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Abstract This paper introduces a three-dimensional model for simulating dense-snow avalanches,
based on the numerical method of Cellular Automata. This method allows one to study the complex
behavior of the avalanche by dividing it into small elements, whose interaction is described by simple
laws, obtaining a reduction of the computational power needed to perform a three-dimensional simula-
tion. Similar models by several authors have been used to model rock avalanches, mud and lava flows,
an debris avalanches. A peculiar aspect of avalanche dynamics, i.e., the mechanisms of erosion of
the snowpack and deposition of material from the avalanche is taken into account in the model. The
capability of the proposed approach has been illustrated by modelling three documented avalanches oc-
curred in Susa Valley (Western Italian Alps). Despite the qualitative observations used for calibration,
the proposed method is able to reproduce the correct three-dimensional avalanche path, using a digital
terrain model, and the order of magnitude of the avalanche deposit volume.
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1 Introduction

Human activities in mountain cold regions have always been affected by the menace of snow avalanches.
The location of settlements, as well as the route of trails and roads, have often been dictated by
these natural phenomena, which can reach levels of extreme destructiveness. The increasing usage
of land at high altitude, due to the diffusion of recreational activities and outdoor winter sports,
demands for conceptual tools to be used in proper planning of infrastructures and in safe design of
constructions. Engineers dealing with the problems posed by avalanche hazard need, in addition to
qualitative assessments of the hydrological and geomorphological site conditions, quantitative methods
to predict the effects of avalanche release. Such predictions should be based on mathematical models
of the motion of falling snow masses, but the complexity of the phenomenon still defies a unified
treatment of the problem along the lines of classical rational mechanics, and several approaches, with
different application fields are commonly applied in practice (see Ancey (2001) and references therein).

Mathematical models used to describe the motion of snow avalanches are generally based on the
solution of some sort of differential equation, with suitable boundary and initial conditions. A number
of theories have been used to set up problems that can be solved in closed form, if simple enough,
or, after discretization, by some numerical method. The reader is referred to, among others, Hutter
et al. (1986); Savage and Hutter (1989); Gray et al. (1998); Wieland et al. (1999); Tai et al. (2001);
Iverson and Denlinger (2001); Denlinger and Iverson (2001); Wang et al. (2004) (avalanche considered
as a flow of granular material) and Beghin et al. (1981); Norem et al. (1989); Barbolini et al. (2000)
(depth-averaged hydraulic models, where the differential equations that describe the conservation of
mass and momentum are similar to the equations of fluid mechanics that characterize the motion of
waves in shallow water).

In this paper, a different approach is proposed, namely one based on a inherently discrete ideal-
ization of the physical system, within the framework of Cellular Automata. The concept of cellular
automata has been introduced to describe the evolution of complex systems by many Authors (for a
comprehensive review see Wolfram (2002)), and it has been suggested as a viable alternative to the
classical differential description of mathematical physics (Toffoli, 1984).

The method of cellular automata has been introduced in the modelling of rock avalanches by Segre
and Deangeli (1995), but the antecedents of our approach can be found in a series of papers by S. Di
Gregorio and co-workers (Di Gregorio and Serra, 1999; Avolio et al., 2003; D’Ambrosio et al., 2003).
In these works, the motion of mud and lava flows, as well as of debris avalanches, has been simulated
by means of cellular automata, taking into account different aspects of the physical phenomena, within
a well-defined computational framework.

While some similarities can obviously be drawn between the dynamics of rock and snow avalanches,
there are some peculiar aspects that characterize the evolution of a sliding snow mass, e.g. erosion of
the snowpack at the front, snow entrainment, and deposition of material at the tail of the avalanche.
The model presented here is a first attempt to consider the mechanisms of inclusion and deposition
of snow, in a simplified yet reasonable manner, in the cellular-automata description of the avalanche,
making possible the estimation of the volume of the final snow deposit.

