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1.4. Summary  
Increasing production efficiency through schedule optimization is one of the most influential 

topics in operations research that contributes to decision-making process. It is the concept of allocating 

tasks among available resources within the constraints of any manufacturing facility in order to minimize 

costs. It is carried out by a model that resembles real-world task distribution with variables and relevant 

constraints in order to complete a planned production. In addition to a model, an optimizer is required to 

assist in evaluating and improving the task allocation procedure in order to maximize overall production 

efficiency. The entire procedure is usually carried out on a computer, where these two distinct segments 

combine to form a solution framework for production planning and support decision-making in various 

manufacturing industries. Small and medium-sized bakeries lack access to cutting-edge tools, and most 

of their production schedules are based on personal experience. This makes a significant difference in 

production costs when compared to the large bakeries, as evidenced by their market dominance. 

In this study, a hybrid no-wait flow shop model is proposed to produce a production schedule 

based on actual data, featuring the constraints of the production environment in small and medium-sized 

bakeries. Several single-objective and multi-objective nature-inspired optimization algorithms were 

implemented to find efficient production schedules. While makespan is the most widely used quality 

criterion of production efficiency because it dominates production costs, high oven idle time in bakeries 

also wastes energy. Combining these quality criteria allows for additional cost reduction due to energy 

savings as well as shorter production time. Therefore, to obtain the efficient production plan, makespan 

and oven idle time were included in the objectives of optimization. 

To find the optimal production planning for an existing production line, particle swarm 

optimization, simulated annealing, and the Nawaz-Enscore-Ham algorithms were used. The weighting 

factor method was used to combine two objectives into a single objective. The classical optimization 

algorithms were found to be good enough at finding optimal schedules in a reasonable amount of time, 

reducing makespan by 29 % and oven idle time by 8 % of one of the analyzed production datasets. 

Nonetheless, the algorithms' convergence was found to be poor, with a lower probability of obtaining the 

best or nearly the best result. In contrast, a modified particle swarm optimization (MPSO) proposed in 

this study demonstrated significant improvement in convergence with a higher probability of obtaining 

better results.  

To obtain trade-offs between two objectives, state-of-the-art multi-objective optimization 

algorithms, non-dominated sorting genetic algorithm (NSGA-II), strength Pareto evolutionary algorithm, 

generalized differential evolution, improved multi-objective particle swarm optimization (OMOPSO) and 

speed-constrained multi-objective particle swarm optimization (SMPSO) were implemented. 

Optimization algorithms provided efficient production planning with up to a 12 % reduction in makespan 

and a 26 % reduction in oven idle time based on data from different production days. The performance 
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comparison revealed a significant difference between these multi-objective optimization algorithms, with 

NSGA-II performing best and OMOPSO and SMPSO performing worst. 

Proofing is a key processing stage that contributes to the quality of the final product by developing 

flavor and fluffiness texture in bread. However, the duration of proofing is uncertain due to the complex 

interaction of multiple parameters: yeast condition, temperature in the proofing chamber, and chemical 

composition of flour. Due to the uncertainty of proofing time, a production plan optimized with the 

shortest makespan can be significantly inefficient. The computational results show that the schedules with 

the shortest and nearly shortest makespan have a significant (up to 18 %) increase in makespan due to 

proofing time deviation from expected duration. In this thesis,  a method for developing resilient 

production planning that takes into account uncertain proofing time is proposed, so that even if the 

deviation in proofing time is extreme, the fluctuation in makespan is minimal. The experimental results 

with a production dataset revealed a proactive production plan, with only 5 minutes longer than the 

shortest makespan, but only 21 min fluctuating in makespan due to varying the proofing time from -10 % 

to +10 % of actual proofing time. 

This study proposed a common framework for small and medium-sized bakeries to improve their 

production efficiency in three steps: collecting production data, simulating production planning with the 

hybrid no-wait flow shop model, and running the optimization algorithm. The study suggests to use 

MPSO for solving single objective optimization problem and NSGA-II for multi-objective optimization 

problem. Based on real bakery production data, the results revealed that existing plans were significantly 

inefficient and could be optimized in a reasonable computational time using a robust optimization 

algorithm. Implementing such a framework in small and medium-sized bakery manufacturing operations 

could help to achieve an efficient and resilient production system. 

  



 

 

1.5. Zusammenfassung 
Die Steigerung der Produktionseffizienz durch die Optimierung von Arbeitsplänen ist eines der 

am meisten erforschten Themen im Bereich der Unternehmensplanung, die zur Entscheidungsfindung 

beiträgt. Es handelt sich dabei um die Aufteilung von Aufgaben auf die verfügbaren Ressourcen innerhalb 

der Beschränkungen einer Produktionsanlage mit dem Ziel der Kostenminimierung. Diese Optimierung 

von Arbeitsplänen wird mit Hilfe eines Modells durchgeführt, das die Aufgabenverteilung in der realen 

Welt mit Variablen und relevanten Einschränkungen nachbildet, um die Produktion zu simulieren. 

Zusätzlich zu einem Modell sind Optimierungsverfahren erforderlich, die bei der Bewertung und 

Verbesserung der Aufgabenverteilung helfen, um eine effiziente Gesamtproduktion zu erzielen. Das 

gesamte Verfahren wird in der Regel auf einem Computer durchgeführt, wobei diese beiden 

unterschiedlichen Komponenten (Modell und Optimierungsverfahren) zusammen einen 

Lösungsrahmen für die Produktionsplanung bilden und die Entscheidungsfindung in verschiedenen 

Fertigungsindustrien unterstützen. Kleine und mittelgroße Bäckereien haben zumeist keinen Zugang zu 

den modernsten Werkzeugen und die meisten ihrer Produktionspläne beruhen auf persönlichen 

Erfahrungen. Dies macht einen erheblichen Unterschied bei den Produktionskosten im Vergleich zu den 

großen Bäckereien aus, was sich in deren Marktdominanz widerspiegelt. 

In dieser Studie wird ein hybrides No-Wait-Flow-Shop-Modell vorgeschlagen, um einen 

Produktionsplan auf der Grundlage tatsächlicher Daten zu erstellen, der die Beschränkungen der 

Produktionsumgebung in kleinen und mittleren Bäckereien berücksichtigt. Mehrere einzel- und 

mehrzielorientierte, von der Natur inspirierte Optimierungsalgorithmen wurden implementiert, um 

effiziente Produktionspläne zu berechnen. Die Minimierung der Produktionsdauer ist das am häufigsten 

verwendete Qualitätskriterium für die Produktionseffizienz, da sie die Produktionskosten dominiert. 

Jedoch wird in Bäckereien durch hohe Leerlaufzeiten der Öfen Energie verschwendet was wiederum die 

Produktionskosten erhöht. Die Kombination beider Qualitätskriterien (minimale Produktionskosten, 

minimale Leerlaufzeiten der Öfen) ermöglicht eine zusätzliche Kostenreduzierung durch 

Energieeinsparungen und kurze Produktionszeiten. Um einen effizienten Produktionsplan zu erhalten, 

wurden daher die Minimierung der Produktionsdauer und der Ofenleerlaufzeit in die Optimierungsziele 

einbezogen. 

Um optimale Produktionspläne für bestehende Produktionsprozesse von Bäckereien zu 

ermitteln, wurden folgende Algorithmen untersucht: Particle Swarm Optimization, Simulated Annealing 

und Nawaz-Enscore-Ham. Die Methode der Gewichtung wurde verwendet, um zwei Ziele zu einem 

einzigen Ziel zu kombinieren. Die Optimierungsalgorithmen erwiesen sich als gut genug, um in 

angemessener Zeit optimale Pläne zu berechnen, wobei bei einem untersuchten Datensatz die 

Produktionsdauer um 29 % und die Leerlaufzeit des Ofens um 8 % reduziert wurde. Allerdings erwies sich 

die Konvergenz der Algorithmen als unzureichend, da nur mit einer geringen Wahrscheinlichkeit das 

beste oder nahezu beste Ergebnis berechnet wurde. Im Gegensatz dazu zeigte der in dieser Studie ebenfalls 

untersuchte modifizierte Particle-swarm-Optimierungsalgorithmus (mPSO) eine deutliche Verbesserung 
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der Konvergenz mit einer höheren Wahrscheinlichkeit, bessere Ergebnisse zu erzielen im Vergleich zu 

den anderen Algorithmen.  

Um Kompromisse zwischen zwei Zielen zu erzielen, wurden moderne Algorithmen zur 

Mehrzieloptimierung implementiert: Non-dominated Sorting Genetic Algorithm (NSGA-II), Strength 

Pareto Evolutionary Algorithm, Generalized Differential Evolution, Improved Multi-objective Particle 

Swarm Optimization (OMOPSO), and Speed-constrained Multi-objective Particle Swarm Optimization 

(SMPSO). Die Optimierungsalgorithmen ermöglichten eine effiziente Produktionsplanung mit einer 

Verringerung der Produktionsdauer um bis zu 12 % und einer Verringerung der Leerlaufzeit der Öfen um 

26 % auf der Grundlage von Daten aus unterschiedlichen Produktionsprozessen. Der Leistungsvergleich 

zeigte signifikante Unterschiede zwischen diesen Mehrziel-Optimierungsalgorithmen, wobei NSGA-II 

am besten und OMOPSO und SMPSO am schlechtesten abschnitten. 

Die Gärung ist ein wichtiger Verarbeitungsschritt, der zur Qualität des Endprodukts beiträgt, 

indem der Geschmack und die Textur des Brotes positiv beeinflusst werden kann. Die Dauer der Gärung 

ist jedoch aufgrund der komplexen Interaktion von mehreren Größen abhängig wie der Hefezustand, der 

Temperatur in der Gärkammer und der chemischen Zusammensetzung des Mehls. Aufgrund der 

Variabilität der Gärzeit kann jedoch ein Produktionsplan, der auf die kürzeste Produktionszeit optimiert 

ist, sehr ineffizient sein. Die Berechnungsergebnisse zeigen, dass die Pläne mit der kürzesten und nahezu 

kürzesten Produktionsdauer eine erhebliche (bis zu 18 %) Erhöhung der Produktionsdauer aufgrund der 

Abweichung der Gärzeit von der erwarteten Dauer aufweisen. In dieser Arbeit wird eine Methode zur 

Entwicklung einer robusten Produktionsplanung vorgeschlagen, die Veränderungen in den Gärzeiten 

berücksichtigt, so dass selbst bei einer extremen Abweichung der Gärzeit die Schwankung der 

Produktionsdauer minimal ist. Die experimentellen Ergebnisse für einen Produktionsprozess ergaben 

einen robusten Produktionsplan, der nur 5 Minuten länger ist als die kürzeste Produktionsdauer, aber nur 

21 Minuten in der Produktionsdauer schwankt, wenn die Gärzeit von -10 % bis +10 % der ermittelten 

Gärzeit variiert. 

In dieser Studie wird ein Vorgehen für kleine und mittlere Bäckereien vorgeschlagen, um ihre 

Produktionseffizienz in drei Schritten zu verbessern: Erfassung von Produktionsdaten, Simulation von 

Produktionsplänen mit dem hybrid No-Wait Flow Shop Modell und Ausführung der Optimierung. Für 

die Einzieloptimierung wird der mPSO-Algorithmus und für die Mehrzieloptimierung NSGA-II-

Algorithmus empfohlen. Auf der Grundlage realer Bäckereiproduktionsdaten zeigten die Ergebnisse, dass 

die in den Bäckereien verwendeten Pläne ineffizient waren und mit Hilfe eines effizienten 

Optimierungsalgorithmus in einer angemessenen Rechenzeit optimiert werden konnten. Die Umsetzung 

eines solchen Vorgehens in kleinen und mittelgroßen Bäckereibetrieben trägt dazu bei effiziente und 

robuste Produktionspläne zu erstellen und somit die Wettbewerbsfähigkeit dieser Bäckereien zu erhöhen. 
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2.1. Introduction 
With the aid of numerous cutting-edge technologies, such as the Internet of Things (IoT), process 

analytics, machine learning, and artificial intelligence (AI), manufacturing industries are revolutionizing 

operation facilities under the frame of Industry 4.0. The application of these digital technologies in 

industrial domains offers the potential to lean towards automation by improving production efficiency, 

lowering production loss and resource wastage, and getting access to predictive maintenance of the 

operation facilities [1]. Decisions are made based on data gathered from operation facilities themselves in 

order to establish robust approaches; nevertheless, the challenge is to identify insights and meaningful 

aspects that can contribute to improving the operation facilities. Although the global market is becoming 

more competitive, this data-driven decision-making methodology offers an opportunity to reduce the 

disparity between large, medium, and small-scale industries. The process is straightforward: gather data, 

uncover insights, and incorporate AI to improve current processes.  

The automation in the food sector is being greatly motivated by the fourth industrial revolution 

[2], from the land to the consumer's hand, and food processing is the centre of this chain. The 

consumption of bakery products within this segment has expanded significantly over time, with a recent 

deviation in many countries during the Covid-19 pandemic due to the closure of food outlets. Due to 

variances in the region, culture, consumer preferences, and seasonality, the varieties of bakery items are 

extraordinarily wide. Study shows that there are more than 3200 registered varieties of bakery goods only 

in Germany, each of which has a unique recipe [3]. In 2021, the German market had an estimated 15 

billion Euros in total turnover (1.5 million Euros per company), employing 240,000 people [4]. Despite 

the steady expansion of the market, the number of artisanal bakeries has fallen dramatically in the last 60 

years, from 55,000 to 9,965. Furthermore, as of 2021, 60 % of bakeries contributed 7 % of yearly sales, 

while only 6 % of bakeries produced a significant 69 % of annual sales [5].  

There might be many reasons behind such sales distribution, but clearly, a few companies are 

dominating the bakery market. Additionally, it conveys the impression that the number of artisanal 

bakeries is lowering as a result of the market dominance of a few large bakeries. If we limit our attention 

to the operation facilities, the volume of flour they process annually is higher, which has a significant 

impact on the cost of production. Small and medium-sized bakeries, in contrast, are unable to generate 

comparable revenue due to high operational costs caused by the lower amount of flour usage [6].  

Furthermore, whereas large bakeries use cutting-edge technologies to make resilient operational 

decisions, small and medium-sized bakeries continue to rely on personal experience [6–8]. It makes a 

definite difference in how well they use resources like energy, manpower, raw materials, and time, which 

altogether influence production costs.  

The motivation of this study is the gap between large bakeries and small and medium-sized 

bakeries in applying cutting-edge technologies, particularly for production optimization, without altering 
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the plant's infrastructure. This study investigates the impact of implementing a contemporary decision-

making strategy in small and medium-sized bakeries with the primary objective of creating a digital tool 

to minimize production time and energy waste. The novelty of this study compared to other similar studies 

is that it explores cases from several bakeries located in various European nations with vast disparities in 

operation facilities, product range, and recipes to offer a common framework. 

2.1.1. Bakery Production Scheduling Problem 

Imagine a baker produces different types of bread where each bread has individual characteristics 

in ingredients and dough processing. Ingredients are prepared initially based on bread recipes. The further 

dough processing stages including kneading, dough rest, dividing, shaping, proofing, and baking are 

performed accordingly that involve both machines and workers [8, 9]. The variation in dough treatments 

can be explained in many ways, including the order, duration, and machine that is used for each stage of 

processing, which distinguish each type of bakery product [10–12]. To perform one of these processing 

tasks baker has limited options in either machines or workers [13, 14] and therefore cannot start 

producing many products at the same time. A baker may prepare ingredients for many products, such as 

Product A, Product B, etc., at the same time. However, if the bakery features one kneader, kneading of 

only Product A can be performed right away. To perform the kneading of Product B, the baker must wait 

at least until the kneading of Product A is completed. This waiting time for Product B equals the duration 

of the kneading of Product A. The duration of kneading and other processing tasks for Product A and 

Product B might be different. Therefore, similar to the blockage in the kneader, the baker needs to plan 

the schedules of the machines for the following processing tasks. The planning for Product B is influenced 

by Product A and so does the following products. Therefore, the baker produces one after one so that 

dough processing tasks for every product are performed under the limitation of the machines.  

