132 research outputs found

    Screening of Obstructive Sleep Apnea with Empirical Mode Decomposition of Pulse Oximetry

    Full text link
    Detection of desaturations on the pulse oximetry signal is of great importance for the diagnosis of sleep apneas. Using the counting of desaturations, an index can be built to help in the diagnosis of severe cases of obstructive sleep apnea-hypopnea syndrome. It is important to have automatic detection methods that allows the screening for this syndrome, reducing the need of the expensive polysomnography based studies. In this paper a novel recognition method based on the empirical mode decomposition of the pulse oximetry signal is proposed. The desaturations produce a very specific wave pattern that is extracted in the modes of the decomposition. Using this information, a detector based on properly selected thresholds and a set of simple rules is built. The oxygen desaturation index constructed from these detections produces a detector for obstructive sleep apnea-hypopnea syndrome with high sensitivity (0.8380.838) and specificity (0.8550.855) and yields better results than standard desaturation detection approaches.Comment: Accepted in Medical Engineering and Physic

    Multimodal Signal Processing for Diagnosis of Cardiorespiratory Disorders

    Get PDF
    This thesis addresses the use of multimodal signal processing to develop algorithms for the automated processing of two cardiorespiratory disorders. The aim of the first application of this thesis was to reduce false alarm rate in an intensive care unit. The goal was to detect five critical arrhythmias using processing of multimodal signals including photoplethysmography, arterial blood pressure, Lead II and augmented right arm electrocardiogram (ECG). A hierarchical approach was used to process the signals as well as a custom signal processing technique for each arrhythmia type. Sleep disorders are a prevalent health issue, currently costly and inconvenient to diagnose, as they normally require an overnight hospital stay by the patient. In the second application of this project, we designed automated signal processing algorithms for the diagnosis of sleep apnoea with a main focus on the ECG signal processing. We estimated the ECG-derived respiratory (EDR) signal using different methods: QRS-complex area, principal component analysis (PCA) and kernel PCA. We proposed two algorithms (segmented PCA and approximated PCA) for EDR estimation to enable applying the PCA method to overnight recordings and rectify the computational issues and memory requirement. We compared the EDR information against the chest respiratory effort signals. The performance was evaluated using three automated machine learning algorithms of linear discriminant analysis (LDA), extreme learning machine (ELM) and support vector machine (SVM) on two databases: the MIT PhysioNet database and the St. Vincent’s database. The results showed that the QRS area method for EDR estimation combined with the LDA classifier was the highest performing method and the EDR signals contain respiratory information useful for discriminating sleep apnoea. As a final step, heart rate variability (HRV) and cardiopulmonary coupling (CPC) features were extracted and combined with the EDR features and temporal optimisation techniques were applied. The cross-validation results of the minute-by-minute apnoea classification achieved an accuracy of 89%, a sensitivity of 90%, a specificity of 88%, and an AUC of 0.95 which is comparable to the best results reported in the literature

