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ABSTRACT 
 
 

We explore radio resource allocation and management issues related to a large-

scale heterogeneous (hetnet) wireless system made up of several Radio Access 

Technologies (RATs) that collectively provide a unified wireless network to a diverse set 

of users through co-ordination managed by a centralized Global Resource Controller 

(GRC). We incorporate 3G cellular technologies HSPA and EVDO, 4G cellular 

technologies WiMAX and LTE, and WLAN technology Wi-Fi as the RATs in our hetnet 

wireless system. We assume that the user devices are either multi-modal or have one or 

more reconfigurable radios which makes it possible for each device to use any available 

RAT at any given time subject to resource-sharing agreements. For such a hetnet system 

where resource allocation is coordinated at a global level, characterizing the network 

performance in terms of various conflicting network efficiency objectives that takes costs 

associated with a network re-association operation into account largely remains an open 

problem. Also, all the studies to-date that try to characterize the network performance of a 

hetnet system do not account for RAT-specific implementation details and the 

management overhead associated with setting up a centralized control. We study the radio 

resource allocation problem and the implementation/management overhead issues 

associated with a hetnet system in two research phases. In the first phase, we develop cost 

models associated with network re-association in terms of increased power consumption 

and communication downtime taking into account various user device assumptions. Using 

these cost models in our problem formulations, the first phase focuses on resource 

allocation strategies where we use a high-level system modeling approach to study the 
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achievable performance in terms of conflicting network efficiency measures of spectral 

efficiency, overall power consumption, and instantaneous and long-term fairness for each 

user in the hetnet system. Our main result from this phase of study suggests that the gain 

in spectral efficiency due to multi-access network diversity results in a tremendous 

increase in overall power consumption due to frequent re-associations required by user 

devices. We then develop a utility function-based optimization algorithm to characterize 

and achieve a desired tradeoff in terms of all four network efficiency measures of spectral 

efficiency, overall power consumption and instantaneous and long-term fairness. We show 

an increase in a multi-attribute system utility measure of up to 56.7% for our algorithm 

compared to other widely studied resource allocation algorithms including max-sum rate, 

proportional fairness, max-min fairness and min power. The second phase of our research 

study focuses on practical implementation issues including the overhead required to 

implement a centralized GRC solution in a hetnet system. Through detailed protocol level 

simulations performed in ns-2, we show an increase in spectral efficiency of up to 99% 

and an increase in instantaneous fairness of up to 28.5% for two sort-based user device-to-

Access Point (AP)/Base Station (BS) association algorithms implemented at the GRC that 

aim to maximize system spectral efficiency and instantaneous fairness performance 

metrics respectively compared to a distributed solution where each user makes his/her 

own association decision. The efficiency increase for each respective attribute again 

results in a tremendous increase in power consumption of up to 650% and 794% for each 

respective algorithm implemented at the GRC compared to a distributed solution because 

of frequent re-associations.   
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CHAPTER ONE 
 

INTRODUCTION 
 

 
Advances in wireless technology as well as in microelectronics and battery 

technology have helped to connect the world in unprecedented ways. According to recent 

PEW surveys, 85% of Americans use a cell phone, 43% of them access the Internet with 

their cellular device, and at least 35% of them own a smartphone [1-2]. It is expected that 

by 2013 multimodal smartphones will overtake PCs as a means to access the Internet [3]. 

Ericson’s most recent Traffic and Market Data report predicts that global mobile data 

traffic will grow tenfold by 2016. The number of Wi-Fi hotspots will triple by 2015 [4]. 

The demand for wireless access goes beyond cellular device access. It is expected that 

application specific domains such as eHealth, smart grid, intelligent transportation 

systems, and environmental sensing will lead to potentially very large scale adoption of 

Machine-to-Machine technology [5]. The Internet community has identified an ‘Internet 

of Things’ concept where the internet will have to support a tremendous number of 

devices, in particular ‘machines’ that require wireless connectivity [6-7]. In part, due to 

this exponential growth, the FCC has projected that the nation’s wireless operators will 

face a 275 MHz spectrum deficit by 2014 if no new spectrum is made available for 

broadband usage; this has motivated federal mandates to add 500 MHz of spectrum [8]. 

However, studies show that while areas of spectrum are over-utilized, there are areas of 

spectrum that are under-utilized [9-10]. This under-utilization of spectrum has renewed 

interest in techniques or paradigms such as co-operative communications, symbiotic 

networking, cognitive networking, and dynamic spectrum access which attempt to 
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improve spectral efficiency through co-operation at the radio level [11-28]. While 

symbiotic networking, cognitive networking, and dynamic spectrum access methods 

focus on improving efficiency from the bottom up with regards to the OSI stack, 

heterogeneous wireless networks represent methods of co-operation driven from the top 

down. This latter heterogeneous wireless networks approach is the focus of our study. 

1.1 Terminology 
 

We define the term Autonomous Wireless System (AWS) to mean an independent 

wireless network that is administered by a single management authority, such as a cellular 

operator/carrier. We simplify our discussion by assuming that an AWS implies one RAT. 

Therefore, an organization’s 802.11 network or a public Wi-Fi hotspot are both examples 

of a single AWS. A large LTE-Advanced network that internally uses heterogeneous 

components such as relays or picocells is also a single AWS. We define a heterogeneous 

wireless network (referred to as a hetnet) as a wireless system that typically involves more 

than one RAT and involves more than one AWS. From the user device perspective, we 

use the term cognitive and reconfigurable device interchangeably. Each 

cognitive/reconfigurable device is capable of connecting to and supporting data 

transmission over more than one RAT. Our definition of a cognitive device (or radio) 

differs slightly from the generally accepted version of a cognitive radio that identifies it as 

“a radio frequency transceiver designed to intelligently detect whether a particular 

segment of the radio spectrum is in use, and to jump into (and out of) the temporarily 

unused spectrum very rapidly, without interfering with the transmission of other 

authorized users” [21]. In our work, we assume that a single management authority (such 
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as AP/BS) for each AWS already deals with spectrum usage details and so our cognitive 

devices are not required to sense and find open spectrum, but rather they need to be 

capable of switching access modes as required by the decision-making entity.   

1.2 Research Motivations and Direction 
 

Due to widespread deployment of wireless access technologies, it is quite common 

for any geographical location to be covered by more than one wireless network. The 

number of wireless networks in any given area is expected to grow for at least the 

following reasons: the trend for open Wi-Fi access will continue; RATs involving open 

spectrum are likely to become available; and as 4G evolves, the number of legacy systems 

will grow. So a user device at any given location will have multiple connectivity options; 

the number of connectivity options per device will be limited by the number of radios 

equipped on the device and in case of cellular networks, the network usage agreement 

(subscription) the user has signed up for. While emerging user devices are expected to 

support a multitude of wireless access methods, the current access methods require the 

user to select the active access network either by purchasing an appropriate handset (and 

service) or, in the case of multimodal smartphones, by manually selecting the access 

network. Once the user selects the access network, each network attempts to achieve the 

best performance within its own network, generally ignoring impacts of co-located 

wireless networks. Localized resource allocation decisions will usually not lead to optimal 

resource usage. For example, [29] shows that the ‘selfish’ approach can result in non 

Pareto-optimal bandwidth allocation as compared to the case where a centralized entity 

performs network-wide resource allocation. A non Pareto-optimal allocation is one such 
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that, there exists another feasible allocation where at least one user gets more bandwidth, 

and all others get at least the same bandwidth. Significant improvements in efficiency 

result when the resource management process jointly considers the distribution of 

resources across network technologies, reaping the benefits of multi-access network 

diversity. A fundamental motivation of our research is that enhancing access and use of 

spectrum requires a combination of cognitive device capabilities AND a component of the 

resource allocation control that operates at the global level. Inherent in this problem is 

ensuring the methods scale and co-exist with standards-based equipment.   

We address the very timely issue of how multiple AWSs can co-operate and 

collectively guide agile or reconfigurable devices to improve the efficiency with which 

spectrum is used by seamlessly directing these devices to select the most efficient RAT 

available among a number of possible RATs. To achieve this goal and to focus the 

research, our work addresses how one can build large-scale unified wireless networks that 

leverage sophisticated device modalities. We assert two necessary assumptions: 1) each 

user device is capable of supporting multiple RATs offering varying degrees of service 

and quality attributes that the network is aware of, and through the use of a centralized 

GRC, the network can instruct the device to change its access mode as needed to enhance 

the efficiency by which spectrum is utilized; 2) incentives are in place motivating 

independent AWSs to co-operate to provide users a network with enhanced coverage and 

performance, which is better than what could be achieved by any single AWS. 

To ground the research to current state of the art, we use several illustrative 

examples. In the first example, “Wi-Fi offloading” refers to how cellular systems 
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internetwork with 802.11 Wi-Fi networks. Currently, cellular systems leave the choice of 

access to the end user; however, cellular operators would prefer their customers to use 

Wi-Fi whenever available. The benefits from this approach are multi-fold. First, the 

cellular operator saves the expensive macro-cell capabilities for the truly mobile members 

of the cell. Second, the performance for low mobility, indoor members of the cell is 

improved by avoiding indoor penetration issues, thus significantly improving overall 

network performance. While some commercial carriers (e.g. T-Mobile and others) have 

already experimented with this approach, maintaining a seamless transition between the 

networks has proven elusive to-date because the Wi-Fi network is typically out of the 

operator’s control [30]. The second example relates to femto-cell deployments, which 

have been proposed as a method to increase spectral efficiency by supplementing the 

macro-cell with an overlay of smaller, co-operative networks [31-32]. A broadband 

access network is utilized to backhaul the cellular traffic back to the wireless operator. 

The two examples are similar in spirit as they attempt to improve the connectivity of 

handheld devices and to offload traffic from the macro-cell. Both examples illustrate a 

clear direction - independent networks co-operating. Note that the femto-cell example 

requires advanced interference management as both the femto-cell and macro-cell utilize 

the same frequency band. Our work is closer to the Wi-Fi offloading example as we 

assume all RATs in our hetnet system operate on a separate frequency band and hence do 

not interfere with other co-located RATs. 

Another scenario of co-operation allows users of one cellular operator access to 

another operator’s infrastructure through peering agreements. The wired Internet is based 
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on co-operative agreements between service providers. The economics related to wireless 

networks is very different. There are FCC guidelines that identify roaming arrangements 

between wireless operators when infrastructure is not available. However, the rules are 

easily subverted by wireless operators charging exorbitant roaming rates. A core 

conjecture motivating our research is that network co-operation between wireless 

operators would benefit end users and in turn provide new economic opportunities for 

operators. Throughout our work, we do not show an increase in (monetary) profit for 

network operators, which usually drive any resource sharing agreements. Rather, we 

assess the benefits of co-operation by showing an increase in achieved performance in 

terms of network efficiency measures of spectral efficiency, instantaneous and long-term 

fairness, and overall power consumption. 

1.3 Research Objectives 
 

The overall research related to the implementation of a large-scale hetnet wireless 

system is divided into two phases. The first phase focuses on the resource allocation 

problem in a hetnet wireless system which concentrates on balancing the conflicting 

network efficiency objectives of maximizing spectral efficiency, maximizing 

instantaneous and long-term fairness, and minimizing overall power consumption. While 

there have been several works that focus on the network selection problem in a 

heterogeneous wireless network based on multiple performance objectives [29,33-40], the 

work in [29,33] comes closest in terms of the proposed centralized solution and the 

network efficiency parameters considered in our work. The work in [29] proposes a 

generalized proportional fairness resource allocation scheme that obtains an acceptable 
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tradeoff between throughput and user fairness for a system that makes user device-to-BS 

association decisions on a global level. In [33], the authors propose a vertical handover 

decision algorithm implemented at a centralized handoff controller that tries to attain a 

tradeoff in terms of the conflicting objectives of maximizing collective battery lifetime of 

user devices and the load balancing criteria of APs/BSs. However, none of these works 

account for costs associated with a network re-association operation in analyzing their 

proposed solutions. We define network re-association operation as a process a user device 

has to undergo to re-establish wireless connectivity when it switches its association from 

one AP/BS to another AP/BS. The use of network re-association cost models in analyzing 

achievable performance in terms of conflicting network efficiency measures of spectral 

efficiency, overall power consumption, and instantaneous and long-term fairness for each 

user in the hetnet system is the main focus of our work conducted in first phase of 

research study. Within the first phase of our work, we perform two studies that have 

different research objectives. For the first study, using a heuristic resource allocation 

algorithm, we address the following research questions: What impacts do various network 

topologies and user device assumptions have on achieved network efficiency measures of 

spectral efficiency and overall power consumption? What impact does the number of re-

associations under different network co-operation models have on overall power 

consumption? How many reconfigurable radios are required per user device to achieve 

the benefits of network co-operation? For the second study, using a limited set of network 

topologies and user device assumptions, we use an optimization-based resource allocation 

approach where we address the following research questions: How can the resource 
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allocation procedure achieve desired tradeoffs in terms of all four conflicting network 

efficiency objectives? How do the achieved tradeoffs compare to the network efficiency 

performance measures achieved by traditional algorithms proposed for hetnet systems?  

The second phase of our research study focuses on practical implementation 

issues including the modeling of overhead required to implement a centralized GRC 

solution in a hetnet system. The IEEE 802.21 framework, which emerged from the 

Always Best Connected (ABC) concept, has been used as a basis for the control plane 

required for a hetnet system. The key goal of the ABC concept is to enable user devices to 

seamlessly switch to the best RAT when multiple RATs are available. Research on ABC 

and IEEE 802.21 has primarily focused on seamless handover to the best available 

network to minimize latencies associated with network re-association [41-48]. An 

analytical model to estimate the amount of overhead in a centralized hierarchical wireless 

system is studied in [49]. But to the best of our knowledge, no research that attempts to 

characterize the performance of a hetnet system in terms of network efficiency metrics 

accounts for RAT-specific implementation details and the management overhead 

associated with setting up a centralized control. For the second phase of our research 

study, we focus on using a detailed protocol level simulator, ns-2, to model each RAT and 

the control plane (message overhead due to centralized control) within the hetnet system 

using IEEE 802.21’s media independent handover function. Using this setup, we address 

the following research questions: What are the performance gains for a centralized 

solution in a hetnet system compared to a distributed solution in terms of spectral 

efficiency and (instantaneous and long-term) fairness? What technical challenges are 
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associated with the implementation of a centralized hetnet solution? How much increase 

in power consumption is caused by network re-associations for a centralized solution 

compared to a distributed solution? How much overhead is caused by the centralized 

solution relative to the overall system (data) throughput?  

1.4 Dissertation Outline  
 

The rest of the dissertation is organized as follows. We present relevant 

background related to radio resource management architectures/frameworks and resource 

allocation techniques for hetnets in Chapter 2. We present our system description in 

Chapter 3 where we describe our system model, network co-operation model, and define 

our network performance measures. We present the work focused on resource allocation 

problem considered in the first phase of our research study in Chapter 4. We present the 

work related to practical implementation issues, such as modeling the overhead required 

for a centralized GRC solution, conducted in the second phase of our research study in 

Chapter 5. We conclude our work in Chapter 6. 
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CHAPTER TWO 
 

BACKGROUND 
 
 

The creation of a hetnet system managed by a centralized GRC requires 

identifying two solutions: 1) overhead management 2) resource allocation techniques. The 

overhead management involves information exchange between the user devices, resource 

controllers (BS/AP) of each RAT and the GRC. Once the information related to each 

RAT and user device is available at the GRC, the GRC makes the user device-to-AP/BS 

association decisions based on the implemented resource allocation procedure. We 

provide an overview of radio resource management frameworks that establish guidelines 

to manage overhead in a hetnet system and provide a literature survey on various resource 

allocation techniques proposed for a hetnet system in this chapter.      

2.1 Radio Resource Management Frameworks 
 

At the network level, IEEE and 3GPP standardization bodies have suggested 

architectures and frameworks to support hybrid or heterogeneous networks [50-52]. A 

survey of these architectures has been provided in [52]. Recent proposals have been based 

on the media independent handover function defined by the IEEE 802.21 standard which 

provides a framework to support seamless mobility through networks based on different 

radio access technologies without the need to restart the radio connection every time the 

mobile moves to a new network [50]. Another relevant standard, IEEE P1900.4, defines 

building blocks for enabling coordinated network-device distributed decision making, 

which will aid in the optimization of radio resource usage, including spectrum access 

control, in heterogeneous wireless access networks [51]. Hierarchical resource managers 
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have been proposed by the Common Radio Resource Management, Joint Radio Resource 

Management and Multi-access Radio Resource Management schemes studied by the 

3GPP group. In these hierarchical schemes, and also in our proposed system, the local 

resource managers of different wireless technologies interact with a centralized entity to 

jointly optimize the process of resource allocation. The presented IEEE and 3GPP 

frameworks have been used as basis for building heterogeneous wireless systems [53-55]. 

Finally, perhaps the most relevant frameworks are the recent standards being developed by 

the IETF and 3GPP communities to support ‘flow mobility’ as a mobile user roams over 

multiple wireless access systems [56-58]. 

To fully benefit from the emerging hetnets concept where multiple RATs are 

managed by a centralized resource coordinator, there is also a need for efficient design-

time and run-time reconfigurable platforms. Numerous reconfigurable architectures have 

been proposed spanning different technologies including application specific instruction 

set processors (ASIPs), field programmable gate arrays (FPGAs), and digital signal 

processors (DSPs). Recently, multi-processor systems on chip (MPSoC) architectures 

have evolved rapidly in the race of high performance embedded computing [59], 

especially in applications that require a flexible computing structure that can be 

reconfigured to handle various applications. A common design metric among all 

platforms is reducing power consumption that restricts both the capabilities of the device 

and the design choices that are available. Towards that end, numerous techniques have 

been developed to optimize power consumption at different levels including algorithm, 

system, architecture, and circuit levels [60-61]. Hence, enough progress has been made at 
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both the system architecture level and at the user device level to make the implementation 

of a real hetnet system managed by a centralized controller feasible in the near future.  

2.2 Resource Allocation: Scheduling Perspective 
 

An inherent component of a resource allocation method is the objective or the 

strategy that is used to guide the allocation decisions. We consider the resource allocation 

objectives of maximizing spectral efficiency (or system throughput), instantaneous and 

long-term fairness, and overall power consumption. The majority of resource allocation 

approaches for wireless networks consider trade-offs between throughput maximization 

and fairness objectives while allocating resources to competing users. There are two 

generally accepted resource allocation policies for wireless networks: max-min fairness 

and proportional fairness. Max-min fairness resource allocation procedure, which can be 

obtained via progressive-filling algorithm, allocates rates to users such that it is not 

possible to increase the rate of any user in the system without decreasing the rate 

allocated to any other user who is receiving an already lower or equal rate [62]. This 

approach tries to maximize fairness among rates allocated to all users in the system, but in 

doing so sacrifices achievable spectral efficiency. Proportional fairness resource 

allocation procedure maximizes the sum of the log of rates allocated to each user in the 

system [63]. This allocation procedure is designed to take advantage of multiuser 

diversity while maintaining comparable long-term fairness for all users. This procedure is 

an accepted tradeoff in terms of maximizing throughput and long-term fairness objectives 

and is implemented in current cellular systems.   

Current cellular systems deploy a hierarchy of resource controllers. Each device, 
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along with its assigned base station, independently tries to optimize the resource 

allocation process within its own domain, generally ignoring impacts of co-located 

heterogeneous wireless networks. Localized resource allocation decisions will usually not 

lead to optimal resource usage. A key motivation for our work is the fact that most 

current design practices still involve building independent RATs. The work in [29] 

recognizes that while a significant amount of research has explored the use of 

proportional fairness for resource allocation in wireless systems, all studies have focused 

on fairness maintained by a single base station. The authors share our motivations that the 

association of devices to specific networks must be done at a global level in order to 

maximize network efficiency. 

Moreover, proportional fairness scheduling does not satisfy minimum 

instantaneous data rate requirements of real-time traffic, as it allocates all the resources in 

a scheduling interval to the user device with the highest achievable ratio of instantaneous 

to average data rate [64]. Today’s mobile internet applications, such as voice, video, 

gaming and social networking services, have diverse traffic characteristics and, 

consequently, have different Quality of Service (QoS) requirements. As a result, a QoS 

framework is a fundamental component of current 4G and next generation wireless 

networks. In addition to the best-effort service, 4G standards LTE and WiMAX define 

various service classes, such as Guaranteed Bit Rate (GBR), Unsolicited Grant Service 

(UGS) and Real-time Polling Service (rtPS), which have minimum data rate requirements 

per scheduling interval [65]. So instantaneous fairness metric has to be considered by any 

resource allocation procedure intended for future hetnet systems.   
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At the same time, environmental concerns and user device requirements have 

elevated the importance of energy efficient networks and devices. As wireless operators 

have learned, a handheld device’s battery efficiency is a very visible attribute of an 

operator’s services [66]. Unfortunately, in many situations, methods for improving 

spectral efficiency directly lead to an increase in power consumption. Recently, due to a 

renewed interest in ‘green communications’ and users’ increased expectations from 

mobile device battery life, researchers have started focusing on minimizing overall power 

consumption subject to fairness constraints and other network-efficiency requirements, 

such as throughput and delay [67-69]. However, to the best of our knowledge, none of 

these works have looked at the trade-offs surrounding power consumption, spectral 

efficiency, and fairness in large-scale heterogeneous wireless networks that involve 

reconfigurable user devices or that involve different assumptions surrounding the level of 

co-operation available between underlying independent wireless systems.  

2.3 Resource Allocation: Optimization Perspective 
 

Significant effort has gone into the joint optimization of the resource allocation 

process in a cellular (or WLAN) system constrained by combinations of fairness, spectral 

efficiency and power requirements [67-72]. More recent effort has gone into the ‘network 

selection’ problem which describes the method by which a client device determines when 

to initiate a vertical handoff and which network should be joined. Network selection 

algorithms for optimal service delivery over user devices capable of connecting with 

several RATs can be categorized into several strategies: decision function-based 

strategies, user-centric strategies, multiple attribute decision-making strategies, and fuzzy 
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logic and neural networks-based strategies. All these strategies use a set of attributes in 

the decision making process which are either related to the user or to the service provider. 

