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Abstract 
Economists use different kinds of computer simulation. However, there is 
little attention on the theory of simulation, which is considered either a 
technology or an extension of mathematical theory or, else, a way of 
modelling that is alternative to verbal description and mathematical models. 
The paper suggests a systematisation of the relationship between 
simulations, mathematics and economics. In particular, it traces the 
evolution of simulation techniques, comments some of the contributions that 
deal with their nature, and, finally, illustrates with some examples their 
influence on economic theory.  
Keywords: Computer simulation, economic methodology, multi-agent 
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1. Introduction 
Computer has profoundly affected the way economists do and think about 
economics (Mirowski 2002, Duren 1988, Galison 1997). Not only it has 
relieved scholars from computational burden (originally, computers were 
persons hired to perform calculus), but it has also changed the mode in 
which economists approach their theories. By using simulations they are 
provided with metaphors of human thinking and problem solving, have the 
opportunity to subject social processes to laboratory experimentation and, 
finally, they are allowed to model economic agents in fashions that were 
precluded to mathematical and verbal modelling.  
The paper deals with the relationships between computer simulations and 
economics. I investigate how the possibility of embedding economic theories 
within computer programs, that is running a simulation, has affected the 
process of theory-making and has accompanied some developments of 
economic thought. To this purpose, I will proceed along two lines. Firstly, I 
will try to characterise the concept of simulation by tracing its evolution and 
comparing it with other formal languages and modelling procedures. 
Secondly, I will try to identify those developments of simulations that have 
mostly affected economics. The analysis covers a period that starts from post 
World War II to the present days, while the places of action are mainly the 
faculties of engineering of the major universities of the United States. It will 
appear how simulation, that generated from very practical concerns, will 
subsequently circulate in different disciplines - such as economics- and will 
become a theoretical instrument. The central tenet of the paper is that 
simulation is a way of conducting research that is autonomous – i.e. it has 
distinctive properties and a different ability in capturing the phenomena 
under study - with respect to other modelling solutions.  
 
2. The origin and evolution of computer simulation  
The philosopher Peter Galison reconstructs the steps through which 
computer simulations come to stage:” At first no more than a faster version 
of an electro-mechanical calculator, the computer became much more: a 
piece of the instrument, an instrument in its own right, and finally (through 
simulations) a stand in for nature itself. […] In a non trivial sense, the 
computer began to blur the boundaries between the ‘self evident’ categories 
of experiment, instrument, and theory” (1997, p. 44-45). The process, 
however, is far from being linear because the term “simulation” refers to a 
variety of techniques with different lineages and theoretical niches, and 
because simulation originates in hard sciences and ends up in social science. 
The paper will consider system dynamics, microsimulation, cellular 
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automata and agent-based models, which I consider the most significant for 
the theory of simulation and for economics. These simulations can be split in 
two groups. The first one is related to the development of system dynamics 
modelling under the influence of Norbert Wiener’s1 cybernetics. Computer 
simulations are representations of mathematical models within the computer 
aiming at extending tractability when a large amount of computation is 
needed. The debated point, when those simulations first appeared, was 
whether they could actually be considered as mathematics or, else, they were 
to be thought of as a mere a support to mathematical research. The second 
one, pioneered by John Von Neumann2 and including cellular automata and 
agent-based computational models, tends to emancipate simulation from 
mathematical representations. 
The next two sections will be devoted to the analysis of these ways of 
conceiving simulation. The leading theme will be the relationship between 
mathematics (read equation-based modelling) and simulation, an issue which 
is pervasive and permeates all related arguments. Originally, simulations 
were nothing but the numerical treatment of differential equations and, in 
addition, most of simulation techniques stemmed from extensions of 
mathematical analysis. Henceforth, it seems natural to treat the argument 
starting from the relationship between simulation and mathematics. 
Discussion will be completed by the description - in section 3. - of a further, 
more recent, approach to simulation (Ostrom 1988, Parisi 2001), which 
focuses on the features that derive from using the symbol system of 
programming language.  

                                           
1 (Cambridge Mass. 1894, Stockholm 1964). He started his studies in zoology at  
Harvard turning to philosophy at Cornell one year later. He received his Ph.D from 
Harvard at the age of 18 with a dissertation on mathematical logic supervised by 
Karl Schmidt. He then went to Cambridge (U.K.) to study under professors Russell 
and Hardy. In 1914 he was in Göttingen to study differential equations under Hilbert 
and also attended a course of group theory given by Edmund Landau. In 1920 
Wiener joined the Massachusetts Institute of Technology, where he became (1932) 
professor of mathematics. 
 
2 (Budapest 1903 – Washington D.C. 1957). Doctorate in mathematics from the 
University of Budapest, undergraduate chemistry degree from the Eidgenossische 
Technische Hoschschule in Zurich. In 1930 he went to United States as a visiting 
lecturer at Princeton University where he was made full professor in 1931. In 1933 
he joined the Institute for Advanced Study as a professor and retained that position 
for the rest of his life. 
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2.1 Simulation at MIT: mathematicians, engineers and physicians 
As for the origin of computer simulation, the right place to look at is the 
MIT during and after WWII. In its laboratories, mathematicians, engineers 
and physicians were independently working on issues that later generated the 
first simulation techniques. As it will be shown, the origins and features of 
computer simulation are quite different the ones from the others, but are 
assimilated by one quality: their strong relation to mathematics. However, as 
simulation techniques grew more sophisticated, separation from 
mathematical endeavours started to be a widespread need among simulators. 
This separation, that in my opinion is now completed, took place through a 
progressive identification and conceptualisation of simulation’s properties.  
The attempt at tracing this process bring us to the discussion of different 
views ranging from those insisting that simulation is a pale imitation of 
mathematics, and concluding that it does not pertain to the realm of 
theorising but, rather, to the realm of measurement (Alker 1974), to the more 
recent ones that pinpoint the characterising elements of simulation and 
contrast them with mathematical and verbal modelling (Axelrod 1997a). 
Given that first applications openly intended to be mathematical, it took 
quite some times before the issue concerning the nature of simulation was 
ripe to discuss. Computer entered universities and research centres in the 
early 1960s and the debate started to spread about ten years later, however to 
grasp fully the terms of the problem, one has to go back to the very inception 
of simulation: WWII.  
 