    수면 호흡음을 이용한 폐쇄성 수면 무호흡 중증도 분류

    Get PDF
    학위논문 (박사)-- 서울대학교 융합과학기술대학원 융합과학부, 2017. 8. 이교구.Obstructive sleep apnea (OSA) is a common sleep disorder. The symptom has a high prevalence and increases mortality as a risk factor for hypertension and stroke. Sleep disorders occur during sleep, making it difficult for patients to self-perceive themselves, and the actual diagnosis rate is low. Despite the existence of a standard sleep study called a polysomnography (PSG), it is difficult to diagnose the sleep disorders due to complicated test procedures and high medical cost burdens. Therefore, there is an increasing demand for an effective and rational screening test that can determine whether or not to undergo a PSG. In this thesis, we conducted three studies to classify the snoring sounds and OSA severity using only breathing sounds during sleep without additional biosensors. We first identified the classification possibility of snoring sounds related to sleep disorders using the features based on the cyclostationary analysis. Then, we classified the patients OSA severity with the features extracted using temporal and cyclostationary analysis from long-term sleep breathing sounds. Finally, the partial sleep sound extraction, and feature learning process using a convolutional neural network (CNN, or ConvNet) were applied to improve the efficiency and performance of previous snoring sound and OSA severity classification tasks. The sleep breathing sound analysis method using a CNN showed superior classification accuracy of more than 80% (average area under curve > 0.8) in multiclass snoring sounds and OSA severity classification tasks. The proposed analysis and classification method is expected to be used as a screening tool for improving the efficiency of PSG in the future customized healthcare service.Chapter 1. Introduction ................................ .......................1 1.1 Personal healthcare in sleep ................................ ..............1 1.2 Existing approaches and limitations ....................................... 9 1.3 Clinical information related to SRBD ................................ .. ..12 1.4 Study objectives ................................ .........................16 Chapter 2. Overview of Sleep Research using Sleep Breathing Sounds ........... 23 2.1 Previous goals of studies ................................ ................23 2.2 Recording environments and related configurations ........................ 24 2.3 Sleep breathing sound analysis ................................ ...........27 2.4 Sleep breathing sound classification ..................................... 35 2.5 Current limitations ................................ ......................36 Chapter 3. Multiple SRDB-related Snoring Sound Classification .................39 3.1 Introduction ................................ .............................39 3.2 System architecture ................................ ......................41 3.3 Evaluation ................................ ...............................52 3.4 Results ................................ ..................................55 3.5 Discussion ................................ ...............................59 3.6 Summary ................................ ..................................63 Chapter 4. Patients OSA Severity Classification .............................65 4.1 Introduction ................................ .............................65 4.2 Existing Approaches ................................ ......................69 4.3 System Architecture ................................ ......................70 4.4 Evaluation ................................ ...............................85 4.5 Results ................................ ..................................87 4.6 Discussion ................................ ...............................94 4.7 Summary ................................ ..................................97 Chapter 5. Patient OSA Severity Prediction using Deep Learning Techniques .....99 5.1 Introduction ................................ .............................99 5.2 Methods ................................ ..................................101 5.3 Results ................................ ..................................109 5.4 Discussion ................................ ...............................115 5.5 Summary ................................ ..................................118 Chapter 6. Conclusions and Future Work ........................................120 6.1 Conclusions ................................ ..............................120 6.2 Future work ................................ ..............................127Docto