Some of the user-related attributes include achieved throughput by each individual user, 

battery lifetime of each mobile terminal, and QoS parameters such as packet delay, jitter 

and loss. Service provider-related attributes include load-balancing, throughput fairness 

amongst users, incurred cost per transmitted data byte, and overall revenue. The decision 

function-based strategies use a weighted utility function that incorporates both user-

related and service provider-related network selection attributes [33-34]. The user-centric 

strategies focus on one or more needs of the user to decide on the choice of current access 

network [35]. Multiple Attribute Decision Making (MADM) deals with the problem of 

choosing from a set of alternatives that are characterized in terms of their attributes. The 

most popular classical MADM methods are Simple Additive Weighting (SAW), 

Technique for Order Preference by Similarity to Ideal Solution (TOPSIS), and Grey 

Relational Analysis (GRA). A comparison of these models was established in [36] with 

bandwidth, delay, jitter, and bit error rate attributes. It showed that SAW and TOPSIS 

provide similar performance under all traffic classes examined. GRA provides slightly 

higher bandwidth and lower delay to interactive and background traffic classes. Fuzzy 

logic and neural network concepts are applied to choose when and to which network to 

hand-off among different available access networks when a decision problem contains 

attributes with imprecise information [37-38].  

All the strategies for network selection algorithms described in the previous 

paragraph make use of multiple user-related or network provider-related attributes. The 
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method to determine the relative importance of each attribute under consideration has 

significant impact on the solution space and the implementation complexity of the 

algorithm. Several related works have looked at multiple weight combinations of the 

attributes based on imprecise user preferences [34,39,40]. Other works have selected the 

attribute weights based on simulation results by determining the difference in magnitude 

of each attribute and then assigning each attribute equal importance [33,38]. In the multi-

attribute optimization based resource allocation study we perform in the first phase of our 

research, we reduce the solution space of our algorithm by using responses from network 

provider interviews and the Analytical Hierarchy Process (AHP) [73] to determine the 

relative weights of each attribute in our optimization function.  

Game theory has also been employed to model the network selection problem. 

The authors of [74] propose a network selection scheme to accommodate current demand 

and minimize handoff while meeting QoS requirements in a heterogeneous wireless 

network, comparing the proposed scheme to TOPSIS. The model in [75] consists of a 

game between access networks in a converged 4G environment, to decide which service 

requests should be accommodated by each access network. In [76], the authors study the 

dynamics of network selection in a heterogeneous wireless environment using 

evolutionary games. Game theory formulations model decision-making by autonomous 

independent agents, while in our work we focus on a central global resource controller. 

Still, the extensive literature on game theory for telecommunications (e.g., [77]) provides 

rich ideas on network and user utility when considering multiple attributes for 

optimization. 
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2.4 Resource Allocation: Implementation Perspective 
 

From an implementation perspective, the interaction between various resource 

management entities in the hetnet system has to be coordinated through standards-based 

framework. The resource management entities include GRC, BSs and APs of each RAT 

in the hetnet system. Also, the level of interaction between these entities and the 

flexibility in resource allocation decisions depends on the assumptions made about the 

scheduling mechanism implemented by each RAT in the system. Each cellular RAT 

employs a flexible scheduler such as deficit weighted round robin, strict-priority, or 

weighted fair queuing, which can be tuned to achieve various performance objectives 

such as max-min fairness or proportional fairness or even any other custom objective 

[78]. On the other hand, Wi-Fi by default has a pre-defined scheduler that implements a 

Distributed Co-ordination Function (DCF) that employs CSMA/CA with binary 

exponential backoff algorithm. Moreover, the Wi-Fi AP implements a First-In First-Out 

(FIFO) queuing system where each arriving packet is served in order. It has been shown 

that the DCF MAC and FIFO queuing mechanism implemented in a Wi-Fi system leads 

to equal throughput (max-min fairness) for all associated user devices on a long time-

scale [79-80]. Other schemes that obtain proportional fairness objective by achieving 

airtime fairness in Wi-Fi networks have been proposed [81-83]. But these schemes have 

not been implemented in practice on a large scale yet. The GRC has to account for these 

RAT-specific implementation details while performing the user device-to-AP/BS 

association computations at the global level.   

The resource allocation studies for a hetnet system based on a centralized 
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controller to-date have not modeled these RAT-specific implementation details and the 

overhead required to set up the centralized control. A few studies try to model the 

overhead associated with a hetnet system [41-48]. However, these studies deal with the 

topic of seamless transition between RATs rather than the optimization of resource 

allocation process. Moreover, such studies employ a trigger-based mechanism where a 

user device only sends a link parameter report to the centralized controller if its current 

connectivity condition (usually the RSSI) drops below a certain threshold. In the second 

phase of our research study, we estimate the overhead required for a centralized solution 

where each user device in the system sends a link parameter report for all its radio 

interfaces periodically. We require periodic dissemination of link parameter information 

to reap the maximum benefit of multi-access network diversity as GRC can make 

efficient user device-to-AP/BS association decisions more frequently based on each 

user’s time-varying connectivity options. 
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CHAPTER THREE 
 

SYSTEM DESCRIPTION 
 
 

3.1 System Model 
 

Figure 3.1 illustrates our generic hetnet system model. The system consists of user 

devices (also referred to as cognitive user equipment, or cUE) that can connect to one or 

more AWS. Each AWS comprises of one or more APs or BSs of the same RAT. There 

are two resource-controlling entities in our proposed system: 1) GRC present in cellular 

carrier’s backend network 2) AP/BS of each RAT. A GRC entity is present in cellular 

carrier’s backend network, providing guidance to both the set of independent systems 

that form the hetnet wireless system and also to the reconfigurable devices, instructing 

them to reconfigure in order for the system to meet global performance objectives or 

policy requirements. The GRC makes decisions on large time-scales (seconds) using 

average statistics assigning each user device one or more AP/BS to use for connectivity. 

The APs/BSs operate over small time-scales (milliseconds) to manage the resources of 

their corresponding RAT and account for short-term fluctuations in connectivity 

parameters. The GRC calculates cUE-to-AP/BS mappings (and supported data rate per 

mapping) and relays the results to each AP/BS as well as the Local Resource Controller 

(LRC) of each user device. The AP/BS uses this information to establish active 

connections with the corresponding devices and in making its own scheduling decisions. 

The LRC uses this information to configure its radios to the specified RAT(s). 
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Figure 3.1: System model 
 

The radio link block pictured in Figure 3.1 represents the MAC and physical 

layers that operate over a portion of the spectrum. A radio is implemented using a 

combination of custom hardware along with programmable hardware based on 

technologies such as FPGAs, DSPs, or multi-core ASIPs. User data is tunneled over the 

unified network cloud via a single ingress/egress point. Entities such as Packet Data 

Network Gateway (PDG), which includes both Packet Gateway and Signaling Gateway, 

for 3GPP LTE’s System Architecture Evolution (SAE) represent the termination 

(ingress/egress) point for the tunnel. Additional entities such as Mobility Management 

Entity (MME) in the carrier’s backend network adhere to the functionality described in 

3GPP LTE’s standards document [84] and help manage information related to each user 
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in the system while the user is transitioning from one RAT to another. The mapping of 

our generic system model to the 3GPP LTE’s SAE is presented in Figure 3.1.  

From an operational perspective, the cUE first must sense for various available 

RATs and register with the GRC before transmitting any data. We show the procedural 

flow example of this process in Figure 3.2. First, the cUE senses and scans for available 

networks and their utilization. Selecting one of the available RATs, the cUE obtains an IP 

network connection, which it uses to communicate with external hosts. We assume that 

each user device tries to use the most efficient RAT available initially and follows the 

following preference order: Wi-Fi, 4G (LTE/WiMAX), 3G (HSPA/EVDO). If the cUE 

cannot establish a connection to its first preference due to reasons such as very high 

network load or interference, then it tries to connect to its second preference and this 

procedure continues until the cUE can establish an initial IP network connection. Next, 

the cUE discovers, registers, and communicates with the GRC application server, which 

we assume uses standard discovery and registration procedures as described in [85]1. 

After a connection with the GRC is established, the cUE delivers periodic sensing 

information of available networks to GRC. Upon receiving this periodic sensing 

information from the cUE, the GRC is able to calculate the cUE-to-AP/BS mappings and 

the rate assignment per mapping. This mapping information is then relayed to each cUE, 

which tunes its Reconfigurable Radios (RRs) to the appropriate RATs.  

                                                
1
Registration with an application server involves a combination of DNS lookups with Diameter authentication 

procedures (RFC 3588), and SIP signaling. 
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Figure 3.2: Resource allocation procedure 
 

After each RR is configured according to the cUE-to-AP/BS mapping, radio links 

are established with the associated RATs for data transmission. A pictorial representation 

of the transmission plane is shown in Figure 3.3. From the perspective of the cUE 

applications, one TCP/IP stack is managed and scheduled over one or more radio links. 

The Radio Link Aggregation function is used for packet resequencing and reordering data 

from each of the RRs. Each RR manages its own radio link and associated protocol with 

the RATs. User traffic is managed by the GRC (for traffic from the external network to 

the user device) and by the user device’s local resource manager (for traffic flowing from 

the user device to the external network) on a service flow basis. A service flow has two 

components: a traffic descriptor and service attributes. The traffic descriptor indicates 

basic parameters such as allowed sustained flow rates, peak flow rates, etc. The service 

attributes define the type of service that will be provided including a priority level (other 

attributes might be defined). Below the Radio Link Aggregation layer, user traffic is 

managed by the access methods associated with a particular AWS. The Radio Link 
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Aggregation layer implements functionalities such as traffic splitting/merging for 

outbound/inbound traffic that is required if multiple radio links are used concurrently. We 

define the event that corresponds to changing RATs for a particular cUE as a 

reconfiguration handoff. A reconfiguration handoff is a vertical handoff that requires a 

radio to reconfigure itself. At the hardware level, the cUE will report a cost associated 

with this reconfiguration handoff. That cost might be either a reduced QoS while the 

handover is performed or a hard loss of service while switching protocols.  

 

Figure 3.3: Data transmission plane 
 

3.2 Network Co-operation Model 
 

Our approach in the proposed research is based on moving away from the current 

paradigm of different service providers “locally” optimizing spectrum usage to a new 

paradigm of “global” spectrum usage optimization. We envision two economic models 

that could support this move: a carrier-centric model and an Internet model. In the 

carrier-centric model, a service provider offers services for specific markets where the 
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cellular carrier might own and operate portions of the physical network and possibly 

broker ‘peering’ arrangements with other wireless providers. Customers subscribe to a 

single cellular operator and gain access to resources or services the subscriber has 

purchased. An alternative economic model follows the current Internet model: 

organizations own and operate autonomous networks. Unification occurs through an 

overlay network that can be achieved through a combination of standard protocols, 

standard services, and incentive/reward mechanisms that promote peering and 

collaboration. While both are viable models from an engineering standpoint, a successful 

model has to encompass both economic viability and engineering feasibility. Paradigm 

shift is likely to be viable only when the technology layer proposed in the research is 

compatible with the “economic layer” of the network as the actions of network users and 

providers are driven by economic incentives [86]. However, the economic model is not 

the focus of our work. 

Based on the network co-operation model where cellular providers use peering 

agreements (which can be based on either carrier-centric or Internet economic model) to 

allow their subscribers to use other cellular provider’s networks, we define two use-cases 

to increase the coverage and capabilities of a hetnet wireless system. Both use cases 

assume that two cellular wireless providers (we refer to each as carrier 1 and carrier 2) 

provide wireless coverage within the same geographic area. The two use cases differ in 

the level of co-operation that exists between the two carriers. Use case 1 involves x 

mobile user devices that can connect only to carrier 1’s cellular network and x’ nomadic 

user devices that can connect to carrier 1’s cellular and Wi-Fi network. Use case 1 also 
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has y mobile user devices that can connect only to carrier 2’s cellular network and y’ 

nomadic user devices that can connect to carrier 2’s cellular and Wi-Fi network. Use case 

2 allows any mobile user device to make use of the other carrier’s cellular network (in 

addition to it’s own carrier’s cellular network) and allows any nomadic user device to 

make use of the other carrier’s cellular and Wi-Fi network (in addition to it’s own 

carrier’s cellular and Wi-Fi network). 

3.3 Performance Measures 
 

The main goal of our proposed centralized solution that operates on a global level 

is to increase the overall network efficiency due to the benefits of multi-access network 

diversity. However, network efficiency can be characterized in terms of several 

conflicting objectives and trying to optimize one objective might result in a very poor 

performance in terms of another objective. Through our focus on the resource allocation 

algorithms for a hetnet system in the first phase of our research, we quantify the tradeoffs 

achievable in terms of four network efficiency performance measures: spectral efficiency, 

long-term fairness, instantaneous fairness, and overall power consumption. We define 

each performance measure using the system model terminology given in Table 3.1.  

(i) Spectral Efficiency: The achievable system spectral efficiency for time interval 

[t, t+1], denoted !!, is represented as the ratio of the (data) rate allocated to each user in 

the system at time t to the total spectrum used and is presented in (3.1).  

                                                                                                                    !! =   
!!!  !∈!

!                                                                                                                                         (3.1) 
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Table 3.1: System Parameters 
Parameter Description 

! Set of BSs/APs for all RATs 
! Set of Users 
!"! Set of users that are blocked by the admission control procedure at time t 
!!"!  Assignment variable – Determines whether radio ! ∈ ! of user ! ∈ ! is 

on or off at time t 
!!"!  Rate (bits/s) allocated to user ! ∈ ! by BS/AP ! ∈ ! at time t  

!!",!"#!  Maximum achievable rate (bits/s) for user ! ∈ ! through BS/AP ! ∈ ! 
at time t 

!!",!"#$!  Normalized rate ∈ [0,1] allocated to user ! ∈ ! by BS/AP ! ∈ ! at time t 
!!!   Total rate allocated to user ! ∈ ! at time t 
!! Achievable system spectral efficiency (bits/s/Hz) for time interval [t, t+1] 
! Total spectrum (Hz) used by the system  
!!"!  Maximum data (in bits) that can be transferred by radio ! ∈ ! of user 

! ∈ ! during time interval [t, t+1] 
Τ! Vector containing minimum data rate requirement of each user ! ∈ ! to 

support real-time traffic for time interval [t, t+1] 
!!"!  Total energy consumed (in Joules) by radio ! ∈ ! of user ! ∈ ! during 

time interval [t, t+1]  
  !!!  Total energy consumed (in Joules) by cUE of user ! ∈ ! during time 

interval [t, t+1] 
!! Maximum number of usable radios for user ! ∈ ! for each time step 

 

The rate allocated to user ! ∈ ! at time t, denoted !!!, is presented in (3.2) and 

depends on two parameters:   !!"!  - the cUE-to-AP/BS assignment variable at time t, and 

!!"!  - the rate allocated to user ! ∈ ! by AP/BS ! ∈ ! at time t. 

                                                                                                                !!! =    !!"! ∗ !!"!                                                                                                                           
!∈!

(3.2) 

 

Equation (3.2) ensures that the rate allocated to a user only depends on the rate allocated 

to a user’s radio that is currently associated to a RAT by summing the product of   !!"!  and 

!!"! . Note that !!"!  is a function of the resource blocks assigned to user ! ∈ ! by BS/AP 

! ∈ ! at time t and the supported modulation and coding scheme (MCS). A resource 

block (RB) is a minimal resource allocation unit. Different RATs use different 
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terminology when defining a minimal resource allocation unit (for example, Wi-Fi lets 

users compete for the wireless medium using the CSMA/CA mechanism and lets the 

contention winner hold the wireless medium for the time necessary to transmit a data 

frame and ACKs plus any optional control frames associated with virtual carrier sensing; 

OFMDA-based LTE and WiMAX group twelve consecutive subcarriers in the frequency 

domain and six or seven symbols in the time domain to form a minimal resource 

allocation unit). The term for minimal resource allocation unit used by 3GPP based 

networks (LTE, HSPA) is called a resource block. To unify terminology across all RATs, 

this term is chosen to represent a minimal resource allocation unit for all RATs in our 

work. 

(ii) Long-Term Fairness: The fairness metric relates to the difference in rates allocated to 

each user. In general, since best-effort traffic such as FTP has very lenient or no delay 

constraints, the long-term fairness utility is computed using rates allocated to each user 

for all time steps under consideration for any study (thousands of seconds). This metric 

allows resource allocation algorithms to be fair while starving some users for a period of 

time to take advantage of multiuser diversity where better connected users are given more 

resources as long as each user eventually gets a fair share of resources (assuming average 

channel condition for each user in a long run will approximately be the same). We apply 

a direct mapping of Jain’s Fairness Index [87] to compute the long-term fairness 

metric,  !, as presented in (3.3).   

                                                                                                            ! =   
!!!!!"#

!

! ∗ !!!!!"#
!  
                                                                                                        (3.3) 
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(iii) Instantaneous Fairness: The next generation wireless networks are designed to 

support user traffic that belongs to several different priority classes. The instantaneous 

fairness metric applies to high priority traffic classes such as GBR, UGS and rtPS defined 

by LTE and WiMAX standards, which have minimum data rate requirements per 

scheduling interval. We assume that the minimum data rate requirement of each user in 

the system per GRC scheduling interval is represented by the vector Τ! = [Τ!! …Τ|!|! ]. For 

each GRC scheduling interval t, any user ! ∈ ! that is allocated enough resources to 

achieve a data rate of at least Τ!!  bits/s can satisfy the needs of his/her real-time 

applications. To satisfy the real-time traffic demand of as many users as possible, an 

admission control procedure is required for the resource allocation algorithm. Any user 

! ∈ ! that cannot achieve a data rate of least Τ!!  bits/s for scheduling interval t is 

considered to be a blocked user and is denoted by BU!. For each scheduling interval t, the 

proportion of satisfied users is used to compute the instantaneous fairness utility function, 

denoted !!"! , as described by (3.4). If no users are blocked, the instantaneous fairness 

metric equals 1 and if all users are blocked, the instantaneous fairness metric equals 0. 

                                                                                                                !!"! = 1−   
!"!

!                                                                                                                                 (3.4) 

 

If support for only best-effort traffic class is assumed where there is no minimum 

data rate requirement, the instantaneous fairness metric can be computed using Jain’s 

Fairness Index, which is the technique used to compute the long-term fairness metric. 

However, instead of computing Jain’s Fairness Index for rates allocated to each user over 

large time-scales, Jain’s Fairness Index is computed for each scheduling interval t using 
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the rates allocated to each user for the corresponding scheduling interval to compute the 

instantaneous fairness metric, !!"! , as shown in (3.5). The final instantaneous fairness 

metric for any study is derived by taking an average of the computed Jain’s Fairness 

Index for each scheduling step. 

                                                                                                  !!"! =   
!!!!"#

!

! ∗ !!!!"#
!  
                                                                                                                      (3.5) 

(iv) Power Consumption: The power consumption of a user device depends on two 

main factors: hardware power consumption and amount of data transfer. For the initial 

work during the first phase of our research study, we compute the power consumption 

metric solely based on hardware power consumption costs to focus on differences in 

overall power consumption for various user device assumptions. For this work, we assume 

that user devices are equipped with radios that are either static or capable of 

reconfiguration. Static radios are equipped with one or more non-reconfigurable radios. A 

non-reconfigurable radio supports a limited level of adaptive capability, but provides the 

lowest energy consumption due to its custom nature. For example, a non-reconfigurable 

radio is able to support only one RAT, but it can operate using various MCSs supported by 

that RAT. A reconfigurable radio is fully adaptive, but consumes comparatively higher 

amount of power. If a reconfigurable radio moves from the coverage of one RAT to the 

coverage of another RAT, the GRC will instruct the radio to undergo a reconfiguration 

handoff, where the radio will reconfigure itself to support the new RAT.  

The radios (static or reconfigurable) are made of either ASIC, FPGA or a 

combination of ASIC and FPGA components. Depending on these components (ASICs or 
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FPGAs), the power consumption of radios will vary. For static radios, the power 

consumption is dominated by the dynamic power (Pdyn), which is consumed during regular 

circuit operation. The dynamic power for both ASIC (Pdyn,ASIC,a) and FPGA (Pdyn,FPGA,a)  

based radios for each AP/BS !   ∈ ! used in our study is presented in Table 3.2. The 

dynamic power of FPGAs (Pdyn,FPGA,a) for each AP/BS !   ∈ ! is estimated from [88]. The 

ratio used for Pdyn,FPGA,a:Pdyn,ASIC,a is 12:1 as recommended by an analysis performed in 

[89]. For reconfigurable radios, in addition to the dynamic power, there is another source 

of energy consumption which we label as reconfiguration energy (Erec,FPGA,a). Erec,FPGA,a is 

the energy that is consumed when the circuit of a reconfigurable radio is reconfigured 

from any AP/BS ! ≠ ! to support AP/BS !   ∈ !. The values for Erec,FPGA,a are computed 

based on the complexity of the RAT standard and the number of blocks that require 

reconfiguration. We consider only full reconfiguration of radios while computing 

Prec,FPGA,a values. The minimum reconfigurable block is defined as a data path container 

(DPC~13.5 KGates). Based on [88], the average reconfiguration power for each DPC (for 

a Xilinx Virtex II platform) is 234 mW. !!"#,!"#$,! represents the increase in energy 

consumption when ASIC components of radio !   ∈ ! are turned ‘on’ from an ‘off’ state. 

