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Comparisons of passive microwave remote sensing sea ice 

concentrations with ship-based observations in the summer Arctic 
 
Abstract 
We compare the sea ice concentrations (SIC) of six long time series passive microwave (PM) 
products with that of 3890 ship-based observations (OBS) collected during seven Chinese National 
Arctic Research Expeditions. OBS SIC is collected according to the Antarctic Sea Ice Processes and 
Climate (ASPeCt) protocol. Six kinds of PM SIC are derived from the NASA-Team (NT), Bootstrap 
(BT) and Climate Data Record (CDR) algorithm based on SSM/I-SSMIS sensors, and the BT, 
enhanced NASA-Team (NT2) and ARTIST Sea Ice (ASI) algorithm based on AMSR-E/AMSR-2 
sensors. Before comparing, in order to minimize the difference in spatial and temporal resolution 
between PM SIC and OBS SIC, we average the two kinds of data firstly. We compare the correlation 
coefficients (CC), average deviations and root mean square deviations (RMSD) between PM SIC 
and OBS SIC. Our results show that for the overall comparisons, CC values range from 0.84 
(AMSR-E/AMSR-2 NT2) to 0.90 (SSM/I-SSMIS NT and AMSR-E/AMSR-2 BT). Average 
deviations range from −7.16% (SSM/I-SSMIS NT) to 8.48% (AMSR-E/AMSR-2 NT2). RMSD 
values range from 15.51% (SSM/I-SSMIS NT) to 22.27% (AMSR-E/AMSR-2 NT2). We also 
compare PM SIC with OBS SIC in different voyages and under different ice conditions in this paper. 
All in all, there are better agreements between OBS SIC and SSM/I-SSMIS NT, AMSR-E/AMSR-
2 BT and ASI SIC in the summer Arctic. 
 
Key words: Arctic, summer, sea ice concentration, passive microwave remote sensing, ship-based 
observations, comparison 
 
1 Introduction 

As an intuitive and sensitive indicator of global climate change, Arctic sea ice plays an important 
role in the global climate system (Vihma, 2014; Overland et al., 2015; Sui et al., 2017). Under the 
background of global warming, the Arctic has warmed twice as fast as the global average. This 
phenomenon is widely known as the "Arctic Amplification Effect" (Pithan and Mauritsen, 2014; 
Cohen et al., 2014). The rapid warming of the Arctic has led to the drastic melting of Arctic sea ice. 
Since October 1978, when there were continuous satellite observations, a large number of related 
studies have shown that the extent, area, concentration, thickness and the proportion of multi-year 
ice of Arctic sea ice have decreased significantly (Comiso, 2002; Comiso, 2012; Lei et al., 2015; 
Chen and Zhao, 2017; Serreze and Meier, 2019; Wang et al., 2019). The rapid melting of Arctic sea 
ice undoubtedly brings unprecedented convenience to navigation, resource development and in situ 
scientific investigation in the Arctic. Therefore, it is of great significance to grasp the temporal and 
spatial variation of Arctic sea ice as accurately as possible for the study of global climate change, 
the forecast of Arctic sea ice conditions, the design and construction of Arctic ocean engineering 
and its safe operation. 

As an important parameter of many ocean and atmospheric circulation models, sea ice 
concentrations (SIC) is of great significance to the study of global climate change. Because the 
Arctic sea ice cover area is vast, the geographical location is remote, and the field observation is 



difficult, remote sensing observation provides an irreplaceable data source for grasping the Arctic 
sea ice conditions (McIntire and Simpson, 2002). At present, remote sensing sensors for SIC 
observation mainly include visible-infrared sensors, passive microwave (PM) remote sensing 
sensors, active microwave (AM) remote sensing sensors and so on. Among them, visible-infrared 
sensors (such as the moderate-resolution imaging spectroradiometer, MODIS) have the advantage 
of high spatial resolution, but the disadvantage is that it is difficult to observe effectively under the 
conditions of cloud, fog and polar night (Liu et al., 2004). The advantage of PM sensors is that they 
have excellent long-wave penetration ability and can solve the problems of distinguishing sea ice 
from cloud and continuous observation of sea ice under polar night conditions, but the disadvantage 
is their low spatial resolution. AM sensors (such as the Synthetic Aperture Radar, SAR) combine 
the advantages of visible-infrared sensors and PM sensors. They can observe sea ice with high 
spatial resolution all day without the influence of weather and polar night. However, their cost is 
too high to use their data to establish global long-term sea ice time series climatic data sets. Given 
the above, PM remote sensing has become the preferred method for long-term continuous 
acquisition of large-scale polar sea ice horizontal distribution data. PM remote sensing obtains SIC 
by inputting the acquired brightness temperatures (Tb) data into the retrieval algorithms. Therefore, 
even if the same PM sensor is used, because different algorithms combine Tb data of different 
frequencies and polarization components, the final results of SIC retrievals are quite different. Many 
scholars have evaluated the performances of the PM algorithms by comparing the differences 
between the sea ice area, extent and concentration derived from different algorithms (Comiso et al. 
1997; Ivanova et al., 2014; Hao and Su, 2015). 