To define this problem simply, a baker has 𝑛𝑛 products which have to be processed through 𝑚𝑚 

machines in the same order, but with various durations of tasks. It could be simple, if the durations for the 

corresponding processing stages are the same regardless of the product recipes. If Product A and Product 

B have the same durations for kneading and following stages, doesn’t matter which product a baker 

produces first, the ultimate makespan is the same because they occupy the machines in the same manner, 

i.e., duration and order. However, due to the variations in the durations, the order in which a baker 

produces them influences the makespan significantly. Additionally, it determines the schedule for a 

machine when it is active and when it is idle. Some machines consume energy when they are idle and cause 

energy waste [8]. Therefore, besides makespan, reduction of energy waste is important.  

Many processing operations are carried out manually, particularly in small and medium-sized 

bakeries because they are considered to be “works of art” and cannot be automated. Throughout the 

production period, many individuals skilled in various processes work to do these manual tasks. 

Additionally, every bakery includes alternatives for operations that require a machine, such as a stone oven 

and an oven chamber for baking. The machines are chosen depending on the requirements of the product 
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recipe, for example, a product that requires baking in a stone oven, cannot be baked in an oven chamber. 

Even so, a stone oven includes multiple compartments, each of which may accommodate a batch of 

product, however, can follow independent baking duration and other specifications. Considering these, 

the scheduling model for bakeries is identical due to additional constraints, which are covered in greater 

detail in the following sections.  

2.1.2. Production Optimization 

Makespan and energy waste are two major goals in manufacturing engineering to achieve efficient 

production systems [15–20]. A baker must create a production plan that minimizes makespan and energy 

waste in order to make bakery production more efficient. In other words, it is the product order in which 

all processing tasks are distributed among machines in such a way that the manufacturing time and energy 

waste are kept to a minimum. In a simple way, one can experiment with all possible orders of the products 

and simulate production planning using production data to calculate makespan and energy waste. The 

possible orders for 𝑛𝑛 products are 𝑛𝑛!, with the only difference being the combination of product positions 

[6, 8]. With smaller 𝑛𝑛 values or fewer products, this approach may work with modern computers to find 

the best production order in a reasonable computational time. However, in small and medium-sized 

bakeries, bakers use a production line to produce 20 or more products in a batch. The number of orders 

for 20 products is 2.43 × 1018 and simulating all of them is time-consuming, and impractical. Such 

problems are classified as NP-hard (non-deterministic polynomial-time hard) in the literature and are 

challenging to solve mathematically [21–23]. 

Many studies offered effective approaches to finding a solution, if not the best, nearly the best 

within a reasonable computational time to the production planning problem [7, 24–30]. The approaches 

can be discussed under two segments: flow shop models and optimization algorithms. A production 

schedule is simulated using the flow shop model, which represents when the processing tasks are 

performed by machines. To do so, production data such as processing tasks, duration, and machines to 

perform each product task is required. Depending on the manufacturing environment, the flow shop 

model can be extremely complex. The flow shop model is featured by the constraints of the target 

manufacturing environment, and therefore no defined model will work for all manufacturing 

environments. Optimization algorithms, the second segment, have been widely used to improve the 

production efficiency of various types of products. These two segments are linked to finding the optimized 

solution to the production planning problem. Optimization algorithms propose production orders, which 

the flow shop model uses to simulate the entire production planning. The optimization objective, such as 

makespan, is calculated from the simulated schedule and sent back to the optimization algorithm for 

evaluation. Optimization algorithms generate new production orders in order to improve the objective 

values until a specific termination criterion is met [7, 8, 24, 30]. 

This approach finds an optimized schedule for a given production, which may not be the best one, 

but is expected to be near to the best one. Many optimization algorithms were used in the area of 
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production scheduling. Among them, nature-inspired optimization algorithms are widely used, the 

common characteristic of which is that the idea behind these algorithms is borrowed from nature. Despite 

these algorithms being powerful in solving many engineering optimization problems, some limitations 

have to be explained. The results obtained by nature-inspired algorithms can be different in different runs 

for the same problem [7, 8]. Whether the performance of a nature-inspired algorithm in solving problems 

is effective is one of the challenges that scientists and engineers deal with commonly. There is numerous 

research on optimization that demonstrate the challenge of being trapped in local optima, which makes 

algorithm deliver poor solutions. It is a matter of concern when the dimension of the problem is higher 

and there are many local optimum regions in the search space. Since the exact solution to most real-world 

problems is unknown, there is no way to directly compare the performance of an algorithm. Many 

scientists proposed effective approaches to improve the performance of the algorithms, mostly by 

modifying classical nature-inspired algorithms. Many performance metrics have been proposed to 

compare the performance of the optimization algorithms.  

2.1.3. Single Objective Optimization 

In many fields, scientists and engineers routinely tackle enormous optimization problems. Let us 

consider two simple scenarios. In the first case, to determine the value of one independent variable, let us 

assume 𝑥𝑥1, from a range of continuous values that lead to the best value for the dependent variable 𝑓𝑓(𝑥𝑥1). 

The best value of 𝑓𝑓(𝑥𝑥1) is defined by system requirements, which can be either minimum or maximum. 

In the minimization problem, the objective is to find the value of 𝑥𝑥1 for which 𝑓𝑓(𝑥𝑥1) is as minimal as 

possible. In the second case, if the number of independent variables rises from 1 to 𝑛𝑛 (≥ 2), such as 

𝑥𝑥1, 𝑥𝑥2, 𝑥𝑥3, … , 𝑥𝑥𝑛𝑛, the objective remains to find the minimum value for 𝑓𝑓(𝑥𝑥1, 𝑥𝑥2, 𝑥𝑥3, … , 𝑥𝑥𝑛𝑛) [31].  

Even though the only difference between the two cases is the number of independent variables, 

the complexity of the problem increases significantly in the latter case due to the 𝑛𝑛-dimensional search 

space. Finding one optimum value for 𝑥𝑥1 in the former case is easier than finding the optimum 

combination of 𝑛𝑛 values (for 𝑛𝑛 independent variables) in the latter case. However, in both cases, the goal 

is to minimize one value, which keeps the objective space one-dimensional. Many nature-inspired 

optimization algorithms have been proposed to solve the optimization problem with higher dimension in 

search space but a single objective, which solve the real problems satisfactorily. Among them, particle 

swarm optimization [32] and simulated annealing [33] are widely applied algorithms. However, the 

effectiveness of algorithms in solving problems is an area of research where scientists are still contributing 

with more robust approaches. 
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2.1.4. Multi-Objective Optimization 

In many engineering optimization problems, in addition to the complexity caused by the high 

dimensional search space, the number of objectives increases, with satisfying one causing dissatisfying 

another [34, 35]. There are a few other approaches to dealing with such issues, such as combining multiple 

objectives into one using the weighted sum method. The advantage of this approach is that, despite having 

a multi-objective problem, it solves similar to a single objective problem and provides satisfactory 

optimization results. However, the weighting factor is provided based on personal preference, and it is 

unknown whether combining the given weighting factors will result in an optimized solution if the 

problem is completely unknown. Furthermore, depending on the shape of the optimum region in the 

multi-dimensional objective space, this approach has limitations and may result in a sub-optimal solution 

[34]. There are a few optimization algorithms that address multi-objective optimization problems by 

providing a set of Pareto solutions rather than a single solution. These solutions represent trade-offs 

between objectives, from which a decision maker can select the best solution to meet the system's demand 

[36, 37]. In this study,  non-dominated sorting genetic algorithm (NSGA-II) [38], multi-objective particle 

swarm optimization (MOPSO) [39], improved multi-objective particle swarm optimization (OMOPSO) 

[40], speed-constrained multi-objective particle swarm optimization (SMPSO) [41], generalized 

differential evolution (GDE3) [42] and strength Pareto evolutionary algorithm (SPEA2) [43] are used to 

solve multi-objective production optimization problems. 
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2.2. Outline 
I. Processing of bakery production data  

Real production data were used to understand the fundamentals and constraints of bakery 

manufacturing in small and medium-sized bakeries. Data were collected as part of the EU project, 

"PrO4Bake", which was funded by EIT Food and coordinated by the University of Hohenheim with 

partners from seven different EU nations [44]. Project partners collected production data from 

approximately 20 small and medium-sized bakeries in seven different European countries. Each dataset 

depicts the resource allocation for the processing of bakery items in an existing production planning. The 

collected data were cleaned and formatted for further analysis. The structure of production data is 

simplified and explained in publications (included in section 3). Three complete processed and cleaned 

bakery production datasets are published with the labels BK15, BK50 [14], and BK20 [13].  Annex A shows 

the production dataset BK15. 

II. Modeling and nature-inspired optimization algorithms 

A hybrid no-wait flow shop model was developed to address the constraints of common bakery 

practice. The production data from all collaborated bakeries were simulated using this model to assess the 

efficiency of the existing production planning. The optimization algorithms are used to determine 

whether the current schedule is under-optimized and whether overall production efficiency can be 

improved. A few single objective optimization algorithms were used at this stage. PSO was modified to 

improve its efficiency in finding the optimal schedule in order to design a robust optimization algorithm. 

Section 3.1 includes a link to a research article on this subject. 

III. Application of multi-objective optimization algorithms 

The goal of this phase of research was to find a solution that provides the least amount of 

makespan and oven idle time at the same time. Because ovens cannot be turned off during production, 

keeping idle time to a minimum reduces energy waste and, as a result, CO2 emissions. Therefore, multi-

objective optimization algorithms were implemented. A published research article presented in section 

3.2 describes the mathematical modeling of the hybrid flow shop model for bakeries and a multi-objective 

optimization algorithm. 

IV. Performance comparison of multi-objective optimization algorithms 

The performance of the state-of-art multi-objective optimization algorithms was investigated. 

Three production data sets with varying numbers of products were used to find the most efficient 

optimization method. The implemented algorithms are distinguished by performance metrics that 

indicate the quality of obtained solutions, as presented in section 3.3. 
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V. A resilient bakery production schedule under uncertain proofing time 

Yeast is used as a leavening agent in many bakery products to improve the texture and flavour of 

breads and other bakery products. The yeast fermentation process in bread making is known as "proofing." 

Proofing time is uncertain because it is affected by flour quality, yeast cell metabolism, temperature, and 

humidity. Because the optimized schedules are based on the assumption of deterministic duration for all 

stages, the entire production flow can be disrupted due to uncertainties in proofing time. Section 3.4 

presents a resilient production planning that takes uncertain proofing time into account. 

VI. Discussion, conclusion, and final remarks 

A brief discussion demonstrating the consistency between the articles and findings is addressed 

in section 3.5. The related studies from the literatures are also presented in order to compare the findings 

and novelty of the methods used in this thesis. The study's concluding observations, and final remarks are 

presented in Section 4. 
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Modeling and optimization 
of bakery production scheduling 
to minimize makespan and oven 
idle time
Majharulislam Babor 1*, Olivier Paquet‑Durand 1, Reinhard Kohlus 2 & Bernd Hitzmann 1

Makespan dominates the manufacturing expenses in bakery production. The high energy consumption 
of ovens also has a substantial impact, which bakers may overlook. Bakers leave ovens running 
until the final product is baked, allowing them to consume energy even when not in use. It results 
in energy waste, increased manufacturing costs, and CO2 emissions. This paper investigates three 
manufacturing lines from small and medium-sized bakeries to find optimum makespan and ovens’ idle 
time (OIDT). A hybrid no-wait flow shop scheduling model considering the constraints that are most 
common in bakeries is proposed. To find optimal solutions, non-dominated sorting genetic algorithm 
(NSGA-II), strength Pareto evolutionary algorithm (SPEA2), generalized differential evolution (GDE3), 
improved multi-objective particle swarm optimization (OMOPSO), and speed-constrained multi-
objective particle swarm optimization (SMPSO) were used. The experimental results show that the 
shortest makespan does not always imply the lowest OIDT. Even the optimized solutions have up 
to 231 min of excess OIDT, while the makespan is the shortest. Pareto solutions provide promising 
trade-offs between makespan and OIDT, with the best-case scenario reducing OIDT by 1348 min while 
increasing makespan only by 61 min from the minimum possible makespan. NSGA-II outperforms all 
other algorithms in obtaining a high number of good-quality solutions and a small number of poor-
quality solutions, followed by SPEA2 and GDE3. In contrast, OMOPSO and SMPSO deliver the worst 
solutions, which become pronounced as the problem complexity grows.

Bakery is one of the major food manufacturing sectors, with steady increases in market share and per capita 
consumption. Craft bakery sales in Germany in 2021 were 14.9 billion Euros (exclusive of VAT), with an increase 
of 0.18 billion Euros per year. To meet market demand, the amount of flour consumed, the variety of products 
developed, and the number of personnel employed have all expanded over the past decade. According to reports, 
each bakery uses on average of 372 MWh of energy annually, resulting in 101 tons of CO2 emissions1,2. As the 
business environment has become more competitive, the objectives for improving the efficiency of a manufac-
turing system have widened. In order to satisfy customers, meet market demand, and turn a profit, an optimum 
cost-time profile is crucial. It includes cost savings via the efficient use of assets and materials. Makespan, tardi-
ness, earliness, and energy consumption are some of the most commonly employed cost-cutting objectives in 
various production environments. However, bakery manufacturing, particularly in small and medium-sized 
bakeries, is prone to inefficiencies because employees perform many tasks manually for operations that cannot be 
automated. Furthermore, employee salaries are said to account for a significant amount of the cost1. As a result, 
when planning the production schedule, bakers focus primarily on lowering the makespan.

Production scheduling with more than two machines is a non-deterministic polynomial-time (NP)-hard 
problem3,4. The difficulty of finding the best schedule increases as the number of products, processing stages, 
and alternative machines for each stage grows. Therefore, the flow shop scheduling problem has been extensively 
studied to improve the efficiency of several production and service environments, such as bakery5–7, glass8, steel9, 
wood10, chemical process11, energy system12, healthcare system13–15. To put it simply, it is the process of allocating 
tasks of varying durations from n products to m machines. It also provides supplementary information for assess-
ing a schedule, such as makespan and energy use, that change based on how the tasks are allocated. The most 
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common type of flow shop scheduling problem is the permutation flow shop, in which each product must pass 
through all the m machines independently in the same order4. In complex cases, a processing task of a product 
may depend on another product. It is known as “no-wait” flow shop scheduling problem when there is no delay 
allowed between two successive tasks of a product. Many hybrid flow shop models have been developed to reflect 
the reality, which is mostly specific to a production system16. To make production systems energy-efficient and 
environmentally friendly, many flow shop models have been proposed, which are widely known as “green flow 
shop model”. Here, in order to establish an efficient resource allocation, total energy consumption is taken into 
account in addition to makespan17.

