275 research outputs found

    GRID3O: Computer program for fast generation of multilevel, three-dimensional boundary-conforming O-type computational grids

    Get PDF
    A fast algorithm was developed for accurately generating boundary-conforming, three-dimensional, consecutively refined computational grids applicable to arbitrary wing-body and axial turbomachinery geometries. The method is based on using an analytic function to generate two-dimensional grids on a number of coaxial axisymmetric surfaces positioned between the centerbody and the outer radial boundary. These grids are of the O-type and are characterized by quasi-orthogonality, geometric periodicity, and an adequate resolution throughout the flow field. Because the built-in nonorthogonal coordinate stretching and shearing cause the grid lines leaving the blade or wing trailing edge to end at downstream infinity, the numerical treatment of the three-dimensional trailing vortex sheets is simplified

    GRID3C: Computer program for generation of C type multilevel, three dimensional and boundary conforming periodic grids

    Get PDF
    A fast computer program, GRID3C, was developed for accurately generating periodic, boundary conforming, three dimensional, consecutively refined computational grids applicable to realistic axial turbomachinery geometries. The method is based on using two functions to generate two dimensional grids on a number of coaxial axisymmetric surfaces positioned between the centerbody and the outer radial boundary. These boundary fitted grids are of the C type and are characterized by quasi-orthogonality and geometric periodicity. The built in nonorthogonal coordinate stretchings and shearings cause the grid clustering in the regions of interest. The stretching parameters are part of the input to GRID3C. In its present version GRID3C can generate and store a maximum of four consecutively refined three dimensional grids. The output grid coordinates can be calculated either in the Cartesian or in the cylindrical coordinate system

    Numerical calculation of transonic axial turbomachinery flows

    Get PDF
    A numerical method and the results of a computer program are presented for solving an exact, three dimensional, full potential equation that models rotating and nonrotating inviscid, absolutely irrotational, homentropic flows. Besides calculating the flows through an arbitrarily shaped rotor or stator blade row mounted on an axisymmetric hub and confined in an axisymmetric duct, the computer program is also capable of analyzing flow fields about arbitrarily shaped wing body combinations, propellers, helicopter rotors in hover, and wind turbine rotors. The governing equation is solved numerically in a fully conservative form by using an artificial time concept, a finite volume technique, rotated type dependent differencing, successive line overrelaxation, and sequential boundary conforming grid refinement. An artificial viscosity is added in fully conservative form, and an initial guess for the potential field is applied, as determined by a two dimensional cascade analysis

    CAS2D: FORTRAN program for nonrotating blade-to-blade, steady, potential transonic cascade flows

    Get PDF
    An exact, full-potential-equation (FPE) model for the steady, irrotational, homentropic and homoenergetic flow of a compressible, homocompositional, inviscid fluid through two dimensional planar cascades of airfoils was derived, together with its appropriate boundary conditions. A computer program, CAS2D, was developed that numerically solves an artificially time-dependent form of the actual FPE. The governing equation was discretized by using type-dependent, rotated finite differencing and the finite area technique. The flow field was discretized by providing a boundary-fitted, nonuniform computational mesh. The mesh was generated by using a sequence of conforming mapping, nonorthogonal coordinate stretching, and local, isoparametric, bilinear mapping functions. The discretized form of the FPE was solved iteratively by using successive line overrelaxation. The possible isentropic shocks were correctly captured by adding explicitly an artificial viscosity in a conservative form. In addition, a three-level consecutive, mesh refinement feature makes CAS2D a reliable and fast algorithm for the analysis of transonic, two dimensional cascade flows

    Numerical calculation of steady inviscid full potential compressible flow about wind turbine blades

    Get PDF
    An exact nonlinear mathematical model that accounts for three-dimensional cascade effects about the inner portions of the rotor blades and compressibility effects about the tip regions of the blades was derived. An artificially time dependent version was iteratively solved by a finite volume technique involving an artificial viscosity and a three-level consecutive mesh refinement. The exact boundary conditions were applied by generating a boundary conforming periodic computation mesh

    WIND: Computer program for calculation of three dimensional potential compressible flow about wind turbine rotor blades