Only comparing different SIC retrieval algorithms is not enough to determine the reliability and 
validity of SIC retrieved by them. The most direct and effective way to evaluate the merits and 
demerits of SIC retrieval algorithm is to validate it by using field SIC data. The commonly used 
method is to regard SIC data obtained by means of ship-based observations (OBS), helicopter or 
unmanned aerial vehicle aerial photography (AP) in ice zones as ground truth value, and compare 
it with SIC retrieved by different sensors and algorithms (Worby and Comiso, 2004; Knuth and 
Ackley, 2006). Ozsoy-Cicek et al. (2009) found that compared with AMSR-E product, the National 
Ice Center (NIC) ice charts obtained from high resolution satellite images have better consistency 
with OBS data and AMSR-E product tends to underestimate ice conditions due to its low resolution 
during Antarctic summer. Ozsoy-Cicek et al. (2011) reported that the correlation between OBS data 
and PM data in the marginal ice zones (MIZ) of West Antarctica and over nearly the entire sea-ice 
zones of East Antarctica is less than that in 90°W region, and the extent of Antarctic sea ice 
estimated by AMSR-E data is 1-2×106 km2 less than that estimated by NIC data. Beitsch et al. (2015) 
compared more than 21600 OBS SIC Around Antarctica with 7 kinds of PM SIC retrieved by five 
algorithms based on SSM/I-SSMIS and AMSR-E. Their results show that the Bootstrap (BT) 
algorithm is the best choice in both the SSM/I-SSMIS comparison and the AMSR-E comparison. 
Shi et al. (2015) used CHINARE-2012 helicopter AP and SAR images to evaluate the PM SIC based 
on the “HY-2” scanning radiometer in Arctic. Their results show that the SIC of “HY-2” products 
in the central Arctic Ocean is 16% higher than that of AP, and its root-mean-square with SAR is 
between 8.57% to 12.34%. By comparing the SIC extracted from ship-based monitoring images 
with SSMIS NT and AMSR-2 SICCI SIC data, Wang et al. (2018) reported that the SIC of SSMIS 
and AMSR-2 were 9.5% and 9.9% higher than the OBS SIC respectively, and the overestimations 
of SSMIS and AMSR-2 SIC increased to 12% and 16.4% respectively in areas the OBS SIC is less 



than 15% , while the underestimations of SSMIS and AMSR-2 SIC are 4.4% and 8.9% in areas the 
OBS SIC is greater than 75%. 

Although the PM SIC algorithm has been systematically evaluated in Antarctica by using a large 
number of OBS data, to our knowledge, the evaluation of PM SIC algorithm in Arctic is mostly 
based on the OBS data during a single expedition or voyage at present, which has many temporal 
and spatial limitations and can’t exclude the deviations caused by some accidental factors. In this 
paper, we use a large number of OBS SIC data collected during the seven Chinese Arctic scientific 
expeditions (CHINARE) to compare with the six long time series PM SIC products used commonly. 
In the Section 2, we introduce the PM sensors, SIC retrieval algorithms and products, OBS data, 
data preprocessing and comparison methods firstly. In the Section 3, we show and describe the 
results of the comparisons. In the Section 4, we analyze and discuss the cause of error in SIC 
retrievals. The Section 5 is the conclusion of this paper. 
 
2 Data and methods 
 
2.1 PM sensors 

PM sensors are important sensors for acquiring SIC at global or hemispheric scale. Their 
continuous observation ability lays a foundation for SIC monitoring and analysis of long time series. 
At present, the main PM sensors for SIC retrievals are SSM/I, SSMIS, AMSR-E, AMSR-2 and so 
on.  

Since 1987, SSM/I sensors had been launched onboard the Defense Meteorological Satellite 
Program (DMSP) satellites. These satellites orbit the Earth in a near-polar solar synchronous orbit 
with an orbit period of about 102 minutes and a total of 14.1 r/day (Hollinger et al., 1990). Within 
one day, the polar region can be almost completely covered. SSM/I is a multi-channel PM sensor, 
which scans about 1400 km wide ground scenes (Hollinger et al., 1990) at a constant angle of 
incidence of 53.1 degrees (Kern and Heygster, 2001). In 2003, SSMIS replaced SSM/I for 
installation on DMSP F-16 and its successor satellites. SSMIS augments the imaging channel of 
SSM/I by several atmospheric sounding channels, but still has the ability of SSM/I to record Tb, 
among which the 19 GHz, 22 GHz, 37 GHz and 85 GHz imaging channels are associated with SIC 
retrievals (Beitsch et al., 2015). 85 GHz channel as the high frequency channel can provide higher 
spatial resolution. Using SSM/I and SSMIS as well as earlier SSMR, SIC products with spatial 
resolution of 25 km × 25 km and 12.5 km × 12.5 km from 1978 to now can be used for global 
climate change analysis. 

AMSR-E was launched onboard the Aqua satellite on May 2, 2002 and ceased operation on 
December 4, 2011. The time coverage of its data ranges from 18 June 2002 to 4 October 2011. Like 
DMSP satellites, Aqua also orbits the Earth in near-polar solar synchronous orbit. Compared with 
SSM/I, AMSR-E has the main advantage of the high spatial resolution. The spatial resolution of 
AMSR-E based on 89GHz is 10 times higher than that of SSM/I based on 37 and 19 GHz channels 
(Spreen et al., 2008). AMSR-2, as the successor to AMSR-E, was launched onboard the Global 
Change Observation Mission for Water-1 (GCOM-W1) satellite by the Japan Aerospace 
Exploration Agency (JAXA) on May 1, 2012. The main mission of AMSR-2 is to detect the earth's 
water and energy cycle. The scanning angle of incidence is 55 degrees and provide a 1450-km swath 
width at the Earth’s surface (Beitsch et al., 2014). Compared with AMSR-E, AMSR-2 adds two 
channels of 7.3GHz, which can be used to relieve radio frequency interference (RFI). The size of 



its main reflector has increased to 2.0m, which leads to smaller footprints and improves the spatial 
resolution for different frequencies (Beitsch et al., 2014). At present, SIC products with spatial 
resolution up to 3.125 km × 3.125 km can be obtained by using AMSR-E and AMSR-2.  