Although modern industries have been applying many powerful decision-making tools, such as intelligent 
manufacturing systems, to address complex challenges18,19, small and medium-sized bakeries continue to rely 
on personal experience6,7. Furthermore, bakeries’ product range and amount change frequently due to market 
demand and seasonality, demanding continuous monitoring of production efficiency. However, only a few studies 
have focused on improving bakery manufacturing. In a recent study, Huber and Stuckenschmidt20 implemented 
machine learning approaches to predict hourly sales of bakery items in a retailer store and optimize the baking 
schedule so that bakers serve customers with fresh products. Nonetheless, the production of a vast number of 
products, from flour to finished or unfinished goods before delivery to retailers, is a separate segment. In a case 
study with a medium-sized German bakery, Hecker et al.6 observed that the makespan of an existing manu-
facturing line with 40 products can be lowered by 8.6%. Swangnop et al.7 developed a scheduling model for a 
bakery in Thailand and demonstrated that the existing production, planned based on experience, is inefficient. 
An additional factor that most bakers overlook is the ovens’ energy consumption, which has a vital influence on 
manufacturing costs and CO2 emissions. It has been reported that only baking consumes up to 78% of the total 
energy depending on the product category21. Bakeries typically feature multiple ovens with varied functionalities 
that are employed according to product specifications5,6. As a result, by minimizing the idle time of the ovens, 
a large quantity of energy can be saved, lowering manufacturing costs and CO2 emissions. Babor et al.5 investi-
gated a small Spanish bakery and observed that actual production is poorly optimized. The authors weighed the 
machines’ idle time and makespan to the objective function.

The motivation for this study is twofold. First, to solve production optimization problems for bakeries with 
two objectives: minimizing makespan and energy waste due to oven idle time. It is a hybrid no-wait flow shop 
scheduling problem because of the following exceptions in bakery manufacturing. Many tasks are carried out 
manually, and there are numerous substitute machines that can carry out the remaining tasks. Additionally, there 
are production constraints for a variety of products recipes. Therefore, a mixed-integer linear programming 
approach for hybrid no-wait flow shop scheduling model (HNFSM) is proposed to simulate bakery production 
scheduling. The Pareto optimal solutions obtained by multi-objective optimization algorithms are used to analyze 
the trade-offs between the objectives. Secondly, to compare the performance of five multi-objective optimization 
algorithms to solve the instances. Because production optimization is time-consuming and performed frequently, 
attaining optimal solutions in the lowest computation time is essential. We used multi-objective optimization 
algorithms of two types: evolutionary algorithms and particle swarm optimization-based metaheuristics. Non-
dominated sorting genetic algorithm (NSGA-II), strength Pareto evolutionary algorithm (SPEA2), and general-
ized differential evolution (GDE3) are taken from the former category, while improved multi-objective particle 
swarm optimization (OMOPSO), and speed-constrained multi-objective particle swarm optimization (SMPSO) 
are from the latter. To assess their effectiveness, four quality indicators are used: cardinality, convergence, dis-
tribution and spread, and convergence and distribution of the obtained solutions. To cluster the solutions into 
distinct qualities, a Gaussian mixture model22 is used.

The following are the contributions of the current study. State-of-the-art multi-objective optimization meth-
ods are used to optimize the production efficiency of small and medium-sized bakeries employing a hybrid 
no-wait flow shop model. By combining various performance metrics, the Gaussian mixture model is used to 
assess how effectively algorithms solve problems of three complexity levels while varying the number of products 
and predecessor constraints.

The remainder of the paper is structured as follows. An introduction to bakery production is given in the 
next section. “Materials and methods” section describes mathematical formulation of a hybrid no-wait flow 
shop scheduling model to simulate bakery manufacturing. Besides, multi-objective optimization algorithms and 
their performance indicators are presented. In “Results and discussion” section, the effectiveness of algorithms 
in solving scheduling problems for bakeries is analysed. “Conclusions and future works” section of this paper 
provides a summary of findings.

Bakery production
A bakery product undergoes a series of processing steps. Each product has a recipe that specifies the order, 
duration, and machines that will be utilized to complete the tasks. Figure 1 shows a simplified processing route. 
Making the dough starts by mixing and kneading the ingredients, such as flour, water, and salt. In most cases, 
yeast is added to induce fermentation, which produces the leavening agent CO2 and other aroma precursors. 
If small and medium-sized bakeries are considered, the transfer of unfinished products from one machine to 
another is performed manually by employees almost after every processing task. The fermentation process has 
a vital impact on the final product’s quality. Because temperature and humidity have a considerable impact on 
yeast sugar fermentation, the duration of the processing stages under various conditions is strictly controlled. 
Performing one task longer than the predefined duration results in overtreatment and consequently, delay for 
the following tasks, and a loss of product quality, both of which are undesirable. Therefore, as soon as ingredients 
are mixed and kneaded, the next stages are carried out with no delay.
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To avoid wasting energy, bakers turn off machines during the idle time—the time between two scheduled 
operations. However, ovens need preparation time to reach the set temperature before performing baking. 
Turning them off after an operation requires a restart well ahead of the next operation. When they are turned 
off, no energy is consumed, but the temperature steadily declines. If the idle time between two tasks is short, the 
temperature drops less, and the time required to re-heat is reduced. However, if the temperature drops sharply, 
such as due to chilly weather, the assumed time may not be long enough to reach the set point. Again, with 
the prolonged idle period, the right time to restart the ovens must be considered to avoid wasting energy and 
have them ready at the proper time. When the number of products is large and there are many manual tasks to 
perform, it is difficult for bakers to keep track. The following tasks must be postponed accordingly if the oven’s 
temperature is not up to the set point in time. It may affect the product quality and lead to inefficient production. 
To avoid these consequences, bakers keep the ovens running throughout the production time.

The duration and machine set up for processing steps are predetermined. Hence, the energy consumption 
during operational time is constant regardless of how optimized a schedule is. In contrast, the effectiveness of 
the schedule influences oven idle time, which has a direct impact on the quantity of wasted energy. Moreover, 
small, and medium-sized manufacturers have limitations in recording energy data for each device. In this case, 
the idle time of the ovens can be an ideal indicator of energy waste. Machine idle time has been investigated in 
various studies as one of the objectives for optimizing production schedule5,6,23,24.

Materials and methods
In this paper, three bakery production optimization problems, labelled with BK15, Bk40 and BK50 were solved. 
The number in labels specifies how many products were produced in each manufacturing line, for example, the 
dataset BK15 contains production information for 15 bakery products. BK15 and BK50 were taken from Babor 
and Hitzmann25 and BK40 was taken from Hecker et al.6. BK15 had three employees, eight machines, and two 
ovens with four compartments; BK40 had eleven machines, three ovens, and nine compartments; and BK50 
had ten employees, fourteen machines, and three ovens, and ten compartments. In bakeries, many ovens have 
separate compartments, each of which can be used independently to bake a batch of products. In the following 
discussion, the problems are labelled according to the approximate number of total products. The implementation 
and simulation of HNFSM and multi-objective optimization algorithms were performed using the computer 
language Python (version 3.7)26 on a computer running Microsoft Windows 10 as the operating system with a 
configuration of an Intel Core i5 at 4 × 3.20 GHz, 8 GB ram.

Problem definition and scheduling model.  In small, and medium-sized bakeries, using the same dough 
for various products made from the same ingredients is a frequent practice. This practice takes advantage of the 
machines’ capabilities in the initial stages to reduce preparation time. Bakers split the dough after completing a 
few processing tasks into various parts. It enables the products to be treated differently in subsequent phases to 
meet recipe requirements. There is no common procedure for separating dough as it completely depends on the 
type of products and recipes. Figure 2 illustrates a schedule of two products that are produced from the same 
dough and shared the same processing machines at the initial phase.

Figure 1.   A simplified processing route for bakery products.

Figure 2.   Gantt chart showing schedule of one product group with unified initial stages. The triangle (∆) shows 
the oven idle time.
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In another scenario, multiple products that came across different processing routes are baked in the same 
oven. Because baking consumes high energy, running an oven while it is only partially occupied causes energy 
waste. Figure 3 shows a schedule for two products where baking is performed together. In both cases (Figs. 2, 3), 
the products are internally dependent such that their common tasks must be performed at the same time. This 
preceding rule is used to arrange products into groups in the flow shop model. Only one product in a group has 
no predecessor, which means it can be scheduled at any time throughout the production runtime. However, the 
schedules for the rest of the products in that group depend on it. Table 1 represents simplified production data 
for one product group which is visualized in Fig. 2.

In reality, many product groups are organized based on their internal dependence. Within a group, each prod-
uct has an individual bowl time. It indicates the start time difference between a predecessor product and any other 
product in a group. For one processing stage, there might be multiple alternative machines and employees, from 
which one should be selected based on availability. In general, for dough rest and cooling, no energy-consuming 
machines are required and therefore are considered to have the capacity to operate as many products as possible 
at a time. Similarly, due to having enough space in proofing chambers, it is assumed that the proofing stage has 
no blockage. Considering the bakers’ practice, ovens can operate multiple products from the same product group 
at a time (Fig. 3). The rest of the machines can perform a task only from one product.

Figure 4 shows the procedure of optimizing the bakery production schedule. It can be discussed in three 
distinct segments: data collection, HNFSM, and optimization algorithm. Information about bakery products, 
machines, and employees is recorded during data collection. Depending on the internal dependence the prod-
ucts are sorted into distinct groups. An initial product sequence, an order of product groups in which they are 
produced, is transferred to HNFSM. In HNFSM, the processing tasks are allocated among the machines and 
employees. Here, the actual scheduling, i.e., exact start and end time, machine, or employee to conduct a task 
is determined. Like other flow shop models, the products that are placed first in the order will get priority in 
occupying the machines and employees. The following products are scheduled according to machine availability. 
The makespan and OIDT are calculated as a quality indicator for a schedule, which is considered as a baseline to 
start improving. The optimization algorithm proposes a new candidate solution vector, which requires to convert 
into a product group sequence to use for HNFSM. The candidate solution conversion approach is explained later. 
This procedure is repeated until a certain termination criterion is met.

This section describes the mathematical formulation of the proposed hybrid no-wait flow shop scheduling 
model. Table 2 defines the notions that are used to describe HNFSM. Ovens at bakeries typically contain multiple 
compartments that may each be used separately to bake different products. OIDT may exceed the makespan 
since it calculates the total idle time of all oven compartments. The following equations are used to calculate 
makespan and OIDT.

Figure 3.   Simplified schedule for one product group where baking is performed together. Here WT is the 
difference between the start time of Product C and Product D.

Table 1.   Simplified production data for one product group.

Group Product Bowl time [min] Name Processing stage Duration [min] Machine/Employee

1

1 0 Product A

Preparation 9 Employee

Kneading 18 Kneader

Dividing 9 Employee

Dough rest 25 Resting cabinet

Baking 42 Oven

Cooling 25 Cooling space

Packaging 4 Employee

2 36 Product B

Dividing 10 Employee

Dough rest 30 Resting cabinet

Proofing 80 Proofing chamber

Baking 45 Oven

Cooling 36 Cooling space

Packaging 7 Employee
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The HNFSM is described as follows.

(M1)Makespan = max
(

CTg ,p,s

)

∀g ∈ PG, ∀p ∈ P

(M2)OIDT =
∑m

k=1

(

endk − startk −
∑NG

g=1

∑n

p=1
PTg ,p,k

)

∀g ∈ PG, ∀p ∈ P,∀k ∈ V

Figure 4.   Schematic diagram of bakery production optimization using hybrid no-wait flow shop scheduling 
model (HNFSM).

Table 2.   Notations used in hybrid no-wait flow shop scheduling model (HNFSM).

Notation Description

NG Number of groups of products

n Number of products in a group

m Number of machines

e Number of employees

g Index of groups;g = 1, 2, . . . ,NG

p Index of products in group g; p = 1, 2, . . . , n

k Index of machines;k = 1, 2, . . . ,m

l Index of employees;l = 1, 2, . . . , e

s Index of the processing stage

t Index of production runtime in minutes

PG Set of product groups;G = {1, 2, . . . ,NG}

P Set of products in a group g ; P = {1, 2, . . . , n}

M Set of machines;M = {1, 2, . . . ,m}

V Set of oven compartments;V ⊂ M

U Set of machines with unlimited capacity;U ⊂ M

E Set of employees;E = {1, 2, . . . , e}

WTg ,p Time difference between product p and its predecessor in group g

PTg ,p,s Processing time at stage s of product p in group g

PTg ,p,k Processing time of product p in group g processed by machine k

STg ,p,s Start time for the operation at stage s of product p in group g

CTg ,p,s Completion time of stage s of product p in group g

startk The time when machine k starts its first operation

endk The time when machine k finishes its last operation

startl The time when employee l  starts the work

endl The time when employee l  finishes the work

Og ,p,s,k

{

1, if the product p in group g is processed on machine k at stage s
0, if otherwise

Og ,p,s,l

{

1, if the product p in group g is processed by machine l at stage s
0, if otherwise
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Subject to

The objective functions are shown in Eqs. (M3), (M4). Constraint (M5) states that the start time for the 
predecessor product of any group can be ≥ 0 . Constraint (M6) defines it for successor products in the group. 
It includes a time difference between the start time of predecessor and successor products. Constraint (M7) 
declares that the processing time for any stage must be greater than 0 min. The no-wait condition between 
two consecutive stages of a product is defined by conditions (M8) and (M9). Constraint (M10) ensures that 
an operation from a product can occupy only one machine. A machine can only perform one task at a time 
except for the ovens (k ∈ V) and the machines with unlimited capacity (k ∈ U) , as defined by constraint (M11). 
Constraint (M12) allows ovens to bake multiple products from the same group. According to constraint (M13), 
machines with unlimited capacity can perform any number of tasks at a time. Condition (M14) validates the 
shift plan of employees. Constraint (M15) limits the number of employees assigned to a single task. Constraint 
(M16) restricts the number of tasks assigned to a single employee at any given time. Employee job allocation is 
limited by constraints (M17) and (M18) to be within their working hours. Condition (M19) states that either an 
employee or a machine limitation can be occupied for a task. However, in the bakery process, some tasks require 
no machine and employee, such as dough rest.

Multi‑objective optimization.  Most real-world optimization problems that scientists and engineers han-
dle routinely are multi-objective problems, where systems demand satisfying more than one parameter. Con-
ventionally, such problems are simplified in two diverse ways: after converting multiple objectives into one by 
using the linear weighting method and featuring objectives as constraints. These approaches provide an opti-
mized solution to a satisfactory level without handling the complex interrelations between multi-objectives. 

