1,561 research outputs found

    Cellular-Automata model for dense-snow avalanches

    Get PDF
    This paper introduces a three-dimensional model for simulating dense-snow avalanches, based on the numerical method of cellular automata. This method allows one to study the complex behavior of the avalanche by dividing it into small elements, whose interaction is described by simple laws, obtaining a reduction of the computational power needed to perform a three-dimensional simulation. Similar models by several authors have been used to model rock avalanches, mud and lava flows, and debris avalanches. A peculiar aspect of avalanche dynamics, i.e., the mechanisms of erosion of the snowpack and deposition of material from the avalanche is taken into account in the model. The capability of the proposed approach has been illustrated by modeling three documented avalanches that occurred in Susa Valley (Western Italian Alps). Despite the qualitative observations used for calibration, the proposed method is able to reproduce the correct three-dimensional avalanche path, using a digital terrain model, and the order of magnitude of the avalanche deposit volume

    Investigating biocomplexity through the agent-based paradigm.

    Get PDF
    Capturing the dynamism that pervades biological systems requires a computational approach that can accommodate both the continuous features of the system environment as well as the flexible and heterogeneous nature of component interactions. This presents a serious challenge for the more traditional mathematical approaches that assume component homogeneity to relate system observables using mathematical equations. While the homogeneity condition does not lead to loss of accuracy while simulating various continua, it fails to offer detailed solutions when applied to systems with dynamically interacting heterogeneous components. As the functionality and architecture of most biological systems is a product of multi-faceted individual interactions at the sub-system level, continuum models rarely offer much beyond qualitative similarity. Agent-based modelling is a class of algorithmic computational approaches that rely on interactions between Turing-complete finite-state machines--or agents--to simulate, from the bottom-up, macroscopic properties of a system. In recognizing the heterogeneity condition, they offer suitable ontologies to the system components being modelled, thereby succeeding where their continuum counterparts tend to struggle. Furthermore, being inherently hierarchical, they are quite amenable to coupling with other computational paradigms. The integration of any agent-based framework with continuum models is arguably the most elegant and precise way of representing biological systems. Although in its nascence, agent-based modelling has been utilized to model biological complexity across a broad range of biological scales (from cells to societies). In this article, we explore the reasons that make agent-based modelling the most precise approach to model biological systems that tend to be non-linear and complex

    Agent-Based Models of Industrial Clusters and Districts

    Get PDF
    Agent-based models, an instance of the wider class of connectionist models, allow bottom-up simulations of organizations constituted byu a large number of interacting parts. Thus, geogrfaphical clusters of competing or collaborating firms constitute an obvious field of application. This contribution explains what agent-based models are, reviews applications in the field of industrial clusters and focuses on a simulator of infra- and inter-firm communications.Agent-based models, industrial clusters, industrial districts

    Multi-level agent-based modeling - A literature survey

    Full text link
    During last decade, multi-level agent-based modeling has received significant and dramatically increasing interest. In this article we present a comprehensive and structured review of literature on the subject. We present the main theoretical contributions and application domains of this concept, with an emphasis on social, flow, biological and biomedical models.Comment: v2. Ref 102 added. v3-4 Many refs and text added v5-6 bibliographic statistics updated. v7 Change of the name of the paper to reflect what it became, many refs and text added, bibliographic statistics update

    Cellular Automata Models of Road Traffic

    Full text link
    In this paper, we give an elaborate and understandable review of traffic cellular automata (TCA) models, which are a class of computationally efficient microscopic traffic flow models. TCA models arise from the physics discipline of statistical mechanics, having the goal of reproducing the correct macroscopic behaviour based on a minimal description of microscopic interactions. After giving an overview of cellular automata (CA) models, their background and physical setup, we introduce the mathematical notations, show how to perform measurements on a TCA model's lattice of cells, as well as how to convert these quantities into real-world units and vice versa. The majority of this paper then relays an extensive account of the behavioural aspects of several TCA models encountered in literature. Already, several reviews of TCA models exist, but none of them consider all the models exclusively from the behavioural point of view. In this respect, our overview fills this void, as it focusses on the behaviour of the TCA models, by means of time-space and phase-space diagrams, and histograms showing the distributions of vehicles' speeds, space, and time gaps. In the report, we subsequently give a concise overview of TCA models that are employed in a multi-lane setting, and some of the TCA models used to describe city traffic as a two-dimensional grid of cells, or as a road network with explicitly modelled intersections. The final part of the paper illustrates some of the more common analytical approximations to single-cell TCA models.Comment: Accepted for publication in "Physics Reports". A version of this paper with high-quality images can be found at: http://phdsven.dyns.cx (go to "Papers written"

    Modelling And Simulation Of Movements And Behaviours In Large Crowd Using Cellular Automata.

    Get PDF
    Kumpulan ramai (crowd) adalah satu daripada fenomena yang lumrah dalam kehidupan kita. Reka bentuk bangunan dan tempat-tempat awam hendaklah menjamin tahap keselamatan minimum yang diperlukan serta keselesaan terhadap kesesakan orang ramai. Crowds are one of the ubiquitous phenomena in our life. Design of buildings and public places should therefore guarantee a minimum level of safety, comfort and throughput for the crowd

    Computer simulations, mathematics and economics

    Get PDF
    Economists lise different kinds of computer simulation. However, there is little attention on the theory of simulation, which is considered either a technology or an extension of mathematical theory or, else, a way of modelling that is alternative to verbal description and mathematical models. The paper suggests a systematisation of the relationship between simulations, mathematics and economics. In particular, it traces the evolution of simulation techniques, comments some of the contributions that deal with their nature, and, finally, illustrates with some examples their influence on economie theory. Keywords: Computer simulation, economie methodology, multi-agent programming techniques.