    Sleep Arousal and Cardiovascular Dynamics

    Get PDF
    Sleep arousal conventionally refers to any temporary intrusions of wakefulness into sleep. Arousals are usually considered as a part of normal sleep and rarely result in complete awakening. However, once their frequency increases, they may affect the sleep architecture and lead to sleep fragmentation, resulting in fatigue, poor executive functioning and excessive daytime sleepiness. In the electroencephalogram, arousals mostly appear as a shift of power in frequency to values greater than 16 Hz lasting 3-15 seconds. The general objective of this thesis was to investigate on the nature of sleep arousal and study arousal interaction and association with cardiovascular dynamics. At the first step of this research, an algorithm was developed and evaluated for automatic detection of sleep arousal. The polysomnographic (PSG) data of 9 subjects were analysed and 32 features were derived from a range of biosignals. The extracted features were used to develop kNN classifier model in to differentiate arousal from non-arousal events. The developed algorithm can detect arousal events with the average sensitivity and accuracy of 79% and 95.5%, respectively. The second aim was to investigate cardiovascular dynamics once an arousal occurs. Overnight continuous systolic and diastolic blood pressure (SBP and DSP), spectral components of heart rate variability (HRV) and the pulse transit time of 10 subjects (average arousal number of 51.5 +/- 21.1 per person) were analysed before and after arousal occurrence. Whether each cardiovascular variable increases or decreases was evaluated in different types of arousals through slpoe index (SI). The analysis indicated a post-arousal SBP and DBP elevation and PTT dropping. High frequency component of HRV (HF) dropped at arousal onset whilst low frequency (LF) component shifted. HRV spectral components extracted from ECG, lead I alongside with PTT were utilised for sleep staging in 22 healthy and insomnia subjects using linear and non-linear classifier models. Obtained result shows that developed model by DW-kNN classifier could detect sleep stages with mean accuracy of 73.4% +/- 6.4. An empirical curve fitting model for overnight continuous blood pressure estimation was developed and evaluated using the first and second derivatives of fingertip PPG (VPG, APG) along with ECG. The VPG-based model could estimate systolic and diastolic blood pressure with mean error of 3:96 mmHg with standard deviation of 1.41 mmHg and DBP with 6:88 mmHg with standard deviation of 3.03 mmHg. The QT and RR time intervals are two cardiac variables which represent beat to beat variability and ventricular repolarisation, respectively. PSG dataset of 2659 men aged older than 65 (MrOS Sleep Study) was analysed to compare on RR and QT interval variability pre- and post-arousal onset. The cardiac interval gradients were developed to monitor instantaneous changes pre-and post-onset. Analysis of gradients demonstrated that both RR and QT are likely to start shortening several second prior to onset by average probability of 73% and 64%. The QT/RR linear correlation was significantly rising after arousal inducing regardless of arousal type and associated pathological events (Rpost = 0.218 vs Rpre = 0.047). ANOVA test and Tukey’s honest post-hoc analysis indicated a significant difference between cardiac intervals variability between respiratory, movements and spontaneous arousals. In addition, respiratory disturbance index (RDI) as a measure of sleep apnoea severity was reversely correlated with both QT (RVarQT = -0.251, p 1:1 ms) and greater frequency of sleep arousal, less physical activity and medical history of several cardiovascular disease. Similarly participants in quartile DRR> - 8:8 were likelier to be obese with less physical activity, medical history of COPD and stroke and suffered from severer degree of sleep apnoea (RDI = 28:7 20:4 vs RDI = 25:5 +/- 17:6, p < 0:001). Kaplan-Meier analysis showed that the distribution DRR at arousal onset was significantly associated with cardiovascular (CV) mortality (p < 0:001). Cox proportional hazard regression models also indicated the effect of arousal duration in prediction of CV mortality, where longer arousals had more prognostic value for CV mortality than shorter arousals.Thesis (Ph.D.) -- University of Adelaide, School of Electrical and Electronic Engineering, 202

    Non-invasive techniques for respiratory information extraction based on pulse photoplethysmogram and electrocardiogram