(M3)Min
(

Makespan
)

(M4)Min(OIDT)

(M5)STg ,1,1 ≥ 0 ∀g ∈ PG

(M6)STg ,p,1 = STg ,1,1 +WTg ,p ∀g ∈ PG, ∀p ∈ P\{1}

(M7)PTg ,p,s > 0 ∀g ∈ PG, ∀p ∈ P, ∀k ∈ M

(M8)CTg ,p,s = STg ,p,s + PTg ,p,s ∀g ∈ PG, ∀p ∈ P

(M9)STg ,p,s+1 = CTg ,p,s ∀g ∈ PG, ∀p ∈ P

(M10)
∑m

k=1
Og ,p,s,k ≤ 1 ∀g ∈ PG, ∀p ∈ P,∀k ∈ M

(M11)
∑NG

g=1

∑n

p=1

∑CTg ,p,s

t=STg ,p,s
Og ,p,s,k ≤

(

CTg ,p,s − STg ,p,s

)

∀g ∈ PG, ∀p ∈ P,∀k ∈ M\(U ∪ V)

(M12)
∑NG

g=1

∑n

p=1

∑CTg ,p,s

t=STg ,p,s
Og ,p,s,k ≤ n

(

CTg ,p,s − STg ,p,s

)

∀g ∈ PG, ∀p ∈ P,∀k ∈ V

(M13)
∑NG

g=1

∑n

p=1

∑CTg ,p,s

t=STg ,p,s
Og ,p,s,k ≤

∑N

g=1
n ∀g ∈ PG, ∀p ∈ P,∀k ∈ U

(M14)startl < endl ∀l ∈ E

(M15)
e

∑

l=1

Og ,p,s,l ≤ 1 ∀g ∈ PG, ∀p ∈ P, ∀l ∈ E

(M16)
∑NG

g=1

∑n

p=1

∑CTg ,p,s

t=STg ,p,s
Og ,p,s,l ≤

(

CTg ,p,s − STg ,p,s

)

∀g ∈ PG, ∀p ∈ P,∀l ∈ E

(M17)STg ,p,s ≥ startl ∀Og ,p,s,l = 1,∀g ∈ PG, ∀p ∈ P, ∀l ∈ E

(M18)CTg ,p,s ≤ endl ∀Og ,p,s,l = 1,∀g ∈ PG, ∀p ∈ P, ∀l ∈ E

(M19)
∑m

k=1
Og ,p,s,k +

∑e

l=1
Og ,p,s,l ≤ 1 ∀g ∈ PG, ∀p ∈ P,∀k ∈ M, ∀l ∈ E
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Nonetheless, depending on the type of problems, these approaches have limitations. The former method relies 
on personal preference when determining the importance of objectives, which has a major impact on the solu-
tion. Furthermore, weighting factors might lead the optimizer to a poor solution when solving a problem with 
a non-convex Pareto front that is unknown beforehand. The latter approach struggles to deal with the high-
dimensional, multi-objective optimization problems and is prone to producing suboptimal solutions. In reality, 
many multi-objective optimization problems do not show continuous solutions in the objective space. Therefore, 
if objectives are restricted to different ranges, for an optimizer it is challenging to find an optimal solution that 
meets these constraints. There are many optimal solutions to multi-objective problems with many local minima 
in a multi-objective space. Following traditional methods, the entire procedure must be repeated many times, 
each time adjusting the weighting factors or constraints for the objectives to make sure that the obtained solution 
is not one of these local minima. However, there is no guarantee that a complete set of optimum solutions will 
be obtained. To address this problem, several multi-objective optimization algorithms have been proposed27–33. 
Given a decision space χ mapped into R for q objective functions f1 : χ → R, . . . , fq : χ → R , a multi-objective 
optimization minimization problem can be stated as follows (Eq. 1).

where f1(x), . . . , fq(x) are objective functions such that minimizing one function leads to an increase in others.
Multi-objective optimization, unlike single-objective optimization, generates a collection of optimal solutions 

by displaying tradeoffs between the objectives in the objective space24. Therefore, an objective vector has q values, 
such as [f 1(x), ..., fq(x)] , each of which reflects the extent of the corresponding objective. Figure 5 outlines an 
objective space for a bi-objective (q = 2) problem. The multiple optimal solutions in this space are selected such 
that they show the best tradeoffs between the objectives, which is defined by Pareto dominance. Pareto dominance 
is the fundamental of multi-objective optimization algorithms, extensively used to distinguish optimal solutions 
from suboptimal solutions. To define the Pareto dominance, given two objective vectors, −→a = [a1, ..., aq] and −→
b = [b1, ..., bq] and −→a  is said to dominate 

−→
b (−→a �

−→
b  ) if and only if −→a d ≤

−→
b d for every d ∈

{

1, . . . , q
}

 and
−→a d <

−→
b d for at least one of d ∈

{

1, . . . , q
}

 . In words,−→a  dominates 
−→
b  , if −→a  is not worse in any objective and 

better in at least one objective than 
−→
b 34,35. Figure 5 shows that the objective vector −→a  dominates 

−→
b  as it improves 

f1 while not worsening f2 . However, considering −→a  , −→c  and 
−→
d  , no one dominates none and thus together they

form the Pareto front (PF).

Optimization algorithms.  The concept of Pareto dominance has been used fundamentally in these multi-
objective optimization algorithms to find a collection of optimal solutions from a population that progresses over 
the generations. The strength Pareto evolutionary algorithm (SPEA) is one that was later improved to SPEA2 by 
eliminating a few weaknesses32. Similarly, the non-dominated sorting genetic algorithm (NSGA) was improvised 
for NSGA-II by reducing the computation complexity using a fast non-dominated sorting approach27. The inclu-
sion of elitism, a feature that preserves the good solutions over generations, in NSGA-II makes it comparable 
with SPEA2. The third version of generalized differential evolution (GDE3), which originated from the differen-
tial evolution algorithm, is relatively a new member of this group36.

Based on the simulation of the social behavior of birds, the particle swarm optimization algorithm was first 
proposed by Eberhart and Kennedy37. This concept has been used in several studies to develop multi-objec-
tive optimization algorithms34,34,38–45. In an improved particle swarm optimization-based algorithm, known 
as OMOPSO, Pareto dominance, crowding distance, and mutation operators are included, resulting in highly 
competitive performance44. Later, an extended version, speed-constrained multi-objective particle swarm 

(1)minf1(x), . . . ,minfq(x); x ∈ χ and q > 1

Figure 5.   Concept of Pareto dominance for bi-objective functions ( f1 and f2 ) optimization minimization 
problem.
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optimization (SMPSO), was introduced. It is reportedly aimed to adapt particle velocity when it gets higher to 
generate an effective position in the search space42.

However, there is no guarantee that all MOA solutions are truly optimal for an unknown problem. In most 
previous studies, the effectiveness of multi-objective optimization methods has been demonstrated by solving 
different mathematical test functions. Solving real-world high-dimensional production scheduling problems are 
computationally expensive and rarely used as benchmarks to test algorithms. A few studies applied these state-of-
art multi-objective algorithms to solve scheduling problems46–51. In Annex A, the algorithms are briefly described.

Solution vector conversion.  The optimization candidate solution is a vector consisting of continuous 
values of size equal to the number of product groups in a problem. In contrast, a solution to HNFSM is a set of 
discrete numbers, where each number represents one product group. The order of these discrete numbers makes 
the difference in the final schedule as it implies when each product should be produced. Therefore, a conversion 
of the algorithmic solution is required. To convert the solution vector into a set of discrete numbers, the small-
est position value rule is employed. Table 3 explains the candidate solution conversion procedure for 3 product 
groups using the smallest position value rule. In this approach, the index of each value in the solution vector is 
conjugated with a product group. The indexes are sorted by the rule of smallest to the largest value in the vector. 
The sorted index is used as a solution to the problem. The order of the numbers in the product sequence specifies 
the order of conjugated product groups in which they should be produced.

Performance indicators.  Ye et al.52,53 have described the difficulty in achieving effectiveness and efficiency 
while finding optimized solution to no-wait flow shop scheduling problems. In this study, the performance of an 
algorithm is evaluated based on obtained Pareto front, called candidate PF, with the true Pareto front (PF*) to a 
problem. Initially, PF* for a problem is unknown. Once the candidate fronts (PF) for a problem are obtained by 
algorithms, the PF* is calculated by taking only Pareto optimal solutions from them.

Cardinality.  To measure the cardinal quality of optimal solutions, Pareto domination strength is used, which 
considers the number of optimal and non-optimal solutions in a candidate PF obtained by any algorithm. Pareto 
domination strength was calculated by using Eq. (2). A higher Pareto domination strength indicates the worst 
performance of an algorithm.

where PDS is Pareto domination strength, |.| indicates cardinality of a set, a is an objective vector.

Distribution and spread.  The maximum spread of the solutions in a front captures the spread of the solutions in 
a front using Eq. (3). A higher value for this indicator represents that an algorithm performed better.

where MSF is maximum spread of the solutions in a front, Q is the number of objectives, f max
q  and f min

q  are the 
maximum and minimum values of the qth objective in PF*, respectively, Fmax

q  and Fmin
q  are the maximum and 

minimum values of the qth objective in the PF provided by the algorithm that is under evaluation.

Convergence.  Convergence measures the degree of proximity between PF* and its approximation, e.g., candi-
date PF obtained by an algorithm. As a convergence indicator, distance to the Pareto front represents how close 
the solutions of two fronts are. A higher distance to the Pareto front, calculated by using Eq. (4), indicates an 
algorithm performed worst.

where DPF is distance to the Pareto front, Ed(a, b) is the Euclidean distance between objective vectors a and b , 
PF* is the true Pareto front, and PF is the front obtained by an algorithm that is under evaluation.

(2)PDS =
|{a : a ∈ PF and a /∈ PF∗}| − |{a : a ∈ PF and a ∈ PF∗}|

|PF| × |PF∗|

(3)MSF =


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
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
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1/2

(4)DPF =
1

|PF∗|

(

∑

a∈PF∗

min
b∈PF

Ed(a, b)

)

Table 3.   Conversion of a sequence vector to a product group sequence using smallest position value rule.

Generation (G) Sequence vector (−→x i,G) Sorted index Product group sequence

1 [1.22, − 1.08, 1.90] [1–3] {2, 1, 3}

2 [− 0.29, 0.25, 0.80] [1–3] {1, 2, 3}

3 [1.06, 0.30, -0.20] [1–3] {3, 2, 1}
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Convergence and distribution.  The hypervolume of the front in objective space describes the convergence and 
distribution of the solutions obtained by an algorithm. It calculates the volume of the space covered by the 
solutions of a front and delimited from above by a reference objective vector. It defines the upper limit for each 
objective in the objective space to consider for calculating hypervolume (Fig. 6) by using Eq. (5). A higher rela-
tive hyper volume indicates that an algorithm performed better.

where �q is the q-dimensional Lebesgue measure, PF is a front obtained by an algorithm that is under test, a is 
an objective vector and RV is a reference objective vector. In this study, for the two objectives, relative hyper area 
(Eq. 6) is used to compare the performance of different algorithms.

where RHA is relative hyper area, HPPF and HPPF* are hyper volumes for a front obtained by an algorithm that is 
under evaluation and true Pareto front for a problem, respectively.

Results and discussion
True Pareto front and candidate solutions.  Figure 7 shows quality indicators representing candidate 
solutions in objective space obtained by algorithms. True Pareto front (PF*) is the line that connects only a set 
of optimal solutions. PF* for the instances has only a few solutions, even though many sub-optimal solutions 
exist nearby. BK15 (Fig. 7a) and BK40 (Fig. 7b) have three Pareto solutions each, but BK50 has seven (Fig. 7c). 
For BK15 and BK40, the difference between boundary solutions (E1 and E2), which represent extreme tradeoffs 
between objectives inside PF*, is insignificant. Boundary solutions for BK15 reveal tradeoffs within a 9 min dif-
ference in makespan and 21 min difference in OIDT, while they are 13 min and 11 min differences for BK40, 

(5)HPPF = �q

(

⋃

a∈PF
[a,RV ]

)

(6)RHA[%] =
HPPF × 100

HPPF∗

Figure 6.   Hypervolume (HV) of one front for two objective functions ( f1 and f2 ). Filled circles are solutions in 
front and empty circle is a reference objective vector (RV).

Figure 7.   Candidate solutions represented by their quality indicators (circles) obtained by five optimization 
algorithms and true Pareto front (line) for problem (a) BK15, (b) BK40 and (c) BK50. The color gradient of 
the circles represents the quality of the solutions, with the darkest blue being the best and pale yellow being the 
worst.
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respectively. In contrast, due to a 61 min rise in makespan, PF* for BK50 conveys a large 1348 min decline in 
OIDT. Unlike many mathematical function optimizations described in previous studies31,36,42, the solutions in 
PF* are not continuous in objective space. Furthermore, PF* may have a convex or concave form, which adds to 
the complexity of solving higher-dimensional problems for optimizers.

Despite a dramatic drop in OIDT over the PF*, BK50 has the highest OIDT (1243 min) at E2. The reason 
could be that many products in BK50 have predecessors. If multiple products within a group require different 
specific ovens and the number of products in the group is higher, it is most likely to have higher oven idle time. 
Candidate solutions that are more densely dispersed in the higher OIDT area support it, with only a few solutions 
found around E2 (Fig. 7c). In contrast, BK15 has only 3 groups with more than one product and BK40 has no 
group with multiple products. The PF* of these cases shows a minimum OIDT of 72 min and 0 min, respectively 
at the E2 point. In addition, their candidate solutions are distributed throughout the objective axis (Fig. 7a,b). 
BK50 has many groups where the initial stages are processed combinedly to take advantage of machine capacity 
and save preparation time. Since these products eventually require different baking ovens, finding these ovens 
available at different time spans leads to a higher OIDT.

Multiple solutions were achieved at the shortest makespan (E1) in all cases, but they were dispersed unevenly, 
with a few having significantly larger OIDT than the respective Pareto solution (E1). The binned scatter plot 
(Fig. 8) gives two indications. Firstly, a schedule with minimum makespan does not guarantee to have mini-
mum OIDT. A similar result was observed in previous studies5,23. Therefore, a schedule optimized with a goal 
to minimize the makespan might be highly inefficient in energy usage. For example, the candidate solutions for 
BK15 above E1 shows up to 150 min higher OIDT compared to E1 despite having the same makespan, which is 
even higher for BK40 (231 min). Figure 8 demonstrates that the error bars are pronounced in the region of the 
lower makespan. It implies that there is a high possibility an optimizer will produce poor solutions around the 
shortest makespan with a higher energy waste due to OIDT.

Secondly, solutions with a marginal increase in the shortest makespan could result in an acute reduction in 
OIDT. As a result, a substantial amount of energy can be saved, lowering operational expenses and CO2 emissions. 
Because the makespan dominates manufacturing cost, the gain in OIDT is compared to the loss in makespan 
from the shortest makespan at E1. If any Pareto solution other than E1 offers an intense reduction in OIDT while 
losing a marginal amount of makespan, the entire manufacturing cost can be reduced even more. For example, 
for BK50, E2 offers OIDT drop by 8% for each percentage increase in makespan from E1 (Fig. 8c). In other 
words, E2 is more efficient than E1 since it lowers OIDT by 1348 min while increasing makespan by only 61 min.

Candidate Pareto front.  Figure 9 shows the candidate PF for BK15 attained by algorithms. For 50 and 
100 iterations, NSGA-II and SPEA2 showed better performance. However, with increasing the iteration size, 
OMOPSO and GDE3 obtained improved solutions too. In contrast, despite offering a high number of solutions, 
SMPSO displayed comparatively poor performance. A similar performance was observed for BK50 (not shown). 
In contrast, for BK40 (not shown), the NSGA-II performed worst compared to OMOPSO and SMPSO. SPEA2 
always found only one solution, though it was close to being the optimal solution.

Figure 10 shows the improvement of candidate fronts obtained by algorithms over different iteration sizes 
for BK50. NSGA-II, SPEA2, and GDE3 improved solution quality remarkably over different iteration sizes 
(Fig. 10a–c, respectively). However, fronts from OMOPSO and SMPSO were similar, and both displayed poor 
improvement. All the solutions in PF* for BK50 were obtained by NSGA-II and SPEA2 combinedly, while GDE3 
featured a few solutions near PF*. In contrast, no contribution in PF* was observed from MOPSO and SMPSO. 
Comparable results were obtained for BK15 (not shown). For BK40, GDE3, OMOPSO, and SMPSO obtained 
Pareto solutions to form PF* and no contribution from NSGA-II and SPEA2 was observed (not shown).

Hecker et al.6 used single objective optimization methods to reduce the makespan of BK40, and the results 
showed that a modified genetic algorithm obtained a minimum makespan of 1261 min 4 times out of 21 runs. 
Solutions with the best makespan were compared even though multi-objective solutions were found in this study. 
The best makespan of 1259 min was attained by NSGA-II and SMPSO four times out of four separate runs with 
varying iteration sizes, while SPEA2, GDE3, and OMOPSO achieved this three times each.