Because the PM SIC data sets used in this paper uses multiple sensors over time, they are SSM/I-
SSMIS sensors and AMSR-E/AMSR-2 sensors, in order to ensure the consistency of data, each 
product calibrates the algorithms of different sensors, so the source of Tb data is not important. For 
SSM/I and SSMIS data sets, the tie points are adjusted by regression analysis of two brightness 
temperatures during the overlap of the two sensors working time to make the derived sea ice fields 
as consistent as possible (Comiso and Nishio, 2008). For AMSR-E and AMSR-2 data sets, the main 
method is to convert AMSR-2 Tb to equivalent AMSR-E Tb after regression analysis of AMSR-2 
Tb and AMSR-E Tb, so that two sensors using the same algorithm will not have a significant impact 
on the SIC retrievals (Meier and Ivanoff, 2017). From here on, when we refer to SSMIS, we refer 
to the combined SIC database of SSM/I and SSMIS. When we refer to AMSR, we refer to the 
combined SIC database of AMSR-E and AMSR-2. 

 
2.2 SIC retrieval algorithms and products 

The PM SIC data used in this paper are derived from six long time series SIC products which are 
commonly used and still being updated. They are corresponding products of NT, BT and Climate 
Data Record (CDR) algorithm based on SSMIS sensors and those of BT, enhanced NASA-Team 
(NT2) and ARTIST Sea Ice (ASI) based on AMSR sensors. 

The basic principle of the NT algorithm is to use the PM sensors’ 19 GHz vertical and horizontal, 
37 GHz vertical polarization Tb to calculate Polarization ratios (PR) and gradient ratios (GR) to 
identify the sea water, first-year ice and multi-year ice, and so as to retrieve SIC (Smith, 1996). The 
SSMIS-NT SIC product used in this paper is provided by the National Snow and Ice Data Center 
(NSIDC) with a grid resolution of 25 km × 25 km. 

The basic principle of BT algorithm is to identify sea water and sea ice by using the differences 
of polarization Tb between 37GHz vertical and horizontal channels and between 37GHz vertical 
and 19Hz horizontal channels, and so as to retrieve SIC (Smith, 1996). The SSMIS-BT SIC product 
used in this paper is provided by NSIDC with a grid resolution of 25 km × 25 km. The AMSR-BT 
SIC product used in this paper is provided by University of Bremen (UB) with a grid resolution of 
6.25 km × 6.25 km. 

CDR algorithm comes from the combination of NT algorithm and BT algorithm for SIC retrievals 
(Peng et al., 2013). CDR algorithm tries to utilize the advantages of NT algorithm and BT algorithm 
to generate SIC field more precise than these two algorithms. The SSMIS-CDR SIC product used 
in this paper is provided by NSIDC with a grid resolution of 25 km × 25 km. 

NT2 algorithm is an improved algorithm designed to solve some problems existing in the SIC 
retrievals of NT algorithm. NT2 algorithm calculates PR and GR in the same way as NT algorithm. 
In order to avoid the influence of snow cover on ice type identification, PRR is calculated and the 
polarization Tb of high frequency (85GHz for SSMIS and 89GHz for AMSR) vertical and 
horizontal channel is used to calculate ∆GR to estimate the surface effect (Markus and Cavalieri, 
2000). The AMSR-NT2 SIC product used in this paper is provided by NSIDC with a grid resolution 
of 12.5 km × 12.5 km. 

ASI algorithm was developed from the Arctic Radiation and Turbulence Interaction Study 
(ARTSIST) in 1998. The ASI algorithm only uses the difference between the polarization Tb of 



89GHz horizontal and vertical channels to retrieve SIC, and uses low frequency Tb as weather filter 
to filter out the misjudgements of SIC caused by atmospheric water vapor in some MIZ and the ice-
free area (Spreen et al., 2008). Compared with other high-frequency algorithms, the ASI algorithm 
can achieve similar results with the SIC algorithm using other extra channels without additional data 
sources. (Kern et al., 2003). However, the precondition for ASI algorithm to determine the tie point 
is to make the result of SIC retrievals closest to the that of BT algorithm (Spreen et al., 2008). As a 
result, the result of SIC retrievals of ASI algorithm depend on the retrieval accuracy of BT algorithm. 
The AMSR-ASI SIC product used in this paper is provided by UB, and the grid resolution is 3.125 
km × 3.125 km. 

 
2.3 ASPeCt OBS data 

The ASPeCt OBS data used in this paper are from the CHINARE-2003, CHINARE-2008, 
CHINARE-2010, CHINARE-2012, CHINARE-2014, CHINARE-2016 and CHINARE-2018. The 
quantity of these data is 3890. The tracks of these voyages are shown in Fig. 1. 

 

 
Fig.1. The sketch map of Chinese national Arctic research expedition routes used in this paper. 