Another important aspect to note is that the prediction of the motion of a mobilized snow mass
down the slopes of a mountain is, in general, a three-dimensional problem. Although many existing
mathematical models are limited to two-dimensional analyses, their application need some assumptions
about the reduction of dimensionality: for instance, the choice of the trajectory of the falling mass
needs to be made in advance. While in many cases this choice is reasonably easy to make, in other,
more complex, topographical situations the trajectory of the avalanche can not be predicted in a trivial
manner, but it should be an output of the mathematical model, as it is done here.
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2 Methods

2.1 Cellular Automata

For our purposes, a cellular automaton (CA) is a mathematical representation of a physical system,
whose domain is divided into simple regular parts called cells or elementary automata (EA). The
state of a cell is a mathematical representation of some set of parameters describing its physical
conditions, which can change, according to its state and to the state of other cells, belonging to the
cell neighborhood, through a transition function. The state of the system is defined as the collection
of the states of all the cells. It is worth noting that the state of every cell, as well as the state of the
whole system, can change only at discrete time steps.

The formal definition of a cellular automaton A in a d-dimensional Euclidean space is the four-tuple

A = 〈Zd, X, S, σ〉 (1)

where:

Zd is the set of cells identified by integer-coordinate points in a Euclidean d-dimensional space.

X, called neighborhood index, is a set of m d-dimensional vectors that define the neighborhood N(X, i)
of cell i = (i1, i2, . . . , id) according to the following rule: if X = {ξ0, ξ1, . . . , ξm−1}, then
N(X, i) = {i+ ξ0, i+ ξ1, . . . , i+ ξm−1}, where ξ0 = is the null vector.

S is the finite set of states of the elementary automaton.

σ : Sm → S is the transition function.

Denoting by c(N(X, i)) the state of the cell i as a function of its neighborhood, we define C =
{c|c : Zd → S} the set of configurations of A, i.e. the set of all the possible states of the CA. Then,
the global transition function τ (Di Gregorio and Serra, 1999) is defined as:

τ : C → C 7−→ [τ(c)](i) = σ (c (N(X, i))) (2)

Each cell is characterized by local parameters, which vary among the cells (e.g. centroid coordinates,
cell status), and by global parameters that are constant for all the system (e.g. shape and size of the
cells, duration of the timestep). Moreover, if necessary, an internal transformation may be defined,
which describe the change of state of a cell based only on its state, disregarding the influence of the
neighboring cells.

In general, cellular automata live in a lattice Γ, which defines also the shape of the cells. In solving
physical problems, the dimension of the underlying space is usually 2 or 3.

2.2 Quasi-3D model of snow avalanches

Our cellular-automata model of snow avalanches assumes that the sliding mass is a frictional, cohe-
sionless material (Hutter et al., 1986; Savage and Hutter, 1989, 1991; Gray et al., 1998; Wieland et al.,
1999; Denlinger and Iverson, 2001; Tai et al., 2001; Wang et al., 2004). In order to keep the model
as simple as possible, we use a two-dimensional cellular automaton, whose cells span a horizontal
region containing the vertical projection of the zone potentially involved by the avalanche. Following
Di Gregorio and Serra (1999), the third dimension, namely, the height of the avalanche profile, is one
of the states of the cells. In particular, in order to respect the isotropy of motion in the horizontal
plane, an hexagonal lattice with hexagonal neighborhood has been adopted (D’Ambrosio et al., 2003).

To be precise, the state of a cell is represented by the following substates, whose values, defined at
the centroid of the cell, are assumed as representative of the entire cell (Figure 1):

Ht : ground height, the elevation above mean sea level of the underlying ground, which is assumed to
be unaffected by the avalanche motion.

hv : avalanche height, the thickness of the moving part of the avalanche.
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Figure 1: Definition of different heights (substates) for a cell, and their physical meaning.

h
(j)
n , j = 1, n : snow layers height, the thickness of the snowpack layers, which may be eroded by the

avalanche.

hk : kinetic head, which is a fictitious height representing the kinetic energy per unit of weight of the
cell material, given by the ratio hk = v2/(2g), where v is the velocity of the moving mass and g
the acceleration of gravity.