2.1.1 Cybernetics and System Dynamics 
Our story begins with the American mathematician Norbert Wiener working 
on gunfire control at MIT in 1940. He devised a predictor of the behaviour 
of an aircraft trying to evade antiaircraft fire. He conceived the relation 
between man and machine system as essentialy similar to that of a 
servomechanism3. The pilot is considered as a part of the steering 
mechanism and thus it is possible to apply to the interaction between man 
and machine notions -such as feedback and stability- which were originally 
devised for mechanical systems and electrical circuits (Wiener 1961, p. 8; 
Mirowski 2002, chapter I). As time passed by, such flashes of insights were 
elaborated in a theory which Wiener named cybernetics (after the greek 

                                           
3 A servomechanism is an automatic control of a mechanical device; it regulates the 
mechanism in response to feedback. 
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word kubernetes which means steersman or governor) and passed over to 
meteorology, sociology and economics. While the cybernetics contributions 
to science are highly controversial (Heims 1980, 1991), this paper focuses on 
its influence on simulations. Briefly, Wiener’s idea (1956, p. 251-252) was 
that, in order to obtain a complete mathematical treatment of a system, it was 
necessary to assimilate its parts to a single root either human or mechanical. 
Since understanding of mechanics appeared far ahead of psychological 
understanding, he chose to construct a mechanical model of the relation 
between human and mechanical: the feedback which, roughly, implies 
circular causation. This line of thought was applied to simulation by Jay 
Forrester4 an engineer that, in the same period, was studying feedback 
control systems (control of radar antennas and gun mounts) at MIT’s 
Servomechanism Lab. Wiener’s influence on Forrester is strong, the concept 
of feedback and the theory of causes and effects in fact are central to his 
system dynamics simulation. Following cybernetics, Forrester moved away 
from looking at isolated events and their causes (usually assumed to be other 
events), and started to look at phenomena as systems made of interacting 
parts. He believed that the “events cause events” orientation was not very 
helpful in the understanding of a system and in altering its undesirable 
performances. This because it is always possible to find yet another event 
that caused the one that was thought to be the cause. This is almost a 
regressio ad infinitum and thus it is difficult to determine where to stop 
searching for causes and begin to act in order to improve performance. 
System dynamics takes the alternative viewpoint that the internal structure of 
the system (the way parts are interrelated) is often more important than the 
external events in generating the behaviour of the system. According to 
Forrester, a proper definition of such interrelation is the feedback: e.g. the 
situation of X affecting Y and Y in turn affecting X perhaps through a chain 
of causes and effects. The idea is that it is impossible to study the link 
between X and Y, independently, because it is precisely the link between Y 
and X that will generate system behaviour.  
System dynamics, in Forrester’s thought, is a way to investigate 
counterintuitive and surprising outcomes that can arise in systems of 
multiple non-linear equations (Gilbert and Troitzsch, 1999, chapter III). A 
system dynamics model describes the target system by means of large 

                                           
4 Forrester Jay (1918) Nebraska, Engineering College University of Nebraska, 
graduated MIT 1939. He then joined the High Voltage Lab and transferred a year 
later to the Servomechanism Lab. 
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systems of (discontinuous) differential equations from which the trajectories 
of variables over (discrete) time are plotted. The target system is an 
undifferentiated whole whose properties are described by means of levels 
(the state of the entire system) and rates (its changes). The model starts with 
individuating the pattern of behaviour exhibited by the variable of interest 
over time (e.g. exponential growth) and by describing the system structure in 
terms of feedback or causal loop. In terms of economic methodology, system 
dynamics modelling is a pattern modelling process. With appropriate 
refinements, a system dynamics model can be converted into a tipology 
called a ‘generic structure’ (i.e. a model that encapsulates the essential 
relationships that appear in a multiplicity of pattern models within a group). 
Such generic structure, when properly parameterised can reproduce any 
patterns within its group (Radzicki, 2003, p. 151). 
The lesson that can be learnt from this kind of simulation is that, in practice, 
it was meant to be mathematical, its main modelling feature being the ability 
of extending analytical treatment to discrete time and non-differentiable 
differential equation. Another attribute that contributed to direct the 
following debate was that Forrester’s vocation was practical: “early system 
dynamics analyses were in the consultant mode in which the system 
dynamicist would study a corporation, go away, build a model, and come 
back with recommendations” (Forrester 1989).  
Early system dynamics was thus tuned on problem solving for corporations, 
bureaucrats and policy makers, and as such had a “business” flavour that did 
not facilitate its recognition in the academic field. Forrester retained the idea 
that research and theory must be related to the field application, and 
described his work as an attempt to run from mathematical theory to the 
operating field. In fact, the beginning of system dynamics was an inventory 
control system with pencil and paper simulation for General Electric. The 
actual simulation arrived a bit later, when he asked a computer programmer 
to write down the code for his 1958’s article “Industrial Dynamics a Major 
breakthrough for Decision Maker”5. The programmer created a compiler that 
would automatically generate the computer code and called it “SIMPLE” the 
acronym for “Simulation of Industrial Management Problems with Lots of 
Equations”. The presence of a compiler accelerated modelling to such an 
extent that it rapidly expanded and nowadays it is still widely used especially 
by an active group at the Sloan College at MIT. In 1969, Forrester applied 
system dynamics to the description of urban dynamics, a work that raised a 

                                           
5 The article later became chapter II of Industrial Dynamics (1961). 
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lot cricisms. Together with the mayor of Boston who he had met at MIT as a 
professor of Urban Affairs, he portrayed the city as a system of interacting 
industries, housing and people. His conclusions produced strong reactions. 
The model suggested that “all the major urban policies that the United 
States was following lay somewhere between neutral and highly detrimental, 
from the view point of either of the city as an institution, or from the 
viewpoint of the low income, unemployed residents, and that the most 
damaging policy was to build low-cost housing [because] such housing used 
up space where job could be created, while drawing in people who needed 
jobs” (Forrester, 1989).  
In a time in which low cost housing policy where believed to be essential, 
the publication of Urban Dynamics (1969) did not contribute much to the 
fortune of simulation. A similar reaction was reserved to Limits to Growth 
(Meadows et al., 1972), a book that adopted Forrester’s system dynamics to 
look at the scenarios for human population growth and industrial production 
in the world over the next century. A computer model was used to simulate 
resources production and food supply to keep up with the growing system. 
The authors concluded that the world could not support the present rates of 
economic and population growth much beyond the year 2100. Those models 
made a major impact but also diffused the feeling that simulation was 
somewhat non-scientific as it became clear that results heavily depended on 
the specific quantitative assumptions made about the model’s parameters and 
that many of them were backed by rather little evidence (Gilbert and 
Troitzsch, 1999, p. 6). As it will be shown, the feeling among scientists was 
that system dynamics had made questionable policy recommendations, as in 
the case of Forrester (1969), as well as inaccurate predictions as in the case 
of Meadows (1972).  
 