 
When the R/V Xuelong icebreaker was sailing in the ice zones, according to the ASPeCt OBS 

standard, namely, the ASPeCt protocol (Worby et al., 1999), sea ice was divided into three types to 
record their concentration, growth stage, size and thickness, as well as the snow layer thickness on 
the ice surface and the coverage rate of melt ponds and ice ridges. The method of SIC artificial 
observation is that the observer stands on the bridge and estimates the proportion of sea ice area 
within the sight range of about 1 km with his eyes to determine the SIC (in tenths) of the current 
location according to the definition of SIC in WMO (1970), as shown in Fig. 2. When the speed is 
less than 6 knots, the ice condition is observed and recorded every hour; when the speed is greater 
than 6 knots, the ice condition is observed and recorded every half hour, the duration of a single 
observation is 5-10 minutes. When the expedition carries out short-term (within one day) or long-
term (several days or more) observation in the ice station, the R/V Xuelong icebreaker will stop 



sailing and the artificial observation of sea ice will also be suspended.  
 

 
Fig.2. Examples of different SIC during navigation. 

 
Since OBS SIC is evaluated in tenths, rounding errors can be as high as 5% in theory (Worby and 

Comiso, 2004). In addition, due to the subjectivity of the observer, it is difficult to quantify the 
differences in the evaluation of OBS SIC among different observers. However, experiments have 
shown that when different observers observe at the same time, the overall SIC difference assessed 
is rarely more than 10% (Worby and Comiso, 2004). Weissling et al. (2009) proposed that the 
average deviation of SIC observations of ASPeCt is less than 10%. 

 
2.4 Data preprocessing and comparison methods 

The OBS SIC represents the average SIC within an elliptical range of about 1 km in the short 
half-axis observed for 5-10 minutes from a certain time, which is given in tenths. The PM SIC gives 
the average SIC of each grid cell in a percentage form in one day. The minimum grid size of PM 
SIC products used in this paper is 3.125 km × 3.125 km, and the maximum is 25 km × 25 km. The 
temporal and spatial scale of OBS data is much smaller than that of PM data, so it is more changeable. 
There are 3890 OBS data used in this paper, and the quantity of them is quite large. For the above 
reasons, there may be some problems in comparing the two kinds of data directly. 

In order to minimize the impact of inconsistent spatial and temporal scales of the two kinds of 
data on the comparison, before comparing the data, this paper decides to average the OBS SIC and 
the PM SIC of the same day. Specifically, for each OBS SIC, find the PM SIC of the same date and 
the nearest grid in each SIC product. Then the average values of OBS SIC and PM SIC 
corresponding to each other in the same day are calculated and compared. This method is similar to 
the method used by Beitsch et al. (2015) to average the two data on the same day along the track. 
The R/V Xuelong icebreaker did not always sail at a uniform speed in the ice zones. When it 
encounters severe ice conditions, the speed of the R/V Xuelong icebreaker will slow down. For 
example, when encountering a large number of ice ridges, the R/V Xuelong icebreaker may even 
travel for only a few hundred meters in an hour. However, the maximum grid size of PM products 
used in this paper is up to 25km × 25km, so it is inevitable that multiple OBS SICs correspond to 
the same PM SIC (see Fig. 3). The method used in Beitsch et al. (2015) is similar to calculate the 



arithmetic average of OBS SIC but calculate the weighted average for PM SIC as Shown in Eq. (1): 

                          CPM = 
C1 + C2 + C3 + C4 + C5 + C6

6
,                        (1) 

As shown in Fig. 3, CPM is the average of PM SIC in one day and Ci is the PM SIC in the 
corresponding grid.  

As a result, the weight of the same PM SIC corresponding to multiple OBS SICs is reduced. The 
average method in this paper is to calculate the arithmetic average of PM SIC and that of OBS SIC 
as shown in Eq. (2): 

                          CPM = 
C1	+	C2	+	C3	+	3C4	+	2C5	+	C6

9
,                       (2) 

As shown in Fig. 3, CPM is the average of PM SIC in one day and Ci is the PM SIC in the 
corresponding grid.  

In this way, the statistical distribution characteristics between the original data are maintained to 
a greater extent. 

 

 
Fig.3. Schematic map of OBS SIC and PM SIC, the red dot represents the position of OBS SIC, and 
the blue square represents the PM SIC grid in which the red dot falls,the number in the grid is the 
number of the grid. See text for explanation. 

 
After the preprocessing of the two kinds of data, we calculate the correlation coefficients (CC), 

average deviations and root mean square deviations (RMSD) between each PM SIC and OBS SIC 
as the basis for evaluating the retrieval accuracy of each product. 
 
3 Results 
 
3.1 Overall Comparisons between PM SIC and OBS SIC 

After the preprocessing of the two kinds of data, 174 groups of daily average SIC data were 
obtained. Comparing the daily average PM SIC with the daily average OBS SIC, the results are 
shown in Fig. 4 and Table 1. 



  
             (a) SSMIS-NT                             (b) SSMIS-BT 

  
             (c) SSMIS-CDR                           (d) AMSR-BT 

  
             (e) AMSR-NT2                            (f) AMSR-ASI 
Fig.4. Comparison of daily mean SIC between OBS data and PM data (The solid line represents y 
= x, the dotted line represents linear fitting result, the equation is the linear regression equation of 



the dotted line). 
 