We assume that E!"#,!"#$,! is almost negligible compared to !!"#,!"#$,! and that !!"#,!"#$,!  

for Wi-Fi chipsets is much lower than that for cellular chipsets. The actual !!"#,!"#$,! and 

!!"#,!"#$,! numbers used in this study are presented in Table 3.2. 
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Table 3.2: Hardware implementation and power consumption statistics for current 
technologies 
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No. of Kgates 416 728 270 723 684 
No. of DPCs 31 53 20 53 50 

Pdyn,FPGA,a  
(Watts) 1.76 3 1.13 3 2.83 

Pdyn,ASIC,a 
(Watts) 0.15 0.25 0.09 0.25 0.24 

Erec,FPGA,a 
(Joules) 

7.25 12.4 4.68 12.4 11.7 

Erec,ASIC,a  
(Joules) 0.05 0.28 0.28 0.64 0.64 

 

To determine the portion of the radio implemented using FPGA and ASIC 

technology, we define a scalar β   ∈ [0,1] that represents the percentage of radio 

components manufactured using FPGA technology. The percentage of radio components 

manufactured using ASIC technology is 1− β. In addition, we use another scalar, 

λ   ∈ [0,1], which we define as impact of reconfiguration, to capture the effects of 

technical improvements in radio systems. λ = 1 represents using reconfiguration energy 

costs presented in Table 3.2. But as hardware evolves (or concepts such as partial 

reconfiguration gain momentum), these costs will go down. As a result of innovative radio 

design architectures, the reconfiguration energy consumption will only be a fraction of 

that presented in Table 3.2. The scalar λ captures this effect and as λ   → 0, the 

reconfiguration energy cost becomes almost negligible. Using these scalars and the 

power/energy consumption values presented in Table 3.2, the total power consumption 
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metric for our hetnet system can be calculated using (3.6), where !!"#,!" and !!"#,!"  

represent the percentage of (simulation) time user !   ∈ ! spends being connected to 

AP/BS !   ∈ !  and the average number of reconfigurations (per second) user !   ∈ ! 

experiences to support AP/BS !   ∈ ! respectively.  

!!"!#$   =    !!"#,!" !.!!"#,!"!",!   +    1−   ! .!!"#,!"#$,! +
!  ∈!  !  ∈!

 

                                                                                                !!"#,!" !.!!"#,!"#$,!   +    1−   ! .!!"#,!"#$,!                           (3.6)                                         

For the latter parts of our research study where we limit user device assumptions, 

we update our metric to incorporate both the energy consumption due to data transfer and 

due to hardware reconfigurations. From a RAT protocol standpoint, various schemes to 

transition into energy-efficient modes (such as deep sleep mode) have been developed 

when the radio is not transmitting/receiving any data traffic [90-92]. In deep sleep mode, 

the radios turn off most of the circuitry and hence consume negligible amounts of energy. 

As a result, we move to a model that is based on the amount of data transferred 

(transmitted/received) by a radio and remove the dynamic power component from the 

model, which assumes the radio circuitry always remains in a ‘normal’ power consuming 

state while it is connected to any RAT. We use a linear energy consumption model, 

which is similar to the model proposed in [93-94]. The energy consumption for user 

! ∈ ! during time interval [t, t+1], denoted as !!! ,  is computed using (3.7). The first 

energy consumption component, Et,a,  relates to the transfer energy component described 

in [94] and it depends on !!"! , the maximum number of data bytes that can be transferred 

by radio ! ∈ ! of user ! ∈ ! during time interval [t, t+1]. The second energy component, 
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Eo,a, represents the overhead energy incurred during a reconfiguration handoff and has 

two sub-components. The first sub-component, Erec,a, represents the extra energy that is 

spent by RRs in reconfiguring the hardware to transition to a new RAT. We assume an 

FPGA platform as our RR platform [95] and use energy consumption numbers 

represented by !!"#,!"#$,! in Table 3.2. The second sub-component, Eassoc,a, represents 

the extra energy that is spent associating with a new RAT and is similar to the ramp 

energy concept used in [94]. We summarize the energy consumption numbers for all the 

components in the new energy consumption model in Table 3.3. The overall energy 

consumption metric for each user for the entire simulation duration, !!, is computed by 

summing the energy consumption of the user computed for each time interval [t, t+1] 

using (3.7). The computed !! value for each user is summed and the sum is divided by 

the simulation duration to obtain average power consumption per user.  

 

                                                    !!! =    [  !!,!(!!"      ! )+ (!!"      ! − !!"!!!) ∗ (1− !!"!!!) ∗ !!,!]                                        
!"#

3.7  

Table 3.3: Energy consumption components for current technologies 
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0.007(x) 0.018(x) 0.018(x) 0.025(x) 0.025(x) 

Erec,a 
(Joules) 7.25 12.4 4.68 12.4 11.7 

Eassoc,a 
(Joules) 

5.9 3.2 3.2 3.5 3.5 

Eo,a 
(Joules) 

13.15 15.6 7.88 15.9 15.2 
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CHAPTER FOUR 
 

RESOURCE ALLOCATION 
 
 

For the first phase of our research study, we explore the resource allocation 

procedure implemented by the centralized GRC and study the tradeoffs surrounding 

network efficiency measures of spectral efficiency, long-term fairness, instantaneous 

fairness, and overall power consumption. Within the first phase of study, we first analyze 

the achievable tradeoffs in terms of network efficiency measures of spectral efficiency 

and power consumption based on different user device assumptions, network topologies 

and network outages. We then perform an optimization study in terms of all four network 

efficiency measures where we use a utility function-based and a weighted sum approach 

to optimize system performance in terms of all four network performance measures using 

a two-step resource allocation procedure. These two studies are the focus of this chapter 

and are presented in detail next. 

4.1 Problem Assumptions  
 

The hetnet system that we consider for this phase of work consists of Wi-Fi, LTE, 

WiMAX, HSPA and EVDO RATs, GRC, and reconfigurable (or multi-modal) user 

devices. We use a high-level system modeling approach to perform this phase of our 

research study. In doing so, we make the following assumptions: 

(i) Flexible Scheduler implementation at each RAT: The GRC computes user 

device-to-BS/AP association decision and the supported data rate per association 

mapping each scheduling interval. The association information is used by the user device 

to tune its radio to the corresponding RAT, and the data rate per association mapping is 
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used by the scheduler implemented at the AP/BS of each corresponding RAT to allocate 

appropriate amount of RBs to each connected user device. For this solution to be feasible, 

we use the underlying assumption that each RAT implements a flexible scheduler that 

can control the amount of resources allocated to each connected user device. For cellular 

RATs, this assumption is easy to incorporate in a real system as cellular systems are 

controlled by a centralized BS that implements a flexible scheduler such as deficit 

weighted round robin, strict-priority, or weighted fair queuing. Setting the weights of 

each queue to appropriate values ensures appropriate distribution of RBs to each 

connected user devices. For Wi-Fi RATs, this assumption is challenging to implement in 

a real system as Wi-Fi uses the distributed CSMA/CA scheduling. Extensions to the base 

802.11g protocol, such as 802.11e, have made it possible to provide four different levels 

of priority (and throughput) to user devices, but still fine-grained control required by our 

approach is not yet available in current Wi-Fi solutions. However, several studies have 

proposed the use of separate queues for each connected user device at the AP. Setting the 

congestion window (CWmin and CWmax) parameters for each queue appropriately results 

in the fine-grain control for RB distribution to each user device required by our solution 

[81,83]. We assume this functionality exists in the Wi-Fi APs used in our proposed 

solution. 

(ii) 25% overhead for each RAT for supporting messaging framework required 

for a centralized solution: Each RAT in our system uses an adaptive MCS. The signal 

strength achieved by various radios on a user device (which is based on the distance of 

the user device from the corresponding BS/AP) dictates the MCS used by the radios on 
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the device to connect to the corresponding BS/AP. The MCS dictates the maximum 

achievable data rate (r!",!"#!  parameter presented in Table 3.1) for each radio on each 

user device by determining the maximum number of bits that can be transmitted over 

each RB. However, to account for overhead required for supporting messaging 

framework in our proposed centralized solution, we deduct 25% RBs from each RAT, 

which reduces the maximum achievable data rate from suggested theoretical maximum 

data rates by 25% for each RAT. The details on maximum achievable data rates for each 

RAT in our study are presented in Tables A1-A5 in Appendix A.  

(iii) Each user device has three reconfigurable radios that can be used 

concurrently:  The number of radios equipped on a user device keep increasing with time 

as space and energy-efficient hardware architectures are constantly innovated due to 

Moore’s law. Usually, a user device today is equipped with at least a Wi-Fi radio and a 

cellular radio. The cellular technologies that are deployed in practice are based either on 

GSM (HSPA) or CDMA (EVDO) standard with the upcoming technologies such as 

LTE/LTE-Advanced and WiMAX/WiMAX-Advanced moving to a flat all-IP 

architecture. To be able to connect to each RAT that has been deployed in practice, we 

assume each user device is equipped with three reconfigurable (or multi-modal) radios.   

Moreover, in our study we consider the fractional association scenario where each user 

device can simultaneously use multiple radios to support various application data flows, 

and traffic from each data flow can be split over these radios in an intelligent manner. 

The fractional association scenario represents a more futuristic vision and clearly 

provides a better solution in terms of optimality than the integral association scenario 
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used in practice today, where only one radio can be used at any given time. The 3GPP 

frameworks such as Joint Radio Resource Management (JRRM), which defines traffic 

splitting service, and recent work related to multihoming capability using IETF protocols 

such as SCTP [96] indicate a strong interest for future support of fractional association 

scenario. We assume the use of such capabilities in our solution to support the fractional 

association scenario. 

(iv) The GRC operates on a one-second scheduling interval: The intent of our 

proposed solution is to let GRC make periodic decisions on large time scales (seconds or 

minutes), while the BSs/APs of each RAT make scheduling decisions on small time 

scales (milliseconds) to account for short-term fluctuations in connectivity conditions. 

While some of the settings are customizable for LTE and WiMAX, generally these RATs 

generate a schedule every 5 or 10 milliseconds. HSPA typically generates a schedule 

every 2 milliseconds and EVDO generates a schedule every 26.67 milliseconds. Wi-Fi 

typically assigns a channel to the user for 0.5 milliseconds to send one data frame (which 

includes the DIFS, Data, SIFS, ACK mechanism). The GRC performs global-level 

optimization (re-associations) and has to operate on larger-time scales to account for 

issues such as overhead/result propagation delay. So, to minimize actual overhead and to 

make sure that the user devices and BSs/APs of various RATs can use the decisions made 

by the GRC, a scheduling interval of 1 second is used for the GRC in our study. 

(v) Infinitely backlogged downlink data traffic: We consider data traffic flow in the 

downlink direction (from BS/AP to user device). For both best-effort and real-time 

traffic, we assume that the data connection queues supporting each traffic type for each 
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user device at the BS/AP are always fully backlogged. So all the resources allocated to 

each user device by the BS/AP are fully utilized.  

Using these five assumptions, we conduct two simulation studies. From a 

resource allocation standpoint, the first study is based on heuristic algorithm that 

considers all four network efficiency measures of spectral efficiency, instantaneous and 

long-term fairness and overall power consumption. The algorithm tries to achieve a 

balance in performance related to all these efficiency measures. However, benefits of 

network co-operation and tradeoffs achieved in terms of system spectral efficiency and 

overall power consumption based on different user device assumptions are the main 

objectives of this study. The second study is based on an optimization algorithm that 

achieves a balance in tradeoffs in terms of all four network efficiency performance 

measures. For this work, we assume that the reconfigurable radios present at user devices 

are fabricated using FPGA platform and we analyze the performance results in terms of 

all four network efficiency performance measures. 

4.2 Heuristic Algorithm Simulation Study 
 

We consider the presence of two major cellular carriers in a 2 * 2 km2 area that 

operate multiple RATs. We use EVDO (3G), HSPA (3G), WiMAX (4G), LTE (4G) and 

IEEE 802.11g (Wi-Fi) in our experiments as the representative RATs that current cellular 

carriers support. The 3G base stations (EVDO, HSPA) have a coverage radius of 1.50 

km. The 4G base stations (WiMAX, LTE) have a coverage radius of 1.0 km. The Wi-Fi 

APs have a coverage radius of 0.15 km. Network planning (the AP/BS location of each 

RAT in our network topology) has a significant impact on the achieved spectral 
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efficiency. If each carrier has a similar amount of network resources in a given area, the 

data rate allocated to the users of each cellular carrier is almost equal. But if one carrier 

has more network resources than the other carrier, then the data rate allocated to the users 

of the first carrier is much greater than the users of the second carrier. The impacts of 

sharing resources across carriers for these equal and unequal carrier resource scenarios 

will vary significantly. To study the effects of such differences in each operator’s 

network resources, we create two network deployment scenarios: 1) Balanced Network 

Topology 2) Unbalanced Network Topology shown in Figures 4.1 and 4.2 respectively. 

 
 

Figure 4.1: Balanced Network Topology 
 

 
 

Figure 4.2: Unbalanced Network Topology 
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In our balanced network topology, each cellular carrier deploys a 3G technology 

(EVDO – carrier 1, HSPA – carrier 2), a 4G technology (WiMAX – carrier 1, LTE – 

carrier 2) and 3 Wi-Fi APs in the 2 * 2 km2 grid. The 3G/4G base-stations are placed very 

close to the center of the grid and the Wi-Fi APs are spread throughout the topology to 

give each carrier equal network coverage. For our unbalanced network topology, carrier 1 

only has 3G network coverage (EVDO) from two base-stations placed at the two 

horizontal edges of the grid, whereas carrier 2 has network coverage from one 3G base-

station (HSPA) and one 4G base-station (LTE) placed at the center of the grid and six 

Wi-Fi APs that are spread throughout the topology. In the network topologies shown in 

Figures 4.1 and 4.2, the different color shades represent various MCS levels supported by 

each RAT. The darker the shade, the higher the MCS a radio can use in a specific area. 

The actual MCSs for each RAT are presented in Tables A1-A5 in the Appendix. 

In addition to the two network topologies, we study two use cases described in the 

network co-operation model in Chapter 3. Use case 1 involves mobile user devices that 

can connect only to its own carrier’s cellular network and nomadic user devices that can 

connect only to its own carrier’s cellular and Wi-Fi network. Use case 2 allows any 

mobile user device to make use of the other carrier’s cellular network and any nomadic 

user device to make use of the other carrier’s cellular and Wi-Fi network. Furthermore, for 

use case 1, since a user device can only connect using RATs of its own carrier, the device 

is equipped with three static radios which supports each device’s corresponding carrier’s 

RATs. So the user devices assumed for use case 1 are static multi-modal devices. For use 

case 2, each user device is equipped with three reconfigurable radios and is capable of 
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supporting all five RATs presented in the network topology. So the user devices assumed 

for use case 2 are reconfigurable devices. 

Both balanced and unbalanced network topology presented in Figures 4.1 and 4.2 

respectively is used as the simulation topology. The simulation involves 100 user devices 

(or nodes), 50 of which are subscribed to carrier 1 and the other 50 subscribed to carrier 2. 

For the balanced topology, 75 percent of the total nodes are mobile nodes and the 

remaining 25 percent are nomadic nodes, and the mobile and nomadic nodes are split 

evenly between both carriers. So, 37 nodes for carrier 1 are mobile nodes and 13 of them 

are nomadic nodes. 38 nodes for carrier 2 are mobile nodes and 12 of them are nomadic 

nodes. Mobile nodes are allowed to move freely in the entire 2 * 2 km2 grid, whereas the 

nomadic nodes are confined to move in an inner 1 * 1 km2 grid that encompasses all Wi-Fi 

APs. Mobile nodes move using a random waypoint mobility model at a constant speed of 

20 mph. Nomadic nodes move using a random waypoint mobility model at a constant 

speed of 2 mph. For the unbalanced topology, all 100 nodes (50 subscribed to carrier 1 

and the other 50 subscribed to carrier 2) are nomadic nodes. The nodes of carrier 1 are 

clustered in 2 groups. The first group is located on the left side of the grid (centered at [0 

m, 1000 m]) and the second group is located on the right side of the grid (centered at 

[2000 m, 1000 m]). The nodes of carrier 2 form the third cluster and are located in the 

center of the grid (centered at [1000 m, 1000 m]). All nodes are allowed to move at speeds 

of 2 mph in a restricted space of 500*500 m2 using random waypoint mobility model 

based on the cluster they belong to. This leaves each user with relatively bad coverage for 
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use case 1 and significantly improves performance when they start using resources of the 

other carrier under policies of use case 2.  

Each node uses radios according to the decisions made by the GRC. When the 

GRC instructs a node to switch/reconfigure the radio to be used, there is a cost associated 

with this operation in terms of temporary downtime and an increase in energy 

consumption. Because the GRC scheduler operates on a 1 second allocation basis, we 

approximate the communication downtime cost by not allocating any bandwidth to the 

radio for 1 second. If we assume that communication downtime includes hardware 

reconfiguration times (for reconfigurable devices) and the time required to establish the 

new physical and logical link connections with a new RAT, a downtime cost of 1 second 

seems reasonable based on vertical handover times claimed to be between few hundred 

milliseconds to a few seconds by the work presented in [33]. The energy consumption cost 

during reconfiguration is presented in Table 3.2. Since both communication downtime and 

increase in energy consumption are hardware and implementation specific, we multiply 

the communication downtime (1 second) and reconfiguration energy cost (Table 3.2) with 

the impact of reconfiguration (λ   ∈ [0,1]) experimental parameter.   

We do not include a detailed channel model in our studies, but rather introduce an 

artificial degradation in network quality. We use a parameter which we refer to as network 

outage to model the percentage of time any network is unavailable to the users.  An outage 

might occur as a result of a number of situations including congestion due to increased 

network load, increased RF interference levels, AP/BS malfunction/software upgrades, or 

even network attacks such as denial of service. The network outage is an experimental 
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parameter that controls the percentage of RBs of a AP/BS that are effectively not used. 

The outage percentage ranges from 0% to 25% in increments of 5% in our simulation. 

Each AP/BS suffers independent random outages with the probability determined by the 

network outage percentage. 

4.2.1 Heuristic Resource Allocation Algorithm 
 

The GRC implements a sort-based scheduler that assigns each user device the most 

efficient access technology and that allocates bandwidth in a manner which seeks fairness 

while maximizing achievable system throughput. Support for both real-time and best-

effort traffic expected to be an integral part of future wireless hetnet systems is assumed. 

To satisfy the real-time traffic requirements in addition to providing best-effort service, we 

develop a two-step heuristic algorithm that attempts to satisfy the minimum data rate 

requirements (Τ!!  bits/s) of each user per scheduling interval in the first step and allocates 

the remaining resources to the users that can make the best use of those resources in the 

second step. We assume the same instantaneous data rate requirement (100 kbps) for each 

user in the system, i.e. Τ!!  = 100 kbps for ∀! ∈ !. The pseudo-code for our algorithm is 

presented in Appendix B. 

 Since the scheduler implemented at Wi-Fi APs is not very flexible, the GRC 

algorithm assigns resources for Wi-Fi and the cellular RATs in a separate manner. For 

assigning Wi-Fi resources, the algorithm checks the number of nomadic users that are in 

range of a Wi-Fi AP. It assigns equal number of Wi-Fi RBs to all nomadic users that can 

connect using a particular Wi-Fi AP by dividing the total number of RBs the AP possesses 

by the total number of users that can connect to it. This procedure generates a schedule 
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that achieves proportional fairness at each Wi-Fi AP. For assigning cellular RAT 

resources, the algorithm follows a two-step approach. In the first step, the algorithm 

allocates a data rate of 100 kbps (represented as Τ!!  in the pseudo-code) to each node using 

its best cellular (3G/4G) radios (based on the sorted order of radios for each node in terms 

of MCS). In the second step, the scheduler distributes unused cellular access technology 

resources to a window (!) of 10 mobile/nomadic nodes with best connectivity parameters 

(based on sorted order of radios for each RAT in terms of MCS) in increments of 100 kbps 

(represented as ! in the pseudo-code). The overall order of allocation follows technologies 

that can achieve the highest theoretical data rate to the technologies that can achieve the 

lowest theoretical data rate. So, the scheduler assigns resources in the following order: Wi-

Fi, 4G (LTE, WiMAX) and then 3G (HSPA, EVDO) technologies. All the nodes are 

limited to a maximum allocation of 1 Mbps during the cellular technology allocation 

phase. Any node that reaches 1 Mbps or is already above 1 Mbps (for example, any 

nomadic node that was assigned more than 1 Mbps by Wi-Fi) is not assigned any 

additional resources. The scheduler implementation is intended to be a simple heuristic 

algorithm that accounts for instantaneous fairness (for real-time traffic) and provides 

performance close to a proportional fairness objective with more bias towards spectral 

efficiency compared to long-term fairness for best-effort traffic.  

4.2.2 Heuristic Algorithm Results and Analysis 
 

Each simulation is run for 10,000 seconds in MATLAB. The results from the 

simulations include average spectral efficiency and the average power consumption per 

node that are observed as the two experimental parameters (network outage and the 
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relative impact of reconfiguration) are varied. We compute the spectral efficiency (in 

bits/sec/Hz) for each scheduling interval according to (3.1). At the end of a simulation run, 

we average the spectral efficiency computed for each scheduling interval to derive the 

average spectral efficiency. The total power consumption of each node (in Watts) is 

calculated using (3.6). At the end of the simulation, the aggregate power consumption of 

all nodes is divided by the number of nodes resulting in the average power consumption 

per node.  

4.2.2.1 Spectral Efficiency Results  

4.2.2.1.1 Balanced Network Topology 

 
Figure 4.3: Spectral Efficiency for Balanced Topology 

 

The spectral efficiency for the balanced network topology is presented in Figure 

4.3. As expected, use case 2 utilizes the spectrum more efficiently than use case 1.   

Reconfiguration allows the global and local controllers to assign each node to the most 
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efficient APs/BSs. To provide lower bounds, for no network outage and impact of 

reconfiguration of 1, the spectral efficiency gain for use case 2 (1.36 bits/sec/Hz) when 

compared to use case 1 (1.19 bits/sec/Hz) is approximately 14.30%. The spectral 

efficiency decreases as the network outage increases as can be observed from Figure 4.3. 

This phenomenon is intuitive since network outage results in loss of resources that could 

have been used to allocate a higher data rate to each user. Also as expected, the rate of 

decline for use case 1 where there is no carrier collaboration (static radios) is much 

steeper than use case 2 where carrier collaboration (reconfigurable radios) does exist as 

the experimental parameters, network outage and impact of reconfiguration, increase. 

The maximum spectral efficiency gain for use case 2 (1.12 bits/sec/Hz) when compared 

to use case 1 (0.64 bits/sec/Hz) is around 75.0% when there is 25% network outage and 

the impact of reconfiguration is 1. This highest gain of 75.0% is limited by the balanced 

network topology where both carriers have almost equal amount of resources. 

