  F-4 performance number    145 ≤ x10 ≤ 162 (5.1l) 

Here,  profit =  0.063x4x7 - 5.04x1 - 0.035x2 -10x3 - 3.36x5 [$/day]  (5.1m) 

Alkylate product

Reactor Fractionator

Isobutane 
makeup

Olefins feed

Fresh acid

Spent acid

Recycled Isobutane
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 x2 = x1x8 - x5               (5.1n) 

 x3 = 0.001x4x6x9/(98- x6)           (5.1o) 

 x4 = x1(1.12 + 0.13167x8 - 0.0066667x8
2
)    (5.1p) 

 x5 = 1.22x4 - x1           (5.1q) 

 x6 = 89 + (x7 - 86.35 - 1.098x8 + 0.038x8
2
)/0.325    (5.1r) 

 x9 = 35.82 - 0.222x10       (5.1s) 

 x10 = -133 + 3x7       (5.1t) 

The two objectives in equation 5.1a are used in one bi-objective problem, and the 

two objectives in equation 5.1b are for another bi-objective problem.  

5.2.2 Williams-Otto Process  

Figure 5.2 shows a schematic of Williams-Otto process, which has both reaction 

and separation sections. Reactants A and B enter the reactor, and produce 

intermediate product C. Reactant A reacts with intermediate C to produce the main 

product P and byproduct E. Further, main product also reacts with the intermediate 

product C, and produces waste product G. The reaction mixture is cooled in a cooler, 

and then waste product G is removed from the cooled reaction mixture using decanter. 

After this, the remaining mixture enters a distillation column, where product P is 

recovered as distillate. Additionally, the bottom product is recycled back to the 

reactor, and a small amount of bottom product is purged to remove the byproduct E 

from the process.  

Lee et al. (2009) have presented and solved two bi-objective optimization 

problems for Williams-Otto process, which are presented below. 

Objectives i) Max. NPW and max. PBT (profit before tax)   (5.2a)  

  ii) Max. NPW and min PBP (payback period)   (5.2b) 
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Subject to  Volume of reactor, m
3
   0.85 ≤ V ≤ 10    (5.2c) 

  Temperature of reactor, K   322 ≤ T ≤ 378    (5.2d) 

  Purge fraction    0 ≤ η ≤ 0.99   (5.2e) 

  Mass flow rate of stream B, kg/h  10,000 ≤ q2
B
 ≤ 15,000  (5.2f) 

  Six process model equations (5.2h-m)     (5.2g) 

Product P

Reactor

Distillation
column

Feed A

Feed B

Recycle (1 - η)

Cooler

Decanter

Purge (η)

Waste G

3

1

2

 

Figure 5.2: A schematic diagram of William-Otto process  

Lee et al. (2009) provided details on the calculation of objective functions. 

Williams-Otto process has 6 non-linear equations and 10 variables; so there are four 

degrees of freedom or decision variables (i.e., V, T, η and q2
B
) for optimization. The 6 

model equations are:      
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  ρ

     
   

          (5.2m) 

Here,       
     

     
        

     
       , qi

j
 is the mass flow rate of j

th 

component in i
th

 stream (see Figure 5.2), ρ is the density of reaction mixture, and k1, 

k2 and k3 are rate constants; expression of different rate constants can be obtained 

from Lee et al. (2009). The above 6 model equations (5.2h-m) are solved for q1
A
, q3

A
, 

q3
B
, q3

C
, q3

E
 and q3

G
 using Solver in Excel.    

5.2.3 Three-stage Fermentation Process Integrated with Cell Recycling   

Wang and Lin (2010) have studied a three-stage continuous fermentation process 

integrated with cell recycling, where each stage has a fermentor and a cell separator to 

separate the cell mass and recycle it back to the fermentor. Schematic diagram of this 

fermentation process is shown in Figure 5.3. Equations 5.3a, 5.3b and 5.3c are the 

steady state material balances for cell mass, glucose and ethanol respectively, around 

the k
th

 stage of continuous fermentation process. The kinetic model is given by 

equations 5.3d and 5.3e.  

                     μ
 
           (5.3a) 
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                                (5.3c) 
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Here, D (= F1/V) is the dilution rate, F1 is the feed flow rate to the first stage, and V is 

the volume of each fermentor. xk, sk and pk are respectively cell mass, glucose and 

ethanol concentrations in the k
th

 stage. bk is the bleed ratio for k
th

 stage. sf,k is glucose 

concentration in the feed to k
th

 stage; since feed is entering only into the first stage, sf,2 

= 0 and sf,3  = 0. Further, for the first stage, bk-1, xk-1, sk-1 and pk-1 are all zero. Kinetic 

parameter values used in equations 5.3a-e are listed in Table 5.1.         

 

Figure 5.3:  A schematic diagram of k
th

 stage of continuous fermentation process 

integrated with cell recycling (and glucose as feed)  

For optimizing the fermentation process, ethanol productivity and glucose 

conversion are used as two objectives, which ensure efficient utilization of production 

capacity and glucose respectively. The MOO problem for the 3-stage continuous 

fermentation process integrated with cell recycling is summarized in Table 5.2. 

Decision variables for this optimization are dilution rate (D), glucose concentration in 

feed (sf,1) and cell mass recycling for different stages (i.e., bleed ratios, b1, b2 and b3). 

Physical constraints are positive values of productivity and glucose conversion for 

each stage. Residual glucose after the third stage and total glucose supplied per unit 

volume of all fermentors in the feed are additional constraints in the optimization 

problem (Wang and Lin, 2010).    

Fermentor-k

Feed (Fk)
Sf,k

xk, sk, pk

Cell 
settler-k

Recycled cell mass

From fermentor/ 
cell settler (k-1)

To fermentor (k+1)

bk-1(F1+… Fk-1)

bk(F1+… Fk)

(1-bk)(F1+… Fk)
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Table 5.1: Kinetic parameters and their values for the continuous fermentation 

process integrated with cell recycling (Wang and Sheu, 2000) 

Kinetic parameter Estimated value Kinetic parameter Estimated value 

µm 0.9819 Kp 27.9036 

νm 2.3507 K‟p 252.306 

Ks 2.3349 KpI 41.2979 

K‟s 7.3097 K‟pI 15.2430 

KsI 213.5899 Yp/s 0.4721 

K‟sI 5759.105   

Table 5.2: MOO problem formulation for the three-stage continuous fermentation 

process integrated with cell recycling; k = 1, 2 and 3  

Objective 

functions 

Max. ethanol productivity, [kg/(m
3
.h)]   

 
                                     

Max. overall glucose conversion     
  

    
  

Decision 

variables 

Dilution rate, [1/h] 3.5 ≤ D ≤ 4                        

Glucose concentration in feed, [kg/m
3
] 60 ≤ sf,1 ≤ 65                     

Bleed ratio for each stage 0.1 ≤ b1, b2, b3 ≤ 0.2  

Constraints 

Productivity for each stage, [kg/(m
3
.h)]                         

Glucose conversion for each stage    
  

         

     

Residual glucose after 3
rd

 stage, [kg/m
3
] 0.1 ≤  s3 ≤ 0.5         

Total glucose supplied per unit volume 

of all fermentors, kg/(m
3
.h)] 

       
     

 
         

Model for the process (Equations 5.3a-e for each stage) 
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5.3 Optimization Results  

In this study, I-MODE algorithm is used to obtain the trade-off solutions for the 

above three application problems. I-MODE algorithm handles inequality constraints 

using feasibility approach (Deb et al., 2002). Both Williams-Otto and fermentation 

processes have equality constraint arising from mass balance equations. Here, 

sequential solution of optimization problem and equality constraints is performed. For 

this, optimization algorithm provides a vector of decision variables, and then process 

model equations (i.e., equality constraints) are solved to obtain values of state 

variables. Both decision and state variables are used to calculate objectives and 

constraints. In this work, Solver tool in Excel is used for solving model equations by 

minimizing sum of squares. Figure 5.4 presents a simple flowchart of optimization 

method with sequential solution of equality constraints.   

 

Figure 5.4: A simple flowchart for optimization algorithm with sequential solution of 

process model 
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In the testing of termination criterion, values of termination parameters and taboo 

radius are taken based on the recommendation in Chapter 3; these values are reported 

in Table 5.3.  Initially, all the problems are solved for maximum number of generation 

(MNG) to obtain the known Pareto front; later, it is used for comparison purpose. In 

order to ensure global optimality of the known Pareto fronts for different problems, 

these are visually compared with the reported Pareto fronts. All application problems 

are solved using I-MODE algorithm, and the non-dominated solutions obtained after 

termination generations (i.e., GT) as per the termination criterion, are compared 

against the known Pareto-optimal fronts.   

Table 5.3: Algorithm parameters used for different application problems 

Application To obtain known Pareto I-MODE  Termination parameters 

     MNG                 N N δGD         δSP        TR     

Alkylation 500 100 100 

100 

100 

0.0003 0.1 0.01 

Williams-Otto 200 100 0.0003 0.1 0.01 

Fermentation 200 100 0.0003 0.1 0.01 

5.3.1 Alkylation Process   

Figure 5.5(a) shows the non-dominated solutions obtained for simultaneous 

maximization of profit and minimization of isobutane recycle. In this case, the known 

Pareto front is obtained after running the I-MODE algorithm for 500 generations. It 

can be seen that non-dominated solutions obtained, after search termination based on 

the termination criterion, are closer to the global solution (i.e., known Pareto front) 

and also well distributed along the Pareto-optimal front. Here, generation of 

termination is 158, which is significantly less than MNG (= 500). Hence, termination 

criterion is able to terminate the search at the appropriate generation, and it can avoid 
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running the search for unnecessary generations where only small improvement in 

solution is possible. The non-dominated solutions obtained for maximization of both 

octane number and profit, are shown in Figure 5.5(b). A visual comparison between 

the non-dominated solutions obtained and known Pareto front indicates that 

termination criterion is successful. Similar to the previous case, the improvement 

based termination criterion is able to avoid the unnecessary computations. In both the 

cases, the non-dominated solutions obtained are close enough to the optimal solutions 

for their industrial acceptance (Figure 5.5).     

       

Figure 5.5: Non-dominated solutions obtained for alkylation process: (a) max. profit 

and min. recycle isobutane, and (b) simultaneous max. both profit and octane number 

5.3.2 Williams-Otto Process  

Figure 5.6(a) shows the non-dominated solutions obtained for simultaneous 

maximization of NPW and PBT, whereas non-dominated solutions obtained for 

maximization of NPW and minimization of PBP are shown in Figure 5.6(b). Initially, 

both these optimization problems are solved for 200 generations to obtain the known 

Pareto-optimal fronts. The known Pareto fronts (obtained after MNG) are compared 

with the reported Pareto fronts in the literature (not shown here), and these are found 

to be acceptable. Finally, the known Pareto-optimal fronts are used for comparison 

purpose.  

(a) (b) 
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Figure 5.6: Non-dominated solutions obtained for Williams-Otto process: (a), (c) 

simultaneous maximization of NPW and PBT, and (b), (d) maximization of NPW and 

minimization of PBP  

   Although, in both the cases, the non-dominated solutions have converged near to 

the known Pareto fronts, distribution of the non-dominated solutions along the Pareto-

optimal fronts is not good (Figures 5.6a-b). The non-dominated solutions obtained 

may be acceptable, or these can be considered for further refinement. In this work, the 

used termination parameters are based on the recommendation for two- and three-

objective optimization problems. Hence, smaller values of both termination 

parameters (δGD = 0.0002 and δSP = 0.05) are also tried, and the non-dominated 

solutions obtained are presented in Figures 5.6(c) and 5.6(d). Now, the non-dominated 

solutions obtained are covering most of the parts of the known Pareto-optimal fronts, 

but the required number of generations has increased significantly (with smaller 

values of termination parameters).    

(a) (b) 

(c) (d) 
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5.3.3 Three-stage Fermentation Process Integrated with Cell Recycling  

In the case of three-stage fermentation process integrated with cell recycling, 

ethanol productivity and xylose conversion are maximized simultaneously. Figure 5.7 

shows non-dominated solutions obtained for this fermentation process. Here, the 

termination criterion is successful in stopping the search at the right generation. The 

non-dominated solutions obtained are close to the known solutions, and are also well 

distributed along the Pareto-optimal front. Here, the termination criterion saved lot of 

computation time (GT = 50). Thus, it avoids the unnecessary computations with little 

compromise on the solution quality.    

 

Figure 5.7: Non-dominated solutions obtained for simultaneous maximization of both 

ethanol productivity and xylose conversion 

5.4 Conclusions 

In this chapter, I-MODE algorithm is used to optimize three Chemical 

Engineering applications. The improvement based termination criterion is able to 

terminate the search at the right generations, for the selected applications. The 

obtained Pareto-optimal fronts after termination generations are closer to their known 

solutions. Hence, termination criterion is able avoid unnecessary computations with 

no or small compromise on the quality of obtained solutions.  
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Chapter 6 

Improved Constraint Handling Technique for Multi-

objective Optimization Problems
4
 

6.1 Introduction  

Application problems often have constraints besides bounds on decision variables; 

these constraints arise from design equations (such as mass and energy balances), 

equipment limitations (such as size) and operation requirements (such as temperature 

limit for safe operation). Mathematical form of a constrained MOO optimization 

problem is as follows:   

Min.  {f1(x), f2(x), ... fM(x)}         (6.1a) 

Subject to x
L
 ≤ x ≤ x

U
, h(x) = 0 and g(x) ≤ 0   

  
 (6.1b) 

Here f1, f2, …, fM are M number of objective functions; x is the vector of n decision 

variables; x
L
 and x

U
 are respectively vectors of lower and upper bounds on decision 

variables; and h and g are the set of ne equality and ni inequality constraints 

respectively.      

Many algorithms have been proposed to solve MOO problems; examples of these 

algorithms are the elitist non-dominated sorting genetic algorithm (NSGA-II; Deb et 

al., 2002), strength Pareto evolutionary algorithm (SPEA2; Zitzler et al., 2001), multi-

objective particle swarm optimization (MOPSO; Coello Coello and Salazar Lechuga, 

2002) and multi-objective differential evolution (MODE). Originally, MOO 

                                                           
4
 This chapter is based on the book chapter: Sharma, S. and Rangaiah, G. P. (2013), Improved 

constraints handling technique for multi-objective optimization with application to two fermentation 

processes, Multi-objective Optimization in Chemical Engineering: Developments and Applications, 

Wiley. 
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algorithms were developed and studied for solving unconstrained optimization 

problems (i.e., with bounds on decision variables but without any inequality or 

equality constraints). Later, to solve constrained MOO problems, several constraint 

handling techniques were developed and incorporated in the MOO algorithms.  

The next section of this chapter briefly reviews different constraint handling 

approaches, followed by their applications in Chemical Engineering in Section 6.3. 

Section 6.4 describes ACRFA for constrained SOO problems, and Section 6.5 

presents modified ACRFA for constrained MOO problems. Section 6.6 describes 

MODE with ACRFA. In Section 6.7, performance of ACRFA is compared with the 

classical feasibility approach on two test functions. MODE with modified ACRFA is 

used for MOO of two fermentation processes in Section 6.8. Finally, concluding 

remarks are made at the end of this chapter.   

6.2 Constraint Handling Approaches 

Coello Coello (2002) summarized constraint handling methods utilized in 

evolutionary algorithms under five main categories: (i) penalty function approach, (ii) 

separation of constraints and objectives, (iii) special representation, (iv) repair 

algorithms, and (v) hybrid methods. Penalty function approach penalizes objective 

functions (e.g., it increases their values by adding penalty terms, in case of 

minimization of objectives) based on the extent of constraint violation; it is simple in 

concept and has been popular. However, the difficulty in using this approach is the 

selection of a suitable penalty factor value for different problems. If the penalty factor 

value is not appropriate, then the optimization algorithm may converge to either non-

optimal feasible solution or infeasible solution. Penalty function approach is divided 

into several sub-categories (e.g., static, dynamic, adaptive, co-evolutionary, etc.) 
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based on the method of penalty factor handling. If the objective function value cannot 

be computed in the infeasible search space for some reason, then the penalty function 

approach cannot be used for solving such constrained optimization problems. For 

example, mathematical functions such as logarithms and/or square roots, present in 

the objectives, cannot be evaluated for negative values of their arguments. If values of 

objective functions cannot be calculated or process simulator does not converge for a 

particular set of decision variable values (i.e., potential solution), then worst value for 

each objective can be given. Finally, this solution is very unlikely to be selected for 

the subsequent generation.     

Deb et al. (2002) proposed feasibility approach for handling inequality constraints, 

which considers the constraints and objectives separately. It selects a feasible solution 

over an infeasible solution during the selection step in the generations, so this limits 

the diversity of search. Constraint handling using special representation is used for 

particular types of optimization problems, whereas repair algorithms convert the 

infeasible individual into a feasible or less infeasible individual (Harada et al., 2007). 

Finally, in the hybrid approach, constraint handling is tied with some other 

optimization approach. For example, Van Le (1995) combined fuzzy logic with 

evolutionary programming to handle the constraints; here, constraints are replaced by 

fuzzy constraints which allow high tolerance for constraint violation. Of the five 

categories of constraint handling methods, penalty function and feasibility approaches 

have been popular for solving constrained MOO problems in Chemical Engineering 

application; see section 6.3 for more details.  

Generally, feasibility approach is good for solving problems with inequality 

constraints due to their large feasible regions. Feasible search space is extremely 

small for equality constrained problems. The feasibility approach can handle equality 
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constraints via suitable transformation into inequality constraints, but this requires 

different values of tolerance limit for different constraints in the same problem and 

also for different problems. Takahama and Sakai (2006) proposed ε-constrained DE, 

where equality constraints are relaxed systematically. Zhang and Rangaiah (2012) 

proposed adaptive constraint relaxation with feasibility approach (ACRFA) for 

handling constraints in single objective optimization (SOO) problem. In this 

approach, individuals with total constraint violation less than certain limit are 

temporarily considered as feasible individuals during selection for the next 

generation. This violation limit is changed dynamically based on the performance of 

search. In this chapter, ACRFA proposed by Zhang and Rangaiah (2012), is modified 

for solving constrained MOO problems. It is implemented in the multi-objective 

differential evolution (MODE) algorithm and tested on two benchmark functions with 

equality and inequality constraints. Then, MODE with ACRFA is used to optimize 

two fermentation processes for two objectives; these applications involve many 

equality constraints arising from mass balances. The performance of ACRFA is 

compared with the feasibility approach alone, and discussed.  

6.3 Constraint Handling Approaches in Chemical Engineering  

Researchers have used different approaches for handling constraints in 

optimization problems. Selected studies in the past decade in Chemical Engineering 

involving constrained MOO problems and using stochastic algorithms with constraint 

handling approaches are briefly reviewed in this section.   

Li et al. (2003) optimized the design of a styrene reactor, where penalty function 

approach is used for handling constraints; they used a larger value for penalty factor 

to locate the global optimum precisely. Yee et al. (2003) also used NSGA with 
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penalty function approach to optimize the styrene reactor. Mitra et al. (2004) handled 

constraints using feasibility approach to optimize a semi-batch epoxy polymerization 

process. In this study, feasibility approach is chosen for handling constraints as it does 

not involve any additional parameter. Tarafder et al. (2005) used NSGA-II with 

feasibility approach to optimize styrene manufacturing process for multiple 

objectives, and they found feasibility approach to be efficient and better than penalty 

function approach. Guria et al. (2005b) have used penalty function approach for 

handling constraints in the optimization of reverse osmosis process for multiple 

objectives. Sarkar and Modak (2005) used NSGA-II with feasibility approach for 

MOO of fed-batch bioreactors.    