Table 1. Summary of statistical results of PM SIC comparing with OBS SIC 

 Correlation coefficient Average deviation/% RMSD/% 
SSMIS-NT 0.90 −7.16±13.76 15.51 
SSMIS-BT 0.88 7.82±18.02 19.64 

SSMIS-CDR 0.88 8.06±18.18 19.88 
AMSR-BT 0.90 6.57±15.38 16.73 

AMSR-NT2 0.84 8.48±20.59 22.27 
AMSR-ASI 0.88 1.18±18.89 18.92 

 
As can be seen from Fig. 4, SSMIS-NT tends to underestimate SIC in overall compared with OBS 

SIC. Sea ice is often not observed at low OBS SIC (0-15%). SSMIS-BT and SSMIS-CDR also tend 
to underestimate SIC or even fail to observe sea ice when OBS SIC < 15%. When OBS SIC > 30%, 
it tends to overestimate SIC. When OBS SIC > 70%, the whole observation range is usually judged 
to be completely covered by sea ice. AMSR-BT tends to underestimate SIC when OBS SIC < 15% 
and overestimate SIC when OBS SIC > 30%. When OBS SIC > 80%, the whole observation range 
is usually judged to be completely covered by sea ice. AMSR-NT2 tends to underestimate SIC when 
OBS SIC < 15% and overestimate SIC when OBS SIC > 30%. AMSR-ASI tends to underestimate 
SIC or even fail to observe sea ice when OBS SIC < 15%. It tends to overestimate SIC when OBS 
SIC > 40%. When OBS SIC > 80%, it tends to judge the whole observation area as completely 
covered by sea ice. 

From Table 1, it can be seen that the CC between six kinds of PM SIC and OBS SIC are not 
significantly different. The CC values of SSMIS-NT and AMSR-BT are the largest, both of which 
are 0.90. The CC values of SSMIS-BT, SSMIS-CDR and AMSR-ASI are all 0.88. The CC value of 
AMSR-NT2 is the smallest, which is 0.84. The average deviation between SSMIS-NT SIC and OBS 
SIC is negative, which is −7.16%, indicating that SSMIS-NT underestimates SIC in overall 
compared. The absolute value of average deviation between AMSR-ASI SIC and OBS SIC is the 
smallest, which is only 1.18%. That value of AMSR-NT2 is the largest, which is 8.48%. Those 
values of AMSR-BT, SSMIS-BT and SSMIS-CDR are 6.57%, 7.82% and 8.06% respectively. The 
RMSD between SSMIS-NT SIC and OBS SIC is the smallest, which is 15.51%. That value of 
AMSR-NT2 is the smallest, which is 22.27%. Those values of AMSR-BT, AMSR-ASI, SSMIS-BT 
and SSMIS-CDR are 16.73%, 18.92%, 19.64% and 19.88%, respectively. Although the absolute 
value of average deviation between AMSR-ASI SIC and OBS SIC is the smallest, RMSD is larger, 
which indicates that the deviation between AMSR-ASI SIC and OBS SIC is sometimes positive and 
sometimes negative, and the positive and negative deviations offset each other when calculating 
average deviation. 

From the above overall comparison results, the SIC retrieved by SSMIS-NT, AMSR-BT and 
AMSR-ASI are closer to that of OBS SIC. 

 
3.2 Comparisons between PM SIC and OBS SIC in different voyages 

Divide the data into different voyages for statistics, the quantities of OBS data of each voyage are 
27, 24, 18, 23, 27, 26 and 29, respectively. The statistical results of the CC, average deviation and 
RMSD between PM SIC and OBS SIC for each voyage are shown in Fig. 5-7. 



 
Fig.5. Statistical results of CC between PM SIC and OBS SIC in different voyages. 

 

 
Fig.6. Statistical results of average deviation between PM SIC and OBS SIC in different voyages. 
 

 
Fig.7. Statistical results of RMSD between PM SIC and OBS SIC in different voyages. 



It can be seen from Fig. 5 that the CC values between PM SIC and OBS SIC vary in different 
voyages, but the relationship between the CC values of PM SIC and OBS SIC is basically the same 
in the same voyage. In almost all voyages, the CC values between AMSR-BT SIC and OBS SIC is 
the largest, while that between AMSR-NT2 SIC and OBS SIC is the smallest. 

Figure 6 shows that the average deviation between SSMIS-NT SIC and OBS SIC is negative in 
all voyages, which indicates that SSMIS-NT products underestimate SIC in all voyages. Obviously, 
in different voyages, the average deviation between PM SIC and OBS SIC varies, but the 
relationship between the values of PM SIC and OBS SIC is basically the same in the same voyage. 
Among the six PM products, the absolute value of the average deviation between AMSR-ASI SIC 
and OBS SIC is smaller in most voyages. 

As can be seen from Fig. 7, RMSD between PM SIC and OBS SIC also changes in different 
voyages, and the relationship between the values of PM SIC and OBS SIC is also basically the same 
in the same voyage. Except for very few voyages, the RMSD between AMSR-ASI SIC and OBS 
SIC is larger than that of SSMIS-NT and AMSR-BT, which indicates that the deviation between 
AMSR-ASI SIC and OBS SIC is sometimes positive and sometimes negative, and offsets each other 
when calculating the average deviation. In almost all voyages, the RMSD of AMSR-NT2 SIC and 
OBS SIC are the largest, so its retrieval accuracy is the worst. 

