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Abstract

The Internet-of-Things (IoT) has great potential to fundamentally alter the
delivery of modern healthcare, enabling healthcare solutions outside the
limits of conventional clinical settings. It can offer ubiquitous monitoring
to at-risk population groups and allow diagnostic care, preventive care, and
early intervention in everyday life. These services can have profound impacts
on many aspects of health and well-being. However, this field is still at an
infancy stage, and the use of IoT-based systems in real-world healthcare
applications introduces new challenges. Healthcare applications necessitate
satisfactory quality attributes such as reliability and accuracy due to their
mission-critical nature, while at the same time, IoT-based systems mostly
operate over constrained shared sensing, communication, and computing
resources.

There is a need to investigate this synergy between the IoT technologies
and healthcare applications from a user-centered perspective. Such a study
should examine the role and requirements of IoT-based systems in real-
world health monitoring applications. Moreover, conventional computing
architecture and data analytic approaches introduced for IoT systems are
insufficient when used to target health and well-being purposes, as they
are unable to overcome the limitations of IoT systems while fulfilling the
needs of healthcare applications. This thesis aims to address these issues by
proposing an intelligent use of data and computing resources in IoT-based
systems, which can lead to a high-level performance and satisfy the stringent
requirements.

For this purpose, this thesis first delves into the state-of-the-art IoT-
enabled healthcare systems proposed for in-home and in-hospital monitor-
ing. The findings are analyzed and categorized into different domains from
a user-centered perspective. The selection of home-based applications is fo-
cused on the monitoring of the elderly who require more remote care and
support compared to other groups of people. In contrast, the hospital-based
applications include the role of existing IoT in patient monitoring and hos-
pital management systems. Then, the objectives and requirements of each
domain are investigated and discussed.

This thesis proposes personalized data analytic approaches to fulfill the
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requirements and meet the objectives of IoT-based healthcare systems. In
this regard, a new computing architecture is introduced, using computing
resources in different layers of IoT to provide a high level of availability and
accuracy for healthcare services. This architecture allows the hierarchical
partitioning of machine learning algorithms in these systems and enables an
adaptive system behavior with respect to the user’s condition. In addition,
personalized data fusion and modeling techniques are presented, exploiting
multivariate and longitudinal data in IoT systems to improve the quality at-
tributes of healthcare applications. First, a real-time missing data resilient
decision-making technique is proposed for health monitoring systems. The
technique tailors various data resources in IoT systems to accurately esti-
mate health decisions despite missing data in the monitoring. Second, a
personalized model is presented, enabling variations and event detection in
long-term monitoring systems. The model evaluates the sleep quality of
users according to their own historical data. Finally, the performance of
the computing architecture and the techniques are evaluated in this thesis
using two case studies. The first case study consists of real-time arrhyth-
mia detection in electrocardiography signals collected from patients suffering
from cardiovascular diseases. The second case study is continuous maternal
health monitoring during pregnancy and postpartum. It includes a real hu-
man subject trial carried out with twenty pregnant women for seven months.
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Tiivistelmä

Esineiden Internet (Internet of Things, IoT) tulee todennäköisesti mullis-
tamaan tulevaisuuden terveydenhuollon laajentamalla terveydenseurannan
perinteisen kliinisen ympäristön ulkopuolelle. IoT-ratkaisut mahdollistavat
riskiryhmien terveydentilan jatkuvan monitoroinnin, mahdollistaen samalla
diagnostisen hoidon, ennaltaehkäisevän hoidon ja aikaisen puuttumisen os-
ana potilaiden jokapäiväistä arkea. Kyseinen ratkaisu parantaisi terveyden-
ja hyvinvointia laaja-alaisesti. IoT-ratkaisut ovat kuitenkin vielä tiensä
alussa, joten IoT-sovelluksilla on vielä monia haasteita terveydenhuollon
toimialalla. Terveydenhuoltosovellusten laatuvaatimukset kuten luotet-
tavuus ja tarkkuus ovat turvallisuuskriittisiä tekijöitä, sitä vastoin IoT-
pohjaiset järjestelmät jakavat resursseja havainnoinnin, kommunikaation ja
laskennan kesken, joskin rajoitetusti.

Jotta nämä järjestelmät hyötyisivät toisistaan mahdollisimman paljon,
täytyy molempia tarkastella käyttäjänäkökulmasta. Tällöin tulee tarkastella
IoT-ratkaisun roolia ja vaatimuksia terveydenseurannan käyttötilannetta.
Lisäksi pitää pohtia perinteisen tietokonearkkitehtuurin ja data-analytiikan
perinteisten ratkaisujen rajoitteita terveyden ja hyvinvoinnin IoT-ratkaisun
puitteissa. Tämän tutkielman tavoitteena on ehdottaa tähän ratkaisuksi
tiedon ja laskentaresurssien älykästä hyödyntämistä IoT-järjestelmissä, jotta
pystytään saavuttamaan korkea suorituskyky ja täyttämään terveydenhuol-
lon laatukriteerit.

Näitä vaatimusten tarkastelussa, tutkielma pureutuu ensin tyyp-
illisiin kotona ja sairaalassa käytettäviin terveydenhuollon IoT-
monitorointiratkaisuihin. Järjestelmiä analysoidaan ja luokitellaan eri
käyttöalueiden mukaan käyttäjänäkökulmasta. Kotiseurantaratkaisu-
issa keskitytään vanhuksiin, jotka muita ryhmiä enemmän tarvitsevat
etäseurantaa ja tukea. Sairaalamonitoroinnissa puolestaan IoT-ratkaisut
keskittyvät potilasseurantaan ja sairaalajärjestelmiin. Lisäksi tutkitaan ja
pohditaan jokaisen käyttöalueen tavoitteita ja vaatimuksia.

Tämä tutkielma ehdottaa näille vaatimuksille ja terveydenhuol-
lon IoT-pohjaisen järjestelmän tavoitteille personoitua data-analyyttista
lähtökohtaa. Tälle ratkaisulle esitellään uusi tietokonearkkitehtuuri,
joka käyttää IoT-ratkaisun eri tasojen laskentaresursseja saavuttaak-
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seen terveydenhuoltopalvelujen vaatimat korkea tasoiseen saatavuuden ja
laadun. Tämä mahdollistaa koneoppimisalgoritmien hierarkkisen osioin-
nin näissä palveluissa, mahdollistaen samalla käyttötarkoitukseen sopeu-
tuvan järjestelmän. Lisäksi esitellään personoituun tiedon yhdistämiseen
ja mallintamiseen soveltuva tekniikka, joka käyttää IoT-järjestelmien
monimuuttuja- ja pitkittäisaineistoja parantamaan terveydenhuoltosovel-
luksen käyttäjäkokemuksen laatua. Aluksi esitellään reaaliaikainen ja jous-
tava puuttuvan tiedon päätöksentekotekniikka, joka sopeutuu erilaisiin
aineistolähteisiin. Tämä tekniikka sovittaa erilaisia aineistolähteitä tarkkaan
IoT-pohjaiseen päätöksentekoon ottamalla huomioon myös mahdolliset pu-
uttuvat sensoriarvot. Lisäksi esitellään personoitu malli, joka havait-
see pitkittäisaineistossa tapahtuvan vaihtelun lisäksi yksittäiset tapahtu-
mat. Tämä malli arvioi henkilöiden unenlaatua heiltä aiemmin kerätyn
aineiston perusteella. Lopuksi tutkielma arvioi näiden tietokonearkkite-
htuurien suorituskykyä pureutumalla kahteen erimerkkitapaukseen. En-
simmäinen esimerkki koostuu sydämen rytmihäiriön reaaliaikaista tun-
nistamista sydänpotilaista kerätystä sydänsähkökäyrästä (electrocardiogra-
phy). Toisen esimerkin aineistona on äitiysterveyden seuranta-aineisto, jossa
20 äitiä seurattiin raskauden sekä synnytyksen jälkeen yhteensä seitsemän
kuukauden ajan.
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Chapter 1

Introduction

Digital health and welfare services are transforming healthcare delivery and
outcomes [130, 144]. Starting from the 20th century, telemedicine and tele-
health have gained attention for remote delivery of healthcare services, re-
ducing the distance barriers between patients and clinical teams [26, 207].
Telemedicine and telehealth consist of a broad range of applications in-
cluding telephone helplines, sharing bio-signals and medical images over a
network, and transmission of health records from medical centers to remote
patients, just to mention a few. Electronic Health (eHealth) and Mobile
Health (mHealth) were introduced in the early 2000s, exploiting Informa-
tion and Communication Technology (ICT) such as mobile phones and the
Internet to support healthy lifestyles, to improve quality of healthcare, and
to mitigate healthcare costs [26, 69, 151]. These health services encompass
patient monitoring, disease surveillance, and remote care supports.

In recent years, technological advancements in different fields of ICT
have been revolutionizing human lifestyles [56, 115, 223]. First, due to the
worldwide expansion of Internet-based services and mobile devices, the usage
and demand for such services have dramatically increased across the world.
Global mobile phone subscriptions rose from 2.2 billion in 2005 to 7 billion
in 2015 [227]. Second, the Internet of Things (IoT) as an advanced network
of objects is rapidly expanding in different sectors, where connected devices
share their information to provide more efficient services [20, 95]. Cisco has
estimated that by 2030 there will be 500 billion connected devices, each
of which can perform data collection, interconnect with other devices, and
actuate on its environment [52].

Moreover, the quality and capability of ICT-based services are being
enhanced by sensing, communication, and computing infrastructures that
are becoming more advanced and intelligent [193, 76]. For example, wire-
less sensor devices and embedded systems are being developed to be more
energy-efficient, lightweight, and miniaturized; Internet connections are be-
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coming more accessible and ubiquitous; and cloud computing machines are
being equipped with higher computational capacity.

This synergy between technologies (e.g., IoT) and healthcare is opening
new avenues in eHealth and mHealth. Ubiquitous health monitoring is a
new healthcare paradigm in this regard, by which remote monitoring of
patients can be carried out anytime and anywhere [215, 182, 115]. Such a
holistic solution presents new opportunities to achieve a better quality of
care, allowing reactive and proactive care for patients as well as empowering
health providers to offer more accurate and cost-efficient services. However,
this subject is still at an infancy stage and necessities more research and
development.

1.1 Ubiquitous Health Monitoring

Ubiquitous health monitoring is a multidisciplinary paradigm that allows
tracking of patients’ health conditions outside of conventional clinical set-
tings. It facilitates the delivery of healthcare solutions, providing treatment
support, preventive care, and early intervention in patient’s everyday rou-
tines. Such monitoring is in high demand for individuals who require more
intensive support and frequent screening. The elderly are a target group of
this monitoring, as they are more vulnerable to disabilities and diseases [229].
This issue is more significant in the future since the world’s elderly popu-
lation is expected to be doubled - from 900 million in 2015 to 2 billion in
2050 [228]. Another group includes pregnant women whose health and well-
being can be improved via ubiquitous health monitoring. According to the
World Health Organization (WHO) [230], more than 800 women die every
day due to preventable pregnancy and childbirth problems. In addition,
ubiquitous health monitoring systems can benefit at-risk patients (e.g., in-
dividuals suffering from cardiovascular diseases), enabling early detection as
a key to alleviate disease outcomes [153].

Ubiquitous health monitoring demands 1) continuous data collection of
user’s condition and surrounding context, 2) data analytic approaches for
decision making, and 3) data transmission to health providers. IoT tech-
nologies allow the provision of such remote health applications, offering con-
tinuous connectivity between local devices and remote computing machines
over the Internet network. Within this health monitoring, the IoT-based
system can be partitioned into three main tiers, as shown in Figure 1.1.

The sensor network encompasses a variety of wireless sensors by which
the user’s condition is continuously recorded. For example, Body Area Net-
work (BAN) is a wireless network of portable and wearable electronics (e.g.,
smartphones and smartwatches) that continuously acquire physical activity
and health parameters. Depending on the applications, the data can be des-
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Figure 1.1: An IoT-based health monitoring system

ignated as big data because of the volume, velocity, and variety [48]. The
gateway acts as an access point between the sensor network and the cloud
server. It provides conventional services such as protocol conversion. In
addition, alternative network infrastructures have been proposed to incor-
porate data analytic techniques into the gateway devices [185]. The cloud
server provides data storage and high-level computing solutions to perform
(big) data analytic techniques. It should be noted that data security and
privacy management should be considered in the IoT systems, as the data
might include sensitive personal information, and unauthorized access could
cause critical problems [202, 4].

1.2 Research Problems

While IoT-based systems including BAN and data analytic methods are
emerging to yield holistic solutions in the healthcare domain, new ques-
tions and challenges are being raised. The IoT-based systems operate over
constrained shared resources. For example, wireless sensors are equipped
with limited battery capacity; connectivity between gateway devices and
servers might be degraded in different bandwidth use; and the computing
algorithms might be affected by the limited computational and data storage
capacity. Therefore, these systems need to overcome such obstacles and lim-
itations, satisfying the requirements of their (health) applications. To this
end, we can partition this problem into two complementary sub-problems
which stress 1) the health applications’ characteristics and requirements and
2) the research and technical challenges in IoT-based system.

The first important issue which needs to be addressed is to determine
the tasks and requirements of IoT-based health applications from a user-
centered perspective. IoT-based systems have thus far been exploited in
many healthcare applications. However, there is still a demand for user-
centered studies to identify the impact of these systems on user’s health and
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daily routine. Such studies should cover the requirements of the users, in
both the in-home and in-hospital healthcare applications. Moreover, it is
necessary to investigate the objectives of these systems and subsequently
their limitations and challenges in real-world applications.

The second issue is to meet the challenges and requirements of IoT-based
health systems. There is a large body of literature developing software and
hardware solutions to improve IoT-based systems. However, many of the
existing methods and software architectures are insufficient when these sys-
tems target health and well-being purposes. Due to the mission-critical
nature of healthcare systems, a satisfactory Quality of Experience (QoE)
is essential; and various quality attributes must be satisfied. For instance,
an IoT-based system can provide an acceptable performance in a non-life-
threatening smart city application (e.g., waste management), in which the
unavailability of the service in the event of the loss of the Internet does no se-
rious harm. However, such a system is unacceptable in a health deterioration
detection application. Similarly, a real-time health data analytic approach
must ensure high accuracy in disease classification while minimizing latency,
as a rapid response is essential to mitigate health risks.

To satisfy adequate quality attributes and the user’s needs, we need to
design IoT-based health systems to act individually and specifically for each
person. Such developments should be performed from two different aspects.
1) system-driven aspect : to improve the system’s function and resource allo-
cations. IoT-based systems need to provide an adaptive behavior to optimize
the system’s configuration according to the user’s condition and context.
2) data-driven aspect : to enhance decision-making approaches within the
IoT systems. IoT-based systems require data analytic approaches, includ-
ing artificial intelligence and machine learning, to optimize the quality of
healthcare and to support decision-making.

1.3 Research Objectives

This thesis investigates the two sub-problems, pursuing the following re-
search objectives. Primarily, it is expected to delve deeply into the state-of-
the-art IoT-based health monitoring systems. Such a survey should provide
deep understanding of the role of IoT in existing home-based and hospital-
based monitoring. In this regard, one research objective is defined to address
the first sub-problem.

Moreover, it is expected to design, develop, implement, and evaluate
innovative software architectures and data analytic approaches, meeting the
objectives of IoT-based health applications. We believe such solutions can be
obtained for ubiquitous health monitoring systems by exploiting IoT features
such as multivariate data acquisition, context-awareness, and personalized
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learning. Considering both the system-driven and data-driven aspects, two
research objectives are defined in this thesis to holistically leverage data
analytic approaches across the applications.

Correspondingly, the main research objectives of this thesis are as fol-
lows.

Research Objective I: Investigate and analyze the role of IoT-based
systems in healthcare applications and to examine the existing trends,
objectives, and challenges in these systems

Research Objective II: Design and implement a personalized IoT-
based computing architecture, satisfying high-levels of quality attributes
in real-time health monitoring systems

Research Objective III: Design and implement intelligent data pro-
cessing and modeling techniques tailoring longitudinal and multivari-
ate data in IoT-based systems to enable personalized decision-making
in healthcare applications

1.4 Contributions

This thesis addresses the aforementioned research problems and subsequently
fulfills the three research objectives. In summary, the contributions of this
thesis are manifold:

• The state-of-the-art IoT systems exploited in home-based healthcare
applications are investigated, focusing on the elderly who require more
attention and care. In this regard, the existing literature is analyzed
and categorized from a user-centered perspective – considering the re-
quirements of the elderly. Moreover, the challenges and objectives of
this research are evaluated to pave the way for designing more effec-
tive IoT-based systems and data analytic approaches in home-based
monitoring.

• The literature is examined and analyzed to assimilate the role of IoT-
enabled systems in hospital-based monitoring applications. The ex-
isting works are investigated and categorized into different domains
–considering the needs of hospitalized patients, nurses, and health
providers. The objectives are also presented to indicate how IoT-based
systems and data analytic approaches can be tailored to overcome chal-
lenges and problems in hospitals and medical centers.

• A hierarchical computing architecture is introduced, enabling a per-
sonalized data analytic in IoT-based health monitoring systems. The
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architecture allows the hierarchical partitioning of machine learning
algorithms in IoT-based systems. It also enables a closed-loop man-
agement technique to automatically set the system’s configurations
with respect to the user’s condition. The efficiency and functionality
of the architecture are evaluated, in comparison with a baseline IoT
architecture. In this regard, two case studies are exploited, focusing
on real-time abnormality detection and arrhythmias detection appli-
cations used for patients suffering from cardiovascular diseases. The
case studies are tested leveraging a Support Vector Machine (SVM)
as a linear method and a Convolutional Neural Network (CNN) as a
non-linear method.

• A real-time personalized health data fusion approach is proposed to
deliver continuous health decision making despite missing values in
data collection. The proposed approach tailors context information
extracted from heterogeneous data resources to perform the missing
data imputation. It also includes a personalized pooling to minimize
the bias of the estimates. The approach is utilized for a real human
subject trial on maternal health. The efficiency and functionality of the
approach are evaluated in terms of the accuracy of the health decisions,
in comparison to the existing missing data analysis methods.

• A semi-supervised machine learning approach is presented for long-
term health monitoring, focusing on maternal sleep adaptations. The
proposed approach creates a personalized sleep model for each user and
utilizes the model to provide an explicit representation of sleep quality
during pregnancy and postpartum in a comprehensive and personal-
ized way. The approach is utilized for a real human subject trial on
maternal health. The results show that sleep duration and sleep effi-
ciency are deteriorated in pregnancy and notably in postpartum. The
approach is compared with a baseline method to indicate how the pro-
posed approach enables individualized and effective care during sleep
monitoring.

1.5 Thesis Organization

This thesis is a collection of six original publications, five of which were
published in international peer-reviewed journals and one of which was pub-
lished in international conference proceedings. This article-based thesis is
organized into two major parts, Part I: Synopsis and Part II: Original Pub-
lications.

Part I, Chapters 1-8, presents a summary of the research. The back-
ground of the thesis is outlined in Chapter 2. Chapter 3 includes state-of-
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Figure 1.2: Organization of the papers, chapters, and research objectives in
this thesis.

the-art IoT-based healthcare applications. Chapter 4 describes an IoT-based
software architecture featuring an adaptive behavior with respect to the
user’s data. Chapter 5 introduces a personalized data fusion algorithm to
improve decision-making in IoT-based health monitoring systems, leverag-
ing IoT-enabled multi-modal data collection techniques. Chapter 6 proposes
a personalized model designed for objective longitudinal studies, extracting
events and changes in user’s data. Conclusion and future work of the the-
sis are presented in Chapter 7. Finally, Chapter 8 presents a summarized
overview of the original publications and the author’s contributions.