Moreover, the sum

htot = Ht +
∑
j

h(j)
n + hv + hk (3)

is called total height of the cell. Another important combination of the cell substates is the run-up,
r = hv + hk, whose physical meaning is the minimum height of an obstacle needed to stop the motion
of a mass with thickness hv moving with velocity v.

The global parameters of the model are the following:

L : cell size, the distance between the centers of two adjacent cells, corresponding to twice the apothem
of the hexagon.

T : time step duration, i.e., the time interval between successive upgrades of the system state.

ρ : density of the avalanche material. It is assumed to be constant throughout the simulation (Mellor,
1978; McClung and Schaerer, 1992; Tai et al., 2001; Sovilla and Bartelt, 2002; Bartelt et al.,
2002; Sovilla, 2004).

ϕ : angle of internal friction of the avalanche material, corresponding to the repose angle of the snow.

ρ
(j)
0 : density of layer j of the snowpack.

p
(j)
lm : impact strength of layer j of the snowpack, used to model erosion.

µ : basal friction coefficient.

ζ : viscosity coefficient of the flowing snow.

Cd : empirical deposition coefficient.
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Figure 2: Slope of a fictitious incline between two adjacent cells.

The physical meaning of the friction coefficient and of the viscosity coefficient can be explained as a
measure of the severity of dissipative phenomena, during the motion, the former expressing the effect
of the interface towards the ground (or the resting snow), the latter introducing energy loss within
the sliding snow mass. Although their well-defined physical sense, in the present paper we rather
consider µ and ζ as best-fit parameters, which have to be estimated on the basis of back-analyses of
the observations of real events.

The empirical deposition coefficient, Cd, is a parameter introduced in this study, and its physical
meaning is defined below.

The motion of the avalanche is modeled assuming that the system, as a whole, tends to a con-
figuration of maximum stability. This equilibrium state is attained by considering the interactions
between each cell and its surrounding cells. These interactions are described in terms of incoming
and outgoing flows of avalanche material to and from the neighboring cells, which, in turn, lead to
variations of their height. The displacements of the avalanche material originate as a mechanism to
balance the height differences among neighboring cells, and cease when these difference comes to a
minimum, in a state representing the maximum equilibrium of the cells. By applying this idea to
every neighborhood in the lattice, the whole system is driven to the most stable configuration by a
process called minimization of differences (Di Gregorio and Serra, 1999).

Before applying this procedure to the avalanche model, we must exclude from flow calculations all
the neighboring cells with a difference in height, with respect to the central cell, too low to induce the
displacement of the material. Note that the central cell can not be excluded a priori from this check
. If ϕ is the angle of internal friction of the avalanche material, the mass transfer from the central cell
to cell i (in the following formulae, the cell index appears between square brackets) is possible only if
the slope angle ϑ, evaluated as shown in Figure 2, is greater than ϕ:

ϑ = arctan

htot[0]−
(
Ht[i] +

∑
j h

(j)
n [i] + hv[i]

)
L

 > ϕ. (4)

Each of the remaining elementary automata is characterized by a fixed quantity, which is not

distributed, given by h[0] = Ht[0]+
∑

j h
(j)
n [0] for the central cell, and by h[i] = Ht[i]+

∑
j h

(j)
n [i]+hv[i] ,

1 ≤ i < m, for the other cells. The central cell is also given a conservative quantity r[0] = hv[0]+hk[0],
called run-up, that has to be distributed among the neighboring cells in order to reach the conditions
of maximum stability. Let (i) ftot[i], 0 ≤ i < m denote the flow going from the central cell to the
neighboring cell i, (ii) h′[i] = h[i] + ftot[i] (0 ≤ i < m), the sum of the fixed quantity of the cell i and
the flow entering from the central cell, (iii) h′min the smallest of all the h′[i]. The procedure called
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minimization of the differences find the flows ftot[i] that make minimum the following expression:

m−1∑
i=1

(h′[i]− h′min). (5)

The procedure starts from calculating the average of the quantities in the cells:

h̄ =
r[0] +

∑m−1
i=0 h[i]

m
. (6)

