8,706 research outputs found

    Term frequency with average term occurrences for textual information retrieval

    Get PDF
    In the context of Information Retrieval (IR) from text documents, the term-weighting scheme (TWS) is a key component of the matching mechanism when using the vector space model (VSM). In this paper we propose a new TWS that is based on computing the average term occurrences of terms in documents and it also uses a discriminative approach based on the document centroid vector to remove less significant weights from the documents. We call our approach Term Frequency With Average Term Occurrence (TF-ATO). An analysis of commonly used document collections shows that test collections are not fully judged as achieving that is expensive and may be infeasible for large collections. A document collection being fully judged means that every document in the collection acts as a relevant document to a specific query or a group of queries. The discriminative approach used in our proposed approach is a heuristic method for improving the IR effectiveness and performance, and it has the advantage of not requiring previous knowledge about relevance judgements. We compare the performance of the proposed TF-ATO to the well-known TF-IDF approach and show that using TF-ATO results in better effectiveness in both static and dynamic document collections. In addition, this paper investigates the impact that stop-words removal and our discriminative approach have on TFIDF and TF-ATO. The results show that both, stopwords removal and the discriminative approach, have a positive effect on both term-weighting schemes. More importantly, it is shown that using the proposed discriminative approach is beneficial for improving IR effectiveness and performance with no information in the relevance judgement for the collection

    An adaptive technique for content-based image retrieval

    Get PDF
    We discuss an adaptive approach towards Content-Based Image Retrieval. It is based on the Ostensive Model of developing information needs—a special kind of relevance feedback model that learns from implicit user feedback and adds a temporal notion to relevance. The ostensive approach supports content-assisted browsing through visualising the interaction by adding user-selected images to a browsing path, which ends with a set of system recommendations. The suggestions are based on an adaptive query learning scheme, in which the query is learnt from previously selected images. Our approach is an adaptation of the original Ostensive Model based on textual features only, to include content-based features to characterise images. In the proposed scheme textual and colour features are combined using the Dempster-Shafer theory of evidence combination. Results from a user-centred, work-task oriented evaluation show that the ostensive interface is preferred over a traditional interface with manual query facilities. This is due to its ability to adapt to the user's need, its intuitiveness and the fluid way in which it operates. Studying and comparing the nature of the underlying information need, it emerges that our approach elicits changes in the user's need based on the interaction, and is successful in adapting the retrieval to match the changes. In addition, a preliminary study of the retrieval performance of the ostensive relevance feedback scheme shows that it can outperform a standard relevance feedback strategy in terms of image recall in category search

    Lucene4IR: Developing information retrieval evaluation resources using Lucene

    Get PDF
    The workshop and hackathon on developing Information Retrieval Evaluation Resources using Lucene (L4IR) was held on the 8th and 9th of September, 2016 at the University of Strathclyde in Glasgow, UK and funded by the ESF Elias Network. The event featured three main elements: (i) a series of keynote and invited talks on industry, teaching and evaluation; (ii) planning, coding and hacking where a number of groups created modules and infrastructure to use Lucene to undertake TREC based evaluations; and (iii) a number of breakout groups discussing challenges, opportunities and problems in bridging the divide between academia and industry, and how we can use Lucene for teaching and learning Information Retrieval (IR). The event was composed of a mix and blend of academics, experts and students wanting to learn, share and create evaluation resources for the community. The hacking was intense and the discussions lively creating the basis of many useful tools but also raising numerous issues. It was clear that by adopting and contributing to most widely used and supported Open Source IR toolkit, there were many benefits for academics, students, researchers, developers and practitioners - providing a basis for stronger evaluation practices, increased reproducibility, more efficient knowledge transfer, greater collaboration between academia and industry, and shared teaching and training resources