Part II consists of the six original publications. The attached articles
support the aspects presented in Part I. In this regard, Paper I and Paper II
are in accord with the contents presented in Chapter 3. They cover Research
Objective I in this thesis, in which existing IoT-based health monitoring sys-
tems are examined. Paper III and Paper IV correspond to the contents of
Chapter 4. They support Research Objective II, where an IoT-based hier-
archical computing architecture is developed and assessed. Paper V covers
the contents of Chapter 5; and finally, Paper VI corresponds to the contents
presented in Chapter 6. Both the latter papers are in accordance with the
Research Objective III in this thesis. An overview of the organization of the
papers, chapters, and research objectives are shown in Figure 1.2.
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Chapter 2

Preliminaries

This chapter briefly presents preliminaries of this thesis, including an overview
of the IoT systems and fog computing paradigm. Then, it outlines two es-
sential concepts of our case studies, bio-signals and maternal health.

2.1 Internet of Things

The Internet of Things (IoT) is a network of interrelated physical objects or
“things” that acquire data, interact with each other, and communicate with
remote servers. It tailors a variety of paradigms such as artificial intelligence,
global communication infrastructures, and shared pools of data to deliver
high quality and effective services. The concept of IoT was first introduced
in 1999 by Kevin Ashton to supply chain management [17]. However, it
was redefined later in different studies as the technology evolved in the past
decades [95, 138, 20]. Due to the advancements in wearable electronics, data
analytics, and wireless communication, the use of IoT is rapidly growing in
many fields. The major strength of IoT is its impact on improving several
aspects of everyday life, particularly health and well-being. For instance,
smart hospitals could provide advanced care management services by con-
tinuously measuring and analyzing patients and personnel information [43].

Conventionally, the functions of IoT systems are divided into three main
parts: data collection, data transmission across the Internet, and data anal-
ysis. In this regard, the architecture of such systems also can be partitioned
into three layers [3] (see Figure 2.1). The perception layer includes smart
devices equipped with sensing and communication capabilities. These de-
vices with unique identities are located close to the monitored entities (e.g.,
individuals and objects) and contribute to collecting data from the entities
and their environments. The data are shared with higher layers via wireless
communication technologies such as Bluetooth, Wi-Fi, and ZigBee [138].
The gateway layer consists of multiple gateway devices that provide con-

11



Cloud Layer

Perception Layer

Gateway Layer
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tinuous connectivity between the perception layer and the cloud layer (i.e.,
the Internet). Each gateway device receives data from a sensor network,
fulfills protocol conversion, and communicates with other local and remote
devices. In addition, fog computing, a new concept of extending cloud com-
puting to the edge of the network, is proposed to drive lightweight local
data analytic applications at the gateway devices [33, 184]. The cloud layer
contains remote servers enabled by powerful computational resources. As
the back-end system, the cloud servers allow broadcasting, heterogeneous
data analytic approaches, and data storage [205]. The cloud layer also offers
data visualization services to the users through graphical user interfaces.

2.2 Fog Computing

Fog computing is a decentralized computing infrastructure, providing com-
puting, communication, and storage facilities at the edge of the network
[33]. As aforementioned, gateway devices are traditionally responsible for
guaranteeing reliable connectivity and supporting wireless protocols. In IoT
systems, fog computing brings an extended cloud computing paradigm to
the gateway layer (i.e., vicinity of the sensor network). This concept ex-
pands the role of gateway devices, where several lightweight data processing
techniques can be enabled locally. These techniques include data filtering,
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data integration, data compression, and local decision-making [185].

Fog computing serves as an intermediary between sensors and cloud
servers to address various issues in IoT systems [51]. Some of the bene-
fits are listed as follows. 1) Latency reduction: lightweight data processing
(e.g., a rule-based decision making method) is fully positioned at the fog
layer. Therefore, there is no need to send data to the cloud and await a
response. This local processing could improve the response time of the sys-
tem. 2) Bandwidth utilization reduction: data abstraction techniques can
be performed in the gateway devices. Hence, instead of sending raw data,
a simplified version of the data is sent to the cloud server. In addition,
data compression methods can reduce the size of data transmitted over a
network. 3) Security and privacy enhancement : IoT systems demand data
security and privacy both in data transmission over a network and data
storage in the cloud [202]. Outsourcing data processing techniques to the
local gateway devices could reduce the risk of data breach [185]. 4) Re-
source management and reconfigurability : management techniques can be
performed at the fog layer to analyze collected data and reconfigure the sys-
tem’s parameters accordingly. This could improve the energy efficiency of
the IoT system [14, 8, 10].

2.3 Bio-signals

Bio-signals refers to bio-electrical signals that can be continuously recorded
from an individual. Such signals can be exploited to extract various vi-
tal signs and subsequently determine the health status of a patient. Some
of the conventional techniques to collect these bio-signals are Electrocar-
diography (ECG), Photoplethysmography (PPG), Electroencephalography
(EEG), Electrooculography (EOG), and Galvanic skin response (GSR) [222,
186]. In this section, we briefly outline the ECG and PPG techniques as uti-
lized in our case studies.

The ECG technique captures the electrical activity of the heart, indicat-
ing the depolarization and repolarization of cardiac muscles. The recorded
signal represents cardiac cycles (i.e., heartbeats) and functioning of the heart
[222, 88, 59]. It is the gold standard for measuring different health parame-
ters such as heart rate and heart rate variability. Figure 2.2a illustrates sixty
cardiac cycles of a one-minute ECG sample, in which the cycles are aligned
to their peaks (i.e., R peaks). As this sample was collected from a healthy
person, the cycles are almost identical. Moreover, ECG signals can be lever-
aged to detect various cardiovascular diseases including arrhythmias. Such
diseases distort the shape of cardiac cycles or cause irregular heart rhythms.
Sixty-seven cardiac cycles of a one-minute ECG sample with an arrhyth-
mia is shown in Figure 2.2b, where the cardiac cycles are aligned with their
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(a) Cardiac cycles of a one-minute
normal ECG signal

(b) Cardiac cycles of a one-minute
ECG signal with an arrhythmia

Figure 2.2: Cardiac cycles obtained from two ECG samples

peaks. As indicated, the cycles are highly dissimilar in this ECG sample.

The PPG is a technique that records blood volumetric variations in the
microvascular bed of tissues [7]. The PPG technique consists of two major
components: 1) one or two light source(s) (e.g., an LED) to expose light
to the skin surface and 2) one light sensor to capture the light reflected
from the skin [213]. The signal, which is the reflected light, is associated
with heartbeat and respiration oscillations. The PPG components are con-
ventionally placed on the fingertip and are utilized to extract various vital
signs such as heart rate, respiration rate, and peripheral oxygen saturation
(SpO2).

The ECG and PPG techniques can play key roles in IoT-based health
monitoring systems, as they are simple, non-invasive, and easy-to-use in ev-
eryday settings. For the data collection of both techniques, several wearable
sensors have been proposed thus far. Smart chest straps and Holter moni-
tors have been designed to continuously collect ECG signals [35, 93]. These
sensors are mostly placed on the user’s chest. Similarly, the PPG technique
has been broadly utilized in several commercial and clinical wearable de-
vices such as pulse oximeter, smartwatches, and smart rings [147, 9, 126].
For the data analysis, IoT systems tailor various signal processing and ma-
chine learning algorithms to continuously track user’s health status and
subsequently the early-detection of diseases (e.g., arrhythmias) and health
deterioration [59, 213]. Depending on the application’s and system’s needs,
such detection algorithms can be carried out in the local devices or remote
servers.
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2.4 Maternal Health

A woman’s body undergoes radical physical, hormonal, and physiological
changes during pregnancy. These changes prepare the maternal body for the
accommodation of the fetus and for the forthcoming childbirth [111, 218].
However, such changes might lead to adverse pregnancy outcomes (e.g.,
preterm birth and gestational diabetes) in pregnant women with high-risk
conditions such as preeclampsia and obesity [234, 62]. Even in healthy
mothers, pregnancy changes might contribute to unmasking pre-existing
diseases [190]. Therefore, maternal health –the health of the mother dur-
ing pregnancy, during labor, and in the postpartum period– is essential
and should be considered carefully. Traditionally, maternal care services
are merely performed in healthcare centers during certain appointments in
the pregnancy. However, this is considered insufficient, as the pregnancy
progress cannot be monitored constantly.

IoT-based systems can contribute in this regard, enabling continuous
maternal health monitoring during pregnancy and postpartum [176, 94,
129]. Such longitudinal monitoring allows continuous monitoring of multiple
health and pregnancy-related parameters including vital signs, physical ac-
tivity levels, and sleep quality. Therefore, abnormalities and complications
in pregnancy can be identified as soon as possible and be treated accordingly.
Moreover, these monitoring systems maximize the availability of maternal
health, where pregnant women can also be involved in their own everyday
care processes.
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Chapter 3

IoT-enabled Healthcare

IoT-based health monitoring systems are transforming modern healthcare,
enabling smart health applications within hospitals and medical centers and
also outside of conventional clinical settings. Thus far, tremendous research
work has been devoted to tackle various health problems, leveraging ICT-
and IoT-based systems. This chapter presents the existing work, trends, and
challenges in IoT-based health monitoring systems propelled by in-home and
in-hospital applications. In this regard, the in-home applications are catego-
rized from a user-centered perspective, focusing on the elderly as vulnerable
subjects whose population is increasingly growing. On the other hand, the
in-hospital applications are partitioned according to the demands of both
patients and health providers.

3.1 Home-based Monitoring

IoT has already had profound impacts on several home-based monitoring
domains. The existing applications in the literature can be categorized dif-
ferently depending on the type of sensor network (e.g., BAN), the scale of
the system, and the user’s requirements. This thesis divides the existing
works into different subgroups based on their proposed services targeting
aspects of users. The systematic search process is conducted through the
applications proposed to the elderly who require intensive supports 24/7.
Figure 3.1 indicates a multi-layer IoT system for home-based elderly mon-
itoring. It should be noted that this classification can be applied to other
groups of people who require prevention and early-intervention services.

3.1.1 Health parameters

Health parameters monitoring is one of the major sectors in remote health
services, where acute and chronic diseases are screened for early-detection of
possible health deterioration [115]. Such monitoring is highly in demand for
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Figure 3.1: An IoT-based system for home-based elderly monitoring

the elderly due to the increase of frailty, risk factors and health problems in
old ages. This will become more important in the near future as a decrease in
the potential supportive ratio (i.e., Population with age 25−64

Population with age +65 ) is expected [224].

Monitoring systems have been proposed to determine user’s medical sta-
tus, collecting various vital signs according to different guidelines. For exam-
ple, a remote health monitoring system was proposed to extend a hospital-
based scoring system entitled the Early Warning Score (EWS) [162, 5, 131]
for home settings. The system was designed to collect heart rate, breath-
ing rate, body temperature, blood pressure, and blood oxygen saturation to
detect possible serious medical states in daily routines [23, 14]. Similarly,
in elderly monitoring, different systems have been developed. For exam-
ple, an IoT-based system enabled by an Android platform was proposed to
remotely collect medical parameters including blood pressure, glucose, and
weight [189]. In this system, the data was sent to a cloud server to perform
data processing algorithms as well as sharing the data and feedback with
health providers and caregivers through interface devices [183]. Moreover,
a system including wearable textiles [71] and a companion robot was intro-
duced in MOBISERV [168] for elderly health monitoring, collecting various
health parameters.

Other attempts have been done to remotely monitor daily routines of
senior adults. In this regard, physical activity and posture tracking have
been implemented, leveraging recognition models, omnidirectional vision
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sensors [232], and wearable sensors such as smart hats and smart shoes
[124, 46]. Similarly, daily activities including the act of eating and sleeping
of elderly people have been monitored via an IoT-based system equipped
with a textile capacitive neckband [50]. In addition, elderly fitness track-
ing has been introduced to provide a real-time service for physical activity
monitoring along with a personalized fitness program empowered with the
feedback of the sensors [40].

To increase the feasibility of the monitoring, some proposed systems were
restricted to conventional and user-friendly setups. For instance, a remote
health monitoring system equipped with wearable electronics was proposed,
where the individuals could interact with the system via a digital TV [209].
Similarly, a TV-based system was introduced to offer various services to
deliver health applications as well as social communication services [145,
105].

3.1.2 Nutrition

Nutrition assessment systems evaluate the nutritional status of users, ex-
ploiting subjective and objective data collection. Such systems become
essential for patient’s at-risk (particularly elderly), as malnutrition (e.g.,
under/over nutrition) has a negative impact on their health quality and
make them susceptible to various diseases [225]. Different IoT-based nu-
trition monitoring systems have been introduced, supporting food-related
monitoring.

There have been both software and hardware developments in this re-
gard. For example, a mobile application was designed to enable subjective
data collection and objective data collection by connecting smartphones to
other devices such as weighing scales [64]. In contrast, a wearable device
equipped with a visual sensor was introduced in another work to monitor
daily diet. The proposed device could estimate food portions and calorie
intake, leveraging prior information about food shapes [211].

Moreover, IoT-based monitoring systems were proposed tailoring wire-
less devices (e.g., scale), personal robotic systems, and cloud services to
extract information from daily activities (e.g., self-feeding). These systems
could provide weight and diet monitoring as well as shopping and cooking
assistance [135, 194, 114].

3.1.3 Safety

Safety and security monitoring is another major category in home-based ap-
plications, where individuals receive interactive assistant and support ser-
vices continuously. Such services provide independent living for users suf-
fering from visual and physical impairments. With this intention, different
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IoT-based monitoring systems were proposed targeting different aspects.

Fall detection systems have been introduced to provide early interven-
tion for people with a high risk of falling, as a rapid response is instru-
mental in preventing irreparable damages and even death. Conventionally,
the developments in fall detection systems are divided into two categories.
First, wearable electronics and smartphones have been employed to perform
continuous fall detection, where 3D accelerometer, gyroscope, and magne-
tometer were used to detect sudden changes in user’s positions and ori-
entations [73, 178, 122]. Second, context-aware systems have been devel-
oped, leveraging visual sensors (e.g., camera and Kinect) for fall detection
[30, 180, 179]. Compared to the wearable sensors, context-aware systems in-
crease the feasibility of the monitoring, removing the need for using sensors
all the time. On the other hand, context-aware systems are limited to fixed-
position sensors, so fall detection service is restricted to certain locations.

Behavior changes of users have been monitored using IoT-based systems,
investigating unusual activities such as depression and mobility decrease.
Such systems were proposed to collect home activity and location data via
wearable sensors and cameras. They could determine abnormal and unex-
pected behavior comparing the data with prior models and subsequently
send feedback to caregivers [29, 192]. In addition, IoT-based monitoring
systems included environmental accident detection. Such systems were de-
signed to collect environmental data to early-detect accidents such as gas
leakage, fire, and carbon monoxide presence [29, 60].

3.1.4 Social Network

Home care and communication applications support and promote social life
for users who require more interactions with other people. Developments in
these applications included both mobile applications and devices. A simpli-
fied interface device empowered by multilingual speech interactions was pro-
posed for people with physical impairments or computer illiteracy [37, 156].
Moreover, a virtual assistive companion was developed to collect user’s be-
havior and to respond properly [217]. The platform offered to simulate
human interactions, targeting (senior) adults living alone. It also provided
notifications and reminders for taking medicine, doing exercise, and inter-
acting with their family. In other attempts, interactive assistant systems
have been introduced to allow vocal-driven interaction with users and so-
cial networking [6, 85]. These systems also offered pubic services such as
shopping assistance and Meals on Wheels.
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Figure 3.2: An IoT-based system for hospital-based monitoring

3.2 Hospital-based Monitoring

IoT-based systems, including connected objects and Internet-based services,
can be utilized to meet a variety of challenges in hospitals. First, they can
provide real-time monitoring to enable holistic solutions, minimize human
errors, and generally improve the quality of care. Second, these systems
enable autonomous services, tackling work environment issues. In this re-
gard, they can carry out improvements in workload reduction and hospital
management systems. A 3-layer IoT system for hospital-based monitoring is
shown in Figure 3.2. In the following, existing IoT-based systems proposed
for hospital applications are outlined.

3.2.1 Health Parameters

Similar to the home-based solutions, health monitoring can be performed in
hospitals using wireless BAN connected to a network. The BAN can include
a variety of wearable sensors, recording various health-related parameters.
For example, a noninvasive cuffless band has been proposed to collect ECG,
respiration rate, and blood pressure in real-time [74]. Wireless ring sensors
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were also developed to record heart rate, heart rate variability, and physical
activity data [109, 126]. Moreover, a versatile system was introduced to
detect heart rate, respiration waveform, and skin temperature via a wearable
device [61]. In other studies, continuous respiration monitoring was proposed
where the respiration rate was extracted from chest movements or airflow
humidity changes in patient’s nasal prongs or breathing masks [237, 11, 96].
In addition to the wearables, contactless sensors were introduced for vital
sign monitoring. One instance is the use of a smart pad placed under the
hospital’s beds, by which respiration rate is extracted from the capacitive
coupling variation of the pad’s traces [99].

Additionally, wireless systems were developed for neonatal monitoring,
where vital signs were collected to detect possible health deterioration. For
example, a system was designed to continuously record respiratory signals
collected from infants’ chest movements and to send notifications to nurses
in case of apnea detection [110]. Moreover, a sensor network was designed
for an incubator in a neonatal intensive care unit to acquire infants’ vital
signs as well as environmental parameters [166]. The sensor network was
connected to a gateway device for data analysis as well as sharing the data
with the hospital information system.

3.2.2 Medication

Medication monitoring and pharmaceutical intelligent information systems
can be carried out in hospitals using IoT technologies. Such systems provide
an intelligent drug delivery, reducing adverse drug reactions. In this regard,
Radio Frequency Identification (RFID) techniques were leveraged to track
medicines from prescriptions to the patients [118]. This information was in-
tegrated with the patient’s profile to automatically determine possible drug
reactions and to send notifications to the nurses. In addition, such medica-
tion monitoring systems enabled by RFID were utilized for hospital’s supply
chain management systems, enabling medication control from purchase to
distribution [108, 133].

3.2.3 Sleep

Sleep is an important indicator of the health and well-being of a person. IoT-
based systems are exploited to track and evaluate the quality and quantity
of sleep in both home-based and hospital-based applications. Sleep monitor-
ing and assessment have been performed for hospitalized patients, utilizing
wireless connected devices. Different wearable systems including a neck-cuff
tool and Polysomnography (PSG) and actigraphy techniques were devel-
oped for patient’s sleep quality evaluation and sleep apnea early-diagnosis
[191, 31, 65]. The systems could analyze collected acceleration data and ex-

22



tract information about the patient’s sleep patterns in hospitals. Moreover,
motion-sensing mattresses were also developed to continuously monitor and
analyze patient’s sleep postures, sleep movements, and pressure distribu-
tion [143, 236]. In contrast to the hospital-based applications, home-based
sleep monitoring applications were mostly bounded to subjective measure-
ments including self-report questionnaires. More details about the home-
based sleep monitoring applications can be found in Chapter 6.

3.2.4 Tracking

Smart hospitals have been introduced in different studies to remotely track
patients, personnel, and devices in hospitals [42, 43]. Such tracking sys-
tems were proposed to improve emergency situation management, leverag-
ing models and RFID techniques [41]. In addition, such a connected network
could improve nursing calling systems. An IoT-enabled system was proposed
in this regard, enabling the patients to make a nurse call request through a
platform [81]. The location data of patients and nurses could improve the
calling system by minimizing the time between sending the request and the
nurse arrival [123, 199].