Agrawal et al. (2006) applied NSGA-II and its jumping gene adaptations with 

penalty function approach for optimal design of a low density polyethylene tubular 

reactor for multiple objectives. Later, Agrawal et al. (2007) used both penalty and 

feasibility approaches to handle constraints in the optimization of the same process, 

and found that feasibility approach performs slightly better than penalty function 

approach. Sand et al. (2008) have used penalty function approach for handling 

constraints in batch scheduling; penalty function approach is selected over repair 

algorithm as later approach may introduce bias into search. Ponsich et al. (2008) tried 

several constraint handling techniques with a genetic algorithm to optimize the design 

of a batch plant as an example; these include elimination of infeasible individuals 

(i.e., fitness of infeasible individual = 0, which prevents selection of an infeasible 

individual using roulette wheel), use of penalty term in the objective, relaxation of 

upper bounds for discrete variables, dominance-based tournament (similar to 

feasibility approach), and multi-objective strategy. Based on their results, Ponsich et 

al. (2008) concluded that elimination of infeasible individuals is most attractive when 
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objective function calculations require less computational effort, and dominance-

based tournament is better if the process model calculations require large 

computational time. This is mainly due to the number of (objective) function 

evaluations required.  

Mazumder et al. (2010) have used NSGA-II-aJG with penalty function approach 

to optimize design of a liquid-solid circulating bed for continuous protein recovery, 

for multiple objectives. Kundu et al. (2011) also have used penalty function approach 

to handle inequality constraints in the MOO optimization of a counter-current moving 

bed chromatographic reactor. From this brief review of the selected studies, it is clear 

that both penalty function and feasibility approaches have been used and popular for 

handling constraints in MOO of Chemical Engineering applications. Of these two, 

feasibility approach seems to be preferable because it does not involve any parameter 

and for potential computational efficiency.  

6.4 Adaptive Constraint Relaxation and Feasibility Approach (ACRFA) for SOO 

Real world optimization problems often involve both equality and inequality 

constraints. Although an equality constraint can be converted into an inequality 

constraint by a priori relaxation, feasible search space is very small in case of 

problems with equality constraints, compared to complete search space and also 

compared to feasible search space of problems with no equality constraints. 

Moreover, equality constraints in Chemical Engineering problems arise from mass 

balances, mole fraction summation and/or energy balances, with terms having a wide 

range of magnitudes. Such equality constraints require different magnitudes of 

relaxation for obtaining meaningful optimal solutions. 
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Zhang and Rangaiah (2012) introduced the concept of adaptive relaxation of 

constraints based on the number of feasible points obtained in each generation. First, 

values of objective functions and constraints are calculated for the initial population. 

Next, total absolute constraint violations (TACV) is calculated for each individual in 

the population, using:  

               
  
                   

  
      (6.2) 

where hi and gj are the equality and inequality constraints respectively, and ne and ni 

are the number of equality and inequality constraints respectively. Median of TACV 

for all individuals in the initial population is chosen as the initial value for constraint 

relaxation (μ). Individuals are treated as temporarily feasible if their TACV is less 

than μ.  

In the first generation, feasibility of each individual is decided using μ value from 

the initial population; i.e., the individual is considered feasible if its TACV is less 

than μ. After that, feasibility approach of Deb et al. (2002) is used to select the 

individuals for the subsequent generation. μ value is updated based on the number of 

feasible solutions obtained at the end of the first generation (see equation 6.3), which 

is used to decide the feasibility of individuals in the next generation.    

μ
   

  μ
 
   

  

 
         (6.3) 

Here, FF is the fraction of feasible individuals at the end of first generation. G and N 

are respectively the generation number and population size. The iterative procedure is 

repeated until the maximum number of generations. 

 

 



Chapter 6: Improved Constraint Handling Technique 

107 
 

6.5 ACRFA for MOO   

  In the case of SOO by differential evolution (DE), selection is made between 

target and trial individuals. In MOO by MODE, on the other hand, non-dominant 

sorting is employed where all target and trial individuals collectively contest for 

selection to the next generation. A trial individual can be temporarily feasible based 

on its TACV and μ, but, based on non-dominated sorting, it may not be selected for 

the subsequent generation. In any case, FF can be obtained by checking the feasibility 

of individuals selected for subsequent generation. In the initial tests, μ value was 

updated using equation 6.3 in MODE, but μ was found to decrease very fast leading to 

many infeasible individuals in the population. In the case of SOO, a few feasible 

individuals are good enough to obtain the global solution. On the other hand, for 

MOO, larger number of feasible solutions is required to obtain the Pareto-optimal 

front with many non-dominated solutions. Hence, several other relaxation schemes 

(similar to equation 6.3) were tried but they all showed fast decrease in μ value.  

Finally, a different strategy is adopted for dynamically updating μ value in 

ACRFA for MOO problems with constraints. μ value is chosen so as to make a 

certain percentage of individuals selected for the next generation as infeasible. After 

trying μ based on 10%, 25% and 50% infeasible individuals on several test problems, 

μ value corresponding to 25% infeasible individuals is found to be better. Since better 

individuals are selected for the next generation, μ value is expected to decrease 

continually; this is confirmed by results presented later.   

6.6 Multi-objective Differential Evolution with ACRFA  

MODE algorithm of Kukkonen and Lampinen (GDE3, 2007) is used for 

implementing and testing ACRFA (MODE-ACRFA) for solving constrained MOO 
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problems. Flowchart of MODE-ACRFA is shown in Figure 6.1. Population of N 

individuals is initialized randomly inside the bounds on decision variables. Values of 

objectives, constraints and TACV (according to equation 6.2) are calculated for each 

individual in the initial population. Then, initial value of μ is selected such that 25% 

of individuals in the initial population will be temporarily infeasible based on TACV. 

In each generation, a trial individual/vector for each target individual in the 

current/initial population is generated by mutation and crossover. For this, DE/rand/1 

mutation strategy and binomial crossover are applied. See Chapter 3 for more details 

on these mutation and crossover operations in classic differential evolution (Price et 

al., 2005). After crossover, the trial vector is tested for satisfaction of decision 

variable bounds; if a bound on any decision variable is violated, then it is randomly 

re-initialized within the bounds on that decision variable. Finally, values of objective 

functions, constraints and TACV of the trial individual are calculated. Thus, N trial 

individuals are generated and stored in the child population, which is later mixed with 

the parent population containing target individuals.  

The combined population of 2N individuals undergoes non-dominated sorting 

followed by crowding distance calculation. If the MOO problem has no constraints, 

then N individuals are selected from the combined population based on the following 

definitions and steps.  

a) Two individuals A and B are non-dominated to each other if A is better than B in at 

least one objective, and also B is better than A in at least one other objective. Thus, 

both these individuals are equally good. One individual is dominating another 

individual if it is better than the other in all objectives. 
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b) The number of individuals dominating each individual (nd) is calculated. First rank 

is assigned to the non-dominated individuals with nd = 0. This is shown as PF1 in 

Figure 6.2.  

c) Then, non-dominated individuals in the remainder of the combined population (i.e., 

excluding those with first rank) are assigned second rank (shown as PF2 in Figure 

6.2). This procedure is repeated until all individuals are ranked. 

d) The first/best N individuals are selected as the population for the subsequent 

generation. For this, individuals are first selected based on the Pareto rank given in the 

above steps. When all the individuals of a Pareto front cannot be selected for the 

subsequent generation (e.g., PF3 in Figure 6.2), less crowded individuals (based on 

the crowding distance measure) are selected to complete the population size. Note that 

the crowding distance measures distribution of non-dominated solutions on the 

Pareto-optimal front by calculating Euclidean distance between two neighboring non-

dominated solutions; see Deb (2001) for more details.  

For constrained MOO problems, feasibility of all individuals in the combined 

population is decided using the current μ value. MODE-ACRFA algorithm selects N 

individuals for the subsequent generation from the combined population according to 

steps b-d above, but the following definition of constrained dominance is used in step 

a (according to feasibility approach of Deb et al., 2002). If any of the following 

conditions is true, then individual A is dominating individual B.  

i) Both the individuals are feasible, and individual A dominates B (as per the usual 

dominance definition in step a above).  

ii) Individual A is feasible and B is infeasible.  
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Figure 6.1: Flowchart for MODE-ACRFA algorithm 

Initialize population randomly, and evaluate values of objective 

functions and constraints of all individuals in the population

Set generation no., G = 1

Non-dominating sorting of combined population, 

and calculate crowding distance, if required

Stop

Start
Set values of Cr, F, 

N, MNG

Generate a new mutant individual 

and then a trial individual

Check the trial individual for violation of decision variable 

bounds ; if there is any violation, then it is randomly re-

initialized within the bounds on that decision variable

Evaluate values of objective functions and 

constraints of the trial individual

Store the trial individual in offspring population

Select population for the next generation

Set target individual no., n = 1

Is n < N?
Yes

No

Combine parent and offspring populations

Is G < MNG?

No

Yes
G = G + 1

n = n + 1

Calculate TACV for each individual in the 

initial population, and obtain µ value

Define feasibility of each individual in the 

combined population, based on TACV

Select µ value using selected individuals 



Chapter 6: Improved Constraint Handling Technique 

111 
 

iii) Both the individuals are infeasible, but individual A has smaller number of 

violated constraints (and lesser TACV if both have the same number of violated 

constraints) compared to individual B.   

TACV of the selected individuals for the next generation is used to update μ 

value, which is chosen such that 25% of selected individuals will be temporarily 

infeasible based on TACV. The new μ value is used to define the feasibility of the 

individuals in combined population in the next generation. The generations and 

stochastic search continue until the specified search termination criterion is met. Here, 

maximum number of generations (MNG) is the termination criterion (Figure 6.1), 

which is commonly used in stochastic algorithms. 

 

Figure 6.2: Selection of N individuals from the combined population of 2N 

individuals using Pareto dominance and crowding distance criteria 

6.7 Testing of MODE-ACRFA on Developed Test Problems 

There are many benchmark problems for testing MOO algorithms; these are with 

only bounds on decision variables (Zitzler et al., 2000) or with both bounds on 

variables and inequality constraints (Coello Coello et al., 2007). Interestingly, there 

seems to be no benchmark MOO problems with equality constraints. So, in this work, 

two inequality constrained MOO problems, namely, Viennet and Osyczka problems 

(Coello Coello et al., 2007) have been modified to equality constrained MOO 
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problems. For this, values of different inequality constraints corresponding to the 

complete Pareto-optimal front have been analyzed. If an inequality constraint is active 

or has nearly constant value, then it is converted to an equality constraint. The 

modified test problems are given in Table 6.1.  

Table 6.1: Modified MOO test functions with equality constraints 

Test 

problem 

Decision 

variables 
Objective functions (minimize) Constraints 

Modified 

Viennet 

-4 < x1  < 4 

-4 < x2  < 4 

f1 = (x1 - 2)
2
/2 + (x2 + 1)

2
/13 + 3 

f2 = (x1 + x2 -3)
2
/175 + (2x2 - x1)

2
/17 -13 

f3 = (3x1 - 2x2 + 4)
2
/8 + (x1 - x2 +1)

2
/27 +15 

4x1 + x2 - 4 = 0 

- x1 - 1  < 0 

x1 - x2 - 2 < 0 

Modified 

Osyczka 

2 < x1  < 7 

5 < x2  < 10 

f1 = x1 + x2
2
 

f2 = x1
2
 + x2 

x1 + x2 - 12 = 0 

- x1
2
 - 10x1 + x2

2
 

- 16x2 + 80 < 0 

Performance of MODE-ACRFA is compared with that of MODE with feasibility 

approach alone (MODE-FA). For MODE-FA, each equality constraint is converted 

into an inequality constraint as follows.      

hi(x) = 0         (6.4a)  

TL - hi(x)≥ 0        (6.4b)  

Here, TL is the tolerance limit of constraint violation, which depends on the terms 

in the equality constraint (e.g., flow rates can be large whereas mole fractions are 

between zero and unity).  

Generational distance, GD
t
 (as defined in Chapter 3) is used to compare the 

performance of MODE-FA and MODE-ACRFA. Algorithm parameters used in the 

performance comparison for test functions are: F = 0.8, Cr = 0.9, N = 100 and MNG = 

500; values of F and Cr are based on the recommendation in the literature (e.g., Chen 
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et al., 2010), while population size of 100 is reasonable for small problems with a few 

decision variables and constraints. A TL value of 1.0e-6 is used for relaxing equality 

constraints in Table 6.1 into inequality constraints for MODE-FA. Figures 6.3(a) and 

6.4(a) show the variation in GD
t
 with generations on modified Viennet and Osyczka 

problems, respectively, using MODE-FA and MODE-ACRFA. Performance of both 

constraint handling approaches is comparable on the modified Viennet problem. 

Initially, MODE-FA shows faster convergence on the modified Osyczka problem, but 

performance of both approaches is comparable after 200 generations (Figure 6.4a).  

 

    

Figure 6.3: Performance of MODE-FA and MODE-ACRFA on modified Viennet 

problem   

(a) 

(c) (b) 
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Moreover, the final Pareto-optimal fronts obtained for both the problems using 

ACRFA and FA are very close to the true/known Pareto-optimal fronts, as shown in 

Figures 6.3(b), 6.3(c) and 6.4(b). Figure 6.5 shows variation in μ with generations on 

modified Viennet and Osyczka problems using MODE-ACRFA; these follow the 

general trend of GD
t
 with generations in Figures 6.3(a) and 6.4(a). As expected, μ 

decreases with generations because better individuals (in terms of feasibility and 

objective values) are selected for the next generation.  

     

Figure 6.4: Performance of MODE-FA and MODE-ACRFA on modified Osyczka 

Problem  

  

Figure 6.5: Variation in μ with generations in MODE-ACRFA on: (a) modified 

Viennet problem, and (b) modified Osyczka problem 

 

(a) (b) 

(a) (b) 
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6.8 Application of ACRFA on Fermentation Processes 

Ethanol is widely used as a chemical and bio-fuel. Bio-ethanol production from 

sustainable feed-stocks is one of the possible alternatives to fossil fuel. Its production 

using first generation feed-stocks (e.g., glucose) is well established, while bio-ethanol 

production using second generation feed-stocks (e.g., starch and cellulose) is in the 

development phase. In this section, operation of a fermentation process integrated 

with cell recycling and a fermentation process integrated with cell recycling and inter-

stage extraction is optimized for multiple objectives by both MODE-FA and MODE-

ACRFA. Both these applications involve many equality constraints.  

6.8.1 Three-stage Fermentation Process Integrated with Cell Recycling  

Process model for this integrated fermentation process has been presented in 

Chapter 5. Glucose is used as feed-stock, and ethanol productivity and glucose 

conversion are the performance objectives. The MOO problem for the 3-stage 

continuous fermentation process integrated with cell recycling is summarized in Table 

6.2. Decision variables for this optimization are dilution rate (D), glucose 

concentration in feed (sf,1) and cell mass recycling for different stages (i.e., bleed 

ratios, b1, b2 and b3). Physical constraints are same as those in Chapter 5. The model 

equations 5.3a-e for each stage are the equality constraints in the MOO problem. Of 

these, equations 5.3d-e can be substituted in equations 5.3a-c. Then, there will be 3 

equality constraints for each stage or 9 equality constraints for the 3-stage 

fermentation process.    

Wang and Lin (2010) have solved the MOO problem in Table 6.2 using fuzzy 

goal attainment method, which requires preference intervals for objectives and 

constraints. Finally, it is solved as a SOO problem using hybrid differential evolution 
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(HDE). Adaptive penalty function approach has been used for constraint handling in 

HDE. Same optimization approach (i.e., HDE with adaptive penalty function 

approach) is also used to solve the MOO problem of extractive fermentation process 

(Section 6.8.2). In this work, MOO problem has been solved by three different 

strategies, all using MODE. Each strategy differs in the handling of constraints, as 

described below. The present approach provides many Pareto-optimal solutions for 

better understanding and selection of one of them. 

Table 6.2: MOO problem formulation for the three-stage continuous fermentation 

process integrated with cell recycling; k = 1, 2, 3  

Objective 

functions 

Max. ethanol productivity, [kg/(m
3
.h)]  

 

 
                                     

Max. overall glucose conversion     
  

    
  

Decision 

variables 

Dilution rate, [1/h] 3.5 ≤ D ≤ 4                        

Glucose concentration in feed, [kg/m
3
] 60 ≤ sf,1 ≤ 65                     

Bleed ratio for each stage 0.1 ≤ b1 = b2 = b3 ≤ 0.2  

Constraints Same as defined in Table 5.2 (Chapter 5) 

   (A) MODE-Solver and FA: In this approach, MODE algorithm has been used to 

generate the vector of 3 decision variables (i.e., D, Sf, and bk). In order to calculate 

objectives and constraints, material balance equations 5.3a-c for each stage have to be 

solved; Solver tool in Excel is used to solve these equations (see Figure 6.6). 

Feasibility approach is used to handle inequality constraints in the optimization 

problem (total of 10 inequality constraints in Table 6.2 excluding the model 

equations). This strategy is used to illustrate the use of sequential solution of 

optimization problem and equality constraints (i.e., model equations), and to obtain 

the Pareto-optimal solutions for comparison.  
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Figure 6.6: Flowchart for calculation of objective functions and constraints using 

Solver tool in Excel for solving model equations 

(B) MODE-FA: In this approach, material balance equations 5.3a-c for each stage are 

converted into inequality constraints; conversion of each equality constraint to an 

inequality constraint is done based on equations 6.4a-b and using the same value of 

TL. Finally, the reformulated MOO problem has 19 inequality constraints (10 

inequality constraints in Table 6.2, and 9 inequality constraints from material balances 

for each stage). For this and next strategy, additional decision variables are cell mass, 

glucose and ethanol concentrations for each stage. These variables with their bounds 

are presented in Table 6.3; non-dominated solutions obtained, using strategy A, are 

used to choose suitable bounds on the additional decision variables. Thus, number of 

decision variables in this and next strategy is 12.  

(C) MODE-ACRFA: This approach can handle equality constraints without any 

conversion. It has 9 equality and 10 inequality constraints. Decision variables are the 

same as those in MODE-FA. Optimization problem and equality constraints are 

solved simultaneously in both MODE-FA and MODE-ACRFA. However, solution of 

equality constraints in MODE-FA is not exact due to relaxation by TL, and so its 

optimization results can differ from the other two strategies.   

Solving model equations 
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Table 6.3: Additional decision variables and their bounds for optimization strategies 

B and C (continuous fermentation) 

Decision variable x1 x2 x3 s1 s2 s3 p1 p2 p3 

Lower bound 40 80 90 10 0 0.1 10 20 20 

Upper bound 70 110 110 30 10 0.5 30 40 40 

MODE parameters used in this optimization study are given in Table 6.4. F value 

is tuned through preliminary experimentation, whereas Cr value is based on the 

recommendation in the literature (see Chen et al., 2010). The population size of 100 is 

used in solution strategy A, while population size in solution strategies B and C is 15 

times sum of number of decision variables and constraints. MNG used for different 

strategies is based on preliminary experimentation.   

Table 6.4: MODE algorithm parameter values used in MOO of fermentation 

processes 

Algorithm 

parameter 

Strategy A: MODE-

Solver with FA 

Strategy B: 

MODE-FA 

Strategy C: 

MODE-ACRFA 

F 

Cr 

N 

MNG 

0.9 

0.9 

100 

100 

0.9 

0.9 

465 

5000 

0.9 

0.9 

465 

5000 

Figure 6.7(a) shows Pareto-optimal front obtained for the 3-stage continuous 

fermentation process integrated with cell recycling using the strategy A. As expected, 

ethanol productivity is conflicting with glucose conversion. The obtained Pareto-

optimal front is well distributed, and dilution rate is mainly contributing to the 

variations in the objective functions. Glucose concentration in the feed and bleed 

ratios are nearly constant, and they are near to their upper (i.e., 65) and lower (i.e., 

0.1) bounds respectively. For brevity, bleed ratios are not shown in Figure 6.7. The 
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obtained Pareto-optimal front in Figure 6.7(a) is nearly linear in shape. In the 

operation optimization considered, production capacity is sufficiently large to convert 

glucose completely for any dilution rate in the range 3.5 to 4; hence, glucose 

concentration in the feed is always near to its upper limit (see Figure 6.7c). Further, 

increase in dilution rate increases ethanol productivity as larger amount of glucose 

enters into fermentor although glucose conversion decreases due to lower residence 

time. Both objectives are linearly dependent on dilution rate since the quantities (i.e., 

dilution rate, ethanol concentration in product stream, glucose concentration in feed 

and residual glucose) involved in the objectives are directly related to the dilution rate 

(see Table 6.2).  

