10,880 research outputs found

    Action video game play and transfer of navigation and spatial cognition skills in adolescents who are blind

    Get PDF
    For individuals who are blind, navigating independently in an unfamiliar environment represents a considerable challenge. Inspired by the rising popularity of video games, we have developed a novel approach to train navigation and spatial cognition skills in adolescents who are blind. Audio-based Environment Simulator (AbES) is a software application that allows for the virtual exploration of an existing building set in an action video game metaphor. Using this ludic-based approach to learning, we investigated the ability and efficacy of adolescents with early onset blindness to acquire spatial information gained from the exploration of a target virtual indoor environment. Following game play, participants were assessed on their ability to transfer and mentally manipulate acquired spatial information on a set of navigation tasks carried out in the real environment. Success in transfer of navigation skill performance was markedly high suggesting that interacting with AbES leads to the generation of an accurate spatial mental representation. Furthermore, there was a positive correlation between success in game play and navigation task performance. The role of virtual environments and gaming in the development of mental spatial representations is also discussed. We conclude that this game based learning approach can facilitate the transfer of spatial knowledge and further, can be used by individuals who are blind for the purposes of navigation in real-world environments

    Virtual environments for the transfer of navigation skills in the blind: a comparison of directed instruction vs. video game based learning approaches

    Get PDF
    For profoundly blind individuals, navigating in an unfamiliar building can represent a significant challenge. We investigated the use of an audio-based, virtual environment called Audio-based Environment Simulator (AbES) that can be explored for the purposes of learning the layout of an unfamiliar, complex indoor environment. Furthermore, we compared two modes of interaction with AbES. In one group, blind participants implicitly learned the layout of a target environment while playing an exploratory, goal-directed video game. By comparison, a second group was explicitly taught the same layout following a standard route and instructions provided by a sighted facilitator. As a control, a third group interacted with AbES while playing an exploratory, goal-directed video game however, the explored environment did not correspond to the target layout. Following interaction with AbES, a series of route navigation tasks were carried out in the virtual and physical building represented in the training environment to assess the transfer of acquired spatial information. We found that participants from both modes of interaction were able to transfer the spatial knowledge gained as indexed by their successful route navigation performance. This transfer was not apparent in the control participants. Most notably, the game-based learning strategy was also associated with enhanced performance when participants were required to find alternate routes and short cuts within the target building suggesting that a ludic-based training approach may provide for a more flexible mental representation of the environment. Furthermore, outcome comparisons between early and late blind individuals suggested that greater prior visual experience did not have a significant effect on overall navigation performance following training. Finally, performance did not appear to be associated with other factors of interest such as age, gender, and verbal memory recall. We conclude that the highly interactive and immersive exploration of the virtual environment greatly engages a blind user to develop skills akin to positive near transfer of learning. Learning through a game play strategy appears to confer certain behavioral advantages with respect to how spatial information is acquired and ultimately manipulated for navigation

    TACTOPI: a playful approach to promote computational thinking to visually impaired children

    Get PDF
    Tese de mestrado em Informática, Faculdade de Ciências, Universidade de Lisboa, 2021The use of playful activities is common in introductory programming settings. Visually, these activities tend to be stimulating enough. However, these are not accessible for visually impaired children. This work presents TACTOPI - a system that consists of a tangible environment that provides navigation skills training and enriches sensorial experiences using sound, visual and tactile elements; It allows the learning of introductory concepts of computational thinking embedded in playful activities with storytelling that promote environmental education for children with visual impairments from 4 to 7 years old. The map is modular, customizable and has a docking system to place the elements allowing a fun tactile interaction. Another essential element is the 3D printed helm containing a joystick and buttons for the child to control and pre-program the instructions to be played by the robot. A study was carried out using a qualitative questionnaire to evaluate the system. Suggestions were collected from respondents experienced with blind children about the suitability, relevance and accessibility of this system for these children. From the results, it is possible to conclude that this is a tool that, despite some limitations, is efficient to introduce computational thinking; interactive elements that support activities in other disciplines and contexts; a tool that ensures accessibility and supports task training for the development of blind children