3.2.5 Hygiene

Hand hygiene is an important practice to alleviate infection transmission in
hospitals. IoT-enabled systems have been introduced to improve hospital
hygiene and infection control. Real-time hand hygiene monitoring systems
were developed to monitor hand hygiene of hospital personnel using RFID
and wrist-worn sensors [27, 158, 154, 82]. These systems could classify the
hand hygiene movements and provide a notification if the hygiene was in-
adequate or missed. In addition, a hand hygiene system was proposed to
remind and encourage health professionals via interface devices to practice
hand antisepsis [16]. Moreover, secretion monitoring systems were proposed
for hospitals enabled by wetness sensors placed in diapers. These systems
remotely detected soiled diapers and sent notifications to the nurses accord-
ingly [220, 79].

3.3 Objectives and Challenges in Healthcare IoT

As discussed, IoT-based monitoring systems have been thus far deployed
in a broad range of applications, enhancing the quality of care in clinical
and everyday settings. These IoT-based systems should satisfy a set of
requirements to deliver high quality attributes to the end-users. These re-
quirements are determined according to the applications’ objectives. The
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Figure 3.3: A hierarchical model for the IoT-enabled healthcare

objectives – which vary from one application to another – should be in-
vestigated for designing and developing IoT systems: from devices to data
analytic approaches.

We address this issue by categorizing the existing applications into 4
parts according to their objectives. Figure 3.3 illustrates the hierarchy in
these monitoring systems and the relation of the layers. The application
layer is a subset of the domain layer. The objective layer covers the domain
layer, and the system layer includes all the divisions and aspects. The
application and domain layers include the existing works and sub-groups
discussed in Section 3.1 and Section 3.2. The objective layer shows the
objectives of IoT-enabled healthcare, and the system layer consists of the
home-based and hospital-based monitoring systems. In the following, we
briefly discuss the 4 objectives and some of their challenges.

3.3.1 Extensive Care

The scope of conventional health systems is mostly narrowed to a specific
care or disease. In contrast, IoT-based monitoring systems provide extensive
care and multipurpose applications where the user’s health and well-being
are monitored comprehensively. In other words, IoT systems can integrate
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applications of both home and hospital monitoring into one all-inclusive
service, where the needs of the user (which is in the center of monitoring)
are satisfied.

Such a system requires a heterogeneous data collection, so energy-efficient
wireless BAN is needed which includes multiple lightweight wearable sensors.
The scalability is the capability of managing a growing amount of load in the
system. Such health monitoring should consider scalability, where the sys-
tem needs to be updated, as user’s needs might change during the monitoring
[12, 163]. Moreover, data fusion tools are required to tailor different data
resources (i.e., global knowledge) into the analysis and decision-making. In
these systems, data fusion can be divided into three types: complementary,
competitive, and cooperative [63, 66]. 1) Complementary: different parame-
ters are collected to obtain a more complete parameter. For example, in the
EWS method, different vital signs (including heart rate and breathing rate)
are collected to detect health deterioration patients [5, 131]. 2) Competitive:
one parameter is collected using different sensors to improve fault tolerance
and accuracy. For instance, heart rate values are acquired from different
wearable devices. 3) Cooperative: one parameter is recorded using different
resources to derive new information. For example, multiple accelerometers
are placed on the body (e.g., wrist and leg) of an individual for activity
recognition [19].

3.3.2 Longitudinal Care

Longitudinal care is another objective in the IoT-based systems, by which
the users are monitored for a long period of time. Such monitoring systems
can be leveraged for diagnosis and treatment purposes, investigating the
status of a disease over time. For example, chronic diseases and mental
illnesses could be assessed via long-term care. In addition, these systems can
be used for coaching and lifelogging purposes, to track trends, variations,
and special events in the user’s daily behavior and lifestyle [102, 117].

Energy efficiency is an important issue in these systems which use wear-
able sensors equipped with limited batteries [187]. Intelligent approaches
are required to reduce sensing and transferring energy consumption of the
sensor nodes. Such approaches should dynamically re-tune the system’s
configurations according to the conditions of the user and the system. For
example, the data collection rate can be reduced if the vital signs are sta-
ble. However, the rate should be at its maximum when the medical state
of the user is critical [14]. Such dynamic behavior can be obtained by using
context-awareness and goal management methods performed in the fog or
cloud paradigms [8, 9].

Moreover, the QoE should be investigated in IoT-based healthcare ap-
plications, as the users are the recipients. The QoE focuses on the service
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experience and indicates how the service is delivered to the users. The re-
quirements of the QoE are determined according to the applications. Differ-
ent factors in the three layers of IoT systems might affect the QoE. Examples
of such factors are the performance of the sensors (e.g., the accuracy of data
collection), the delay of the network, and the interactivity of the service.
The QoE should also be determined according to the end-users (e.g., pa-
tients and health providers) who use IoT-based health applications. For
example, the usability and feasibility of the sensor nodes (e.g., being non-
invasive, easy-to-use, and compact) can influence the QoE of the patients,
particularly in long-term health monitoring [77, 78, 201].

In addition, data security, privacy, and data ownership play key roles in
the long-term monitoring. The IoT-based systems should securely manage
to collect, transmit, and store the data. First, access to the sensors (i.e.,
physical objects) should be limited, so the flaws are reduced. Second, the
gateway devices need to manage data transmission securely. Security mech-
anisms (e.g., encryption algorithms) can be used in this regard. Third, the
data should be protected in the cloud servers using different authentication
and access control methods. It should be noted that these issues are not lim-
ited to longitudinal care and should also be considered for other healthcare
services [4, 12, 233].

3.3.3 Emergency Care

Another objective of the IoT-based health monitoring is to enable emergency
care, in which at-risk patients are monitored 24/7. IoT systems continuously
collect health data, perform decision-making, and notify health providers
and/or caregivers in case of emergencies. This procedure can provide early
detection of health deterioration and subsequently early-intervention in med-
ical emergencies. Such rapid responses are essential to fulfill effective treat-
ments of acute diseases (e.g., heart attack and stroke) and accidents (e.g., a
fall) [171].

There is a high risk of health deterioration in this monitoring. There-
fore, to support these health applications, IoT-based systems should satisfy a
high-level of availability. Unfortunately, traditional client-server cloud-based
IoT systems are inappropriate for such applications. These systems rely on
cloud servers for data analysis, so the application is interrupted when the
cloud connectivity is unstable. In addition, these applications are latency-
critical, so the systems’ response time should be investigated. Response time
of an IoT-based system is dependant on several variables in the system such
as bandwidth, transmission channel reliability, and computation (e.g., deci-
sion making) time [198]. Furthermore, these systems demand high resilience
to deliver an acceptable service despite the occurrence of faults [210].
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3.3.4 Individualized Care

Individualized care is another objective in the IoT-based healthcare sys-
tems. Traditionally, diagnosis, treatments, and health decision-making are
performed based on general assumptions and population data. In contrast,
IoT-based systems can provide these health services with respect to the
user’s condition, where the decisions might differ from one person to an-
other. These systems should extract personalized rules and models and
then react to a health condition accordingly [210, 115, 231].

High learnability and adaptivity are essential quality attributes, as these
systems need to learn continuously from the collected data. In this re-
gard, these systems demand modeling, artificial intelligence, and machine
learning algorithms to obtain data patterns over time and extract relations
between different data features. Management techniques are also required
to adaptively configure the IoT system according to the system’s and user’s
conditions. These updates could include configurations of data collection,
data transmission, and data analysis process.

In addition, intelligent techniques are required to investigate the relia-
bility and confidence of data in IoT-based systems, indicating the degree of
validity of the health application’s results. This validation should be per-
formed through personalization, where various sources of data – including
user’s condition, system’s status, environmental data, and history data – are
utilized. Self-awareness and context-awareness concepts can be exploited in
this regard, incorporating such data sources into the validation of the results
[92, 91, 107, 95].

3.4 Summary

This chapter introduced a review of the state-of-the-art IoT-enabled systems
that are exploited in healthcare. The review was performed from two as-
pects: home-based and hospital-based applications. We investigated these
studies and categorized them into different domains from a user-centered
perspective. Home-based monitoring applications focused on the elderly
who require more care and support, comparing to the population with age
less than 65. Hospital-based monitoring applications were designed to ad-
dress the needs of both patients in hospitals and health providers. We then
analyzed the findings and presented the objectives of the IoT-based health-
care systems and discussed the challenges that should be satisfied in these
systems.

The following chapters will attempt to tackle some of the challenges in
IoT-based healthcare systems by developing personalized data analytic ap-
proaches. Chapter 4 will address availability and response time (i.e., latency)
in real-time health monitoring systems, proposing a new software architec-
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ture for IoT-based systems. Chapter 5 will propose a data fusion method
to improve the system’s resilience. Moreover, Chapter 6 will introduce a
personalized decision-making approach to improve the accuracy of decisions
and effective care in long-term health monitoring systems.

Figures 3.1 and 3.2 were taken from Paper I and Paper II respectively.
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Chapter 4

Computing Architecture for
IoT-enabled Healthcare

As discussed in Chapter 3, IoT-based systems should provide adequate qual-
ity attributes according to the objectives and requirements of the applica-
tions. Such requirements are more difficult to meet when health monitoring
applications are expected to continuously collect and analyze data and to
correctly detect medical emergencies early enough. Therefore, high-levels of
availability, reliability, and accuracy are demanded.

Conventionally, two IoT computing architectures have been proposed in
the literature for such healthcare applications. First, cloud-based architec-
tures were developed to collect data, transmit the data to the cloud servers,
and perform data analytic approaches [34]. Using these architectures, IoT-
based systems have been proposed that remotely monitor various health
parameters [160, 208, 75, 89, 15, 23]. As the cloud servers can be equipped
with powerful computational resources, these architectures are appropriate
for non-safety applications, in which latency is not a critical factor, and high
accuracy is demanded. Examples are smart city applications enabled by
powerful machine learning algorithms. However, the function of the cloud-
based architectures is highly dependent on the availability of the network,
since they are unable to deliver services in the case of loss or degraded access
to Internet connectivity. Therefore, these IoT architectures cannot satisfy
IoT-based health monitoring applications.

Second, fully distributed fog-based architectures were proposed to collect
data and perform local data processing at the edge of the network [33, 185].
In the literature, various studies have used these architectures to propose
health monitoring systems [55, 43, 86, 14]. The fog-based architectures can
provide local basic, and yet important, applications with high-levels of acces-
sibility and reliability. However, the functionality is restricted to the limited
processing power of gateway devices, so the IoT systems are unable to run
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powerful machine learning approaches. Consequently, these conventional
architectures are also insufficient for health monitoring applications.

This chapter proposes a new software architecture to satisfy system-
driven quality attributes in an IoT-based health monitoring system. The
proposed architecture leverages the features of both fog-based and cloud-
based computing, allowing hierarchical partitioning and execution of ma-
chine learning in IoT-based systems. Moreover, it enables an autonomous
closed-loop resource management technique, by which the system’s configu-
rations are adaptively set according to the user’s condition.

In the following, first, a computing model is introduced, which is selected
as the backbone of the architecture. Then, the computational units and
management tasks are defined and mapped cross the 3-layer of IoT-based
systems. Finally, the proposed architecture is evaluated, demonstrating a
full system implementation for a case study on real-time arrhythmia detec-
tion in ECG signals.

4.1 Computing Model

Monitor-Analyze-Plan-Execute over a shared Knowledge (MAPE-K) is an
existing computing model, enabling automated management for computa-
tional units and self-adaptive behavior in distributed systems. The comput-
ing model was first introduced by IBM [112, 125]. It provides a feedback
loop including 4 different computing components, all of which have access
to shared knowledge. The components are as follows. 1) Monitor is the
closest component to the sensing tier, acquiring and aggregating data. 2)
Analyze analyzes and models the data. 3) Plan constructs a procedure for
the system according to the analysis. 4) Execute implements the procedure,
providing necessary changes in the system.

The four computing components are utilized to enable the hierarchi-
cal IoT architecture. Moreover, we include another component entitled as
System Management to the computing model to implement the closed-loop
technique. The System Management is responsible for reconfiguring the sys-
tem’s settings according to the feedback from the user’s condition. A view
of the enhanced MAPE-K model with the computing components is shown

Figure 4.1: Enhanced MAPE-K computing model
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in Figure 4.1.

4.2 Hierarchical Computing Architecture

The hierarchical computing architecture is proposed to leverage the bene-
fits of both fog and cloud computing. The main idea of using MAPE-K in
this architecture is to allocate 1) the heavy training process of a machine
learning algorithm to the cloud server, and 2) the decision-making process
to the gateway layer, outsourcing the trained inference to the edge of the
network. The local decision-making allows resource management at the edge
of the network, where the fog device is capable of reconfiguring sensing and
transmission settings with respect to the user’s condition. The proposed ar-
chitecture enabled by this self-adaptive behavior (indicated by blue arrows)
is shown in Figure 4.2. It includes the flow of observation, decision making,
and action.

As illustrated in the figure, the MAPE-K computing components are
mapped into the IoT system. The perception layer includes the Monitor
component acting as a bridge between the sensors and the other comput-
ing units. The gateway layer consists of three components to perform local
decision-making (Plan), to set the systems’ behavior (Execute), and to tune
the system configurations (System Management). Finally, the cloud layer
includes the Analyze component which is responsible for training an infer-
ence (i.e., hypothesis function) from the user’s data. The roles of these
computing components in this architecture are outlined as follows.

Figure 4.2: The proposed hierarchical computing architecture
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4.2.1 Monitor

The Monitor is responsible for driving lightweight services at the sensor
network and transmitting the data to the gateway layer. As indicated in
Figure 4.3a, the component consists of 3 units. 1) An Analog-to-Digital
Converter (ADC) converts analog signals acquired from the sensors into
digital signals. 2) A MicroController Unit (MCU) performs data aggregation
and pre-processing methods (e.g., noise filtering). 3) A transmitter unit
sends the data to the System Management component.

4.2.2 Analyze

The Analyze component fulfills heavy data analytic techniques such as data
modeling or training a classifier. Different machine learning algorithms can
be fitted into this architecture. As illustrated in Figure 4.3b, the learning
algorithm infers a hypothesis function using the training data which include
the training samples and the corresponding labels. At the system’s initial
phase (i.e., design time), the training samples includes the medical history
data (i.e., population data) and the labels obtained from users’ feedback.
The trained hypothesis function is stored at the Final Hypothesis unit to be
sent to the Plan component, enabling decision-making at the gateway layer.

At run time, the streaming data are being received to re-train the hypoth-
esis function (see Figure 4.3b). The data includes the sensor data received
from the System Management component and the user/system feedback.
The Training Data unit is responsible for the pre-processing algorithms
(e.g., feature extraction). In this system, the hypothesis function is pe-
riodically re-trained. The update period (e.g., every day or every week)
is selected according to the needs of the application and the types of the
sensor data. Therefore, the classification becomes personalized during the
monitoring. When the hypothesis function is updated, it is transmitted to
the Plan component.

It should be noted that the selection of the learning algorithm depends
on a variety of factors such as the nature of the data (i.e., signal), the
type of health applications, and the output of the algorithm. Various linear
and nonlinear algorithms such as a support vector machine and an artifi-
cial neural network can be used. However, the instance-based algorithms
(e.g., K-Nearest Neighbor) are inapplicable, as the training dataset and the
classifier cannot be separated in these algorithms.

4.2.3 Plan

The Plan component carries out local decision-making and sets the proce-
dure of the system. The streaming data –coming from the System Manage-
ment (i.e., sensor data)– are first processed (e.g., feature extraction) in the
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(a) Monitor component

(b) Analyze component

(c) Plan component

(d) System Management component

Figure 4.3: Major computing components of the proposed architecture

Test Data unit and are then classified using the hypothesis function (see
Figure 4.3c). The output of the Decision Making is a decision vector indi-
cating the user’s current health status, which is a binary value (i.e., normal
or abnormal) or a multi-class decision (i.e., types of diseases). The vector is
sent to the Execute for the system’s actuation.
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At design time, the Plan utilizes the initial hypothesis function generated
in the Analyze component using population data. However, as mentioned
previously, the Plan is updated periodically at run time by receiving re-
trained hypothesis functions from the Analyze component.

4.2.4 Execute

The Execute is responsible for the system’s actuation, sending feedback to
the other units. First, it sends a notification to the users if an abnormality
is detected. This process includes forwarding notifications to the patient
and health providers. Second, the Execute updates the System Manage-
ment component. Therefore, the system is able to re-tune its configurations
according to the current status of the user. Finally, this computing com-
ponent sends feedback (e.g., a report of the local decisions) to the Analyze
component for the re-training process of the classifier.

4.2.5 System Management

The System Management updates the system’s state according to the user’s
condition. In this architecture, the component only performs data transmis-
sion control. However, it can be extended to include other system resource
managements. The System Management receives the streaming data from
the perception layer. It sends a complete set of the data to the Plan for
decision-making at the edge and forwards a portion of the data to the An-
alyze for the re-training process at the cloud (see Figure 4.3d). The data
transmission reduction is set via a management algorithm using a finite-state
machine.

The algorithm includes n possible system’s states and m patient’s condi-
tions. The current system’s state is selected according to the user’s condition
and previous state. Figure 4.4 indicates an example of the management al-
gorithm, where n and m are 4. S1 is the most cost-efficient state with most

Figure 4.4: The state diagram of the management algorithm when there are
four system’s states (Sn) and four user’s conditions (Pn).
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data reduction, while S4 has no data reduction. P1 shows a normal health
condition, whereas P4 is the worst condition. As indicated, the system state
jumps to higher states in case of high-risk health condition detection. In
contrast, the system state gradually decreases from a high state to lower
states if health condition improves. For the sake of clarity, let us assume
two examples. P4 is detected during the monitoring while the current state
is S1 (i.e., most cost-efficient). Then, the state will be changed to S4 (no
data reduction). In the second example, the current state is S4, and the
patient’s condition becomes normal (P1). Then, the state decreases, one
step per iteration, to S1 (S4 to S3, S3 to S2, and S2 to S1).

4.3 Case Study: Real-time Arrhythmia Detection

To evaluate the proposed architecture, a case study on real-time arrhyth-
mia detection was utilized, focusing on continuous monitoring of patients
suffering from cardiovascular diseases. The system was tested using ex-
isting datasets of ECG signals collected from Physiobank online databases
[116, 161, 87]. The sensing part was emulated in this experiment by storing
the data in a MicroSD card, reading the data by the ATmega328P micro-
controller [18], and sending it to the gateway device via an RN-42 Bluetooth
module [155]. The transmission was performed every 10 seconds, so a 10-
second window of ECG signal was sent in each data transmission.

Two gateway devices with different specifications were selected to evalu-
ate the architecture in different situations. The two devices were an NVIDIA
Jetson-TK1 [170] as a single board computer and an HP Compaq 8200 Elite
Linux machine, both of which run Apache web server, PHP, and Python in-
terpreter services. The latter device provides better performance, relatively.
The cloud server in this setup was a Linode virtual private server [141] en-
abled by two 2.50GHz Intel Xeon CPU, 4GB memory and SSD storage drive
which runs an Apache web server on Ubuntu Linux.

The proposed system was compared with a baseline system enabled by
a conventional Observe Decide Act (ODA) control strategy [106]. In this
baseline system, the data was collected in the perception layer and was
transferred to the cloud server for data analysis and decision-making. Then,
the decision vector and notification were sent to the end-user (see Figure 4.5).
The computing in the baseline architecture was limited to the cloud server,
while the gateway device only acted as a communication bridge between the
two other layers.