Figure 6.7(a) also shows the Pareto-optimal front obtained for the same 

continuous fermentation process using MODE-FA. These optimization results are 

obtained using TL of 3.0; MODE-FA did not give any feasible solution with TL of 

1.0 or smaller. The non-dominated solutions obtained in Figure 6.7(a) have average 

absolute constraint violations (AACV) of 2.15. Here, variation in ethanol productivity 

is smaller compared to the Pareto-optimal front obtained using strategy A (Figure 

6.7a). Figures 6.7(b) and 6.7(c) show respectively the variations in dilution rate and 

glucose concentration in the feed with ethanol productivity. Bleed ratio is constant 

near to 0.1, and so this is not shown in Figure 6.7. Variations in the remaining 

decision variables for strategies B and C are also not presented as these are not 

essential for performance comparison. Pareto-optimal front obtained for the 3-stage 

continuous fermentation process integrated with cell recycling using MODE-ACRFA 

is also shown in Figure 6.7(a). Here, both objectives are varying in narrow ranges 

compared to the other two; AACV for all the non-dominated solutions obtained by 

MODE-ACRFA is 0.013, which is much smaller than that by MODE-FA.  
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 Figure 6.7: Selected optimization results for 3-stage continuous fermentation process 

integrated with cell recycling, using strategies A (Solver), B (FA), and C (ACRFA)  

Figure 6.7(a) can also be used for comparing the non-dominated solutions 

obtained for the 3-stage continuous fermentation process integrated with cell 

recycling using three different optimization strategies. In this comparison, Pareto-

optimal front obtained by MODE-Solver with FA can be considered as the correct 

front. It can be seen that non-dominated solutions obtained using MODE-FA are 

(a) 

(b) 

(c) 
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significantly far from the correct Pareto-optimal front; also they have high value of 

AACV (= 2.15), and so they are not the optimal solutions satisfying all constraints. 

On the other hand, non-dominated solutions obtained by MODE-ACRFA are close to 

the correct Pareto-optimal front, and they have a much lower value of AACV (= 

0.013), which is acceptable in engineering applications.  

6.8.2 Three-stage Fermentation Process Integrated with Cell Recycling and 

Extraction  

Chen and Wang (2010b) have studied a three-stage fermentation process 

integrated with cell recycling and inter-stage-extraction using a mixture of glucose 

and xylose as feed-stocks (referred to as extractive fermentation process). Figure 6.8 

shows a schematic diagram of this fermentation process. Ethanol concentration 

inhibits conversion of glucose and xylose to ethanol in the fermentor, which results in 

lower ethanol productivity and yield. To avoid this, ethanol can be continuously 

removed from the fermentor, for example, using extraction. In the present study, three 

fermentors are placed in series, with feed entering into the first fermentor only. A part 

of mother liquor from a fermentor goes directly to the next fermentor while the 

remaining goes through a cell separator and an extractor. A cell separator is used after 

each fermentor to separate the cell mass and recycle it back to the fermentor, whereas 

an extractor is used to extract ethanol using an organic solvent. After extraction of 

ethanol, mother liquor goes to the next fermentor. Extractor is not necessary in the 

last/third stage of the fermentation process (see Figure 6.8).     
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Figure 6.8: Schematic diagram of a three-stage fermentation process integrated with 

cell recycling and extraction  

The mathematical model of the three-stage extractive fermentation process is 

taken from Chen and Wang (2010b). Equations 6.5a-d present steady-state mass 

balances for cell mass, glucose, xylose and ethanol around k
th

 stage, respectively.  
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In the above equations, D is the dilution rate. xk, sg,k, sx,k and pk are respectively cell 
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is the bleed ratio for k
th

 stage, and sf,k is the substrate concentration in feed entering 

the k
th

 stage. Here, feed is entering only into the first fermentor, and so values of sf,2 = 

0 and sf,3 = 0 for second and third stages respectively. λ is the mass fraction of glucose 

in substrate (and the remaining is xylose). ζx, ζs and ζp are cell discard factors (e.g., 

xe,1/x1 = 0.01), substrate condensed factors (e.g., se,1/s1 = 1.01) and ethanol condensed 

factors (e.g., pe,1/p1 = 1.01) respectively (see Figure 6.8); these factors define relative 

concentrations of cell mass, substrate and ethanol in mother liquor after cell 

separation compared to those after the fermentor. Ek is the extraction efficiency for k
th

 

stage. Further, for the first stage, bk-1, xk-1, sg,k-1, sx,k-1, pk-1 and Ek-1 are also zero. The 

rate expressions for cell mass growth (rx,k), glucose consumption (rsg,k), xylose 

conversion (rsx,k) and ethanol production (rp,k) are as follows.   

      μ
     

            (6.6a) 

      
 

     
ν              (6.6b) 

      
 

     
ν             (6.6c) 
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ν     
ν      

             
      

    
  

    

 
  

        (6.6i)  

Here, µmix is the specific cell growth rate for the yeast 1400 (pLNH33) on glucose-

xylose mixture. For this yeast, νg and νx are the specific ethanol production rates of 

glucose and xylose, respectively. The kinetic parameters in equations 6.6a-i are taken 

from Krishnan et al. (1999), and are reported in Table 6.5.    

Table 6.5: Kinetic parameters and their values for the extractive fermentation process 

(Krishnan et al., 1999) 

Kinetic 

parameters 

Estimated 

values 

Kinetic parameters Estimated 

values 

μmg, μmx (h
-1

) 0.662, 0.190 pmg, pmx (kg/m
3
) 95.4, 59.04 

νmg, νmx (h
-1

) 2.005, 0.250 p‟mg, p‟mx (kg/m
3
)  103.03, 60.2 

Kg, Kx (kg/m
3
) 0.565, 3.4       1.29, 1.036 

Kig, Kix (kg/m
3
) 283.7, 18.1        1.42, 0.608 

K‟g, K‟x (kg/m
3
) 1.324, 3.4 Yp/sg, Yp/sx (kg/kg) 0.47, 0.40 

K‟ig, K‟ix (kg/m
3
) 4890, 81.3   

The MOO problem formulation for the 3-stage extractive fermentation process is 

given in Table 6.6. In this case, ethanol productivity and xylose conversion are 

considered as objectives. Glucose conversion is not used as an objective because it is 

always higher than xylose conversion; it is used as an additional constraint in the 

optimization problem. Dilution rate and substrate concentration in the feed are the 

decision variables. Bleed ratios for different stages are not considered as decision 

variables as low values are optimal, based on Section 6.8.1; so, bleed ratio for each of 

the stages is fixed at 0.2. Here, positive values of ethanol productivity of each stage, 

glucose and xylose conversions in each stage are physical constraints. Other 

constraints are total sugar supply (sT < 180) and limits on the residual glucose and 
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xylose concentrations (sg,3 < 0.5 and sx,3 < 1) in the mother liquor from the third 

fermentor (Chen and Wang, 2010b). The model equations 6.5a-d and 6.6a-i for each 

stage are the equality constraints in the MOO problem. Of these, equations 6.6a-i can 

be substituted in equations 6.5a-d. Then, there will be 4 equality constraints for each 

stage or 12 equality constraints for the 3-stage extractive fermentation process.  

Table 6.6: MOO problem formulation for the extractive fermentation process; k = 1, 

2, 3  

Objective functions 

Max. ethanol productivity, 

[kg/(m
3
.h)] 

 

 
           ζ

             
ζ  

     
  

 
      

Max. overall xylose conversion    
           ζ      

   λ     
  

Decision variables  

Dilution rate, [1/h] 0.3 ≤ D ≤ 0.8                                                                                               

Substrate conc. in feed, [kg/m
3
] 90 ≤ sf,1 ≤ 95                                                                                               

Constraints 

Productivity in each stage, 

[kg/(m
3
.h)] 

             ζ
             

      

      
ζ
  
 
    

            

 Glucose conversion in each stage    
           ζ      

λ                     ζ        
                 

Xylose conversion in each stage   
           ζ      

   λ                      ζ        
            

Residual glucose, [kg/m
3
] sg,3 ≤ 0.1                                                                                                       

Residual xylose, [kg/m
3
] sx,3 ≤ 1                                                        

Total glucose supplied per unit 

volume, [kg/(m
3
.h)] 

   
     

 
                                                            

Glucose  conversion overall    
           ζ      

λ    
        

Model for the process Equations 6.5a-d and 6.6a-i for each stage  
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 The MOO problem, in Table 6.6 is solved using three different strategies 

described in Section 6.8.1. The problem for strategy A (using Solver and FA) has 2 

decision variables and 13 inequality constraints. Reformulation of the problem for 

MODE-FA has 12 additional inequality constraints arising from material balances 

around each and every stage (in total, 25 inequality constraints). Problem for MODE-

ACRFA has 13 inequality and 12 equality constraints. Moreover, the problem for both 

MODE-FA and MODE-ACRFA has 12 additional decision variables (i.e., cell mass, 

glucose, xylose and ethanol concentrations for each of the 3 stages); these variables 

and their bounds are listed in Table 6.7. Very wide bounds for additional decision 

variables will result in slow convergence of the algorithm; hence, non-dominated 

solutions obtained using solution strategy A are used to choose the bounds on the 

additional decision variables. 

Table 6.7: Additional decision variables and their bounds for optimization strategies 

B and C (extractive fermentation) 

Decision variable x1 x2 x3 sg1 sg2 sg3 sx1 sx2 sx3 p1 p2 p3 

Lower bound 0 20 50 0 0 0 20 0 0 20 10 0 

Upper bound 20 60 70 10 1 10 40 20 1 40 30 20 

The feed contains 65% glucose and 35% xylose, and extraction efficiency for each 

stage is 6.93 which is equivalent to 87.4% of ethanol removal from the mother liquor 

(Chen and Wang, 2010b). The MODE algorithm parameters used in the optimization 

of extractive fermentation process are same as those in Table 6.4, except value of N 

for strategies B and C is 585 (i.e., 15 times number of decision variables and 

constraints).  

Figure 6.9(a) show the Pareto-optimal front obtained for the 3-stage extractive 

fermentation process using optimization strategy A (see Section 6.8.1). The obtained 
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Pareto-optimal front can be divided into two parts: (i) improvement in ethanol 

productivity from 5.4 to 5.8 kg/(m3.h) with a small decrease in xylose conversion, 

and (ii) a linear change between ethanol productivity and xylose conversion (~ 0.985-

0.97). In the first part, the improvement in ethanol productivity, is mainly due to fast 

change in substrate concentration in feed, while dilution rate is mainly affecting the 

objectives in the second part (see Figures 6.9a-c). For a fixed production capacity, 

increase in substrate concentration in the feed produces more ethanol, but it does not 

affect residence time in the fermentor. Hence, increase in ethanol productivity is 

relatively faster compared to decrease in xylose conversion (see the first part of the 

Pareto-optimal front in Figure 6.9a).  

  

  

Increase in dilution rate also increases ethanol productivity as larger amount of 

glucose enters into fermentors, but substrate conversion decreases relatively faster 

with increase in dilution rate due to lower residence time (see the second part of the 

(a) (b) 

(c) 

Figure 6.9: Selected optimization results 

for the 3-stage extractive fermentation 

process using optimization strategy A  
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obtained Pareto-optimal front in Figure 6.9a). In conclusion, a relatively fast increase 

in ethanol productivity is achieved initially by an increase in substrate concentration 

in the feed, until substrate concentration reached availability limit. In the present 

operation optimization case, ethanol production facility is sufficient to convert feed, at 

its maximum available concentration (i.e., 95 kg/m
3
), into product, and keeps the 

unreacted substrate in the product stream below the required limit.  

Figure 6.10(a) shows the Pareto-optimal front obtained for the 3-stage extractive 

fermentation process using MODE-FA. These non-dominated solutions are obtained 

using TL of 1.0; MODE-FA is not able to give any feasible solution with a smaller 

value of TL. The non-dominated solutions in Figure 6.10(a) have AACV of 0.608. 

Variations in objectives can be visually correlated to the variation in dilution rate with 

ethanol productivity (Figure 6.10b), while substrate concentration in feed is scattered 

between its lower and upper bounds (Figure 6.10c). The Pareto-optimal front obtained 

by MODE-ACRFA is shown in Figure 6.10(d). Here, both objectives are varying in 

relatively narrow ranges compared to the Pareto-optimal front obtained using the 

other two strategies. AACV for all non-dominated solutions obtained using MODE-

ACRFA is 0.022, which is acceptable for engineering applications. Values and trends 

in the Pareto-optimal front and decision variables in Figures 6.10(d) to (f) are similar 

to those obtained by strategy A (Figure 6.9).  

Finally, Figure 6.11 compares the Pareto-optimal fronts obtained for extractive 

fermentation process using the three different optimization strategies. Pareto-optimal 

front obtained by strategy A (i.e., MODE-Solver-FA) can be considered as the correct 

solution to this problem. It can be seen that MODE-FA gives wide ranges of both 

objectives, but these non-dominated solutions have a large value of AACV, and so 



Chapter 6: Improved Constraint Handling Technique 

129 
 

they are incorrect and unacceptable. The non-dominated solutions obtained by 

MODE-ACRFA are closer to the correct Pareto-optimal front, and cover most part of 

the correct Pareto-optimal front except a small part corresponding to higher xylose 

conversion.  

 

 

     

Figure 6.10: Selected optimization results for the 3-stage extractive fermentation 

process using MODE-FA (plots a, b and c in the left column), and using MODE-

ACRFA (plots d, e and f in the right column) 

(a) (d) 

(b) (e) 

(c) (f) 
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Figure 6.11: Comparison of the Pareto-optimal fronts obtained for the 3-stage 

fermentation process integrated with cell recycling and inter-stage extraction, using 

three different optimization strategies 

The approximate time required for solving the MOO problem for the continuous 

fermentation process using strategies A, B and C is respectively 1, 8 and 3 hours on 

an Intel
®
 Core

TM
2 Duo Processor (CPU 2.8 & 2.8 GHZ and RAM 4 GB). Mflops 

(million floating point operations per second) on this computer is 537 for the 

LINPACK benchmark program for a matrix of order 500 

(http://www.netlib.org/benchmark/linpackjava/). Optimization of the extractive 

fermentation process requires around 2, 12 and 4 hours by strategies A, B and C 

respectively, using same computer. In the case of MODE-FA and MODE-ACRFA, 

required computational time is larger due to larger population size and MNG. Hence, 

strategy A using Solver for sequential solution of equality constraints seems to be 

better followed by strategy C (i.e., using adaptive constraints relaxation with FA) for 

simultaneous solution of optimization problems and equality constraints.  

6.9 Conclusions  

Although two MOO test functions with equality constraints are used in this 

chapter, these problems are small with a few decision variables and constraints, and 

http://www.netlib.org/benchmark/linpackjava/
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are easy to solve. Performance of FA and ACRFA approaches is comparable on these 

two test functions, modified to have equality constraints. Hence, it is difficult to 

observe the difference in the performance of these two strategies. Many MOO test 

functions with equality constraints are required for a comprehensive comparison 

between FA and ACRFA solution strategies. Use of application problems for testing 

purpose is not easy as it requires process knowledge and due to unavailability of true 

solution.   

Three-stage continuous fermentation and three-stage extractive fermentation 

processes, which contain many equality constraints arising from mass balances, are 

optimized using three different strategies: solution of equality constraints using Solver 

with FA for inequality constraints, FA and ACRFA. Of these, MODE-Solver-FA is 

the most effective to solve both fermentation processes compared to FA and ACRFA. 

Non-dominated solutions obtained by MODE-Solver-FA are better, satisfy equality 

constraints almost exactly and so can be considered to be accurate. Feasibility 

approach requires a suitable value for relaxation, which affects the optimization 

results obtained, and it performed poorly compared to ACRFA on both the 

fermentation processes. Non-dominated solutions obtained by MODE-ACRFA have 

less average absolute constraint violations than those obtained by MODE-FA, and are 

closer to those obtained by MODE-Solver-FA.   

Sequential solution of the optimization problem and equality constraints using 

Solver along with FA for inequality constraints, is the better strategy for the 

optimization of fermentation processes considered. However, it may not be efficient if 

solution of equality constraints is computationally intensive. In such cases, 

simultaneous solution of the optimization problem and equality constraints via 

ACRFA strategy may be suitable. Further research is required to improve ACRFA.
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Modeling and Multi-objective Optimization of Fermentation 

Processes
5
 

7.1 Introduction 

Cellulosic ethanol production can use non-food crops and inedible waste products 

to produce bio-ethanol that causes lesser air pollution compared to the conventional 

fuels. Bio-ethanol production from fermentable sugars (e.g., glucose, fructose and 

sucrose, etc.) is well established. On the other hand, production of bio-ethanol from 

starchy and cellulosic materials requires hydrolysis as an additional step to produce 

fermentable sugars. Hydrolysis step can be performed before the fermentation 

(separate/sequential hydrolysis and fermentation, SHF) or with the fermentation 

(simultaneous saccharification and fermentation, SSF). In SHF process, hydrolysis 

and fermentation can be performed at their respective optimal temperatures, but 

hydrolysis end products (i.e., glucose and cellobiose) inhibit the hydrolysis. Yingling 

et al. (2011) have improved the enzymatic starch hydrolysis in SHF process using 

multi-objective optimization. The alternate SSF process removes end-products 

inhibition by immediate consumption of end products of hydrolysis. Further, 

lignocellulosic feed-stocks produce both glucose and xylose after hydrolysis. Feed 

concentration, fermentation temperature and time affect the conversion of 

lignocellulosic feed-stocks into glucose and xylose (Chen and Wang, 2010a). In 

simultaneous saccharification and co-fermentation (SSCF) process, conversion of 

lignocellulosic materials to glucose and xylose, and their fermentation take place 

                                                           
5
 This chapter is based on the article: Sharma, S. and Rangaiah, G. P. (2012), Modeling and 

optimization of a fermentation process integrated with cell recycling and pervaporation for multiple 

objectives, Ind. Eng. Chem. Res., 51(15), pp. 5542-5551. 
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together. Chen and Wang (2010a) have optimized SSCF process using lignocellulosic 

feed-stocks.   

Katahira et al. (2008) tried to increase ethanol productivity during fermentation of 

lignocellulosic feed-stocks by enhancing the xylose intake ability of the yeast. 

Continuous bio-ethanol production process can also be improved by cell recycling 

and in-situ ethanol removal. Cell recycling improves the performance of continuous 

fermentation process significantly, and it has been studied by researchers for many 

years (e.g., Wieczorek and Michalski, 1994; Paiva et al., 1996; Oliveira et al., 1999 

and Wang and Lin, 2010). Bayrock and Ingledew (2001) mentioned that industry uses 

both batch and multi-stage continuous processes for producing ethanol. Wang and Lin 

(2010) optimized the multi-stage fermentation process with cell recycling for two 

objectives, namely, ethanol productivity and glucose conversion.   

Ethanol concentration in the fermentor inhibits conversion of fermentable sugars 

to ethanol, which results in lower productivity; these can be improved by better 

fermentation kinetics and/or process design. Several researchers improved the 

fermentation process by in-situ removal of ethanol using different processes, e.g., 

pervaporation (Mahecha-Botero et al., 2006) and liquid-liquid extraction (e.g., 

Daugulis et al., 1991; Gyamerah and Glover, 1996; Silva et al., 1999 and Offeman et 

al., 2005). Lipnizki et al. (2000) summarized several studies on the coupling of 

pervaporation process with bioreactors. Pervaporation unit can be arranged either 

internally or externally to the bioreactor. Lipnizki et al. (2000) discussed the 

advantages and disadvantages of both these arrangements, and suggested the use of 

external pervaporation unit due to its high efficiency and easy maintenance. Mahecha-

Botero et al.
 
(2006) have studied a membrane fermentor (for selective ethanol 
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removal) with cell recycling, and found that continuous ethanol removal increases 

ethanol productivity and also stabilizes the fermentation process.  

Extraction has also been considered for ethanol removal during continuous 

fermentation. Gyamerah and Glover (1996) used dodecanol as solvent to remove 

ethanol from fermentor; the improved process can produce ethanol from a feed with 

high glucose concentration without product inhibition. Offeman et al. (2005) have 

compared the performance of twelve different solvents for ethanol removal from 

aqueous phase (i.e., fermentor broth). The used solvent for extraction should be 

biocompatible, inert and also easy to separate from the ethanol-solvent mixture. It 

should also have high value of distribution coefficient (K = the ratio of weight percent 

of ethanol in the organic phase to the weight percent of ethanol in the aqueous phase). 