4.2.2.1.2 Unbalanced Network Topology 

The spectral efficiency for unbalanced network topology is presented in Figure 

4.4.  Again as expected, reconfiguration allows use case 2 to utilize the spectrum more 

efficiently than use case 1. To get a lower bound, when there is 25% network outage and 

impact of reconfiguration of 0, the spectral efficiency gain for use case 2 (1.43 

bits/sec/Hz) when compared to use case 1 (0.34 bits/sec/Hz) is around 314.3%. The 

maximum spectral efficiency gain for use case 2 (1.79 bits/sec/Hz) when compared to use 

case 1 (0.27 bits/sec/Hz) is around 553.7% when there is no network outage and the 

impact of reconfiguration is 1. The increase in spectral efficiency range [314.3%, 
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553.7%] is quite high for unbalanced network topology when compared to a balanced 

network topology [14.3%, 75.0%]. This phenomenon results due to the fact that in the 

unbalanced topology, for use case 1 all the users connect to APs/BSs supported by their 

own carrier at very low data rates since they are at the edge of their carrier’s network 

coverage. But for use case 2 when all the users can connect to any available AP/BS, they 

connect with APs/BSs supported by the other carrier at very high data rates since they are 

very close to those APs/BSs. This shows the tremendous gains that are possible in a 

realistic unbalanced network deployment scenario where resources of one carrier exceed 

those of another if a truly heterogeneous wireless system is created where all available 

resources in a given area are managed at a global level.  

 
Figure 4.4: Spectral efficiency for unbalanced topology 
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4.2.2.2 Power Consumption Results 

Power consumption in our heterogeneous wireless system for this study depends 

on two factors: the number of reconfigurations and the type of hardware fabric used 

(ASIC/FPGA). The number of reconfigurations depend on the number of connectivity 

options for each node when GRC comes up with node-AP/BS mapping every scheduling 

period. Since nodes have more connectivity options under use case 2, there are a greater 

number of reconfigurations for use case 2 compared to use case 1. A reconfiguration for 

use case 1 is equivalent to switching one radio off and turning another radio on. For use 

case 2, a reconfiguration requires the circuitry of one radio to be switched to support a 

different RAT. From the hardware perspective, since we assume static multi-modal 

radios for use case 1, the radios are made up of complete low-power consuming ASIC 

components, or using our power consumption model described in (3.6), β = 0. For use 

case 2, since the radios require reconfigurable components, we investigate three hardware 

settings: i) radio is made up of completely FPGA components, i.e. β = 1 ii) radio is made 

up of 50% FPGA and 50% ASIC components, i.e, β = 0.5 iii) radio is made up of 

completely ASIC components, i.e. β = 0.  

4.2.2.2.1 Balanced Network Topology 

The result for the first hardware setting for balanced network topology is provided 

in Figure 4.5. As shown, the increase in power consumption lies in the range [114.0%, 

916.8%] when the radios are implemented completely using FPGA fabric as compared to 

a complete ASIC implementation. The highest increase in power consumption occurs 

when the impact of reconfiguration is 0. This suggests that for a balanced network 
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topology, the hardware choice has a greater impact than the number of reconfigurations 

on average power consumption. While the power consumption does increase as the 

impact of reconfiguration increases, the relative difference between the two use cases 

becomes smaller. The same phenomenon is observed for second hardware setting when 

50% of the radio fabric is made using ASIC components and the other 50% is made up of 

FPGA components as seen in Figure 4.6. However, the low-energy consuming ASIC 

components decrease the power consumption by almost half and now the increase in 

power consumption lies in the range [73.1%, 486.7%]. The third hardware setting is not 

feasible today in building a completely reconfigurable device, but is studied to provide an 

intuition on how much extra power is consumed if the only difference between the two 

use cases is the number of connectivity options available to each node per scheduling 

interval. As can be seen from Figure 4.7, the increase in power consumption lies in the 

range [32.2%, 129.8%].  

 
 

Figure 4.5: Average power consumption for ASIC (Use Case 1, Beta = 0) vs. 
FPGA (Use Case 2, Beta = 1) implementation for balanced network topology 
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Figure 4.6: Average power consumption for ASIC (Use Case 1, Beta = 0) vs. 50% ASIC, 
50% FPGA (Use Case 2, Beta = 0.5) implementation for balanced network topology 

 
 

Figure 4.7: Average power consumption for ASIC (Use Case 1, Beta = 0) vs. 
         ASIC (Use Case 2, Beta = 0) implementation for balanced network topology 
 

The reconfiguration rate for the balanced network topology is presented as a 

function of network outage probability in Figure 4.8. Since each node has three radios in 

the simulation, the reconfiguration rate values can range between [0, 3]. From Figure 4.8, 

we see that the actual values of reconfiguration rate lie between 0.20 and 1.5. For smaller 

network outage percentage, the reconfiguration rate for use case 2 is much higher in 
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comparison to use case 1. This is justified since more reconfigurations are performed 

because better resources become available to nodes as they move according to their 

movement pattern and not because of the network outage. Network outage has lesser 

effect than the number of available resources in this case. Since nodes in use case 2 have 

access to more resources, these nodes experience a greater level of reconfiguration than 

use case 1 nodes. But as the network outage approaches 25%, the difference between 

reconfigurations for use case 1 and use case 2 decreases. This result helps explain the 

power consumption trend seen in Figures 4.5-4.7. As the network outage increases, the 

difference in number of reconfiguration between two use cases decreases and as a result 

the difference in power consumption decreases. 

 
Figure 4.8: Reconfiguration rate for balanced network topology 

 
4.2.2.2.2 Unbalanced Network Topology 

The result for first hardware setting for unbalanced topology is provided in Figure 

4.9. As can be seen from the figure, the increase in power consumption lies in the range 
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[104.9%, 614.9%] when the radios are implemented completely using FPGA fabric as 

compared to a complete ASIC implementation. The increase in power consumption of 

over 600% might be too costly even though the gain in spectral efficiency is about 550% 

for that setting. As an alternative, when 50% of the radio fabric is made using ASIC 

components, the increase in power consumption lies in the [70.0%, 355.4%] range as 

shown in Figure 4.10. The increase in spectral efficiency of about 550% at the cost of 

increase in power consumption of about 350% would be a better choice to implement 

reconfigurable radios.  The average number of radios used per node for use case 2 is 1.23. 

At each time step, none of the nodes use more than 2 radios. So, it might suffice to limit 

the number of reconfigurable radios per node implemented using FPGA fabric and have 

some static radios that use low-power custom built circuitry (ASIC fabric). How much of 

this hybrid architecture is possible today is still an open question and is currently being 

investigated by several researchers. The results of the infeasible third hardware setting 

are studied to provide an intuition on how much extra power is consumed if the only 

difference between the two use cases is the number of connectivity options available to 

each node per scheduling interval. As can be seen from Figure 4.11, the increase in power 

consumption lies in the range [35.1%, 98.8%]. So just based on an increase in number of 

connectivity options, which results in a higher rate of reconfiguration for use case 2, and 

using the same hardware components in constructing radios for both use cases results in a 

huge increase in spectral efficiency (553.7% for unbalanced topology) at twice the 

amount of power consumption.  
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Figure 4.9: Average power consumption for ASIC (Use Case 1, Beta = 0) 
vs. FPGA (Use Case 2, Beta = 1) implementation for unbalanced network topology 

 
 

Figure 4.10: Average power consumption for ASIC (Use Case 1, Beta = 0) vs. 
50 % ASIC, 50% FPGA (Use Case 2, Beta = 0.5) implementation for unbalanced 

network topology 
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Figure 4.11: Average power consumption for ASIC (Use Case 1, Beta = 0) vs. 

       ASIC (Use Case 2, Beta = 0) implementation for unbalanced network topology 
 

To provide an understanding of the trends seen in Figures 4.9-4.11, the rate of 

reconfiguration for the unbalanced network topology is presented in Figure 4.12. Due to 

the restricted movement pattern in the unbalanced network topology scenario, users in 

use case 1 have a hard time getting resources compared to use case 2. So use case 1 

actually has more reconfigurations than use case 2 when there is no network outage. But 

as the network outage increases and reaches 20%, the number of reconfigurations for use 

case 2 approaches those of use case 1 and eventually surpasses them. As a result, the 

difference in power consumption between the two use cases increases as the network 

outage increases. In addition, resources of two of the six Wi-Fi APs are not employed for 

use case 1 whereas they are utilized for use case 2. So the actual power consumption not 

only depends on the rate of reconfiguration, but also the number of APs/BSs that are 

used. Due to the usage of two extra APs, the power consumption of use case 2 is always 
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greater than that of use case 1 (even when same ASIC hardware is used for radios for 

both use cases). 

 
Figure 4.12: Reconfiguration rate for unbalanced network topology 

 
Global allocation of resources in an integrated heterogeneous wireless 

environment that encompasses several RATs makes the resource allocation process more 

efficient by assigning each cUE in the system to the best APs/BSs.  However, the gain in 

spectral efficiency comes at the expense of increased total power consumption. The 

tradeoff between spectral efficiency and power consumption largely depends on the nature 

of the heterogeneous network deployment assumptions. In our study, we showed the 

following trends: 

• For a balanced deployment scenario, the gain in spectral efficiency for use case 2 

compared to use case 1 is not very significant. The highest gain (75%) occurs when the 

network outage percentage is the highest (25%). For this network outage setting, users 

for both use case 1 and use case 2 experience significant number of reconfigurations 
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(reconfiguration rate of 1.25 and 1.45 respectively). As a result, the ratio of increase in 

power consumption for use case 2 compared to use case 1 is the least for this setting and 

lies in the range [32.2%, 614.3%] depending on varying hardware assumptions in terms 

of ASIC vs. FPGA circuitry. The lowest spectral efficiency gain (14.30%) between the 

two use cases occurs when the network outage percentage is the lowest (0%). In this 

case, the number of reconfigurations needed by use case 1 (0.2/second) is not as high as 

the one needed by use case 2 (0.7/second). As a result, the corresponding increase in 

power consumption for use case 2 compared to use case 1 is the highest, which lies in 

the range [129.8%, 916.8%]. So, the reconfiguration rate (or number of reconfigurations 

required by each user) mainly dictates the power consumption trends for balanced 

network deployment.   

• For an unbalanced deployment scenario, the gain in spectral efficiency is significant. 

The highest gain (553.7%) occurs when the network outage percentage is the lowest 

(0%) and the lowest gain (314.3%) occurs when the network outage percentage is the 

highest (25%). For each network outage setting in the unbalanced scenario, resources of 

some Wi-Fi APs cannot be used by any user for use case 1, but these resources can be 

used by users for use case 2.  So the actual power consumption not only depends on the 

reconfiguration rate, but also on the number of APs/BSs that are used. As a result, the 

highest increase in power consumption is experienced when the network outage 

percentage is 25%, which corresponds to the lowest gain in spectral efficiency. For this 

setting (25% network outage), the increase in power consumption lies in the range 

[88.6%, 614.9%] depending on hardware assumptions. The lowest increase in power 
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consumption occurs when the network outage percentage is 0%, which corresponds to 

the highest gain in spectral efficiency. For this setting (0% network outage), the increase 

in power consumption lies in the range [35.1%, 595.7%]. 

Based on these results, one can see that the hardware choices have a significant 

impact on the increase in power consumption. For the gain in spectral efficiency of up to 

75%, the increase in power consumption can range from 32.2% to 916.8% for balanced 

deployment scenario, and for the gain in spectral efficiency of up to 553.7%, the increase 

in power consumption can range from 35.1% to 614.9% for the unbalanced deployment 

scenario depending on user device hardware assumptions. Depending on the level of 

reconfiguration that is required, for example, total number of reconfigurable radios 

(maximum of 2 in our simulated scenario), it might be possible to attain a tradeoff in terms 

of lower power consuming ASIC radios at the cost of decreased reconfigurable options. 

While low power reconfigurable fabrics with power consumption on the order of current 

ASIC technology are not available today, hybrid architectures that use both ASIC and 

FPGA components could provide a practical approach to reduce the power consumption 

of reconfigurable devices. 

4.3 Optimization-based Algorithm Simulation Study 
 

The focus of this next study is to quantify the tradeoffs achieved in terms of 

network efficiency measures of spectral efficiency, instantaneous and long term fairness, 

and energy consumption which pertains to any general network topology, network co-

operation model, user device assumptions, user mobility patterns and network outage 

assumptions. As a result, for this study we limit the number of scenarios we consider for 
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each of these options compared to the previous study. In particular, for this study we limit 

our attention to the balanced network topology used in our earlier study presented in 

Figure 4.1. For network co-operation model, we consider both use case 1 and use 2 

described in Chapter 3. However, we restrict the type of users to nomadic users. As a 

result, for use case 1, all users can connect only to their own carrier’s cellular and Wi-Fi 

networks. For use case 2, all users can connect to any network (both carrier’s cellular and 

Wi-Fi networks) in the topology. For both use cases, each user device is equipped with 

three reconfigurable radios that are implemented using FPGA fabric. All users move in the 

network topology using a random waypoint mobility model at a constant speed of 2 mph. 

Since we do not use a detailed channel model, the fluctuations in connectivity conditions 

are modeled by a random independent network outage of 5% for each AP/BS. 

The GRC instructs each user device to configure (or reconfigure) its radios for use 

with the appropriate APs/BSs on a 1-second basis. For this study, we assume that there is 

no communication downtime during a reconfiguration handoff. However, the energy 

consumption cost during a reconfiguration handoff has two sub-components. The first 

sub-component, Erec,a, represents the extra energy that is spent by radios in reconfiguring 

the hardware to transition to a new RAT. We assume an FPGA platform as our 

reconfigurable radio platform. The second sub-component, Eassoc,a, represents the extra 

energy that is spent associating with a new RAT. Values used for both Erec,a and Eassoc,a in 

this study are presented in Table 3.3. We do not use the impact of reconfiguration 

experimental parameter in this study and identify its use as a part of future work.  

The GRC uses a multi-attribute resource allocation algorithm to determine the 
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user device-to-AP/BS mappings and the rate assignment per mapping for each scheduling 

interval t. The attributes considered in this algorithm are system spectral efficiency, both 

instantaneous and long-term fairness in terms of data rate allocated to each user in the 

system, and battery lifetime of each user (or overall energy consumption) in the system. 

Since the achieved performance in terms of each of these attributes belongs to a different 

set of ranges, we normalize the performance achieved for each of these attributes on a 

[0,1] scale using a utility function approach. We describe the utility function for each 

attribute next using system parameters presented in Table 3.1. 

(i) Spectral Efficiency Utility Function 

The achievable system spectral efficiency for time interval [t, t+1], denoted !!, is 

computed as the ratio of the rate allocated to each user in the system at time t to the total 

spectrum used and is represented by (3.1). Since we assume that the amount of spectrum 

managed by each RAT is constant, the total spectrum, !, used by our system remains 

constant. So, to maximize the achievable system spectral efficiency, the objective of any 

network optimization problem is to maximize the sum of the rates allocated to each user 

subject to total resource usage constraints. This optimization problem has been well 

studied as the max-sum rate (MSR) optimization problem. The idea behind the MSR 

optimization objective is to assign each resource block to the user that can make the best 

use of it. The drawback of the MSR optimization objective is that it is likely that a few 

users close to the BS, and hence having excellent channel conditions, will be allocated all 

the system resources. As a result, the MSR optimization objective cannot be used as the 
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only objective in any resource allocation problem. Fairness of resource distribution also 

has to be taken into account.  

However, since the MSR optimization objective results in the highest achievable 

system spectral efficiency, it can be used as an upper bound in computing the spectral 

efficiency utility function. Let !!"#!  represent the achievable system spectral efficiency 

for time interval [t, t+1] obtained by solving the MSR optimization problem.  Similarly, 

assuming each available resource block is allocated to some user, the minimum 

achievable system spectral efficiency results when each resource block is assigned to the 

user with worst connectivity conditions. Let !!"#!  represent this minimum achievable 

system spectral efficiency for time interval [t, t+1]. Then, !!"#!  can be used  as a lower 

bound in computing the spectral efficiency utility function. The normalized system utility 

!!"#$!  is then computed using (4.1). If the achievable system spectral efficiency equals 

!!"#! , the spectral efficiency utility function corresponds to a value of 1, and if the 

achievable system spectral efficiency equals !!"#! , the spectral efficiency utility function 

corresponds to a value of 0.  

                                                                                                                !!"#$! =   
!! −   !!"#!

!!"#! −   !!"#!                                                                                                                   (4.1) 

 
(ii) Long-Term Fairness Utility Function 
 
The long-term fairness metric is computed using Jain’s Fairness Index as shown 

in (3.3). Since Jain’s Fairness Index is already normalized in the range [0,1], we set long-

term fairness utility function, !!"#$, equal to the long-term fairness metric as presented in 

(4.2).  
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                                                                                                          !!"#$ =   ! =   
!!!!!"#

!

! ∗ !!!!!"#
!  
                                                                          (4.2) 

 
(iii) Instantaneous Fairness Utility Function 
 
We assume support for real-time traffic in this study. So, the instantaneous 

fairness metric, !!!! , is computed using (3.4). Moreover, since we use the ratio of blocked 

users to compute this metric, the obtained value for this performance metric is already 

normalized in the range [0,1] and hence the instantaneous fairness utility, !!"#$! , is equal 

to the instantaneous fairness metric, !!"! , as shown in (4.3).  

                                                                                                      !!"#$! = !!"! = 1−   
!"!

!                                                                                                               (4.3) 

(iv) Overall Energy Consumption Utility Function 

The energy consumption for user ! ∈ ! during time interval [t, t+1], denoted as 

!!! ,  is computed using (3.7). The goal of the overall energy consumption optimization is to 

minimize the overall energy consumed by each user in the system for each scheduling 

interval [t, t+1]. We use the same maximum and minimum achievable system spectral 

efficiency concepts adopted in the spectral efficiency utility function in computing the 

overall energy consumption utility function. Let !!"#!  represent the maximum achievable 

overall energy consumption and let !!"#!  represent the minimum achievable overall 

energy consumption for time interval [t, t+1]. Then the battery lifetime utility function for 

time t, denoted as !!!"#! , is computed using (4.4).  If the achievable overall energy 

consumption equals !!"#! , the battery lifetime utility function is 1 and if the achievable 

overall energy consumption equals !!"#! , the battery lifetime utility function is 0.   
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                                                                                            !!"#$! = 1−   
!!!!∈! −   !!"#!

!!"#! −   !!"#!                                                                                                     (4.4) 

 
 

The utility functions derived for each of the four metrics is used in computing the 

final achieved performance. Some of these utility functions such as !!"#$!  and !!"#$!  are 

incorporated directly into the resource allocation procedure, whereas alternative 

formulations are used in the resource allocation procedure to achieve instantaneous and 

long-term fairness. 

4.3.1 Optimization-based Resource Allocation Algorithm 
 

In this section, we present the resource allocation procedure that is used by the 

GRC to come up with user device-to-AP/BS mappings and the rate assignment per 

mapping. Since our heterogeneous wireless system supports both real-time and best effort 

traffic, the resource allocation problem follows a two-step approach. In the first step, an 

iterative admission control policy is implemented to satisfy minimum data rate 

requirements (for real-time traffic) of as many users in the system as possible. In the 

second step, the weighted spectral efficiency, long-term fairness, and overall energy 

consumption utility functions (related to best-effort traffic) are maximized, subject to 

minimum data rate requirements. Algorithm 4.1 describes the complete resource 

allocation procedure that is used during each time step t.  

Each step (Step 1 and 2) in the algorithm uses a mixed integer linear program 

(MILP) presented by (4.6) and (4.8) respectively. The objective of both MILPs is to 

determine !!"!  (the assignment variable) and  !!"!  (the rates allocated to each radio of each 

user). The spectral efficiency, long-term fairness and overall energy consumption utility 
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functions are then computed using these !!"!  and   !!"!  variables using (4.1), (4.2) and (4.4) 

respectively. Note that the overall energy consumption function presented in (4.4) 

depends on (3.7) which uses an additional variable !!"! , the maximum amount of data (in 

bits) that can be transferred by radio ! ∈ ! of user ! ∈ ! during the scheduling interval t. 

Since the GRC scheduler operates on a 1 second basis, !!"!  equals   !!"!  in our study. 

Algorithm 4.1   Multi-Attribute Resource Allocation 
  Step  0:  Initialization  
1. !"  ! == 1 
2.     !!!  ← 1        ∀! ∈ ! 
3.     !!"!!! ← 0  ∀! ∈ !,∀! ∈ !   
4.         ! ← 0.10 
5. !"#  !"  

Step  1:  Admission  Control  
6. !"!   ←   ∅,  !   ←   !"#$%&!'($,  
7. !ℎ!"#  !  is  infeasible 
8.                         !"#"$%  !"#  ! ∈ !,! ∉ !"!                                                  

                        !   ← !"#$%  !∗      !"#$%  (4.6)    
9.             !"  !  is  infeasible 
10.                    !!,!"#! =    !!",!"#! /Τ!!!∈!         ∀! ∈ !,! ∉ !"!   
11.                    !!"#$                     ← !   ∈ arg  min  {  !!,!"#! }  
12.                    !"!   ← !"!      {!!"#$                   } 
13.            !"#  !"  
14. !"#  !ℎ!"#                   

Step  2:  Multiple-‐Attribute  Optimization    
15. !"#$%  !"∗        !"#$%  (4.8)  
16. !!!!! = 1− ! !!! +   !!!!  

 

The goal of the admission control procedure, described by Step 1 in the algorithm, 

is to determine when a user is blocked and maximize the instantaneous fairness utility 

metric presented in (4.3) by minimizing the number of blocked users. The admission 
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control procedure first initializes the list of blocked users at time t (!"!) to null and sets 

z, the variable that determines the feasibility of satisfying real-time traffic demands of 

each user, to be infeasible. Next, it recursively solves optimization problem P*, using 

(4.6), in an effort to find a feasible solution that tries to satisfy the real-time traffic 

demand of each user using constraint (4.6b). Note that in formulating P*, !!",!"#$!   is used 

rather than !!"!  in constraints (4.6c)-(4.6f) to avoid non-linear problem formulations. The 

relationship between !!"!   and !!",!"#$!   is described by (4.5). This relation removes the 

dependence of !!! on two variables, !!"!  and !!"!  as presented in (3.2). Now, !!!  only 

depends on !!"! , as presented by (4.6a), as constraint (4.6d) makes sure that !!",!"#$!  (and 

consequently !!"! ) is greater than zero only if !!"!  equals one. After solving one iteration 

of P*, the admission control procedure checks whether a feasible solution is produced. If 

the solution to P* is infeasible, the user with the worst achievable data rate to demand 

ratio is dropped and this user is added to the list of blocked users (!"!) that are assigned 

no resource blocks (or are assigned rate 0 as described by constraint (4.6e)). The 

admission control procedure keeps solving P* and dropping the user with worst 

achievable data rate to demand ratio until all users that are to be allocated resources 

(! ∈ !,! ∉ !"!) can achieve a data rate of at least Τ!!  bits/s. This mechanism enables the 

admission control procedure to block as few users as feasible. Once a feasible solution is 

produced for P*, the resource allocation procedure moves to Step 2 of the algorithm.  

