612 research outputs found

    Handover in Mobile WiMAX Networks: The State of Art and Research Issues

    Get PDF
    The next-generation Wireless Metropolitan Area Networks, using the Worldwide Interoperability for Microwave Access (WiMAX) as the core technology based on the IEEE 802.16 family of standards, is evolving as a Fourth-Generation (4G) technology. With the recent introduction of mobility management frameworks in the IEEE 802.16e standard, WiMAX is now placed in competition to the existing and forthcoming generations of wireless technologies for providing ubiquitous computing solutions. However, the success of a good mobility framework largely depends on the capability of performing fast and seamless handovers irrespective of the deployed architectural scenario. Now that the IEEE has defined the Mobile WiMAX (IEEE 802.16e) MAC-layer handover management framework, the Network Working Group (NWG) of the WiMAX Forum is working on the development of the upper layers. However, the path to commercialization of a full-fledged WiMAX mobility framework is full of research challenges. This article focuses on potential handover-related research issues in the existing and future WiMAX mobility framework. A survey of these issues in the MAC, Network and Cross-Layer scenarios is presented along with discussion of the different solutions to those challenges. A comparative study of the proposed solutions, coupled with some insights to the relevant issues, is also included

    The cross layer RMPA handover: a reliable mobility pattern aware handover strategy for broadband wireless communication in a high-speed railway domain

    Get PDF
    Enhancing the handover process in broadband wireless communication deployment has traditionally motivated many research initiatives. In a high-speed railway domain, the challenge is even greater. Owing to the long distances covered, the mobile node gets involved in a compulsory sequence of handover processes. Consequently, poor performance during the execution of these handover processes significantly degrades the global end-to-end performance. This article proposes a new handover strategy for the railway domain: the RMPA handover, a Reliable Mobility Pattern Aware IEEE 802.16 handover strategy "customized" for a high-speed mobility scenario. The stringent high mobility feature is balanced with three other positive features in a high-speed context: mobility pattern awareness, different sources for location discovery techniques, and a previously known traffic data profile. To the best of the authors' knowledge, there is no IEEE 802.16 handover scheme that simultaneously covers the optimization of the handover process itself and the efficient timing of the handover process. Our strategy covers both areas of research while providing a cost-effective and standards-based solution. To schedule the handover process efficiently, the RMPA strategy makes use of a context aware handover policy; that is, a handover policy based on the mobile node mobility pattern, the time required to perform the handover, the neighboring network conditions, the data traffic profile, the received power signal, and current location and speed information of the train. Our proposal merges all these variables in a cross layer interaction in the handover policy engine. It also enhances the handover process itself by establishing the values for the set of handover configuration parameters and mechanisms of the handover process. RMPA is a cost-effective strategy because compatibility with standards-based equipment is guaranteed. The major contributions of the RMPA handover are in areas that have been left open to the handover designer's discretion. Our simulation analysis validates the RMPA handover decision rules and design choices. Our results supporting a high-demand video application in the uplink stream show a significant improvement in the end-to-end quality of service parameters, including end-to-end delay (22%) and jitter (80%), when compared with a policy based on signal-to-noise-ratio information.The research described in this article was undertaken at the Training/Education and Research Unit UFI11/16 funded by the UPV/EHU

    Handover in Mobile Wireless Communication Network - A Review

    Full text link
    Mobility is the characteristics of mobile communication that makes it irresistible by all and sundry. The whole world is now engaging in wireless communication as it provides users\u27 ability to communicate on-the-go. This is achieved by transferring users from a radio network to another. This process is called handover. Handover occurs either by cell crossing or by deterioration in signal quality of the current channel. The continuation of an active call is a critical characteristic in cellular systems. Brief overview of handover, handover type, commonly used handover parameters, some methods employed in the literature and we present the convergent point for furtherance in the area of mobile wireless communication Handover