Chemical stability and difference in density between aqueous and organic phases are 

other important requirements for a suitable solvent (Offeman et al., 2005). Generally, 

distillation is used to recover the solvent which requires high energy input (Heerema 

et al., 2011). Chen and Wang (2010b) have optimized a multi-stage fermentation 

process coupled with cell recycling and inter-stage extraction process for multiple 

objectives using fuzzy approach and single objective optimization algorithm; they 

have optimized this process for three objectives, namely, ethanol productivity, 

glucose and xylose conversion. Notably, glucose conversion is always higher than 

xylose conversion, and is near to 1.      

The present study models and optimizes a three-stage fermentation process 

integrated with cell recycling and pervaporation, which is promising but has not been 

reported in the literature. Pervaporation units have been used outside each fermentor 

for continuous removal of ethanol in order to avoid product inhibition. In this study, 

Pareto-optimal front generating technique (namely, multi-objective differential 
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evolution, MODE) is used to assess the trade-offs between objectives. The three-stage 

integrated fermentation process has been optimized for ethanol productivity and 

xylose conversion, using MODE. A three-stage fermentation process integrated with 

cell recycling and extraction is also optimized for ethanol productivity and xylose 

conversion, using MODE, and its performance is compared to the fermentation with 

pervaporation process. In order to assess the usefulness of pervaporation or extraction 

for three-stage fermentation process with cell recycling, a three-stage fermentation 

process with cell recycling only is also optimized. Net flow method is used to rank the 

non-dominated solutions obtained for the three-stage fermentation process integrated 

with cell recycling and pervaporation.     

The next section of this article describes the design and modeling of the three-

stage fermentation process integrated with cell recycling and pervaporation. Section 

7.3 describes the multi-objective optimization problem formulation, and Section 7.4 

describes MODE algorithm briefly. Section 7.5 presents and discusses the 

optimization results using MODE and I-MODE algorithms. Section 7.6 compares the 

performance of this process with a three-stage fermentation process integrated with 

extraction. In Section 7.7, net flow method is used to rank the solution set obtained for 

the three-stage fermentation process integrated with cell recycling and pervaporation. 

Finally, main findings of this study are summarized in the Conclusions section. 

7.2 Modeling of Three-stage Fermentation Process Integrated with Cell 

Recycling and Pervaporation  

A schematic diagram of the three-stage fermentation process coupled with cell 

recycling and pervaporation is presented in Figure 7.1; important quantities are also 

shown in this figure. Three fermentors are placed in series, and feed enters in the first 
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fermentor. Here, dilution rate (= flow rate/volume of each fermentor) is used to 

represent different flow rates. For example, dilution rate at the inlet of the first 

fermentor is: D1,i = [Feed, m
3
h

-1
]/[VF, m

3
]. Volume of each fermentor is taken to be 

257.4 m
3
 (Nandong et al., 2006). A small part of mother liquor from a fermentor goes 

directly to the next fermentor while remaining mother liquor goes through a cell 

separator. A cell separator is used after each fermentor to separate the cell mass; the 

separated cell mass contains small amounts of substrate and ethanol, and is recycled it 

back to the fermentor. Yeast (cell mass) flocculates at a fixed temperature (42 
0
C for 

pLNH33; Chen and Wang, 2010b) and settles down at the bottom of the cell 

separator.  

In this work, external pervaporation unit is used to remove ethanol continuously 

from the fermentor broth; cell mass is separated from the mother liquor before it 

enters the pervaporation unit. If required, multiple external pervaporation units (NMk) 

can be used with each fermentor. Volume and area of each external pervaporation unit 

are assumed to be 0.16 m
3
 and 24 m

2
 respectively (Sander and Soukup, 1988). A 

vacuum pump is required on the permeate side (i.e., sweep fluid) of the pervaporation 

unit which can maintain a pressure of about 1-2 kPa; ethanol is condensed on a cold 

surface maintained at -40 
0
C temperature (Mori and Inaba, 1990). Further, Walsh and 

Bungay (1990)
 
designed a shallow-depth yeast settler, which would be huge in size 

for industrial capacity although cheaper material can be used to construct it. 

Nowadays, centrifuge is used to separate the cell mass from fermentor broth, which 

increases ethanol production cost (Nandong et al., 2006).      

The mathematical model of the three-stage fermentation process integrated with 

cell recycling and pervaporation is developed based on the models discussed in Chen 

and Wang (2010b) and Mahecha-Botero et al. (2006). Perfect mixing is assumed in 
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the fermentor and on both sides of perm-selective membrane in external 

pervaporation units. As volume of each fermentor is fixed and ethanol is continuously 

removed from the fermentors, the dilution rate for the second and third fermentors 

will be different from the dilution rate of the first fermentor. Equation 7.1a (below) 

represents the dilution rates at the outlet of all three fermentors where the term a(pk-

PMo,k) is the rate of ethanol removal (kg/h) in the k
th

 stage pervaporation unit. The 

material balances for cell mass, glucose, xylose and ethanol around stage 1 

(fermentor-1, cell separator-1 and pervaporation unit-1) are given by equations 7.1b-

7.1f respectively. Equation 7.1f represents the ethanol balance on the sweep fluid side 

of the external pervaporation module. Similarly, equations 7.1g-7.1p describe 

different material balances around the second and third stages. Equation 7.1q relates 

inlet and outlet flow rates on sweep fluid side of k
th

 stage pervaporation unit. 

Significance of symbols in all these model equations is described after Equation 7.1q. 

 

Figure 7.1: A schematic diagram of a three-stage fermentation process wherein each 

fermentor is coupled with cell settler and pervaporation unit 
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 (7.1a) 

Stage – 1 (Fermentor-1, Cell settler-1 and Pervaporation unit-1) 

                                          (7.1b) 

                                                       (7.1c) 

                                                           (7.1d) 

                       
 

  
                              (7.1e) 

                                                 (7.1f) 

 Stage – 2 (Fermentor-2, Cell settler-2 and Pervaporation unit-2) 

                                                             (7.1g) 

                                                                (7.1h) 

                                                                (7.1i) 

                                            
 

  
                    

                                                           (7.1j-k) 

Stage – 3 (Fermentor-3, Cell settler-3 and Pervaporation unit-3) 

               ζ
 
                     ζ

 
                      (7.1l) 

               ζ
 
                      ζ

 
                      (7.1m) 

               ζ
 
                      ζ

 
                       (7.1n) 
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               ζ
 
                    ζ

 
     

 

  
                    

                                                           (7.1o-p) 

             
           

 
              (7.1q)   

In the above equations, Dk,i and Dk,o (1/h) are respectively the inlet and outlet dilution 

rates for k
th

 stage. xk, sg,k, sx,k and pk are respectively cell mass, glucose, xylose and 

ethanol concentration (kg/m
3
) in k

th
 stage fermentor. bk and sf,k are bleed ratio and 

substrate concentration in feed (kg/m
3
) for k

th
 stage. qMi,k and qMo,k are respectively 

inlet and outlet flow rates (m
3
/h) on sweep fluid side of k

th
 stage pervaporation unit. 

pMi,k and pMo,k are respectively inlet and outlet ethanol concentrations (kg/m
3
) on the 

sweep fluid side of k
th

 stage pervaporation unit. VM.k is the volume (m
3
) of k

th
 stage 

pervaporation unit (on the sweep fluid side) while VF is the volume (m
3
) of each 

fermentor.   

λ is the mass fraction of glucose in substrate (i.e., glucose and xylose) in the feed 

and ρ is the density (kg/m
3
) of ethanol. ζx, ζs and ζp are cell discard/separation factor,  

substrate condensed factor and ethanol condensed factor respectively (ζx = xe,1/x1, ζs = 

sge,1/sg,1 = sxe,1/sx,1 and ζp = pe,1/p1; see Figure 7.1). These factors decide the degree of 

separation of cell mass, substrate and product in the cell separator; this study uses 

values of these factors reported in Chen and Wang (2010b). a is the permeation 

coefficient (i.e., a = AMP where AM m
2
 is the membrane surface area and P m/h is the 

membrane permeability). The rate expressions for cell mass growth (rx,k), glucose 

consumption (rsg,k), xylose conversion (rsx,k) and ethanol production (rp,k) are 

presented in Chapter 6 (Section 6.8.2). The kinetic parameters used are taken from 

Krishnan et al. (1999), and these are also presented in Table 6.5. Similar to Chen and 

Wang (2010b), it is assumed that the feed contains 65% glucose and the remaining is 
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xylose (i.e., λ = 0.65). In this work, PMi,k = 0 kg/m
3
, P = 0.1283 m/h, ζx = 0.01 and ζs = 

ζp = 1.01.  

Chen and Wang (2010b) have presented a model for three-stage fermentation 

integrated with cell recycling and inter-stage extraction (i.e., extractive fermentation). 

In this integrated process, a mixture of glucose and xylose is converted into ethanol. 

Chapter 6 discusses extractive fermentation process and its model (see Section 6.8.2). 

The process model for extractive fermentation process can be easily reduced to 

process model for three-stage fermentation process integrated with cell recycling 

only; this can be done by putting extraction efficiency equal to zero for each stage of 

extractive fermentation.              

7.3 Multi-objective Optimization Problem Formulation 

7.3.1 Three-stage Fermentation Process Integrated with Cell Recycling   

In this MOO study, ethanol productivity and xylose conversion are used as the 

objectives, for all cases. As mentioned earlier, ethanol productivity and substrate 

conversion ensure efficient utilization of production capacity and substrate 

respectively. As glucose conversion is higher than xylose conversion, it is not 

considered as an objective. Ethanol productivity is defined as ethanol production rate 

per unit volume of all fermentors [kg/(m
3
.h)]. Table 7.1 summarizes the MOO 

problem for this case; decision variables for MOO are dilution rate (D) for the first 

fermentor, substrate concentration in feed (sf,1), bleed ratios (bk, cell mass recycling) 

for all fermentors.  
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Table 7.1: MOO problem formulation for three-stage fermentation integrated with 

cell recycling  

Objective 

functions 

Ethanol productivity, 
 

 
           ζ

 
                                                                        

Xylose conversion,    
           ζ      

   λ     
  

Decision 

variables 

0.3 ≤ D ≤ 0.8 [1/h]  

40 ≤ sf,1 ≤ 130 [kg/m
3
]  

0.1 ≤ bk ≤ 0.2,  k = 1, 2, 3  

Constraints Same as defined in Table 6.6 (Chapter 6) 

7.3.2 Three-stage Fermentation Process Integrated with Cell Recycling and 

Pervaporation 

In this case, Table 7.2 provides details of the MOO problem. The decision 

variables for MOO are dilution rate (D1,i) for the first fermentor, substrate 

concentration in feed (sf,1), bleed ratios (bk, cell mass recycling) for all fermentors, 

number of pervaporation units used with each fermentor (NMk), and inlet sweep fluid 

flow rates (qMi,k). In addition to mass balances (Equations 7.1b to 7.1p), positive 

values of ethanol productivity of each stage (πk), glucose and xylose conversions (χg,k 

and χx,k) in each stage are physical constraints. Other constraints are total sugar supply 

(sT) and limits on the residual glucose and xylose concentrations (sg,3 and sx,3) in the 

mother liquor from the third fermentor. Residual glucose and xylose concentrations 

higher than a desired limit cause fouling inside the distillation column.  

 

 



Chapter 7: Modeling & MOO of Fermentation Processes 

142 

 

Table 7.2: MOO problem formulation for three-stage fermentation process integrated 

with cell recycling and pervaporation  

Objective 

functions 

Ethanol productivity, 

    

 
           ζ

 
     

                                    

   
  

Xylose conversion,    
           ζ      

   λ     
  

Decision 

variables 

0.3 ≤ D1,i ≤ 0.8 [1/h]  

40 ≤ sf,1 ≤ 130 [kg/m
3
]  

0.1 ≤ bk ≤ 0.2  

10 ≤ NMk ≤ 35  

50 ≤ qMi,k ≤ 160 [m
3
/h] for k = 1, 2 and 3 

Constraints 

π                  ζ
 
       

π                  ζ
 
                   ζ

 
       

π                  ζ
 
                   ζ

 
    

χ
   

   
           ζ      

λ    
   ;    χ

   
   

           ζ      

   λ     
    

χ
   

   
           ζ      

           ζ      
   ;    χ

   
   

           ζ      

           ζ      
    

χ
   

   
           ζ      

           ζ      
   ;    χ

   
   

           ζ      

           ζ      
    

sg,3 < 0.1 kg/m
3
  

sx,3 < 1 kg/m
3 

D1,i sf,1/3 < sT kg/(m
3
.h)  

   
           ζ      

λ    
        

Mass balances (Equations 7.1b to 7.1p)  
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7.3.3 Three-stage Fermentation Process Integrated with Cell Recycling and 

Extraction 

The MOO problem formulation for three-stage fermentation process integrated 

with cell recycling and inter-stage extraction is given in Table 7.3. In this case, 

decision variables and their ranges are same as in three-stage fermentation process 

integrated with cell recycling only.   

Table 7.3: MOO problem formulation for three-stage fermentation process integrated 

with cell recycling and inter-stage extraction  

Objective 

functions 

Ethanol productivity, 
 

 
           ζ

 
            

ζ  

     
  

 
                                                                        

Xylose conversion,    
           ζ      

   λ     
  

Decision 

variables 

0.3 ≤ D ≤ 0.8 [1/h] 

40 ≤ sf,1 ≤ 130 [kg/m
3
]  

0.1 ≤ bk ≤ 0.2,  k = 1, 2, 3  

Constraints Same as defined in Table 6.6 (Chapter 6) 

7.4 Multi-objective Differential Evolution    

Chen and Wang (2010b) have optimized the multi-stage fermentation process 

with cell recycling and extraction, using fuzzy approach, which requires selection of 

fuzzy boundaries for different objectives and constraints. Finally, they have solved 

fuzzy MOO problem as a single objective optimization problem using hybrid 

differential evolution (HDE) that requires additional knowledge about the relative 

importance of objectives. On the other hand, many MOO generating techniques have 

been developed and widely applied in Chemical Engineering and related areas 
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(Masuduzzaman and Rangaiah, 2009). These techniques generate the Pareto-optimal 

front in a single run, and do not require any additional information about objective 

space or problem solution. Hence, it will be better and desirable to use one of these 

techniques for optimizing the multi-stage integrated fermentation process.    

In the present work, a multi-objective differential evolution (MODE) algorithm 

is used to solve different MOO problems. This algorithm is similar to GDE3 

(Kukkonen and Lampinen, 2007). In this work, crowding distance is used to calculate 

the crowdedness of non-dominated solutions. Further, the performance of GDE3 and 

NSGA2_SBX algorithms are better compared to six other MOO algorithms on two-, 

three- and five-objective test functions (see Table 2.2 for performance of different 

multi-objective DE algorithms). MODE algorithm has been implemented using Visual 

Basic Application in MS-Excel worksheets. Objectives and constraints are calculated 

using Excel worksheet and other features and functions available in Excel. A 

flowchart of the MODE algorithm is presented in Figure 7.2. Inequality constraints 

are handled by constrained-dominance (also known as feasibility) approach of Deb et 

al. (2002). The search procedure is repeated for the specified maximum number of 

generations (MNG).   
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Figure 7.2: Flowchart of the MODE algorithm

Randomly initialize population, and evaluate values of objective 

functions and constraints of all individuals in the population

Set generation no., G = 1

Non-dominating sorting of combined population 

and calculate crowding distance, if required

Stop

Start Set values of Cr, F, N, MNG

Generate a new mutant individual 

and then a trial individual

Check the trial individual for violation of decision 

variable bounds; if there is any violation, randomly re-

initialize that decision variable inside the bounds

Store the trial solution in child population

Selection of the population for next generation

Set individual no., n = 1

Is n < N?
Yes

No

Combine parent and child populations

Is G < MNG?

No

G = G + 1

n = n + 1

Evaluate values of objective functions and 

constraints of the trial individual

Yes
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7.5 Optimization Results 

7.5.1 MODE Algorithm with MNG 

The values of MODE parameters used in this study are: population size = 100 

(200 for pervaporation case), crossover probability (Cr) = 0.3, mutation rate (F) = 0.5 

and maximum numbers of generations (MNG) = 200. These values are selected based 

on the preliminary testing. The steady state model (equations 7.1b to 7.1p) of the 

process has to be solved numerically to calculate the values of objective functions and 

constraints for each individual (decision variable vector) provided by the MODE 

algorithm. In this work, Solver in MS-Excel has been used to solve the steady state 

model equations by minimizing sum of squares. The computational time taken to 

optimize the three-stage fermentation process integrated with cell recycling and 

pervaporation is about 4.5 hours on an Intel Core i5 Computer (Dual CPU of 2.4 GHz 

each, RAM 8 GB, 64-bits). MFlop/s (million floating point operations per second) on 

this computer is 594 for the LINPACK benchmark program for a matrix of order 500 

(http://www.netlib.org/benchmark/linpackjava/).     

7.5.1.1 Fermentation with Cell Recycling    

Initially, a multi-stage fermentation process with cell recycling but without 

extraction or pervaporation unit (base case) has been optimized for ethanol 

productivity and xylose conversion simultaneously. Figure 7.3 shows the optimization 

results obtained for the three-stage fermentation process coupled with cell recycling 

only. In this case, dilution rate for first fermentor, substrate concentration in feed and 

bleed ratios for different stages are the decision variables (see Table 7.1). The 

obtained Pareto-optimal front for the „base case‟ is well distributed, which means 

MODE performs well and is successful for this problem. As expected, ethanol 

http://www.netlib.org/benchmark/linpackjava/
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productivity and xylose conversion are conflicting in nature (i.e., an increase in 

ethanol productivity is accompanied by decrease in xylose conversion). The obtained 

Pareto-optimal front in Figure 7.3(a) can be divided into two parts: (i) a steep increase 

in ethanol productivity (2.6-5.5 kg/(m
3
.h)) with little decrease in xylose conversion, 

and (ii) a linear change between ethanol productivity (5.5-7 kg/(m
3
.h)) and xylose 

conversion. The fast improvement in ethanol productivity in the first part is due to 

change in substrate concentration in feed and then dilution rate (Figures 7.3b and 

7.3c). In the second part, mainly dilution rate is affecting both the objectives. All the 

bleed ratios are nearly constant at their lower bounds (i.e., 0.1), and so these are not 

shown in Figure 7.3 for brevity.     

In general, effect of decision variables on the objectives is non-linear for 

application problems, and decision variables may also have complicated interaction. 

In the „base case‟ optimization, substrate concentration is first increasing and then 

decreasing (see Figure 7.3c). Hence, a non-dominated solution, shown as “▲” in 

Figure 7.3, is selected for additional analysis. Now, value of substrate concentration 

for this solution is replaced by 85 kg/m
3
 (see point “×” in Figure 7.3c); the obtained 

solution corresponding to the modified decision variable vector is shown as “×” in 

Figure 7.3(a). The newly obtained solution “×” is non-dominated with “▲” solution; 

but it is dominated by several other non-dominated solutions on the Pareto-optimal 

front (see Figure 7.3a). In conclusion, fast increase in ethanol productivity can be 

achieved by increase in substrate concentration, until un-reacted substrate becomes 

large. Then, dilution rate increases to increase ethanol productivity while substrate 

concentration decreases to achieve higher xylose conversion.      
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7.5.1.2 Fermentation with Pervaporation  

Pareto-optimal front obtained for the three-stage fermentation process integrated 

with cell recycling and pervaporation is shown in Figure 7.4(a) (pervaporation case). 

In this case, ethanol productivity has improved significantly compared to the „base 

case‟; maximum value of productivity has increased from 7 to 13.3 kg/(m
3
.h). Further, 

xylose conversion has also improved, and it is close to one. Figure 7.4(a) also presents 

Pareto-optimal front obtained after 150 generations; both Pareto-optimal fronts (i.e., 

after 150 and 200 generations) are practically comparable which confirm global 

optimality of the obtained solutions.   