The cells where the h[i] > h̄ are excluded from further computations: no flow will be directed toward
them. If not all the cells have been excluded, a new value h̄ is calculated, taking into account only
the set of possible receivers. These two steps (calculation of the mean, and exclusion of impossible
receivers) are repeated until no more cells are excluded, or, in case all the cells have been eliminated,
the whole neighborhood has reached the equilibrium conditions and no redistribution is necessary. If
the number of receivers is not zero, we assume that their height must increase up to the mean value
h̄ to reach a stable configuration. In this case each receiver is given the flow

ftot[i] = h̄− h[i], (7)

where h̄ is the updated mean value.
The value of ftot[i] is a height that represents the sum of the real height of the flowing mass and the

kinetic energy, divided by the unit of weight, of the same mass. These two quantities are calculated
assuming that the ratio hv[0]/r[0], evaluated before the minimization procedure, is the same for each
of the outgoing flows (D’Ambrosio et al., 2003):

ν =
hv[0]

r[0]
. (8)

According to this hypothesis, the outgoing avalanche height flow can be calculated as

fhv [i] = νftot[i], (9)

and the kinetic head flow is given by

fhk [i] = ftot[i]− fhv [i]. (10)

The next step of the solution procedure requires the evaluation of the variation of the velocity of
the snow mass passing from the central cell to a neighboring one. We imagine that the snow mass, in
this transfer, slides on an incline, with consequent velocity increase, in case of descent (h[i] < h[0]),
or decrease, in the opposite case (h[i] > h[0]). This variation is quantified by considering the energy
balance of the sliding snow mass, and can be written as:

h∗k[i]− h∗k[0] =
v[i]2 − v[0]2

2g
= ∆h∗, i = 1, . . .m, (11)

where ∆h∗ is the elevation increment of the centroid of the transfered snow mass. We assume that
the starting value h∗k[0] is the same for all the transfers, and depends on a mean value determined by
the minimization of height differences. The destination altitude h∗k[i] is simply chosen as the material
elevation of the cell i. With these assumptions we can write

∆fhk =∆h∗k =Ht[0] +
∑
j

h(j)
n [0] + h̄v

−
Ht[i] +

∑
j

h(j)
n [i] + hv[i] +

1

2
fhk [i]

 ,

(12)
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where h̄v is the mean value of the avalanche height, obtained through the differences minimization
algorithm.

As a concluding remark, we note that the time-step duration could be not enough to permit the
complete transfer of the volume, expressed by eq. (7) from the central cell to each of the receiver
cells. The fraction of flow that reaches its destination can be expressed by the relaxation coefficient
(Di Gregorio and Serra, 1999; Avolio et al., 2003; D’Ambrosio et al., 2003), which is assumed to be
proportional to the distance covered by the flow in a uniformly accelerated motion. After determining
the increment of kinetic head by means of eq. (12), we can evaluate the distance s covered by the
moving mass during a time-step, with initial velocity obtained from the kinetic head fhk [i] by eq. (10).
The relaxation coefficient χ is defined as the ratio of the distance s to the size of the cell, L:

χ =
s

L
. (13)

The fractions of flow, respectively of avalanche mass and kinetic energy that remain in the center cell
are:

fhv ,eff[0] = (1− χ)fhv [i] (14)

fhk,eff[0] = (1− χ)fhk [i], (15)

and the flows that are transferred to the receivers are given by

fhv ,eff[0] = χfhv [i] (16)

fhk,eff[i] = χ (fhk [i] + ∆fhk) . (17)

After updating the states of the cells, the effects of friction, erosion, and deposition are taken into
account. These effects are evaluated by internal transformations alone, independently of the conditions
of the neighboring cells.

2.3 Erosion mechanisms

In order to consider, in our model, the erosive phenomena, we refer to the experimental observations
from in situ tests (Sovilla and Bartelt, 2002; Sovilla, 2004), which showed that the avalanche includes
snow in essentially two modes: (i) basal erosion, due to friction forces arising between the base of the
moving mass and the snowpack; (ii) frontal erosion (plowing), related to the impact of the leading
edge of the sliding mass with the yet undisturbed snow. The second mechanism is present when the
upper snow layers have a strength insufficient to withstand the action of the avalanche, which sinks
below the surface.