    Predictive Modelling of Tribological Systems using Movable Cellular Automata

    Get PDF
    In the science of tribology, where there is an enormous degree of uncertainty, mathematical models that convey state-of-the-art scientific knowledge are invaluable tools for unveiling the underlying phenomena. A well-structured modelling framework that guarantees a connection between mathematical representations and experimental observations, can help in the systematic identification of the most realistic hypotheses among a pool of possibilities. This thesis is concerned with identifying the most appropriate computational model for the prediction of friction and wear in tribological applications, and the development of a predictive model and simulation tool based on the identified method. Accordingly, a thorough review of the literature has been conducted to find the most appropriate approach for predicting friction and wear using computer simulations, with the multi-scale approach in mind. It was concluded that the Movable Cellular Automata (MCA) method is the most suitable method for multi-scale modelling of tribological systems. It has been established from the state-of-the-art review in Chapter 2 of this thesis, that it is essential to be able to model continuous as well as discontinuous behaviour of materials on a range of scales from atomistic to micro scales to be able to simulate the first-bodies and third body simultaneously (also known as a multi-body) in a tribological system. This can only be done using a multi-scale particle-based method because continuum methods such as FEM are none-predictive and are not capable of describing the discontinuous nature of materials on the micro scale. The most important and well-known particle-based methods are molecular dynamics (MD) and the discrete element methods (DEM). Although MD has been widely used to simulate elastic and plastic deformation of materials, it is limited to the atomistic and nanoscales and cannot be used to simulate materials on the macro-scale. On the other hand, DEM is capable of simulating materials on the meso/micro scales and has been expanded since the algorithm was first proposed by Cundall and Strack, in 1979 and adopted by a number of scientific and engineering disciplines. However, it is limited to the simulation of granular materials and elastic brittle solid materials due to its contact configurations and laws. Even with the use of bond models to simulate cohesive and plastic materials, it shows major limitations with parametric estimations and validation against experimental results because its contact laws use parameters that cannot be directly obtained from the material properties or from experiments. The MCA method solves these problems using a hybrid technique, combining advantages of the classical cellular automata method and molecular dynamics and forming a model for simulating elasticity, plasticity and fracture in ductile consolidated materials. It covers both the meso and micro scales, and can even “theoretically” be used on the nano scale if the simulation tool is computationally powerful enough. A distinguishing feature of the MCA method is the description of interaction of forces between automata in terms of stress tensor components. This way a direct relationship between the MCA model parameters of particle interactions and tensor parameters of material constitutive law is established. This makes it possible to directly simulate materials and to implement different models and criteria of elasticity, plasticity and fracture, and describe elastic-plastic deformation using the theory of plastic flow. Hence, in MCA there is no need for parametric fitting because all model parameters can be directly obtained from the material mechanical properties. To model surfaces in contact and friction behaviour using MCA, the particle size can be chosen large enough to consider the contacting surface as a rough plane, which is the approach used in all MCA studies of contacting surfaces so far. The other approach is to specify a very small particle size so that it can directly simulate a real surface, which allows for the direct investigation of material behaviour and processes on all three scale levels (atomic, meso and macro) in an explicit form. This has still been proven difficult to do because it is too computationally extensive and only a small area of the contact can be simulated due to the high numbers of particles required to simulate a real solid. Furthermore, until now, no commercial software is available for MCA simulations, only a 2D MCA demo-version which was developed by the Laboratory of CAD of Materials at the Institute of Strength Physics and Materials Science in Tomsk, Russia, in 2005. The developers of the MCA method use their own in-house codes. This thesis presents the successful development of a 3D MCA open-source software for the scientific and tribology communities to use. This was done by implementing the MCA method within the framework of the open-source code LIGGGHTS. It follows the formulations of the 3D elastic-plastic model developed by the authors including Sergey G. Psakhie, Valentin L. Popov, Evgeny V. Shilko, and the external supervisor on this thesis Alexey Yu. Smolin, which has been successfully implemented in the open-source code LIGGGHTS. Details of the mathematical formulations can be found in [1]–[3], and section 3.5 of this thesis. The MCA model has been successfully implemented to simulate ductile consolidated materials. Specifically, new interaction laws were implemented, as well as features related to particle packing, particle interaction forces, bonding of particles, and others. The model has also been successfully verified, validated, and used in simulating indentation. The validation against experimental results showed that using the developed model, correct material mechanical response can be simulated using direct macroscopic mechanical material properties. The implemented code still shows limitations in terms of computational capacity because the parallelization of the code has not been completely implemented yet. Nevertheless, this thesis extends the capabilities of LIGGGHTS software to provide an open-source tool for using the MCA method to simulate solid material deformation behaviour. It also significantly increases the potential of using MCA in an HPC environment, producing results otherwise difficult to obtain

    Parallel Genetic Algorithms for calibrating Cellular Automata models: Application to lava flows

    Get PDF
    Cellular Automata are highly nonlinear dynamical systems which are suitable for simulating natural phenomena whose behaviour may be specified in terms of local interactions. The Cellular Automata model SCIARA, developed for the simulation of lava flows, demonstrated to be able to reproduce the behaviour of Etnean events. However, in order to apply the model for the prediction of future scenarios, a thorough calibrating phase is required. This work presents the application of Genetic Algorithms, general-purpose search algorithms inspired to natural selection and genetics, for the parameters optimisation of the modelSCIARA. Difficulties due to the elevated computational time suggested the adoption a Master-Slave Parallel Genetic Algorithm for the calibration of the model with respect to the 2001 Mt. Etna eruption. Results demonstrated the usefulness of the approach, both in terms of computing time and quality of performed simulations
    • 

    corecore