2.1.2 Microsimulations 
In the same years at MIT, Guy Orcutt 6, a researcher who was trained in 
engineering, physics and economics developed microsimulation (1957; 

                                           
6 University of Michigan: B.S. Physics, Phd Economics. Soon after finishing his 
doctoral dissertation in 1944 he was appointed at MIT. Orcutt’s works, alone and 
with Donald Cochrane, are part of every econometrician’s tool kit.  
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Orcutt et al., 1986), a technique attempting at modelling social phenomena 
in highly disaggregated way7.  
Orcutt’s interest in economics was motivated by the nation economic 
difficulties at the time (Orcutt 1990). From his studies in economics he 
become convinced that economic models were in urgent need for stronger 
empirical basis. Around 1950, by focusing on data aggregated at the national 
account level, he realised that they were not accurate enough to provide a 
useful guide for policy. Orcutt thought that economic models should have 
been built at the micro level and, therefore, that a firm understanding of the 
behaviour of micro-units was required. As for policy implications, models 
should have taken into account that the overall impact of such policies may 
depend on how their consequences are distributed over non-homogeneous 
individuals. Aggregate time series cannot capture those aspects, and, even if 
it is possible to establish robust behavioural relationships at the microunit 
level, there remained the problem of aggregating them in order to appreciate 
the macroeconomic consequences of policies or exogenous shocks (Watts 
1991, p.173). Orcutt’s answer to this problem was the conceptualisation and 
implementation of microsimulation. Microsimulation represented the 
convergence of the ideas he nurtured during his training (Watts 1991, p.174): 
the first was Monte Carlo simulation (see below) he had been using in the 
context of electrical analogue models to explore the consequences of 
autocorrelation in regression estimates; the second one was neoclassical 
economics imprinting that drew his attention on the market as a system in 
which many agents interact; the third one, attributable to his studies in 
physics, was that the world is recursive, ruled by the response-follow-to 
stimulus motto.  A microsimulation is a computer code  that applies to a 
dataset of micro units (e.g. households or firms). It starts from a 
representative sample of the population that contains all the information of 
interest (e.g. age, sex, marital status, participation to education, income) 
observed in given moment in time. The simulation consists in observing the 
state of the sample under different prospects. A microsimulation can be 
either static (in which case the sample does not change) or dynamic (in 
which case the units undergo some transformation in response to time or to 
behavioural pressure). The static microsimulation is best used to calculate 
the day after effect (before behavioural reactions) of a policy change. 

                                           
7 The structure of the microsimulation models was described in 1957 and the first 
application, regarding demographic processes, labour supply and education demand, 
began around that time and appeared in Orcutt et al. (1961). 
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Imagine we want to compute the effect on the government revenues of a 
reform of the income tax. For each unit the sample displays the (gross) 
income level and the other relevant variables such as appliable allowances 
and deductions (e.g. allowances for children, cost of education, social 
security contribution…). The computer code calculates individually the 
taxable income and, subsequently, the tax to be paid. The procedure can be 
repeated for different tax structures. Results can then be observed at the 
individual and aggregate level. It is worth noting that, apart from the tax 
formula, all the other features are kept constant (there is no aging process, no 
birth or change in occupational status). In dynamic simulation, on the 
contrary, the units of the sample can change as the simulation runs. 
Following life tables, at each time step individuals are aged, and – according 
to age – they can either give birth to a child or retire from work, die and so 
on. Consequently, changes are computed for all the related attributes such as 
income, participation in education, employment.  Dynamic microsimulation 
is applied to long-run prediction of demographic change and  to its effects on 
social expenditure, and to long term behaviour of labour supply, 
consumption and the like. For example, in order to know how many people 
of 60 years or older will have adult near relatives who could nurse them if 
they needed care, one cannot simply run a system dynamics demographic 
simulation which computes the future structure of the population as a whole. 
Rather, a model of the kinship networks within the sample and including 
their transformation in time is needed. Hence, individual data are used and 
birth and marriage probabilties are applied to update the sample year by 
year. After the desired number of runs the results are interpreted as the 
evolution of the initial sample8. 
 As compared to system dynamics, the modelling approach is considerably 
different. While the former considers the target system as a whole which 
disregards the features of the units and therefore produces very aggregated 
information, microsimulation generates individual information that can be 
aggregated at the desired level (group, age range…). As for the more general 
features of this modelling approach, it is worth stressing that is has no 
pretension to explain the phenomenon under study: it simply aims at 
prediction. Secondly, there is no attempt at modelling interaction among 
units, rather each of them has a given trajectory which is independent from 

                                           
8 A further type of microsimulation called longitudinal  applies to the entire life of 
an age cohort. For further discussion see Gilbert and Troitzsch (1999, pp. 7; 53-73) 
from which these examples are borrowed. 
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that of the others. Finally, when units change their state they do so 
exogenously (for instance according to life tables) and not in response to 
some behavioural rule. 
Microsimulation found lasting employment and wide acknowledgment 
within economics (particularly in gender and population economics and in 
tax policy analysis)9, but this did not help much in contributing to 
simulation’s success. In fact, it played a role in circulating the idea that 
simulation is merely a measurement procedure, something that has to do 
mainly with statistics and perhaps with econometrics, but cannot stand 
independently of mathematical and verbal modelling. 
On the other hand, scientists were bothered by the empirical failures of 
system dynamics and by the difficulty of framing computer simulation 
within the traditional categories of science10. A typical example of this kind 
of reasoning comes from Hayward Alker’s paper of 197411. Alker compares 
simulation (read system dynamics) with mathematical models and natural 
language descriptions. However, he feels none of them fit it completely. 
System dynamics are large system of equations that are written in a 
programming language and that include qualitative statements. Moreover, 
the procedure to obtain the output is different from analytical solution and 
this, he believes, changes the nature and reliability of results. They are not as 
reliable as those generated by elegant and soluble mathematical 
representation of social processes, the lack of rigour being due to the absence 
of a shared set of formal rules of representation and to the lack of received 
procedures for the solution of the models (Alker, 1974, p. 152). He therefore 
concludes that simulation is “bad mathematics and poor social science” (p. 
140) and thus it is closer to verbal representations12. The use of simulation 

                                           
9 Moreover, in many countries (Australia, Israel, United Kingdom, Germany, 
Sweden…) specialised institutes carry out this kind of simulation and publish their 
results on a regular basis. See for instance the publications of the National Centre for 
Social and Economic Modelling of the University of Canberra 
(www.natsem.canberra.edu.au). 
 
10 See for instance the debate appeared in different issues of Science in 1973. 
Disputes surrounded especially the works of Forrester (1971) and Dreyfus (1972). 
 
11 Alker is a political scientist that uses simulation to model decision making in 
political processes. For an example see Alker and Christensen (1972).  
 
12  Recent studies (Edmonds 2003) echo Alker’s opinions. 
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must be secondary with respect to the traditional mathematical and natural 
descriptions and must be used to explore hypotheses rather than to formalise 
them. The results of a simulation can be considered, at most, as hints for 
social scientists that must not be trusted since a lot of them “are contradicted 
by available evidence; others have not even been carefully tested, a few fit 
the evidence within limited content areas reasonably well” (Alker 1974, p. 
152). 
Alker’s opinion reflects the difficulty in including simulation in the existing 
categories and the negative impression it has made on social science. It will 
take some more time before new categories are imported from computer 
science and new simulation techniques are perfectioned to clarify the status 
of simulation. Let us see how this happened. 
 