Two machine learning algorithms were selected in these experiments to
investigate the efficiency of the architecture from different aspects. In the
first setup, a linear Support Vector Machine (SVM) method [164] was lever-
aged to perform abnormality detection (simple binary classification) on the
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Figure 4.5: The baseline IoT system enabled by the ODA control strategy

signal. However, the second demonstration included a Convolutional Neu-
ral Network (CNN) [196] as a deep learning algorithm to detect different
arrhythmias (multi-class classification).

4.3.1 Abnormality Detection

The linear SVM method enables real-time decision-making on the user’s
health condition, classifying the incoming signals as normal or abnormal
(i.e., signals with arrhythmia). In the design-time, the hypothesis function
was trained at the cloud server (i.e., the Analyze component) using Scikit-
learn [175] and Biosppy [38] libraries in Python. To this end, we used
10 hours of ECG signals collected from a healthy user and an individual
suffering from cardiovascular diseases. For the training phase, 5 different
features were extracted from each 10-second window of the signal and fed
into the hypothesis function along with the signal’s labels (i.e., normal and
abnormal). The extracted features were QRS complex duration, T wave
duration, RR interval, PR interval, and ST segment (see Figure 4.6).

The hypothesis function was sent to the gateway device (i.e., Plan com-
ponent). During the run-time, the incoming data (i.e., test data) were clas-

Figure 4.6: Temporal features of an ECG cycle
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Table 4.1: Normalized confusion matrix

Predicted value

True value
TN = 0.97 FP = 0.03
FN = 0.01 TP = 0.99

Figure 4.7: Notification flow in the baseline system and proposed system

sified locally and the decision vector was sent to the Execute component for
the actuation. For the test dataset, emergency scenarios were simulated by
adding ECG with arrhythmia at random points in the normal ECG. The
data were chosen from 4 new users.

The classifier was validated by comparing the estimated labels with the
true labels. The F1 score in the test data was 0.98. Table 4.1 indicates the
obtained normalized confusion matrix. Consequently, the method was able
to provide an acceptable performance differentiating normal and abnormal
ECG signals.

The response time of the proposed system was evaluated in comparison
to the baseline system. The response time is defined as the time interval
between collecting the ECG signal and forwarding the notification to the user
in the case of an emergency. Figure 4.7 shows the notification flows in the
two systems. The baseline system includes transmission time between sensor
and gateway device (a and d), transmission time between the gateway device
and cloud server (b and c), and computation time at the cloud (α). However,
the notification flow in the proposed method consists of transmission time
between sensor and gateway device (a and d) and the computation time in
the gateway device (β). The baseline system’s response time was measured
in different Internet networks, and the proposed system’s response time was
tested with the two gateway devices. As shown in Figure 4.8, the response
time is considerably lower in the proposed system. In contrast, the response
time of the baseline system is highly dependent on the available Internet
network (i.e., b and c values). The reduction of response time can improve
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Figure 4.8: Response time in different approaches

the performance of the service and subsequently impact the user experience.
Moreover, the dynamic behavior of the system was evaluated in terms

of bandwidth utilization and storage in the cloud. The data traffic rate
is controlled by the System Management component as a function of λ,
which is the portion of data that is sent to the cloud server when the user’s
condition is normal. λ varies from 1 to 6, where 1 indicates the lowest
data transmission (i.e., sending one 10-second window of the ECG signal
per minute) and 6 is the full data transmission (i.e., sending six 10-second
windows per minute).

Table 4.2: Data traffic for one hour monitoring with different λ values

λ

Data to be
transferred to the

cloud (KB)

Data
description

(KB)

TCP
overhead

(KB)

Total traffic
(KB)

1 439 29 13 481
2 879 29 25 933
3 1318 29 37 1384
4 1756 29 49 1836
5 2197 29 61 2287
6 2636 29 73 2738

Table 4.3: Data storage for one hour monitoring with different λ values

λ
Data in normal
condition (KB)

Data in abnormal
condition (KB)

Data stored in
the cloud (KB)

Reduction in
data size

1 406 355 761 71 %
2 787 355 1142 57 %
3 1167 355 1522 43 %
4 1549 355 1904 29 %
5 1929 355 2284 14 %
6 2310 355 2665 0 %
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As represented in Table 4.2, the bandwidth utilization was significantly
reduced (particularly if λ is 1) for 1-hour monitoring (with 8 minutes ab-
normality) in the proposed system. The total data traffic –including the
data (i.e., ECG signals), Transmission Control Protocol (TCP) overhead,
and data description– reduced to 19% if λ was 5 and to 82% if λ was 1. It
should be noted that the data traffic rate was always at its maximum with
different λ during abnormality detection, as the abnormal data was needed
for further analysis in the cloud (e.g., re-training the classifier).

Similarly, Table 4.3 shows the reduction of the data stored in the cloud
server during the 1-hour monitoring. The stored data reduced to 14% if λ
was 5 and to 71% if λ was 1. As indicated, the data reduction was only per-
formed when the user’s condition was normal. The proposed system could
decrease unnecessary data storage in the monitoring. This data reduction
is particularly important in long-term health monitoring, in which a large
amount of data are collected throughout the monitoring period.

4.3.2 Arrhythmias Detection

In addition to a linear machine learning algorithm, the feasibility of deploy-
ing a non-linear algorithm in this architecture was assessed. The use of such
algorithms enables multivariate and complex applications in the IoT-based
health monitoring systems. The CNN, as a deep learning algorithm, was
utilized to perform a real-time multi-class classification. In this regard, we
implemented the algorithm proposed by Takalo-Mattila et al. [212] for the
ECG signal classification. Using the TensorFlow library [1] in Python, the
algorithm was trained in the Analyze component via a training dataset in-
cluding 51020 ECG samples collected from different patients (design-time).
The trained hypothesis function was sent to the gateway device to classify
the incoming ECG signals into 5 classes as normal (N), supraventricular
ectopic beat (SVEB), ventricular ectopic beat (VEB), fusion beat (F), and
unknown beat (Q).

Table 4.4: Confusion matrix

Estimated Decision

Normal SVEB VEB F Q

T
ru

e
D

ec
is

io
n

Normal 40671 905 2615 68 0
SVEB 642 1148 47 0 0
VEB 339 2 2874 6 0

F 275 0 111 2 0
Q 2 0 5 0 0
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Figure 4.9: Accuracy improvement by re-training the model with new sam-
ples

The accuracy of the hypothesis function was evaluated at the beginning
and during the monitoring. The monitoring was carried out utilizing ECG
samples from new users whose data were not used in the training phase. In
other words, the hypothesis function was generated from population data in
the design-time. At the beginning of the monitoring, the accuracy was 0.89.
The confusion matrix is indicated in Table 4.4. The correct classifications
are relatively high although the accuracy might be inadequate for health
decision-making. During the monitoring, the classifier was re-trained using
the incoming signals. Therefore, the classifier was updated by seeing samples
from the monitored person. As indicated in Figure 4.9, this process improves
the accuracy of the classification, since the classifier becomes personalized
to the monitored person during the monitoring.

Similar to the previous evaluation, the response time of the proposed
system was also evaluated, compared with the baseline system. To vali-
date the experiment, different setups were selected to measure the response
time. In this regard, the response time of the baseline system was measured
in different Internet networks ranging from the GPRS to the 4G network.
Moreover, the response time of the proposed system was tested with differ-
ent gateway devices. To this end, as the gateway, we used the Jetson-TK1
and HP Compaq 8200 Elite Linux machine. In addition, we also utilized an
Oracle Virtual Machine (VM) with a single-core Intel Core i7 CPU at 3.4
GHz. The virtual machine (VM) was tested in the experiments by allocating
100%, 90%, 80%, 70%, 60%, and 50% of its execution capacity.

The response time of the two systems is illustrated in Figure 4.10. The
baseline system had the shortest response time when the network was 4G;
however, the response time increased by 3.2 times when the network was
GPRS. In contrast, the shortest response time of the proposed system was
for the VM with 100% core, and the longest response time was for the
Jetson TK1. Consequently, the response time of the baseline system relies
on the Internet connection which varies during the health monitoring. On

40



4
G

n
et

w
o
rk

F
a
st

3
G

n
et

w
o
rk

V
M

co
re

1
0
0
%

3
G

n
et

w
o
rk

V
M

co
re

9
0
%

H
P

d
ev

ic
e

V
M

co
re

8
0
%

F
a
st

2
G

n
et

w
o
rk

V
M

co
re

7
0
%

2
G

n
et

w
o
rk

V
M

co
re

6
0
%

V
M

co
re

5
0
%

G
P

R
S

n
et

w
o
rk

J
et

so
n

T
K

1

2000

4000

6000

8000

10000

12000

2589 2700 2999 3302
4039

8352

2946 3030 3059 3084
3995

5627
6652

12435
R

es
p

o
n
se

T
im

e
(m

s) Baseline IoT system with different networks

Proposed system with different gateways

Figure 4.10: Response time for different approaches.

the other hand, the response time of the proposed system only depends
on the processing power of the gateway device. Therefore, by choosing a
suitable gateway device, the proposed system can guarantee an acceptable
response time for the health application.

4.4 Summary

This chapter introduced a hierarchical computing architecture for IoT-based
health monitoring. This architecture allowed the partitioning and executing
of machine learning algorithms in IoT systems. Moreover, it included an au-
tonomous closed-loop resource management technique to efficiently manage
the flow of data in the system according to the user’s condition. We utilized
an enhanced version of the MAPE-K computing model as the backbone of
this architecture to distribute various computing components in the 3-layer
of IoT systems. A full system implementation was demonstrated for contin-
uous monitoring of patients with cardiovascular diseases. The architecture
was evaluated using two different setups enabled by linear and non-linear
machine learning algorithms. The proposed architecture was compared with
a baseline cloud-based architecture enabled by an ODA control strategy.

The results showed the feasibility of partitioning and executing of the lin-
ear and non-linear machine learning algorithms in this architecture, enabling
local decision-making with acceptable response time. The proposed system
improved the availability and latency of the health monitoring, compared
with the baseline cloud-based system. The accuracy of the decision-making
was also improved by personalization, where the classifier was periodically
re-trained using the patient’s data during the monitoring. Moreover, the
dynamic behavior of the system reduced unnecessary data transmission to
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the cloud, saving bandwidth utilization and cloud data storage, which are
significant in the case of long-term health monitoring. Consequently, the
improvements in the availability, response time, and bandwidth usage can
have different positive impacts on the QoE of the IoT-based healthcare ap-
plications for both the patient and health provider.

Figures 4.1–4.6, 4.8 and Tables 4.1–4.3 were taken from Paper III. Figures 4.7, 4.9,
and 4.10 and Table 4.4 were taken from Paper IV.
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Chapter 5

Data Fusion for IoT-based
Health Monitoring

IoT-based systems necessitate a high-level of quality attributes to fulfill the
requirements of ubiquitous health monitoring. Chapter 4 presented such
attributes from a system-driven perspective, where a new computing archi-
tecture was proposed to provide acceptable attributes such as availability
and adaptability. In other words, the contributions included the design of
IoT-based systems for healthcare applications. In contrast, this chapter
focuses on the system’s attributes from a data-driven perspective, propos-
ing a holistic complementary data fusion approach that can be deployed in
IoT-based systems.

Missing data is one of the major problems in IoT-based health monitoring
systems. It leads to an incomplete and inconsistent dataset and subsequently
causes failure in the mission of health applications. Unfortunately, this
problem is prevalent in IoT-based systems since data collection and data
transmission are interrupted from time to time in these systems. One of the
reasons for this can be that the users fail to wear the sensors, or the batteries
of the devices (e.g., wearable sensors and mobile gateways) are exhausted
during the monitoring period. In addition, the data might be corrupted due
to artifacts generated by other surrounding resources. For example, hand
movements might distort the PPG signals collected via wearable sensors
[174, 167].

In this chapter, we address missing data in long-term health monitoring
systems. We introduce a personalized missing data resilient approach which
enables real-time health decision-making regardless of missing data. The
proposed approach tailors multivariate data collection (i.e., heterogeneous
data resources) in IoT systems and personalization to impute estimates with
an acceptable bias for missing values. Subsequently, the estimates are uti-
lized to complete the decision-making.

43



In the following, the missing data concept and the conventional methods
of handling missingness in datasets are first outlined. Then, the missing
data resilient approach for IoT-based systems is introduced. Finally, the
proposed approach is evaluated using a case study on ubiquitous maternal
health monitoring.

5.1 Missing Data

Missing data refer to data points in a given variable, whose values are ab-
sent. According to Little and Rubin [142], three missingness mechanisms
produce missing values in a dataset. 1) Missing Completely At Random
(MCAR): the missingness is independent of the missing value and available
information; e.g., data is unrecorded due to a random system failure. 2)
Missing At Random (MAR): the missingness is independent of the missing
value although it is dependent on the available information; e.g., missing
data is more probable when the sensor’s battery level is low. 3) Not Missing
At Random (NMAR): the missingness is dependent on the missing value;
e.g., data with large values are missing as they are not in the sensor’s range.

There is a broad range of studies on the analysis of missing data [25,
195, 203]. Various techniques have been proposed to handle missing data
problems in databases, considering the types of missingness mechanism, the
amount of missing data, and the application’s requirements. However, many
of these techniques are insufficient for health applications and cannot be
applied in real-time settings.

Deletion techniques remove the samples in the data if there is a missing
value. Listwise deletion and pairwise deletion are two straightforward dele-
tion methods used in many studies [203, 150]. These techniques are easy to
implement. However, they cannot be used in real-time applications, as no
estimate is provided when there is a missing value. In addition to the dele-
tion techniques, single imputation techniques are other conventional meth-
ods that impute the missing value according to the available data. Existing
techniques in the literature include mean imputation, regression imputa-
tion, hot-deck imputation, Last Observation Carried Forward (LOCF), and
K-Nearest-Neighbor (KNN) imputation [142, 13, 226]. These techniques are
limited to the MCAR missingness mechanism, underestimating the variabil-
ity of the missing values.

Moreover, modern techniques have been proposed to address missing
data by considering uncertainty and variation in the data [25]. The multiple
imputation method fills-in the missing value by generating different values
with different uncertainties and integrating them into one estimate [142, 67].
Additionally, model-based techniques create models (i.e., hypothesis func-
tion) to estimate the missing values. In this regard, Maximum Likelihood
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Estimation (MLE) was leveraged in different studies to estimate missing val-
ues via a likelihood function approximated according to the available data
[165, 25]. MLE was used for the MCAR and MAR although other model-
based methods such as pattern-mixture and shared-parameter models were
proposed for the NMAR missingness mechanism [58, 113]. In addition, ma-
chine learning-based techniques train a hypothesis function to impute miss-
ing values. For example, SVM, neural networks, and genetic algorithms have
been used in the literature to handle missing data [204, 21, 22].

Real-time health monitoring systems require a missing data analysis to
handle the three missingness mechanisms, each of which could occur dur-
ing the monitoring period. Therefore, the traditional algorithms cannot
be deployed in these systems, as they are merely restricted to the MCAR
mechanism. Existing modern algorithms use uncertainty in the analysis to
include the MAR and NMAR. However, they are also insufficient for health
monitoring since they cannot provide acceptable accuracy for health param-
eters such as heart rate, which changes dramatically and is highly dependent
on other health and context parameters.

5.2 Personalized Missing Data Resilient Approach

This study proposes a personalized approach tackling missing data in real-
time health monitoring systems. This approach performs data fusion in
IoT systems to impute the missing value, leveraging heterogeneous data
sources. The data sources include context information, historical data (i.e.,
past events), and meta-data (e.g., calendar events), each of which could
correlate with the value of interest (i.e., missing value). These correlations
are utilized in this approach to minimize the bias of estimates.

To show the function of the proposed approach, we consider an IoT-
based system, in which the health parameters are remotely acquired from
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Figure 5.1: IoT-based missing data resilient approach
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an individual. Figure 5.1 shows the integration of the proposed approach
into the IoT-based monitoring system. The sensing tier includes a not-
working sensor (i.e., primary sensor) which produces missing values and
other sensors (i.e., secondary sensors) that collect context information. The
system processes the available parameters and continuously provides the
user’s health status (i.e., health decisions) for the healthcare provider.

In the processing tier, the multiple imputation as a modern method is
employed to incorporate the data sources into the missing data analysis. In
this regard, different values with uncertainties are generated. The estimates
are utilized to produce different health decisions. Then, the decisions are
pooled into one final decision. In the following, we will consider in detail
the three main computing layers in this system, which are: Imputation,
Analysis, and Personalized Pooling.

5.2.1 Imputation

Different estimates (m ≥ 2) are imputed for the missing value exploiting
different imputation methods. The estimates are obtained from the available
data sources which correlate with the primary data (i.e., missing value). The
imputation methods are selected according to the nature of the missing data
and the type of data sources. Three imputation methods are presented in
the following, providing estimates for a health parameter.

Short-term Pattern

This estimate is generated by using patterns in the short-term historical
data of the missing value. These patterns could significantly correlate with
the missing value, particularly in health parameters such as heart rate. Au-
toregressive models can be leveraged in this regard, where the missing value
is calculated from preceding neighbors [47]. Therefore, the missing value
(xt) is defined as:

xt = fs(t, β)

= β0 + β1xt−1 + β2xt−2 + · · ·+ βnxt−n (5.1)

where xt−1, . . . , xt−n are the n preceding neighbors, and β0, . . . , βn are the
model’s parameters.

In the training process, the model’s parameters are determined using
previous non-missing values of the primary data. The parameters desired
are those that minimize the distance between the actual values and the
estimates:

k∑
i=1

[xt−i − fs(t− i, β)]2 + λ

n∑
j=0

β2
j (5.2)
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where k is the number of training data, xt−i is the actual data, fs(.) is
the estimate from preceding data, and λ > 0 is a regularization parameter
[188, 173].

The estimated values are considered as the preceding neighbor in the
next iterations. Therefore, the estimation errors are accumulated when one
set of data points in a row is missing. Consequently, this imputation method
is only appropriate when missing windows are small. Note that a missing
window refers to the interval between the last available data point and the
current data point.

Context Information

The correlation between context information and the primary data is uti-
lized. The context information indicates different states of the monitoring.
The states can be defined with respect to the user’s and system’s conditions.
Therefore, the missing value (x) is estimated as:

x = fc(t, γ) (5.3)

where γ is the context data.

fc(.) maps the context data (i.e., monitoring states) into the estimate.
This function should be personalized, as the correlations are not similar in
different people. Let us take an example where a heart rate value is missing,
and the context is physical activity data. For one individual, her historical
data shows a heart rate value of 55 ± 3 during the sleep. In contrast, the
heart rate value is 65 ± 5 during the sleep of another person. Hence, the
estimate is 55 for the first person and 65 for the second person if the heart
rate value is missed during sleep. In consequence, the correlations (fc(.))
between heart rate and different physical activity should be individually
obtained in the monitoring according to her historical data.

Lifestyle Pattern

Lifestyle patterns are other sources used to estimate the missing value. Sim-
ilar windows of data are extracted from the available data and used for
estimating missing data. These similarities can be obtained from manual
and subjective measurements such as a user’s calendar and medication in-
formation. For example, if the user’s calendar shows this person attends a
physical fitness course every day at 6 p.m., then, missing data in this time
period can be estimated based on similar windows in the past.

Moreover, patterns can be obtained automatically, comparing the cur-
rent window of data to previous data windows. In this regard, the missing
value (x) equals the corresponding value (xk) of the data window k that
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has the minimum distance to the current window. The data window k is
selected by the nearest neighbor rule:

argmin
k∈φ

dist(k)

where dist(.) is a distance function:

dist(k) =
n∑
i=1

||xi0 − xik||2

where n is the window length, and xi0 and xik are data points in the current
window and window k, respectively.