    Radio Communications

    Get PDF
    In the last decades the restless evolution of information and communication technologies (ICT) brought to a deep transformation of our habits. The growth of the Internet and the advances in hardware and software implementations modiïŹed our way to communicate and to share information. In this book, an overview of the major issues faced today by researchers in the ïŹeld of radio communications is given through 35 high quality chapters written by specialists working in universities and research centers all over the world. Various aspects will be deeply discussed: channel modeling, beamforming, multiple antennas, cooperative networks, opportunistic scheduling, advanced admission control, handover management, systems performance assessment, routing issues in mobility conditions, localization, web security. Advanced techniques for the radio resource management will be discussed both in single and multiple radio technologies; either in infrastructure, mesh or ad hoc networks

    Towards Viable Large Scale Heterogeneous Wireless Networks

    Get PDF
    We explore radio resource allocation and management issues related to a large-scale heterogeneous (hetnet) wireless system made up of several Radio Access Technologies (RATs) that collectively provide a unified wireless network to a diverse set of users through co-ordination managed by a centralized Global Resource Controller (GRC). We incorporate 3G cellular technologies HSPA and EVDO, 4G cellular technologies WiMAX and LTE, and WLAN technology Wi-Fi as the RATs in our hetnet wireless system. We assume that the user devices are either multi-modal or have one or more reconfigurable radios which makes it possible for each device to use any available RAT at any given time subject to resource-sharing agreements. For such a hetnet system where resource allocation is coordinated at a global level, characterizing the network performance in terms of various conflicting network efficiency objectives that takes costs associated with a network re-association operation into account largely remains an open problem. Also, all the studies to-date that try to characterize the network performance of a hetnet system do not account for RAT-specific implementation details and the management overhead associated with setting up a centralized control. We study the radio resource allocation problem and the implementation/management overhead issues associated with a hetnet system in two research phases. In the first phase, we develop cost models associated with network re-association in terms of increased power consumption and communication downtime taking into account various user device assumptions. Using these cost models in our problem formulations, the first phase focuses on resource allocation strategies where we use a high-level system modeling approach to study the achievable performance in terms of conflicting network efficiency measures of spectral efficiency, overall power consumption, and instantaneous and long-term fairness for each user in the hetnet system. Our main result from this phase of study suggests that the gain in spectral efficiency due to multi-access network diversity results in a tremendous increase in overall power consumption due to frequent re-associations required by user devices. We then develop a utility function-based optimization algorithm to characterize and achieve a desired tradeoff in terms of all four network efficiency measures of spectral efficiency, overall power consumption and instantaneous and long-term fairness. We show an increase in a multi-attribute system utility measure of up to 56.7% for our algorithm compared to other widely studied resource allocation algorithms including max-sum rate, proportional fairness, max-min fairness and min power. The second phase of our research study focuses on practical implementation issues including the overhead required to implement a centralized GRC solution in a hetnet system. Through detailed protocol level simulations performed in ns-2, we show an increase in spectral efficiency of up to 99% and an increase in instantaneous fairness of up to 28.5% for two sort-based user device-to-Access Point (AP)/Base Station (BS) association algorithms implemented at the GRC that aim to maximize system spectral efficiency and instantaneous fairness performance metrics respectively compared to a distributed solution where each user makes his/her own association decision. The efficiency increase for each respective attribute again results in a tremendous increase in power consumption of up to 650% and 794% for each respective algorithm implemented at the GRC compared to a distributed solution because of frequent re-associations

    Regressive Prediction Approach to Vertical Handover in Fourth Generation Wireless Networks

    Get PDF
    The over increasing demand for deployment of wireless access networks has made wireless mobile devices to face so many challenges in choosing the best suitable network from a set of available access networks. Some of the weighty issues in 4G wireless networks are fastness and seamlessness in handover process. This paper therefore, proposes a handover technique based on movement prediction in wireless mobile (WiMAX and LTE-A) environment. The technique enables the system to predict signal quality between the UE and Radio Base Stations (RBS)/Access Points (APs) in two different networks. Prediction is achieved by employing the Markov Decision Process Model (MDPM) where the movement of the UE is dynamically estimated and averaged to keep track of the signal strength of mobile users. With the help of the prediction, layer-3 handover activities are able to occur prior to layer-2 handover, and therefore, total handover latency can be reduced. The performances of various handover approaches influenced by different metrics (mobility velocities) were evaluated. The results presented demonstrate good accuracy the proposed method was able to achieve in predicting the next signal level by reducing the total handover latency
    • 

    corecore