2.2 Simulation gains autonomy: mathematicians, computer scientists 
and economists  
Apart from microsimulation, little was heard about simulation in the 80’. 
However, there were forces at work. On the one hand, new techniques, such 
as agent based models, bring simulation farther from mathematics. On the 
other hand, in this decade simulation starts to be considered as an 
autonomous way of doing research. In fact, if for system dynamics and 
microsimulation computer was necessary to extend computational abilities, 
as simulation techniques evolve (embedding, for instance, spatial 
descriptions), computer is needed because the model can be “solved” only 
within the machine since it is not possible to write and solve an equivalent, 
equation based, mathematical representation. In addition, there is a 
progressive shift of focus from a macro approach (whose attention is devoted 
to the whole target system) to a modelling approach that stresses the 
relevance of decentralised interaction and learning models. As we have seen, 
in  microsimulation agents do not actually interact, whereas in this stream of 
simulations the core of the analysis is the study of macro regularities that 
emerge out of proper local interaction. Let me give an example: if in a 
microsimulation the decision to give birth to a child depends on life tables, 
in the simulations I am about to describe the same decision would be made  
by taking into account the status of the neighbours (for instance, a female 
agent can generate an offspring only if she has a male neighbour) or the 
environmental conditions (for instance, reproduction will take place only if 
in a given location of space there are enough resources to sustain it). It 
follows that, contrarily to microsimulation, agents have explicit behavioural 
rules and, if learning algorithms are introduced, they can learn from 
experience and exhibit innovative behaviour. With respect to system 
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dynamics these simulations can, at least in the most recent developments, 
quite easily manage the representation of physical space separately from 
agents13. 
 
2.2.1 Von Neumann and Cellular Automata 
 The impulse to such innovations, similarly to what happened for system 
dynamic and microsimulation came from physics and engineering. The 
incipit of this stream of simulations is to be found, yet again, in WWII and 
comes from the most eclectic member of the cybernetics group: John von 
Neumann. His writings on computer theory (1958; 1961-63; 1966)14 
anticipated many of the contemporary issues on computer simulation and 
inspired the simulation techniques discussed in this section.   
From 1943 to 1955, von Neumann worked at Los Alamos National 
Laboratories as a consultant to the armed forces. He was collaborating to the 
making of the atomic and hydrogen bomb. In order to deal with complicated 
physical processes that he could not directly observe and experiment, such as 
the possibility that the test of the atomic bomb would ignite the atmosphere, 
he developed a method to simulate hydrodynamics, turbulence, and chain 
reaction in the computer that lately has come to be known as Monte Carlo 
simulations15. The method was born out of his dissatisfaction with 
mathematical knowledge of non linear partial differential equations. The 
procedure he pioneered was to employ computer to solve numerically cases 
and to use the results as heuristic guide to theorising (von Neumann 1966, p. 
3). This heuristic use of computers consisted in discovering regularities by 
solving many (non – linear differential) equations and in generalising results. 
Solutions were not sought for their own sake, but as an aid to discover useful 

                                           
13 For a more technical explanation see Epstein and Axtell (1996, p. 15-16). 
 
14 He agreed on writing a book on this topic in connection with some lectures given 
at University of Illinois. The outline of these lectures together with the recording and 
typescript have been reorganised by Arthur Burks and published in 1966. Among 
the previous contributions included in the Collected Works see also: “The General 
and Logical Theory of Automata” (1948,vol. 5, pp. 288-328); “Probabilistic Logics 
and the Synthesis of Reliable Organisms from Unreliable Components” (1952, vol. 
5, pp. 329-378). 
 
15  A Monte Carlo simulation is a stochastic technique that samples a large system in 
a number of random configurations, so that data can be used to describe the system 
as a whole. 
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concepts and general theories: “The heuristic use of computers is similar to 
and may be combined with the traditional hypothetical-deductive-
experimental method of science. In that method one makes a hypothesis on 
the basis on the available information and derives consequences from it by 
means of mathematics, tests the consequences experimentally, and forms a 
new hypothesis on the basis of the findings. This sequence is iterated 
indefinitely. In using a computer heuristically one proceeds in the same way, 
with computation replacing or augmenting experimentation. One makes an 
hypothesis about the equation under investigation, attempts to pick up some 
crucial special cases, uses a computer to solve these cases, checks the 
hypothesis against the results, forms a new hypothesis, and iterates the 
cycle. The computations may also be compared with experimental data. 
When this is done the heuristic use of computer becomes simulation. 
Computation in itself can only provide answers to purely mathematical 
question, so when no comparison is made with empirical fact the heuristic 
use of computers contributes to pure mathematics” (1966, p. 4).   
With respect to previous positions, in this assessment we find novel 
elements. The difference between computation and simulations, and the 
contribution of the latter to theorising on a pair with mathematics are 
explicitly stated. With respect to Forrester and Orcutt, the approach here is 
very different. Forrester’s system dynamics was driven by practical 
concerns, i.e. how to solve housing problems in a given city or how to 
improve the efficiency in a corporation, while Orcutt was trying to highlight 
the consequences of public policy across heterogeneous groups. According 
to von Neumann, simulation is on the same level as the deductive methods, 
has a general scope, and can be used in devising theories. In a close relation 
with his applied work with simulation, in the late ’40 he started developing a 
theory of automata that, due to his premature death, was left incomplete. 
Being convinced of the existence of important similarities between computer 
and natural organisms and of the usefulness of comparing such related 
systems, he sought a theory that would cover them both. He called it the 
“Theory of cellular automata”. It was concerned with the structure and 
organisation of both natural and artificial systems and the role of language 
and information, programming and control in such systems (von Neumann 
1966, p.18). The blueprint of the theory was both mathematical and logical 
(von Neumann 1966, p. 25-28) while the study of actual automata provided 
its empirical core. Mathematician Stanislaw M. Ulam (1960, Chapter 8) 
liked to concoct games for the computer at Los Alamos: given certain fixed 
rules, the computer would produce changing patterns (to take an example, a 
square would evolve into a crystal-like growth). Ulam's games were cellular 
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games played on limitless lattices: each pattern was composed of square 
cells that changed as simulated (discrete) time passed. At each step, the state 
of a given cell depended only on the states of its neighbouring cells. Ulam 
suggested to von Neumann to adopt the “cellular” framework for his analysis 
of machine reproduction. In doing so, he would have been able to exploit the 
cellular structure that reduces the otherwise infinitely many possible 
connections between machine components to a controllable plan: the model 
would have been complete enough to cover all the essentials of machine 
operation but, at the same time, as simple as possible. Von Neumann used an 
infinite chessboard as his universe. In the latter, each square cell could be in 
any of a number of states corresponding approximately to machine 
components (it follows that a "machine" was a pattern of such cells), and the 
rules governing the world would be those of a cut down physics. Cellular 
automata, with their ambition to embrace both natural and artificial system, 
would become in the following years an established way of modelling social 
systems in which local interaction takes place. However, from physics to 
social systems the route is not short. The first concerted effort to apply 
explicitly cellular automata to social science was accomplished, without the 
use of a computer, by an economist: Thomas Schelling. His Segregation 
Model (1969, 1971a, 1971b, 1978) consisted in placing pennies and dimes 
on a chessboard and moving them around according to given rules. He 
interpreted the board as a geographical space (e.g. a city), with each square 
of the board representing ,say, a house, pennies and dimes as agents, 
representing any two groups in a society. The neighbourhood of an agent 
occupying any location on the board consisted of the squares adjacent to this 
location. Rules specified whether a particular agent was satisfied with its 
current location: if she was dissatisfied with it, she would shift to another 
place on the board. Schelling found that the board quickly evolved into a 
strongly segregated configuration even if the agents' satisfaction rules 
expressed only a weak preference for having neighbours of their own type.  
 