Pareto domination strength and maximum spread of the solutions.  Table  4 shows the pareto 
domination strength and maximum spread of the solution for the algorithms. According to Pareto domination 

Figure 8.   Binned scatter plot of quality indicators representing candidate solutions obtained by five algorithms 
for instances: (a) BK15, (b) BK40 and (c) BK50. Error bars represent the standard deviation of OIDT.
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Figure 9.   Candidate Pareto front (PF) for BK15 from optimization algorithms with—(a) 50 iterations, (b) 100 
iterations, (c) 200 iterations and (d) 300 iterations.

Figure 10.   Improvement of candidate Pareto fronts (PF) for BK50 over different iteration size obtained by (a) 
NSGA-II, (b) SPEA2, (c) GDE3, (d) OMOPSO and (e) SMPSO. A label of 50 iteration indicates the front is 
obtained by and algorithm with 50 iterations.
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strength, SPEA2, GDE3, and OMOPSO were observed to perform better for solving BK15, with the worst being 
SMPSO. For BK40, SPEA2 and GDE3 improved solution quality consistently over different iteration sizes. In 
contrast, NSGA-II performed worst. The Pareto domination strength of NSGA-II and SPEA2 to solve BK50 was 
better and found no significant difference between them. Similarly, the difference between the Pareto domina-
tion strength of GDE3, OMOPSO, and SMPSO is minor and performed worst. According to this performance 
metric, only SPEA2 showed better performance in all instances.

The maximum spread of the solutions in front measures the distribution and spread of candidate solu-
tions over the PF offered by an algorithm, with a greater number indicating better performance. NSGA-II had 
higher maximum spread of the solutions in all instances and was found to outperform all other algorithms in 
this performance metric. The maximum spread of the solutions of GDE3 was equivalent to NSGA-II in most 
circumstances in terms of problems and iteration sizes. But it had the lowest value for BK40 where only one 
solution was obtained every time. In contrast, GDE3 had better maximum spread of the solutions for BK40. In 
most scenarios, GDE3 and OMOPSO was remarkably comparable to each other. With the increasing iteration 
size to solve BK15, the maximum spread of the solutions of SMPSO decreased. It means that with a short itera-
tion size, it was able to find solutions that had better distribution, but they were mostly suboptimal. In contrast, 
a large iteration size obtained comparatively better solutions, however, their dispersion was poor. For BK40 and 
BK50, SMPSO had a modest maximum spread of the solutions.

Distance to Pareto front.  The distance to Pareto front for the algorithms is shown in Fig. 11. This per-
formance metric represents how close a candidate’s front to PF* is, where a low value indicates better perfor-
mance. For BK15, SPEA2 exhibited promising improvement over different iteration sizes, while SMPSO was 
observed to perform worst (Fig. 11a). There is no substantial difference between the distance to Pareto front 
of NSGA-II, GDE3, and OMOPSO. For BK40, the PF obtained by SPEA2 had the lowest value with minimum 

Table 4.   Calculated Pareto domination strength and maximum spread of solutions in front for algorithms.

Problem Algorithm

Pareto domination strength
Maximum spread of 
solutions

Iteration Iteration

50 100 200 300 50 100 200 300

BK15

NSGA-II 0.33 0.33 0.20 0.00 1.13 1.84 0.17 0.80

SPEA2 0.33 0.11 0.17 − 0.33 0.97 0.23 0.37 1.00

GDE3 0.22 0.25 0.33 0.00 0.15 0.13 0.16 0.46

OMOPSO 0.24 0.17 0.00 0.00 0.10 0.08 0.20 0.51

SMPSO 0.33 0.33 0.33 0.33 0.44 0.29 0.28 0.06

BK40

NSGA-II 0.17 0.22 0.11 0.11 0.81 0.25 0.44 0.71

SPEA2  − 0.33  − 0.33  − 0.33 − 0.33 0.00 0.00 0.00 0.00

GDE3  − 0.33  − 0.11  − 0.33  − 0.33 0.00 0.61 0.61 0.83

OMOPSO 0.20 0.14 0.17 0.00 0.26 0.66 0.72 0.42

SMPSO 0.17 − 0.11 0.00  − 0.33 0.32 0.76 0.96 1.00

BK50

NSGA-II 0.10 0.14 0.05  − 0.09 0.82 1.00 1.00 0.98

SPEA2 0.10 0.10 0.08  − 0.09 0.49 0.78 0.79 1.00

GDE3 0.14 0.14 0.14 0.10 0.18 0.50 0.66 0.75

OMOPSO 0.14 0.14 0.14 0.14 0.17 0.48 0.76 0.74

SMPSO 0.14 0.14 0.10 0.10 0.55 0.66 0.71 0.69

Figure 11.   Distance to Pareto front of candidate fronts obtained by algorithms for (a) BK15, (b) BK40 and (c) 
BK50.
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iteration (Fig. 11b). However, with increasing iteration sizes, the distance to Pareto front of GDE3, OMOPSO, 
and SMPSO was comparable to that of SPEA2. According to this performance indicator, NSGA-II had the worst 
distance to Pareto front with 50 iterations, which sharply improved with increased iteration sizes, yet could not 
outperform any algorithms. Figure 11c shows the distance to Pareto front of algorithms for BK50, where NSGA-
II and SPEA2 outperformed GDE3, OMOPSO, and SMPSO. The values of BK50 distinguished algorithms’ per-
formance at every iteration which was not prominent for BK15 (Fig. 11a) and BK40 (Fig. 11b).

Relative hyper area.  Figure  12 presents the relative hyper area of algorithms. It measures convergence 
and distribution of algorithms with a higher value indicating better performance. NSGA-II had higher value for 
BK15 and BK50, while for BK40 it performed worst, and SPEA2 had higher relative hyper area for all the cases. 
GDE3 and OMOPSO had moderate relative hyper area for all instances. In contrast, SMPSO showed the lowest 
relative hyper area for BK15 and BK50, and higher for BK40.

The distance to Pareto front and the relative hyper area for BK15 and BK40 illustrate the significant improve-
ment in solutions’ quality over different iteration sizes for algorithms (Figs. 11, 12). With the higher iteration size, 
the performance difference between algorithms was found to be minimum. Only NSGA-II, SPEA2, and GDE3 
were able to follow this trend in BK50, while OMOPSO and SMPSO fell behind. One reason could be that there 
are more local minima in the solution space of BK50 compared to that of BK15 and BK40. Many suboptimal 
solutions exist for BK50 with higher OIDT with a small difference in makespan (Fig. 8c). Additionally, BK50 
has a higher dimension—maximum product groups—to optimize.

Performance evaluation of algorithms.  Performance metrics explain a specific feature of solution qual-
ity. The solutions, however, can be categorized into different quality levels using a clustering approach. The 
frequency with which an algorithm produces good or poor-quality solutions is a measure of its efficiency. Ini-
tially, the performance metrics for all instances are used to perform principal component analysis (PCA)54. Two 
principal components (PC1 and PC2) with higher variances were taken to perform a Gaussian mixture model 
for clustering22. Figure 13 shows three clusters. The clusters’ solutions were identified using the associated labels, 
which refer to instances, algorithms, and iteration sizes such as BK15, NSGA-II, and 50, respectively. The quality 

Figure 12.   Relative hyper area (RHA) of candidate Pareto fronts (PF) obtained by algorithms for (a) BK15, (b) 
BK40 and (c) BK50.

Figure 13.   Clusters of algorithms’ solutions found by Gaussian mixture model.
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of different clusters were determined based on corresponding performance metrics where Cluster A represents 
better performances, and Cluster B and Cluster C show moderate and worst performances, respectively.

Figure 14 represents the distribution of obtained solutions into three clusters. Cluster A has 25 high-quality 
solutions, Cluster B has 21, and Cluster C has 14 low-quality solutions for the instances. NSGA-II had the highest 
number of solutions in Cluster A, followed by SPEA2 and GDE3 (Fig. 14a). In contrast, OMOPSO and SMPSO 
have the lowest number of solutions in this cluster. NSGA-II, with only four moderate and worst solutions, 
outperformed all other algorithms. SPEA2, with the highest number of moderate and lowest worst solutions, 
followed NSGA-II. In terms of distribution of obtained solutions among clusters, GDE3 performed slightly bet-
ter than OMOPSO. In comparison to NSGA-II and SPEA2, SMPSO has the lowest solutions in Cluster A and 
the highest in Cluster C, indicating worse performance. For BK15, a large number of obtained solutions were 
moderate, with no worst solution (Fig. 14b). In contrast, for BK40, the majority of solutions fell into cluster A, 
emphasizing a problem that is comparatively easy to solve. BK50 revealed a considerable rise in the difficulty 
of obtaining moderate and better solutions, with Cluster C accounting for 65% of all solutions. Three of the six 
solutions in Cluster A were achieved by NSGA-II, two by SPEA2, and one by GDE3. In Cluster B, there is only 
one solution for BK50, which was obtained by SPEA2. In contrast, all the solutions from OMOPSO and SMPSO 
are in Cluster C. With only one Cluster C solution for BK50, NSGA-II and SPEA2 displayed consistently better 
performance. According to the cluster analysis, NSGA-II outperformed all other algorithms, followed by SPEA2. 
GDE3 performed better than OMOPSO and SMPSO, but OMOPSO and SMPSO showed no notable difference 
in performance.

The comparison of computation time of algorithms is performed with 50 iterations for the instances. Although 
OMOPSO needed the shortest calculation time (12 min, 58 min, 324 min for BK15, BK40 and BK50, respec-
tively), the difference between it and other methods is insignificant. It took roughly the same amount of time 
for NSGA-II and SPEA2 in each case—13 min, 62 min, and 342 min, respectively. GDE3 showed slightly lower 
computation time with instances taking 12 min, 61 min, and 337 min, respectively. SMPSO, in contrast, had 
the longest computing time for every instance (13 min, 67 min, and 360 min, respectively). In comparison to 
OMOPSO, the extension to SMPSO appears to have triggered slightly high computing time as velocity constraints 
are applied to each iteration and dimension of the problem.

The current study shows that production planning using a flow shop model is feasible in practice when consid-
ering the actual resource limitations in bakeries. Along with makespan, minimizing the oven idle time also offers 
the potential to substantially lower manufacturing costs. To improve the current state of production efficiency in 
real cases from bakeries, multi-objective optimization algorithms were integrated with hybrid no-wait flow shop 
model. Among them, NSGA-II performed better in solving problems of various dimensions. Moreover, when 
multiple products share a predecessor, the increased oven idle time results in energy loss. Therefore, wherever 
possible, it is suggested to keep the processing route for a product separate from other products. Six bakery 
production datasets from Denmark were used by Babor et al.55 to increase the production efficiency. The results 
revealed that NSGA-II performed efficiently to reduce makespan by up to 12% and oven idle time by up to 61%. 
Particle swarm optimization was used in a study5 to obtain the best planning for a bakery’s production in Spain. 
The optimum solution, according to the results, minimized the makespan by 29% and the oven idle time by 8%.

Conclusions and future works
In this paper, three production optimization problems from small and medium-sized bakeries were investigated. 
The objectives of optimization were to minimize simultaneously makespan and oven idle time (OIDT). A hybrid 
no-wait flow shop scheduling model with all constraints encountered in practice was implemented to simulate 
the bakery schedule. The optimum schedules were found using five multi-objective optimization algorithms: 
non-dominated sorting genetic algorithm (NSGA-II), strength Pareto evolutionary algorithm (SPEA2), gener-
alized differential evolution (GDE3), improved multi-objective particle swarm optimization (OMOPSO), and 
speed-constrained multi-objective particle swarm optimization (SMPSO). To compare the efficiency of the 
algorithms, each problem was solved with different iteration sizes.

The computational results revealed that the shape of a true Pareto front is determined by the characteristics 
of the problems, such as the number of items, product interdependency, and alternative machinery. Although 
makespan has the most influence on production expenditure, it was observed that a substantial reduction in 

Figure 14.   Distribution of obtained solutions among clusters with respect to: (a) algorithms (b) problems.
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OIDT is possible. Many solutions with the shortest makespan had higher OIDT (up to 231 min) that showed 
significant energy waste and CO2 emissions. Therefore, with the same makespan, multi-objective algorithms can 
provide solutions with reduced energy waste. Furthermore, many Pareto solutions, aside from the one with the 
shortest makespan, provide better tradeoffs between makespan and OIDT. It means that by losing a very marginal 
amount in makespan, some solutions offer a substantial reduction in OIDT. BK50 showed an additional 1348 min 
of oven idle time can be reduced if the makespan is increased by 61 min. Therefore, the overall production 
expenditure can be significantly minimized. Product group formulation may influence OIDT. In the best-case 
scenario, for BK40 with no predecessor in any group, a schedule with 0 min OIDT is possible. However, because 
many products have a few combined initial processing stages, for BK50 the lowest possible OIDT is 1243 min, 
resulting in significant energy loss.

NSGA-II outperformed other algorithms by obtaining a smaller number of poor solutions and a high number 
of better solutions. SPEA2 followed NSGA-II by delivering promising solutions. GDE3 performed slightly better 
than OMOPSO and SMPSO. The performance of OMOPSO and SMPSO was poor to solve the instances and no 
significant difference between them was observed. However, OMOPSO had the lowest computation time while 
SMPSO had approximately 11% higher computation time due to the addition of velocity constraints.

The deterministic duration of the processing tasks and the absence of machine maintenance or failure 
assumed in this study may not reflect many realistic production problems. Based on prior relevant studies56,57, 
the effects of non-deterministic processing duration and machine disturbances on the production efficiency of 
bakeries could be an interesting subject for future research.

Data availability
For this study, production data from bakeries in Europe were used. BK40 was collected and analyzed by Hecker 
et al.6, whereas BK15 and BK50 are publicly accessible25. The production data are available from the correspond-
ing author on reasonable request.

Appendix
Multi‑objective optimization algorithms
Non‑dominated sorting genetic algorithm (NSGA‑II).  The following is the description of the NSGA-
II (Fig. 15) proposed by Deb et al.27.

Create a random population of size NP . Each individual in the population is a candidate solution vector to a 
problem. Assess the individuals in the population using HNFSM by calculating objective values.

1. The objective values are used to build fitness vectors. The population is sorted into distinct rankings using
the fast non-dominated sorting strategy. Using the Pareto dominance operator, each individual’s fitness is
compared to that of others. The rank of an individual is determined by the number of other individuals who 
dominate it, which is known as the sum of domination. If the sum of domination for an individual is 0, it is 
called a non-dominated solution or Pareto optimal solution. Individuals with a higher sum of domination
have a suboptimal solution to the problem.

2. A binary tournament selection process is used to choose two parents from the existing population for creat-
ing two offspring. In the binary tournament selection process, four individuals from the current population
are picked and the one with the best rank is chosen as one of the parents. The same procedure is followed to 
complete the parents’ poll to perform crossover and mutation. It is repeated to create new offspring of NP
size.

3. Evaluate offspring to get the corresponding fitness vectors. The offspring and parent population are combined.
During this phase, the population doubles in size.

4. The combined population is sorted into different ranks using the fast non-dominated sorting approach.
5. To select the best population of NP size, the individuals with the best rank are chosen first. If the best rank

does not have enough individuals to fill all the empty slots of the best population, the individuals of subse-
quent ranks are chosen. If a rank has more individuals than empty slots, the crowding distance operator is
used to select individuals from the less crowded part of the objective space. The crowding distance is set to
infinity for border solutions of a rank to give preference over others. All the solutions of the rank are sorted 
in descending order of crowding distance. Individuals with a higher crowding distance fill the empty slot
first until the best population size reaches n.