 
3.3 Comparisons between PM SIC and OBS SIC under different ice conditions corresponding to 
OBS data 

According to the WMO (1970) description of the relationship between SIC and ice conditions, 
and referring to the definition of the relationship between sea ice cover and ship navigation difficulty 
defined by Shibata et al. (2013), in this paper, SIC is divided into three types: 0-30%, 30-70% and 
70-100%. They correspond to light ice condition (easy to navigate), medium ice condition (a little 
difficult to navigate) and heavy ice condition (very difficult to navigate) respectively. The quantities 
of OBS data corresponding to the three ice conditions are 56, 73 and 45, respectively. According to 
the three ice conditions corresponding to OBS data, the CC, average deviation and RMSD between 
six kinds of PM SIC and OBS SIC are calculated. The results are shown in Fig. 8-10. 

 

 
Fig.8. Statistical results of CC between PM SIC and OBS SIC under different ice conditions 
corresponding to OBS data. 



 
Fig.9. Statistical results of average deviation between PM SIC and OBS SIC under different ice 
conditions corresponding to OBS data. 
 

 
Fig.10. Statistical results of RMSD between PM SIC and OBS SIC under different ice conditions 
corresponding to OBS data. 

 
From Fig. 8, we can see that the CC between PM SIC and OBS SIC are significantly reduced 

compared with the overall comparisons. The CC between PM SIC and OBS SIC are the greatest 
under the medium ice condition corresponding to OBS data, while those under the light ice condition 
and the heavy ice condition are very small. The CC between AMSR-BT and OBS SIC is almost the 
largest under all ice conditions correspond to OBS data. 

Figure 9 shows that the average deviation between SSMIS-NT SIC and OBS SIC is negative 
under all ice conditions corresponding to OBS data, which are −7.07%, −7.55% and −6.64%, 
respectively, which indicates that SSMIS-NT product underestimate SIC under any ice condition 
corresponding to OBS data. The average deviations of SSMIS-BT, AMSR-NT2, SSMIS-CDR and 
AMSR-ASI are negative under the light ice condition corresponding to OBS data, which are −1.14%, 
−1.54%, −1.57% and −6.85%, respectively. At this time, only the average deviation of AMSR-BT 



is positive and only 0.02%, which indicates that PM products tend to underestimate SIC when the 
actual ice condition is light. The average deviations between the other five kinds of PM SIC and 
OBS SIC were positive under the medium ice condition corresponding to OBS data, which are 
13.29%,14.15%, 10.36%, 17.22% and 4.39%, respectively. Under the heavy ice condition 
corresponding to OBS data, the average deviations are 10.11%, 10.17%, 8.58%, 6.77% and 5.97%, 
respectively. It indicates that the other five kinds of PM products except SSMIS-NT tend to 
overestimate SIC when the concentration is high, and the average deviations are larger under the 
medium ice condition corresponding to OBS data than under the heavy ice condition. 

It can be seen from Fig. 10 that RMSD between PM SIC and OBS SIC is the smallest under the 
heavy ice condition corresponding to OBS data, followed by light ice condition, and the largest 
under the medium ice condition corresponding to OBS data. Under all ice conditions corresponding 
to OBS data, the RMSD between SSMIS-NT SIC and OBS SIC are all close to 15%. The RMSD of 
SSMIS-BT and SSMIS-CDR are similar under all ice conditions corresponding to OBS data, and 
smaller than that of SSMIS-NT only under the heavy ice condition corresponding to OBS data. The 
RMSD of AMSR-BT SIC are small under all ice conditions correspond to OBS data, which are 
14.78%, 19.72% and 13.40%, respectively. The RMSD of AMSR-NT2 and AMSR-ASI are similar 
under the light and heavy ice conditions corresponding to OBS data, which are 18.40% and 17.96%, 
13.32% and 13.52%, respectively. Under the medium ice condition corresponding to OBS data, they 
are 28.51% and 22.21%. It can be seen that although the absolute of average deviations between 
PM SIC and OBS SIC are very small Under the light ice condition corresponding to OBS data, the 
RMSDs are larger than those under the heavy ice condition. According to Fig. 4, although we regard 
the SIC of 0 to 30% as light ice condition, PM products generally underestimate SIC when OBS 
SIC is 0 to 15%, while PM products generally overestimate SIC when OBS SIC is 15 to 30%, 
offsetting each other when calculating average deviations. 

From the above Comparisons, under different ice conditions corresponding to OBS data, SSMIS-
NT, AMSR-BT and AMSR-ASI data are closer to OBS data, and their SIC retrievals are more 
accurate. 

 
4 Discussion 

According to the comparisons between PM SIC and OBS SIC, it can be seen that the retrieval 
accuracy of SSMIS-NT, AMSR-BT and AMSR-ASI is better than that of SSMIS-BT, SSMIS-CDR 
and AMSR-NT2. The differences of sensors and algorithms used in various PM products determines 
the differences of SIC derived from them. 

Compared with SSMIS sensors, the main advantage of AMSR sensors is that they improve the 
resolution of all scanning channels. The spatial resolution of ASI products based on 89GHz channel 
Tb has reached 3.125 km × 3.125 km, so more details can be obtained in small spatial scales when 
retrieving SIC. For example, the high resolution AMSR sensors can observe more precise ice edges, 
and reduce the uncertainty caused by surface parameters. Therefore, compared with SSMIS-NT 
product, the high resolution of AMSR-BT product and AMSR-ASI product can provide more 
surface information. This has great advantages for navigation and small-scale ocean engineering 
applications. 