2.2.2 The Santa Fe Institute and Agent-based Simulations 
In the 80’, the use of cellular automata was made more practical by the  
development of general purpose cellular automata simulator programs to be 
applied to problems of adaptation and optimisation. In the same years, 
Schelling’s simulations with its developments in silico were worked out 
along different lines, mainly at the Santa Fe Institute16.  The outcomes of 

                                           
16 The Santa Fe Institute, founded in 1984, is devoted to the creation of a scientific 
research community that emphasises multidisciplinary collaboration in the pursuit of 
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these researches have found a systematisation and a number of seminal 
extensions by Joshua Epstein17, an economist working at the Santa Fe 
Institute. Epstein’s research was presented in the book written with Robert 
Axtell18: Growing Artificial Society: Social Science from the Bottom Up 
(1996). It proposes an original approach to economics (which will be 
discussed in section 5) that explicitly acknowledges its lineage with 
Schelling and von Neumann: agent based economics19. The book, which is a 
sort of manifesto for agent based computational economics, introduces 
Sugarscape, an artificial society in which demographic, environmental, and 
economic processes take place. This work is important to us, not only 
because it represents the most recent evolution of Von Neumann’s 
simulation techniques, but also because it is the most organised attempt to 
characterise simulation as a research methodology. Agent-based economics 
aims at analysing “fundamental social structures and group behaviours as 
emerging from the interaction of individuals operating in artificial 
environments under rules that place only bounded demands on each agent’s 
information and computational capacity. We view artificial societies as 
laboratories where we attempt to grow certain social structures in the 
computer […] the aim being to discover fundamental local or micro 
mechanism that are sufficient to generate the macroscopic social structures 
and collective behaviour of interest” (Epstein and Axtell 1996, p.4). The 
idea recalls closely that of the economic phenomena as the unintended result 

                                                                                                   
understanding the common themes that arise in natural, artificial, and social systems. 
Among the economists, in the Science Board seats Kenneth Arrow. Among the 
businness members there is the Los Alamos National Laboratory. 
 
17 PhD MIT 1981, B.A. Amherst College 1976. He is senior fellow in economic 
studies at the Brookings Institution, member of external faculty of Santa Fe Institute, 
member of the National Academy of Sciences. He previously worked for the Rand 
Corporation, the Council on Foreign Relations,  the U.S. Department of State and  
the U.S. Senate Armed Services Committee. 
 
18 Ph.D., Carnegie Mellon University, 1992; B.S., University of Detroit, 1983. He is 
senior fellow in economic studies at the Brookings Institution. 

 
19 The publication of Growing Artificial Society is conventionally taken as the 
milestone of agent-based economics. However, such models and the label ‘agent-
based models’ were already in use among researchers in the first years of 1990. 
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of decentralised interaction of individuals with the inclusion of the more 
recent ideas of Simon’s bounded rationality and of Hayekian incomplete 
knowledge (Vriend 2002). Technically this is implemented by programming 
on three interacting levels. Firstly, the model needs agents (firms, 
consumers….) that can have the desired levels of heterogeneity (technology, 
endowments, gender, age...). Secondly, agents populate an environment that 
is separate from them and with which they interact. Finally, the model needs 
rules that govern agents’ and environmental behaviour as well as the 
interaction between the two. For instance, imagine a population of agents 
living on a lattice gathering and exchanging a resource necessary for 
survival. There will be individual rules of movement, gathering and trade for 
the agents and rules of reproducibility of resources for the environment. The 
computer will place the agents on the grid and let them behave according to 
the rules without any intervention on the researcher side. The behaviour of 
the system will be observed at the micro level (the story of each agent can be 
tracked) and at the macro level as an aggregation of the behaviour of the 
individuals. With its emphasis on the effects of interaction, agent-based 
simulations are similar to cellular automata to an extent that the latter are 
often subsumed in the former category, as in the case of Axelrod (1997b). 
Technically, since a cellular automaton’s decision rule makes reference to 
the states of other cells in the neighbourhood, cellular automata are best 
suited to model situations where interaction is local, whereas agent-based 
model can include many different kinds of relationships among agents such 
as global (i.e. the single unit interacts with all the other units in the 
population) or random (i.e. the single unit interacts with one or more units 
randomly picked from the population) interaction.  
In agent based economics, social science is interpreted as an experimental 
science20: models are laboratories in which one can make different 
hypotheses on the phenomenon under study and observe the outputs: 
regularities emerging from micro rules and robustness of such regularities. 
As in biology, results are interpreted in terms of candidate explanation 
(sufficiency of rule to generate a given regularity) and not in terms of 
general laws21.  

                                           
20 This is intended as laboratoy experimentation and not as meant by experimental 
economics, that aims at determining which rules are actually  utilized by individuals. 
 
21 As a relatively new approach, agent based simulation still has to solve important 
issues such as the problems arising when there is more than one microspecification 
that generates the macrostructure of interest.  Moreover, for what concerns the 
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Mostly important to us, contraposition to equation based modelling is sought 
and explicit (Epstein 1999). Thinking of such kind of simulation in terms of 
mathematical representation becomes more difficult than in the past, since 
there is not a readily available mathematical technique which is able to 
translate such models in analytical terms. In fact, even if in principle every 
computation has a corresponding and equivalent partial recursive function22, 
in the case of agent based models, it is not clear how to write down the 
appropriate equations and how to solve them if formulated (Epstein 1999, p. 
51) and actually, to my knowledge it has not been done yet. It follows that 
agent based simulation is different from its predecessors in that, so far, there 
is not a mathematical representation at hand. With respect to 
microsimulation, results derive from decentralised interaction and not from 
the aggregation of the separate history of the units. As compared to system 
dynamics, the system is not considered in its entirety. In addition, there is a 
space which is distinct from the agents’ population, whereas in ordinary 
differential equations models there is no spatial component (agents interact 
only in time but not in space). 
Differently from the positions reported by Alker, according to whom the 
recognition of simulation was subordinated to the possibility of obtaining the 
status of mathematical science, here the detachment from the spirit and 
method of mathematics is explicit: “no one would fault a “theoremless” 
laboratory biologist for claiming to understand population dynamics in 
beetles when he reports a regularity observed over a large number of 
experiments. But when agent based modellers show such results […] there is 
a demand for equations and proofs. […] one can do perfectly legitimate 
science with computer, sweeping the parameter space of one’s model, and 
conducting extensive sensitivity analysis, and claiming substantial 
understanding of the relationship between model inputs and model outputs, 
just as in any empirical science for which general laws are not yet in hand” 
(Epstein 1999, p. 51). This is a concept of science which resembles the one 
promoted by von Neumann through the heuristic use of computer: explore 