5.2.2 Analysis

The decision-making approach is performed in this computing layer. This
approach is repeated m times in each iteration because m estimates are
generated for the missing value in the Imputation layer. In our case study,
m = 3 as three imputation methods (i.e., short-term pattern, context in-
formation, and lifestyle pattern) are considered. It should be noted that
the estimates could be different due to the uncertainty and inaccuracy of
imputation methods. Therefore, the decisions might be dissimilar.

5.2.3 Personalized Pooling

Personalized pooling is responsible for pooling the m decisions into one final
decision. Conventionally, the pooling can be performed using an arithmetic
mean. Therefore, the final decision is the average of decisions. This method
leads to an inaccurate decision since the decisions with different errors are
treated equally. To address this issue, a personalized pooling method is
introduced to reduce the impact of decisions with a high error rate. The
personalized pooling method leverages a weighted arithmetic mean. The
weights are selected during the monitoring according to the decisions’ un-
certainties which rely on the conditions of both the user and system.

The weights are calculated when the primary data is available. In this
regard, first, the imputation methods are utilized to estimate the primary
data. Then, the actual value and estimates are compared, and imputation
errors are calculated. The weights could be obtained by minimizing the
sum of squared errors over all data points. However, this method is inap-
propriate for such dynamic systems, where both the user’s conditions and
system’s states vary significantly during the monitoring. Therefore, in the
proposed approach, the weights are determined based on these states in each
imputation.
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Figure 5.2: Weights determination in personalized pooling

For our case study, 3 different imputation methods are considered, so
3 weights vectors are specified when the primary data is available. The first
imputation leverages short-term patterns and is highly dependent on the
length of the missing window. Therefore, for each missing window size, an
imputation error is obtained by calculating the distance between the actual
value and estimated value. The corresponding weights are calculated for all
the missing window sizes. Eventually, a vector of weights (W1) is specified
for this imputation.

The second imputation utilizes the context information including differ-
ent states. Therefore, a set of weights (W2) is defined for the context states.
To determine the weights, it is possible to utilize the uncertainty (e.g., vari-
ance) of the estimates in different states. A smaller variance indicates the
estimate is more likely to be close to the actual value. For example, the
variance of heart rate during sleep (i.e., context information) is small during
the monitoring. When the heart rate is missing during sleep, the estimate
of this imputation is highly probable. Therefore, a large value is selected as
the weight of this estimate.

The third imputation is associated with the lifestyle patterns. The cur-
rent window is then compared with previous data (i.e., different time states)
to determine the estimate. For each event (i.e., lifestyle pattern), the dis-
tance (i.e., squared error) between the actual values and the estimated values
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is calculated. For instance, the distance is calculated for the working-days
event, comparing missing data in this event with previous data in the same
event. Eventually, the vector of weights (W3) is set for all the events. Fig-
ure 5.2 shows the weights determination in this computing layer.

When the primary data is missing, corresponding weights are selected
from the weights vectors (i.e., W1, W2, and W3) according to the current
missing window size, context state, and time state. Then, the final deci-
sion is determined using a dot product between the decisions and person-
alized weights. The weight selection and pooling process are indicated in
Figure 5.3.

It should be noted that a late fusion is selected over an early fusion in
this method, as the objective is to minimize the error (biased) of the final
decision and not the missing values. Therefore, the pooling weights are
updated throughout the monitoring according to the distance between the
estimated and actual decisions.

5.3 Case Study: Maternal Health Monitoring

The proposed missing data resilient approach was evaluated by implement-
ing a case study on maternal health. The case study includes a real human
subject trial, in which 20 primiparous pregnant women were remotely mon-
itored for 7 months.

5.3.1 Recruitment and Setup

The women were selected in one of two maternity outpatient clinics in South-
ern Finland between May and September 2016. The inclusion criteria were:

• The participant is at least 18 years old.
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• She expects her first child.

• The pregnancy is singleton.

• The gestational age should be less than 15 weeks.

• She owns a smartphone, tablet, or personal computer.

• She understands Finnish or English.

Twenty-two pregnant women met the criteria although twenty women agreed
to participate in this maternal monitoring. In face-to-face meetings, the
purpose of the study and the procedure were provided for the pregnant
women. Moreover, background information –including age at the pregnancy,
body mass index, and marital status– was collected. Then, the instructions
were given to the women.

An IoT-based system was utilized in this study to continuously collect
and analyze the health conditions of the pregnant women. The data collec-
tion was performed via Garmin Vivosmart R© HR [83]: a small lightweight
energy-efficient wristband. The device consists of a built-in PPG sensor to
acquire heart rate, and an Inertial Measurement Unit (IMU) to track steps
and physical activity. The data collection rate was set to one sample of data
per 15 minutes. In addition, subjective data collection was obtained via
semi-structured phone interviews once or twice in a month. The interviews
were implemented to improve the analysis. The data transmission was car-
ried out through gateway devices which were either smartphones or personal
computers in our setup. The data analysis was performed by a Python ser-
vice in the cloud server that is a Linode virtual private server [141] enabled
by two 2.50GHz Intel Xeon CPU and 4GB memory.

The monitoring period was around seven months for each participant.
The participants utilized the wearables for an average of 182 days, and the
daily use was on average 17.9 hours during the second trimester, 16.7 hours
during the third trimester, and 14.4 hours during the postpartum. The
monitoring was ended in June 2017. More details about this monitoring can
be found in [94].

Ethics

The study was conducted in accordance with the code of ethics of the World
Medical Association (Declaration of Helsinki) for involving human subjects
in the experiments. It was also approved by the joint ethics committee
of the hospital district of Southwest Finland (35/1801/2016) and Turku
University Hospital (TYKS). Moreover, the written informed consent was
obtained from all participants enrolled. In addition, the permission to use
Garmin Vivosmart R© HR (Garmin Ltd, Schaffhausen, Switzerland) in this
study was acquired from the manufacturer Garmin Ltd.
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Figure 5.4: A 24-hour sample of monitoring with missing heart rate values
and estimated health scores. The blue circles are the scores when heart rate
is available, and the red triangles represent estimated scores when the heart
rate values are missing

5.3.2 Missing Data Resilient Approach

The proposed approach was implemented using a rule-based indicator, map-
ping the sensor data into a health decision. In our setup, the indicator gen-
erated a warning score between 0 and 3, where 0 referred to a normal health
condition, and 3 indicated the highest health risk. For each woman, the
rule-based indicator was defined utilizing her individual data (e.g., baseline
heart rate at the beginning of the monitoring) and a set of guidelines and
rules in maternal health and obstetric EWS [111, 152, 68, 53, 159].

The primary data was the heart rate in this setup, and the output was
the warning score (see Figure 5.1). The approach continuously delivered
the scores despite missing heart rate values in the monitoring. A 24-hour
sample of the monitoring is shown in Figure 5.4, where heart rate values are
missing in a 75-minute and a 180-minute time-windows. The blue circles
(solid line) represent the scores when the heart rate values are available,
and the red triangles (dashed line) are estimated health scores while the
heart rate values are missing.

5.3.3 Accuracy Assessment

In this section, the performance of the proposed approach is investigated
in comparison with existing approaches. Using the SciPy [120] and Scikit-
learn [175] libraries in Python, four different missing data analysis tech-
niques were implemented to estimate missing heart rate values and obtain
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Figure 5.5: RMSE values of the proposed and existing approaches while
while the missing window varies from 15 minute to 6 hours

health scores. The techniques used were 1) the KNN (a single imputa-
tion technique) to impute missing heart rate using k preceding non-missing
neighbors weighted by the inverse of distance to the missing value; 2) the
autoregressive model (a single imputation technique) to impute the data us-
ing preceding values; 3) the MLE (a model-based method) to estimate the
missing value using a Sigmoid function; and 4) the SVM (a machine learning
algorithm) to fill in the missing value utilizing a radial basis function (RBF)
kernel and the user’s historical data (i.e., last two-week data).

We evaluated the accuracy of the decision-making (i.e., warning score)
when the heart rate was missing. To this end, a cross-validation technique
was utilized to remove windows with heart rate values of different sizes. The
window sizes varied from 15 minutes to 6 hours. Then, the actual scores
and estimated scores were compared. This process was repeated for the
proposed approach and other techniques in 2040 iterations for the data of
15 (out of 20) pregnant women. The data of 5 women were excluded from
the evaluation, as the missing data was too large (i.e., more than half of the
monitoring). For comparison, two metrics were utilized.

First, the Root Mean Square Error (RMSE) of the estimates was calcu-
lated, representing the distance between estimated scores and actual scores.
Figure 5.5 shows the RMSE values of the proposed approach and state-of-
the-art techniques for different missing windows. When the missing window
is small, the proposed approach, KNN, and autoregressive methods obtain
the lowest error although the errors of the SVM and MLE are relatively
higher. When the missing window is increased, the RMSE values of all the
methods become larger. As indicated, the KNN, autoregressive, and the
MLE methods have high error rates in case of large missing windows. In
contrast, the RMSE of the proposed method is the lowest.

Second, the Concordance index (C-index) [90] of estimates were com-
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Figure 5.6: C-index values of the proposed and existing approaches while
while the missing window varies from 15 minute to 6 hours

puted, indicating how well the estimates (i.e., health scores) were produced
considering the order of the scores. It is important to keep in mind that in
this decision-making, health scores are in an ascending order, where 0 is the
normal condition, and 3 is the highest health deterioration. The C-index
values for the methods are illustrated in Figure 5.6. The MLE has the lowest
C-index, and the best C-index values of the SVM method is 0.71. When
the missing window is small, the C-index of the KNN and autoregressive are
relatively high although the values drop to less than 0.55 in case of large
missing windows. In contrast, the proposed approach has the highest C-
index. As indicated, the C-index is 0.82 when the missing window is small,
and the value reduces to 0.7 when the missing window size increases to 6
hours.

As indicated, the proposed approach obtains more accurate estimates
in comparison to the existing methods. The approach benefits from using
different resources to estimate the final decision. The main concern of using
such resources (particularly context information) in the computation is that
possible low correlation between the missing value and the external source
might affect the final decision. The proposed approach tackles this problem
using the personalized pooling technique, where a small weight is selected
if the correlation is insignificant. For example, a low value is selected (as
the weight of context information) when the user is in vigorous or moderate
activities, since the variation of the heart rate values are high (high variance).

The rule-based indicator proposed was a proof of concept for the missing
data resilient approach. Inclusion of more context information (e.g., different
vital signs) can reduce the bias of estimates. The proposed approach can
also be adapted to other domains, where multivariate data with correlations
are collected. Examples are smart public transport applications, in which
multi-sensor IoT systems are utilized, and one sensor might fail throughout
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the monitoring. Hence, the decision-making can be enabled despite the
occurrence of missing data.

5.4 Summary

This chapter proposed a complementary data fusion approach to tackle the
missing data problem in long-term health monitoring systems. The proposed
approach leveraged various data resources in IoT-based healthcare systems
to estimate missing values, providing real-time decision-making despite the
occurrence of missing data. The approach utilized the multiple imputation
method 1) to impute the missing value via different methods, 2) to generate
different decisions using the estimated values, and 3) to pool the decisions
exploiting a personalized pooling method. The approach was designed and
developed for a real human subject trial on maternity health, where decisions
regarding the mothers’ health status were delivered continuously despite
missing heart rate values in the monitoring.

The proposed approach was compared with conventional missing data
analysis techniques to investigate the accuracy of the decisions. The ob-
tained results showed that the proposed approach had the best performance
in different missing window sizes. The approach could tailor different data
sources in IoT-based systems to consider the variability of missing values
in the estimates. The improvement was highly significant when the impu-
tations and pooling processes became personalized through the monitoring.
In consequence, the proposed approach enabled real-time missing data im-
putation with an acceptable bias, leading to improvement in the resilience
and accuracy of the IoT-based healthcare systems.

Figures 5.1–5.6 were taken from Paper V.
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Chapter 6

Patient Modeling in
IoT-based Health Monitoring

Chapter 5 presented how data analytic approaches tailor the IoT system’s
benefits (e.g., heterogeneous data collection) to satisfy various quality at-
tributes in health monitoring systems. In this chapter, the developments
are considered from another perspective, a proposal to use individualized
decision-making and effective care in long-term monitoring.

Conventionally, decision-making methods including guidelines, rules, and
models are determined according to population data. This general decision-
making could lead to inaccurate results, as health conditions might be spe-
cific to one person. For example, a resting heart rate equal to 80 beats
per minute could be abnormal in general although it could be normal for a
person with a specific condition. Ubiquitous health monitoring can provide
data collection from the user in everyday settings for a long period of time.
Such data can be leveraged to carry out personalized decision-making, where
the user’s historical data are included in the analysis. Therefore, the system
can perform specifically for every user addressing their needs.

This chapter proposes a personalized model for sleep quality assessment
throughout the pregnancy and postpartum. The model provides an ex-
plicit representation of sleep quality, by which trends and abnormal events
of sleep data can be extracted by considering the user’s historical data.
To demonstrate the function of the personalized model, we conducted a
case study on remote maternal sleep monitoring, where the sleep data of
13 pregnant women were collected and analyzed for six months of preg-
nancy and one month postpartum. In this monitoring, we first exploited
a semi-supervised learning algorithm to train a model for each individual
using her own data at the beginning of the monitoring (i.e., eight weeks
of data from the pregnancy). Then, the trained models were employed to
evaluate sleep adaptations in the rest of the pregnancy and postpartum.
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In the following, the state-of-the-art sleep monitoring methods in the
literature are first discussed. Then, the personalized sleep model is intro-
duced. Finally, the implementation on the collected sleep data of the case
study is presented. The personalized model is also evaluated and compared
with a baseline method.

6.1 Maternal Sleep Monitoring

Sleep is a complex and vital process, which significantly impacts bodily func-
tion and quality of life [221, 39, 172]. Sleep indicates the overall health and
well-being of a person. Monitoring of sleep has an important role in home-
and hospital-based health applications. In this regard, various qualitative
and quantitative sleep monitoring techniques have thus far been proposed
in both clinical and commercial medical applications [200, 126, 139].

For pregnant women, the importance of sleep monitoring is even more
significant, as their bodies and sleep cycles are highly affected by substan-
tial physiological and hormonal changes during and after the pregnancy pe-
riod. For instance, disorders of maintaining sleep and restless legs syndrome
are particularly prevalent during pregnancy [177, 148, 104]. These changes
might lead to sleep disturbances and subsequently to health problems and
adverse pregnancy outcomes. Maternal sleep quality assessment could be
the first step to address and mitigate such disturbances and potential com-
plications [206, 157].

Several studies have investigated maternal sleep in pregnancy and post-
partum. Traditionally, sleep has been monitored via subjective measure-
ments, in which the users were asked to answer different questions, describ-
ing their sleep experiences. For example, the Pittsburgh Sleep Quality Index
(PSQI) (the gold standard) [36] and the Berlin Questionnaire [214] are self-
report screening questionnaire used to differentiate “good” and “bad” sleep
quality. These measurements are broadly used in the literature as they are
simple and easy to implement [104, 70, 206, 157, 84, 235]. However, they
might result in poor performance or biased outcomes because the methods
are merely restricted to subjective and qualitative data [132, 101, 100, 24].

On the other hand, objective measurements have been introduced for
sleep quality assessment of pregnant women. These methods tailor the
user’s body movements and health parameters to extract sleep attributes
such as sleep duration and sleep stages. PSG is the gold standard of the
objective methods, in which multi bio-signals such as ECG, EEG, and EOG
are acquired in the study of sleep. Unfortunately, the PSG is impracti-
cal for in-home applications and longitudinal studies due to its complex
and burdensome data collection setup. For maternal sleep, the method has
been limited to one- or two-day monitoring studies [137, 214]. Alternatively,
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actigraphy is another method for sleep quality assessment. This method em-
ploys small wearable devices enabled by an IMU to track body movements
and physical activities. The devices can be placed on the user’s thigh, an-
kle, or wrist. The actigraphy is straightforward and more convenient than
the PSG. Standalone actigraph devices with no network connectivity have
been used in different studies to monitor maternal sleep for up to two weeks
[136, 54, 216, 98].

Longitudinal sleep monitoring requires a long-term data collection of in-
dividuals in everyday settings. As discussed in previous chapters, IoT-based
systems can perform such data collection. These systems can employ both
the subjective and objective measurements into the sleep quality evaluation.
Thanks to the advancements in embedded systems and wearable electronics,
several devices (e.g., smartwatches and smart wristbands) can be exploited
in this regard, through which body movements and health parameters can
be recorded.

The IoT-based system can provide multi-parametric monitoring of daily
sleep, including several sleep attributes whose volumes dramatically increase
over time. Such data, as rich sources of sleep assessment, can be traditionally
analyzed, where sleep attributes are investigated separately. For example,
the relationship between short/long sleep duration (as a sleep attribute) and
high-risk diseases has been investigated in different studies [119, 219]. These
conventional methods examine the sleep quality from a single perspective.
However, such multivariate data necessitate an intelligent approach to an-
alyze sleep quality holistically. This approach should integrate multi sleep
attributes into an overall sleep score. This score would then allow a better
understanding of the sleep quality in a care routine, from which the trends,
variations, and special events in the sleep periods are determined. In the
following, we address this need by proposing a personalized sleep model.

6.2 Personalized Sleep Model

This section proposes a personalized sleep model to investigate sleep trends
and abnormalities during and after pregnancy. In this regard, the model is
created exploiting an anomaly detection method. Anomaly detection meth-
ods could be appropriate for such purposes, where a model is trained to
discriminate abnormal data samples from normal ones. There is a wide
range of anomaly detection methods in the literature, utilized in different
fields such as fraud detection, cybersecurity, and healthcare [2]. However,
many of them are inapplicable to this study. In the following, first, exist-
ing anomaly detection methods are briefly discussed. Then, an appropriate
method is selected to develop the sleep model. The method selection de-
pends on different factors including the type of anomalies, type of training
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samples, and the method’s output.

According to the type of anomalies, the existing methods are partitioned
into 3 classes [45]. 1) Point anomalies: a data sample is abnormal if its at-
tributes are too far from other data samples. 2) Contextual anomalies: a
data sample is only abnormal in a certain context. Therefore, the abnormal-
ity is specified based on the context information. 3) Collective anomalies:
a group of related data samples is anomalous with respect to other data
samples. In our study, we investigate abnormalities in daily sleep, where a
data sample includes sleep attributes from a single night. Therefore, point
anomalies methods are applicable.

The anomaly detection methods are also categorized based on the data
involved. Supervised methods use labeled data (i.e., “normal” and “ab-
normal”) to generate a model for abnormality detection. In this regard,
neural networks, SVM, and rule-based techniques have been introduced in
the literature [97, 49, 72]. In contrast, unsupervised methods are utilized
for unlabeled data [28, 140]. These methods consider that “normal” data
occur more often than “abnormal” data. Therefore, they differentiate the
abnormality if a sample is very different to the entire dataset. On the other
hand, semi-supervised methods employ one-class machine learning methods
to construct the model [149, 44, 103]. The data are also unlabeled in these
methods. However, the training data samples are considered as “normal”,
and the test data samples are categorized as “abnormal” if they are very
divergent to the trained model. In our study, the data is unlabeled; the goal
being to create personalized models to compare the sleep data of individuals
with their own data. Therefore, our selection is reduced to semi-supervised
methods.

In addition, anomaly detection methods determine the abnormality, by
producing binary (i.e., “normal” and “abnormal”) or continuous outputs.
In our study, the model is required to estimate the degree of abnormality
throughout the pregnancy period, and therefore, techniques with continuous
output are only applicable.