 

(a) (b) (a) 

(c) 

Figure 7.3: Selected optimization 

results for the three-stage fermentation 

process coupled with cell recycling 

only (base case, no extraction or 

pervaporation)  
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Figure 7.4: Selected optimization results for the three-stage fermentation process 

integrated with cell recycling and pervaporation (pervaporation case) 

(a) 

(c) 

(b) 

(d) 

(e) (f) 

(g) (h) 
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Variations in dilution rate, substrate concentration in feed and inlet sweep fluid 

flow rate for 3
rd

 stage (see Figures 7.4b, 7.4c and 7.4h) are mainly contributing to the 

variation in objectives (Figure 7.4a). Both dilution rate (D1,i) and substrate 

concentration in feed (sf,1) are varying over small range; D1,i is varying between 0.5 to 

0.6, and sf,1 is near to its upper bound. Number of pervaporation units used with the 

first and third fermentors (NM1 and NM3) is near to its upper and lower bound 

respectively (i.e., 35 and 10), while NM2 is scattered near its upper bound (i.e., 35 in 

Figure 7.4d). Large amount of feed is converted to ethanol in first fermentor, and so 

high number of pervaporation units (i.e., NM1) is required to reduce the product 

inhibition in first stage. In the third fermentor, lesser amount of feed is converted to 

ethanol, and so fewer pervaporation units are required in the third stage. Bleed ratio 

for the first fermentor (b1) is scattered near its upper bound (i.e., 0.2 in Figure 7.4e) 

while bleed ratio for second and third fermentors (b2 and b3) is close to its lower 

bound (i.e., 0.1). In this case, bleed ratio for the first stage is higher compared to „base 

case‟ (i.e., b1 = 0.1). Here, high bleed ratio provides larger amount of un-reacted feed 

to the second stage fermentor, which has better performance due to the presence of 

pervaporation units, compared to the „base case‟. For brevity, variations in variables 

NM1, NM3, b2 and b3 are not presented in Figure 7.4. Sweep fluid flow rate for the 

first two stages (qMi,1 and qMi,2) is nearly constant at its upper bound (i.e., 160 m
3
/h), 

while qMi,3 is varying between 50 to 160 kg/m
3
 (Figures 7.4f-h).    

7.5.1.3 Fermentation with Inter-stage Extraction  

Detailed mathematical model for the three-stage fermentation process integrated 

with cell recycling and inter-stage extraction (extraction case) is presented in Chen 

and Wang (2010b). 2-ethyl-1-hexanol (boiling point of 184.6 
0
C) is used as the 
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solvent for ethanol extraction from fermentor broth (Offeman et al., 2005). It is 

assumed that the solvent can recover 87.4% of ethanol present in the feed (Chen and 

Wang, 2010b). In this case, decision variables and their ranges are same as in the 

„base case‟. In the extraction case, dilution rates for all the stages are fixed (similar to 

Chen and Wang, 2010b), and so volume of the 2
nd

 and 3
rd

 fermentors will vary due to 

fermentation and consequent density variation. Volume of the first fermentor is 257.4 

m
3
, same as in „pervaporation case‟.     

Pareto-optimal front obtained for „extraction case‟ using MODE algorithm is 

shown in Figure 7.5(a). Addition of inter-stage extraction improves performance of 

the three-stage fermentation process for both ethanol productivity and xylose 

conversion. The maximum value of ethanol productivity (~13.46 kg/(m
3
.h)) is nearly 

equal to that of pervaporation case, but the ranges for both the objectives are wider 

compared to „pervaporation case‟ (Figures 7.5a and 7.4a). In the optimization of 

extraction case, optimal values of dilution rate and substrate concentration in feed 

vary with the objectives (Figures 7.5b and 7.5c). On the other hand, all bleed ratios 

are nearly constant at their lower bounds (i.e., 0.1).  

The obtained Pareto-optimal front in the extraction case shows some discontinuity 

near ethanol productivity of 5 kg/(m
3
.h). In order to ensure the global optimality of 

the obtained solution, „extraction case‟ has been run several times with the bleed 

ratios fixed at their lower bounds (as these are nearly constant); practically, there is no 

difference between solutions obtained in different runs. This indicates that MODE 

algorithm has converged to the global Pareto-optimal front. Further, a decision 

variable vector (shown as “×” in Figures 7.5b and 7.5c) is chosen between the 

decision variable vectors corresponding to two non-dominated solutions at the ends of 

the discontinuity (shown as “▲” in Figure 7.5); the obtained solution for this set of 
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decision variables vector (shown as “×” in Figure 7.5a) is very slightly dominated by 

one of the solutions at the discontinuity and five other nearby non-dominated 

solutions in the Pareto-optimal front (e.g., ethanol productivity and xylose conversion 

at point “×” are respectively 5.478 and 0.9995 compared to 5.787 and 0.9996 for one 

dominating solution). Several other combinations of decision variables are also tried, 

and it is found that the corresponding solutions for most of them are very slightly 

dominated by several non-dominated solutions on the Pareto-optimal front. So, the 

discontinuity in Figure 7.5 is probably due to the definition of dominance, accuracy of 

optimization calculations, and complex relationships among objectives and decision 

variables.  

 

       

 

 

(a) 

(c) 

(b) 

Figure 7.5: Selected optimization 

results for the three-stage 

fermentation process integrated 

with cell recycling and inter-stage 

extraction (extraction case) 
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7.5.2 Use of I-MODE Algorithm 

In the previous sub-section, MODE (with MNG) is used to obtain the Pareto-

optimal fronts for different cases. Here, I-MODE is used to solve the above three 

optimization problems. It has improvement-based termination criterion and taboo list 

(see Chapter 3 for more details). In this study, values of termination parameters (δGD = 

0.0003 & δSP = 0.1) and taboo list (= 0.01) are based on the recommendation in 

Chapter 3. The obtained Pareto fronts after termination generation are compared 

against the Pareto fronts obtained in above sub-section (MODE and MNG = 200). In 

I-MODE, DE parameters are self-adapted, whereas population size of 100 is used for 

all problems. To avoid indefinite looping, termination criterion based on the MNG (= 

200) is also added in I-MODE.  

Figure 7.6(a) shows non-dominated solutions obtained for three-stage 

fermentation process integrated with cell recycling; here, both productivity and xylose 

conversion are simultaneously maximized. It can be seen that termination criterion is 

successfully terminating the search near to the solution; non-dominated solutions 

obtained after GT (= 57) are closer to those obtained in the previous sub-section. 

Thus, termination criterion avoids unnecessary computations with little compromise 

in the solution quality. In the case of three-stage fermentation process integrated with 

cell recycling and extraction or pervaporation, same objectives are considered. 

Figures 7.6(b) and 7.6(c) show non-dominated solutions obtained for these two 

fermentation processes. In both the cases, termination criterion is successful in 

terminating I-MODE algorithm at the right generations. The non-dominated solutions 

obtained after termination generations (GT = 186 and 67) are near to the solutions 

presented in the previous sub-section (MODE with MNG = 200), and these are also 

well distributed along the Pareto-optimal fronts. In the case of extractive 
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fermentation, termination criterion saves numerous generations (GT = 67), whereas, 

for fermentation with pervaporation, search terminates (GT = 186) just before MNG 

(= 200).     

  

  

7.6 Comparison of Extraction and Pervaporation for the Three-stage 

Fermentation Process   

For „pervaporation case‟, optimal value of dilution rate is changing between 0.5 

and 0.6 (Figure 7.4b). On the other hand, for extraction case, it generally increases 

with ethanol productivity and reaches to a maximum of 0.71 (Figure 7.5b). Substrate 

concentration in feed for „pervaporation case‟ is varying over a small range near to its 

upper bound (Figure 7.4c).  On the other hand, for „extraction case‟, substrate 

concentration in feed is near to its upper bound except for a few solutions at low 

Figure 7.6: Non-dominated solutions 

obtained for simultaneous 

maximization of ethanol productivity 

and xylose conversion: (a) 

fermentation with cell recycling only, 

(b) fermentation with pervaporation, 

and (c) extractive fermentation  

 

(a) (b) 

(c) 
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productivity having sf,1 between 70 to 100 kg/m
3
 (Figure 7.5c). In both the cases, 

xylose conversions are comparable (see Figures 7.4a and 7.5a).  

It is difficult to compare the performance of both pervaporation and extraction 

cases by seeing the obtained Pareto-optimal fronts. So, a detailed comparison between 

product streams of both arrangements (i.e., extraction and pervaporation cases) has 

been made for one optimal solution; this includes comparison of flow rates and 

ethanol concentrations. A solution with maximum productivity (i.e., 13.29 kg/(m
3
.h)) 

has been picked from the „pervaporation case‟ for comparison with a solution of the 

same productivity from the „extraction case‟ (see Table 7.4). The optimum 

temperature for fermentation is 30-35 
0
C (Krishnan et al., 1999) and cell separators 

operate at 42 
0
C (Chen and Wang, 2010b). Amount of solvent (2-ethyl-1-hexanol) 

used in the inter-stage extraction, for the selected optimal solution, is calculated using 

liquid-liquid extraction (LLE) column in Aspen Hysys V-7.2; NRTL thermodynamic 

model has been used for this system.  

Distillation is often required to recover high purity ethanol from solvent, and is 

highly energy intensive. Pervaporation process is more energy efficient compared to 

distillation for high purity ethanol recovery (Bek-Pedersen et al., 2000). In both the 

cases, part of ethanol is recovered from fermentation broth (i.e., ethanol-water 

mixture from Stage-F3). From Table 7.4, it can be seen that Stage-F3 flow rate for the 

„extraction case‟ is larger (i.e., 161.8 m
3
/h) compared to the „pervaporation case‟ (i.e., 

146.9 m
3
/h), and ethanol concentration is lower in the Stage-F3 product stream of the 

former case (extraction - 10.8 kg/m
3
, pervaporation - 31.4 kg/m

3
). Hence, ethanol 

recovery from the fermentation broth of „extraction case‟ is more expensive compared 

to „pervaporation case‟.     
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Table 7.4: Values of flow rates and ethanol concentration for different product 

streams in extraction and pervaporation cases; * - these are not the ethanol product 

streams.  

(A) Extraction case: ethanol productivity = 13.298 kg/(m
3
.h) & xylose conversion  

= 0.978 

(D1,i = 0.69 h
-1

, sf,1 = 129.88 kg/m
3
, b1 = b2 = b3 =  0.1)  

Extraction section Stage-E1 Stage-E2  

Ethanol removed by inter-stage extraction (kg/h) 

Ethanol conc. in solvent at extractor outlet (kg/m
3
) 

- LLE column with single stage 

- LLE column with 5 stages 

- LLE column with 10 stages 

- LLE column with 15 stages  

5280.4 

 

8.7 

52.5 

63.4 

66.7 

2920.8 

 

4.9  

29.5 

35.4 

37.1 

 

Fermentation section Stage-F1* Stage-F2* Stage-F3 

Mother liquor flow rate at fermentor inlet (m
3
/h) 

Mother liquor flow rate at fermentor outlet (m
3
/h) 

Ethanol conc. in mother liquor at fermentor outlet 

(kg/m
3
) 

- 

174.8 

37.3 

168.1 

166.3 

21.4 

162.7 

161.8 

10.8 

(B) Pervaporation case: ethanol productivity = 13.295 kg/(m
3
.h) & xylose conversion 

= 0.979 

(D1,i = 0.59 h
-1

, sf,1 = 129.55 kg/m
3
, b1 = 0.199, b2 = b3 = 0.1, qMi,1 = 158.18 m

3
/h,  

qMi,2 = 159.56 m
3
/h,  qMi,3 = 157.48 m

3
/h, NM1 = 35, NM2 = 33 and NM3 = 10) 

Pervaporation section Stage-P1 Stage-P2 Stage-P3 

Sweep fluid flow rate at outlet (m
3
/h) 

Ethanol conc. in sweep fluid at outlet (kg/m
3
) 

160.3 

10.3 

161.9 

12.0 

158.2 

12.7 

Fermentation section Stage-F1* Stage-F2* Stage-F3 

Mother liquor flow rate at fermentor outlet (m
3
/h) 

Ethanol conc. in mother liquor at fermentor outlet 

(kg/m
3
) 

149.9 

25.7 

147.6 

30.1 

146.9 

31.4 
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In „extraction case‟, remaining ethanol (i.e., from Stage-E1 and Stage-E2) has to 

be recovered from solvent. Amount of solvent and concentration of ethanol in the 

extract stream depends on the number of stages used in the LLE column (Table 7.4). 

As concentrations of ethanol in solvent streams with single-stage LLE columns are 

small (i.e., 8.7 and 4.9 kg/m
3
), ethanol recovery from the solvent will be expensive. 

Hence, multi-stage LLE is better for extracting ethanol from fermentation broths in 

first and second stages. In „pervaporation case‟, ethanol is recovered continuously 

from sweep fluid leaving from Stage-P1, Stage-P2 and Stage-P3 using a cold surface; 

purity of recovered ethanol will be very high in this case. In „extraction case‟, ethanol 

is not removed continuously from the fermentor; rather it is removed after 

fermentation. 

Finally, for the same value of productivity (i.e., 13.29 kg/(m
3
.h)), the „extraction case‟ 

requires higher feed flow rate (i.e., dilution rate = 0.69) compared to the 

„pervaporation case‟ (i.e., dilution rate = 0.59). Substrate concentration in feed is 

comparable in both the cases (pervaporation: 129.88 kg/m
3
, extraction: 129.55 kg/m

3
). 

Hence, the „pervaporation case‟ is better than the „extraction case‟ as it requires less 

amount of feed with nearly same substrate concentrations in feed for the same ethanol 

productivity. Further, cost of recovery and purification of ethanol is expected be 

cheaper for the „pervaporation case‟.     

7.7 Ranking of Non-dominated Solutions obtained for Fermentation with 

Pervaporation 

The selection of one or two solutions from the obtained Pareto-optimal front 

requires additional knowledge about the process (i.e., preference of decision maker). 

Sometimes, the Pareto-optimal front has sudden change in one of the objective, while 

remaining objectives have small variations; this type of trend can be used to select a 
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preferred solution. If the Pareto-optimal front is smooth, then net flow method (NFM) 

or rough set method can be used to rank the set of non-dominated solutions (Thibault, 

2009). Here, the former is chosen to rank the non-dominated solutions obtained for 

three-stage fermentation process integrated with cell recycling and pervaporation 

(Figure 7.4a).  

In NFM, decision maker decides relative importance or weight of each objectives 

(wm; ∑wm = 1), and also the indifference (Qm), preference (Pm) and veto (Vm) 

thresholds (see Table 7.5). Qm is the range of each objective for which the decision 

maker is not able to decide the favorite solution from a pair of non-dominated 

solutions. If the difference between two solutions for a given objective exceeds Pm, 

the decision maker should be able to select one solution with the better objective 

value. Finally, if difference between two solutions for a particular objective is more 

than Vm, then solution with worse objective should be banned. The three threshold 

values for m
th

 objective should be such that: 0 ≤ Qm ≤ Pm ≤ Vm. In NFM, concordance 

and discordance indices are calculated for each pair of non-dominated solutions, 

which are derived from user-supplied weights and three thresholds. After this, relative 

performance of each pair in the Pareto-optimal front is calculated (Thibault, 2009). 

Finally, the following equation is used to calculate the score for different non-

dominated solutions.    

Final ranking score = performance of i
th

 individual relative to remaining 

individuals - performance of remaining individuals relative to i
th

 individual   (7.2) 

Extreme values and range of each objective are presented in Table 7.5; Qm, Pm, 

and Vm values are respectively 10%, 20% and 80% of objective range (Lee and 

Rangaiah, 2009). Figure 7.7 presents best 20 non-dominated solutions from the 
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solution set for three different weight combinations. Preferred (or top ranked) non-

dominated solutions, using different weights, do not cover the entire range of the 

Pareto-optimal front, rather they are concentrated in different regions. The obtained 

Pareto-optimal front can be divided into three parts (see dashed line in Figure 7.7 for 

partition); the preferred non-dominated solutions using different weights are near to 

the edges of Pareto-optimal front (or both ends of middle part). As expected, non-

dominated solutions with 0.25 and 0.75 weights for ethanol productivity are more in 

the left and right parts, respectively. Preferred non-dominated solutions are near to the 

ends of middle part, for equal weights for both objectives (i.e., wm = 0.5 each). 

Sometimes, some non-dominated solutions may have same rank using two different 

sets of weights, as can be seen in Table 7.6 which presents top 10 non-dominated 

solutions for three different weight combinations. Finally, based on the relative 

importance and the trade-off between the two objectives, the top ranked solution can 

be chosen by the decision maker for implementation.    

 

Figure 7.7: Ranking of Pareto-optimal front using NFM for pervaporation case; top 

20 non-dominated solutions with three sets of weights are presented 
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Table 7.5: Parameters in the net flow method for ranking non-dominated solutions 

obtained in the pervaporation case (Figure 7.4a) 

 Ethanol productivity Xylose conversion 

Goal Max Max 

Minimum value 11.171 0.9786  

Maximum value 13.295 0.9934 

Objective range 2.124 0.0148 

Weights (wm) 0.25, 0.5 or 0.75 0.75, 0.5 or 0.25 

Indifference threshold (Qm) 0.21 0.0015 

Preference threshold (Pm) 0.42 0.0030 

Veto threshold (Vm) 1.7 0.0118 

Table 7.6: Top 10 non-dominated solutions for pervaporation case using NFM;   

(EP - ethanol productivity in kg/(m
3
.h) and XC - xylose conversion)   

Rank 
wethanol productivity = 0.25 wethanol productivity = 0.5 wethanol productivity = 0.75 

EP XC EP XC EP XC 

1 12.128 0.992 13.108 0.986 13.108 0.986 

2 12.158 0.991 13.109 0.986 13.109 0.986 

3 12.133 0.991 13.124 0.986 13.124 0.986 

4 11.985 0.992 13.000 0.987 13.136 0.986 

5 12.130 0.991 12.951 0.987 13.142 0.985 

6 12.028 0.992 12.970 0.987 13.000 0.987 

7 12.208 0.991 12.208 0.991 13.005 0.987 

8 12.002 0.992 12.933 0.987 13.142 0.985 

9 11.989 0.992 12.933 0.987 13.155 0.985 

10 12.002 0.992 12.128 0.992 12.970 0.987 
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7.8 Conclusions   

This study optimizes a fermentation process with in-situ ethanol removal and cell 

recycling, and using glucose and xylose as the feedstock. For this, a three-stage 

fermentation process integrated with cell recycling and pervaporation, has been 

modeled and optimized for ethanol productivity and xylose conversion 

simultaneously. The MODE algorithm, implemented in MS-Excel environment, is 

used to generate the Pareto-optimal front. The obtained Pareto-optimal fronts give 

better insights and provide many alternatives with different ethanol productivity and 

substrate conversion. The obtained Pareto-optimal front for the three-stage 

fermentation integrated with cell recycling and pervaporation is well distributed; 

dilution rate for the first stage, substrate concentration in feed and sweep fluid flow 

rate for third stage mainly contribute to the Pareto-optimal front. High value of bleed 

ratio for first stage and low values of bleed ratios for last two stages are favorable for 

both ethanol productivity and xylose conversion.  

The performance of extraction and pervaporation units with a three-stage 

fermentation process coupled with cell recycling has been compared for ethanol 

productivity and xylose conversion. Addition of pervaporation unit with fermentors 

gives higher productivity and nearly same xylose conversion compared to extraction 

for the same amount of feed. Further, owing to ease of ethanol recovery, fermentation 

with pervaporation is better compared to fermentation with extraction. The 

improvement based termination criterion is able to terminate search (i.e., I-MODE) at 

the right generations. Finally, NFM is used to find the top 10 non-dominated solutions 

for the three-stage fermentation process integrated with cell recycling and 

pervaporation.  
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Chapter 8 

Multi-objective Optimization of a Bio-diesel Production 

Process
6
 

8.1 Introduction   

Vegetable oils are mixtures of triglycerides, which can be converted into a 

mixture of fatty acid methyl esters (FAME) by reaction with methanol (i.e., trans-

esterification). The product, FAME is the bio-diesel. The traditional bio-diesel 

processes use homogenous acid or alkali as catalyst for trans-esterification. Raw 

material cost is the major contributor to cost of bio-diesel. Waste cooking oils are 

cheaper than pure vegetable oils, but the former contain high amount of free fatty acid 

(FFA). The trans-esterification is more efficient and faster with an alkali catalyst 

compared to an acid catalyst, but it requires absence of FFA in the feed. FFA 

produces soap and water by reacting with an alkali catalyst; hence, alkali-catalyzed 

process cannot directly be used to produce bio-diesel from waste cooking oils. 