The data reported by Sovilla (2004) show clearly that the two kinds of erosion are not quantitatively
comparable: the latter is much more significant than the former. In the following developments,
according to this observation, we assume that the contribution of basal erosion is negligible, and we
will include in the model only the erosion process due to the frontal impact between the avalanche
and the snowpack (Sovilla and Bartelt, 2002; Sovilla, 2004; Barbolini et al., 2005).

To calculate the eroded height, we assume that each cell be impacted by an equivalent flow,
evaluated as the sum of all the incoming flows. If the snowpack is composed of several layers, the
erosion starts from the upper one, then, if the calculated eroded depth is greater than its thickness,
the layer underneath is considered, until no more plowing is required, or the snowpack is completely
removed. For a given cell i, and the erodible layer j, we suppose that the avalanche flow hits an impact
area, A, perpendicular to the ground, with width L and height ĥ, so that A = Lĥ. As stated before, L

is cell size, and ĥ = min{hv[i], h(j)
n [i]}. The impact of the avalanche leading edge on this cross-section

compact the erodible layers, whose density rises from the initial value ρ0 to a value ρ1 > ρ0, while the
velocity of the erosion front uf determines the control volume wherein the bounds between the snow
particles of the erodible layers are destroyed, and they enter the avalanche. The erosion will occur

only if the impact pressure pi is larger than the strength of the layer: p
(j)
lm . The impact pressure, in

turn, can be related to the kinetic head by the relationship

pi = 2ρgcihk[i], (18)
7



where ci is a shape factor.
By applying to the control volume the theory by Sovilla (2004), the front velocity can be expressed

during the time-step T as

uf =

√
pi

ρ0

(
1− ρ0

ρ1

) , (19)

and the eroded depth is found to be:

hn = uf
ρ0

ρ
T. (20)

where:

ρ0 : density of the snow layer before impact

ρ1 : density of the snow layer after impact

uf : front velocity, which can be assumed equal to the avalanche velocity, v

T : time-step duration.

The calculations are repeated for all the erodible layers in the snowpack, until either the eroded depth
is smaller than the layer thickness, or the whole snowpack has been eroded.

2.4 Deceleration due to friction and viscosity

The kinetic head of a cell may be reduced, during a time-step, because of basal friction and viscosity.
For an avalanche mass contained in the cell i sliding on a horizontal plane, the velocity decrement is
given by (Bartelt et al., 2002; Sovilla and Bartelt, 2002; Sovilla, 2004):

∆v =

(
µ+

hk[i]2g

ζhv[i]

)
gT, (21)

where µ is the basal friction coefficient and ζ is the coefficient of viscosity.
These parameters lack of a true physical meaning, and may be used, together with the empirical

deposit coefficient Cd, to perform the calibration of the model. This procedure consists in simulating
well-documented events to define a suitable combination of parameters. It must pointed out that a
similar procedure is used by other researchers, see, for instance, Bartelt et al. (2002); Sovilla (2004).

If at the beginning of a time step the velocity in the cell i is v =
√

2ghk[i], the updated kinetic
head can be written as

hk
∗[i] =

(v −∆v)2

2g
, (22)

where the decrement in velocity ∆v is given by eq. (21). Of course, the kinetic energy can not be
negative, so that if the value obtained from eq. (22) is lower than zero, the assumption hk

∗[i] = 0 is
made.

2.5 Deposition

We assume that the deposition of material is possible only when its kinetic energy falls below a limit
threshold. For a given cell, during a time step, the mass of the deposited material will be proportional
to the difference between the kinetic head of the cell (evaluated after the the consideration of frictional
and viscous effects) and a limit kinetic head, hk ,lim.