                                                                                                   
robustness of results the literature on sensitivity analysis of agent-based models is 
quite limited and still under development. For some early reflections on this topic 
see Axtell and Epstein (1994), for an interesting exercise in the alignment of 
computationl models (docking) see Axtell et al. (1996). 
 
22 This statement is known as the Church-Turing thesis.  
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the phenomenon via simulation to find regularities and then extract general 
principles and theories.  
Agent based economics is different from the mathematical approach in the 
kind of sought explanations, even when a mathematical soluble 
representation is available. A question that any simulator must be ready to 
answer (as I did myself in many circumstances) is “Why do we need 
simulations if we can get a given result from an equation based model?” As 
Epstein (1999) points out, the answer relies on one’s criterion of explanation. 
For instance, an oscillatory time series can be described by a function of the 
kind y=f(x). The behaviour of y, the left hand side variable, is accurately 
described in mathematical terms, but what happens inside the system, which 
“rule of behaviour” generates, on aggregate, the observed oscillation, 
remains unknown. Simulation is therefore useful when the emphasis is on 
the process that generates a given regularity, while mathematics is more 
concerned with the description of the system. With agent based simulation, 
the path opened by von Neumann and Wiener has brought to some definitive 
conclusions: simulation, at least for what concerns agent-based models, is 
different and autonomous from mathematics and, in spite of its being an 
instrument generated to investigate physical and mechanical processes, it is 
well suited to study social systems too.  
 
3. Other contributions: symbolic system and cognitive attitude 
This section is devoted to the analysis of some recent interpretations of 
simulation. These are kept separated from the previous ones since they come 
from very different traditions: psychology and computer sciences. They rely 
on features that have been neglected by the scientists so far encountered, 
namely, the programming languages and the cognitive relationship between 
researcher and theory. These assessments are reported to witness both the 
increasing interest in giving simulation an independent status and the attempt 
at isolating its properties that runs parallel in many different disciplines. 
In 1988, social psychologist Thomas Ostrom studies simulation on the side 
of the used symbol system. He believes that the characteristic attribute of 
simulation lies in its being a symbol system distinct from the traditional 
ones. Programming languages, according to Ostrom, are different both from 
natural and mathematical symbols “many…regard computer simulation as 
merely a method. […] All of this could lead the reader to assume that 
computer simulation is merely a technology [instead] computer simulation is 
a symbol system; it is a medium through which theoretical concepts can be 
represented and communicated. Rather than being a special purpose 
technology, it is regarded as offering theorists in all areas of social 



 19 

psychology an alternative way of expressing their ideas” (1988, pp. 382-3).  
He therefore concludes that simulation has to be considered as autonomous 
from mathematics and has to be given a status on a pair with it. 
More recently, cognitive psychologist Domenico Parisi (2001) extends 
Ostrom’s position by qualifying the concept of simulation as the third 
symbol system and by adding a further specification. He maintains that, not 
only simulation is a way of expressing theory, which is as covering and 
acceptable as mathematics and natural language, but also – as a symbol 
system – it exhibits a unique property. While the symbol systems of 
mathematics and natural language theories are semantic, the symbol system 
of simulation is syntactic. A semantic symbol is an object of reality that, 
perceived by a mind, generates a meaning in it. In fact, it is by 
comprehending such symbols that researchers can derive implications from 
theoretical statements and try to find empirical validation. This is not quite 
the case for the symbol system of computer simulation: programming 
languages. Those symbols are not human oriented, they are computer 
oriented. A computer program is a list of instructions that the scientist gives 
to the computer to obtain the desired operations and manipulations. 
According to Parisi, it is not necessary that a human being understands what 
the computer is going to do with the program for the simulation to produce 
the output correctly. In other words, these are generated only by the 
computer. Syntactic symbols do not work by virtue of their meaning but only 
by virtue of their physical characteristics. One can object that the symbols 
must produce some meaning at least in the person writing the program and 
interpreting the results. The answer is obviously positive, but a caveat is 
necessary. Modelling a phenomenon by means of a mathematical model 
requires the knowledge of the rules of writing and manipulating, say, a 
system of equations. When writing a program, the researcher knows how to 
write a list of commands, this list will be then translated by the computer 
into a “machine language”23 that will tell the computer what to do. This latter 
language needs not to be known by the programmer neither he needs to 
know how it works (say, with a decimal or binary system).  This distinction 
implies a special cognitive interaction between mind and theory. In other 
words, premises are stated in the programming language and implications 
are derived by the machine operating with its own language, independently 
of any human cognitive act. Results are presented in an output form that has 

                                           
23 The distinction between machine language (primary language) and programming 
language (secondary language)  is due to von Neumann (1966). 
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to be interpreted by the researcher, but the process through which the former 
are generated has taken place outside the human mind and within the 
machine.  
Leaving aside details that are strictly linked to cognitive aspects, it seems to 
me that Parisi raises an interesting aspect which has a general flavour: 
simulations are automated mental experiments. That is to say that the theory 
written in the programming code produces implications and predictions by 
means of the computer. This is obviously an important difference with 
respect to theories expressed in mathematical and natural languages  that, 
under given circumstances, would justify the use of simulation. In fact, 
simulation has the desirable property of reducing the incidence of errors in 
the process of drawing conclusions from premises. This is true in a twofold 
sense: the steps of the procedure are correctly performed (for instance, there 
are not calculus mistakes), and the researcher’s convictions cannot affect the 
output (for instance, she believes that a given statement descends logically 
from premises while, after the simulation is ran it emerges that it does not).   
 