Canakci and Van Gerpen (2001) have combined the advantages of alkali- and acid-

catalyzed processes into a single process, where waste vegetable oil is first treated in 

the presence of an acid catalyst (i.e., esterification), and later bio-diesel is produced 

from treated oil using an alkali catalyst (i.e., trans-esterification). Heterogeneous 

catalyzed and supercritical processes are other processes to produce bio-diesel 

(Freedman et al., 1986; Lotero et al., 2005). Heterogeneous catalyzed process does 

not produce aqueous waste since catalyst can be easily separated from the reaction 

mixture.   

                                                           
6
 This chapter is based on the article: Sharma, S. and Rangaiah, G. P. (2012), Multi-objective 

optimization of a bio-diesel production process, Fuel, 103, pp. 269-277.  
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Zhang et al. (2003a) proposed four different processes, namely, alkali-catalyzed 

process using pure vegetable oil, alkali-catalyzed process using waste cooking oil, 

acid-catalyzed process using waste cooking oil and acid-catalyzed process using 

hexane extraction, to produce bio-diesel. Their study also reports operational and 

design details for these process flow-sheets. In another work, Zhang et al. (2003b) 

conducted an economic evaluation of the above four processes, and found that acid-

catalyzed process using waste cooking oil is more economical than others. Hass et al. 

(2006) developed a process model to estimate capital and operating costs of bio-diesel 

production using an alkali catalyst. West et al. (2008) analyzed four alternative 

processes: acid catalyzed, alkali catalyzed, heterogeneous acid catalyzed and 

supercritical, for producing bio-diesel from waste cooking oils, and also conducted 

economic analysis of these processes. Their study concluded that heterogeneous acid-

catalyzed process is superior to the other three processes, but it is still in the 

development phase. Recently, Zhang et al. (2012) presented a process scheme for 

producing bio-diesel from pure vegetable oil, and developed a plant-wide control 

structure.    

Several researchers have optimized the bio-diesel process for single objective. 

Ghadge and Raheman (2006) used response surface mythology to study the effect of 

methanol quantity, acid concentration and reaction time on FFA content reduction, 

and found that methanol quantity is the most prominent factor to reduce FFA content. 

Myint and El-Halwagi (2009) optimized four alternate alkali-catalyzed process flow-

sheets, with different separation sequences, for bio-diesel production. They concluded 

that the best flow-sheet is with the bio-diesel and glycerol separation first, followed 

by methanol recovery and finally water washing. Nicola et al. (2010) optimized two 

process variants of alkaline trans-esterification of refined vegetable oil for two 
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objectives: minimum energy consumption and better product quality, simultaneously. 

This process was simulated using ASPEN Plus, and a multi-objective genetic 

algorithm was used to optimize it. However, optimization of bio-diesel production 

process using waste cooking oil has not been studied for multiple objectives. Waste 

cooking oils have significant impact on the environment if they are disposed without 

re-use, and so their use to produce bio-diesel is attractive for both economic and 

environmental reasons.  

In this study, bio-diesel production process using waste cooking oil is simulated in 

Aspen Hysys; waste cooking oil is first treated in the presence of sulfuric acid (i.e., 

pre-treatment), followed by bio-diesel production from the treated oil using sodium 

hydroxide. Pre-treatment of waste cooking oil reduces FFA content below 1% by 

weight. The present study optimizes the design of bio-diesel process for three 

important objectives: maximum profit, minimum fixed capital investment and 

minimum organic waste. This chapter develops an economically attractive and 

environmentally acceptable bio-diesel production process using MOO approach. 

Effect of variation in waste cooking oil flow rate is also explored. Evolutionary multi-

objective optimization techniques have been popular for studying the trade-offs 

between conflicting objectives in many Chemical Engineering applications 

(Masuduzzaman  and Rangaiah, 2009). In this work, multi-objective differential 

evolution with taboo list (MODE-TL) is used to generate the Pareto-optimal front. 

Taboo list (TL) concept of taboo search has been incorporated with MODE to avoid 

revisiting the search space, which can reduce the number of objective function 

evaluations to obtain the global optimum (Srinivas and Rangaiah, 2007).  

Next section of this article develops bio-diesel production process using waste 

cooking oil. Section 8.3 discusses process simulation, esterification and trans-
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esterification kinetics, and thermodynamic model used. Section 8.4 describes MOO 

problem formulation for bio-diesel production, followed by a brief description of 

MODE-TL algorithm in Section 8.5. Section 8.6 discusses the obtained results for 

different optimization cases using MODE-TL algorithm. Section 8.7 presents design 

optimization results using I-MODE algorithm. The last section summarizes the main 

findings of this study.   

8.2 Process Development  

For this study, bio-diesel plant capacity is assumed to be 20,000 metric tons per 

annum, based on potential waste cooking oil availability in a city of 5 million people 

such as Singapore (Chua et al., 2010). This process can be divided into two sections: 

(1) pre-treatment of waste cooking oil using H2SO4 to reduce FFA content, and (2) 

production of bio-diesel from treated oil using NaOH. Alkali catalyst has been chosen 

for trans-esterification because it can give high yield in short time and bio-diesel 

production using alkali catalyst is in industrial practice 

(http://www.lurgi.com/website/Biodiesel.57.0.html?&L=1). The two sections of the 

bio-diesel process using waste cooking oil are discussed in more details below.   

8.2.1 Pre-treatment of Waste Cooking Oil 

Zhang et al. (2003a) have presented a process to reduce FFA content in waste 

cooking oil. In their process, FFA is reacted with methanol in the presence of acid 

catalyst. A liquid-liquid extraction (LLE) column is used to remove the catalyst from 

the reactor effluent using fresh glycerol. The extract phase from LLE has glycerol, 

catalyst and methanol while the raffinate phase has bio-diesel, oil and methanol. 

Subsequently, two component splitters are used in the study of Zhang et al. (2003a) to 

remove bio-diesel and oil from the extract phase, and water from the raffinate phase. 
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Methanol is separated from glycerol using a distillation column, and recycled to the 

reactor. The treated oil with some FAME and methanol goes to the downstream 

process where it is converted to bio-diesel. A similar flow-sheet without glycerol-

methanol separation has been used by Garcia et al. (2010); the focus of their study is 

on the prediction of bio-diesel properties.  

As a component splitter is not a physical unit, the flow-sheet in Zhang et al. 

(2003a) is not suitable for economic evaluation of the process. Additionally, it is 

found from process simulation that a three-phase separator is sufficient, instead of a 

LLE column, for removing the catalyst from the reactor effluent. Hence, in this study, 

bio-diesel process flow-sheet of Zhang et al. (2003a) is modified to avoid the 

component splitter and to use the three-phase separator. Waste cooking oil enters the 

esterification reactor, where FFAs react with methanol in the presence of sulfuric acid 

(see the upper half of Figure 8.1). The esterification reactor is maintained at 60
0
C and 

400 kPa; the reactant streams are pressurized to reactor pressure, and low pressure 

steam is used to maintain the reactor temperature. The effluent from CSTR0 preheats 

the waste cooking oil feed. After that, fresh glycerol is mixed with the effluent before 

it enters the three-phase separator at around 40
0
C. Two liquid phases are formed in 

the three-phase separator; the light phase contains bio-diesel, oil, methanol and water 

while the heavy phase contains glycerol, catalyst, methanol and water. Two 

distillation columns (i.e., G-C1 and BD-C1) are used to recover methanol from both 

outlet streams of the three-phase separator. Number of stages and operating pressures 

of these columns are shown in Figure 8.1. Columns are under vacuum to avoid 

decomposition of glycerol and biodiesel at high temperatures. Morais et al. (2010) 

have reported thermal decomposition temperature of 250 
0
C and 150 

0
C for pure 

FAME and glycerol respectively. Presence of methanol with FAME and glycerol 
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gives additional temperature margin to avoid deterioration of FAME and glycerol. 

The recovered methanol from both the columns is mixed, pressurized and recycled 

back to the esterification reactor. The bottom stream from BD-C1 column contains 

bio-diesel, oil and methanol; this stream is pressurized to about 4 bars and sent to the 

trans-esterification section. The bottom stream from G-C1 column has mainly 

glycerol, acid and water.  

8.2.2 Bio-diesel Production from Treated Waste Cooking Oil  

The alkali-catalyzed trans-esterification is performed at about 60
0
C. Pressure 

depends upon the type of reactor used: ambient pressure for batch reactor (Van 

Gerpen et al., 2004) and 4 bars for CSTR and PFR (Conneman and Fischer, 1998). 

Trans-esterification is mass-transfer controlled, and so excess methanol improves oil 

to bio-diesel conversion (Noureddini and Zhu, 1997). Molar flow ratio of methanol to 

triglycerides of more than 6 was used by Noureddini and Zhu (1997). Recently, 

Zhang et al. (2012) developed a process flow-sheet for bio-diesel from pure vegetable 

oil. In this work, this flow-sheet has been used for bio-diesel production from treated 

waste cooking oil (see the lower half of Figure 8.1). Continuous stirred tank reactors 

(CSTRs), distillation columns, three-phase separators, a neutralization reactor and a 

LLE column are the main units in this process. Three CSTRs are placed in series, and 

treated oil mixed with methanol and NaOH catalyst enters CSTR1. The effluent 

mixtures from CSTR1 and CSTR2 individually pass through the three-phase 

separators, where glycerol with some methanol is separated as the light phase.  

The heavy phase from the three-phase separators (S1-H and S2-H in Figure 8.1) 

goes to the next CSTR; this phase mainly contains bio-diesel, oil and methanol. 

Glycerol streams (i.e., light phases from three-phase separators 1 and 2) are mixed 
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together, and a distillation column (G-C2) is used to recover unreacted methanol for 

recycle. Another distillation column (BD-C2) is used to recover methanol from the 

effluent of CSTR3. Bottom product from this column contains mainly bio-diesel, and 

is treated in a neutralization unit to remove alkali catalyst, followed by a water wash 

column. The recovered methanol in the distillate stream of column BD-C2 is also 

recycled back to trans-esterification reactors. Since the recycled methanol should be 

free of water, water wash column is used after separating methanol from the reaction 

mixture.  

8.3 Bio-diesel Process Simulation  

The bio-diesel process using waste cooking oil (Figure 8.1) has been simulated in 

the Aspen Hysys V-7.2. Vegetable oil is a mixture of triglycerides of oleic, linoleic, 

linolenic, palmitic, stearic and other acids. Physical properties of different 

triglycerides present in vegetable oil are not much different (Myint and El-Halwagi, 

2009); hence, one of the triglycerides can be used to represent the vegetable oil. In 

this work, tri-olein (i.e., triglyceride of oleic acid) is considered as the triglyceride in 

the waste cooking oil. Physical properties of mono-, di- and tri-olein are taken from 

Aspen Plus database.  Franca et al. (2009) have studied the phase equilibrium of bio-

diesel + glycerol + methanol system, and found that experimental LLE data were 

satisfactorily predicted by the UNIQUAC model. Hence, in this work, this model has 

been used to predict the physical behavior such as liquid-liquid equilibria. 

Esterification and trans-esterification kinetics used are respectively from Berrios et al. 

(2007) and Noureddini and Zhu (1997).  
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Figure 8.1: Schematic of bio-diesel production plant using waste cooking oil as feed; 

see Table 8.2 for typical stream data in this process  
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Pressure in the esterification and trans-esterification reactors is fixed at 400 kPa 

while reactor temperatures are considered as decision variables in the optimization. 

As mentioned earlier, both glycerol and bio-diesel are sensitive to high temperature; 

hence, all distillation columns are under vacuum and consequently lower temperatures 

to avoid product deterioration. Neutralization reactor and water wash column are at 

atmospheric pressure. Information for different feed/reactant streams is taken from 

Zhang et al. (2003a) and Zhang et al. (2012). Figure 8.1 presents important 

information for all feed/reactant streams in the bio-diesel process. Feed waste cooking 

oil contains FFA (0.06 mole fraction) and tri-olein (0.94 mole fraction). 2,500 kg of 

waste cooking oil per hour is processed to produce bio-diesel.    

8.4 Multi-objective Optimization Problem Formulation   

Bio-diesel process is optimized for profit, fixed capital investment (FCI) and 

organic waste (i.e., methanol, glycerol, tri/di/mono-olein and oleic acid in the waste 

stream leaving the water wash column) from the process in Figure 8.1. Profit, which 

includes revenue and cost of manufacturing (COM), is used as one objective function 

(equation 8.5 given later). FCI and organic waste represent investment in the plant 

and potential environmental impact of the plant respectively. The decision variables 

for optimization are temperature and volume of each of the four CSTRs; these are the 

crucial process variables for conversion of feed to bio-diesel. The temperature range 

for each reactor is selected around the suggested operating temperature whereas 

volume range for each reactor is chosen based on the required residence time.  

Nicola et al. (2010) have combined purities of biodiesel and glycerol, and used it 

as one objective. The present study treats product purities as constraints as these have 

to satisfy the prevailing requirements (Table 8.1). To prevent product deterioration, 
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upper limits are imposed on the temperature at the bottom of all distillation columns 

(Morais et al., 2010). Further, a minimum temperature difference has to be maintained 

at both ends of heaters/reboilers and coolers/condensers (i.e., 25 
0
C for heating and 5

0 

C for cooling). Minimum temperature difference at both ends of a heat exchanger is 

constrained to be 10 
0
C. Initially, design of biodiesel process is optimized for two 

cases; Case A considers trade-off between profit and FCI, whereas trade-off between 

profit and organic waste is studied in Case B. After that, three cases of operation 

optimization are performed for a selected process from the design optimization. The 

operation optimization, Case C provides the basis for the next two cases (D and E), 

which consider the effect of variation in waste cooking oil feed rate on the process 

performance. Table 8.1 provides details on these optimization cases considered in this 

study. Constraints are same in all design and operation optimization cases.  

Fixed capital investment (FCI), also known as total module cost (CTM), is 

calculated using equations 8.1-8.3 below and related data from Turton et al. (2009) for 

each equipment in Figure 8.1. Equipment purchase cost (Cp) is calculated using 

equation 8.1 and cost data in Turton et al. (2009). If the required capacity of any 

process equipment is larger than the capacity range given in Turton et al. (2009), then 

multiple units of that equipment, with equal capacity, are assumed. Although this 

increases the capital cost, use of multiple units for costing is reasonable due to 

equipment availability. Further, this does not affect FCI much in this study since only 

some optimized solutions require two units of three-phase separators. If the 

distillation column diameter is less than 0.9 m, then the column is taken to be filled 

with ceramic packing; otherwise, trays are assumed in the column (West et al., 2008). 

Bare module cost (CBM) is calculated using equation 8.2; FBM is calculated based on 

the correlations and data given in Turton et al. (2009). 



Chapter 8: MOO of Bio-diesel Production Process 

 

172 

 

Table 8.1: Different optimization cases studied for bio-diesel production process 

Objective functions  

in different cases 

Decision variables and 

their bounds 

Constraints  

Design optimization 

A. Max. Profit, Min. FCI 

B. Max. Profit, Min. Organic waste 

(Waste cooking oil feed rate = 2,500 

kg/h in both the design cases) 

50 ≤ TCSTR0 ≤ 60
0
C; 

50 ≤ TCSTR1/2/3 ≤ 70
0
C; 

2 ≤ VCSTR0 ≤ 3 m
3
; 

5 ≤ VCSTR1/2/3 ≤ 10 m
3
. 

PurityBD ≥ 0.99; 

PurityG ≥ 0.95; 

TBD-C1 ≤ 250
0
C; 

TBD-C2 ≤ 250
0
C; 

TG-C1 ≤ 155
0
C; 

TG-C2 ≤ 155
0
C 

ΔTboth ends ≥ 5
0
C for 

coolers and 

condensers; 

ΔTboth ends ≥ 25
0
C for 

heaters and 

reboilers; 

ΔTboth ends ≥ 10
0
C for 

heat exchangers. 

Operation optimization 

C. Max. Profit, Min. Organic waste 

(waste cooking oil feed rate = 2,500 

kg/h) 

D. Max. Profit, Min. Organic waste 

(2,700 kg/h, i.e., 10% increase in 

waste cooking oil feed rate)  

E. Max. Profit, Min. Organic waste 

(2,000 kg/h, i.e., 20% decrease in 

waste cooking oil feed rate) 

50 ≤ TCSTR0 ≤ 60
0
C; 

50 ≤ TCSTR1/2/3 ≤ 70
0
C. 

In Figure 8.1, if the fluid inside an equipment contains acid, then stainless steel 

(SS) is used as material of construction (MOC). Accordingly, CSTR0, 3-phase 

separator-0, BD-C1, G-C1, BD-C2, G-C2, neut. reactor, P-1 are made of SS, whereas 

CS-shell/SS-tube is used as MOC for HE-1, condenser and reboiler of BD-C1. MOC 

for the remaining equipments is carbon steel. CTM is 1.18 times bare module cost of 

all equipments (equation 8.3). Chemical Engineering Plant Cost Index, CEPCI of 600 

is used to account for inflation.   
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log(Cp) = K1 + K2log(Capacity) + K3[log(Capacity)]
2
             (8.1) 

BM p BMall equipments
C = C F                  (8.2)  

FCI or CTM = 1.18CBM                 (8.3) 

Cost of manufacture (COM) is given by equation 8.4 Turton et al. (2009), and 

profit is the difference between the revenue (earned by selling the products: bio-diesel 

and glycerol) and COM (see equation 8.5).  

COM = 0.28FCI + 2.73(operating labor) + 1.23(utilities + raw material cost)  (8.4)  

Profit = Revenue - COM                 (8.5) 

Costs of waste cooking oil (= 0.39 $/kg), methanol (= 0.28 $/kg), glycerol (= 1.1 

and 1.15 $/kg for 95 and 99 wt.%, respectively), NaOH (= 0.75 $/kg for 37 wt.%), 

HCl (= 0.92 $/kg), and steam at 106 bar (= 0.032 $/kg) are obtained from our industry 

contacts. Cost of sulfuric acid (= 0.071 $/kg) is obtained from http://www.ICIS.com 

(access date: August, 2011), while cost of bio-diesel (= 1.464 $/kg) is taken from 

http://www.biofueloasis.com (access date: August, 2011). Finally, costs of (process, 

chilled and cooling) water, (low, medium and high pressure) steam and electricity are 

taken from Turton et al. (2009).       

8.5 Multi-objective Differential Evolution with Taboo List 

In many process optimization problems, evaluation of objectives and constraints 

at each trial solution requires simulation of the entire process, and so it is often 

computationally expensive. Use of taboo list (TL) avoids the revisit of search space 

by keeping a record of recently visited points. So, multi-objective DE (MODE) with 

taboo list (TL) can avoid unnecessary function evaluations (Srinivas and Rangaiah, 

2007). Figure 8.2 shows the flowchart of MODE with TL (MODE-TL) algorithm. 

http://www.biofueloasis.com/
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Taboo check is implemented in the evaluation step of trial vector/individual; if the 

trial individual is near to any individual in the TL by a specified distance, then it is 

rejected without calculating objectives and constraints. MODE-TL algorithm handles 

inequality constraints by constrained-dominance approach of Deb et al. (2002).  This 

algorithm is implemented using Excel worksheets (to calculate the objective 

functions: profit, FCI and organic waste, constraints and linking between cells) and 

Visual Basic for Applications (to implement the algorithm steps and also to interface 

the bio-diesel process simulation in Aspen Hysys Version 7.2 with the Excel based 

MODE-TL algorithm). 