Considering the inclusion criteria of our study, Replicator Neural Net-
works (RNN) as a semi-supervised method is an appropriate option. The
method considers the training data as “normal” data points. Then, the
abnormality levels of the test data samples are obtained using the trained
model. To this end, the model provides scores whose values are propor-
tional to the abnormality level of test data samples. The RNN method was
first introduced by Hawkins et al. [103] and was later developed by Dau et
al. [57]. The RNN works well with high dimensional data although a small
number of training samples might affect its performance negatively.

To address this issue, Bayesian methods can be integrated into the RNN
method. Using Bayesian methods in neural networks was first proposed
by MacKay [146] and Neal [169]. Bayesian methods consider probability
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Figure 6.1: RNN with one hidden layer

distributions in the computation, providing an uncertainty along with the
estimate. Therefore, the method is robust to over-fitting, and its perfor-
mance can be improved when there are fewer training data samples [80].

In the following, we first observe how the personalized sleep model is
constructed using the Bayesian RNN method. Then, the abnormality score
calculation is outlined.

6.2.1 Model Construction

The RNN method is an auto-associative neural networks, representing how
data features are related. It extracts a non-linear representation of the data
and then reconstructs the input data at the output. During the training
phase, the weights in this neural networks method are optimized to minimize
reconstruction errors of the training data. The error for a single data sample
is specified as:

δi =
1

n

n∑
j=1

(xij − oij)2 (6.1)

where n is the number of features, xij is the input data sample, and oij is
the method’s output which is the reconstructed input data. In an ideal situ-
ation, the reconstruction errors are zero, so the trained model can perfectly
reproduce the training data at the output.

The Bayesian RNN method in this study is designed with one hid-
den layer, as shown in Figure 6.1. Given the input data points as X =
{x1, ..., xm}, the output of the units of the hidden layer are calculated by:

h(X) = g(W1X) (6.2)

where W1 is the first weights vector, and g(.) is the rectified linear unit
(ReLU); i.e., g(z) = max(0, z). Moreover, the output of the units of the
output layer are:

f(X) = g(W2h(X)) (6.3)
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where W2 is the second weights’ vector. The weight vectors are defined over
probability distributions.

We need to determine the posterior distribution of the weights, therefore,
p(w|X,Y ) can be defined as:

p(w|X,Y ) =
p(Y |X,w)p(w)

p(Y |X)
(6.4)

where p(w) is a prior probability distribution of the weights (i.e., a Gaussian
probability distribution in our setup), p(Y |X,w) is the likelihood obtained
by updating our beliefs about the prior after seeing the data, and p(Y |X)
is the model evidence.

However, as the model evidence is intractable for most real-life problems
[80, 32], Equation 6.4 cannot be used. In this regard, an approximating
distribution (i.e., q(w)) is computed utilizing an approximation method such
as Variational Inference [121]. q(w) is defined as:

q(w) = p(Y |X,w)p(w) (6.5)

q(w) should be close to p(Y |X,w), so the Kullback–Leibler divergence (KL
divergence) [128] of the two distributions should be minimized:

KL(q(w)||p(w|X,Y )) =

∫
q(w)log

(
q(w)

p(w|X,Y )

)
dw (6.6)

Unfortunately, the KL divergence is also intractable, because it still in-
cludes the model evidence. Therefore, Evidence Lower Bound (ELBO) as
an alternative to the KL divergence is utilized.

ELBO =

∫
q(w)log p(Y |X,w)dw −KL(q(w)||p(w)) ≤ log p(Y |X) (6.7)

The ELBO is the negative of the KL divergence up to a logarithm constant,
thus maximizing the ELBO is equivalent to minimizing the KL divergence.
For more details, see [80, 32, 127].

6.2.2 Score Calculation

During the testing phase, the test data are reconstructed using the trained
model. As the model is a compressed representation of the training data
samples, the reconstruction errors show the abnormality levels of the test
data. For the sake of clarity, let us assume two examples. In the first exam-
ple, the reconstruction error is small for a test data sample, and this small
error shows that the sample is close to the model (i.e., training data). Hence,
the abnormality level is low. In the second example, the reconstruction error
is large for a test data sample. This error indicates that the sample is new
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to the model. In other words, the model did not see similar data samples in
the training phase. Therefore, the abnormality level is high.

Consequently, we calculate the abnormality score (i.e., abnormality level)
for each test data sample according to the reconstruction errors as follows:

s =
1

n

n∑
j=1

(xj − oj)2 (6.8)

where n is the number of data features, xj is the original data sample and
oj is the reconstructed data sample.

6.3 Case Study: Maternal Sleep Quality Assess-
ment

The proposed method is tested using a case study on maternal health. The
case study was also utilized in Chapter 5, to evaluate the proposed missing
data resilient approach. In contrast, this chapter focuses on the sleep qual-
ity of mothers during the monitoring. As presented in Section 5.3.1, we ex-
ploited an IoT-based system that employed the Garmin Vivosmart R©HR [83]
as a feasible device for long-term health data collection. The sleep data anal-
ysis was performed by a Python service in the cloud server (i.e., a Linode vir-
tual private server [141]). The Python service, enabled by the Lasagne [134]
and PyMC3 [181] libraries, was responsible for both the model construction
and score calculation.

As mentioned in the previous chapter, the monitoring was performed on
20 primiparous pregnant women for 7 months. It started from week 13 in
the pregnancy until week 4 postpartum. Unfortunately, the sleep data of
7 participants were insufficient because they refused or forgot to wear the
device during the nights. Therefore, we only included the sleep data of 13
women in this sleep analysis.

The sleep event in each day was obtained from the sleep information pro-
vided by the Garmin device. To validate the sleep information, it was man-
ually cross-checked and compared with other data resources such as body
movements and heart rate values. Then, if no match was found, the sleep
information was updated or removed. Moreover, for simplicity, the sleep
events with missing values were omitted using a Listwise deletion method.
For the 13 women, valid sleep events from 172.15 ± 33.29 days per person
were derived out of the total 216.61± 14.34 days of the monitoring (79.5%).

For each sleep event, eight sleep attributes were extracted leveraging the
sleep information, body movement data, and heart rate values. Moreover,
step counts data were also used to determine the amount of time that the
user spent in bed. Table 6.1 lists the eight attributes derived from each
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Table 6.1: Eight attributes derived from each sleep event in this study

Sleep attributes Definitions

Sleep Duration The total time of the sleep event in a day

Sleep Onset Latency
(SOL)

The amount of time in bed before the sleep event starts

Wake After Sleep
Onset (WASO)

The amount of time that the user is awake after the sleep
event starts and before the event ends

Sleep Fragmentation The number of awakenings after the sleep event starts and
before the event ends

Sleep Efficiency The ratio of the total time of the sleep event (i.e., Sleep
Duration) to the total bedtime

Sleep Depth The ratio of the deep sleep duration to the total time of the
sleep event (i.e., Sleep Duration)

Resting Heart Rate The number of heart beats per minute in the sleep event
while the user is at complete rest

Heart Rate Recovery The amount of time between the start of sleep event and
the resting heart rate is reached

sleep event and indicates how they are defined in this monitoring. The sleep
attributes allow representations of the quality of sleep events from different
perspectives. These attributes were then fed into the proposed method.

For the training process, the personalized sleep model was trained for
each individual, using the person’s sleep data at the beginning of the mon-
itoring. As we were using a semi-supervised algorithm, the training data
were considered as “normal” data. In this monitoring, the training data
were the sleep events from week 13 to 21 in the pregnancy, since they were
the closest to the user’s normal condition. However, in ideal situations, the
sleep data of pre-pregnancy should be considered as the training data.

For the testing process, the trained model was applied to the data col-
lected during the rest of the monitoring, which was the data from week 22 of
the pregnancy to week 4 postpartum. Then, the sleep scores were calculated,
showing the degree of sleep abnormality. Figure 6.2 illustrates the sleep ab-
normality scores of the 13 pregnant women. The median values, indicated
by the solid red line, increased during pregnancy. It shows sleep abnormal-
ities –sleep changes in comparison to the beginning of the monitoring– are
more frequent as pregnancy progresses. The score indicates the highest sleep
degradation at week 1 postpartum. The maternal sleep quality moderately
enhanced after week 1 postpartum, even though it was notably worse than
the sleep quality during the pregnancy. In comparison to the existing lon-
gitudinal (subjective) sleep quality assessment studies [157, 104, 197, 70],
these results show the variations of maternal sleep during pregnancy and
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Figure 6.2: The abnormality score of mothers of week 22-40 in the pregnancy
and week 1-4 postpartum

the postpartum with a higher confidence level, obtained from long-term and
fine-grained quantitative measurements and analysis.

6.3.1 Model Evaluation

The evaluation is specified according to the general hypothesis behind the
model. As mentioned previously, the proposed method leverages a semi-
supervised technique, where the training data are labeled as “normal,” and
the test data are unlabeled. The model produces scores as outputs for the
test data, showing their abnormality levels. The scores should be propor-
tional to the users’ sleep changes, compared with their own data.

The proposed method was evaluated in comparison with a baseline method
which was a simple aggregate method. The baseline method determined the
abnormality score, using overall population attributes in normal conditions.
These population attributes were the average sleep attributes of all the par-
ticipants at the beginning of the pregnancy (i.e., the training data in the
proposed method). In this regard, the abnormality score for a sleep event
was calculated as the sum of the normalized distance between its attributes
and the overall population attributes.

The performance of both methods was evaluated using the sleep data of
two pregnant women (i.e., P1 and P2) who had different conditions during
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Table 6.2: Attributes of P1 and P2 along with the ratio of the attributes at
the end of pregnancy to her own data and to the population data.

Attributes #
Mid of
second
trimester

End of
third
trimester

Ratio to
population
data

Ratio to
her own
data

Sleep fragmenta-
tion (times)

P1 0.5 1.53 1.62 3.06
P2 1.39 2.29 2.43 1.64

WASO (minutes)
P1 15.3 37.32 1.48 2.43
P2 34.39 75.83 3.02 2.2

Sleep dura-
tion (minutes)

P1 389.34 341.25 0.71 0.87
P2 480.04 456.33 0.95 0.95

Resting heart
rate (beats/min)

P1 53.38 59.23 0.96 1.2
P2 65.61 71.17 1.16 1.08

the monitoring. P1 had notable sleep changes, but P2 experienced fewer
changes in her sleep attributes. The variations in the sleep attributes of P1
and P2 are indicated in Table 6.2. As shown, the ratios of P1 attributes
at the end of pregnancy to her own attributes in the mid of the second
trimester are considerably higher than the ratio of P2.

The abnormality scores calculated by the methods during the pregnancy
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Figure 6.3: The abnormality scores of two participants, obtained from the
baseline and proposed methods
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are illustrated in Figure 6.3. The baseline score shows that P1 and P2 have
similar sleep changes during pregnancy, which is wrong according to their
sleep attributes. Therefore, the baseline score cannot indicate the sleep
changes of P1. The reason is that the baseline score was obtained using the
population data, and P1’s sleep changes were relatively less when compared
to the overall population attributes (see the ratio to population data of P1
in Table 6.2).

On the other hand, the proposed method was able to discriminate be-
tween the sleep data of P1 and P2 correctly. As indicated in Figure 6.3b, the
abnormality scores of the personalized method show that sleep changes of P1
are considerably more significant than the sleep changes of P2. Moreover,
the sleep changes of both participants also increase as pregnancy progresses.

6.4 Summary

This chapter presented a personalized sleep approach to evaluate sleep qual-
ity adaptations of pregnant women during pregnancy and postpartum. The
approach was designed and developed for a real human trial on maternity
health using the Bayesian RNN as a semi-supervised machine learning algo-
rithm. In this regard, the sleep data at the beginning of the monitoring were
exploited to construct sleep models for pregnant women. Then, the models
were utilized to investigate the sleep changes in the rest of the pregnancy
and the postpartum. The models produced abnormality scores that are
indicating the degree of changes in the sleep events during the monitoring.

The performance of the proposed approach was evaluated, in comparison
with a baseline method determined sleep adaptations using overall popula-
tion data of pregnant women in their normal conditions. The proposed
patient modeling enabled a personalized decision-making approach in long-
term health monitoring, where the variations in an individual’s health condi-
tions identified by comparing her data with her own historical data. There-
fore, the users who required more care could be recognized correctly. Such
personalized decision-making can optimize resource allocation in IoT-based
systems according to the user’s needs. This optimization leads to improve-
ment in the quality of care in these systems.

Figures 6.1–6.3 and Tables 6.2 were taken from Paper VI

67



68



Chapter 7

Conclusion and Future Work

IoT technologies are fundamentally transforming the way healthcare sys-
tems operate. Such advancements allow health and well-being services to
be offered that are beyond the limits of conventional clinical settings, as in-
dividuals are continuously and remotely monitored for preventive care and
early intervention. However, this synergy brings new challenges that need to
be addressed to ensure the satisfactory performance of such mission-critical
health applications. This research investigated and discussed: 1) what the
requirements of ubiquitous health monitoring systems are, and 2) how these
requirements can be addressed via personalized data analytics approaches.

To pursue Research Objective I (i.e., analysis and examination of
IoT-based systems in healthcare), this thesis surveyed state-of-the-art IoT-
enabled healthcare systems proposed for both in-home and in-hospital set-
tings. Based on this survey, a new perceptive was then introduced into
the field by categorizing these healthcare systems into different domains
according to the user’s requirements and demands (i.e., a user-centered per-
spective). Home-based applications were investigated indicating the role of
IoT-based systems in remote elderly monitoring. Hospital-based applica-
tions were also examined to present the trends of IoT systems in hospitals
and their benefits for hospitalized patients, nurses, and health providers. In
addition, the findings were analyzed to categorize and examine the objectives
of IoT-based systems in health monitoring applications. Then, the require-
ments and technical challenges were discussed, that should be overcome to
deliver high quality and effective care to the end-users.

This thesis attained Research Objective II (i.e., design and imple-
mentation of a personalized computing architecture in IoT-based healthcare
systems) by introducing a hierarchical computing architecture for IoT-based
system. It tackled the requirements of real-time monitoring systems, pro-
viding high-level quality attributes. The core contributions of the proposed
architecture were: 1) to partition and execute existing linear and non-linear
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machine learning algorithms into 3-layer IoT systems; and 2) to enable a
closed-loop management technique to automatically and adaptively re-tune
the system’s configurations according to the user’s condition. The archi-
tecture was evaluated via a case study on real-time arrhythmia detection,
in which ECG signals were continuously collected. The experiments were
carried out on two levels: 1) a binary abnormality detection using a linear
SVM method; and 2) a multi-class arrhythmias classification using a CNN
method. A full-system implementation was demonstrated, and the proposed
architecture was compared with a baseline cloud-based architecture. The
results showed that the proposed architecture could improve availability, re-
sponse time, and bandwidth utilization of the system as well as enhance the
accuracy through personalization.

In addition, this thesis achieved Research Objective III (i.e., design
and implementation of personalized data processing and modeling tech-
niques in IoT-based healthcare systems) by tailoring the benefits of IoT
systems to design and customize data analytic approaches. A personalized
data fusion approach was proposed to tackle missing data as a prevalent
problem in IoT-based system. The approach exploited multiple data re-
sources in IoT-based systems to perform real-time decision-making, despite
the occurrence of missing data. The approach was tested via a case study on
maternal health monitoring, where 20 pregnant women were remotely and
continuously monitored for 7 months. Within the evaluation, a rule-based
indicator was considered to translate health data into a health decision. The
proposed approach was evaluated in a comparison with existing missing data
analysis methods. As a result, the proposed approach improved the system’s
resilience and achieved a better accuracy than the other methods.

From another perspective, and considering Research Objective III,
this thesis presented personalized decision-making in long-term health mon-
itoring, leveraging a Bayesian RNN method. The method exploited the
historical data of users to track variations and events in their data. The
proposed method was tested during the maternal health monitoring, focus-
ing on sleep quality degradation during and after pregnancy. With this
intention, and for each individual, a sleep model was created utilizing the
person’s sleep data from the beginning of the monitoring. Then, the trained
model was used to track the trends and events in each woman’s sleep data
for the rest of the monitoring. The model produced an abnormality score for
each sleep event, allowing an explicit representation of sleep quality. For the
evaluation, the personalized method was compared with a baseline method
that obtained the abnormality level by comparing the data with data from
the overall population. The results showed that the personalized method
could correctly detect sleep changes during the monitoring. This detection
could improve individualized and effective care in IoT-based health moni-
toring systems.
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7.1 Future Direction

As mentioned previously, using IoT-based systems for ubiquitous health
monitoring is in the early stages. Therefore, there are still various open
problems and challenges concerning such monitoring systems and the role
of personalized data analytics.

This thesis covered many types of in-home and in-hospital health mon-
itoring studies to achieve a comprehensive perspective of the field. Such
studies were diverse in terms of feasibility and practicability. Therefore,
one of the open research directions is to perform feasibility studies evalu-
ating such systems in real-life longitudinal health monitoring. These stud-
ies should investigate the usability of different sensing, communication, and
computing paradigms of the IoT-based systems from both user-centered and
application-centered aspects.

We proposed an IoT software architecture to enable personalized re-
source management. Our work was focused on the configurations of fog and
cloud, to optimize bandwidth utilization and data storage with respect to
the user’s condition. This work can be extended to the perception layer, to
apply a personalized energy management. In this regard, different parame-
ters in the data collection process (such as awake/sleep modes and sampling
frequency) could be optimized. This optimization could improve the power
consumption of the sensors.

In addition, we exploited a semi-supervised machine learning algorithm
to extract abnormality in the sleep data of an individual according to her
own historical data. This work can be extended by including other health
data (i.e., attributes) in the analysis. In this regard, more experiments
on the semi-supervised settings should be implemented, and the impact of
labeled data on such settings should be investigated. Moreover, the proposed
sleep model was evaluated in comparison with a baseline method that was
a simple aggregate method. In future work, the proposed method should
be compared with other baseline methods, such as unsupervised learning
methods.

Most of the longitudinal studies targeting maternal health were merely
restricted to subjective measurements (e.g., self-report questionnaire). In
this thesis, we conducted a case study on the maternal health of 20 preg-
nant women, implementing objective data collection. However, the data
collection was limited to a wristband due to the feasibility of the 7-month
monitoring. This data collection restricted our data analytic techniques and
subsequently the investigations in our study.

Therefore, more objective longitudinal studies are needed. Future work
could be twofold. First, the studies could be performed via more advanced
multi-sensor data collection, where multiple vital signs and contextual data
are recorded. PPG, as a non-invasive technique, can be tailored to obtain
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various vital signs such as heart rate, respiration rate, and oxygen satura-
tion. Therefore, more comprehensive patient’s models could be constructed,
leading to more robust decision-making approaches. Second, the longitudi-
nal studies should be carried out for a larger population. In this regard,
statistical analysis and machine learning approaches could be exploited to
investigate associations between pregnancy-related parameters and both ma-
ternal and fetal health problems.
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Chapter 8

Overview of Original
Publications

This chapter presents a brief overview of the original publications included
in this thesis.

8.1 Paper I: Internet of Things for Remote Elderly
Monitoring: A Study from User-Centered Per-
spective

In this paper, we conduct a comprehensive review of the existing IoT-based
systems designed for remote elderly monitoring. In this regard, the system-
atic search process includes peer-reviewed publications of five digital libraries
and research/industrial projects funded from 2009 to 2015 by five research
programs. We investigate the existing literature from a user-centered per-
spective. The major studies are selected and classified according to the
requirements of the elderly. We then propose a hierarchical model for the
elderly-centered monitoring, investigating the existing approaches based on
their objectives. Finally, the paper presents a discussion concerning the
current trends and future directions of the IoT-based elderly monitoring
systems.