The deposition of the avalanche material will occur only if hk[i] < hk ,lim. The height of the deposit
is assumed to be

hd = Cd
hk ,lim − hk[i]

hk ,lim
hv, (23)

where Cd (coefficient of deposition) and hk ,lim are empirical parameters.
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begin
Read input data;
Assign the initial state of the cells;
repeat

increment time;
forall the cells in the lattice do

Determine the global indices of neighboring cells;
Evaluate the outgoing flows (minimization of differences);
Calculate the relaxation coefficient χ;
forall the cells in the neighborhood do

Calculate effective flows in this timestep;
Assign flows to that cell (global index);

forall the cells in the lattice do
Sum the incoming flows;
Evaluate erosion;
Calculate kinetic energy loss (friction and viscosity);
Calculate deposition;

until the state of the system becomes stationary ;

end

Figure 3: Main steps of the solution procedure.

2.6 Solution algorithm

Figure 3 summarizes the main steps of the procedure, which has been coded in a C language pro-
gram, called ASCA (Avalanche Simulator through Cellular Automata), that implements the concepts
presented above.

3 Observations

In order to calibrate the best–fitting parameters of the numerical model ASCA, described in the
previous section, we have chosen three avalanches observed in the Susa Valley (Western Italian Alps).
These events differ in some aspects of their initial conditions and their evolution, allowing response of
the model to be tested in diverse situations. In this section, to make possible the comparison of the
results obtained by simulation, a brief description of the main features of each event is given.

The description of the avalanches (thickness of snow cover, snow conditions, geometry of the
fracture zone, etc.) have been provided by the Consorzio Forestale Alta Valle Susa (Upper Susa
Valley Forest Authority). We wish to remark that these data are not obtained from observations on
instrumented sites, but represent mainly qualitative records of recurring events potentially affecting
important infrastructures (highways and ski resorts).

3.1 Mount Jafferau avalanche

The first case we present here is the avalanche fallen from the southern flank of Mount Jafferau on
January 5, 2004 (see the main data in Table 1).

The event was described by an eyewitness as a cloud avalanche, which does not fall in the class of
phenomena described by the model presented in this paper. Nevertheless, we choose to analyze this
case because of the relative simplicity of the topographical conditions, to focus the attention on the
influence on the results of the other physical parameters.

The path of the avalanche, as shown from the shaded zone in Figure 4, is generally in the maximum
dip direction (South-East), but followed a gentle depression in the topography, along a small gully.
The presence of this groove, and its influence on the phenomenon is discussed below, commenting the
results obtained from the simulation.
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Table 1: Description of the observed avalanches.

Characteristic Mt. Jafferau Chanteloube Creek (S)a Chanteloube Creek (D)

Date Jan. 5, 2004 Dec. 10, 1996 Feb. 6, 1994
Position 45◦04′49′′N, 6◦46′06′′E 45◦04′32′′N, 6◦50′38′′E 45◦04′24′′N, 6◦50′34′′Eb

Crown elevation (m) 2700 2300 2080
Avalanche type loose-snow wet loose-snow loose-snow
Snow type dry, low cohesion wet, low cohesion dry, low cohesion
Bed surface snow interface ground ground
Slab thickness (m) 0.5 1.5 1.3
Slab width (m) 150 — 200
Snow thickness (m) 2.0 1.5 1.3
Terminus elevation (m) 2210 1100 1080
Length of path run (m) 470 1900 2280
Deposit length (m) 300 70 150
Deposit width (m) 60 12 120
Deposit thickness (m) 3 5 9
Deposit volume (m3) 10 000 4200 30 000

a Two events were recorded in the site of Chanteloube Creek: a single path avalanche (S), and a
double path avalanche (D).

b Data for the first release zone. The second release zone is the same of case (S).

Figure 4: Site of Mt. Jafferau avalanche (Jan. 5, 2004). The shaded zone represents the path of the
avalanche, which follows a creek that does not show up in the DEM.
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Table 2: Parameters and best-fit results of the simulations.