4. Some conclusions on the nature of simulation 
At the origin, simulation was used in the hard sciences as a continuation of 
the mathematical modelling tradition: it was nothing but the numerical 
treatment of difference or differential equations where computer replicates 
and manipulates mathematical language. In the following years computer 
becomes a tool to manage the symbol of programming language (Troitzsch 
1997), and computer simulation gains independency from mathematics and 
is used to model those aspects of phenomena that the latter cannot 
encompass (e.g. physical space and qualitative rules, endogenous change in 
the model structure). However, as Parisi and Ostrom stress, it is not only a 
matter of field of application: simulation implies a different way of 
approaching scientific research. Differences reside in the symbol system of 
programming languages and in the way of drawing implications and 
predictions. Not only simulation is a way of automating mental experiments, 
but its application also implies an experimental interpretation of science.   
The experimental approach together with the absence of theorems and proof 
made it particularly hard for simulation to enter the realm of economics. 
Economists have been prone to accept numerical and statistical simulation, 
while they have been far less receptive for what concerns the theory-as-
simulation such as agent-based models. The reason for this attitude together 
with the role of simulation in economics will be the subject of the following 
section.  
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5. Simulation and economics  
The history of simulation in economics is a characteristic one. Its inclusion 
in the economists’ armoury involves a shift of methodology and 
competences and, in some cases, implies a detour from the received 
economic theories. The analysis of all these facets falls out the scope of this 
study. Nevertheless,  in this section I will concentrate my attention on two 
points that I believe are particularly seminal. The first one regards 
communication between branches of science, namely physics and 
economics, the second one concerns the relationship between orthodox  and 
heterodox economics and the value added of simulation to the understanding 
of economic phenomena. 
Simulation has been developed by scientists who were in close relationship 
with economics but, within this discipline, it has: “not usually [been] 
explicitly defended, and certainly not with the fervor mixed with confusion 
that existence theorems and significance have been” (McCloskey 1998, p. 
184-5). This is probably due to the events dating back to the 40’: in the 
departments of engineering simulations were employed to run controlled 
experiment on physical phenomena, while economics was turning into a 
divergent road. In those years, according to the ongoing project of 
axiomatisation, economics got focused on theorems and proofs and started 
looking mainly at existence and stability of equilibria. It seems almost trivial 
to consider that, since economics transformed into a mathematical science,  
there was no much room left for simulation that, with its empirical vocation 
and without axioms, was not a very appealing methodology to adopt. 
However, one must not think that simulation has not been used in 
economics. In fact, from the 60’ onwards it has been intensively introduced 
within economiscs but overwhelmingly to “measure” economic phenomena 
in the style of microsimulation. Economists’ perception of their science as an 
axiomatic one was so rooted that even those who contributed to the birth of 
simulation – chiefly von Neumann -  switched from physics (cellular 
automata) to mathematics (theory of games) when dealing with economics24. 

                                           
24 Traditionally, Von Neumann’s research is split in two opposed periods: the first 
one devoted to economics and the second one devoted to computer related issues. I 
am not convinced that, in this case, such distinction holds since, even if works on 
automata follow those pertaining to economics, von Neumann started to deal with 
computer programs and simulations when he was about to publish the Theory of 
Game and Economic Behaviour.  Rather it seems to me that, under many aspects the 
projects have been carried out together. For instance, the relationship between 
mathematics and empirics is stated in 1944 (chapter 1, p. 5) and  corroborated in The 
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So it happened that, while on the one side both Wiener (through Forrester’s 
system dynamics) and von Neumann contributed to the advances in 
simulation, on the other side they never applied this methodology directly to 
their economic endeavours. The hiatus between physics and mathematics 
must have seemed so deep that von Neumann and Wiener had to change 
language to be understood by their fellows economists. Moreover, and 
strangely enough, modern neoclassical economists have received in their 
theories the cybernetics insights on information flows (Mirowski 2002, p. 6) 
but have not adopted Forrester’s methodology to explore their implications 
preferring a traditional mathematical modelling. 
The legacy of von Neumann was then picked up by heterodox economists 
such as agent-based economists and used to criticise the axiomatic approach. 
Agent-based economics, which explicitly acknowledges the cybernetics 
lineage (Epstein and Axtell 1996, p. 2-3), gathers different instances of 
dissatisfaction with theorising and modelling in economics and proposes 
simulation as the natural way to approach social sciences. From a theoretical 
point of view, agent based simulation is concerned with the relationship of 
individual behaviours to macroscopic regularities and with dynamics as 
opposed to general equilibrium theory and game theory. It insists on agents’ 
heterogeneity, bounded rationality, and imperfect knowledge. Agent-based 
simulations are computer simulations built in such a way that assumptions 
such as representative agents, auctioneer or faultless rationality can be 
relaxed (Tesfatsion, 2005). Agent-based economics is nowadays 
encountering a growing favour witnessed by the publication of many 
contributions on mainstream journals (Arifovic, 1996; Holland and Miller, 
1991; Tesfatsion, 2001) 25 and by the interest shown by economists that tend 
to be included into orthodoxy  (Anderson, Arrow et al., 1988; Arrow, 1994). 
Its increasing relevance to economists is recorded by Colander (2003) that, 
in reporting the occurrences in two conferences held at the Santa Fe Institute 
nearly a decade apart, points out a dramatic change. The first conference, 
held in the mid 80s, featured a set of mainstream economists and defenders 
of general equilibrium orthodoxy and a set of physicists. “At that first 
conference the economists mostly attempted to defend their axiomatic 

                                                                                                   
Theory of  Self-Reproducing Automata (see further references in Burks’ 
introduction to the book, 1966, p. 18). 
 
25 For some statistics  on where economic simulation models have been published 
from 1969 to 2004 see Fontana  (2005). 
 



 23 

approach, facing sharp challenges and ridicule from the physicists for 
holding relatively simplistic views” (Colander 2003, p. 8). The second one, 
held in the mid 90s’, faced a very different tone and result e than the first 
one: “No longer were mainstream economists adhering to general 
equilibrium orthodoxy. Now they were using methods adopted from 
biologists and physicists, many suggested at the early conference, in 
innovative ways”26. Another hint of the reception of simulation into 
economics comes, in a much less enthusiastic tone, from Frank Hahn (2001, 
p. 50): “not only will our successors have to be far less concerned with 
general laws than we have been, they will have to bring to the particular 
problems they will study particular histories and methods capable of dealing 
with the complexity of particular, such as computer simulation. Not for them 
[…] the pleasure of theorems and proofs. Instead, the uncertain embrace of 
history, sociology and biology”. 
Let me now turn to my second point: What can simulation say that 
(neoclassical) mathematical models cannot? A first instance concerns the 
contrast between linear and non-linear modelling of phenomena. While it is 
widely conceded that, due to presence of many interacting agents, non-
linearity is ubiquitous in economic phenomena, on the modelling side the 
latter are often reduced to linear system. The most important example of 
such procedure is the traditional Walrasian representation of the market 
mechanism: all agents are identical in means (i.e. perfect rationality, full 
information) and ends (maximisation of the same objective), and the 
behaviour of such market is simply the summation of the individuals’ 
actions.  
From the modelling point of view, the  behaviour of linear systems is almost 
entirely understood. They can exhibit few typical independent motions 
whose stability is reasonably easy to appreciate. More interestingly to 
economics, they have the property that their behaviour in all regions of the 
state space is proportional to their behaviour in a small neighbourhood of the 
origin (Albin and Foley, 1998, p. 6). This leads to predictability and to a 
rather accessible mathematical treatment. When faced with the well known 
ciriticisms concerning the realism of such a market model (Kirman 1989, 
1992), economists frequently answer that there is not a natural methodology 
for relaxing those assumptions about individuals. In fact, mathematical 
treatment of dispersed exchange among heterogeneous agents without the 
coordination of an auctioneer is definitely non-linear. Non-linear systems 