8.6 Optimization Results  

Values of MODE-TL algorithm parameters used for all optimization cases are: 

population size (N) = 100, crossover probability (Cr) = 0.3, mutation rate (F) = 0.5 

and maximum number of generations (MNG) = 100. Size of TL is fixed at half of N 

(= 50), and taboo radius (TR) of 0.01 is chosen for all cases, to decide 

acceptance/rejection of new trial individuals. Euclidean distance between the newly 

generated trial individual and each individual in the TL is calculated for normalized 

values (between 0 and 1) of decision variables. These values of algorithm parameters 

are selected based on our experience on solving many benchmark functions using 

MODE-TL. Aspen Hysys has convergence difficulty for some combination of 

decision variables, and the associated error message need to be clicked manually. So, 

computation time required in the complete optimization cannot be obtained; about 30 

seconds are required to complete one simulation (based on 10 different runs). An 

optimization run for 100 generations with a population of 100 will then require about 

4 days in the absence of errors messages. 
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Figure 8.2: Flowchart of the MODE-TL algorithm and its implementation  
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8.6.1 Design Optimization 

A. Trade-off between Profit and FCI  

The Pareto-optimal front obtained for optimizing profit and FCI simultaneously is 

shown in Figure 8.3(a). As mentioned earlier, fixed amount of waste cooking oil is 

converted into bio-diesel; therefore, both objectives in the obtained Pareto-optimal 

front are varying over small ranges (Figure 8.3a). West et al. (2008) reported FCI of 

1.1 million $ (CEPCI = 394) for a bio-diesel plant of capacity 8,000 metric 

tons/annum and waste cooking oil as the feed-stock. Projected FCI for a plant 

capacity of 20,000 metric tons/annum, using the six-tenth rule (Turton et al., 2009) 

and when CEPCI = 600, is 2.88 million $, which is comparable to the FCI range in 

Figure 8.3a (i.e., 2.86-2.94 million $).        

The trend in the Pareto-optimal front can be visually correlated to the decision 

variables: TCSTR1 and TCSTR2 (Figures 8.3a, 8.3c and 8.3d). Larger amount of bio-

diesel is produced at higher TCSTR1 and TCSTR2, which results in increased revenue and 

profit. Light and heavy phases in the 3-phase separator-1 and separator-2 have a 

smaller difference in densities at high temperature, which increases required size of 

these separators. Consequently, FCI of the bio-diesel production process increases 

with increase in the reactor temperature. Temperature of CSTR0 is also increasing in a 

small range with increasing profit, while there is no particular trend in the temperature 

of CSTR3 (Figures 8.3b and 8.3e). Further, smaller reactors can reduce FCI of 

process; hence, volume of each reactor is nearly constant at its lower bound (i.e., 

esterification: 2 m
3
 and trans-esterification: 5 m

3
). Figure 8.3(f) shows variation in 

CSTR0 volume while variations in the remaining reactor volumes are not shown, for 

brevity.  
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Figure 8.3: Selected results for simultaneous maximization of profit and 

minimization of FCI 

Each solution on the Pareto-optimal front is equally good from the point of 

specified objectives, and decision maker can select one solution based on his/her 

experience and/or requirement. One corner solution on the Pareto-optimal front, 

shown as “+” in Figure 8.3(a), has been selected for discussion and for further study. 

Table 8.2 presents key information for important streams corresponding to this 

optimal solution. 

(a) (b) 

(c) (d) 

(e) (f) 



Chapter 8: MOO of Bio-diesel Production Process 

 

178 

 

Table 8.2: Important data of selected streams in Figure 8.1, corresponding to the 

optimal solution “+” in Figure 8.3(a); total molar flow is in kmol/h and total mass 

flow is in kg/h  

 

Stream F-1 S1-F S1-H S2-F S2-H S3-F BD-C BD G-pdt Waste 

Temperature (
0
C) 64.33 51.59 51.59 56.24 56.24 50.47 226.4 63.78 146.1 64.61 

Pressure (kPa) 400 400 400 400 400 400 62 101.2 19.25 110 

Total molar flow  31.36 31.36 24.99 27.55 26.09 26.46 8.91 8.53 2.794 2.85 

Total mass flow  3413 3413 3074 3156 3083 3095 2533 2495 250.7 87.6 

Mole fractions           

   -Tri-olein  0.088 0.010 0.012 0.002 0.002 0 0.001 0 0 0.004 

   -Di-olein  0 0.005 0.006 0.001 0.001 0 0.001 0 0 0.003 

   -Mono-olein  0 0.002 0.003 0.001 0.001 0 0 0 0 0 

   -Methanol  0.896 0.673 0.681 0.670 0.669 0.668 0.014 0.012 0.018 0.009 

   -Methyl oleate  0.005 0.229 0.287 0.300 0.317 0.318 0.946 0.985 0.001 0.008 

   -Glycerol  0 0.072 0 0.016 0 0.003 0.008 0 0.955 0.027 

   -Water   0.001 0.001 0.001 0.001 0.001 0.001 0 0.003 0.007 0.858 

 

 

Stream R0-out S0-L S0-H G-Acid BD-T MR-1A MR-1B 

Temperature (
0
C) 59.25 42.77 42.77 150 244.8 23.98 25.38 

Pressure (kPa) 400 200 200 15.6 15.72 14.86 14.86 

Total molar flow  12.56 11.22 3.94 2.982 2.983 0.962 8.237 

Total mass flow  2885 2832 293.5 264.4 2503 29.18 328.2 

Mole fractions        

   -Tri-olein  0.223 0.252 0 0 0.923 0 0.008 

   -Methanol  0.568 0.560 0.216 0.003 0.006 0.878 0.760 

   -Methyl oleate  0.024 0.027 0 0 0.057 0 0.015 

   -Glycerol  0 0 0.661 0.874 0 0 0 

   -Water  0.167 0.161 0.068 0.050 0.007 0.122  0.216 

   -H2SO4  0.018 0 0.055 0.073 0 0 0 
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B. Trade-off between Profit and Organic Waste 

The Pareto-optimal front obtained between profit and organic waste is shown in 

Figure 8.4(a). It can be divided into two parts; initially, profit (i.e., 17.795-17.815 

million $) varies linearly with the organic waste, and, finally, organic waste increases 

faster for a very small improvement in the profit (~ 17.82 million $). The initial 

improvement in profit is due to increase in TCSTR0 and TCSTR2, and decrease in VCSTR1 

(Figures 8.4a, 8.4b, 8.4d and 8.4g), while the remaining decision variables are either 

constant or scattered. High values of TCSTR0 and TCSTR2 increase conversion of waste 

cooking oil in CSTR0 and CSTR2, which improves the profit.   

Temperature of CSTR1 is nearly constant at its upper bound of 70 
0
C (Figure 

8.4c). Variations in TCSTR0, TCSTR2, TCSTR3, VCSTR0, VCSTR1 and VCSTR2 are contributing 

to the second part of the obtained Pareto-optimal front (see Figures 8.4a, 8.4b, 8.4d-

h). Decrease in reactor volumes improves the profit by decreasing FCI, while amount 

of organic waste increases due to reduction in residence time. On the other hand, 

partly to compensate the effects of decrease in reactor volumes, high value of reactor 

temperature improves the profit and also decreases the organic waste. For example, 

profit and organic waste corresponding to solution “O” in Figure 8.4(a) are 1.78×10
7
 

USD/annum and 64,519 kg/annum respectively. Now, values of different reactor 

volumes for this solution are replaced by those corresponding to solution “□” 

(relatively smaller values; Figure 8.4a); organic waste corresponding to the modified 

set of decision variables is 68,867 kg/annum with some improvement in profit. 

Organic waste corresponding to solution “□” is slightly lower at 67,118 kg/annum due 

to reactor temperatures higher than those of the modified solution.   
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Figure 8.4: Selected results for simultaneous profit maximization and organic 

waste minimization  

Thus, different combinations of decision variables are giving different non-

dominated solutions between these two solutions (“O” and “□”). TCSTR3 is constant at 

(e) (f) 

(g) (h) 

(c) 

(a) (b) 

(d) 
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50 
0
C in the first part, and marginal increase in it can be seen in the second part, 

which is required to convert un-reacted feed. As a 3-phase separator is not used after 

CSTR3, un-reacted feed and glycerol appear in the waste stream. Volume of CSTR3 is 

constant near its lower bound (5 m
3
), and is not shown in Figure 8.4 for brevity. 

8.6.2 Operation Optimization 

In operation optimization, only operation variables are considered as decision 

variables, while design variables related to equipment sizes are fixed based on the 

design optimization (Section 8.6.1 A). A bio-diesel process design shown as “+” in 

Figure 8.3(a) has been selected for studying trade-off between profit and organic 

waste, for variations in waste cooking oil feed rate. In all operation optimization 

cases, ranges of operation variables are same as those used in the design optimization 

(see Table 8.1).    

C. Trade-off between Profit and Organic Waste: “Base Case” - Waste Cooking Oil 

Feed Rate = 2,500 kg/h 

The selected design is optimized for the nominal value of waste cooking oil feed 

rate (i.e., 2,500 kg/h). Although effect of operation variables on profit, and processing 

capacity has been studied in the design optimization case (Section 8.6.1 B), this 

optimization case is required for comparing different operation optimization cases. 

The obtained Pareto-optimal front for the “base” case of operation optimization is not 

shown as variation in profit value (18.826×10
6
 USD/annum) is very small. Organic 

waste varies in a narrow range (66.4×10
3
 to 67.0×10

3
 kg/annum) compared to the 

design optimization case, which means design variables (i.e., size of reactors) have 

larger effect on the amount of organic waste from the process (see Figure 8.4a). 

Temperatures of CSTR0, CSTR1 and CSTR2 are nearly constant, close to their 
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respective upper bound, while TCSTR3 is nearly constant at its lower bound (not shown 

for brevity). In conclusion, all decision variables in operation optimization favor both 

objectives similarly, which result in their constant values near to one of their bounds.       

D. Trade-off between Profit and Organic Waste: 10% Increase in Waste Cooking 

Oil Feed Rate to 2,750 kg/h    

In this case, 10% additional waste cooking oil is processed compared to “base” 

case of operation. The obtained Pareto-optimal front is shown in Figure 8.5(a). 

Similar to “base” case, objective values vary over small ranges. Increase in feed rate 

of plant does not increase FCI and operating labor as number of processing units is 

fixed. Consequently, profit for 10% increase in waste cooking oil feed rate, is slightly 

higher (by 10.9%) compared to “base” case. In this optimization for increased feed 

rate, temperatures of CSTR1 and CSTR2 are constant near their upper bound of 70 
0
C 

(not shown for brevity). Variation in temperature of CSTR0 with profit has opposite 

trend to the Pareto-optimal front (see Figures 8.5a and 8.5b). Lower value of TCSTR0 

leads to lower conversion of oleic acid into bio-diesel in the pre-treatment reactor, 

which increases organic waste from the process. Temperature of CSTR3 is also 

increasing with profit, to its upper bound (Figures 8.5a and 8.5c). In this case of 

increased feed, organic waste has increased by 9-13% compared to “base” case. 

Temperatures of CSTR1 and CSTR2 are nearly same at 70 
0
C in both the cases, which 

means more un-reacted feed enters CSTR3 in the increased feed rate case compared to 

“base” case. When larger amount of un-reacted feed enters CSTR3, high temperature 

of CSTR3 favors both the objectives. Compared to base case, it can be observed that 

temperature of CSTR3 is higher and increasing with profit (Figure 8.5c), which is 

required to convert un-reacted feed into bio-diesel.    
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Figure 8.5: Selected results for simultaneous profit maximization and organic waste 

minimization: 10% increase in waste cooking oil feed rate (plots a, b and c on the left 

side), 20% decrease in waste cooking oil feed rate (plots d, e and f on the right side) 

E. Trade-off between Profit and Organic Waste: 20% Decrease in Waste Cooking 

Oil Processing Rate to 2,000 kg/h    

Figure 8.5(d) shows the obtained Pareto-optimal front between profit and organic 

waste, for 20% decrease in waste cooking oil feed rate compared to the “base” case. 

(f) (c) 

(e) (b) 

(d) (a) 
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As expected profit has decreased and organic waste is lower by 8-25% compared to 

the base case, although the latter is varying over a wide range. So, this requires further 

analysis of results obtained in both the cases. Now, profit is about 22% lower than 

that in the base case, which is due to larger magnitude of constant terms in the profit 

calculation. Revenue obtained in this case is nearly 20% lower than that in the “base” 

case, which means that waste cooking oil to bio-diesel conversion is the same in both 

the cases. Similar to the “base” case, temperatures of CSTR0 and CSTR1 are constant, 

near to their respective upper bounds (not shown for brevity). TCSTR2 is varying 

between its lower and upper bounds, while TCSTR3 is constant near its lower bound 

except a high temperature corresponding to the large amount of organic waste (see 

solution “+” in Figure 8.5f). Variation in temperature of CSTR2 shows opposite trend 

to the Pareto-optimal front (see Figures 8.5d and 8.5e).     

In the decreased feed rate case, one solution shown as “+” in Figure 8.5d is 

further away from the remaining non-dominated solutions; organic waste has 

increased significantly (~ 57×10
3 

kg/annum) for this solution. Temperature of CSTR2 

is lower for solution “+” than that for the remaining non-dominated solutions. At 

lower TCSTR2, more un-reacted feed enters CSTR3, which is converted into bio-diesel 

at the higher temperature of CSTR3. Organic waste (i.e., feed and glycerol) from 

CSTR3 goes to the downstream units as it is not removed using a three-phase 

separator. Hence, organic waste has increased suddenly, while profit has also 

increased as larger amount of bio-diesel is produced at high value of TCSTR3.  

 One corner solution on the Pareto-optima front of “base” case and two corner 

solutions on the Pareto-optimal fronts, shown as “×” in Figures 8.5(a) and 8.5(d), 

have been selected for comparison. Table 8.3 presents values of objectives and 

decision variables corresponding to these selected solutions. Temperatures of CSTR0 
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and CSTR1 are constant, near to their respective upper bounds (i.e., 60 and 70 
0
C) in 

all three cases. TCSTR2 increases with the feed rate increase from 2,000 to 2,500 kg/h; 

it is limited by its upper bound for feed rate of 2,750 kg/h. Temperature of CSTR3 is 

near to its lower bound for the feed rates of 2,000 and 2,500 kg/h, and increases for 

feed rate of 2,750 kg/h as larger amount of feed has to be converted into bio-diesel in 

CSTR3.    

Table 8.3: Comparison of three optimal solutions chosen for different feed rates (one 

solution from “base” case and solutions shown as “×” in Figures 8.5a and 8.5d)  

Objectives and 

decision variables 

Decreased feed 

rate (2,000 kg/h) 

Normal feed rate 

(2,500 kg/h) 

Increased feed 

rate (2,750 kg/h) 

Profit (million $) 13.84 17.83 19.79 

Org. waste (kg/annum) 51,300 66,430 73,917 

TCSTR0 (
0
C) 59.85 59.97 59.55 

TCSTR1 (
0
C) 69.17 69.96 69.87 

TCSTR2 (
0
C) 65.56 69.99 69.84 

TCSTR3 (
0
C) 50.40 50.74 67.59 

8.7 Design Optimization using I-MODE Algorithm 

In Section 8.6.1, MODE-TL with MNG = 100 is used to obtain the non-dominated 

solutions. Here, I-MODE is used to solve the above two design optimization problems 

(Sections 8.6.1 A and B). For this, recommended values of termination parameters 

(δGD = 0.0003 and δSP = 0.1) are used in I-MODE (see Chapter 3). Further, taboo 

radius of 0.01 and MNG of 100 are used in I-MODE. The Pareto-optimal front 

obtained for maximization of profit and minimization of FCI at GT = 82 (Figure 8.6a) 

is comparable to the Pareto-optimal front presented in Section 8.6.1 A; I-MODE 
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algorithm is not able to obtain non-dominated solutions at high FCI (~ 2.93×10
6
 

USD/annum). In the case of maximization of profit and minimization of organic 

waste, I-MODE terminates based on MNG (= 100). Figure 8.6(b) shows Pareto-

optimal fronts obtained using I-MODE and MODE-TL (see Section 8.6.1 B). In this 

case, I-MODE is not able to find the non-dominated solutions for low value of profit, 

but it gives better non-dominated solutions for high value of profit. This may be due 

to use of fixed parameters values in MODE-TL compared to self-adaptation of 

parameters in I-MODE, apart from the stochastic nature of search.  

 

Figure 8.6: Non-dominated solutions obtained for design optimization of bio-diesel 

process: (a) max. profit and min. FCI, and (b) max. profit and min. organic waste 

8.8 Conclusions 

In this study, bio-diesel production process is simulated in Aspen Hysys; this 

process uses waste cooking oil as the feed, which facilitates its better utilization and 

promotes sustainability. Multi-objective differential evolution with taboo list is used 

to obtain trade-off solutions among different objectives. Two bi-objective design 

optimization problems are solved to study the effect of important design and operation 

variables on the performance of this process. First, trade-off between profit and FCI is 

explored in design optimization, and it is found that objectives do not vary much due 

(a) (b) 
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to the fixed amount of feed rate. Next, bio-diesel process is optimized for 

maximization of profit and minimization of organic waste simultaneously, which 

examines environmental impact of the process design. Following this, operation of a 

selected bio-diesel process design, in the presence of feed rate variation, has been 

successfully optimized for profit maximization and organic waste minimization 

simultaneously. In short, the study demonstrates the potential of MOO for bio-diesel 

process design and operation. The results show that amount of organic waste can 

change significantly with only small variation in the economic objective, and MOO 

provides alternative process designs with different environmental impacts, for 

implementation.   
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Chapter 9 

Multi-objective Optimization of a Membrane Distillation 

System for Desalination of Sea Water
7
 

9.1 Introduction  

Water scarcity around the world has led to drinking water production from sea 

and brackish water. Production of drinking water by membrane processes is capital 

and energy efficient compared to other processes. Over the decades, reverse osmosis 

(RO) has been used as an attractive choice to purify water for both industrial and 

household usage. Membrane distillation (MD), forward osmosis (FO) and membrane 

crystallizers (MCr) are other important membrane processes for water purification, 

and these processes are gaining attention now. Of these, MD is an attractive choice to 

purify saline water; it requires low temperature and pressure compared to multi-stage 

flash distillation and RO respectively. Additionally, it has good performance at high 

salt concentration.   

MD can use low-grade waste heat or renewable energy to produce drinking 

water. The performance of MD module, although depends on the membrane transport 

properties, can be improved by better module and process design. Hence, this work 

focuses on the design of a small scale MD system for multiple objectives; its 

maximum capacity is about 500 liters/day, which is sufficient for a house-hold (e.g., 

water consumption in Singapore is 153 liters/capita /day in 2012). Several researchers 

have optimized large scale membrane processes, mainly RO, for water production 

                                                           
7
 This chapter is based on the conference paper: Sharma, S. and Rangaiah, G. P. (2012), Multi-

objective optimization of a membrane distillation system for desalination of sea water, European 

Symposium on Computer Aided Chemical Engineering (ESCAPE 22), London.  
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(e.g., Villafafila and Mujtaba, 2003; Guria et al., 2005b). Criscuoli et al. (2008) 

evaluated energy requirement for a lab-scale MD module (area = 40 cm
2
). Recently, 

Zuo et al. (2011) have studied the effect of different combinations of MD design and 

operating variables on water flux, gain output ratio and production cost. In the 

literature, rigorous optimization of the MD system for multiple objectives has not 

been studied.     

In this work, design of a MD module and process is optimized for high water 

production rate, lower energy consumption and lower brine disposal rate. MOO is 

performed to explore the trade-off between these conflicting performance criteria. The 

obtained results provide optimal designs of the MD process for different water 

production rate. A direct contact MD (DCMD) module has been simulated in Aspen 

Custom Modeler (ACM), whereas remaining process units are simulated in Aspen 

Plus. Rigorous mathematical model is used for predicting the performance of MD 

module (Song et al., 2007). Further, cross flow of feed inside the MD module is 

chosen due to its lower temperature polarization effect (Khayet and Matsuura, 2010).  

The next section of this chapter presents design and simulation of MD system. 

Section 9.3 describes formulation of two bi-objective optimization problems. 

Optimization results for both the cases are presented in Section 9.4. Finally, finding of 

this work are summarized at the end of this chapter.  