Characteristic Mt. Jafferau Chanteloube Creek (S) Chanteloube Creek (D)

Lattice size (cells) 250× 270 440× 530 440× 530
Cell apothem L (m) 2.5 2.5 2.5
time-step duration T (s) 0.1 0.1 0.1
Number of steps 3882 (3200) 4000 5616
Sliding friction parameter µ 0.006 0.002327 0.002327
Viscosity parameter ζ (ms−2 ) 200 1028 1028
Deposit coefficient Cd

a — 0.25 0.5
Deposit length (m) 237 98 110
Terminus elevation (m) 2220 1080 1080
Deposit width (m) 127 65 75
Deposit thickness (m) 3 9 12
Estimated volume (m3) 42 790 25 164 80 981

a Erosion and deposition mechanisms are not considered in simulations of Mt. Jafferau avalanche.

3.2 Chanteloube Creek single avalanche

The second event is the avalanche of Chanteloube Creek of December 10, 1996. It is a small channeled
avalanche, which follows a marked couloir in South-East direction. The snow was wet, with low
cohesion (see Table 1, case (S)). The path was nearly 2 km long, with a difference in height of 1.2 km,
and the motion stopped at the toe of the slope, on an almost horizontal surface.

3.3 Chanteloube Creek double avalanche

The last event is the avalanche in the site of Chanteloube Creek that occurred on February 6, 1994.
In this case, two starting zones, each one in a different branch of the creek, have been observed (Table
1, case (D)). We lack of specific information on the temporal evolution of the phenomenon, and some
assumptions need be made to simulate the observed final situation.

4 Application

In this section, we present the results obtained by simulating with the numerical code ASCA, the three
avalanches described above. The characteristics of the simulations (cell size, time-step duration, me-
chanical parameters, etc.) have been chosen according to the particular event (snow density, cohesion,
etc.), to the comparison of simulated and observed results, and, when other suggestion were missing,
simply to common sense. The description of the terrain used in the modeling is given by the Digital
Elevation Model (50 m horizontal resolution) produced by Regione Piemonte (Piedmont Region).

4.1 Mount Jafferau avalanche

The simulation presented here has been obtained neglecting the erosion and deposition mechanisms.
The values of the parameters µ and ζ, considered as best-fitting parameters, have been adjusted in
order to obtain a good approximation of the terminus position. The main results are reported in Table
2, while a pictorial representation of the final state of the avalanche is shown in Figure 5.

A comparison of the simulated results to the observations shows that the numerical model predicts
an almost rectilinear trajectory, and a wider snow mass involved in the phenomenon. In this case,
the discrepancy can be imputed to the lack of resolution of the digital terrain used in simulations. In
fact, as can be seen in Figure 4, the real avalanche follows a small ditch, whose cross section is too
small to appear in the digital terrain, defined only by the elevation at the grid-points, with spacing
of 50 m. Also, the larger width of the calculated deposit zone can be ascribed to the same cause: in
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Figure 5: Mt. Jafferau avalanche simulation: position of the avalanche material at the end of the
simulation. The thickness of the material is represented by the grey scale, and the thick line shows
the area affected by the avalanche.
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Figure 6: Chanteloube creek (case S): eroded zones are black, deposition zones are white.

the model the avalanche flow is substantially unconfined, and tends to expand to a larger area. In the
calculation of the deposit volume, also the snow cover has been considered, so that a larger deposition
area corresponds to a volume larger than that estimated from the observations. All things considered,
we want also emphasize that ASCA is able to produce a satisfactory simulation of the Mount Jafferau
avalanche: the affected zone, the terminus elevation, and the thickness of the deposited material can
be calculated with sufficient precision. Although the model is conceived to model dense-snow flowing
avalanches, even in this case it yields fair results.

4.2 Chanteloube Creek single avalanche

The simulation of the Chanteleube Creek avalanche produced quite realistic results summarized in
Table 2, while in Figure 6 the evolution of the phenomenon is presented, through four successive
configurations of the avalanche. In these pictures, the original snow cover is depicted in intermediate
gray, while the eroded zones are black and the intensity of white is related to the thickness of the
avalanche. As in the previous case, it can be noted that the calculated area of the deposit zone is
overestimated by the calculations, both width and length are greater than the in situ measurements,
and so the calculated volume is much bigger than the estimated one. This drawback is compensated
by the correct determination of the avalanche path, and the effectiveness of the simulation of erosion
and deposition mechanisms.
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Figure 7: Chanteloube creek (case D): eroded zones are black, deposition zones are white.