                                           
26 Studies presented at those conferences are collected in  Anderson et al. (1988) and 
Brian et al. (1997) respectively. 
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exhibit a much wider range of behaviour than the linear ones. For example, 
the motions of a linear dynamical system can be combined, in which case the 
system could be unable to achieve a limit and wander indefinitely in a part of 
the state space (i.e. chaotic motion). With a reasoning which is typical of the 
analysis of financial markets, economists can, while incurring in some more 
trouble, partially predict the behaviour of a chaotic system by stating that it 
will not assume given configurations (Albin and Foley 1988, p. 9). However, 
when non-linearity results in a system displaying self- organisation (i.e. the 
system ability of displaying a regularity without any external constraint on 
agent’s behaviour) mathematics is less useful in providing general laws (e.g. 
when available, knowledge of the underlying dynamics would not lead to 
predictability of the system behaviour). Hence, the system should not be 
embedded into a set of equations but, rather, it should be described through 
simulations (Foster, 1995). Agent-based simulations can model agents (the 
components) and their rules of interaction through space and time separately, 
without assuming any a priori overall dynamics rule which, in fact, is 
expected to be the output of the model. 
In Sugarscape (Epstein - Axtell 1996), agents are non-neoclassical: they live 
finite lives and have different evaluations of the gain extracted from trade. 
New agents enter the market as offspring of the existing population and 
exchanges take place at non-equilibrium prices. This results in a greater 
variance of prices that, in turn, generates horizontal inequality and, above all, 
nothing that resembles equilibrium emerges. This result seems to show that 
alternative representations of agents are not trivial in determining the overall 
behaviour of system and also highlights how simulation can be used as a 
theoretical instrument to model those facets that are not included in 
traditional mathematical representations (Tesfatsion, 2005)27.  
A further example concerns endogenous change and evolution. In equation 
based models, the behaviour of the system is portrayed by the causal 
relationships that are present at a single moment in time and, if a change 
intervenes in the classification as initially defined, than the model is no 
longer suitable and needs to be changed. In order to overcome this limit, 
simulations can use adaptive agents. Adaptive agent’s action can be assigned 
a value and the agent acts in order to increase this value over time. 
Adaptation may occur at the micro level (say, through learning algorithms) 
or at the macro level through differential survival and reproduction (Holland 
and Miller, 1991). Either way, consequences are very difficult to foresee 
when there are many autonomous interacting agents. Among these 
                                           
27 For a survey of the simulations of the market process see Mirowski (2004). 
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consequences, there may be a change in taxonomy caused by the relative 
success (selection) of some agents that are better adapted to the environment. 
Adaptation and selection lead to evolution and, yet again, to diverging 
results from traditional economics. While in economics the common thought 
(Alchian 1950, Williamson 1988, Friedman 1953) is that evolution should 
lead to ever improving forms of adaptation, simulation contributed to show 
that evolving system do not always reach optimality and often get lock onto 
inefficient equilibria (Arthur et al., 1987) and, more interestingly, helped in 
explore the “would be worlds” under different hypotheses of adaptation 
(Chattoe and Gilbert 1997). 
Finally, simulation has shown that the inclusion of interaction in economic 
processes is not trivial, and, on the contrary, can give interesting insights in 
“sensitive” areas such as game theory (Axelrod 1997b). For example, 
Epstein (1998) has devised a version of the prisoner’s dilemma in which 
cooperation emerges without assuming repeated play (e.g. tit-for-tat and the 
like) or features (tags) permitting defectors and cooperator to distinguish one 
another. In Epstein’s simulation, agents with finite vision move to random 
sites on a lattice and play, without memory, a fixed inborn strategy of 
cooperate or defect against neighbours. Agents that accumulate certain 
amount of payoff can give birth to offspring of the same strategy while agent 
with negative payoffs ‘die’. In contrast with the received view, he 
demonstrates that, for a wide range of initial configurations, cooperators do 
not disappear rather persist and prevail. 
It seems to me that these examples can help in making my point: simulation 
can help in gaining a better understanding and explanation of economic 
facts. I also believe that inclusion of simulation in this science should not be 
realised by persevering in opposing simulation to mathematics but simply in 
recognising the different potentialities of these methodologies. Moreover, 
attention should be paid to the current contrast that, in my opinion, lies in the 
experimental versus axiomatic approach to economics (Mc Closkey 2005).  
 
6. Concluding remarks 
In this paper, I have reconstructed the lines of thought that have led to the 
view that simulation is an autonomous way of expressing theories. In 
economics, this recognition is of special interest because, as it has been 
shown, it involves the ways of thinking about economic phenomena and 
about economics as a science.  
From the simulation perspective, economics is not separable from other 
neighbouring sciences (e.g. history or psychology), and while retaining a 
quantitative approach, there is no attempt of mimicking the hard sciences. 
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Possible explanations are opposed to general laws; detailed descriptions of 
runs and sensitivity analysis substitute theorems and statistical significance.  
To conclude few words must be spent on the diffusion of simulations in 
economics. Starting from 1989, economists adopted simulation with a 
growing frequency28. However, this upsurge does not regard all the forms of 
simulations homogeneously, rather it is particularly intense for statistic and 
econometric techniques. The use of other forms of simulation, and especially 
of agent based simulations, is growing but still represents a minority.  
This is quite intuitive for techniques that have been developed to model 
specific issues (such as microsimulation) whereas, for what concerns multi-
purpose techniques (for instance, multi agent simulations) a reflection is 
necessary. The prevalence of (statistic and econometric) simulations 
confirms that modelling phenomena within computer is still perceived as 
being peculiar when applied to social systems. It seems to me that the fact 
that the evolution of simulation has taken place in proximity with economics 
has passed almost unnoticed, and therefore simulation is still considered as 
pertaining to hard science and not suitable for the social ones. A final remark 
has to be made. It is undeniable that its recent origin is responsible for its 
being a minority, but it also depends on the fact that the simulators scarcely 
communicate the ones with the others. In fact, in reading through articles 
that make use of simulation it is very rare to found a detailed description of 
the adopted technique. This diffuses the idea that simulation is not a crucial 
part of the work and allows for the conclusion that there is a substantial 
identity among techniques, that as it has been shown, is not true. A better 
communication and integration of simulators and a strong investment in 
discovering and circulating the links between simulation and economic 
theory would certainly help the diffusion and a better understanding of this 
methodology.  
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