                                                                                                                      !!",!"#$! =   
!!"!

!!",!"#!                                                                                                                     (4.5) 
 

 
 
 
 
 



 65 

 

                                                                      !∗:    !"#    !!! = !!"!
!∈!

                                                                                                                                                 4.6!  

 

           s.t.    !!!   ≥     Τ!!                                               ∀! ∈ !,! ∉ !"!                                                (4.6!)              
  

                                           !!",!"#$!

!∈!

≤ 1                      ∀! ∈ !                                                                                    (4.6!)  
  

                                          !!",!"#$!   ≤ !!"!                           ∀! ∈ !,! ∉ !"! ,∀! ∈ !                (4.6!)  
  

                                          !!",!"#$!   = 0                                    ∀! ∈ !"! ,∀! ∈ !                                        (4.6!)    
  

                                    !!",!"#$!   ≥ 0                                    ∀! ∈ !,! ∉ !"! ,∀! ∈ !               4.6!   
  

                                         !!"!
!∈!

≤ !!                                    ∀! ∈ !,! ∉ !"!                                            (4.6!)  
  

                                    !!"! ∈ 0,1                                             ∀! ∈ !,! ∉ !"! ,∀! ∈ !            (4.6ℎ) 
 
 

The final step (Step 2) in the algorithm comes up with user device-to-AP/BS 

mappings and the rate assignment per mapping based on an optimization function, !"∗, 

described by (4.8), that optimizes the weighted spectral efficiency, long-term fairness and 

energy consumption utility functions subject to the minimum data rate requirements 

confirmed by the admission control procedure. The utility functions described in (4.1) 

and (4.4) are used in !"∗ to maximize system spectral efficiency and minimize overall 

energy consumption, respectively. For long-term fairness, the utility function described 

by Jain’s fairness index in (4.2) is non-linear and hard to solve for a large-scale 

heterogeneous wireless system. As a result, an alternative formulation that uses the ratio 

of instantaneous to average data rate described in (4.7) is used to maximize long-term 

fairness utility2. It has been shown that allowing the user with maximum achievable ratio 

of instantaneous to average data rate to transmit during each time step results in 

                                                
2 Note that !!"#$!        !  presented in (4.7) is only used in solving !"∗.   !!"#$ representing Jain’s fairness index in (4.2) 

is still used in computing long-term fairness utility.  
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maximizing fairness over long time scales [97]. Again, the maximum and minimum 

achievable ratios of instantaneous to average data rate are used in (4.7) to scale the long-

term fairness utility between 0 and 1. The algorithm initializes the average data rate of 

each user  ! ∈ !, denoted as !!! , to 1 during the first time step as described in the 

initialization step in Algorithm 4.1. After solving the !"∗ optimization problem, the 

algorithm updates the average data rate of each user over a time window that is dictated 

by the scalar  !. The value of this scalar is commonly set between 0.05 and 0.10 [98]. We 

set ! = 0.10 in our work as noted in the initialization step in Algorithm 4.1. 

                                                                          !!"#$!! =   

!!!
!!!

− !!!
!!! !"#

!∈!

!!!
!!! !"#

−    !!
!

!!! !"#
!∈!   

                                                                                        (4.7) 

 
 

                                      !"∗:    max    ! ∗ !!"#$          ! +    ! ∗ !!!"#!! +    ! ∗   !!"#$!                         (4.8a) 
                             

                                                              !. !.        !!!   ≥ Τ!!                                         ∀! ∈ !,! ∉ !"!                         (4.8b)  
      

                                                 !!!,!"#$!

!∈!

≤ 1            ∀! ∈ !                                                                                                                (4.8!)  
  

                                                              !!",!"#$!   ≤ !!"!                 ∀! ∈ !,! ∉ !"! ,∀! ∈ !                                            (4.8d)      
                                                              !!",!"#$!   = 0                        ∀! ∈ !"! ,∀! ∈ !                                                                      (4.8e)    
  

                                                              !!",!"#$!   ≥ 0                        ∀! ∈ !,! ∉ !"! , ∀! ∈ !                                          (4.8f)                
  

                                                                                       !!"!
!∈!

≤ !!                        ∀! ∈ !,! ∉ !"!                                                                          (4.8!)  
  

                                                                                        !!"! ∈ 0,1                                 ∀! ∈ !,! ∉ !"! ,∀! ∈ !                                          (4.8ℎ) 
 
 

Note that as stated earlier, we assume a user device can use multiple radios 

concurrently. The maximum number of radios that a user device can concurrently use is 

limited by !!  variable presented in (4.6g) and (4.8g). In our problem formulation, we 
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assume !!(= 3) to be the same for each user. There might be cases where the value of 

!! can vary for different users. For example, if a user device does not have enough 

energy to support more than one physical link (i.e. the device is operating at a low battery 

level), then a policy-based addition can be included in the algorithm that limits such a 

user to use only one of its radios. These policy-based decisions represent a possible 

extension to our current model.  

The scalars !,!  !"#  ! provide the relative importance of each optimization 

attribute in !"∗and act as ‘control knobs’ that allow network operators to achieve the 

desired performance objectives. The values for these scalars are obtained through AHP 

[73]. AHP is a decision analysis technique to determine weights of different utility 

attributes from decision stakeholders through pairwise comparisons and ratings. Using 

AHP, we interviewed two experts from the cellular industry to perform pairwise 

comparisons between our utility attributes3. After determining which attribute is more 

important, the more important attribute receives a score from 1-9, with 1 indicating that 

the two attributes are equally important. These pairwise comparisons are placed in matrix 

A, with aji = 1⁄aij, where each row and column represents a specific attribute. Using the 

following equation: Aw = λmaxw, and solving for λmax, the principal eigenvalue of A, and w, 

the principal right eigenvector of A, we can normalize the entries of w by dividing by 

their sum and recover the weighted values for our utility function.  

We asked each expert to compare the relative importance of battery life, fairness, 

and efficiency [101]. The results of the interview are placed in a comparison matrix, from 
                                                
3 While in this work we only examine only two viewpoints, we also note that group decision-making and 

viewpoint aggregation has been studied in [99, 100] 
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which the principal eigenvector is calculated. The results from this calculation and 

resulting weight values are shown in Table 4.1. From Table 4.1, we note that results of 

AHP show that both experts had relatively similar weight preferences. Consequently, we 

use results derived from Expert 1’s responses in the remainder of our work. 

Table 4.1: AHP matrices derived from expert interviews 
Expert 1 
 Battery 

Life 
Long-Term 
Fairness 

Spectral 
Efficiency 

Weights 

Battery Life (BL) 1.0 5.0 0.333 0.279 
Long-Term Fairness (LTF) 0.2 1.0 0.143 0.072 
Spectral Efficiency (SE) 3.0 7.0 1.0 0.649 
 

Expert 2 
 Battery 

Life 
Long-Term 
Fairness 

Spectral 
Efficiency 

Weights 

Battery Life 1.0 5.0 0.500 0.333 
Long-Term Fairness 0.2 1.0 0.143 0.075 
Spectral Efficiency 2.0 7.0 1.0 0.592 

 

4.3.2 Optimization-based Algorithm Results and Analysis 
 

Each simulation is run in MATLAB for 10,000 seconds. We first present results 

for when wireless data networks only support best-effort traffic. For this case, there is no 

minimum data rate requirement for any user. In other words, Τ!! = 0 for all users in the 

system. Since Τ!! = 0, the admission control procedure does not block any user for any 

scheduling time step and is not needed. As a result, the instantaneous fairness utility 

metric is not computed for this case. The overall utility function only depends on the 

spectral efficiency utility (!!"#$           ), long-term fairness utility (!!"#$) and energy 

consumption utility (!!"#$           ), averaged over the entire simulation run, and is calculated 

using (4.9) where ! = 0.649, ! = 0.072, and ! = 0.279. We provide the overall utility 
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results with each of the three utility components for use case 1 and use case 2 in Figures 

4.13 and 4.14 respectively. Optimization problems presented in (4.6) and (4.8), which are 

parts of the proposed algorithm, are solved using AMPL modeling language and CPLEX 

optimization solver [102-103].  

                                                    !"#$%&&!"#$,!" = ! ∗ !!"#$           +    ! ∗ !!"#$ +    ! ∗   !!"#$                                                       (4.9) 
 
 

In addition to the utility results for our multi-attribute resource allocation 

algorithm, we provide results for four commonly used scheduling algorithms for wireless 

data networks: (i) min power (ii) max-sum rate (iii) proportional fairness and (iv) max-

min fairness. Note that the first three algorithms reduce to our !"∗optimization if we set 

(i) ! = 0, ! = 0, ! = 1 (ii) ! = 1, ! = 0, ! = 0 and (iii) ! = 0, ! = 1, ! = 0 respectively in 

(4.8a). The max-min fairness results are obtained using the progressive filling algorithm 

[104].  Furthermore, the max-sum rate algorithm always achieves the highest system 

spectral efficiency and as a result its !!"#$           = 1 for both use cases. However, because of 

more connectivity options for use case 2, the average spectral efficiency for use case 2 is 

4.35 bits/s/Hz compared to 3.52 bits/s/Hz for use case 1. Similar to the max-sum rate 

algorithm, the min power algorithm always produces the minimum possible energy 

consumption and therefore its !!"#$           = 1 for both use cases. But the average energy 

consumption per user is 9600 Joules for use case 1 compared to 10400 Joules for use case 

2. All other algorithms compute their spectral efficiency utility relative to max-sum rate 

algorithm’s spectral efficiency utility as described by (4.1) and their energy consumption 

utility relative to min power algorithm’s energy consumption utility as described by (4.4).  
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Figure 4.13: Overall utility for use case 1, Τ!!  = 0 

 

 
Figure 4.14: Overall utility for use case 2, Τ!!  = 0 

 
The overall utility of our multi-attribute resource allocation algorithm is very 

similar to the overall utility of max-sum rate algorithm for both use case 1 (0.967 

compared to 0.948) and use case 2 (0.971 compared to 0.967) as seen from Figures 4.13 

and 4.14 respectively. Since the spectral efficiency utility is given the highest weight in 

our overall utility function, this result follows expectations. In comparison to the max-

sum rate algorithm, our algorithm improves the energy consumption utility (0.269 

compared to 0.247 for use case 1 and 0.271 compared to 0.260 for use case 2) at the cost 

of a slight degradation in spectral efficiency utility (0.648 compared to 0.649 for use case 
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1 and 0.644 compared to 0.649 for use case 2). The long-term fairness utility is almost 

the same for our algorithm and the max-sum rate algorithm for both use case 1 

(approximately 0.050) and use case 2 (approximately 0.056). All other algorithms (min 

power, proportional fairness, max-min fairness) sacrifice spectral efficiency in trying to 

achieve other objectives, as seen in Figures 4.13 and 4.14, and as a result their overall 

utility is much lower than the one obtained by our algorithm.  

We now consider the case of next-generation heterogeneous wireless networks 

that are expected to support both real-time and best-effort traffic. In this case, the overall 

utility function depends on utility attributes that apply to real-time traffic and the 

attributes that apply to best-effort traffic. We equally weigh the utilities of both traffic 

types to compute the overall utility function. The best-effort traffic utility, denoted 

!"#$%&&!"#$,!", depends on spectral efficiency, long-term fairness and energy 

consumption utilities as presented in (4.9). The real-time traffic depends on instantaneous 

fairness utility averaged over the entire simulation run, denoted !!!"#, and is calculated 

using (4.3). Hence, the overall utility function for next-generation heterogeneous wireless 

networks is computed using (4.10).  

                                      !"#$%&&!"#$,!"!!" =
1
2 ∗ !"#$%&&!"#$,!" +

1
2 ∗ !!"#$                                                       (4.10) 

 
 

For the next-generation heterogeneous wireless networks, we present results for 

both use case 1 and use case 2 using Figures 4.15 and 4.16, respectively, where the 

minimum data rate requirement of each user to support real-time traffic is Τ!!  = 512 kbps. 

The overall utility of our algorithm for both use cases is significantly higher than any 
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other algorithm. For both use cases, the overall energy consumption utility and long-term 

fairness utility of all algorithms are similar. But the difference in overall utility is 

obtained due to instantaneous fairness and spectral efficiency utilities. For use case 1, in 

terms of overall utility performance, our algorithm outperforms the next closest 

algorithm, max-sum rate, by 56.7% (0.818 compared to 0.522). The spectral efficiency 

utility of our algorithm for best-effort traffic decreases compared to max-sum rate 

algorithm (0.224 compared to 0.325). But this happens as a result of satisfying more real-

time traffic users. The instantaneous fairness utility of our algorithm is significantly 

higher than that of max-sum rate algorithm (0.437 compared to 0.048). For use case 2, 

our algorithm outperforms the next closest algorithm, max-min fairness, in terms of 

overall utility by 24.0% (0.975 compared to 0.786). The instantaneous fairness utility of 

both algorithms is 0.5. But the spectral efficiency utility of our algorithm is significantly 

higher compared to max-min fairness algorithm’s spectral efficiency utility (0.310 

compared to 0.115). This shows that for future heterogeneous wireless systems 

supporting both real-time and best-effort traffic, our algorithm always obtains the best of 

both worlds by applying the right trade-offs in terms of achieved spectral efficiency and 

instantaneous fairness.  
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Figure 4.15: Overall utility for use case 1, Τ!!  = 512K 

 

 
Figure 4.16: Overall utility for use case 2, Τ!!  = 512K 

 
We finally present results for both use case 1 and use case 2 for future 

heterogeneous wireless systems for different levels of minimum data rate requirements 

using Figures 4.17 and 4.18 respectively. Note that we still assume that each user has 

identical requirements Τ!! , but we study the effects of varying values of Τ!! . In both use 

cases for all different levels of Τ!! , our algorithm outperforms any other algorithm. None 

of the other algorithms is suited to support both best-effort and real-time traffic. While 

max-sum rate and proportional fairness algorithms are well suited for achieving good 

spectral efficiency for best-effort traffic, they do not provide acceptable levels of 
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instantaneous fairness. On the other hand, the max-min fairness algorithm provides good 

instantaneous fairness, but its spectral efficiency suffers significantly. Our algorithm 

achieves a balance in both instantaneous fairness and spectral efficiency utilities.  Apart 

from this, there are two additional observations of interest in Figures 4.17 and 4.18. First, 

while most traditional algorithms provide constant overall utility levels and then possibly 

experience sudden drops in performance (for example, max-min fairness algorithm for 

use case 2), our algorithm degrades gradually as the available resources cannot satisfy the 

demands. Second, since use case 2 represents more connectivity options for each user, the 

resulting overall utility of our algorithm is considerably higher (by up to 39.4%) 

compared to use case 1 for higher levels of Τ!!  (Τ!!   ≥ 512 kbps). So increasing the 

amount of connectivity options (possibly through peering agreements among several 

network service providers) has significant performance benefits. 

 
Figure 4.17: Overall utility for use case 1, variable Τ!!   
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Figure 4.18: Overall utility for use case 2, variable Τ!!   

 
The main conclusions of our optimization-based study can be summarized as 

follows: 

• The traditional algorithms achieve good performance in terms of one or two attributes, 

but they suffer in terms of other attributes. The max-sum rate algorithm achieves good 

spectral efficiency but suffers in terms of instantaneous fairness. The proportional 

fairness algorithm achieves good spectral efficiency and long-term fairness, but suffers 

in terms of instantaneous fairness. The max-min fairness algorithm achieves good 

long-term fairness, but suffers in terms of spectral efficiency. The min power 

algorithm achieves good energy consumption, but suffers in terms of spectral 

efficiency and instantaneous fairness.  

• By following a two-step resource allocation procedure, depending on the situation, our 

algorithm improves the overall system performance by achieving the right trade-offs in 

terms of system spectral efficiency and energy consumption (for best-effort traffic) or 

by achieving the best trade-offs in terms of system spectral efficiency and 
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instantaneous fairness (for real-time traffic).  

• Through MATLAB/CPLEX based simulations, we showed an increase in overall 

utility of up to 56.7% for our algorithm compared to the next best algorithm.  
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CHAPTER FIVE 
 

PRACTICAL IMPLEMENTATION ISSUES 
 
 

For the second phase of our research study, we use a detailed protocol level 

simulator, ns-2, to study the resource management problem in a hetnet system. To the 

best of our knowledge, no prior work has considered the impacts of RAT-specific 

implementation details while assessing the benefits of a hetnet system. Most of the prior 

work related to the hetnet system has focused on studies (analytical or simulation) based 

on simplified network assumptions (similar to our work in the first phase). In this phase, 

we explore the management overhead required for a hetnet system where user device-to-

AP/BS associations are controlled by a centralized GRC. Using our four network 

efficiency measures of spectral efficiency, instantaneous fairness, long-term fairness, and 

overall energy consumption, we show the performance benefits of a hetnet system where 

user device-to-AP/BS associations are controlled by a centralized GRC compared to a 

distributed solution. The performance benefits are analyzed for two greedy sort-based 

algorithms implemented at the GRC that try to maximize system spectral efficiency and 

instantaneous fairness respectively. For the investigations conducted in the first phase of 

our research, the GRC scheduling algorithm accounts for real-time traffic in addition to 

best-effort traffic as it is based on high-level simulation model. For this phase, we focus 

only on best-effort traffic, as the main goal of this work is to study the impact of RAT-

specific implementation issues and centralized control overhead on achieved network 

performance. We also identify technical challenges associated with periodic re-



 78 

associations proposed by our hetnet solution and provide possible alternatives to remedy 

the challenges.    

5.1 Problem Assumptions 
 

The hetnet system that we consider for this phase of work consists of Wi-Fi and 

WiMAX RATs, GRC, and multi-modal user devices. We make the following 

assumptions related to these entities present in our hetnet system: 

(i) The MAC protocol implemented at Wi-Fi APs achieve max-min fairness on 

long time scales; the MAC protocol implemented at WiMAX BSs can achieve max-min 

fairness or proportional fairness on both short and long time-scales: The scheduler 

implemented at the MAC layer of each AP/BS deployed in practice has a predefined 

scheduling objective. Wi-Fi MAC implements a standardized DCF solution that employs 

CSMA/CA with binary exponential backoff algorithm. Moreover, the Wi-Fi AP 

implements a FIFO queuing system where each arriving packet is served in order. It has 

been shown that the DCF MAC and FIFO queuing mechanism implemented in a Wi-Fi 

system leads to equal throughput for all associated user devices on a long time scale [80-

81]. We implement this standard DCF MAC and FIFO queuing mechanism for the Wi-Fi 

RAT used in our study and hence users connected to Wi-Fi RATs achieve ‘local’ long-

term max-min fairness in our system. The WiMAX standard leaves the scheduler 

implementation at the MAC layer up to the BS equipment/service provider. Max-min 

fairness and proportional fairness resource allocation schemes have been studied 

extensively in literature as a means of sharing resources fairly among all connected users 

and proposed as the likely objectives for a scheduler implemented for 4G RATs. We use 
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a deficit weighted round robin (DWRR) scheduler at the WiMAX BS. By tuning the 

weight associated to the data packet queues for each connected user to an appropriate 

value, the WiMAX BS in our system can achieve either max-min fairness or proportional 

fairness objectives for both short and long time-scales. The GRC uses the scheduling 

objective (max-min fairness or proportional fairness) information for both WiMAX BSs 

and Wi-Fi APs while computing user device-to-AP/BS association decisions each 

scheduling interval. Note that for this solution, GRC does not have to relay the data rate 

per association mapping information to the Wi-Fi APs/WiMAX BSs.  

(ii) Media Independent Handover (MIH) function has been implemented at layer 

2.5 of the OSI stack at each AP/BS, user device and GRC for supporting messaging 

framework required for a centralized solution: The information related to the message 

exchanges required for this IEEE 802.21-based centralized solution is presented in detail 

in the next section (Chapter 5.2).  Both WiMAX and Wi-Fi RATs in our system use an 

adaptive MCS. The signal strength at which the management/data packets are received on 

a user device (which is based on the distance of the user device from the corresponding 

BS/AP) dictate the MCS used by the radios on the device to connect to the corresponding 

BS/AP. The fast feedback channel quality indicator (CQICH) data burst in the uplink 

sub-frame has been implemented for the WiMAX MAC in ns-2 to relay the MCS update 

information to the WiMAX BS. An ACK piggyback mechanism has been implemented 

for the Wi-Fi MAC in ns-2 to relay the MCS update information to the Wi-Fi AP. The 

MCS dictates the maximum achievable data rate (r!",!"#!  parameter presented in Table 

3.1) for each radio on each user device. The details on maximum achievable data rates for 
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both WiMAX and Wi-Fi RATs used in our ns-2 study are presented in Tables C1-C2 in 

Appendix C. All the data packets are transmitted using the adaptive MCS and the 

associated data rate. However, all control messages related to each MAC and also the 

MIH messages are transmitted using the most robust MCS (BPSK 1/2) for both WiMAX 

and Wi-Fi.  

(iii) Each user device is equipped with two static radios (ASIC-based hardware) 

but can only use one radio for an active data connection at a time:  We consider the 

integral association scenario used in practice today, where only one radio on a multi-

modal device can be used at any given time. Extensions in the networking stack are 

required to support multi-radio multi-flow capability assumed by the fractional 

association scenario. The optimization problem (in terms of overall system throughput or 

fairness) of coming up with an integral association in a heterogeneous wireless network 

environment is shown to be NP-hard [105-106]. Therefore, we limit the resource 

allocation studies for this work to heuristic algorithms.  