Author’s contribution

The author is the first author in this publication. He had a major role in the
conceptualization and review design. He played the main role in collecting
and analysis of the articles. In addition, he contributed to the preparation
of the manuscript.
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8.2 Paper II: The Internet of Things for Basic
Nursing Care A Scoping Review

In this paper, we conduct a survey study on the state-of-the-art IoT-based
systems proposed for basic nursing care in hospitals. The review method-
ology is implemented through a review consisting of scientific papers from
eight digital libraries. Considering different criteria for the study, sixty-two
papers are chosen. We present abstract information from the selected pa-
pers including development type, target patient group, and study type. We
then discuss and categorize these papers in seven domains and in four basic
nursing care activities. This study presents a broad view of the field, by
which the nursing sciences might benefit from a deeper understanding of
IoT technologies.

Author’s contribution

The author is the second author in this publication; however, he contributed
as the first technical author of the computer science team. He had a major
role in the collection and analysis of the articles (particularly the technical
articles). Moreover, he contributed to the review design and drafting of the
manuscript.

8.3 Paper III: HiCH: Hierarchical Fog-assisted
Computing Architecture for Healthcare IoT

In this paper, we introduce a novel hierarchical computing architecture for
IoT-based health monitoring systems. We customize an existing comput-
ing model for the proposed architecture allowing resource management in
the system. The proposed architecture enables hierarchical partitioning and
execution of machine learning algorithms in IoT-based systems and a closed-
loop management technique to adaptively update the configuration of the
system according to the user’s condition. We evaluate the function and
performance of the proposed architecture by demonstrating a full-system
implementation for a case study on ubiquitous health monitoring. The mon-
itoring is designed to perform arrhythmia detection for individuals suffering
from cardiovascular diseases. In the evaluation, the proposed architecture is
compared with a conventional IoT architecture. The results show that the
proposed architecture improves the availability, response time, and band-
width utilization in IoT-based systems.
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Author’s contribution

The author is the first author in this publication. He had a major role in
the design of the proposed hierarchical architecture. Furthermore, he was
the major contributor to the implementation of the arrhythmia detection
case study and evaluation of the proposed architecture. He contributed to
drafting the manuscript.

8.4 Paper IV: Empowering Healthcare IoT Sys-
tems with Hierarchical Edge-based Deep
Learning

In this paper, which is an extension of Paper III, we investigate the function
of the hierarchical computing architecture by employing CNN as a deep
learning algorithm in the IoT system. We test the system by implementing a
continuous health monitoring system focusing on arrhythmias classification.
Our results show that the architecture is capable of fully employing the CNN
and displays high-levels of availability and accuracy in IoT-based systems.
We also indicate that the response time of the system can be optimized
in this architecture by choosing an appropriate gateway device. Moreover,
we demonstrate that the accuracy of the classification is improved in the
architecture by re-training the classifier using the data collected during the
monitoring.

Author’s contribution

The author is the first author in this publication. He had a major role in the
design of the study, implementation of the arrhythmia detection case study,
and evaluation of the proposed hierarchical architecture. He contributed to
drafting the manuscript.

8.5 Paper V: Missing Data Resilient Decision-
making for Healthcare IoT through Personal-
ization: A Case Study on Maternal Health

In this paper, we propose a personalized missing data resilient decision-
making approach to continuously provide health decisions for users despite
the occurrence of missing data during the monitoring. The proposed ap-
proach leverages different data resources in IoT-based systems to estimate
the missing value. The approach employs a multiple imputation method
in the system to estimate different values, generate decisions according to
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the estimates, and finally pool the decisions into one final decision. The
approach is proposed for a real human subject trial on maternal health in
which 20 pregnant women were monitored for six months of pregnancy and
one month postpartum. We compare the proposed method with four exist-
ing methods. Our approach obtains more accurate estimates in both short
and large missing windows.

Author’s contribution

The author is the first author in this publication. He played the principal
role in the design of the study and the proposed system. He was the main
contributor to the implementation and evaluation of the missing data anal-
ysis methods. In addition, he contributed to the design of the setup and
data collection of the maternal health monitoring. He also contributed to
drafting the manuscript.

8.6 Paper VI: Personalized Maternal Sleep Qual-
ity Assessment: An Objective IoT-based Lon-
gitudinal Study

In this paper, we propose an IoT-based monitoring system to perform ob-
jective sleep quality assessment during pregnancy and postpartum. We im-
plement a long-term monitoring of 20 pregnant women to remotely collect
sleep data for six months of pregnancy and one month postpartum. Sleep
data from 13 participants (172.15 ± 33.29 days of data per person) are in-
cluded in our sleep analysis. To evaluate the sleep data, our contributions in
the analysis include two parts 1) the extraction of eight objective attributes
from the sleep data and the observation of their variation during the moni-
toring; and 2) the proposal of a neural network-based approach to generate
a personalized sleep score leveraging the historical data of the users. This
score shows an explicit representation of the sleep quality. Our fine-grained
objective attributes and the sleep score show that there is a decrease in
sleep quality at the end of pregnancy, and this becomes even worse in the
postpartum. In addition, we compare the proposed method with an aggre-
gate method as a baseline. We show that our method enables personalized
decision-making in the sleep analysis of pregnant women.

Author’s contribution

The author is the first author in this publication. He was the major con-
tributor to the design of the study and the proposed system. Moreover,
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he contributed to the sleep data analysis. He also contributed to the de-
sign of the setup and data collection of the maternal health monitoring. He
contributed to drafting the manuscript.
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ing system for elderly care using generative and discriminative models.
Personal and ubiquitous computing, 14(6):489–498, 2010.

[125] Jeffrey O Kephart and David M Chess. The vision of autonomic com-
puting. Computer, 36(1):41–50, 2003.
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Abstract Improvements in life expectancy achieved by

technological advancements in the recent decades have

increased the proportion of elderly people. Frailty of old

age, susceptibility to diseases, and impairments are

inevitable issues that these senior adults need to deal with

in daily life. Recently, there has been an increasing demand

on developing elderly care services utilizing novel tech-

nologies, with the aim of providing independent living.

Internet of things (IoT), as an advanced paradigm to con-

nect physical and virtual things for enhanced services, has

been introduced that can provide significant improvements

in remote elderly monitoring. Several efforts have been

recently devoted to address elderly care requirements uti-

lizing IoT-based systems. Nevertheless, there still exists a

lack of user-centered study from an all-inclusive perspec-

tive for investigating the daily needs of senior adults. In

this paper, we study the IoT-enabled systems tackling

elderly monitoring to categorize the existing approaches

from a new perspective and to introduce a hierarchical

model for elderly-centered monitoring. We investigate

the existing approaches by considering the elderly

requirements at the center of the attention. In addition, we

evaluate the main objectives and trends in IoT-based

elderly monitoring systems in order to pave the way for

future systems to improve the quality of elderly’s life.

Keywords Internet of things � Elderly care � Remote

elderly monitoring � Healthcare and well-being

1 Introduction

Thanks to the developments in the medical science and

related technologies, the world life expectancy index has

been increased for the last decades, and has been projected

to further increase in the future (WHO 2014). Subse-

quently, the number of elderly people will grow with a

rapid rate (see Fig. 1). Senior adults require more attention

and care as a minor accident or an insignificant disease may

cause irreparable damages (WHO/Europe 2015). It should

be also considered that many senior adults may live alone

whereas it is necessary to be monitored or assisted by

caregivers or medical experts. Therefore, there exists an

increasing demand for developing novel technologies to

provide efficient remote elderly monitoring services. To

this end, various modern disciplines should be utilized to

address the elderly requirements considering their limita-

tions in daily life. Internet of things (IoT) as a promising

paradigm can provide such essential services for elderly

adults (Dohr et al. 2010; Huaxin et al. 2012).

IoT is an advanced technology exploiting various dis-

ciplines such as sensor development, data acquisition,

communication and networking, data management and data

processing, etc. where things (e.g., objects, people) with

unique identities are able to connect to a remote server and

also to form local networks (Atzori et al. 2010). The
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connectivity in IoT-based systems enables objects to

exchange and fuse data to achieve a more comprehensive

knowledge regarding their functionality as well as prop-

erties of the surrounding environments, thus, offering more

enhanced, intelligent and efficient services. One of the

main features of the IoT technologies is to facilitate

improving the quality of life by enabling continuous (i.e.,

24/7) remote monitoring systems (Niyato et al. 2009; Ray

2014).

There exist several efforts to utilize IoT-based system

for elderly monitoring and care, most of which target only

certain aspects of elderly requirements from a limited

viewpoint (e.g, health monitoring, safety monitoring, etc.).

Considering the significance of remote elderly monitoring

and the variety of potential services that such systems can

offer, there still exists a lack of a user-centered study. A

user-centered design utilizes multiple sources to introduce

a system focusing on the capabilities, requirements and

abilities of the users (Ritter et al. 2014). Hence, it is

essential to consider the existing monitoring systems for

senior adults from a user-centered perspective, and discuss

deployment challenges of monitoring applications from an

all-inclusive top view.

In this paper, we study and classify the existing litera-

ture from an elderly-centered perspective to develop a

comprehensive mindset on the area and evaluate the future

trends. We discuss the current challenges from a different

standpoint and present potential services offered by IoT

technologies. Our study paves the way for future works in a

new perspective to improve the quality of life of elderly

people.

The rest of the paper is as follow: in Sect. 2, we present

the significance and the motivation of this research. The

methodology is described in Sect. 3. A common

architecture of IoT-based systems is discussed in Sect. 4. In

Sect. 5, we investigate the existing approaches in the

context of remote elderly monitoring from a user-centered

viewpoint. In Sect. 6, we classify the presented efforts,

summarize their pros and cons, and illustrate the differ-

ences. In addition, we discuss the main objectives that IoT-

based systems should seek in their implementation. Finally,

Sect. 7 concludes the paper.

2 Significance and motivation

One of the profound applications of IoT-based remote

monitoring systems is for addressing the requirements of

elderly people. Frailty of old age, on one hand, makes

elderly more susceptible to several diseases (both acute and

chronic), impairments (e.g., visual, physical and speech),

and weaknesses (e.g., forgetfulness), and on the other hand

increases the likelihood of lacking awareness (e.g., com-

puter illiteracy). Therefore, neglecting the importance of

elderly care may result in a higher level of elderly’s

dependency or force them to live in a nursing home. In this

context, IoT-based remote elderly monitoring can provide

services to address the aforementioned issues, to mitigate

the inevitable consequences, and to enable them to live

independently.

Several related work in the literature have focused on

IoT-based elderly care to provide a variety of monitoring

services, however this field is still at infancy as many

requirements and problems have not yet been tackled; E.g.,

the essentials of user-centered system design for elderly

monitoring and development of multipurpose systems to

monitor a large group of users in order to detect (or predict)

patterns or situations that may happen to elderly people

such as epidemic diseases. Considering the literature on

remote monitoring systems, many shortcomings still exist.

Some contributions are too focused in the sense that they

only address a single requirement of elderly. For examples,

a care system for dementia is presented by Lin et al.

(2006), while in-home water sensor-based monitoring and

home monitoring systems with Android phones are inves-

tigated by Tsukiyama (2015) and Lee et al. (2013),

respectively. In addition, there are some studies which

investigate the elderly monitoring systems based on a

certain aspect (e.g., health-based, activity-based, location-

based, etc.). For instance, Memon et al. (2014) provide a

survey on healthcare frameworks and platforms of ambient

assisted living. Similarly, smart house technologies for

elderly and disabled people are investigated by Stefanov

et al. (2004). Gokalp and Clarke (2013) study contributions

on monitoring of daily living activities of elderly people,

while Hamdi et al. (2014) classify elderly related moni-

toring according to use case (e.g., rehabilitation
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telemonitoring and chronic diseases telemonitoring). From

a similar viewpoint, Lattanzio et al. (2014) investigates

care systems for elderly health and well-being in Italy,

which is geographically restricted.

In contrast to the aforementioned contributions, we

consider a comprehensive monitoring framework for

elderly people to satisfy their daily lives’ requirements.

The motivation behind our study is to investigate the

existing IoT-based elderly monitoring systems from a

wider viewpoint by considering the user at the center of

the system, to identify the challenges in developing

such systems, and to evaluate the current and future

trends. The main contributions of this study is as

follows:

• Investigating the existing literature from a different

angle.

• Developing a comprehensive perspective on the area.

• Evaluating the future trends in IoT-enabled elderly

monitoring systems.

3 Methodology

In order to fulfill the aims of this study, a systematic search

process was conducted through the following sources.

I. Digital Libraries The digital libraries used in this

research include IEEEXplore, SpringerLink, ACM

DL, Scopus and Pubmed. In this manner, query

syntaxes containing ‘‘elderly’’, ‘‘Internet of Things’’,

‘‘remote monitoring’’ and Boolean operators (i.e.,

‘‘OR’’ and ‘‘AND’’) were utilized. Out of the

obtained results, we selected the related work which:

(1) address elderly problems, (2) target remote

monitoring, and (3) include or relate to IoT

technologies.

II. Research Programs We studied recent projects

which have been funded from 2009 to 2015 by

research programs and agencies including AAL,1

FP7,2 H2020,3 NCI4 and ECSEL.5 The accomplished

or ongoing IoT based elderly monitoring projects

have been chosen. Then, their associated articles,

technical reports, etc. have been studied in order to

investigate their proposed procedures, features, and

goals. The state-of-the-art projects proposed for

elderly monitoring complement this study and can

help indicating the current and future trends in this

field.

4 IoT-based system architecture

IoT is a rapidly growing paradigm which has the potential

to profoundly affect many aspects of human life by con-

necting objects and people. Based on the features and

functionalists of IoT-based system (data collection, trans-

mission, and analysis), the system architecture can be

partitioned into 3 layers as proposed by Touati and Tabish

(2013). However, architecture of an IoT-enabled system

can be redefined with respect to its use cases. As shown in

Fig. 2, in our case, to address the requirements of elderly

monitoring, the system is defined as follows:

The first layer named as the perception layer is the

closest tier to the person under monitoring. The main

purpose of the perception layer is to collect required data

from user and to interplay with the higher layers. As

illustrated in Fig. 2, the perception layer can be divided

into two categories: body area network (BAN) and

fixed/mobile devices in the proximity. BAN which includes

on-body and implantable devices can be a network of vital

signs accessories (e.g., chest straps, pulse oximeters and

blood pressure monitor) or smart wearable devices (e.g.,

smartwatch, fitness tracker and smart hat) which are in

charge of obtaining user’s status. Medical parameters

including vital signs (e.g., heart rate and respiration rate),

blood glucose level, galvanic skin response (GSR), etc. and

activity specifications like position, activity level and sleep

level are collected using such devices. Fixed context

devices are in the second category which are often installed

in the home or other public places (e.g., surveillance

camera, Smart TV, etc.). Mobile context devices are also

used to sense environmental parameters and to response

based on the situation. Robots of different kinds can fit in

this category.

Gateway layer is at the second tier. It receives sensory

data from the perception layer via wired or wireless com-

munication protocols (e.g., Bluetooth, 6LoWPAN and

Zigbee) and then transmits the data to the Cloud layer for

further analysis. In Fig. 2, the layer is divided into two

types. The first one is dedicated to fixed access points

which are installed in elderly home for indoor data trans-

mission. The second type is mobile access point utilized for

outdoor requirements. Smartphone is a typical example of a

mobile access point which is capable of implementing data

transmission and processing.

The Cloud is the third layer. This is a remote layer

located in the data center. As depicted in Fig. 2, the Cloud

layer consists of various sections. Heterogeneous incoming

1 http://www.aal-europe.eu.
2 http://cordis.europa.eu/fp7.
3 https://ec.europa.eu/programmes/horizon2020.
4 http://www.cancer.gov.
5 http://www.ecsel-ju.eu.
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data is stored in data centers to be analysed by utilising

high processing power at the Cloud. The data analysis

includes reasoning (Russell and Norvig 2013), machine

learning algorithms (Murphy 2012), pattern recognition

methods (Bishop 2006), etc. Based on the obtained results,

decisions and responses are made to efficiently react with

respect to the elderly requirements. These back-end

applications can provide behavioral changes detection such

as Mild Cognitive Impairment (MCI) detection in elderly

(Akl et al. 2015) as well as predicting chronic diseases, e.g.

blood glucose concentration prediction for a person with

diabetes (Zecchin et al. 2014) and acute diseases prediction

including cardiac arrest prediction (Liu et al. 2012). Fur-

thermore, various applications and services such as mobile

user interface can be offered to transmit the results to end-

users, e.g. monitored person, caregivers and medical

experts.

System security plays also an important role in IoT based

systems especially in the remote elderly monitoring systems

where senior adults’ privacy and trust should be preserved.

According to the three tiers architecture of the system, the

potential security issues can be considered in three parts

(Yang et al. 2012). The first part includes the perception

layer inwhich the sensor nodeswithout a security policymay

be attacked. The second part is related to the Gateway layer

which has a strategic bridging position of delivering the data

to the cloud or sending commands to sensor nodes. Many

adversaries target these Internet-connected gateways to

attack. At the gateways, unauthorized access or damage to

the data transmission causes critical security problems for

the system. Finally, the third part targets the Cloud issues.

The Cloud including data centers contains all of the history

and collected data of the monitored people and their envi-

ronments, so a data breach may cause irreversible damages

for the individuals and the system. Therefore, satisfying

security requirements such as data authenticity, data confi-

dentiality and access control are essentials in IoT-based

systems (Sicari et al. 2015). In this regard, various models or

schemes have been introduced to ensure security in the IoT-

based systems; e.g., Vucinic et al. (2015) propose a model

(OSCAR) for end-to-end security in the IoT systems, Moo-

savi et al. (2016) also present an end-to-end security

scheme for mobility enabled healthcare IoT systems and

Neisse et al. (2015) offer amodel to provide security for data

protection in IoT systems.

5 Elderly-centered IoT-based remote monitoring

Taking into account the projected high rate of elderly

population growth (see Fig. 1) in the near future, it is

essential to dedicate significant efforts to exploit advanced

concepts and technologies such as IoT in the elderly care.

A variety of solutions have been provided to address the

elderly needs by compensating the deficiency or mitigating

the inevitable consequences. Figure 3 demonstrates some

of these existing solutions and services. With this intention,

many small, medium, and large projects have also been

lunched to tackle the elderly requirements with different

objectives.

We investigate major IoT-based applications and ser-

vices that have been thus far introduced for remote elderly

Gateway Layer

Mobile access
point

Perception Layer
Fixed devices

Body Area Network

Mobile devices

Smart 
wearablesSmartphone

RobotsSmart TVSmart devices
Audio-visual 

sensors

Vital signs 
accessories

Fixed access
point

Interface Devices

Elderly

Cloud Layer

Services

Data

Data analysis

Context
awareness

Internet

Data center

Fig. 2 A multi-layer IoT-based

elderly monitoring system

architecture

276 I. Azimi et al.

123



monitoring. Due to the importance of monitoring in this

context, we aim at studying such efforts from a different

angle by considering elderly at the center of attention and

classify different approaches with respect to their proper-

ties and benefits in daily life. In this manner, we categorise

the applications and services of the approaches into five

different sections: (1) health monitoring, (2) nutrition

monitoring, (3) safety monitoring, (4) localization and

navigation, and (5) social network, each of which is

essential and includes some aspects of indoor and outdoor

requirements.

Figure 4 demonstrates a general view of elderly daily

life, IoT-based system architecture, and the advantages

provided by the IoT technologies in different situations.