    Multi modal multi-semantic image retrieval

    Get PDF
    PhDThe rapid growth in the volume of visual information, e.g. image, and video can overwhelm users’ ability to find and access the specific visual information of interest to them. In recent years, ontology knowledge-based (KB) image information retrieval techniques have been adopted into in order to attempt to extract knowledge from these images, enhancing the retrieval performance. A KB framework is presented to promote semi-automatic annotation and semantic image retrieval using multimodal cues (visual features and text captions). In addition, a hierarchical structure for the KB allows metadata to be shared that supports multi-semantics (polysemy) for concepts. The framework builds up an effective knowledge base pertaining to a domain specific image collection, e.g. sports, and is able to disambiguate and assign high level semantics to ‘unannotated’ images. Local feature analysis of visual content, namely using Scale Invariant Feature Transform (SIFT) descriptors, have been deployed in the ‘Bag of Visual Words’ model (BVW) as an effective method to represent visual content information and to enhance its classification and retrieval. Local features are more useful than global features, e.g. colour, shape or texture, as they are invariant to image scale, orientation and camera angle. An innovative approach is proposed for the representation, annotation and retrieval of visual content using a hybrid technique based upon the use of an unstructured visual word and upon a (structured) hierarchical ontology KB model. The structural model facilitates the disambiguation of unstructured visual words and a more effective classification of visual content, compared to a vector space model, through exploiting local conceptual structures and their relationships. The key contributions of this framework in using local features for image representation include: first, a method to generate visual words using the semantic local adaptive clustering (SLAC) algorithm which takes term weight and spatial locations of keypoints into account. Consequently, the semantic information is preserved. Second a technique is used to detect the domain specific ‘non-informative visual words’ which are ineffective at representing the content of visual data and degrade its categorisation ability. Third, a method to combine an ontology model with xi a visual word model to resolve synonym (visual heterogeneity) and polysemy problems, is proposed. The experimental results show that this approach can discover semantically meaningful visual content descriptions and recognise specific events, e.g., sports events, depicted in images efficiently. Since discovering the semantics of an image is an extremely challenging problem, one promising approach to enhance visual content interpretation is to use any associated textual information that accompanies an image, as a cue to predict the meaning of an image, by transforming this textual information into a structured annotation for an image e.g. using XML, RDF, OWL or MPEG-7. Although, text and image are distinct types of information representation and modality, there are some strong, invariant, implicit, connections between images and any accompanying text information. Semantic analysis of image captions can be used by image retrieval systems to retrieve selected images more precisely. To do this, a Natural Language Processing (NLP) is exploited firstly in order to extract concepts from image captions. Next, an ontology-based knowledge model is deployed in order to resolve natural language ambiguities. To deal with the accompanying text information, two methods to extract knowledge from textual information have been proposed. First, metadata can be extracted automatically from text captions and restructured with respect to a semantic model. Second, the use of LSI in relation to a domain-specific ontology-based knowledge model enables the combined framework to tolerate ambiguities and variations (incompleteness) of metadata. The use of the ontology-based knowledge model allows the system to find indirectly relevant concepts in image captions and thus leverage these to represent the semantics of images at a higher level. Experimental results show that the proposed framework significantly enhances image retrieval and leads to narrowing of the semantic gap between lower level machinederived and higher level human-understandable conceptualisation

    The Most Influential Paper Gerard Salton Never Wrote

    Get PDF
    Gerard Salton is often credited with developing the vector space model (VSM) for information retrieval (IR). Citations to Salton give the impression that the VSM must have been articulated as an IR model sometime between 1970 and 1975. However, the VSM as it is understood today evolved over a longer time period than is usually acknowledged, and an articulation of the model and its assumptions did not appear in print until several years after those assumptions had been criticized and alternative models proposed. An often cited overview paper titled ???A Vector Space Model for Information Retrieval??? (alleged to have been published in 1975) does not exist, and citations to it represent a confusion of two 1975 articles, neither of which were overviews of the VSM as a model of information retrieval. Until the late 1970s, Salton did not present vector spaces as models of IR generally but rather as models of specifi c computations. Citations to the phantom paper refl ect an apparently widely held misconception that the operational features and explanatory devices now associated with the VSM must have been introduced at the same time it was fi rst proposed as an IR model.published or submitted for publicatio

    Meeting of the MINDS: an information retrieval research agenda

    Get PDF
    Since its inception in the late 1950s, the field of Information Retrieval (IR) has developed tools that help people find, organize, and analyze information. The key early influences on the field are well-known. Among them are H. P. Luhn's pioneering work, the development of the vector space retrieval model by Salton and his students, Cleverdon's development of the Cranfield experimental methodology, Spärck Jones' development of idf, and a series of probabilistic retrieval models by Robertson and Croft. Until the development of the WorldWideWeb (Web), IR was of greatest interest to professional information analysts such as librarians, intelligence analysts, the legal community, and the pharmaceutical industry

    Proceedings of the 18th Irish Conference on Artificial Intelligence and Cognitive Science

    Get PDF
    These proceedings contain the papers that were accepted for publication at AICS-2007, the 18th Annual Conference on Artificial Intelligence and Cognitive Science, which was held in the Technological University Dublin; Dublin, Ireland; on the 29th to the 31st August 2007. AICS is the annual conference of the Artificial Intelligence Association of Ireland (AIAI)
    corecore