(iv) The GRC operates on a five-second scheduling interval: The GRC computes the 

user device-to-AP/BS association decisions each scheduling interval by considering the 

independent scheduling objective (max-min fairness or proportional fairness) for both 

WiMAX and Wi-Fi RATs. While the independently implemented DWRR scheduler at 

WiMAX MAC converges to a max-min fairness or proportional fairness objective on 

short time-scales (milliseconds), the DCF-based Wi-Fi MAC converges to max-min 

fairness objective on larger time-scales (seconds). To allow the Wi-Fi MAC to converge 

to the max-min fairness solution and also to account for issues such as result propagation 
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delay, the GRC performs global-level optimizations (re-association computations) every 

five seconds.  

(v) Infinitely backlogged downlink TCP traffic: We consider data traffic flow in the 

downlink direction (from BS/AP to user device). We only study best-effort traffic that is 

transmitted at a constant bit rate (CBR) over TCP transport layer. The traffic is sent at a 

rate higher than what could be supported by any RAT. So, the data connection queues 

supporting the TCP traffic for each user device at the AP/BS are almost always fully 

backlogged. However, when a TCP timeout occurs because of handovers or collisions, 

the TCP protocol performs the Additive Increase Multiplicative Decrease (AIMD) 

congestion control mechanism. As a result, at certain times the data connection queues of 

a few connected users at each AP/BS might not be full. 

5.2 Extended System Model 
 

The interaction between GRC, AP/BS of each RAT and each user device is 

handled via Media Independent Handover Function (MIHF) defined by the IEEE 802.21 

standard. The mobility package provided by NIST [107] is used to implement the MIHF 

functionality in ns-2. The MIHF functionality is implemented at Layer 2.5 of the OSI 

stack as shown in Figure 5.1. The MIHF defines three different services: Media 

Independent Event Service (MIES), Media Independent Command Service (MICS) and 

Media Independent Information Service (MIIS). MIES provides events triggered by 

changes in the link characteristic and status. MICS provides the user devices necessary 

commands to manage and control the link behavior of each radio to accomplish handover 

functions. MIIS provides information about the neighboring networks and their 
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capabilities. We make use of MIES and MICS functionalities to manage the link-layer 

(Layer 2 of the OSI stack) network re-associations in our proposed hetnet solution. The 

messages related to each of these two services that are used in our study are summarized 

in Tables 5.1 and 5.2 respectively.  

 
Figure 5.1: MIHF implementation in ns-2 

 

From the events and commands presented in Tables 5.1 and 5.2, only association 

mapping event service and link parameter report command service generate actual packet 

overhead as messages related to these events/services are exchanged between two 

different entities (cUE, GRC). The association mapping and link parameter report 

messages are technology independent and are sent over the radio that is active at the 

corresponding cUE at the time these triggers are generated. All other messages are locally 

generated and aid cUE in managing its local interfaces. However, as noted in Table 5.2, 

technology dependent association/scan procedures, which follow a link connect/link scan 

trigger, might generate technology-specific message overhead.  
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Table 5.1: Media independent event services 
Event Trigger Trigger 

Generating 
Entity 

Description 

Link Up cUE Generated when any radio in cUE establishes link-
layer connectivity with a BS/AP. 

Link Down cUE Generated when any radio in cUE loses 
connectivity with a BS/AP. For Wi-Fi radio, this 
happens when 10 consecutive beacon packets 
(sent every 100 ms) are lost. For WiMAX radio, 
this happens when 120 consecutive DL-MAP/UL-
MAP messages (sent every 5 ms) are lost.  

Link Going 
Down 

cUE Generated when any radio in cUE receives a 
packet whose signal strength is lower than 
LGD_Threshold (= 1.1) * Rx Threshold. 

Link Detected cUE Generated by any radio in cUE that receives 
synchronization messages (beacon for Wi-Fi and 
DL-MP for WiMAX) from AP/BS to which it is 
not currently connected.    

Association 
Mapping 

GRC Generated by the GRC after computing periodic 
re-associations based on the decision engine 
(resource allocation procedure). This message is 
only sent to cUEs whose current network 
association must change. 

 
 

Table 5.2: Media independent command services 
Command 

Trigger 
Trigger 

Generating 
Entity 

Description 

Link Connect cUE Generated when the MIHF in cUE wants one of its 
radios to establish a data connection with new 
BS/AP. Once this trigger is received by the 
corresponding radio, technology dependent 
association procedure follows. 

Link Scan cUE Generated when the MIHF in cUE wants one of its 
radios to scan for BSs/Aps. Once this trigger is 
received by the corresponding radio, technology 
dependent scanning procedure follows. 

Link Parameter 
Report 

cUE Generated periodically by cUE to send current link 
parameter status information (such as achievable 
MCS) related to all of its radios to the GRC. 
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The procedural flow of a re-association process is shown in Figure 5.2. During a 

re-association process, after a radio establishes link-layer (Layer 2) connectivity, IP 

connectivity (Layer 3) has to be established before a data flow can be directed to the new 

connection. We use the neighbor discovery protocol for obtaining an IPv6 address to 

establish Layer 3 connectivity [108]. Upon establishing Layer 2 connectivity, a router 

solicitation message is broadcasted by the radio. We assume that the neighbor discovery 

protocol functionality has been implemented at each AP/BS. When the AP/BS receives 

the router solicitation message, it sends a router advertisement broadcast packet in 

response. Upon receiving the router advertisement packet, the cUE uses the prefix 

information of the router advertisement packet to determine its new IP address. 

Moreover, to account for cases where a router solicitation/advertisement message is lost, 

the AP/BS broadcasts the router advertisement packet periodically so that a radio waiting 

for a new IP address due to packet loss can obtain the required address. Once IP 

connectivity is established, any flow in the uplink direction can start using the new radio 

connection. For the flow in the downlink direction, the other end-point of the flow has to 

be informed of the new IP address data packets need to be sent on. A flow redirect 

request message is sent by the cUE to the other end-point to accomplish this task. Upon 

receiving the flow redirect request message, the other end-point starts sending packets for 

the corresponding cUE to the new destination IP address. Moreover, the other end-point 

sends an ACK packet (of negligible size) back to the cUE to inform the cUE of the 

reception of flow redirect request message. The flow redirect request message is 

retransmitted by the cUE until an ACK packet is received from the other end-point. From 
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an overhead perspective, we consider router solicitation, router advertisement responses 

to the router solicitation messages, and flow redirect request messages as overhead 

messages required by the hetnet solution. The periodic retransmission of router 

advertisement packets is defined by the neighbor discovery protocol standard and would 

apply to any network using this IP address discovery method.  Hence, we do not use all 

router advertisement messages as overhead messages.  

  
Figure 5.2: Procedural flow of a re-association process 

 
 

The information related to Layer 2 and Layer 3 overhead messages used in our 

study is summarized in Table 5.3. 
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Table 5.3: Overhead messages in ns-2 
Message OSI 

Layer 
Message Contents Packet Size 

(Bytes) 

Association Mapping 2 New Link Type, New Point-
of-Attachment (PoA) 

42 

Link Parameter 
Report 

2 Current Link Type, Current 
PoA, [Link Type, PoA, 

MCS] for all detected RATs 
OR current location 

60 

Router Solicitation 3 Route Request 48 

Router 
Advertisement 

3 Route Reply 96 

Flow Redirect 
Request 

3 Redirect IP Address 48 

 

5.3 Greedy Sort-based Algorithm Simulation Study 
 

The focus of this study is to show the performance benefits of a hetnet system 

where user device-to-AP/BS associations are controlled by a centralized GRC compared 

to a distributed solution and to identify technical challenges associated with a centralized 

scheme that performs periodic re-associations including the quantification of management 

overhead required by such a system.  We consider a 2 * 2 km2 grid where six Wi-Fi APs 

spread evenly throughout the topology and two WiMAX BSs located near the center of 

the grid are available to users for data connectivity. The simulation topology we consider 

for this study is presented in Figure 5.3. The coverage range of Wi-Fi AP is 0.15 km and 

the coverage range of WiMAX BS is 1 km. Note that the two WiMAX BSs have 

overlapping coverage area. However, both BSs operate on different frequency bands and 

thus avoid the interference co-ordination problem. The network topology in our simulation 

is similar to the balanced network topology used in our earlier studies presented in Figure 
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4.2. However, we do not consider any network co-operation model for this study. We 

assume each user device, based on its location, can connect to any available AP/BS in the 

area (similar to our use case 2 network co-operation model from earlier studies). There are 

100 user devices in the 2 * 2 km2 simulation topology. Each user device is equipped with 

a static Wi-Fi and WiMAX radio that are implemented using low energy consuming 

ASIC-based hardware. Each user receives a CBR data flow over TCP transport layer from 

the sink node. The relevant simulation parameters related to the Wi-Fi RAT, WiMAX 

RAT and the data flow are presented in Appendix D.   

All users move in the network topology using one of three user movement 

patterns: (i) Linear movement pattern where all users move in a straight line starting from 

[0 m, 750 m] coordinate in the topology and ending at [2000 m, 750 m] coordinate in the 

topology. Each user is located 1 meter apart from the user in front and behind that user 

(except for the first and last user). (ii) Random waypoint movement pattern where all users 

move throughout the topology by picking a destination based on generating uniformly 

distributed random waypoints. Each user moves at a constant speed of 2 mph. (iii) 

Random waypoint movement pattern where each user selects a speed in the range [2,20] 

mph according to a uniform distribution while moving between the current waypoint and 

the next waypoint.     
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Figure 5.3: Simulation topology in ns-2 

 
We study two variants of user device-to-AP/BS association decision solutions: 

distributed and centralized. In the distributed association decision solution, each device 

makes its own RAT association decision. For the distributed approach, each user picks a 

RAT according to the norm today: use a Wi-Fi network if available; otherwise, use 

WiMAX network. When the user is connected to WiMAX network, the user performs a 

Wi-Fi link scan every 5 seconds using its unused radio. If a Wi-Fi network is detected, 

the user starts using Wi-Fi network. When the user is connected to Wi-Fi network, the 

user is satisfied and does not perform any link scans. If the user receives a link going 

down (or link down) MIH event while using either Wi-Fi or WiMAX network, the 

corresponding radio goes into scan mode to search for other available Wi-Fi APs or 

WiMAX BSs.  

For the centralized approach, each user connects to the AP/BS according to the 

decision made by the GRC. Each user periodically (on a 5-second basis) sends link 

parameter report to the GRC to inform the GRC of the available APs/BSs and the 
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associated MCS the user can use to connect to those APs/BSs. To obtain the link 

parameter status for each available AP/BS, the user device employs one of the following 

two solutions: periodic scanning (on a 5-second basis) on both its radios to search for Wi-

Fi APs and WiMAX BSs, or location-based solution where the user sends its current 

location in the link parameter report. The GRC maintains a database of information 

related to MCS achievable with all available AP/BS by the user device at any given 

location. Using the link parameter report, the GRC computes the re-association decisions 

on a 5-second basis based on the sort-based heuristic algorithms presented in the next 

section. Note that if a link parameter report packet for any user device is lost (which can 

happen due to collisions if the packet is transmitted via a Wi-Fi connection), the GRC 

uses the most recent link parameter report it obtained successfully from that user device. 

Also, for the centralized association decision solution, if any user device receives a link 

going down (or link down) trigger, it does not wait for the next GRC re-association 

computation (and the subsequent report) to switch APs/BS. It automatically goes into 

scan mode on both radio interfaces and establishes a connection with an available AP/BS.  

5.3.1 Greedy Sort-based Resource Allocation Algorithms 
 

The GRC uses the link parameter report and independent scheduling objective of 

both WiMAX and Wi-Fi RATs when computing user device-to-AP/BS association 

decisions each scheduling interval. From the link parameter report, the GRC can identify 

the maximum data rate each user can achieve using any BS/AP (depending on the 

MCS/location the user reported). The mapping of each MCS to the maximum data rate for 

both Wi-Fi and WiMAX RATs is available in Appendix C. The information related to 
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maximum data rate that each user can achieve via all available AP/BS is used by GRC in 

computing the user device-to-AP/BS associations. The pseudo-code for the heuristic 

algorithms used by the GRC is presented in Appendix E. 

The first heuristic algorithm tries to maximize system spectral efficiency and the 

second heuristic algorithm tries to maximize global instantaneous fairness. Each algorithm 

first sorts each user in descending order for each AP/BS based on the maximum data rate 

the user can achieve via the corresponding AP/BS. In case of ties, the user with lowest 

achievable overall data rate over all APs/BSs (and hence having fewer options) is put 

ahead of the other tied users. Based on this sorted order, in each decision round both 

algorithms compute the achievable total system throughput and lowest user throughput 

metrics under the assumption that the best unassociated user for each AP/BS is associated 

to the corresponding AP/BS. In performing these computations, the GRC uses the 

scheduling objective of each AP/BS (proportional fairness or max-min fairness) to 

determine the percentage of air-time usage (!!") user ! ∈ ! gets through AP/BS ! ∈ ! if 

the next best unassociated user ! ∈ ! is associated to AP/BS ! ∈ !. !!" is determined 

according to Proposition 5.1 or Proposition 5.2 if the scheduling objective of AP/BS 

! ∈ ! is proportional fairness or max-min fairness respectively. Using !!", the values for 

total throughput through AP/BS ! ∈ ! and lowest user throughput are computed using 

equations presented in lines 23 and 24 of the pseudo-code respectively if the scheduling 

objective of AP/BS ! ∈ ! is max-min fairness and the values for total throughput through 

AP/BS ! ∈ ! and lowest user throughput are computed using equations presented in lines 
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27 and 28 of the pseudo-code respectively if the scheduling objective of AP/BS ! ∈ ! is 

proportional fairness.   

Proposition 5.1: For a single independent multi-rate network !   ∈ !, proportional fairness 

is achieved when the percentage of air-time usage (!!") of all users ! ∈ ! connected to 

network ! (represented by ! ∈ !") is equal, i.e. !!" = !
|!"|

 .  

Proof: Presented in Appendix F. 

Proposition 5.2: For a single independent multi-rate network !   ∈ !, max-min fairness is 

achieved when the percentage of air-time usage (!!") of user !   ∈ ! connected to 

network ! (represented by ! ∈ !") is given by !!" =   
!
!!!,!"#
!!",!"#!∈!"

 . 

Proof: Presented in Appendix F. 

Based on the achievable total throughput through AP/BS ! ∈ ! and lowest user 

throughput computations made for each AP/BS ! ∈ ! under the assumption that the next 

best unassociated user ! ∈ !! is connected to AP/BS ! ∈ !, each heuristic algorithm 

makes its next user device-to-AP/BS association decision according to lines 31-49 

presented in the pseudo-code. The first heuristic algorithm trying to maximize system 

spectral efficiency makes decisions based on maximum achievable total system 

throughput and the second heuristic algorithm trying to maximize instantaneous fairness 

makes decisions based on maximum achievable lowest user throughput. In case of ties, 

each algorithm makes decision based on the other metric (maximum lowest user 

throughput metric for algorithm trying to maximize system spectral efficiency and 

maximum achievable total system throughput metric for algorithm trying to maximize 
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instantaneous fairness) to break ties. The process of making user device-to-AP/BS 

association decisions based on the computed achievable total system throughput and 

lowest user throughput metrics in each decision round continues until all users are 

associated to a AP/BS. We use the term Max Throughput algorithm for the first algorithm 

trying to maximize system spectral efficiency and Max Fairness algorithm for the second 

algorithm trying to maximize instantaneous fairness in the remainder of our work.  

Example: We provide an illustrative example that further clarifies the association 

decisions made by the two centralized algorithms in each round. Consider a hetnet system 

with two BSs (a and b) shown in Figure 5.4. BS a implements an independent max-min 

fairness scheduler and BS b implements an independent proportional fairness scheduler. 

There are four users in the hetnet system and each user can achieve a maximum data rate 

via BS a and BS b shown in Figure 5.4. The first step for both centralized algorithms 

sorts each user for both BSs based on the maximum achievable data rates as shown in 

Table 5.4. The second step uses the sorted order presented in Table 5.4 to compute a user 

device-to-BS association decision based on maximum achievable total system throughput 

(for Max Throughput algorithm) and maximum lowest user throughput (for Max Fairness 

algorithm) metrics during each round. The association decision for each round for Max 

Throughput and Max Fairness algorithms is presented in Tables 5.5 and 5.6 respectively. 

The metric used to make the decision during each round is colored red in the 

corresponding table. In case of ties, the first metric is colored green and the second metric 

used to make the decision is colored red. 
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Figure 5.4: Example hetnet scenario 
 

Table 5.4: Sorted user for each BS 
BS a 

Max-Min Fair 
BS b 

Proportional Fair 
User 1 User 1 
User 3 User 2 
User 2 User 3 
User 4 User 4 

 
Table 5.5: Max throughput algorithm association decisions 

Round 
# 

Total System 
Throughput 
(Next assoc. 
BS a) 

Lowest User 
Throughput 
through BS 

a 

Total System 
Throughput 
(Next assoc. 
BS b) 

Lowest User 
Throughput 
through BS 

b 

Association 
Decision 

1 12 12 4 4 User 1 – BS a 
2 8 4 15 3 User 2 – BS b 
3 11 4 14.5 1 User 3 – BS b 
4 8.5 3 14 0.333 User 4 – BS b 

 

Table 5.6: Max fairness algorithm association decisions 
Round 
# 

Total System 
Throughput 
(Next assoc. 
BS a) 

Lowest User 
Throughput 
through BS 

a 

Total System 
Throughput 
(Next assoc. 
BS b) 

Lowest User 
Throughput 
through BS 

b 

Association 
Decision 

1 12 12 4 4 User 1 – BS a 
2 8 4 15 3 User 3 – BS a 
3 7.2 2.4 11 3 User 2 – BS b 
4 9 2 10 2 User 4 – BS b 

 
5.3.2 Greedy Sort-based Algorithm Results and Analysis 

 
We first assess the benefits of the centralized solution implemented at the GRC 

compared to the distributed solution in terms of achieved system spectral efficiency. Each 
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simulation is run in ns-2 for 2000 seconds. The pattern for achieved results in terms of all 

network efficiency measures for both WiMAX MAC implementations (proportional 

fairness and max-min fairness objectives) is similar. Hence, we provide results using the 

proportional fairness WiMAX MAC implementation for the remainder of our work. Note 

that proportional fairness WiMAX MAC achieves higher throughput (and spectral 

efficiency) at the expense of instantaneous and long-term fairness. Also note that Wi-Fi 

MAC implementation is set to the default IEEE 802.11g behavior and is always assumed 

to achieve max-main fairness in our solution. The spectral efficiency comparisons for 

each solution combination (centralized or distributed decision making and each resource 

allocation procedure) are presented in Figure 5.5. The results shown in Figure 5.5 present 

the average system spectral efficiency averaged over entire simulation duration. Recall 

that spectral efficiency metric for each scheduling interval t is computed using (3.1) 

presented in Chapter 3.  

 
Figure 5.5: Spectral efficiency comparisons 
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As can be seen from Figure 5.5, the location based centralized solutions (with 

both Max Throughput and Max Fairness resource allocation procedures) outperform the 

distributed solution in terms of spectral efficiency for all movement patterns due to the 

benefits of multi-access network diversity. The gain in spectral efficiency for the 

centralized Max Throughput resource allocation procedure compared to the distributed 

solution is 99.2% (from 0.385 bits/sec/Hz to 0.767 bits/sec/Hz), 34.9% (from 1.483 

bits/sec/Hz to 2.001 bits/sec/Hz) and 19.4% (from 1.801 bits/sec/Hz to 2.151 bits/sec/Hz) 

for linear, random waypoint same speed and random waypoint variable speed movement 

patterns respectively. The gain in spectral efficiency for the centralized Max Fairness 

resource allocation procedure compared to the distributed solution is 95.8% (from 0.385 

bits/sec/Hz to 0.754 bits/sec/Hz), 22.0% (from 1.483 bits/sec/Hz to 1.81 bits/sec/Hz) and 

8.9% (from 1.801 bits/sec/Hz to 1.962 bits/sec/Hz) for the linear, random waypoint same 

speed and random waypoint variable speed movement patterns respectively. As expected, 

the gain in spectral efficiency is higher for the resource allocation algorithm trying to 

maximize system spectral efficiency (as compared to instantaneous fairness). The highest 

gain in spectral efficiency for a centralized solution (for both resource allocation 

procedures) occurs for the linear movement pattern where all the users are grouped 

together and experience similar connectivity conditions and the lowest gain occurs for the 

random waypoint (variable speed) movement pattern where all the users (because of the 

randomness in their movement patterns) experience the most frequent change in 

connectivity conditions. For linear movement pattern, all users experience similar 

connectivity conditions (for example, one Wi-Fi AP and one WiMAX BS is available to 
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all users at the same time), and as a result the distributed algorithm performs very poorly 

as each user for this solution will select the Wi-Fi access network for data connectivity. 

The centralized solution (both resource allocation algorithms) intelligently associates 

some users to Wi-Fi AP and other users to WiMAX BS and as a result achieves 

significant performance improvement. Also, for the linear movement pattern, since all 

users are grouped together, resources of only one Wi-Fi AP are used at any given time in 

addition to the two WiMAX BSs. Whereas for the random waypoint movement pattern, 

since all users are spread out throughput the network topology, up to six Wi-Fi APs are 

used at any given time in addition to the two WiMAX BSs. As a result, the overall 

spectral efficiency obtained for the linear movement pattern (for any association decision 

solution) is much lower than that of random waypoint movement pattern, which can be 

seen in Figure 5.5.  

The scan based centralized solution has technical challenges associated with it. 

For this solution, since the radios on the user device disrupt active data connections to 

search for available networks on a periodic basis (5 seconds), multiple data packets sent 

by the sink node are either dropped or significantly delayed. This phenomenon results in 

a TCP timeout and resetting (halving) of the window size by the AIMD TCP congestion 

control mechanism every 5 seconds. As a result, there usually aren’t enough data packets 

at the BS/AP to send to each connected user to fully utilize the radio link. Moreover, if all 

users connected to the BS/AP scan at the same time, no traffic is sent by the 

corresponding BS/AP for the scan duration resulting in further underutilization of the 

radio link. So, the performance achieved by this solution is quite unpredictable as it 
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depends heavily on the scanning process. While the centralized scan solution (both 

resource allocation algorithms) for linear movement pattern outperforms the distributed 

solution as seen from Figure 5.5, this solution performs worse than the distributed 

solution for both random waypoint movement patterns. To remedy this challenge, a 

solution needs to be worked on where active data connections are not disrupted during 

the scanning process. However, this requires extra dedicated hardware on user devices for 

scanning purposes or the information related to neighbor APs/BSs needs to be 

broadcasted to the user devices on a periodic basis by the serving AP/BS in a smart 

fashion. We omit results related to the scan based centralized solution for the remainder 

of our work. 