    Get PDF
    A computer program is presented which numerically solves an exact, full potential equation (FPE) for three dimensional, steady, inviscid flow through an isolated wind turbine rotor. The program automatically generates a three dimensional, boundary conforming grid and iteratively solves the FPE while fully accounting for both the rotating cascade and Coriolis effects. The numerical techniques incorporated involve rotated, type dependent finite differencing, a finite volume method, artificial viscosity in conservative form, and a successive line overrelaxation combined with the sequential grid refinement procedure to accelerate the iterative convergence rate. Consequently, the WIND program is capable of accurately analyzing incompressible and compressible flows, including those that are locally transonic and terminated by weak shocks. The program can also be used to analyze the flow around isolated aircraft propellers and helicopter rotors in hover as long as the total relative Mach number of the oncoming flow is subsonic

    CAS22 - FORTRAN program for fast design and analysis of shock-free airfoil cascades using fictitious-gas concept

    Get PDF
    A user-oriented computer program, CAS22, was developed that is applicable to aerodynamic analysis and transonic shock-free redesign of existing two-dimensional cascades of airfoils. This FORTRAN program can be used: (1) as an analysis code for full-potential, transonic, shocked or shock-free cascade flows; (2) as a design code for shock-free cascades that uses Sobieczky's fictitious-gas concept; and (3) as a shock-free design code followed automatically by the analysis in order to confirm that the newly obtained cascade shape provides for an entirely shock-free transonic flow field. A four-level boundary-conforming grid of an O type is generated. The shock-free design is performed by implementing Sobieczky's fictitious-gas concept of elliptic continuation from subsonic into supersonic flow domains. Recomputation inside each supersonic zone is performed by the method of characteristics in the rheograph plane by using isentropic gas relations. Besides converting existing cascade shapes with multiple shocked supersonic regions into shock-free cascades, CAS22 can also unchoke previously choked cascades and make them shock free

    Shockless design and analysis of transonic blade shapes

    Get PDF
    A fast computer program was developed to eliminate the shocks by slightly altering portions of the contour of a given airfoil in the cascade. The program can be used in two basic modes: (1) An analysis for steady, transonic, potential flow through a given planar cascade of airfoils and (2) a design for converting a given cascade into a shockless transonic cascade. The design mode can automatically be followed by the analysis mode, which confirms that the flow field is shock free. The program generates its own multilevel boundary conforming computational grids and solves a full potential equation in a fully conservative form. The shockless design is performed by implementing Sobieczky's fictitious-gas elliptic continuation concept

    Aerodynamic shape optimization of arbitrary hypersonic vehicles

    Get PDF
    A new method was developed to optimize, in terms of aerodynamic wave drag minimization, arbitrary (nonaxisymmetric) hypersonic vehicles in modified Newtonian flow, while maintaining the initial volume and length of the vehicle. This new method uses either a surface fitted Fourier series to represent the vehicle's geometry or an independent point motion algorithm. In either case, the coefficients of the Fourier series or the spatial locations of the points defining each cross section were varied and a numerical optimization algorithm based on a quasi-Newton gradient search concept was used to determine the new optimal configuration. Results indicate a significant decrease in aerodynamic wave drag for simple and complex geometries at relatively low CPU costs. In the case of a cone, the results agreed well with known analytical optimum ogive shapes. The procedure is capable of accepting more complex flow field analysis codes

    Fast Generation of body conforming grids for 3-D

    Get PDF
    A fast algorithm was developed for accurately generating boundary conforming, three dimensional, consecutively refined, computational grids applicable to arbitrary axial turbomachinery geometry. The method is based on using a single analytic function to generate two dimensional grids on a number of coaxial axisymmetric surfaces positioned between the hub and the shroud. These grids are of the "O" type and are characterized by quasi-orthogonality, geometric periodicity, and an adequate resolution throughout the flowfield. Due to the built in additional nonorthogonal coordinate stretching and shearing, the grid lines leaving the trailing of the blade end at downstream infinity, thus simplifying the numerical treatment of the three dimensional trailing vortex sheet
    corecore