    Get PDF
    El objetivo principal de esta tesis es el desarrollo de métodos no invasivos para la extracción de información respiratoria a partir de dos señales biomédicas ampliamente utilizadas en la rutina clínica: el electrocardiograma (ECG) y la señal fotopletismográfica de pulso (PPG). La motivación de este estudio es la conveniencia de monitorizar información respiratoria a partir de dispositivos no invasivos que permita sustituir las técnicas actuales que podrían interferir con la respiración natural y que presentan inconvenientes en algunas aplicaciones como la prueba de esfuerzo y los estudios del sueño. Además, si estos dispositivos no invasivos son los ya utilizados en la rutina clínica, la información respiratoria extraída de ellos representa un valor añadido que permite tener una visión más completa del paciente. DESARROLLO TEÓRICO Esta tesis se divide en 6 capítulos. El Capítulo 1 introduce la problemática, motivaciones y objetivos del estudio. También introduce el origen fisiológico de las señales estudiadas ECG y PPG, y cómo y por qué tienen información autonómica y respiratoria que se puede extraer de ellas. El Capítulo 2 aborda la obtención de información respiratoria a partir del ECG. Se han propuesto varios métodos para la obtención de la respiración a partir del ECG (EDR, del inglés ¿ECG derived respiration?). Su rendimiento se suele ver muy afectado en entornos altamente no estacionarios y ruidosos como la prueba de esfuerzo. No obstante, se han propuesto algunas alternativas, como una basada en el ángulo de rotación del eje eléctrico (obtenido del ECG), que es el que mejor funciona en prueba de esfuerzo según nuestros conocimientos. Este método requiere de tres derivaciones ortogonales y es muy dependiente de cada una de ellas, i.e., el método no es aplicable o su rendimiento se reduce significativamente si hay algún problema en alguna de las derivaciones requeridas. En el Capítulo 2 se propone un método EDR nuevo basado en las pendientes del QRS y el ángulo de la onda R. El Capítulo 3 aborda a obtención de información respiratoria a partir de la señal PPG. Se propone un método nuevo para obtener la tasa respiratoria a partir de la señal PPG. Explota una modulación respiratoria en la variabilidad de anchura de pulso (PWV) relacionada con la velocidad y dispersión de la onda de pulso. El Capítulo 4 aborda la extracción de información respiratoria a partir de señales PPG registradas con smarthpones (SCPPG), mediante la adaptación de los métodos basados en la señal PPG presentados en el Capítulo 3. En el Capítulo 5 se propone un método para el diagnóstico del síndrome de apnea obstructiva del sueño (OSAS) en niños basado únicamente en la señal PPG. El OSAS es una disfunción relacionada con la respiración y el sueño que se diagnostica mediante polisomnografía (PSG). La PSG es el registro nocturno de muchas señales durante el sueño, siendo muy difícil de aplicar en entornos ambulatorios. El método que presenta esta tesis está enfocado a diagnosticar el OSAS en niños utilizando únicamente la señal PPG que permitiría considerar un diagnóstico ambulatorio con sus ventajas económicas y sociales. Finalmente, el Capítulo 6 resume las contribuciones originales y las conclusiones principales de esta tesis, y propone posibles extensiones del trabajo. CONCLUSIÓN El método presentado en el Capítulo 2 para estimar la tasa respiratoria a partir de las pendientes del complejo QRS y el ángulo de la onda R en el ECG demostró ser robusto en entornos altamente no estacionarios y ruidosos y por tanto ser aplicable durante ejercicio incluyendo entrenamiento deportivo. Además, es independiente de un conjunto específico de derivaciones y, por tanto, un problema en alguna de ellas no implica una reducción considerable del rendimiento. El método presentado en el Capítulo 3 para estimar la tasa respiratoria a partir de la PWV extraída de la señal PPG está mucho menos afectada por el tono simpático que otros métodos presentados en la literatura que suelen basarse en la amplitud y/o la tasa de pulso. Esto permite una mayor precisión que otros métodos basados en PPG. Además, se propone un método para combinar información de diferentes señales respiratorias, y se utiliza para estimar la tasa respiratoria a partir de la PWV en combinación con otros métodos basados en la señal PPG, mejorando la precisión de la estimación incluso en comparación con otros métodos en la literatura que requieren el ECG o la presión sanguínea. Los métodos propuestos en el Capítulo 4 para estimar la tasa respiratoria mediante señales SCPPG estimaron de forma precisa la tasa respiratoria en sus rangos espontáneos habituales (0.2-0.4 Hz) e incluso a tasas más altas (hasta 0.5 Hz o 0.6 Hz, dependiendo del dispositivo utilizado). El único requerimiento es que el smartphone tenga un luz tipo flash y una cámara para grabar una yema del dedo sobre ella. La popularidad de los smartphones los convierte en dispositivos de acceso y aceptación r¿apidos. Así, para la población general es potencialmente aceptable un método que