6. Employ crossover and mutation operators to produce NP offspring from the best population.
7. Repeat steps 4–7 until the termination criterion is met.

A.2: Strength Pareto evolutionary algorithm (SPEA2).  The process flowchart for SPEA2 is shown in 
Fig. 16. The brief of SPEA232 is as follows:

1. Generate an initial population of size N where each individual is a candidate solution vector for a problem.
Create an empty external archive. Set the size limit for external archives to EA . In this archive, the best indi-
viduals are stored.

2. Evaluate the individuals to get fitness values. The fitness of the individuals in the population is calculated.
Initially, a strength value for each individual is calculated using Eq. (A1).

(A1)S(i) =
∣

∣

{

j|j ∈ POG + APG ∧ i ≻ j
}∣

∣
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where |.| indicates the cardinality of a set, + sign is for multiset union, ≻ symbolizes the Pareto dominance 
relation, POG is the population and APG is archive size at generation G . Therefore, S(i) represents the number 
of other individuals (j) in the population and archive that are dominated by an individual i.

The raw fitness of individual i is defined by Eq. (A2).

Equation (3) implies that the raw fitness of an individual is the sum of the strength of its dominators. In the 
next stage, a density estimation approach is employed. For that purpose, kth nearest neighbor method is adapted. 
The distances between i and all other individuals 

(

j
)

 in objective space are calculated. The distance list is sorted
in increasing order. The kth element gives the distance sought σ k

i  . Equation (A3) defines the density calculation 
for an individual.

(A2)R(i) =
∑

j∈POG+APG ,j≻i
S
(

j
)

Figure 15.   An evaluation procedure of the NSGA-II55. Non-dominated sorting divides the population into 
different ranks (F0, F1, F2, …). Individuals from the same optimal front are maintained in one rank.

Figure 16.   Flowchart of strength Pareto evolutionary algorithm (SPEA2).
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where k =
√
NP + EA , NP and EA are the size of the total population and archive, respectively.

Finally, the fitness of an individual i can be stated as follows:

3. Take all non-dominated individuals to archive. If the size of the archive exceeds the limit, reduce it by using 
a truncation operator that prevents boundary solutions from being removed. If the size is less than the limit,
fill it with dominated individuals.

4. Employ binary tournament selection with replacement to obtain offspring. Initially, all individuals are com-
pared based on Pareto dominance. Rank the individuals depending on their domination level. Afterward,
estimate their density information within the corresponding rank. It represents the sum of distances between 
the two closest individuals along with each objective. Based on these two sorting approaches, the parent
selection is performed. Apply recombination and mutation operators to keep high diversity among the
population.

5. Combine offspring, parent population, and archived individuals. Delete the worst 50% of combined popula-
tion based on their fitness values (as shown in step 2).

6. Continue with steps 3–5 until a stopping criterion is met.

A.3: Generalized differential evolution (GDE3).  The differential evolution algorithm was first introduced
by Storn and Price58. Like all other evolutionary algorithms, it has a random initial population, which is improved
over the generations. It features cross-over, mutation, and selection operators to improve the solution. The selection 
rule is one of the key differences compared to other evolutionary algorithms. It is the process to decide whether
a new individual should replace one from the population to generate efficient individuals for the next generation.
The decision is taken based on some constraints that are regulated by crossover constant and differential variation
between two individuals. Later, differential evolution algorithm was extended to generalized differential evolution
(GDE) for multi-objective optimization problems by modifying the selection rule59. The optimization procedure of
GDE3 is presented in Fig. 17. GDE3, an improved version, can be described as follows36.

1. Initialize population of size NP ( NP ≥ 4), amplification constant for differential variation, F ∈ (0, 1+] , crosso-
ver constant, CR ∈ [0, 1] , dimensions or parameters of the problem, D , the maximum generation Gmax , and a
constant A = 0 . The solution vector is −→x i,G for an individual i at G generation where i = {1, 2, . . . ,NP} , and 
G = {1, 2, . . . ,Gmax} . The value of d dimension in i individual at G generation is indicated by xd,i,G , where
d = {1, 2, . . . ,D}.

2. Mutate and recombine each individual in the population. For an individual i , chose three different individuals 
randomly R1,R2,R3 where R1  = R2  = R3  = i and R1,R2,R3, i ∈ {1, 2, . . . ,NP} . Chose random parameter
drand where drand ∈ {1, 2, . . . ,D} . For each dimension (d) , the following procedure is applied to −→x i,G to get
a new individual, which is known as a trial vector 

(−→u i,G

)

.

where r is a random value between 0 and 1 and drand ∈ {1, 2, ..,D}
3. Decide whether the trial vector should become a member of generation G + 1.

where the symbol �c is constraint domination. To define it, −→u i,G constraint dominates −→x i,G if any of the 
following conditions is true60:

−→u i,G is feasible and −→x i,G is not.
−→u i,G and −→x i,G are infeasible and −→u i,G dominates −→x i,G in constraint function space.
−→u i,G and −→x i,G are feasible and −→u i,G dominates −→x i,G in objective space.
Set the following conditions:

(A3)D(i) =
1

σ k
i + 2

(A4)F(i) = R(i)+ D(i)

(A5)ud,i,G =

{

xd,R3,G + F ×
(

xd,R1,G − xd,R2,G
)

ifr < CRord = drand
xd,i,G otherwise

(A6)�xi,G+1 =

{

�ui,G if−→u i,G≺c�xi,G
�xi,G otherwise

if

⎩
⎪
⎨

⎪
⎧∀ : ⃗ , ≤ 0
and
⃗ , == ⃗ ,
and
⃗ , ⊀ ⃗ ,

⃗ , ⃗ ,
(A7)
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where Cd

(−→u i,G

)

 indicates constraint associated with d th dimension.

4. Repeat steps 2–3 NP times to complete mutation and recombination of the population of the generation G.
5. Select individuals 

(−→x
)

 that meet the following condition:

where CD is crowding distance that measures the crowdedness of a vector in a non-dominated set.

⃗ ∈ ⃗ , , ⃗ , , … , ⃗ , :

∀ ⃗ ⊀ ⃗ ,

and
∀ ⃗ , : ⃗ , ⊀ ⃗ ( ⃗) ≤ ⃗ ,

(A8)

Figure 17.   Optimization procedure for generalized differential evolution (GDE3).

Publications and Findings

83 | P a g e



Vol.:(0123456789)

Scientific Reports |          (2023) 13:235  | https://doi.org/10.1038/s41598-022-26866-9

www.nature.com/scientificreports/

6. Remove the individuals in  −→x  from population. Set A = A− 1 and repeat step 5 while A > 0.
7. Increase the generation from G to G + 1.
8. Repeat the steps 2 − 7 while G ≤ Gmax.

A.4: Improved multi‑objective particle swarm optimization (OMOPSO).  Figure  18 shows the
flowchart for OMOPSO. The following is the description of OMOPSO proposed by Sierra and Coello44.

1. Initialize a swarm where each particle in the swarm is a candidate solution vector to solve a problem. Evaluate
them and initialize the best position and velocity of the particles. Set the size for leaders and initialize leaders 

Figure 18.   Flowchart of improved multi-objective particle swarm optimization algorithm (OMOPSO) to 
obtain non-dominated solutions.
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from the existing swarm. Save the leaders in the Pareto archive. Initialize generations, G = {1, 2, . . . ,Gmax} . 
The crowdedness of the leaders is calculated.

2. For each particle select a leader through a binary tournament. The selection criterion is the crowding dis-
tances where a leader with a higher crowding distance is chosen.

3. Update the position of the particle to a new position using Eqs. (A9), (A10).

where i  indicates one particle, −→v  is the velocity, W  is the inertia weight, C1 and C2 are velocity control 
parameters, r1 and r2 are random numbers between 0 and 1,  −→x i,best and −→x i,G are particle’s best position and 
current position at generation G , respectively, −→L h is a position vector of the selected leader of the h index
from the Pareto archive.

4. Divide swarm into three parts to employ distinct mutation treatments: no mutation, uniform mutation, and
non-uniform mutation.

5. The particles are evaluated. The personal best position (xbest) for each particle is updated by comparing the
current and personal best fitness.

6. Update leader set in archive by including non-dominated Pareto solutions and removing dominated solu-
tions. Calculate the crowding distance of the leaders. Eliminate leaders based on crowding distance if the
size of the archive exceeds the limit. Increase the generation from G to G + 1.

7. Repeat the process (steps 2–6) until G reaches Gmax . Save the Pareto archive as the set of optimal solutions
to the problem.

A.5: Speed‑constrained multi‑objective particle swarm optimization (SMPSO).  SMPSO, an
extended version of OMOPSO, was proposed by Nebro et al.42. In this proposal, the values for velocity param-
eters in Eq. (10), C1 and C2 are controlled by using following constriction coefficient (χ) calculated by Eq. (A11).

where ϕ =

{

C1 + C2 ifC1 + C2 > 4
1 otherwise

The velocity of the particle in each parameter d is bounded using the following velocity constriction equa-
tions (Eqs. A12, A13):

where UBd , and LBd are upper bound and lower bound of the parameter d.
To summarize the modifications in SMPSO from OMOPSO, for each particle, the velocity is calculated by 

Eq. (A10), which is then multiplied by the constriction coefficient (χ) (Eq. A11). The resulting value for each 
parameter is constrained by Eqs. (A12), (A13). The rest of the procedure is the same as OMOPSO. Table 5 shows 
the parameters setting of the algorithms.
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(A9)�vi,G = W × �vi,G−1 + C1 × r1 ×
(

�xi,best − �xi,G−1

)

+ C2 × r1 ×
(

�Lh − �xi,G−1

)

(A10)�xi,G = �xi,G−1 + �vi,G

(A11)χ =
2

2− ϕ −
√

ϕ2 − 4ϕ

(A12)vi,d,G =

{

deltad ifvi,d,G > deltad
−deltad ifvi,d,G ≤ deltad
vi,d,G otherwise

(A13)deltad =
UBd − LBd

2

Table 5.   Parameters setting for the algorithms.

Parameters NSGA-II, SPEA2 GDE3 OMOPSO SMPSO

Population size 50 50 50 50

Mutations Polynomial – Uniform, non-uniform Polynomial mutation

Mutation rate 1
Productgroups

– 1
Productgroups

1
Productgroups

Crossover Simulated binary Differential evolution – –

Crossover rate 1 1 – –

Selection Binary tournament Differential evolution – –

Other parameters CR = 1
F = 0.4

C1 = random (1.5, 2)
C2 = random (1.5, 2)
W = random (0.1, 0.5)

C1 = random (1, 2.5)
C2 = random (1, 2.5)
W = 0.2
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3.4. A resilient bakery production schedule under uncertain 
proofing time 

In the optimization results presented in publications (sections 3.1, 3.2, and 3.3), the durations for 

processing stages are assumed to be deterministic. A change in the duration of a single stage has an impact 

on the optimized schedule, and in the worst-case scenario, it may cause a significant increase in makespan. 

The impact of uncertain stage duration on an optimized schedule is discussed in this section. 

3.4.1. Background 

In theory, practitioners limit themselves to reactive production planning that is obtained based on 

deterministic data about resources such as processing duration, machinery, and materials. Many 

industrial processes, in contrast, are subject to uncertainties and disturbances due to duration, the 

availability of resources, and the nature of the materials, which are impossible to eliminate. In many bakery 

products, yeast is added as a leavening agent that improves the texture and taste of the bread. Due to the 

fermentation of yeast, CO2 is produced, which makes bread fluffy, along with other aroma precursors that 

improve the taste. However, this fermentation is a long process and is called “proofing”. The duration of 

proofing is uncertain as it depends on the quality of flour, metabolism of yeast cells, temperature, and 

humidity. Bakers decide the completion of proofing based on their personal experience. Such uncertainty 

in proofing time significantly influences the stability of the planned schedule. As a result, despite 

optimizing the planning, the entire schedule of machines and workers must be changed because of the 

uncertain proofing time, resulting in inefficient production planning with a longer makespan.  

3.4.2. Contribution 

The main contribution of this section is to propose a proactive production planning approach for 

small and medium-sized bakeries. The uncertainty in the proofing time is encountered in resilient and 

proactive production planning so that the impact on the makespan and oven idle time is minimal even if 

it changes by ±10 % of the expected proofing time. 

3.4.3. Materials and methods 

To conduct this study, data from one small bakery manufacturing line (BK20) with about 20 

products, and 8 machines, including 2 ovens, is used [1]. The three compartments in one oven allow for 

the independent baking of three different products, while the other one has one baking chamber. The 

hybrid no-wait flow shop model (HNFSM, the best performing single objective optimization algorithm 

modified particle swarm optimization (MPSO) and multi-objective optimization algorithm non-

dominated sorting genetic algorithm (NSGA-II) are used in this section. For details on MPSO and NSGA-

II, see sections 3.2 and 3.3, respectively. The implementation and simulation of HNFSM and NSGA II 

were performed using the computer language Python 3.7 on a computer running Microsoft Windows 10 

as the operating system with a configuration of an Intel Core i5 at 4 × 3.20 GHz, 8 GB ram. 
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3.4.4. Resilient production planning 

Figure 1 depicts the approach used to obtain proactive bakery production scheduling when 

proofing time is uncertain. To begin the solution process, an initial production sequence is used in 

addition to employee, machine, and product data (module A). Initially, the expected proofing duration, 

which was the actual proofing duration on the day of data collection, is used. Module B only modifies the 

duration of the proofing stages. The proofing time deviation (PTD) is the rate of change in proofing time 

that ranges from -10 % to 10 % of the expected proofing time. As a result, the expected proofing time is 

changed 21 times with the same production sequence, and each time HNFSM produces a schedule and 

calculates the objectives in module C. The robustness of one production sequence is determined using the 

stored objective values to start module D, where the optimization algorithm generates a new production 

sequence to repeat the process until a stopping criterion is met.  

 

Fig. 1 The solution approach for determining a resilient production schedule with uncertain proofing 

time. The proofing time deviation (PTD) ranges from -10 % to 10 % of the expected proofing time. 

Due to PTD, 21 makespan values (𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑃𝑃𝑃𝑃𝑃𝑃) are calculated from a single production 

sequence during the solution process. The robustness of a production sequence is defined by the 

maximum makespan (Eq. 1) and minimum makespan (Eq. 2), which are to be minimized.  

𝑀𝑀𝑀𝑀𝑀𝑀 (𝑚𝑚𝑚𝑚𝑚𝑚 (𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑃𝑃𝑃𝑃𝑃𝑃)) (1) 

𝑀𝑀𝑀𝑀𝑀𝑀 (𝑚𝑚𝑚𝑚𝑚𝑚 (𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑃𝑃𝑃𝑃𝑃𝑃))    (2) 

 
 

A. Production data C. HNFSM B. Uncertain proofing 

D. Optimization algorithm 
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3.4.5. Results and discussion 

When the proofing time is increased, optimized schedules with the shortest makespan are more 

likely to be extended. The single optimization algorithm MPSO was run multiple times to find the 

production planning with the single objective of minimizing makespan under the assumption that 

proofing time is as deterministic as expected. The optimized production sequences were then used to test 

the robustness with PTD. Table 1 shows that there are multiple solutions with lower makespan within a 

small range of makespan, with the minimum being 424 min for this production line. Interestingly, despite 

applying PTD, where it is assumed that the proofing time can be as low as 10 %, there is almost no 

possibility of reducing makespan, as demonstrated by the minimum makespan after applying PTD (Table 

1). The machine and worker limitations prevent from finishing production early, despite lowering the 

proofing time. The maximum makespan and range of makespan, in contrast, show a significant increase 

in makespan due to PTD. MPSO obtained the production sequences, but the uncertain proofing may 

result in a significant increase of up to 18 %. 