The essence of the differences of SIC obtained by PM algorithms is that the methods of retrieving 
SIC from Tb data provided by sensors are different. It is mainly caused by the different selections 
and uses of channels, weather filters and tie points and the different sensitivities of the algorithms 



to the physical temperature changes in the emitting layer (Comiso et al., 1997). NT and NT2 
algorithms mainly use Tb ratios for SIC retrievals, so they can offset any changes in the physical 
temperature of the emitting layer. BT and ASI algorithm use the difference between the two Tb for 
SIC retrievals, so the retrieval effect will be affected by the physical temperature changes from the 
emitting layer. 

Andersen et al. (2007) pointed out that the stratification of ice and snow on the surface and the 
existence of thin ice have a great influence on the horizontal polarization channel, especially when 
the thickness of thin sea ice is less than 20 cm, the microwave emissivities are usually low, which 
leads to the increase of PR value and the underestimation of SIC. Generally speaking, the higher the 
channel frequency is, the higher the spatial resolution of the retrieving SIC is. However, the 
wavelength of high frequency channel is shorter, so its penetration depth is shallower, which is more 
sensitive to the impact of snow on the sea ice surface, leading to the misjudgement of SIC. High 
frequency channels are more susceptible to atmospheric water vapor interference. When the water 
content in the atmosphere is high in thin ice zones, water vapor will be misjudged as sea ice, thus 
overestimating SIC (Spreen et al., 2008). In order to reduce the influence of atmospheric state on 
SIC retrievals, each algorithm calibrates the atmosphere or uses weather filters to filter out the water 
vapor and other components misjudged as sea ice outside the MIZ (Spreen et al., 2008). However, 
doing so cuts off low SIC values, and so, leads to the phenomenon that all kinds of PM products in 
Fig. 4 tend to underestimate SIC or even fail to observe sea ice when the OBS SIC < 15%.  

Tie points are points with typical radiation signals for open water and sea ice. Usually, the most 
sensitive point with high signal-to-noise ratio is chosen as the tie point in the algorithm (Beitsch et 
al., 2015). The emissivity of sea ice varies greatly with ice age, thickness and surface roughness. 
Because of the differences of region, season and climate, the state parameters of sea ice vary greatly, 
which leads to the continuous change of the sea ice emissivity in different states. Using only fixed 
tie points will inevitably increase the uncertainty of the retrieval algorithm, thus reducing the 
reliability of the SIC retrievals. The use of dynamic tie points has become a trend of future 
algorithms. Arctic sea ice can be divided into first-year ice and multi-year ice. While the Southern 
Ocean has almost no multi-year ice. Sea ice in the Antarctic can only distinguish sea ice types 
according to different snow cover states. Although much work has been done to compare the OBS 
data in the Southern Ocean with remote sensing products, the results of the comparisons in the 
Southern Ocean can not be copied to the Arctic Ocean because of the great differences in sea ice 
state between the two oceans. However, the data in the Arctic are relatively scarce, so on the basis 
of accumulating a large amount of data from several Chinese National Arctic Research Expeditions, 
it is very necessary to compare the OBS data with remote sensing products in this paper. The results 
obtained above in this paper are also different from those of the Antarctic (Beitsch et al., 2015). 

There is also a tendency for R/V Xuelong icebreaker to sail in thin ice or ice-free zones on the 
route when it sails in the ice zones. Therefore, we can not rule out that the OBS SIC will be 
somewhat low. Accordingly, as mentioned above, PM data also tend to underestimate SIC in thin 
ice zones, which reduces the impact of underestimating SIC theoretically by OBS data on 
comparative works. In Fig. 6, we find that the average deviations between all kinds of PM SIC and 
OBS SIC is negative during CHINARE-2008, while the average deviations between all kinds of PM 
SIC and OBS SIC is significantly larger during CHINARE-2016. This may be because the 
participants in each Arctic expedition are different, and OBS SIC inevitably has subjective errors 
from observers. However, the trends of the deviations between PM SIC and OBS SIC in different 



voyages are basically consistent. In addition, this paper uses a large number of data from seven 
Chinese National Arctic Research Expeditions, which will cancel out the subjective errors of 
previous observers by averaging each other in the overall statistics. Therefore, we believe that our 
statistical results are credible. Next, we compare the statistical results of helicopter aerial 
photography (AP) data collected during the CHINARE-2010 with those of OBS data. 

The helicopter AP work was mainly carried out when the R/V Xuelong icebreaker stopped and   
the short-term and long-term ice station observation was carried out. Canon G9 digital camera and 
GPS are mounted on the helicopter platform to take sea ice images along the way and record the 
GPS position of the images at the same time. Six sorties were flown in 2010 and 5619 images were 
obtained. The pixels of sea water, pure sea ice and melt ponds are distinguished by threshold 
segmentation. Then the SIC in the field of view of the image can be obtained by dividing the sum 
of the pixels of pure sea ice and melt ponds by the total number of pixels of the image. Because the 
helicopter route is not affected by the surface morphology, and the SIC is acquired from the vertical 
angle of view, the distortion error of the field of view is small, so the SIC acquired by aerial 
photography should be more accurate than OBS SIC. The helicopter AP SIC is also compared with 
the corresponding PM SIC after the same average treatment as OBS SIC. Average deviations and 
RMSD between OBS SIC and PM SIC and those between AP SIC and PM SIC during CHINARE-
2010 are shown in Table 2. Table 2 shows that the statistical results of OBS data and AP data are in 
good agreement, which further confirms the reliability of our comparative work using OBS data. 