funciona en smartphones, pudiendo facilitar la medida de algunas constantes vitales utilizando solo la yema del dedo. El método presentado en el Capítulo 5 para el diagnóstico del OSAS en niños a partir de la PPG obtuvo una precisión suficiente para la clínica, aunque antes de ser aplicado en dicho entorno, el método debería ser validado en una base de datos más grande.The main objective of this thesis is to develop non-invasive methods for respiration information extraction from two biomedical signals which are widely adopted in clinical routine: the electrocardiogram (ECG) and the pulse photoplethysmographic (PPG) signal. This study is motivated by the desirability of monitoring respiratory information from non-invasive devices allowing to substitute the current respiration-monitoring techniques which may interfere with natural breathing and which are unmanageable in some applications such as stress test or sleep studies. Furthermore, if these noninvasive devices are those already used in the clinical routine, the respiratory information obtained from them represents an added value which allows a more complete overview of the patient status. This thesis is divided into 6 chapters. Chapter 1 of this thesis introduces the problematic, motivations and objectives of this study. It also introduces the physiological origin of studied ECG and PPG signals, and why and how they carry autonomic- and respiration-related information which can be extracted from them. Chapter 2 of this thesis addresses the derivation of respiratory information from ECG signal. Several ECG derived respiration (EDR) methods have been presented in literature. Their performance usually decrease considerably in highly non-stationary and noisy environments such as stress test. However, some alternatives aimed to this kind of environments have been presented, such as one based on electrical axis rotation angles (obtained from the ECG), which to the best of our knowledge was the best suited for stress test. This method requires three orthogonal leads, and it is very dependent on each one of those leads, i.e., the performance of the method is significantly decreased if there is any problem at any one of the required leads. A novel EDR method based on QRS slopes and R-wave angle is presented in this thesis. The proposed method demonstrated to be robust in highly non-stationary and noisy environments and so to be applicable to exercise conditions including sports training. Furthermore, it is independent on a specific lead set, and so, a problem at any lead do not imply a significantly reduction of the performance. Chapter 3 addresses the derivation of respiratory information from PPG signals. A novel method for deriving respiratory rate from PPG signal is presented. It exploits respiration-related modulations in pulse width variability (PWV) which is related to pulse wave velocity and dispersion. The proposed method is much less affected by the sympathetic tone than other methods in literature which are usually based on pulses amplitude and/or rate. This leads to highest accuracy than other PPG-based method. Furthermore, a method for combining information from several respiratory signals was developed and used to obtain a respiratory rate estimation from the proposed PWV-based in combination with other known PPG-based methods, improving the accuracy of the estimation and outperforming other methods in literature which involve ECG or BP recording. Chapter 4 addresses the derivation of respiratory information from smartphone- camera-acquired-PPG (SCPPG) signals by adapting the methods for deriving respiratory rate from PPG signal presented in Chapter 3. The proposed method accurately estimates respiratory rate from SCPPG signals at its normal spontaneous ranges (0.2-0.4 Hz) and even at higher rates (up to 0.5 Hz or 0.6 Hz, depending on the used device). The only requirement is that these smartphones and tablets contain a flashlight and a video camera to image a fingertip pressed to it. As smartphones and tablets have become common, they meet the criteria of ready access and acceptance. Hence, a mobile phone/tablet approach has the potential to be widely-accepted by the general population and can facilitate the capability to measure some of the vital signs using only fingertip of the subject. Chapter 5 of this thesis proposes a methodology for obstructive sleep apnea syndrome (OSAS) screening in children just based on PPG signal. OSAS is a sleep-respiration-related dysfunction for which polysomnography (PSG) is the gold standard for diagnosis. PSG consists of overnight recording of many signals during sleep, therefore, it is quite involved and difficult to use in ambulatory scenario. The method presented in this thesis is aimed to diagnose the OSAS in children based just on PPG signal which would allow us to consider an ambulatory diagnosis with both its social and economic advantages. Finally, Chapter 6 summarizes the original contributions and main conclusions of the thesis, and proposes possible extensions of the work