Table 1 Influence of uncertain proofing time on optimized makespan.  

Optimized makespan Makespan after applying PTD  
Minimum Maximum  

 
Increased [% optimized] 

424 424 470  11 
427 426 467  10 
429 429 499  16 
429 429 506  18 
430 430 495  15 
430 430 474  10 

NSGA-II was used to generate optimized schedules with the shortest maximum makespan and 

minimum makespan due to uncertain proofing time. Fig. 2 represents four Pareto solutions obtained by 

NSGA-II. The objective space shows a significant reduction in maximum makespan within only 5 min 

range of minimum makespan. It indicates with a small increase in minimum makespan, the production 

planning can be more resilient. The minimum makespan (PTD) is the lowest possible makespan due to 

proofing time deviation.  Solution G1 shows 422 min of minimum makespan, which is only 2 min smaller 

than the shortest makespan obtained by MPSO with no change in proofing time. However, G1 shows 

makespan can be as high as 476 min due to uncertain proofing time. Solution G2 and G3 show a consistent 

decrease in the maximum makespan of PTD. Solution G4 shows only 21 min difference between the 

maximum makespan and minimum makespan of PTD while the minimum makespan is only 5 min higher 

than the shortest possible makespan. As a result, the production sequence that corresponds to the G4 

solution in objective space could provide resilient production planning, with a makespan that can range 

from 427 to 448 min due to uncertain proofing time. 
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Fig. 2 Trade-offs between two objectives between Pareto solutions obtained by NSGA-II 

3.4.6. Conclusion 

In this section, a small bakery production line was investigated to find a resilient production 

planning solution when dealing with proofing time uncertainty using a hybrid no-wait flow shop model 

and the non-dominated sorting genetic algorithm (NSGA-II). The deviation in proofing time is 

considered to be between -10 % and +10 % of the actual proofing time. 

The computational results showed that uncertainty in proofing time has a significant impact on 

makespan. Production planning with the shortest makespan may result in inefficient production with an 

increase in makespan of up to 18 %. In contrast, NSGA-II obtained multiple solutions that show minimum 

makespan deviation due to uncertain proofing time and only 5 min higher than the shortest possible 

makespan. The most resilient production planning had a makespan deviation of only 21 min, with a 

minimum of 427 min.  

Because makespan dominates the cost of bakery production, a substantial increase in makespan 

due to uncertain proofing time may increase the cost. An optimized schedule can also fail to be efficient, 

and it can be more prominent for a larger number of products. As a result, this approach of finding resilient 

and proactive production planning with a multi-objective optimization algorithm can contribute to a 

sustainable production system in small and medium-sized bakeries. 

Availability of Data and Materials 

The bakery production data used for this analysis is published by Babor and Hitzmann [1]. 

Reference 

[1]   Babor, M., Hitzmann, B. “Production data from a small bakery manufacturing line”, Mendeley Data, V1, 2022,    
         https://doi.org/10.17632/7x5t3rxx5f.1  

https://doi.org/10.17632/7x5t3rxx5f.1
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4.1. Discussions 
In the bakery manufacturing, the dough's behavior changes as a result of biological and physical 

processes, like yeast fermentation. Due to the inclusion of living yeast cells, time and temperature have a 

considerable impact on CO2 production, which in turn affects the final product's texture and aroma. 

Therefore, every processing step must be finished accordingly from the beginning without any delay in 

between. The model used to schedule products in this manner is known as the no-wait flow shop model. 

Several studies have described the mathematical modeling of the no-wait flow shop model [24, 25, 45, 46]. 

In contrast, a few studies [7, 47–49] focused on bakery production schedules, but  none of them described 

the constraints of small and medium-sized bakeries in production scheduling model. The flow shop 

model's constraints always determine the model's complexity; however, without incorporating these 

constraints into the flow shop model, the schedule cannot be realistic and applicable in any real production 

line. In large scale bakeries, the scenarios can be different, and thus most of these constraints may not be 

applicable. 

Hecker et al. [7] used data from a single bakery production line to implement a permutation flow 

shop model for solving bakery production optimization problem. In the permutation flow shop model, all 

products must pass through all machines in the same order [29, 50]. Bakeries, on the other hand, have 

alternative machines for a processing task, such as kneader 1 and kneader 2 for kneading, and if any 

product is kneaded by kneader 1, it skips kneader 2 and vice versa. The existence of such parallel machine 

formation was simplified in their study by using zero minute processing time for machines that are 

irrelevant and skipped by a product. The method worked for the investigated production line, but it leaves 

many unnecessary stages with zero minute duration for a product in the schedule. Despite the maximum 

stage for any product being 12, the production schedule shows 26 stages for each product. It occurred as 

a result of creating a common order of machines and stages to work for each product, which differs greatly 

between bakeries. Although that there were many manual tasks in the production, the employee's work 

plan was not included. There were no predecessors in products, which means that any product can be 

scheduled at any time and is not dependent on other products.  

Huber and Stuckenschmidt [48] investigated bakery retail store operations in Germany. The 

authors concentrated on creating a decision support system by forecasting hourly demand and scheduling 

only baking to serve customers freshly baked goods. The scheduling here remains limited by ovens, baking 

duration, and baking trays, which are dependent on the number of bakery goods predicted by the forecast 

model. To simulate the production planning of a bakery with ten bakery goods and identify inefficiency 

and bottlenecks, Hussein et al. [51] used Arena software [52]. The authors demonstrated that the actual 

production line was run with suboptimal planning, and pointed out some of the reasons behind it. The 

authors added that because machines were left idle for extended periods of time, the current planning 

wasted a substantial amount of energy. However, as the major goal was to use production simulation to 
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determine the scope of improvement, no additional optimization methods were applied to determine the 

best production scheduling. 

The flow shop model with constraints in small and medium-sized bakeries is explored in this 

thesis since it has not been used in any pertinent investigations that have been undertaken thus far. In 

small and medium-sized bakeries, dough of various products is prepared together before being processed 

through a few common stages. This is done in order to benefit from the machines' capacity, which is used 

to process some initial stages, including kneading. In another instance, bakers use the same oven chamber 

for multiple goods that came across different processing routes. Even though the early processing steps 

are all carried out in various machines in this instance, the baking is done simultaneously in a single oven 

compartment. Additionally, a lot of processing tasks are carried out manually by workers. Due to the 

limited number of employees, their work schedule has a big impact on the production schedule. Section 

3.1 provided a description of these constraints featured in the hybrid no-wait flow shop model proposed 

in this thesis. The constraints are shown graphically and mathematically in sections 3.2 and 3.3. 

The minimization of makespan [16–19], tardiness [16, 17, 26, 53], earliness [26, 53], flow time 

[19], carbon emission [16, 17] and energy consumption [17, 18, 20] are among the objectives of optimal 

manufacturing that have been extensively explored in the literature. Ovens are kept running in bakeries 

to prevent production from disruptions because it takes time for them to reach the desired temperature if 

they are turned off in between baking two batches of goods. Furthermore, compared to other machines 

used in bakeries, ovens consume a significant amount of energy. Therefore, the energy used by ovens when 

they are not in use is wasted. In a perfect scenario, the energy consumption data from ovens in particular 

would be used to determine the least energy wasting production planning. Nevertheless, small and 

medium-sized bakeries do not have the facility to track the energy used by a single machine. The ideal 

alternative, which was employed in this study to keep the input requirement low for optimizing the actual 

manufacturing line, is the idle time of the ovens. 

Using single objective optimization approach, Hecker et al. [22] separately used makespan and 

total machine idle time. The disadvantage of this strategy is that, as this thesis clearly demonstrates, 

planning with the shortest makespan invariably results in increased overall machine idle time. Utilizing 

weighting factors and treating each target as a single goal is another strategy for dealing with multiple 

objectives. This strategy was used in this thesis at the initial phase (see section 3.1). The idea of Pareto 

dominance was later applied to help decision-makers visualize the trade-offs between objectives (see 

section 3.2 and section 3.3). This method is well-established in many domains, including operations 

research, to address multi-objective optimization problems.  

With more than two machines, production scheduling is a non-deterministic polynomial-time 

(NP) hard problem, and as the number of products, processing stages, and alternative machines for stages 

rises, it becomes more difficult to find optimized schedules. The entire production schedule can be 

simulated using a flow shop model, and a graphical representation of the simulated scheduling can reveal 
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potential inefficiencies. The question is, however, what production planning actually eliminates these 

inefficiencies. With the available computer resources, it is not feasible to complete the simulation of 

production schedules using every possible combination of product orders and comparisons in a 

reasonable amount of time in order to obtain the exact optimized production planning. To address this 

issue, the application of nature-inspired optimization algorithms is established method that can provide 

optimized schedule to a satisfactory level.  

The behavior, natural evolution, and development of animals serve as the basis for nature-inspired 

optimization algorithms. They are widely called as swarm intelligence and evolutionary algorithms [54]. 

These algorithms are employed to solve several problems, such as feature selection [55, 56], parameter 

estimation [57, 58], classification [59–61], mathematical functions [43, 62], supply chain optimization 

[63–65], travelling salesman problem [66–68], networking [69, 70], inverse problem [71, 72], producing 

planning problem [7–9, 73], and image processing [74, 75]. The advantage of employing these algorithms 

is that they are efficient in solving high dimensional optimization problems with or without the constraints 

and regardless of the complexity of the system. However, because multiple runs provide varied outcomes, 

it remains uncertain whether the obtained result is optimized. Multiple repetitions of the process are 

required, which is highly time consuming, and yet the final outcome might not be optimum. Therefore, 

nature-inspired algorithms are widely criticized for their inability to solve real-world problems efficiently 

[76]. In order to overcome the shortcomings many researchers have modified them to make the searching 

procedure efficient, such that the probability of obtaining optimized result is high [76–80]. The advantage 

of these proposed methods is the accelerated searching speed with which the optimum combination of 

variables is found in variables space during optimization effectively. 

The concept of accelerated searching process can be described by exploration, which steers search 

agents toward a global search, and exploitation, which points to a local search. Despite having the 

advantages of these approaches independently in solving many problems, solving many high dimensional 

real optimization problem requires both of them in single run [81]. In this thesis, one of the most popular 

nature-inspired optimization methods, particle swarm optimization, was modified and found to have 

increased performance with a higher likelihood of obtaining optimum outcomes [8]. The proposed 

modified particle swarm optimization algorithm established a combination of both exploration and 

exploitation with a particular proportion in a run as a means of finding solutions (see section 3.1). This 

work shows that such a modification enhances algorithm convergence, identifies the optimal region from 

a high-dimensional search space, and increases the likelihood of discovering a better solution through 

further exploration close to the optimal area. It outperformed standard particle swarm optimization, 

simulated annealing, and Nawaz-Enscore-Ham optimization methods in solving real bakery production 

optimization problem. The optimization algorithm discovered a solution that reduced the makespan by 

30 % and oven idle time by 8 %, according to the results based on a Spanish bakery production dataset [8]. 
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Several multi-objective optimization methods have been employed to resolve production 

scheduling problems. According to the literature, production efficiency has significantly increased in 

many manufacturing environments. Studies have used a variety of cutting-edge multi-objective 

optimization algorithms to determine the Pareto front for multiple objectives to aid in decision-making. 

Among them, non-dominated sorting genetic algorithm (NSGA-II) has been widely used in many 

production environment [82], such as metal [83], electricity tariff-based scheduling [20, 30, 84], packaging 

[16], glass [20] . In this thesis, the production schedules for a Danish bakery were optimized using NSGA-

II and multi-objective random search technique (see section 3.2). The results demonstrated that the 

schedules with the smallest makespan do not necessarily have the smallest oven idle time. The trade-offs 

in objective space demonstrated that the shortest makespan schedules have a large oven idle time, resulting 

in energy waste. In contrast, the schedule with a little longer makespan significantly reduced oven idle 

time, which lowers overall production costs. This suggests the benefit of having several solutions rather 

than one that addresses multiple objectives, such as by using weighting factors for objectives to make single 

objective space. A single solution leaves open the question of whether one or both objectives could still be 

improved, as well as which objective was compromised or gained, and by how much. According to the 

results of the research, NSGA-II improved the production schedules by reducing oven idle time by up to 

26 % and makespan by up to 8 %. Furthermore, alternative optimal solutions reduced oven idle time by 

up to 61 % relative to the existing schedule by marginally penalizing the best makespan in objective space 

[9]. 

The performance of the multi-objective method is vital because the dimension of the production 

scheduling problem is bigger, for example, the search space contains 20 dimensions for 20 products. 

Several research have examined the effectiveness of these algorithms, mostly in solving mathematical 

functions, and have proposed better versions of these algorithms. In this thesis five state-of-the-art multi-

objective optimization algorithms — non-dominated sorting genetic algorithm (NSGA-II), strength 

Pareto evolutionary algorithm (SPEA2), and generalized differential evolution (GDE3), multi-objective 

particle swarm optimization (OMOPSO), and speed-constrained multi-objective particle swarm 

optimization (SMPSO) — were applied (see section 3.4). Four quality indicators — cardinality, 

convergence, distribution and spread, and convergence and distribution of the derived solutions — are 

employed to evaluate their efficacy. The optimization results from three different bakery production 

datasets revealed that NSGA-II performed better compared to other algorithms. 

In practice, a lot of production systems have process variable uncertainties, such duration and 

resource availability, which have a big impact on the ideal schedule. Several research examined the risk, 

reliability, resilience, and sensitivity in planning due to process variable uncertainty. Many studies 

provided frameworks for risk assessment for project scheduling to predict the scenarios, the influence on 

project completion time and cost owing to duration uncertainty, and resource availability [85–88]. 

Himmiche et al. [27] used stochastic discrete event system to evaluate the robustness of the schedules 
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under machine failures and uncertain reparation duration. A stochastic mixed integer programming for 

underground mine production scheduling optimization was proposed by Huang et al. [89] by taking into 

account the grade uncertainty of the mines. Moradi and Shadrokh [90] investigated the resilience of 

schedules for maintenance activities during planned shutdown of a gas refinery plant. For parallel machine 

rescheduling, a fuzzy logic based decision support system was proposed by Petrovic and Duenas [91] in 

the presence of uncertain disruption. Liu et al. [28] studied on robust optimization of a molten iron 

scheduling problem under uncertain processing time and demonstrated the significant improvement in 

production efficiency. 

Similarly, in bakery production the proofing time shows uncertainty and therefore, it affects the 

production schedule. However, there is no study that evaluated the impact of uncertain proofing time in 

bakery production planning. To address the uncertainty in proofing time in bread making process, a 

robust production planning is proposed in this thesis (see section 4.3). A few optimal production plans 

were obtained utilizing a production dataset and the proposed modified particle swarm optimization 

algorithm with the only goal of makespan minimization. The findings indicated that the uncertain 

proofing could significantly lengthen the optimal makespan by up to 18 %. By applying multi-objective 

optimization algorithm NSGA-II, the study found a resilient production planning for the studied problem 

that has minimum makespan deviation. The most robust bakery production planning showed a makespan 

deviation of only 21 min, with a minimum of 427 min. 
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4.2.  Conclusions 
This study presented a framework for improving the production efficiency of small and medium-

sized bakeries by using nature-inspired optimization algorithms. Production data from real bakeries were 

used to integrate the underlying production floor constraints in a hybrid no-wait flow shop model 

(HNFSM), which is used to simulate production planning based on actual data. The objectives were to 

minimize the makespan and oven idle time at the same time. In the first phase, two objectives were unified 

using the weighting factors method, and the problem was solved by applying classical single objective 

optimization algorithms. Particle swarm optimization (PSO), simulated annealing, and Nawaz-Enscore-

Ham algorithms were used to optimize an existing production line. In the second phase, multi-objective 

algorithms were used to find Pareto optimal solutions for problems that show trade-offs between 

objectives to assist in decision-making. State-of-the-art evolutionary and particle swarm optimization-

based metaheuristics algorithms, the non-dominated sorting genetic algorithm (NSGA-II), the strength 

Pareto evolutionary algorithm, generalized differential evolution, improved multi-objective particle 

swarm optimization, and speed-constrained multi-objective particle swarm optimization were used. To 

solve production planning problems efficiently, a computational experiment on determining the 

performance of multi-objective algorithms was conducted. Finally, an approach is proposed to address 

the negative impact of uncertain proofing time on optimized schedules with the shortest makespan in 

order to find resilient production planning. 

