49 research outputs found

    The Wrangel Island Polynya in early summer : trends and relationships to other polynyas and the Beaufort Sea High

    Get PDF
    Author Posting. © American Geophysical Union, 2012. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 39 (2012): L05503, doi:10.1029/2011GL050691.Polynyas, regions of reduced sea ice concentration relative to their surroundings, are important features of the polar climate system in which enhanced fluxes of heat, moisture, and momentum can occur between the atmosphere and ocean. As such, they play a significant role in many atmospheric, oceanographic and biological processes. There are concerns that in a warming climate, in which there is a trend towards a reduction in sea ice cover, that the location, size and duration of many polynyas may change resulting in climatological and ecological impacts. In this paper, we identify an early summer manifestation of the Wrangel Island polynya that forms in the western Chuckchi Sea. We show that over the past 30 years there has been an increased frequency of occurrence as well as a doubling in the size of the polynya. The polynya is shown to form when there is an enhanced easterly flow over the Chukchi Sea that is associated with an anomalously intense Beaufort Sea High (BSH), a closed anti-cyclonic atmospheric circulation that forms over the Beaufort Sea. We also show that there has been a concomitant trend towards a more intense BSH over the same time period and we propose that this trend is responsible for the observed changes in the Wrangel Island polynya. Given its large and increasing size, the early summer polynya may also play an important and unaccounted role in the physical and biological oceanography of the western Chukchi Sea.GWKM was supported by the Natural Science and Engineering Research Council of Canada. RSP was supported by the NOAA project NA08-OAR4320895.2012-09-1

    Arctic sea-ice melt in 2008 and the role of solar heating

    Get PDF
    There has been a marked decline in the summer extent of Arctic sea ice over the past few decades. Data from autonomous ice mass-balance buoys can enhance our understanding of this decline. These buoys monitor changes in snow deposition and ablation, ice growth, and ice surface and bottom melt. Results from the summer of 2008 showed considerable large-scale spatial variability in the amount of surface and bottom melt. Small amounts of melting were observed north of Greenland, while melting in the southern Beaufort Sea was quite large. Comparison of net solar heat input to the ice and heat required for surface ablation showed only modest correlation. However, there was a strong correlation between solar heat input to the ocean and bottom melting. As the ice concentration in the Beaufort Sea region decreased, there was an increase in solar heat to the ocean and an increase in bottom melting

    Sudden increase in Antarctic sea ice: Fact or artifact?

    Get PDF
    Copyright © 2011 American Geophysical UnionThree sea ice data sets commonly used for climate research display a large and abrupt increase in Antarctic sea ice area (SIA) in recent years. This unprecedented change of SIA is diagnosed to be primarily caused by an apparent sudden increase in sea ice concentrations within the ice pack, especially in the area of the most-concentrated ice (greater than 95% concentration). A series of alternative satellite-derived records do not display any abnormal sudden SIA changes, but do reveal substantial discrepancies between different satellite sensors and sea ice algorithms. Sea ice concentrations in the central ice pack and SIA values derived from the Advanced Microwave Scanning Radiometer for the Earth Observing System (AMSRE) are consistently greater than those derived from the Special Sensor Microwave Imager (SSMI). A switch in source data from the SSMI to AMSRE in mid-2009 explains most of the SIA increase in all three affected data sets. If uncorrected for, the discontinuity artificially exaggerates the winter Antarctic SIA increase (1979–2010) by more than a factor of 2 and the spring trend by almost a factor of 4. The discontinuity has a weaker influence on the summer and autumn SIA trends, on calculations of Antarctic sea ice extent, and in the Arctic

    Satellite Observations of Antarctic Sea Ice Thickness and Volume

    Get PDF
    We utilize satellite laser altimetry data from ICESat combined with passive microwave measurements to analyze basin-wide changes in Antarctic sea ice thickness and volume over a 5 year period from 2003-2008. Sea ice thickness exhibits a small negative trend while area increases in the summer and fall balanced losses in thickness leading to small overall volume changes. Using a five year time-series, we show that only small ice thickness changes of less than -0.03 m/yr and volume changes of -266 cu km/yr and 160 cu km/yr occurred for the spring and summer periods, respectively. The calculated thickness and volume trends are small compared to the observational time period and interannual variability which masks the determination of long-term trend or cyclical variability in the sea ice cover. These results are in stark contrast to the much greater observed losses in Arctic sea ice volume and illustrate the different hemispheric changes of the polar sea ice covers in recent years

    Comparisons of passive microwave remote sensing sea ice concentrations with ship-based visual observations during the CHINARE Arctic summer cruises of 2010-2018