    ABSTRACT Poster Presentation

    Get PDF

    Noninvasive autonomic nervous system assessment in respiratory disorders and sport sciences applications

    Get PDF
    La presente tesis está centrada en el análisis no invasivo de señales cardíacas y respiratorias, con el objetivo de evaluar la actividad del sistema nervioso autónomo (ANS) en diferentes escenarios, tanto clínicos como no clínicos. El documento está estructurado en tres partes principales. La primera parte consiste en una introducción a los aspectos fisiológicos y metodológicos que serán cubiertos en el resto de la tesis. En la segunda parte, se analiza la variabilidad del ritmo cardiaco (HRV) en el contexto de enfermedades respiratorias, concretamente asma (tanto en niños como en adultos) y apnea del sueño. En la tercera parte, se estudian algunas aplicaciones novedosas del análisis de señales cardiorespiratorias en el campo de las ciencias del deporte. La primera parte está compuesta por los capítulos 1 y 2. El capítulo 1 consiste en una extensa introducción al funcionamiento del sistema nervioso autónomo y las características de las bioseñales analizadas a lo largo de la tesis. Por otro lado, se aborda la patofisiología del asma y la apnea del sueño, su relación con el funcionamiento del ANS y las estrategias de diagnóstico y tratamiento de lasmismas. El capítulo concluye con una introducción a la fisiología del ejercicio, así como al interés en la estimación del volumen tidal y del umbral anaeróbico en el campo de las ciencias del deporte.En cuanto al capítulo 2, se presenta un marco de trabajo para el análisis contextualizado de la HRV. Después de una descripción de las técnicas de evaluación y acondicionamiento de la señal de HRV, el capítulo se centra en el efecto de los latidos ectópicos, la arritmia sinusal respiratoria y la frecuencia respiratoria en el análisis de la HRV.Además, se discute el uso de un índice para la evaluación de la distribución de la potencia en los espectros de HRV, así como diferentes medidas de acoplo cardiorespiratorio.La segunda parte está compuesta por los capítulos 3, 4 y 5, todos ellos relacionados con el análisis de la HRV en enfermedades respiratorias. Mientras que los capítulos 3 y 4 están centrados en asma infantil y en adultos respectivamente, el capítulo 5 aborda la apnea del sueño. El asma es una enfermedad respiratoria crónica que aparece habitualmente acompañada por una inflamación de las vías respiratorias. Aunque afecta a personas detodas las edades, normalmente se inicia en edades tempranas, y ha llegado a constituir una de las enfermedades crónicasmás comunes durante la infancia. Sin embargo, todavía no existe un método adecuado para el diagnóstico de asma en niños pequeños. Por otro lado, el rol fundamental que desempeña el sistema nervioso parasimpático en el control del tono bronco-motor y la bronco-dilatación sugiere que la rama parasimpática del ANS podría estar implicada en la patogénesis del asma. De estemodo, en el capítulo 3 se evalúa el ANS mediante el análisis de la HRV en dos bases de datos diferentes, compuestas por niños en edad pre-escolar clasificados en función de su riesgo de desarrollar asma, o de su condición asmática actual. Los resultados del análisis revelaron un balance simpáticovagal reducido y una componente espectral de alta frecuencia más picuda en aquellos niños con un mayor riesgo de desarrollar asma. Además, la actividad parasimpática y el acoplo cardiorespiratorio se redujeron en un grupo de niños con bajo riesgo de asma al finalizar un tratamiento para bronquitis obstructiva, mientras que estos permanecieron inalterados en aquellos niños con una peor prógnosis.A diferencia de los niños pequeños, en el caso de adultos el diagnóstico de asma se realiza a través de una rutina clínica bien definida. Sin embargo, la estratificación de los pacientes en función de su grado de control de los síntomas se basa generalmente en el uso de cuestionarios auto-aplicados, que pueden tener un carácter subjetivo. Por otro lado, la evaluación de la severidad del asma requiere de una visita hospitalaria y de incómodas pruebas, que no pueden aplicarse de una forma continua en el tiempo. De este modo, en el capítulo 4 se estudia el valor de la evaluación del ANS para la estratificación de adultos asmáticos. Para ello, se emplearon diferentes características extraídas de la HRV y la respiración, junto con varios parámetros clínicos, para entrenar un conjunto de algoritmos de clasificación. La inclusión de características relacionadas con el ANS para clasificar los sujetos atendiendo a la severidad del asma derivó en resultados similares al caso de utilizar únicamente parámetros clínicos, superando el desempeño de estos últimos en algunos casos. Por lo tanto, la evaluación del ANS podría representar un potencial complemento para la mejora de la monitorización de sujetos asmáticos.En el capítulo 5, se analiza la HRV en sujetos que padecen el síndrome de apnea del sueño (SAS) y comorbididades cardíacas asociadas. El SAS se ha relacionado con un incremento de 5 veces en el riesgo de desarrollar enfermedades cardiovasculares (CVD), que podría aumentar hasta 11 veces si no se trata convenientemente. Por otro lado, una HRV alterada se ha relacionado independientemente con el SAS y con numerosos factores de riesgo para el desarrollo de CVD. De este modo, este capítulo se centra en evaluar si una actividad autónoma desbalanceada podría estar relacionada con el desarrollo de CVD en pacientes de SAS. Los resultados del análisis revelaron una dominancia simpática reducida en aquellos sujetos que padecían SAS y CVD, en comparación con aquellos sin CVD. Además, un análisis retrospectivo en una base de datos de sujetos con SAS que desarollarán CVD en el futuro también reveló una actividad simpática reducida, sugiriendo que un ANS desbalanceado podría constituir un factor de riesgo adicional para el desarrollo de CVD en pacientes de SAS.La tercera parte está formada por los capítulos 6 y 7, y está centrada en diferentes aplicaciones del análisis de señales cardiorespiratorias en el campo de las ciencias del deporte. El capítulo 6 aborda la estimación del volumen tidal (TV) a partir del electrocardiograma (ECG). A pesar de que una correcta monitorización de la actividad respiratoria es de gran interés en ciertas enfermedades respiratorias y en ciencias del deporte, la mayor parte de la actividad investigadora se ha centrado en la estimación de la frecuencia respiratoria, con sólo unos pocos estudios centrados en el TV, la mayoría de los cuales se basan en técnicas no relacionadas con el ECG. En este capítulo se propone un marco de trabajo para la estimación del TV en reposo y durante una prueba de esfuerzo en tapiz rodante utilizando únicamente parámetros derivados del ECG. Errores de estimación del 14% en la mayoría de los casos y del 6% en algunos sugieren que el TV puede estimarse a partir del ECG, incluso en condiciones no estacionarias.Por último, en el capítulo 7 se propone una metodología novedosa para la estimación del umbral anaeróbico (AT) a partir del análisis de las dinámicas de repolarización ventricular. El AT representa la frontera a partir de la cual el sistema cardiovascular limita la actividad física de resistencia, y aunque fue inicialmente concebido para la evaluación de la capacidad física de pacientes con CVD, también resulta de gran interés en el campo de las ciencias del deporte, permitiendo diseñar mejores rutinas de entrenamiento o para prevenir el sobre-entrenamiento. Sin embargo, la evaluación del AT requiere de técnicas invasivas o de dispositivos incómodos. En este capítulo, el AT fue estimado a partir del análisis de las variaciones de las dinámicas de repolarización ventricular durante una prueba de esfuerzo en cicloergómetro. Errores de estimación de 25 W, correspondientesa 1 minuto en este estudio, en un 63% de los sujetos (y menores que 50 W en un 74% de ellos) sugieren que el AT puede estimarse de manera no invasiva, utilizando únicamente registros de ECG.<br /