 
Table 2. The Comparison between Statistical results of average deviation and RMSD between PM 
SIC and OBS SIC and those between PM SIC and AP SIC during CHINARE-2010 

 
Average deviation/%  RMSD/% 

OBS AP  OBS AP 
SSMIS-NT −6.01±11.75 −6.88±13.81  13.19 15.42 
SSMIS-BT 16.08±15.89 19.60±15.49  22.61 24.98 

SSMIS-CDR 16.93±15.47 20.27±14.86  22.93 25.13 
AMSR-BT 12.27±14.63 14.28±13.26  19.09 19.49 

AMSR-NT2 10.41±18.26 13.17±18.30  21.02 22.54 
AMSR-ASI −0.33±19.38 9.97±19.57  19.80 21.97 

 
As can be seen from Fig. 1, except for CHINARE-2012, the tracks of the other six voyages are 

all in the Chukchi Sea, the Beaufort Sea and the central Arctic sea north of them. It is helpful to 
understand the advantages or limitations of different algorithms by distinguishing different regions 
in theory. However, we do not distinguish different regions, but consider the whole Arctic sea ice as 
a large-scale system to consider its overall long-term development status. The comparison based on 
this has enough representativeness and reliability, and it is difficult to estimate, understand and 
describe the more uncertainties introduced by the division of sub-regions.  

All the voyages of the Chinese National Arctic Research Expeditions mentioned in this paper are 
in the summer Arctic. Generally speaking, the states of the sea ice in summer are more complicated 
than those in winter. In summer, due to the intense melting of sea ice, the existence of wet snow, 
melt ponds and the mixture of thin ice and water, the retrievals of sea ice properties becomes more 
complex (Ivanova et al., 2014), which leads to the decrease of retrieval reliability. Wang et al. (2018) 
pointed out that the inaccurate distinction between melt ponds and open waters was the main reason 



why SSMIS-NT underestimated SIC in the summer Arctic. As a surface effect, the further 
development of melting state will lead to a larger area of open water in the regions, increase the 
influence of water vapor in the atmosphere, and then increase the uncertainty of SIC retrievals. 
Therefore, the comparison of summer SIC in this paper is actually to compare the performance of 
each algorithm in the most disadvantageous season, that is, the upper limit of the retrieval error of 
each algorithm in a year, which is helpful for us to understand the limitations of each PM SIC 
algorithm better, so as to provide some data references for improving the PM SIC algorithms.  

In the future, we will make more systematic and detailed comparisons and evaluations of PM SIC 
products in the Arctic on the basis of collecting in situ observations in various regions and seasons 
in the Arctic. 
 
5 Conclusions 

We use OBS SIC data from seven Chinese National Arctic Research Expeditions to compare with 
six commonly used PM SIC products with long time series. OBS SIC is collected according to 
ASPeCt protocol, and PM products are based on SSMIS sensors and AMSR sensors. We compare 
the daily average OBS SIC with the nearest PM SIC of the same day after the same average 
processing. By calculating the correlation coefficients, average deviations and RMSDs between 
each PM SIC and OBS SIC, we can evaluate the retrieval accuracy of each product. 

Our results show that in SSMIS PM products, although SSMIS-NT tend to underestimate SIC, 
the correlation coefficient between SSMIS-NT SIC and OBS SIC are larger than that of the other 
two kinds of SSMIS products. The absolute value of average deviation and RMSD between SSMIS-
NT SIC and OBS SIC are smaller than those of the other two SSMIS products. Therefore, SSMIS-
NT is the product with the highest retrieval accuracy in SSMIS products. Although SSMIS-BT 
product tends to underestimate SIC in the Southern Ocean (Beitsch et al., 2015), our results show 
that SSMIS-BT product overestimates SIC in the Arctic. SSMIS-CDR, which takes the larger values 
between SSMIS-NT and SSMIS-BT SIC retrievals as its own value, also overestimates SIC in the 
Arctic, which is less accurate than SSMIS-BT in theory. Among PM products of AMSR sensors, 
the correlation coefficient between AMSR-BT SIC and OBS SIC is the largest, the average deviation 
between AMSR-ASI SIC and OBS SIC is the smallest, the RMSD between AMSR-BT SIC and 
OBS SIC is the smallest, and those values of AMSR-NT2 is almost the worst. It is worth noting that 
except for SSMIS-NT products which underestimate SIC under all ice conditions corresponding to 
OBS data, the other five PM products tend to underestimate SIC under light ice condition (OBS SIC 
= 0 to 30%) and overestimate SIC under other ice conditions (OBS SIC = 30% to 100%). Overall, 
these five PM products tend to overestimate SIC. In summary, SSMIS-NT, AMSR-BT and AMSR-
ASI PM products have better accuracy in SIC retrievals in the summer Arctic. However, AMSR-
BT product and AMSR-ASI product based on AMSR sensors have greater advantages for 
navigation and small-scale marine engineering applications because of their higher spatial resolution. 

To our knowledge, in the Arctic, there is no comparison between the OBS SIC and PM SIC with 
such a large quantity and such a large time span. Therefore, we firmly believe that the results of our 
comparisons are reliable. The results of this paper will help us understand the limitations of each 
PM SIC algorithm better, and provide some data references for improving these PM SIC algorithms. 
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