    Get PDF
    In order to apply satellite data to guiding navigation in the Arctic more effectively, the sea ice concentrations (SIC) derived from passive microwave (PM) products were compared with ship-based visual observations (OBS) collected during the Chinese National Arctic Research Expeditions (CHINARE). A total of 3 667 observations were collected in the Arctic summers of 2010, 2012, 2014, 2016, and 2018. PM SIC were derived from the NASA-Team (NT), Bootstrap (BT) and Climate Data Record (CDR) algorithms based on the SSMIS sensor, as well as the BT, enhanced NASA-Team (NT2) and ARTIST Sea Ice (ASI) algorithms based on AMSR-E/AMSR-2 sensors. The daily arithmetic average of PM SIC values and the daily weighted average of OBS SIC values were used for the comparisons. The correlation coefficients (CC), biases and root mean square deviations (RMSD) between PM SIC and OBS SIC were compared in terms of the overall trend, and under mild/normal/severe ice conditions. Using the OBS data, the influences of floe size and ice thickness on the SIC retrieval of different PM products were evaluated by calculating the daily weighted average of floe size code and ice thickness. Our results show that CC values range from 0.89 (AMSR-E/AMSR-2 NT2) to 0.95 (SSMIS NT), biases range from -3.96% (SSMIS NT) to 12.05% (AMSR-E/AMSR-2 NT2), and RMSD values range from 10.81% (SSMIS NT) to 20.15% (AMSR-E/AMSR-2 NT2). Floe size has a significant influence on the SIC retrievals of the PM products, and most of the PM products tend to underestimate SIC under smaller floe size conditions and overestimate SIC under larger floe size conditions. Ice thickness thicker than 30 cm does not have a significant influence on the SIC retrieval of PM products. Overall, the best (worst) agreement occurs between OBS SIC and SSMIS NT (AMSR-E/AMSR-2 NT2) SIC in the Arctic summer.Peer reviewe

    Timing of sea ice retreat can alter phytoplankton community structure in the western Arctic Ocean

    Get PDF
    This study assesses the response of phytoplankton assemblages to recent climate change, especially with regard to the shrinking of sea ice in the northern Chukchi Sea of the western Arctic Ocean. Distribution patterns of phytoplankton groups in the late summers of 2008–2010 were analysed based on HPLC pigment signatures and, the following four major algal groups were inferred via multiple regression and cluster analyses: prasinophytes, diatoms, haptophytes and dinoflagellates. A remarkable interannual difference in the distribution pattern of the groups was found in the northern basin area. Haptophytes dominated and dispersed widely in warm surface waters in 2008, whereas prasinophytes dominated in cold water in 2009 and 2010. A difference in the onset date of sea ice retreat was evident among years–the sea ice retreat in 2008 was 1–2 months earlier than in 2009 and 2010. The spatial distribution of early sea ice retreat matched the areas in which a shift in algal community composition was observed. Steel-Dwass's multiple comparison tests were used to assess the physical, chemical and biological parameters of the four clusters. We found a statistically significant difference in temperature between the haptophyte-dominated cluster and the other clusters, suggesting that the change in the phytoplankton communities was related to the earlier sea ice retreat in 2008 and the corollary increase in sea surface temperatures. Longer periods of open water during the summer, which are expected in the future, may affect food webs and biogeochemical cycles in the western Arctic due to shifts in phytoplankton community structure

    Verification of a New NOAA/NSIDC Passive Microwave Sea-Ice Concentration Climate Record

    Get PDF
    A new satellite-based passive microwave sea-ice concentration product developed for the National Oceanic and Atmospheric Administration (NOAA)Climate Data Record (CDR) programme is evaluated via comparison with other passive microwave-derived estimates. The new product leverages two well-established concentration algorithms, known as the NASA Team and Bootstrap, both developed at and produced by the National Aeronautics and Space Administration (NASA) Goddard Space Flight Center (GSFC). The sea ice estimates compare well with similar GSFC products while also fulfilling all NOAA CDR initial operation capability (IOC) requirements, including (1) self describing file format, (2) ISO 19115-2 compliant collection-level metadata,(3) Climate and Forecast (CF) compliant file-level metadata, (4) grid-cell level metadata (data quality fields), (5) fully automated and reproducible processing and (6) open online access to full documentation with version control, including source code and an algorithm theoretical basic document. The primary limitations of the GSFC products are lack of metadata and use of untracked manual corrections to the output fields. Smaller differences occur from minor variations in processing methods by the National Snow and Ice Data Center (for the CDR fields) and NASA (for the GSFC fields). The CDR concentrations do have some differences from the constituent GSFC concentrations, but trends and variability are not substantially different

    EOS Aqua AMSR-E Arctic Sea-Ice Validation Program: Arctic2006 Aircraft Campaign Flight Report

    Get PDF
    In March 2006, a coordinated Arctic sea-ice validation field campaign using the NASA Wallops P-3B aircraft was successfully completed. This campaign was the second Alaskan Arctic field campaign for validating the Earth Observing System (EOS) Aqua Advanced Microwave Scanning Radiometer (AMSR-E) sea-ice products. The first campaign was completed in March 2003. The AMSR-E, designed and built by the Japanese Space Agency for NASA, was launched May 4, 2002 on the EOS Aqua spacecraft. The AMSR-E sea-ice products to be validated include sea-ice concentration, sea-ice temperature, and snow depth on sea ice. The focus of this campaign was on the validation of snow depth on sea ice and sea-ice temperature. This flight report describes the suite of instruments flown on the P-3, the objectives of each of the six flights, the Arctic regions overflown, and the coordination among satellite, aircraft, and surface-based measurements
    corecore