4.3 Chanteloube Creek double avalanche

The complete avalanche run has been simulated using 5616 steps, each one spanning 0.1 s, noting
that no appreciable variations in the configuration of the system could be detected after the 4500th
step. The parameters obtained by best fitting are summarized in Table 2, and four snapshots of the
simulated avalanche motion are presented in Figure 7. In Figure 8 a three-dimensional view of the
same data is depicted.

5 Discussion

The simulation presented in the paper, even if they can not be considered as an exhaustive study
that allows the calibration of the model, show that ASCA is able to obtain interesting results. The
comparisons between simulation results and real observations are encouraging. In particular, the study
of the avalanche of Chanteloube Creek gave good results in evaluating the avalanche path, and the
erosion of the snowpack. The differences from the observed results are, in general, on the conservative
side. For instance, the evaluation of the deposit area and volume gave values larger than the real ones,
yet with the correct order of magnitude.

On the other hand, in the case of Mount Jafferau avalanche, the simulations showed up more
difficulties. First of all, the modeling mechanisms of erosion and deposit, which gave bad results, had
to be excluded. Also, only a rough prediction of the avalanche path was obtained, even if the correct
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Figure 8: Chanteloube creek (case D): three-dimensional depiction.

value of the total run-out distance was imposed through trial and error. The origin of this drawback
is found in the insufficient resolution of the terrain model used in the simulation. In fact, the real
avalanche followed a ditch whose size was too small to appear in the 50 m resolution DEM. Moreover,
an important limit of ASCA is implied in its formulation, namely the lack of a proper consideration
of the aerosol phase in the model, probably present in the real event. An evolution of the proposed
model to include the aerosol phase should be possible, along the lines of Crisci et al. (2005), where a
pyroclastic flow has been modeled.

The most important problem that emerged in the application of ASCA is a not well-defined
relationship between the simulated duration of an event, and the size of the cells. In fact, we observed
that by reducing the cell size, the final, motionless configuration of the system is attained with a larger
number of steps (keeping fixed the time-step duration). The nature of this mesh dependency has not
yet been clarified, and as a consequence, the calculation of the velocity and of the derived quantities is
at least questionable. In order to quantify the magnitude of this effect in different situations, it seems
necessary a deeper analysis, by comparing the results from other models or, better, with experimental
data from well-documented avalanche events.

To summarize a possible usage of ASCA, the application of the proposed method at a given site
could be conducted through the following steps.

• The site topography (digital terrain model), an average value of snow density and the number
and thickness of snowpack layers are assumed to be known with sufficient accuracy.

• A best-fitting, by a trial and error procedure, of µ, ζ and Cd for different snow and boundary
conditions trying to match the main features of observed events is carried out. These parameters
are used in subsequent numerical simulations.

• The envelope of possible deposit zone, path and run-out distance is obtained varying, for instance,
the position and geometry of the starting zone, and snow entrainment.
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• The results in terms of run-out distances and deposit volume can be used for zoning purposes
and design of snow dams and deviators.

6 Conclusion

The cellular-automata model presented here for the simulation of snow avalanches is a novel method
presenting interesting capabilities. The simulations of real events show that accurate results can
be obtained very quickly, with inexpensive hardware. The numerical model can cope with the full
three-dimensional topography of many real situations, as described by sufficiently accurate digital
terrain models, potentially overcoming a major drawback of many existing approaches to avalanche
simulation.

It should be emphasized that the contribution of the paper is methodological, and it is not intended
to be a research devoted to find the best parameters necessary for the simulations of events on a specific
site (the data employed are not sufficiently accurate for such a purpose). Much work remains to do,
both on the calibration of the model and on the model itself, as explained at the end of the Discussion
section.
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