    Computer Entertainment Technologies for the Visually Impaired: An Overview

    Get PDF
    Over the last years, works related to accessible technologies have increased both in number and in quality. This work presents a series of articles which explore different trends in the field of accessible video games for the blind or visually impaired. Reviewed articles are distributed in four categories covering the following subjects: (1) video game design and architecture, (2) video game adaptations, (3) accessible games as learning tools or treatments and (4) navigation and interaction in virtual environments. Current trends in accessible game design are also analysed, and data is presented regarding keyword use and thematic evolution over time. As a conclusion, a relative stagnation in the field of human-computer interaction for the blind is detected. However, as the video game industry is becoming increasingly interested in accessibility, new research opportunities are starting to appear

    CLUE: A Usability Evaluation Checklist for Multimodal Video Game Field Studies with Children Who Are Blind

    Get PDF
    Multimodal video games can enhance the cognitive skills of children who are blind by allowing interaction with scenarios that would be unfeasible in their everyday life. To assist the identification of relevant interface and interaction issues when children who are blind are playing multimodal video games, we propose a Checklist for Usability Evaluation of Multimodal Games for Children who are Blind (CLUE). CLUE was designed to assist researchers and practitioners in usability evaluation field studies, addressing multiple aspects of gameplay and multimodality, including audio, graphics, and haptics. Overall, initial evidence indicates that the use of CLUE during user observation helps to raise a greater number of relevant usability issues than other methods, such as interview and questionnaire. CLUE makes the analysis of recorded user interactions a less time- and effort-consuming process by guiding the identification of interaction patterns and usability issues

    Towards Understanding and Developing Virtual Environments to Increase Accessibilities for People with Visual Impairments

    Get PDF
    The primary goal of this research is to investigate the possibilities of utilizing audio feedback to support effective Human-Computer Interaction Virtual Environments (VEs) without visual feedback for people with Visual Impairments. Efforts have been made to apply virtual reality (VR) technology for training and educational applications for diverse population groups, such as children and stroke patients. Those applications had already shown effects of increasing motivations, providing safer training environments and more training opportunities. However, they are all based on visual feedback. With the head related transfer functions (HRTFs), it is possible to design and develop considerably safer, but diversified training environments that might greatly benefit individuals with VI. In order to explore this, I ran three studies sequentially: 1) if/how users could navigate themselves with different types of 3D auditory feedback in the same VE; 2) if users could recognize the distance and direction of a virtual sound source in the virtual environment (VE) effectively; 3) if users could recognize the positions and distinguish the moving directions of 3D sound sources in the VE between the participants with and without VI. The results showed some possibilities of designing effective Human-Computer Interaction methods and some understandings of how the participants with VI experienced the scenarios differently than the participants without VI. Therefore, this research contributed new knowledge on how a visually impaired person interacts with computer interfaces, which can be used to derive guidelines for the design of effective VEs for rehabilitation and exercise

    A survey of haptics in serious gaming

    Get PDF
    Serious gaming often requires high level of realism for training and learning purposes. Haptic technology has been proved to be useful in many applications with an additional perception modality complementary to the audio and the vision. It provides novel user experience to enhance the immersion of virtual reality with a physical control-layer. This survey focuses on the haptic technology and its applications in serious gaming. Several categories of related applications are listed and discussed in details, primarily on haptics acts as cognitive aux and main component in serious games design. We categorize haptic devices into tactile, force feedback and hybrid ones to suit different haptic interfaces, followed by description of common haptic gadgets in gaming. Haptic modeling methods, in particular, available SDKs or libraries either for commercial or academic usage, are summarized. We also analyze the existing research difficulties and technology bottleneck with haptics and foresee the future research directions
    corecore