We next present the instantaneous and long-term fairness results in Figures 5.6 

and 5.7 respectively. Since we only consider best-effort traffic, the instantaneous fairness 

metric for each scheduling interval is computed using (3.5) provided in Chapter 3 and the 

results averaged over the entire simulation run are presented in Figure 5.6. The long-term 

fairness results presented in Figure 5.7 are computed using (3.3) provided in Chapter 3. 

The results for both instantaneous and long-term fairness follow the same trend. As can 

be seen from Figures 5.6 and 5.7, the location based centralized solution, which attempts 

to maximize instantaneous fairness, outperforms the distributed solution in terms of both 

instantaneous and long-term fairness. The gain in instantaneous fairness metric for the 

centralized Max Fairness resource allocation procedure compared to the distributed 

solution is 12.9% (from 0.769 to 0.868), 28.5% (from 0.312 to 0.401) and 8.0% (from 

0.275 to 0.297) for linear, random waypoint same speed and random waypoint variable 
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speed movement patterns respectively. The gain in long-term fairness metric for the 

centralized Max Fairness resource allocation procedure compared to the distributed 

solution is 1.8% (from 0.981 to 0.999), 9.3% (from 0.691 to 0.755) and 2.4% (from 0.777 

to 0.796) for the linear, random waypoint same speed and random waypoint variable 

speed movement patterns respectively. Note that this improvement for the centralized 

Max Fairness resource allocation procedure compared to the distributed solution for both 

fairness metrics is experienced in addition to the spectral efficiency improvement shown 

for this procedure in Figure 5.5. So the centralized solution with Max Fairness resource 

allocation procedure improves both conflicting objectives of maximizing system 

throughput and (instantaneous and long-term) fairness compared to a distributed solution 

by making smart association decisions reaping the benefits of multi-access network 

diversity. Both instantaneous and long-term fairness metrics for the centralized Max 

Throughput resource allocation procedure suffer compared to the distributed solution for 

all user movement patterns as seen from Figures 5.6 and 5.7 respectively. But the 

degradation in fairness metrics for the centralized solution with Max Throughput 

resource allocation procedure comes as a cost of achieving highest system spectral 

efficiency as shown in Figure 5.5.  
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Figure 5.6: Instantaneous fairness comparisons 
 

 
Figure 5.7: Long-term fairness comparisons 

 
We finally present the power consumption results in Figure 5.8. The energy 

consumption computation follows the same approach presented in (3.7) in Chapter 3, 

where the energy consumption of a user device depends on two components: the number 

of bits transmitted/received using Wi-Fi/WiMAX RAT and the number of handovers 

performed by the device. For the first component, we use the same !!,! numbers for Wi-

Fi and WiMAX RATs as presented in Table 3.3. But the second component (!!,!), which 
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represents the overhead in terms of energy consumption during a handover, changes for 

this study because of our assumptions. In (3.7), we only model reconfiguration handoffs 

and assume that !!,! energy is consumed when a reconfiguration handoff (RAT change) 

takes place and that this event requires hardware reconfiguration (!!"#,! energy cost) as 

well as it has RAT association energy costs (!!""#$,!). But now, we model a horizontal 

handover (WiMAX-to-WiMAX) in addition to a vertical/reconfiguration handover. So, 

for a horizontal handover (HH!"), only the !!""#$,! energy costs are incurred while for a 

vertical handover (VH!"), both !!"#,! and !!""#$,! energy costs are incurred. The 

equation to compute overall energy consumption for a user device (!!) during the entire 

simulation run is presented in (5.1), where !!" represents the number of data bits 

transmitted by user ! ∈ ! over RAT ! ∈ !, HH!"  represents the number of horizontal 

handovers experienced by user ! ∈ ! within RAT ! ∈ ! and VH!"  represents the 

number of vertical handovers experienced by user ! ∈ ! to RAT ! ∈ ! during the entire 

simulation run. Moreover, for this study since we assume the use of static multi-modal 

radios (based on ASIC hardware), the !!"#,! numbers are much lower than the ones used 

in our previous study in Chapter 4 where reconfigurable radio hardware is assumed. We 

summarize the !!,!, !!"#,!, and !!""#$,! energy consumption numbers used in this study 

in Table 5.7. The results presented in Figure 5.8 represent the average power 

consumption cost per user. The energy consumption, !!, for each user ! ∈ ! is 

computed using (5.1). The computed !! value for each user is summed and the sum is 

divided by the simulation duration to obtain average power consumption per user.  
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              !! =    [  !!,!(!!")+ HH!" ∗ !!""#$,! +    |VH!"| ∗ (!!"#,! +   !!""#$,!)  ]                
!"#

5.1  

Table 5.7: Energy consumption components for simulated RATs 
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Figure 5.8: Power consumption comparisons 

 
Since the average power consumption model depends on two components (energy 

consumption per bit transmitted/received and the number of handovers), the average 

power consumption results include the effects of both actions. As seen from Figure 5.8, 

the average power consumption trend generally mimics the spectral efficiency trend 

shown in Figure 5.5. This indicates that the first power component (energy consumption 

per bit transmitted/received) dominates the overall power consumption. Since the 
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centralized solutions achieve higher spectral efficiency (and as result transmit/receive 

more data bits), the overall power consumption for centralized solutions is higher than 

that of the distributed solution. To quantify the power consumption increase resulting 

from frequent re-associations for a centralized solution more accurately, the overhead 

results are presented next. 

The number of horizontal (WiMAX-to-WiMAX) and vertical (WiMAX-to-Wi-Fi 

and Wi-Fi-to-WiMAX) handovers determines the energy consumed by the centralized 

and distributed solutions resulting from re-associations. The actual number of each type 

of handover for each simulation scenario is presented in Figure 5.9. As can be seen from 

the figure, the horizontal handovers dominate the total number of handovers for the 

centralized solutions in each movement pattern. There are approximately 50, 60 and 30 

times more horizontal handovers for the centralized solution with Max Throughput 

resource allocation procedure compared to the distributed solution for linear, random 

waypoint same speed and random waypoint variable speed movement patterns 

respectively. There is a 50, 10 and 10 times increase in horizontal handovers for the 

centralized solution with Max Fairness resource allocation procedure compared to the 

distributed solution for linear, random waypoint same speed and random waypoint 

variable speed movement patterns respectively. As a result, the increase in energy 

consumption resulting from re-associations for the centralized solutions is an order of 

magnitude higher compared to the distributed solution. However, horizontal handovers 

do not consume as much energy as a vertical handover (3.2 Joules for a WiMAX-to-

WiMAX handover compared to 3.48 Joules for a WiFi-to-WiMAX handover and 5.95 
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Joules for a WiMAX-to-Wi-Fi handover). Also, the number of horizontal handovers for a 

distributed solution are low compared to vertical handovers as seen in Figure 5.9. So, the 

impact of horizontal handovers on overall increase in energy (and subsequently power) 

consumption is not as significant as that of vertical handovers. The increase in vertical 

handovers for the centralized solution (both Max Throughput and Max Fairness resource 

allocation procedure) is all under a factor of 4 times greater compared to the distributed 

solution. Hence, vertical handovers do not cause a significant increase in power 

consumption. The average power consumption results that consider both horizontal and 

vertical handovers for each solution are presented in Figure 5.10.   

  
Figure 5.9: Handover comparisons 
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Figure 5.10: Average power consumption comparisons due to handovers 

 

 
Figure 5.11: Ratio of relative increase in power consumption due to handovers compared 

to spectral efficiency 
 

As seen from Figure 5.10, the increase in average power consumption per user 

resulting from frequent re-associations (handovers) for the centralized solution with Max 

Throughput resource allocation procedure is 650% (0.12 Watts compared to 0.016 

Watts), 488% (0.047 Watts compared to 0.008 Watts) and 191% (0.064 Watts compared 

to 0.022 Watts) compared to the distributed solution for linear, random waypoint same 

speed and random waypoint variable speed movement patterns respectively. The increase 

in the same metric for the centralized solution with Max Fairness resource allocation 



 105 

procedure compared to the distributed solution is 794% (0.143 Watts compared to 0.016 

Watts), 113% (0.017 Watts compared to 0.008 Watts) and 68% (0.037 Watts compared to 

0.022 Watts) for linear, random waypoint same speed and random waypoint variable 

speed movement patterns respectively. To get an estimate of the increase in power 

consumption (due to handovers) relative to the increase in spectral efficiency (which is in 

the range of [8.9%-99.2%]) shown in Figure 5.5, the ratio of increase in power 

consumption (due to handovers) to spectral efficiency increase for a centralized solution 

(with both resource allocation procedures) compared to the distributed solution is shown 

in Figure 5.11. As can be seen from this figure, the increase in power consumption is a 

factor of 5.14 to 13.98 times greater than the increase in spectral efficiency, which 

indicates an order of magnitude higher increase in power consumption compared to the 

increase in spectral efficiency. Note that the resource allocation algorithms used by the 

centralized solution did not consider any energy/power consumption or handover 

minimization metrics in generating the user device-to-AP/BS association decisions. To 

lower some of the adverse effects of frequent handovers such as the increase in power 

consumption just shown, extensions to the centralized heuristic algorithms could be made 

so that handovers for user devices only occur if certain performance improvement 

thresholds are crossed.  

In addition to the system efficiency performance measures just presented, we 

analyze the messaging overhead required during network re-associations and compare it 

with achieved system throughput. We consider the technology-independent messages 

presented in Table 5.3 in our overhead modeling. These messages include periodic link 
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parameter report, association mapping message sent by the GRC based on re-association 

computations, router solicitation message sent by the user device to obtain an IP address 

once link-layer connectivity has been established, router advertisement message sent by 

the AP/BS in response to the router solicitation message, and the flow redirect request 

sent by the user device to inform the other end-point of the switch in interfaces. The 

comparison of average throughput consumed by the overhead messages vs. the actual 

average system (data) throughput is presented in Figure 5.12. The trend in the amount of 

overhead created by each solution mimics the number of handovers experienced by each 

solution (shown in Figure 5.9), which follows expectations. The highest amount of 

overhead throughput produced by any solution compared to the overall throughput is 

18.3%  (24.13 Mbps of data throughput and 5.41 Mbps of overhead throughput) for the 

Max Fairness centralized solution for the linear movement pattern. While this is a 

significant amount of overhead, this happens only in extreme cases where all users are 

grouped together in one location where each user can use a limited set of RATs. For this 

movement pattern, even the distributed solution has an overhead throughput of 15.3% 

(12.32 Mbps of data throughput and 2.22 Mbps of overhead throughput). For the users 

that are spread throughout the topology (random waypoint mobility pattern), the highest 

overhead throughput is 4.7% (64.03 Mbps of data throughput and 3.15 Mbps of overhead 

throughput) for the Max Throughput centralized solution. For all centralized solutions for 

the random waypoint movement patterns (same speed and variable speed), the overhead 

throughput to total throughput ratio is in the range [4.4%, 4.7%]. For the distributed 

solution for the random waypoint movement patterns (same speed and variable speed), 



 107 

the overhead throughput to total throughput ratio is in the range [0.3%, 0.6%]. So as seen 

from these results, the overhead related to the centralized solution is very manageable and 

the increase in overhead due to network re-associations for a centralized solution 

compared to a distributed solution does not exceed by about 4.1%.  

 
Figure 5.12: Comparison of re-association overhead vs. system throughput 
 
To summarize the main findings of our second phase study, we identify the 

following conclusions: 

• A hetnet based on a centralized solution can almost double its spectral efficiency 

(99% increase) compared to the distributed solution. There are even cases where a 

performance increase is achieved in both conflicting objectives of spectral efficiency 

and (instantaneous and long-term) fairness due to the benefits of multi-access 

network diversity. For our centralized solution that uses Max Fairness resource 

allocation procedure, using the linear user movement pattern, we showed a spectral 
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efficiency increase of 95.8%, instantaneous fairness increase of 12.9% and long-term 

fairness increase of 1.8% compared to the distributed solution. 

• A centralized solution where a user device scans periodically disrupting active data 

connections (TCP) results in unpredictable performance results because of the TCP 

congestion control mechanism and the underutilization of available RATs during the 

scanning procedure. A location based solution such as the one we used in our study or 

other mechanism such as additional scanning hardware needs to be implemented at 

each user device to support the generation of periodic link parameter report required 

by a centralized hetnet solution without disrupting active data connections.   

• The centralized solution experiences a significant number of handovers compared to 

the distributed case, and as a result there is a significant increase in power 

consumption (up to 794%) resulting from network re-associations for the centralized 

solution compared to the distributed solution. The resource allocation procedure 

implemented at the centralized solution needs to limit the number of handovers by 

using incremental policies in addition to the traditional objectives of optimizing 

network efficiency measures of spectral efficiency and fairness. 

• The overhead required by the centralized solution based on IEEE 802.21 framework 

does not exceed more than 4.1% compared to a distributed solution for the various 

user movement patterns analyzed in our work and the overhead throughput compared 

to overall throughput does not exceed 18.3% (which only happens in rare cases where 

all users are grouped together in the linear movement pattern. The overhead 
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throughput accounts for fewer than 4.7% of overall throughput for all random 

movement patterns).  
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CHAPTER SIX 
 

CONCLUSIONS 
 
 

We explored radio resource allocation and management issues related to a large-

scale hetnet wireless system made up of several RATs that collectively provide a unified 

wireless network to a diverse set of users through co-ordination managed by a centralized 

GRC. We have assumed centralized means ‘locally centralized’ where decisions are based 

on various amounts of information related to the mobile users and RAT systems in 

specific geographic vicinity. We characterized the network performance in terms of 

various conflicting network efficiency objectives that incorporated costs associated with a 

network re-association operation. We accounted for RAT-specific implementation details 

and the management overhead associated with setting up a centralized control. 

For the first phase of our research study, using MATLAB-based simulation that 

uses a heuristic resource allocation algorithm that tries to maximize spectral efficiency 

while maintaining acceptable levels of fairness, we showed possible gains in spectral 

efficiency due to multi-access network diversity at the cost of increase in power 

consumption for two network topologies: Balanced Topology, where the number of 

RATs accessible to users of two different cellular carriers (or operators) is similar and 

Unbalanced Topology, where the number of APs/BSs accessible to users of one cellular 

operator is far greater compared to the users of the other operator. Our results suggest that 

the gains are not as significant for the balanced network topology, where the spectral 

efficiency increases in the range [14.4%, 75.0%]. Depending on user device (hardware) 
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assumptions, the corresponding increase in power consumption is in the range [114.0%, 

916.8%] or [32.2%, 129.8%] if the devices are completely manufactured with FPGA 

fabric or with ASIC components respectively. The reconfiguration rate (or number of re-

associations/reconfigurations required by each user) mainly dictates the power 

consumption trends for balanced network deployment. For the unbalanced network 

topology, significant gain in spectral efficiency in the range [314.3%, 553.7%] is 

achieved. The corresponding increase in power consumption is in the range [104.9%, 

614.9%] or [35.1%, 98.8%] if the devices are completely manufactured with FPGA fabric 

or with ASIC components respectively. The actual power consumption for unbalanced 

network deployment not only depends on the reconfiguration rate, but also on the number 

of RATs that are used. In the worst case (for balanced network topology), using 

completely reconfigurable devices (manufactured with FPGA fabric) results in almost an 

order of magnitude tradeoff between spectral efficiency (which increases in the range 

[14.4%, 75.0%]) and power consumption efficiency (which increases in the range 

[32.2%, 916.8%]) metrics. Moreover, the number of reconfigurable radios required per 

user device to achieve the increase in spectral efficiency is surprisingly low. For the 

simulation scenarios analyzed in the first phase of our research study, any user device 

utilizes two or fewer radios at any given time.  

To characterize and achieve a desired tradeoff in terms of all the network 

efficiency measures, we then performed an optimization-based study using balanced 

network topology and reconfigurable user device assumption where we considered a 

multi-attribute optimization function consisting of spectral efficiency, battery lifetime of 
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each user (or overall energy consumption), and instantaneous and long-term fairness 

attributes for each user in the system. To compute the relative importance of each 

attribute, we used the Analytical Hierarchy Process (AHP) that took interview responses 

from wireless network providers as input and generated final weight assignments for each 

attribute in our optimization problem. Using the well-known utility function-based 

problem formulation, we showed an increase in a multi-attribute system utility measure 

of up to 56.7% for our algorithm compared to other widely studied resource allocation 

algorithms including max-sum rate, proportional fairness, max-min fairness and min 

power.  

For the second phase of our research study, we used detailed ns-2 modeling to 

account for implementation details and overhead associated with the proposed centralized 

solution (GRC) in a hetnet system. We implemented two variants of sort-based user 

device-to-AP/BS heuristic association algorithms that considered the network 

performance objectives of maximizing spectral efficiency and instantaneous fairness 

respectively. Through ns-2 simulations, we showed an increase in spectral efficiency of up 

to 99% and an increase in instantaneous fairness of up to 28.5% for each respective 

algorithm implemented at the GRC for a centralized solution compared to a distributed 

solution where each user makes his/her own association decision. The efficiency increase 

for each respective attribute comes at the cost of an order of magnitude increase in power 

consumption of up to 650% and 794% for each respective algorithm implemented at the 

GRC compared to a distributed solution because of frequent re-associations. Also, 

periodic scanning required by a centralized solution that disrupt active (TCP) data 
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connections result in unpredictable network performance. To generate periodic link 

parameter report, solutions that predict the maximum achievable data rate for each user 

using all available APs/BSs (such as a location-based strategy) is required.  

In both phases of our research, we consider a specific region that is managed by a 

GRC. Note that for large-scale hetnet systems, several centralized controllers (GRCs) that 

manage different regions of overall network topology could be created in a hierarchical 

fashion. For one region managed by a GRC, our results from second research phase 

suggest that the overhead created by a centralized system is manageable (under 4.7% 

overhead throughput for random user distributions in the region). 

Both phases of our work suggest that a significant increase in power consumption 

(on the order of a factor of 2 to 7) is required to achieve an increase in spectral efficiency. 

In fact, as illustrated in Figure 5.11, the power consumption grows an order of magnitude 

higher compared to the increase in spectral efficiency. This phenomenon results due to 

periodic user device-to-AP/BS re-associations coordinated by the GRC. Advanced power 

management schemes for user devices that are more appropriate for hetnet systems can 

reduce this power consumption.  In our work, using the optimization-based resource 

allocation study, we showed that resource allocation algorithms implemented at the GRC 

could achieve a desired trade-off between spectral efficiency and energy (or power) 

consumption. An area of future work will blend a global allocation strategy that takes 

current device battery levels into account (for example, reduce the frequency of handovers 

as a device’s battery depletes, or add elements of deferred transmissions in hopes of higher 

efficiency transfers in the near future). 
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The definitions and associated research in wireless hetnets has evolved 

significantly over the last several decades. Current research (such as the recent work by 

Andrews [109]) provides an information theoretic perspective as it tries to find the optimal 

fraction of traffic to offload to maximize SINR and/or data rates. Much of the recent focus 

is carrier centric where the core hetnet (involving pico and femto cells) is likely to be 

under the control of a single carrier. Our direction has been more towards an Internet 

model where standard protocols allow users to view a unified wireless access network that 

is built on any number of independent AWSs. We recognize that economic models must 

be considered that provide incentives for AWSs to cooperate.  This issue represents further 

future work.  
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Appendix A 
 

Maximum Achievable Data Rates for RATs 
 
 

Table A-1: Simulation Parameters for IEEE 802.11g (22 MHz) 
 
 
 
 
 
 
 
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  

Table A-2: Simulation Parameters for IEEE 802.16e (10 MHz) 
Modulation 
and Coding 
Scheme 

Bits/ 
Resource 
Block 

Resource 
Blocks/ 
Sec 

Maximum 
Achievable 
Data Rate 
(Mbps) 

QPSK 1/2 48 102000 4.90 
QPSK 3/4 72 102000 7.34 
16-QAM 1/2 96 102000 9.79 
16-QAM 3/4 144 102000 14.69 
64-QAM 1/2 144 102000 14.69 
64-QAM 2/3 192 102000 19.58 
64-QAM 3/4 216 102000 22.03 
64-QAM 5/6 240 102000 24.48 

	  
	  
	  
	  
 
 

Modulation 
and Coding 
Scheme 

Bits/ 
Resource 
Block 

Resource 
Blocks/ 
Sec 

Maximum 
Achievable 
Data Rate 
(Mbps) 

BPSK 1/11 91 9000 0.82 
QPSK 1/11 182 9000 1.64 
BPSK 1/2 500 9000 4.50 
BPSK 3/4 750 9000 6.75 
QPSK 1/2 1000 9000 9.00 
QPSK 3/4 1500 9000 13.50 
16-QAM 1/2 2000 9000 18.00 
16-QAM 3/4 3000 9000 27.00 
64-QAM 2/3 4000 9000 36.00 
64-QAM 3/4 4500 9000 40.50 
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Table A-3: Simulation Parameters for LTE (10 MHz) 
Modulation 
and Coding 
Scheme 

Bits/ 
Resource 
Block 

Resource 
Blocks/ 
Sec 

Maximum 
Achievable 
Data Rate 
(Mbps) 

QPSK 1/2 36 163000 5.89 
QPSK 3/4 54 163000 8.80 
16-QAM 1/2 72 163000 11.74 
16-QAM 3/4 108 163000 17.60 
64-QAM 1/2 108 163000 17.60 
64-QAM 2/3 144 163000 23.47 
64-QAM 3/4 162 163000 26.41 
64-QAM 5/6 180 163000 29.34 

	  

 
 
 

Table A-4: Simulation Parameters for HSPA (5 MHz) 
Modulation 
and Coding 
Scheme 

Bits/ 
Resource 
Block 

Resource 
Blocks/ 
Sec 

Maximum 
Achievable 
Data Rate 
(Mbps) 

QPSK 1/4 2.34375 384000 0.90 
QPSK 1/2 4.6875 384000 1.80 
QPSK 3/4 7.03125 384000 2.70 
16-QAM 1/2 9.375 384000 3.60 
16-QAM 3/4 14.0625 384000 5.40 
16-QAM 4/4 18.75 384000 7.20 
64-QAM 3/4 22.9167 384000 8.80 
64-QAM 5/6 27.47395 384000 10.55 
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Table A-5: Simulation Parameters for EVDO (1.25 MHz) 
Modulation and 
Coding Scheme (and 
Effective code rate) 

Bits/ 
Resource 
Block 

Resource 
Blocks/ 
Sec 

Maximum 
Achievable 
Data Rate 
(Mbps) 

QPSK 1/5 (1/48) 64 450 0.03 
QPSK 1/5 (1/24) 128 450 0.06 
QPSK 1/5 (1/12) 256 450 0.12 
QPSK 1/5 (1/6) 512 450 0.23 
QPSK 1/3 (8/49) 512 450 0.23 
QPSK 1/3 (1/3) 1024 450 0.46 
QPSK 1/3 (16/49) 1024 450 0.46 
8-PSK 1/3 (16/49) 1536 450 0.69 
QPSK 1/3 (2/3) 2048 450 0.92 
16-QAM 1/3 (16/49) 2048 450 0.92 
8-PSK 1/3 (2/3) 3072 450 1.40 
16-QAM 1/3 (2/3) 4096 450 1.84 
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Appendix B 
 

Pseudo-code for Heuristic GRC Algorithm 

 

1.   for each time unit 
2.       for each user ! ∈ ! 
3.            for each radio ! ∈ !  
4.                 user(u).radio(a).mcs = function(user(u).radio(a).distance_from_BS) 
5.                 user(u).radio(a).rate = function(user(u).radio(a).mcs) 
6.            end for ! ∈ !  
7.       end for ! ∈ ! 
      