    Data-driven methods for analyzing ballistocardiograms in longitudinal cardiovascular monitoring

    Get PDF
    Cardiovascular disease (CVD) is the leading cause of death in the US; about 48% of American adults have one or more types of CVD. The importance of continuous monitoring of the older population, for early detection of changes in health conditions, has been shown in the literature, as the key to a successful clinical intervention. We have been investigating environmentally-embedded in-home networks of non-invasive sensing modalities. This dissertation concentrates on the signal processing techniques required for the robust extraction of morphological features from the ballistocardiographs (BCG), and machine learning approaches to utilize these features in non-invasive monitoring of cardiovascular conditions. At first, enhancements in the time domain detection of the cardiac cycle are addressed due to its importance in the estimation of heart rate variability (HRV) and sleep stages. The proposed enhancements in the energy-based algorithm for BCG beat detection have shown at least 50% improvement in the root mean square error (RMSE) of the beat to beat heart rate estimations compared to the reference estimations from the electrocardiogram (ECG) R to R intervals. These results are still subject to some errors, primarily due to the contamination of noise and motion artifacts caused by floor vibration, unconstrained subject movements, or even the respiratory activities. Aging, diseases, breathing, and sleep disorders can also affect the quality of estimation as they slightly modify the morphology of the BCG waveform.Includes bibliographical reference