The HNFSM incorporates the constraints of multiple small and medium-sized bakeries from 

seven different EU nations into a single framework, which is further explained with the mathematical 

formulation. The computational results revealed that almost all the studied production lines are under-

optimized, and there are several alternative production plans that could significantly increase efficiency 

without requiring any infrastructure changes. The makespan and oven idle time were significantly 

reduced by using nature-inspired optimization algorithms. The study clearly shows that the shortest 

makespan does not necessarily provide the shortest oven idle time, and thus it should be considered in the 

objectives. When compared to existing production schedules, the makespan can be reduced by up to 29 %, 

while oven idle time can be reduced by up to 26 %. Furthermore, schedules with the shortest or nearly 

shortest makespan are prone to a significant increase in makespan due to the uncertain proofing time. 

Makespan of an optimized schedule of 20 products increased by as high as 18 % due to uncertain proofing 

time. The study found that by including uncertain proofing time in the optimization process, resilient 

producing planning can be obtained with a minimal impact on the final makespan, deviation of no more 

than 21 minutes, despite an extreme deviation in proofing time (-10 % to 10 % of actual proofing time). 

This study investigated the effectiveness of optimization algorithms in addition to solving real-

world production planning problems. PSO was modified to address one of the drawbacks of using nature-

inspired optimization algorithms: being trapped in local minima when solving high-dimensional 

problems. The modified PSO algorithm outperformed classical single objective optimization algorithms 
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in terms of finding optimal solutions and was found to be less prone to being trapped in local minima. 

Within a reasonable computational time, modified PSO can find nearly the best, if not the best, production 

planning. According to the study's findings, NSGA-II performed better than all other multi-objective 

algorithms in terms of effectively finding Pareto solutions. 

A common framework featuring a hybrid no-wait flow shop model and various nature-inspired 

optimization algorithms was used to solve multiple real-world bakeries' production planning problems. 

The findings of this study directly contribute to improving the production efficiency of small and 

medium-sized bakeries and lowering production costs by minimizing manufacturing and oven idle time. 

The impact of additional machines on total production efficiency can also be determined using this 

framework. Therefore, before making plans to purchase new machines, a baker can estimate advantages. 

As part of Industry 4.0, this approach can assist small and medium-sized bakeries in becoming more 

dynamic, sustainable, and resilient in production planning and operations. 
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4.3. Final Remarks  
The crucial aspect of optimizing a bakery production line is gathering production data on product 

recipes, machines, and workers. Information such as the predecessor, duration, and alternative machines 

and workers to perform the task must be collected for each processing stage. Similarly, a list of machines 

with their capacities and workers with their shift schedules are required to construct a realistic production 

plan. The precision of the data determines whether optimized planning can be implemented in a real 

production line. 

The computational time for this approach is intensive. Furthermore, because the product range 

in bakeries changes frequently, the optimization procedure must be repeated on a regular basis. A 

production line with 20 products, on the other hand, can be optimized to a satisfactory level in about 20 

min of computational time if the optimizer is well-tuned and effective enough. Because computing power 

is expected to increase in the near future, such a framework can be made available online for bakers. 
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Appendices 
Annex A. Bakery production data (BK15) 

Table A1. List of machines 

ID Name Category 
1 Kneader 1 Rotating kneader 
2 Kneader 2 Lifting kneader 
4 Divider Divider 
7 Cutter Cutter 
8 Shaper Shaper 
9 Proving chamber Proving chamber 
10 Oven A1 Stone oven 
11 Oven A2 Stone oven 
12 Oven A3 Stone oven 
13 Oven B Baking chamber 

 

Table A2. List of employees who directly operate manual tasks and their working schedule. Shift time is 

presented corresponding to production run time in minutes.  

Name Shift start [min] Shift end [min] 
Employee 1 0 540 
Employee 2 0 540 
Employee 3 260 700 
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Table A3. List of products and their process details 

Product 
group 

Product 
ID 

Bowl 
time 

Product name Batches Stage name Duration 
(PT) 

Machines / 
Employees (M/E) 

1 1 0 Product 1 1 Preparation 5 Manual 

1 1 0 Product 1A 1 Kneading 21 Lifting kneader 

1 1 0 Product 1A 1 Dividing 16 Divider 

1 1 0 Product 1A 1 Proofing 105 
 

1 1 0 Product 1A 1 Load Baking 14 Manual 

1 1 0 Product 1A 1 Baking 56 Stone oven 

1 1 0 Product 1A 1 Unload baking 17 Manual 

1 1 0 Product 1A 1 Cooling 1 Manual 

1 2 82 Product 1A-2 1 Baking 56 Stone oven 

1 3 82 Product 1A-3 1 Baking 56 Stone oven 

2 1 0 Product 2A 1 Preparation 9 Manual 

2 1 0 Product 2A 1 Load kneader 2 Manual 

2 1 0 Product 2A 1 Kneading 18 Rotating kneader 

2 1 0 Product 2A 1 Kneading disch. 2 Manual 

2 1 0 Product 2A 1 Dividing 9 Manual 

2 1 0 Product 2A 1 Dough rest 25 
 

2 1 0 Product 2A 1 Load Baking 3 Manual 

2 1 0 Product 2A 1 Baking 50 Baking chamber 

2 1 0 Product 2A 1 Discharge baking 3 Manual 

2 1 0 Product 2A 1 Cooling 25   

2 1 0 Product 2A 1 Unmolding 4 Manual 

2 2 40 Product 2B 1 Dividing 10 Manual 

2 2 0 Product 2B 1 Dough rest 30   

2 2 0 Product 2B 1 Proofing 80   

2 2 0 Product 2B 1 Load Baking 2 Manual 

2 2 0 Product 2B 1 Baking 60 Baking chamber 

2 2 0 Product 2B 1 Discharge baking 2 Manual 

2 2 0 Product 2B 1 Cooling 36 
 

2 2 0 Product 2B 1 Unmolding 7 Manual 

2 3 50 Product 2C 1 Dividing 15 Manual 

2 3 0 Product 2C 1 Dough rest 45 
 

2 3 0 Product 2C 1 Proofing 115   

2 3 0 Product 2C 1 Load Baking 3 Manual 

2 3 0 Product 2C 1 Baking 58 Baking chamber 

2 3 0 Product 2C 1 Discharge baking 2 Manual 

2 3 0 Product 2C 1 Cooling 30   

2 3 0 Product 2C 1 Unmolding 3 Manual 

3 1 0 Product 3A 1 Preparation 4 Manual 

3 1 0 Product 3A 1 Kneading 7 Lifting kneader 

3 1 0 Product 3A 1 Discharge kneading 2 Manual 

3 1 0 Product 3A 1 Load dividing 18 Divider 

3 1 0 Product 3A 1 Dividing 13 Divider 

3 1 0 Product 3A 1 Dough rest 
  

32 
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Table A3. List of products and their process details (continues) 
Product 
group 

Product 
ID 

Bowl 
time 

Product name Batches Stage name Duration 
(PT) 

Machines / 
Employees (M/E) 

3 1 0 Product 3A 1 Load Baking 11 Manual 
3 1 0 Product 3A 1 Baking 54 Stone oven 

4 1 0 Product 4 1 Preparation 7 Manual 

4 1 0 Product 4 1 Kneading 18 Rotating kneader 

4 1 0 Product 4 1 Dividing 11 Divider 

4 1 0 Product 4 1 Cutting-forming 35 Cutting Machine 

4 1 0 Product 4 1 Transfer to Proofing 1 Manual 

4 1 0 Product 4 1 Proofing 120   

4 1 0 Product 4 1 Load baking 3 Manual 

4 1 0 Product 4 1 Baking 70 Baking chamber 

4 1 0 Product 4 1 Unload baking 2 Manual 

4 1 0 Product 4 1 Cooling 31   

4 1 0 Product 4 1 packaging 10 Manual 

5 1 0 Product 5 1 Preparation 11 Manual 

5 1 0 Product 5 1 Kneading 10 Rotating kneader 

5 1 0 Product 5 1 Dough rest 35 
 

5 1 0 Product 5 1 Dividing 2 Manual 

5 1 0 Product 5 1 Shaping 2 Shaper 

5 1 0 Product 5 1 Transfer to Proofing 1 
 

5 1 0 Product 5 1 Proofing 100   

5 1 0 Product 5 1 Load Baking 6   

5 1 0 Product 5 1 Baking 42 Stone oven 

5 1 0 Product 5 1 Unload baking 3 Manual 

5 1 0 Product 5 1 Cooling 32   

5 1 0 Product 5 1 packaging 3 Manual 

6 1 0 Product 6 2 Preparation 5 Manual 

6 1 0 Product 6 2 Kneading 9 Rotating kneader 

6 1 0 Product 6 2 Dough rest 26 
 

6 1 0 Product 6 2 Dividing 10 Divider 

6 1 0 Product 6 2 Freezing 1   

7 1 0 Product 7 1 Preparation 5 Manual 

7 1 0 Product 7 1 Kneading 10 Rotating kneader 

7 1 0 Product 7 1 Dough rest 21   

7 1 0 Product 7 1 Cutting-forming 48 Cutting Machine 

7 1 0 Product 7 1 Proofing 105   

7 1 0 Product 7 1 Load Baking 4 Manual 

7 1 0 Product 7 1 Baking 25 Stone oven 

7 1 0 Product 7 1 Unload baking 3 Manual 

7 1 0 Product 7 1 Cooling 20   

8 1 0 Product 8 1 Preparation 6 Manual 

8 1 0 Product 8 1 Kneading 23 Rotating kneader 

8 1 0 Product 8 1 Cutting-forming 30 Cutting Machine 

8 1 0 Product 8 1 Dough rest 36 
 

8 1 0 Product 8 1 Load baking 
  

10 Manual  
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Table A3. List of products and their process details (continues) 

Product 
group 

Product 
ID 

Bowl 
time 

Product name Batches Stage name Duration 
(PT) 

Machines / 
Employees (M/E) 

8 1 0 Product 8 1 Baking 15 Stone oven 
8 1 0 Product 8 1 Unload baking 10 Manual 

9 1 0 Product 9 1 Preparation 4 Manual 

9 1 0 Product 9 1 Kneading 11 Rotating kneader 

9 1 0 Product 9 1 Dividing 12 Divider 

9 1 0 Product 9 1 Dough rest 19   

9 1 0 Product 9 1 Shaping 5 Manual 

9 1 0 Product 9 1 Proofing 120 
 

9 1 0 Product 9 1 Load Baking 3 Manual 

9 1 0 Product 9 1 Baking 42 Stone oven 

9 1 0 Product 9 1 Unload baking 4 Manual 

9 1 0 Product 9 1 Cold-storage 2 Manual 

10 1 0 Product 10 1 Preparation 4 Manual 

10 1 0 Product 10 1 Kneading 16 Rotating kneader 

10 1 0 Product 10 1 Cutting-forming 56 Cutting Machine 

10 1 0 Product 10 1 Dough rest 24   

10 1 0 Product 10 1 Shaping 12 Manual 

10 1 0 Product 10 1 Proofing 80   

10 1 0 Product 10 1 Load baking 5 Manual 

10 1 0 Product 10 1 Baking 42 Stone oven 

10 1 0 Product 10 1 Unload baking 5 Manual 

10 1 0 Product 10 1 Cooling 80   

10 1 0 Product 10 1 packaging 5 Mnaual 

11 1 0 Product 11 1 Preparation 6 Manual 

11 1 0 Product 11 1 Kneading 23 Rotating kneader 

11 1 0 Product 11 1 Cutting-forming 50 Cutting Machine 

11 1 0 Product 11 1 Tr. To Cold-storage 1 Manual 

12 1 0 Product 12A 1 Defrost 80   

12 1 0 Product 12A 1 Load baking 3 Manual 

12 1 0 Product 12A 1 Baking 18 Stone oven 

12 1 0 Product 12A 1 Unload baking 3 Manual 

12 2 83 Product 12B 1 Load baking 3 Manual 

12 2 0 Product 12B 1 Baking 18 Stone oven 

12 2 0 Product 12B 1 Unload baking 3 Manual 

12 3 86 Product 12C 1 Load baking 3 Manual 

12 3 0 Product 12C 1 Baking 18 Stone oven 

12 3 0 Product 12C 1 Unload baking 3 Manual 

13 1 0 Product 13 1 Preparation 5 Manual 

13 1 0 Product 13 1 Load kneader 2 Manual 

13 1 0 Product 13 1 Kneading 14 Rotating kneader 

13 1 0 Product 13 1 Kneading disch. 2 Manual 

13 1 0 Product 13 1 Dividing 4 Manual 

13 1 0 Product 13 1 Dough rest 30   

13 1 0 Product 13 1 Load Baking 
  

1 Manual  
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Table A3. List of products and their process details (continues) 

Product 
group 

Product 
ID 

Bowl 
time 

Product name Batches Stage name Duration 
(PT) 

Machines / 
Employees (M/E) 

13 1 0 Product 13 1 Baking 45 Baking chamber 
13 1 0 Product 13 1 Discharge baking 2 Manual 
13 1 0 Product 13 1 Cooling 20 

 

13 1 0 Product 13 1 Unmolding 4 Manual 

14 1 0 Product 14 1 Preparation 12 Manual 

14 1 0 Product 14 1 Load kneader 2 Manual 

14 1 0 Product 14 1 Kneading 10 Rotating kneader 

14 1 0 Product 14 1 Kneading disch. 2 Manual 

14 1 0 Product 14 1 Dividing 7 Manual 

14 1 0 Product 14 1 Dough rest 46   

14 1 0 Product 14 1 Load Baking 2 Manual 

14 1 0 Product 14 1 Baking 48 Baking chamber 

14 1 0 Product 14 1 Discharge baking 2 Manual 

14 1 0 Product 14 1 Cooling 28   

14 1 0 Product 14 1 Unmolding 2 Manual 

15 1 0 Product 15 1 Preparation 3 Manual 

15 1 0 Product 15 1 Load kneader 2 Manual 

15 1 0 Product 15 1 Kneading 15 Rotating kneader 

15 1 0 Product 15 1 Kneading disch. 2 Manual 

15 1 0 Product 15 1 Dividing 5 Manual 

15 1 0 Product 15 1 Dough rest 20 
 

15 1 0 Product 15 1 Shaping 15 Shaper 

15 1 0 Product 15 1 Proofing 90   

15 1 0 Product 15 1 Load Baking 2 Manual 

15 1 0 Product 15 1 Baking 38 Stone oven 

15 1 0 Product 15 1 Discharge baking 2 Manual 

15 1 0 Product 15 1 Cooling 28 
 

15 1 0 Product 15 1 Unmolding 2 Manual 
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