9.2 Membrane Distillation System Design and its Simulation  

A schematic diagram of MD system is presented in Figure 9.1. The hollow fibers 

are fixed inside the rectangular assembly. Sea-water/make-up feed (M2) is pre-heated 

in a heat exchanger using the hot permeate stream and then mixed with the 

concentrate stream (F2) leaving MD unit. After purging a small part of this mixed 
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stream (F3), it is further heated to the desired temperature level (Tf1) in a heater. Then, 

the hot feed (F1) enters on the shell-side of MD, and some amount of water is 

transferred through the wall of fibers. Hence, temperature and concentration of outlet 

feed stream (F2) decreases and increases respectively. Make-up feed (M2) is used to 

maintain the concentration of stream F2 at the desired level (cf1). Pure water (P1) at 

35
0
C passes through the hollow fibers; the outlet stream (P2) has larger flow rate and 

higher temperature compared to the inlet stream P1. Stream P2 is used to pre-heat the 

make-up feed (M1) and then cooled in an air cooler to the desired temperature (35 
0
C).  

 

Figure 9.1: Schematic of membrane distillation module and process 

The mathematical model of MD module is taken from Song et al. (2007). Plug 

flow of feed is assumed on the shell side, i.e., no mixing of feed after each fiber layer 

(see Figure 9.2). MD module has many fiber layers (e.g., 16 layers in Figure 9.2), and 

each layer can have numerous fibers. For this study, each fiber layer is assumed to 

have 68 fibers (Song et al., 2007). Equation 9.1 presents water vapor flux through 
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membrane at any location x in MD fiber. Fiber-side mass and energy balances are 

given by equations 9.2 and 9.3 respectively. Amount of heat transferred from feed to 

permeate is compared in equations 9.4 and 9.5; the three heat transfer terms 

correspond to the feed side, fiber wall and permeate side resistances, respectively.  
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   π                        ρ
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  π                      
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                       π                    (9.4 & 9.5)  

In the above equations, Nv, km and hm are respectively water vapor flux through 

membrane, membrane mass and heat transfer coefficients. pfm and ppm are water vapor 

partial pressures at the membrane surface on the feed and permeate side, respectively. 

hp and hf are tube- and shell-side heat transfer coefficients, respectively. Specific 

details on pfm, ppm, hp and hf calculations can be found in Song et al. (2007). L is the 

length of hollow fiber. T, V, ρ and C are respectively temperature, volumetric flow 

rate, density and specific heat at different locations. Subscripts f1, fm, p1, pm and p2 

refer to the locations in bulk feed, shell-side membrane surface, permeate inlet, tube-

side membrane surface and permeate outlet respectively (see Figure 9.2). ΔHv,pm is the 

heat of vaporization of water at temperature Tpm.     
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Figure 9.2: Simulation strategy used for solving MD module (i - discretized part 

number, j - fiber layer number; len - length of each discretized part) 

In order to solve MD model for a membrane fiber, each membrane fiber is 

discretized into 20 parts (see Figure 9.2). The above MD process model is solved for 

each of these parts. Water vapor flux can be considered constant for each part. The 

discretization converts the integral terms in equations 9.2 and 9.3 into summation 

terms. The process model for each part has 5 equations (i.e., 9.1-9.5) with 5 

unknowns, namely, Tfm, Tpm, Tp2, Nv and Vp2. Values of inlet feed and inlet permeate 

variables (i.e., T, V, c - concentration) are assumed to be known, and parameters for 

MD module are given in Table 9.1. Further, mass and heat balances are applied 

around each fiber part, to obtain outlet feed flow rate, temperature and concentration 

by the following equations.   
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Here, equations 9.6, 9.7 and 9.8 are respectively mass, salt and energy balances 

around each part of fiber. ZNaCl is the mass fraction of salt, and subscript f2 

corresponds to the feed outlet (see Figure 9.2). ACM is used to solve these model 

equations (i.e., 9.1-9.8) for each fiber part, and ELECNRTL thermodynamic model is 

used for prediction of properties.  

Table 9.1: Parameters of membrane distillation module (Song et al., 2007) 

Parameter Value 

Internal diameter of fiber (di) 0.00033 m 

External diameter of fiber (do) 0.00048 m 

Membrane porosity 0.8 

Membrane mass transfer coefficient, km 0.0024 kg/(m
2
.h.Pa) 

Membrane heat transfer coefficient, hm 733.33 W/(m
2
.K) 

Membrane surface area 0.2864 m
2
 

9.3 Multi-objective Optimization Problem Formulation   

Water production rate, total energy required to heat the feed and to pump the 

liquid through process units, and brine disposal rate are important objectives related to 

economics and environmental impact. Energy required by air cooler is nearly 

proportional to the energy input in heater, so it is not included in the energy objective. 

Performance of MD module can be affected by several inlet variables, e.g., feed 

temperature, feed concentration, feed volumetric flow rate, permeate temperature, 

permeate velocity, length of fiber, number of fiber layers, etc. Inlet permeate 

temperature is not chosen as decision variables, rather suitable values for it (= 35 
0
C) 

is assumed in this optimization study. A minimum approach temperature of 10 
0
C is 

maintained for Fresh Feed HE, whereas pressure drop of 20 kPa is fixed for Heater 
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and Fresh Feed HE (Turton et al., 2009).  Further, a pressure drop of 10 kPa is used 

for both sides of MD module (Song et al., 2007). Table 9.2 provides details on two 

MOO problems considered in this study.  

Table 9.2: Objectives and decision variables for different MOO problems 

Objective functions Decision variables and their ranges 

A.  max. water production rate 

[lit/h] and min. energy 

consumption [KW] 

B.  max. water production rate 

[lit/day] and min. brine 

disposal  [kg/day] 

50 < Tf1 (feed temperature) < 85 
0
C 

150 < cf1 (feed concentration) < 200 g/lit 

10 < Vf1 (feed volumetric flow rate) < 50 lit/min 

5 < vp1 (permeate velocity) < 40 m/min 

12 < NOF (number of fiber layers) < 16 

0.2 < LOF (length of each fiber) < 0.4 m 

9.4 Results and Discussion 

In this work, Excel based I-MODE algorithm is used to generate the set of non-

dominated solutions (see Chapter 3). Values of algorithm parameters are taken based 

on the recommendation in Chapter 3: TR = 0.01, δGD = 0.0003, δSP = 0.1, N = 50 and 

MNG = 50. Visual Basic for Applications is used to interface I-MODE algorithm with 

ACM and Aspen Plus. I-MODE algorithm provides decision variable vector; and 

ACM simulation is called for the set of decision variables and other inlet variables. 

Results from ACM simulation are used in Aspen Plus to simulate the remaining parts 

of the process flow-sheet. Finally, results from ACM and Aspen Plus simulations are 

used to calculate values of objective functions.    
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9.4.1 Trade-off between Water Production Rate and Energy Consumption 

The Pareto-optimal front obtained between water production rate and energy 

consumption is shown in Figure 9.3(a). This Pareto-optimal front is obtained after 50 

generations, and the non-dominated solutions obtained are well distributed over the 

Pareto-optimal front. As expected, required energy increases with increase in the 

water production rate (Figure 9.3a), which is varying between 0.8-22.4 lit/h (or 

maximum of 537 liters water/day). Trend in the Pareto-optimal front can be visually 

correlated to the decision variables: Tf1, vp1, NOF and LOF (see Figures 9.3a-b, 9.3d-

f). Vf1 is near to its upper bound except some scattered points (Figure 9.3c), which 

could be improved by running the algorithm for larger number of generations.   

Initial increase in the water production rate from 0.8 to 4 kg/h is mainly due to 

increase in feed temperature (Tf1); vp1 and NOF are nearly constant at their respective 

lower bounds. Variation in vp1 for the remaining range of the water production rate 

(i.e., 4-22.4 kg/h) shows similar trend as the obtained Pareto-optimal front; here, NOF 

is also following some trend with the water production rate, whereas Tf1 is nearly 

constant at its upper bound (i.e., 85 
0
C). Further, cf1 remains constant near to its lower 

bound (i.e., 150 g/lit); lower salt concentration in feed is beneficial for producing 

large amount of water with relatively low energy consumption.  

As I-MODE algorithm has improvement based termination criterion, so 25
th

 

generation has been identified as the termination generation (i.e., GT). The obtained 

Pareto-optimal fronts after GT and MNG are comparable (see Figure 9.3h), but trends 

in some of decision variables are improved by more generations after GT. For brevity, 

Figure 9.3 does not show variations of different decision variables with water 

production rate at GT = 25.    
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Figure 9.3: Optimization results for simultaneous maximization of water production 

rate and minimization of energy consumption 
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9.4.2 Trade-off between Water Production Rate and Brine Disposal Rate  

Figure 9.4(a) shows the Pareto-optimal front obtained between water production 

rate and brine disposal rate, after 50 generations. As expected, brine disposal rate 

increases with increase in water production rate. The obtained Pareto-optimal front 

can be roughly divided into two parts: (i) a steep increase in the water production rate 

(18.7-130 lit/day), (ii) a linear change between water production rate (130-494.3 

lit/day) and brine disposal rate. In the first part, the change is mainly due to changes in 

vp1 and NOF at nearly constant value of Tf1. In the second part, Tf1 is mainly affecting 

both the objectives. Further, vp1 is constant at its upper bound (40 m/min) in the 

second part of the Pareto-optimal front, as its high value gives large water production 

rate. Furthermore, cf1 is near to its upper bound except some scattered points (Figure 

9.4g); this ensures lower brine disposal rate at high salt concentration, and finally it 

gives high water recovery in MD system.  

The trend in the obtained Pareto-optimal front can also be visually correlated to 

the NOF and LOF; generally water production rate is large for high values of NOF 

and LOF. Finally, Vf1 is scattered between its lower and upper bounds (Figure 9.4c). 

The Pareto-optimal front obtained after GT (= 25) is shown in Figure 9(h), and it is 

close to the Pareto-optimal front obtained after MNG (= 50). Variations in different 

decision variables with water production rate at GT = 25 are not presented in Figure 

9.4, for brevity.    
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Figure 9.4: Optimization results for simultaneous maximization of water production 

rate and minimization of brine disposal rate 
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A process design with a water production rate of about 130 lit/day can be selected 

for implementation purpose (Figure 9.4a); it has relatively large production rate at 

lower brine disposal rate. In order to achieve the large water production rate, several 

MD modules can be placed in parallel. Trade-off between water production rate and 

energy consumption does not play any significant role in the process design selection 

(Figure 9.3a), but decision variable space can be analyzed to select one suitable 

process design for easier operation.  

Further, the MD and crystallizer can be used to expend the existing RO plants. RO 

process produces brine of about 7 wt% salt concentration. MD can use the brine from 

RO, and it can increase brine concentration near to saturation limit (~ 36 wt% at 30 

0
C). The concentrated brine from MD can be used to separate salt in a crystallizer at 

low temperature. The integrated process can then produce drinking water at zero brine 

discharge.       

9.5 Conclusions   

This study optimizes a small-scale MD system for water production rate, energy 

consumption and brine disposal rate. The obtained Pareto-optimal fronts give better 

insights by providing a range of alternative designs. Optimal values of some decision 

variables follow certain trends with the water production rate. The I-MODE algorithm 

is able to terminate the search at the right generations, in both the optimization cases 

studied. In general, MOO is useful to improve the understanding and design of MD 

system.   
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Chapter 10 

Conclusions and Recommendations 

10.1 Conclusions of the Present Study 

In this thesis, I-MODE algorithm has been developed for MOO problems. It has 

been tested on constrained test problems, followed by its application to optimize a 

number of chemical engineering applications for multiple objectives. The proposed 

termination criterion has been evaluated with two other algorithms. Further, a 

constraint handling technique has been proposed and analyzed for solving constrained 

MOO problems. Three new applications, related to renewable fuel and drinking water 

production, have been studied for important performance criteria. Major contributions 

and findings of this thesis are summarized below.  

i. Current optimization techniques for solving MOO problems are briefly reviewed. In 

this work, differential evolution is used as search algorithm for I-MODE 

algorithm, due to its better performance in the recent CEC competitions. So, 

performance of different MODE algorithms is compared based on the reported 

studies. Further, MOO applications in chemical engineering have been reviewed. 

In the recent times, MOO was increasingly used in areas related energy and 

environmental impact such as renewable energy, power plants, fuel cells and 

carbon dioxide emissions, besides its continued use in process design, petroleum 

refining, petrochemicals, polymerization, food industry, pharmaceuticals and 

biotechnology.  

ii. I-MODE algorithm has been developed to solve MOO application problems with 

high efficiency and reliability. Its key features are termination criterion, taboo list 
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and self adaptation of DE parameters. Several performance metrics are analyzed 

for their variations with generations, and then GD and SP are selected for the 

development of a search termination criterion, which is able to terminate the 

search at the right generations for many test problems. Inclusion of taboo list has 

improved the reliability of search in locating the optimal solutions using less 

computational effort. I-MODE algorithm performed better than DMOEA-DD 

algorithm, which was the best evolutionary algorithm on constrained optimization 

problems in CEC 2009 competition.      

iii. The developed termination criterion is also evaluated for use in four selected 

jumping gene adaptations of NSGA-II algorithm. It is able to terminate the search 

at the right generations, for both unconstrained and constrained test problems. The 

quality of non-dominated solutions obtained for different problems by I-MODE is 

comparable to MOSADE, which has performed better than NSGA-II-RC, SPEA2 

and MOPSO (Wang et al., 2010). Further, I-MODE takes less number of function 

evaluations (median NFE for all problems = 5335) compared to MOSADE (NFE 

= 25,000 for each problem). Additionally, NNC precisely refines the non-

dominated solutions obtained by I-MODE, and it can also reduce variations in GD 

values obtained in different runs. I-MODE is able to find non-dominated solutions 

comparable to the known solutions of three chemical engineering application 

problems, in less number of generations.  

iv. In order to solve constrained MOO problems, adaptive constraint relaxation and 

feasibility approach (ACRFA) are modified and tested on two benchmark 

problems. Further, the developed constraint handling approach is applied to 

optimize the performance of two fermentation processes with many equality 

constraints. It is found that ACRFA approach works better than feasibility 
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approach (with a user defined relaxation value). However, MODE with ACRFA 

(simultaneous solution approach) performs inferior compared to sequential 

solution approach on the studied applications. In the latter approach, numerical 

techniques are required to solve highly complex and non-linear process model 

equations, and these techniques may require good initial estimates. Conversely, 

simultaneous solution approach does not require any additional information.  

v. In-situ ethanol removal from the fermentor increases conversion of reducible sugars 

to ethanol. Hence, a three-stage fermentation process integrated with cell 

recycling and pervaporation is modeled and optimized for ethanol productivity 

and xylose conversion, simultaneously. The integrated fermentation-pervaporation 

process performs better than integrated fermentation-extraction process. Inclusion 

of pervaporation with fermentor gives higher ethanol productivity, for the same 

amount of feed, compared to fermentation with extraction. In the case of 

fermentation with extraction, mother liquor from third-stage fermentor has lower 

ethanol concentration and larger flow rate compared to fermentation with 

pervaporation; hence, ethanol recovery and purification will be more expensive 

for fermentation with extraction. Further, I-MODE algorithm is evaluated on three 

different integrated fermentation processes, and it is found that non-dominated 

solutions obtained after termination generations are closer to the Pareto-optimal 

fronts obtained using maximum number of generations.    

vi. Bio-diesel production using waste cooking oil is beneficial from both economic 

and environmental perspectives. Hence, a complete bio-diesel production plant 

consisting of esterification (pre-treatment) and trans-esterification, is simulated in 

Aspen Hysys and then optimized for relevant performance objectives. Variations 

in the feed availability and market demands are quite obvious, and so a process 
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design is selected and then studied for the variation in the feed flow rate. This 

operation optimization identifies key manipulated variables for achieving high 

process performance at different production rates. It also suggests changes 

required for significant increase in the process throughput.    

vii. Membrane distillation (MD) can utilize waste heat and solar energy to produce 

drinking water from sea water. In this work, design and operation of a small MD 

system for domestic use is optimized for high water production rate, lower energy 

consumption and lower brine disposal rate. The MOO approach provides a range 

of alternative designs with different water production rate.    

10.2 Recommendations for Future Studies  

MOO approach is increasingly being applied to improve the performance of 

various processes in different areas. Hence, there is a need to develop efficient and 

reliable MOO techniques for highly complex and non-linear optimization problems. 

Important future studies related to this thesis are discussed below.  

i. Algorithm development for large optimization problems: Although stochastic 

methods are successfully applied to optimize various small and medium size 

application problems, these become less effective on problems with a large 

number of decision variables (Wang, 2008). If state variable are considered as 

decision variables, application problems become large (e.g., fermentation 

processes considered in Chapter 6). Hence, there is a need for an efficient and 

reliable search algorithm suitable for large optimization problems. 

 Moreover, stochastic methods are sensitive to values of their parameters. Several 

researchers have adapted values of parameters for different evolutionary 
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algorithms, but these adaptations are often independent of search performance 

(Cao et al., 2007; Zhang and Sanderson, 2008). Hence, algorithm parameters need 

to be self-adapted based on the performance of search in recent generations. 

 Many MOO algorithms employ non-dominated sorting to select individuals for 

the subsequent generation, but this takes considerable computational time for 

optimization problems with many performance objectives (Guillen-Gosalbez, 

2011). Hence, there is a need to develop objective reduction techniques or to 

modify individual selection operation.      

ii. Development of hybrid search methods: Stochastic search has comprehensive 

exploration capability, whereas deterministic search can easily exploit local search 

region. Hence, a hybrid search may give both high reliability and computational 

efficiency for a wide range of optimization problems. Hybrid algorithms have 

performed better than stochastic algorithms to solve SOO problems (e.g., Zhang 

and Rangaiah, 2011). Several possibilities can be explored for combining the 

stochastic and deterministic methods for MOO problems. For example, some 

individuals can be selected in each generation, and then these individuals can be 

refined using local search. Similar refinement can also be performed at the end of 

stochastic search. 

iii. Improvements in constraint handling techniques: Generally, practical problems 

involve both equality and inequality constraints due to design equations, 

equipment limitations and safety aspects. ACRFA approach has been found to be 

better than feasibility approach, but it performed inferior compared to the 

sequential solution approach. So, further work is required to improve ACRFA. 
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There are no MOO benchmark test functions with equality constraints in the 

literature. Hence, there is a need to develop such test functions.  

 Moreover, optimal solutions often exist near to the boundaries of inequality 

constraints. Due to stochastic nature of evolutionary algorithms, newly generated 

trial individual are unlikely to be located at the boundaries of inequality 

constraints or inside the small feasible regions for equality constraints. Hence, if 

possible, information obtained during the search should be utilized to repair 

infeasible individuals into feasible or less infeasible individuals (Harada et al., 

2007).  

iv. Optimization of lignocellulosic ethanol production process: The lignocellulosic 

ethanol production has less environmental impact, but it has higher production 

cost (Stephen et al., 2012). It can be reduced using cheaper feed-stocks, reducing 

capital and operating costs and better utilization of waste materials. The work 

done in this thesis (i.e., on fermentation process integrated with cell recycling and 

pervaporation or extraction for ethanol productivity and xylose conversion) can be 

extended to include up-stream and down-stream units, and then optimization of 

the complete lignocellulosic ethanol production process can be performed for 

important performance criteria. Further, different arrangements of the 

pervaporation and/or extraction units with fermentor can also be explored.   

v. Heat integration in the bio-diesel process: In this thesis, an industrial bio-diesel 

plant is studied for economic and environmental objectives. This process can be 

improved to use different types of feed-stocks. The bio-diesel process is energy 

intensive, and so there is scope for heat integration among different process 
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streams. Further, integration of bio-ethanol and bio-diesel plants can also be 

studied for better economics and lower environmental burden.  

vi. Optimization of membrane distillation plant: In this thesis, a small MD system 

for domestic use is studied for multiple objectives. This work can be extended to 

large-scale plants. Further, RO plants produce concentrated brine, and its disposal 

is expensive and creates several environmental problems. MD can operate on the 

brine from RO processes, and so extension of a RO plant using MD can be 

investigated.   
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