    Personalized data analytics for internet-of-things-based health monitoring

    Get PDF
    The Internet-of-Things (IoT) has great potential to fundamentally alter the delivery of modern healthcare, enabling healthcare solutions outside the limits of conventional clinical settings. It can offer ubiquitous monitoring to at-risk population groups and allow diagnostic care, preventive care, and early intervention in everyday life. These services can have profound impacts on many aspects of health and well-being. However, this field is still at an infancy stage, and the use of IoT-based systems in real-world healthcare applications introduces new challenges. Healthcare applications necessitate satisfactory quality attributes such as reliability and accuracy due to their mission-critical nature, while at the same time, IoT-based systems mostly operate over constrained shared sensing, communication, and computing resources. There is a need to investigate this synergy between the IoT technologies and healthcare applications from a user-centered perspective. Such a study should examine the role and requirements of IoT-based systems in real-world health monitoring applications. Moreover, conventional computing architecture and data analytic approaches introduced for IoT systems are insufficient when used to target health and well-being purposes, as they are unable to overcome the limitations of IoT systems while fulfilling the needs of healthcare applications. This thesis aims to address these issues by proposing an intelligent use of data and computing resources in IoT-based systems, which can lead to a high-level performance and satisfy the stringent requirements. For this purpose, this thesis first delves into the state-of-the-art IoT-enabled healthcare systems proposed for in-home and in-hospital monitoring. The findings are analyzed and categorized into different domains from a user-centered perspective. The selection of home-based applications is focused on the monitoring of the elderly who require more remote care and support compared to other groups of people. In contrast, the hospital-based applications include the role of existing IoT in patient monitoring and hospital management systems. Then, the objectives and requirements of each domain are investigated and discussed. This thesis proposes personalized data analytic approaches to fulfill the requirements and meet the objectives of IoT-based healthcare systems. In this regard, a new computing architecture is introduced, using computing resources in different layers of IoT to provide a high level of availability and accuracy for healthcare services. This architecture allows the hierarchical partitioning of machine learning algorithms in these systems and enables an adaptive system behavior with respect to the user's condition. In addition, personalized data fusion and modeling techniques are presented, exploiting multivariate and longitudinal data in IoT systems to improve the quality attributes of healthcare applications. First, a real-time missing data resilient decision-making technique is proposed for health monitoring systems. The technique tailors various data resources in IoT systems to accurately estimate health decisions despite missing data in the monitoring. Second, a personalized model is presented, enabling variations and event detection in long-term monitoring systems. The model evaluates the sleep quality of users according to their own historical data. Finally, the performance of the computing architecture and the techniques are evaluated in this thesis using two case studies. The first case study consists of real-time arrhythmia detection in electrocardiography signals collected from patients suffering from cardiovascular diseases. The second case study is continuous maternal health monitoring during pregnancy and postpartum. It includes a real human subject trial carried out with twenty pregnant women for seven months

    Segmentation of ECG signals based on their quality

    Get PDF
    Tato semestrální práce se zabývá metodami pro spojitý odhad kvality signálů EKG a následnou segmentací těchto signálů na základě odhadnuté kvality. Teoretická část obsahuje popis funkční anatomie srdce, základy elektrokardiografie, typy rušení, které se v záznamech EKG mohou vyskytovat a popis několika metod, sloužících ke spojitému odhadu kvality signálů EKG. Dále jsou zde uvedeny některé přístupy k segmentaci signálů EKG na základě jejich kvality. Praktická část se zabývá implementací dvou metod. První metodou je metoda pro odhad SNR na základě Wienerova filtru. Druhou metodou je metoda segmentace signálu EKG na základě odhadnuté kvality. Obě metody jsou otestovány na umělých i reálných signálech.This semestral thesis deals with methods for continuous estimation of the quality of the ECG signal. The theoretical part includes the functional anatomy of the heart, the basics of electrocardiography, the types of noise that can be found in the ECG records, and a description of several methods for the continuous estimation of the ECG signal quality. Next here are some approaches to segmenting ECG signals based on their quality. The practical part deals with the implementation of two methods. The first method is the SNR estimation method based on the Wiener filter. The second method is the method of segmentation of ECG signals based on their quality. Both methods were tested on artificial and real signals.
    corecore