8.       for each radio ! ∈ ! 
9.            for each user ! ∈ ! 
10.                user(u).radio(a).rank = Sort(user(u).radio(a).mcs) % Descending order 
11.          end for ! ∈ ! 
12.     end for ! ∈ ! 
     
          %  Assign equal Wi-Fi AP resources to all users that can connect to it 
13.     for each Wi-Fi AP ! ∈ ! 
14.         user(u).radio(a).assigned_bw(time_unit) = (total_AP_RBs(a)/num_conn_users) *  
                                                                                   user(u).radio(a).rate 
15.     end for 
                             
16.      % Cellular Step 1 – Assign each user Τ!!  = 100K with its best radio(s) 
17.     for each user ! ∈ ! 
18.         for each cellular radio ! ∈ !  
19.               sorted_radio_rank(u)(a) = Sort(user(u).radio(a).rank) % Descending order 
20.         end for ! ∈ !  
        
21.         for each cellular radio ! ∈ ! 
22.               if (user(u).assigned_bw(time_unit) < 1Mbps &&  
                                     remaining_slots(sorted_radio_rank(u)(a) ≥ 0) 
23.                    if (remaining_slots(sorted_radio_rank(u)(a)) ≥ slots_required_to_reach_Τ!!)  
24.                user(u).radio(sorted_radio_rank(u)(a)).slots =  slots_required_to_reach_Τ!!  
25                       remaining_slots(sorted_radio_rank(u)(a)).slots = − slots_required_to_reach_Τ!!   
26.                    else 
27.                      user(u).radio(sorted_radio_rank(u)(a)).slots =           
                                       remaining_slots(sorted_radio_rank(u)(a)) 
28.                      remaining_slots(sorted_radio_rank(u)(a)) = 0 
29.                    end if-else 
30.               end if 
31.         end for ! ∈ ! 
32.     end for ! ∈ ! 
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         % Cellular Step 2 – Assign additional resources of each RAT to ! =10 best  
                                         users in  increments of ! =100K until they reach a cap of 1M 
33.    for each cellular RAT ! ∈ !  
34.          for each user ! ∈ ! 
35.               sorted_tech_rank(a)(u) = Sort(node(u).radio(a).rank) 
36.          end for ! ∈ ! 
37.    end for ! ∈ ! 
 
38.    for each cellular RAT ! ∈ !   
39.          while (remaining_slots(a) > 0) 
40.               users_served = 0, unservable_users = 0 
41.               for each user ! ∈ ! 
42.                    if (user(sorted_tech_rank(a)(u)).assigned_bw(time_unit) < 1M &&  
                                                           user(sorted_tech_rank(a)(u)).radio(a).mcs > 0) 
43.                          if (remaining_slots(sorted_tech_rank(a)(u)) ≥ slots_required_for_additional_!)  
44.                      user(sorted_tech_rank(a)(u)).radio(a).slots = slots_required_for_additional_! 
45.                               remaining_slots(sorted_tech_rank(a)(u)) = − slots_required_for_additional_! 
46.                          else 
47.                              user(sorted_tech_rank(a)(u)).radio(a).slots =  
                                                               remaining_slots(sorted_tech_rank(a)(u)) 
48.                              remaining_slots(sorted_tech_rank(a)(u)) = 0 
49.                          end if-else 
50.                          users_served++ 
51.                          if (users_served == !) 
52.                               break 
53.                          end if 
54.                    else 
55.                         unservable_users++ 
56.                    end else 
57.               end for ! ∈ ! 
58.               if (unservable_users == |U|) 
59.                    break 
60.               end if 
61.          end while 
62.    end for ! ∈ !  
  
63.  end for each time unit 
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Appendix C 
 

Maximum Achievable Data Rates for RATs in ns-2 Studies  
 
 

Table C-1. Simulation Parameters for IEEE 802.11g (22 MHz) 
 
 
 
 
 
 
 
	  
	  
	  
	  
	  
	  
	  
	  
	  

Table C-2. Simulation Parameters for IEEE 802.16e (10 MHz) 
Modulation 
and Coding 
Scheme 

Bits/ 
OFDM 
Symbol 

OFDM 
Symbols/ 
Sec 

Maximum 
Achievable 
Data Rate 
(Mbps) 

BPSK 1/2 88 44800 3.94 
QPSK 1/2 184 23400 8.24 
QPSK 3/4 280 23400 12.54 
16-QAM 1/2 376 23400 16.84 
16-QAM 3/4 578 23400 25.89 
64-QAM 2/3 760 23400 34.05 
64-QAM 3/4 856 23400 38.35 

 

 

 

  

Modulation 
and Coding 
Scheme 

Data 
Bits/ 
OFDM 
Symbol 

OFDM 
Symbols
/Sec 

Maximum 
Achievable 
Data Rate 
(Mbps) 

BPSK 1/2 24 250000 6.0 
BPSK 3/4 36 250000 9.0 
QPSK 1/2 48 250000 12.0 
16-QAM 1/2 96 250000 24.0 
16-QAM 3/4 144 250000 36.00 
64-QAM 2/3 192 250000 48.00 
64-QAM 3/4 216 250000 54.00 
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Appendix D 
 

Relevant ns-2 Simulation Parameters 
 

 
Table D.1: IEEE 802.11g Simulation Parameters 

Parameter Description 
CWmin 15 
CWmax 1023 

Beacon Interval 100 ms 
Max Acceptable Beacon Loss 10 

RTS/CTS Mechanism Off 
Location of APs  

(x, y co-ordinates) 
(650, 750); (650, 1250); (1000, 750); 

(1000, 1250); (1350, 750); (1350, 1250)  
Number of Channels 11 
Channel Bandwidth 22 MHz 

Supported MCS BPSK1/2, BPSK 3/4, QPSK 1/2, 16-
QAM 1/2, 16-QAM 3/4,64-QAM 2/3, 

64-QAM 3/4 
MCS Feedback ACK Piggyback 
Coverage Range 150 meters 

Propagation Model TwoRayGround 
Scan Duration 1.32 seconds  

(120 ms for each channel) 
Scan Mode Passive 

Link Going Down Factor 1.1 
 

Table D.2: IEEE 802.16e Simulation Parameters 
Parameter Description 

Channel Bandwidth 10 MHz 
Frame Duration 5 ms 
Location of BSs  

(x, y co-ordinates) 
(500, 1000); (1500; 1000) 

Scheduler Deficit Weighted Round Robin 
Scan Duration 125 ms (25 frames) 
Scan Iterations 1 
DL:UL Ratio 3:2 

Supported MCS BPSK1/2, QPSK 1/2, QPSK 3/4, 16-QAM 
1/2, 16-QAM 3/4,64-QAM 2/3, 64-QAM 3/4 

MCS Feedback CQI Channel 
Coverage Range 1 kilometer 

Propagation Model TwoRayGround 
Link Going Down Factor 1.1 
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Table D.3: Data Flow Simulation Parameters 
Parameter Description 

Traffic Direction Downlink (sink node to cUE) 
Transport Protocol TCP 

TCP Flavor Selective ACK (Sack) 
TCP Congestion Control Mechanism Additive Increase Multiplicative 

Decrease (AIMD) 
Traffic Pattern Constant Bit Rate 

CBR Packet Size 500 Bytes 
Packet Interval 0.160 ms 

Traffic Generation Rate 25 Mbps 
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Appendix E 
 

Greedy Sort-Based Resource Allocation Algorithms Pseudo-code 
 
 

(i) Maximizing spectral efficiency heuristic algorithm (Max Throughput) 

1.    for each AP/BS ! ∈ ! 
2.          sorted_users_AP_BS[a].list = Sort(!!",!"#)      % Descending order; For ties, sort according to  
                                                                                         % user u ∈  arg min {∑ !!",!"#!∈! }   
3.          users_allocated_AP_BS[a].list = NULL 
4.          num_users_AP_BS[a] = 0 
5.          achieved_throughput_AP_BS[a] = 0 
6.          total_throughput_AP_BS[a] = -1 
7.          lowest_user_throughput[a] = -1 
8.    end for   
 
9.    num_allocated_users = 0 
10.   while num_allocated_users != |U| 
 
11.           for each AP/BS ! ∈ ! 
12.                total_throughput_AP_BS[a] = -1 
13.                lowest_user_throughput[a] = -1 
 
14.                curr_index = 0; 
15.                while userid(sorted_users_AP_BS[a][curr_index]).association_status == true 
16.                         curr_index++ 
17.                end while 
 
18.                if curr_index ≥ sorted_users_AP_BS[a].size() 
19.                         continue 
20.                end if 
 
                    % Compute total throughput and lowest throughput for any user u if  
                    % one more user is added to AP/BS a depending on its scheduler type 
21.                if a.scheduler == Max_Min_Fair 
22.                      !!" = Calculate according to Proposition 2 where !" includes all users  
                                    in users_allocated_AP_BS[a].list and ! = sorted_users_AP_BS[a][curr_index]   
23.                      total_throughput_AP_BS[a] = (num_users_AP_BS[a] + 1) * !!" *  
                                                                         sorted_users_AP_BS[a][curr_index].  !!",!"#  
24.                      lowest_user_throughput[a] = total_throughput_AP_BS[a]/(num_users_AP_BS[a] + 1) 
25.                else if a.scheduler == Proportional_Fair 
26.                      !!" =  Calculate according to Proposition 1 where |Ua| = num_users_AP_BS[a] + 1 
27.                      total_throughput_AP_BS[a] = !!" * (sorted_users_AP_BS[a][curr_index].  !!",!"# +  
                                                                                  ∑!"#$"_!""#$!%&'_!"_!"[!]. !!",!"#) 
28.                      lowest_user_throughput[a] = !!" * sorted_users_AP_BS[a][curr_index].  !!",!"#  
29.                end else   
 
30.           end for 
 
 



 125 

 

 

 

 

 

 

              % Decide the next user to be added to any AP/BS based on the total_throughput_AP_BS[a]  
               % and lowest_user_throughput[a] computations above. Base decisions on maximum  
               % achievable system throughput. In case of ties, use the fairness metric  
               % (lowest_user_throughput[a])   
31.           achievable_system_throughput = -1 
32.           max_achievable_system_throughput = -1 
33.           AP_BS_to_Allocate = -1 
34.           for each AP/BS ! ∈ ! 
35.                 if total_throughput_AP_BS[a] != -1 
36.                     achievable_system_throughput = (∑ !"ℎ!"#"$_!ℎ!"#$ℎ!"#_!"_!"[!])!\{!}  +  
                                                                                total_throughput_AP_BS[a] 
37.                     if achievable_system_throughput ≥ max_achievable_system_throughput 
38.                         if achievable_system_throughput == max_achievable_system_throughput 
39.                              if lowest_user_throuhgput[a] > lowest_user_throughput[AP_BS_to_Allocate] 
40.                                  max_achievable_system_throughput = achievable_system_throughput 
41.                                  AP_BS_to_Allocate = a 
42.                              end if  
43.                         else  
44.                              max_achievable_system_throughput = achievable_system_throughput 
45.                              AP_BS_to_Allocate = a 
46.                         end else 
47.                     end if 
48.                 end if 
49.           end for 
 
50.           curr_index = 0; 
51.           while userid(sorted_users_AP_BS[AP_BS_to_Allocate][curr_index])                            
                                                                                                   .association_status == true 
52.                 curr_index++ 
53.           end while 
54.           userid(sorted_users_AP_BS[AP_BS_to_Allocate][curr_index]).association_status = true 
55.           users_allocated_AP_BS[AP_BS_to_Allocate].append(sorted_users_AP_BS[curr_index]) 
56.           achieved_throughput_AP_BS[AP_BS_to_Allocate] =  
                                                                    total_throughput_AP_BS[AP_BS_to_Allocate] 
57.           num_users_AP_BS[AP_BS_to_Allocate]++ 
58.           num_allocated_users++     
   
59.  end while 
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(ii) Maximizing instantaneous fairness heuristic algorithm (Max Fairness) 

1.    for each AP/BS ! ∈ ! 
2.          sorted_users_AP_BS[a].list = Sort(!!",!"#)      % Descending order; For ties, sort according to  
                                                                                         % user u ∈  arg min {∑ !!",!"#!∈! }   
3.          users_allocated_AP_BS[a].list = NULL 
4.          num_users_AP_BS[a] = 0 
5.          achieved_throughput_AP_BS[a] = 0 
6.          total_throughput_AP_BS[a] = -1 
7.          lowest_user_throughput[a] = -1 
8.    end for   
 
9.    num_allocated_users = 0 
10.   while num_allocated_users != |U| 
 
11.           for each AP/BS ! ∈ ! 
12.                total_throughput_AP_BS[a] = -1 
13.                lowest_user_throughput[a] = -1 
 
14.                curr_index = 0; 
15.                while userid(sorted_users_AP_BS[a][curr_index]).association_status == true 
16.                         curr_index++ 
17.                end while 
 
18.                if curr_index ≥ sorted_users_AP_BS[a].size() 
19.                         continue 
20.                end if 
 
                    % Compute total throughput and lowest throughput for any user u if  
                    % one more user is added to AP/BS a depending on its scheduler type 
21.                if a.scheduler == Max_Min_Fair 
22.                      !!" = Calculate according to Proposition 2 where !" includes all users  
                                    in users_allocated_AP_BS[a].list and ! = sorted_users_AP_BS[a][curr_index]   
23.                      total_throughput_AP_BS[a] = (num_users_AP_BS[a] + 1) * !!" *  
                                                                         sorted_users_AP_BS[a][curr_index].  !!",!"#  
24.                      lowest_user_throughput[a] = total_throughput_AP_BS[a]/(num_users_AP_BS[a] + 1) 
25.                else if a.scheduler == Proportional_Fair 
26.                      !!" =  Calculate according to Proposition 1 where |Ua| = num_users_AP_BS[a] + 1 
27.                      total_throughput_AP_BS[a] = !!" * (sorted_users_AP_BS[a][curr_index].  !!",!"# +  
                                                                                  ∑!"#$"_!""#$!%&'_!"_!"[!]. !!",!"#) 
28.                      lowest_user_throughput[a] = !!" * sorted_users_AP_BS[a][curr_index].  !!",!"#  
29.                end else   
 
30.           end for 
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               % Decide the next user to be added to any AP/BS based on the lowest_user_throughput[a]  
               % and total_throughput_AP_BS[a] computations above. Base decisions on trying to 
               % maximize lowest throughput achieved by any user. In case of ties, use the  
               % total_throughput_AP_BS[a] metric.  
31.           achievable_lowest_user_throughput = -1 
32.           AP_BS_to_Allocate = -1 
33.           for each AP/BS ! ∈ ! 
34.                 achievable_system_throughput[a] = -1 
35.                 if lowest_user_throughput[a] != -1 
36.                     achievable_system_throughput[a] = (∑ !"ℎ!"#"$_!ℎ!"#$ℎ!"#_!"_!"[!])!\{!}  +  
                                                                                    total_throughput_AP_BS[a] 
37.                     if lowest_user_throughput[a] ≥ achievable_lowest_user_throughput 
38.                         if lowest_user_throughput[a] == achievable_lowest_user_throughput 
39.                              if achievable_system_throghput[a]  > 
                                                                     achievable_system_throughput[AP_BS_to_Allocate] 
40.                                  achievable_lowest_user_throughput = lowest_user_throughput[a] 
41.                                 AP_BS_to_Allocate = a 
42.                              end if  
43.                         else  
44.                              achievable_lowest_user_throughput = lowest_user_throughput[a] 
45.                              AP_BS_to_Allocate = a 
46.                         end else 
47.                     end if 
48.                 end if 
49.           end for 
 
50.           curr_index = 0; 
51.           while userid(sorted_users_AP_BS[AP_BS_to_Allocate][curr_index]) 
                                                                                                          .association_status == true 
52.                 curr_index++ 
53.           end while 
54.           userid(sorted_users_AP_BS[AP_BS_to_Allocate][curr_index]).association_status = true 
55.           users_allocated_AP_BS[AP_BS_to_Allocate].append(sorted_users_AP_BS[curr_index]) 
56.           achieved_throughput_AP_BS[AP_BS_to_Allocate] =  
                                                                                    total_throughput_AP_BS[AP_BS_to_Allocate] 
57.           num_users_AP_BS[AP_BS_to_Allocate]++ 
58.           num_allocated_users++     
   
59.  end while 
 



 128 

Appendix F 
 

Air-time Usage Proofs for Proportional Fairness and Max-Min Fairness 
 
 

Proposition 5.1: For a single independent multi-rate network !   ∈ !, proportional fairness 
is achieved when the percentage of air-time usage (!!") of all users ! ∈ ! connected to 
network ! (represented by ! ∈ !") is equal, i.e. !!" = !

|!"|
 . 

 
Proof: 
 
The objective of proportional fairness resource allocation problem is as follows: 
 

      max ln   !!"
!  ∈!"

 

 
=     max ln  (!!",!"# ∗   !!")

!  ∈!"

 

 
    =     max   ln   (!!",!"# ∗   !!")

!  ∈!"

   

 
      =     max    !!",!"# ∗   !!"                 

!  ∈!"

 

 
Since !!",!"# > 0 and is a constant, the above objective reduces to the following: 
 

 
max   !!"

!  ∈!"

 

 
The constraints related to the optimization problem are as follows: 
 

  !!"
!  ∈!"

= 1 

 
  !!"   ≥ 0,∀! ∈ !" 

 
For solving the optimization problem given by the objective function and the two 
constraints above, we can successfully ignore the inequality constraint since that 
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constraint is non-binding as setting any    !!" = 0 would give an objective function value 
of 0 which would clearly not provide the maximum. 
 
So, using the objective function and the equality constraint, we use method of Lagrangian 
Multipliers to solve the problem.  
 

! !!! ,!!! ,… ,!|!"|! , ! =      !!"
!  ∈!"

+   !(1−   !!"
!  ∈!"

) 

 
Setting the gradient ∇! !!! ,!!! ,… ,! !" ! , ! = 0, we get 

 
!"
!!!!

=      !!"
!  ∈!",!!!

−   ! = 0 

 
!"
!!!!

=      !!"
!  ∈!",!!!

−   ! = 0 

 
. 
. 
 

!"
!!|!"|

=      !!!
!  ∈!",!!|!"|!

−   ! = 0 

 
Solving these set of equations yields 
 

  !!" =      !!" = ⋯ =      !!"
!  ∈!",!! !" !

=   !
!  ∈!",!!!!  ∈!",!!!

 

 
which implies  
 

  !!! =      !!! = ⋯ =      !|!"|! 
 
Using this result along with the original constraint     !!"!  ∈! = 1 results in   !!! =
  !!! = ⋯ =      !|!"|! = !

|!"|
  

∎ 
 

Proposition 5.2: For a single independent multi-rate network !   ∈ !, max-min fairness is 
achieved when the percentage of air-time usage (!!") of user !   ∈ ! connected to 
network ! (represented by ! ∈ !") is given by !!" =   

!
!!",!"#
!!",!"#!∈!"

 . 
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Proof: 
 
Since we consider a single independent network, there exists only one bottleneck link. 
For a single bottleneck link, the max-min fairness objective results in equal data rate 
allocation to each user. Therefore, we obtain the following objective to provide max-min 
fairness: 
 

!!! =   !!! = … = !|!"|! 
 

∴   !!!,!"# ∗   !!! =   !!!,!"# ∗   !!! = ⋯ =   !|!"|!,!"# ∗   !|!"|!  
 

Solving !!! ,…, !|!"|! in terms of !!! yields: 
 
                                                                                                              !!" =   

!!!,!"#
!!",!"#

!!!      ∀! ∈ !"                                      (F.1) 
 
Again, the constraints related to the optimization problem are as follows: 
 

  !!"
!  ∈!"

= 1 

 
  !!"   ≥ 0,∀! ∈ !" 

 
Using the value of !!" in terms of !!! obtained from the objective function and the first 
constraint, we get 
 

!!!  (
!!!,!"#
!!",!"#

  ) = 1
!  !  !"

   

 

!!! =   
1
!!!,!"#
!!",!"#

  !  !  !"

 

 
We obtain the required values of !!" for any user ! ∈ !" by using the relationship 
between !!" and !!! presented in (F.1). That is,  
 

!!" =   
1
!!",!"#
!!",!"#

  !  !  !"

 

∎  
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