The system offers remote monitoring applications as well

as providing services such as reports (daily, monthly, etc.),

suggestions and early alerts. It also shares the elderly

information to the third party agents (i.e., caregivers,

medical experts and emergency units), so they can inter-

vene in case of emergency, suggest medical advices and

provide supports. Moreover, the system is able to receive

feedback from the third party agents in order to offer more

personalization for the user and to improve the perfor-

mance (e.g., system’s sensitivity and specificity). In such

systems, various issues such as data integrity, data

authenticity and data confidentiality should be considered

(Jara et al. 2013; Henze et al. 2016).

In the following, we study IoT related platforms and

approaches by classifying them into five categories. It

should be noted that some of these solutions lie in more

than one category. This is also highlighted in Table 1. In

addition, since various aspects of an approach may be

introduced in different papers, a summary of which is

provided in the related category and the associated papers

are cited in the explanation. For instance, SAAPHO project

along with its main associated publications (Rivero-Espi-

nosa et al. 2013; Rafael-Palou et al. 2015; Ahmed et al.

2015) are introduced and explained in Sect. 5.1.

5.1 Health monitoring

According to the increased frailty and susceptibility to

various diseases (e.g., acute and chronic diseases) in old

age, health monitoring becomes the most important part of

elderly remote monitoring. Remote health monitoring not

only improves the quality of life of elderly people, and

detects and notifies caregivers in the case of emergency,

but also reduces nursing and hospital stays and subse-

quently healthcare costs. According to a report by the

Agency for Healthcare Research and Quality
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(AHRQ) (Pfuntner et al. 2013), in 2011, more than one

third of aggregate hospital costs and stays in the United

States were spent for elderly people (see Fig. 5); Thus, it is

essential to improve the care services and to reduce the

hospital costs and stays of elderly people by providing

remote health monitoring services at home. Furthermore, a

significant number of senior citizens in the future may

encounter with limited number of care and supportive

services due to the reduction of potential supportive ratio

Age25�64
Age65þ

� �
in the world (see Fig. 6) and the growing burden

of aging associated diseases (and subsequently related

costs) (WHO 2011).

We chose main health monitoring services with respect

to requirements, diseases, and impairments of elderly

people. As a significant part of a health monitoring system,

the vital signs are collected and monitored in order to

indicate a person’s medical status. Early attempts on

determining the medical status of a patient were imple-

mented by obtaining four basic medical vital signs (i.e.,

temperature, pulse rate, respiratory rate and blood pres-

sure) (Glaeser and Thomas Jr. 1975). Afterwards, more

parameters were also added to the patient’s condition

evaluations. In 1997, a score system entitled Early Warning

Score System (EWS) was introduced by Morgan et al.

(1997). In the proposed EWS system, parameters such as

respiration rate, heart rate, oxygen saturation and also level

of consciousness are collected in order to predict patient

deterioration in hospitals. In this regard, according to the

possible serious medical condition that some elderly people

might have, personalized EWS system is proposed to col-

lect vital signs and to calculate the EWS scores in various

conditions remotely (Anzanpour et al. 2015; Azimi et al.

2016). Moreover, in addition to vital signs, other medical

parameters such as glucose and urine amount can be

included to have a more comprehensive analysis.

In the same fashion, different approaches have been

recently proposed to address remote health monitoring for

elderly people. In SAAPHO project (Rivero-Espinosa

et al. 2013), a system with an Android user-friendly plat-

form is introduced to provide various aspects of elderly

monitoring including health monitoring. It contains medi-

cal and activity monitoring parameters such as physical

activity, blood pressure, glucose, medication compliance,

pulse monitoring and weight. In this system, the data is

transmitted via HTTPS and SOAP web services from the

sensor layer to the Cloud. Then, after data analysis, the

obtained results are transferred to the interface devices.

Therefore, caregivers or medical experts can monitor the

users by getting notified about emergency situations, his-

torical summary (Rafael-Palou et al. 2015) and generated

recommendations based on the recorded history data

(Ahmed et al. 2015). Similarly, MOBISERV (Nani et al.
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2010) as a multipurpose project, propose a system consists

of a companion robot and wearable textiles (Faetti and

Paradiso 2012). In this system, the elderly healthcare is

addressed by monitoring medical parameters (e.g., ECG

and vital signs) remotely.

Daily activity is another parameter representing the

health status of elderly. The activities include physical

activity level, the act of eating (i.e., number of meals per

day and duration), sleeping, etc. For this purpose, several

contributions have been proposed utilizing different

methods and sensory data in order to offer activity

monitoring for elderly people. Kasteren et al. (2010) pre-

sent a system (within the CARE project) including wireless

sensors and a recognition models to track and recognize

activity level of elderly people. Moreover, Charlon et al.

(2013) propose a telemetry system utilized in a combined

trilateration method using a smart hat and smart shoes to

accurately track indoor elderly activities. In the same cat-

egory, a textile capacitive neckband is also proposed

by Cheng et al. (2013) to detect daily activities such as

eating and sleeping by monitoring head and neck move-

ments. In addition, using vision sensors, Xiang et al.

Table 1 A comparison among several approaches providing remote elderly monitoring

Project’s name Time period

(years)

Health

monitoring

Nutrition

monitoring

Safety

monitoring

Localization

and Navigation

Social

network

Other features

ALFRED 2013–2016 U – – – U Physical and cognitive impairments

prevention

ALICE 2010–2012 – – – U – Eligible for who are suffering from

visual impairments

ASSAM 2012–2015 – – – U – Eligible for who are suffering from

physical impairments

ASSISTANT 2012–2015 – – U U – Mistake detection and classification

Emergency situation notification

CaMeLi 2013–2015 – – U – U Human-like virtual system

Emergency situation notification

Activity reminder

ChefMyself 2013–2015 U U – – U Includes a recipe library

Shopping assistance

CONFIDENCE 2008–2011 – – U U – Activities and postures recognition

DIET4Elders 2013–2016 U U – – U Daily activity monitoring and advice

EDLAH 2013–2015 – U – – U Object location indicator

Activity reminder

ELF@Home 2013–2016 U – – – – Elderly fitness monitoring

FEARLESS 2011–2014 – – U – – Emergency situation notification

GeTVivid 2013–2016 – – – – U A TV based system

Public services (e.g. medical and

shopping assistance, etc.) Activity

reminder

HEREiAM 2013–2016 U – U – U A TV based system

Mobiserv 2009–2013 U U U – U A personal robotic based system

Nutrition habits monitoring

NITICS 2013–2015 U – U U – Emergency situation notification

Object location indicator

SAAPHO 2011–2014 U – U – – Generate advices w.r.t the recorded data

Emergency situation notification

vAssist 2011–2014 U – – – U Eligible for who are suffering from

physical impairments

Eligible for who have no computer

literacy

WIISEL 2011–2015 U – U – – Gait analysis

Early identification of mobility
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(2015) present an omni-directional vision sensor based

system to track individuals, to recognize the posture, and to

analyze the behavior.

Likewise, by considering the benefits of self-care, pro-

jects such as ELF@Home (Carus et al. 2014) introduce a

system to monitor elderly fitness. In this project, the system

offers real-time services to track daily activity level (by

wearable physical activity sensor along with a computer

vision system) and health status (using bio-sensors).

A personalized fitness program is then proposed without

needing a direct human supervision where the improve-

ments are applied based on sensors’ feedback.

Acceptance of a new technology is often a challenge, in

particular when elderly are the target users of the system.

This restricted some health monitoring approaches to use

conventional devices (e.g., TV) for providing more user

friendly services for the senior adults. In this regard, a

digital TV based remote health monitoring service is pro-

posed by Spinsante and Gambi (2012) using several

wireless medical devices (e.g., oximeter, breathing tester

and glycaemia meter). Similarly, HEREiAM pro-

ject (Macis et al. 2014) demonstrates a TV based system in

order to offer a wider assistance and support for elderly

people. The project offers a variety of services using a TV

set at home (HEREiAM 2015) to address remote health-

care technology acceptance along with other issues such as

security and social communication.

5.2 Nutrition monitoring

Malnutrition due to deficiency (i.e., under-nutrition),

excess (i.e., over-nutrition) or lack of proper nutrition is a

common problem in aging which can be controlled. The

prevalence rate of malnutrition is higher among elderly

people (Stratton et al. 2003; Hickson 2006). Negligence of

malnutrition in a time period can make elderly people

susceptible to different diseases such as cardiovascular

and cerebrovascular diseases, osteoporosis, and dia-

betes (WHO 2016a). Therefore, it is essential to consider

nutrition monitoring, particularly weight and diet moni-

toring, along with health monitoring in IoT-based remote

monitoring systems to enhance health and well-being of

elderly people.

In this regard, different approaches and systems have

been hitherto proposed. ChefMyself is a nutrition-related

monitoring which introduces a system to support food

related monitoring for elderly people (Lattanzio et al.

2014). Using a Cloud based connection, it offers remote

nutrition monitoring that includes weight monitoring (by

wireless scales), diet monitoring, recipe library, and

shopping and cooking assistance for elderly people. It also

provides social network accesses (see Sect. 5.5) to moti-

vate elderly to have a better social life.

Similarly, to prevent malnutrition for old people,

another approach called DIET4Elders (Sanchez et al.

2013) demonstrates a system (hardware and software) to

monitor, advice and provide services for daily activities

related to dining pattern of elderly people. Their proposed

system consists of three layers (Sanchez et al. 2013):

(1) Monitoring Layer to capture raw data from daily

activities, (2) Analysis and Assessment Layer to extract

information (Chifu et al., 2014) and to extract knowledge
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about the daily self-feeding, and (3) Support Service Layer

to provide complementary knowledge (including commu-

nications) from medical experts and caregivers.

Another project entitled EDLAH (EDLAH 2015) also

addresses elderly nutrition monitoring by introducing

complementary system brought to users’ tablets. In this

manner, the application is connected to other devices (e.g.,

weighing scale) to have a more inclusive monitoring.

Moreover, in the same package, other services are also

offered (Borsella et al. 2015) such as medicine reminder,

object location indicator (Ionescu et al. 2014), and social

networks.

To achieve a multipurpose remote monitoring, a wear-

able IoT based device called eButton (Sun et al. 2014; Bai

et al. 2012) has been designed for people with special

needs such as elderly. The eButton device provides diet

monitoring using a visual sensor installed on the user’s

chest. The food volume is also estimated from the images

based on prior models of foods shapes. The obtained data

coupled with supplementary data (e.g., food information)

shows daily nutrition and calories of the user. Furthermore,

the device also offers services for physical activity moni-

toring to estimate issues such as sedentary events and daily

caloric expenditure.

Unlike the discussed application-oriented approaches,

MOBISERV as also introduced in Sect. 5.1, proposes a

personal robotic system along with wearable and environ-

ment sensors for remote monitoring. The system is

designed to address nutrition and health services of elderly

people by detecting elderly emotions and activities (Ma-

ronidis et al. 2010, 2011; Iosifidis et al. 2013). Monitoring

consumed meals and water are instances of the nutrition

habits monitoring proposed in this system (Zoidi et al.

2011; Marami et al. 2011; Iosifidis et al. 2012).

5.3 Safety monitoring

Security is one of the major issues in the daily life of

elderly people. Ageing causes impairments, frailty and

forgetfulness, so to live independently, safety monitoring

becomes important. On the other hand, a real-time moni-

toring system capable of detecting harmful situations can

provide a feeling of safety for the old users together with

awareness of their status for their relatives who might not

be in the vicinity. In this regard, several methods and

projects have been proposed to address remote safety

monitoring of elderly people. The major ones are discussed

in the following to covering different aspects of elderly

monitoring in daily activities.

As a result of diseases or limits caused by aging and

visual and physical impairments, elderly people have a

high risk to fall which might cause fatal injuries and even

death, with a higher probability than younger adults (WHO

2016b). To alleviate such consequences, dedicated tech-

niques have been proposed to perform fall detection. Based

on the definitions given by Igual et al. (2013), fall detec-

tion methods can be divided into two categories: wearable

sensors based and context-aware systems based. In the

sensory level, wearable sensors separated into two groups

as smartphones and miniature sensors mounted on a band

or cloth. Wearable sensors provide more comfortable user

experience for some users rather than being continuously

recorded by cameras in the context-aware systems.

Smartphone and sensor based fall detection methods utilize

the sensors such as 3D accelerometer, gyroscope and

magnetometer to determine the sudden position and ori-

entation changes of a user’s conditions, analyse the data

and implement further processes (e.g., send notifications)

when a fall is detected. Some attempts to propose smart-

phone based methods can be found in Fang et al. (2012),

Sposaro and Tyson (2009) and Mellone et al. (2012) while

Pierleoni et al. (2015), Cheng (2014) and Odunmbaku

et al. (2015) are efforts to present wearable sensors based

methods. In the same fashion, CONFIDENCE project

(Kaluza et al. 2014) introduces several methods for fall

detection, activities recognition and postures recognition

(Gjoreski et al. 2011; Lustrek and Kaluza 2009; Kozina

et al. 2011) using wearable sensors placed on wrists, chest

and ankle of the user. However, another approach entitled

as WIISEL (WIISEL 2015) offers a similar system for

detecting falls in addition to gait analysing using a wireless

insole sensor (Rosa et al. 2015).

On the other hand, context-aware systems are developed

to detect falls utilizing visual sensors. Compared with

wearable sensors, there are limitations using context-aware

systems such as spatial coverage of installed cameras or

uncomfortability for some senior adults when they feel

being watched all the time. However, context-aware sys-

tems also provide certain advantages for the monitored

person, such as eliminating the need for wearing the sensor

all the time and avoiding the anxiety for forgetting to carry

the sensors. In this regard, two main fall detection projects

Bian et al. (2015) and Juang and Wu (2015) have been

proposed to accomplish the fall detection using a depth

camera and a robot vision system, respectively. Further-

more, as an comprehensive elderly monitoring approach

using visual sensors, FEARLESS project aims at moni-

toring elderly people without any wearable sensors (Plan-

inc et al. 2011). In their system, elderly people are

monitored continuously by collecting captured data from

3D depth sensor (e.g., Kinect), cameras and microphones,

and transferring the data to a computing system (Planinc

and Kampel 2012a). In addition, a robust fall detection is

proposed to detect the individuals, and their motions, using

a combination of different techniques (Planinc and Kampel

2011, 2012b). In this system, when an emergency accident
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(e.g., fall) happens, the system transmits the data to the

server, and after analysing the data, proper notifications

and results are provided via interface devices (e.g., care-

givers/medical experts smartphones) (Berndt et al. 2012).

FEARLESS project also introduces a system to inves-

tigate behavior changes of patients for detecting unusual

activities (e.g., mobility decrease, depression, etc.).

Activities in certain places in user’s home are monitored to

detect the changes in their frequency and duration (Berndt

et al. 2012). Subsequently, a comparison on the activity

histograms of the collected data is provided by which the

system detects abnormal behaviors (Planinc and Kampel

2014). Similarly, NITICS approach (NITICS 2015) pre-

sents a localization based system to track the loca-

tion (Badawika and Kolakowski 2014) and daily activities

of the user using portable body sensors along with cameras.

The system is designed to distinguish abnormal behaviour

(i.e., lack of activities and erratic behavior) and to inform

caregivers in case of emergency (Rusu et al. 2015).

The aforementioned approaches (i.e., FEARLESS and

SAAPHO) also offer some other services such as envi-

ronmental accident detection presented in Berndt et al.

(2012) and Domenech et al. (2013). Supplementary ser-

vices are specified to focus on distinguishing the incidence

of accidents such as fire, smoke, CO presence and gas

leakage.

5.4 Localization and navigation

Mazeophobia (fear of being lost) in unfamiliar environ-

ments, reduction of physical and cognitive capabilities, and

the risk of confronting odd places without any aid from

other people force elderly people to spend most of the time

at home. Staying at home for a long time makes elderly

people susceptible to be inactive, to lose social life, and to

get depressed. Therefore, the significance of remote

localization and navigation has motivated the researchers

in both academia and industry to provide services for

elderly people to feel safe in different environments, and to

enable them to have their outdoor activities (e.g., shopping,

traveling, etc.). In this regard, various IoT-based approa-

ches have been proposed to address the aforementioned

real-life issues and to mitigate their associated

inevitable difficulties.

In order to provide assistance for elderly people in

outdoor environments, ASSAM project proposes a system

to be installed on different mobility platforms (e.g., walker,

wheelchair, and tricycle). The assistance system features

obstacle recognition, navigational and cognitive assistance

and alerts to call center (caregiver) in case of emer-

gency (Krieg-Br??ckner et al. 2012). The platform pro-

vides old adults suffering physical impairments with an

automated driving service to a certain location without any

obstacle collision (Mandel and Birbach 2013). An emer-

gency situation system is also demonstrated in this project

to notify others along with on-line monitoring services

using an on-board camera and an on-line navigational

assistance.

Additionally, based on sensory data and maps, the

ASSISTANT system is introduced for individuals (partic-

ularly senior adults) to navigate and to apply remedial

approaches whether an error or mistake occurs. To provide

the solution, an application for smartphones was designed

(Carmien and Obach 2013; Barham 2013). The application

uses the sensory data obtained from phone sensors (e.g.,

accelerometer and gyroscope) and server data (e.g., routing

information from the local public transportation or Open

Government Data) via Internet to perform the related

analysis (e.g., error detection and classification) locally

(i.e., in the smartphone) or remotely (i.e., in the server) (-

Kalian and Kainz 2013). Besides, the sensitivity and

response of the application in case of errors are defined

with respect to the user capabilities and require-

ments (Carmien and Obach 2013).

Providing assistance for elderly people who are suffer-

ing from visual impairments is of high importance. For this

purpose, a wireless system connected to a local or remote

computing unit is proposed in ALICE project. Utilizing a

smartphone mounted on the chest of users, the system

provides a data fusion of sensory data (i.e., image, sound,

positioning, orientation and inclination) for planning and

anticipating events (Tapu et al. 2014). The system can

robustly detect and classify static and dynamic obstacles

without needing prior information (Tapu et al. 2013).

Moreover, the project has been extended by introducing

methods for object recognition (e.g., crossings, traffic light,

etc.) and urban building recognition (Boujelbane et al.

2014; Said et al. 2014).

In addition to the outdoor localization and navigation,

some solutions have been proposed to remotely detect

indoor location of elderly people. Such techniques enables

monitoring activity level of elderly people, recognizing

their daily habits, and analyzing their life style and well-

being. As an example of indoor localization methods,

CONFIDENCE project proposes localization approaches

for detecting abnormal activities (Brugger et al. 2010;

Zamora-Cadenas et al. 2010). Furthermore, as a supple-

mentary service, some projects present methods for object

localization for lost items (e.g., key, eye-glass, cell phone)

due to forgetfulness of elderly people. For instance,

EDLAH project demonstrate a Bluetooth based method to

track and find objects within a house perimeter (Ionescu

et al. 2014). Similarly, NITICS project presents an asser-

tive service to locate an object with an appropriate accu-

racy for indoors measurements (Badawika and Kolakowski

2014).
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5.5 Social networks

Promoting social life for senior citizens who may live alone

is essential. Living alone might lead elderly people to

become isolated and having inadequate interaction with

other people (e.g., family members, friends, etc.). This

subsequently may cause mental problems such as depres-

sion and social anxiety. Therefore, preparing social net-

works to improve the social life for elderly people is as

vital as other discussed services. In this regard, a number of

social networks utilizing different methods and interaction

devices have been proposed for elderly people under dif-

ferent scenarios.

Specific home care and communication services are

offered by vAssist project (Caon et al. 2011) for old people

who have either movement restrictions or computer illit-

eracy. They have developed a simplified interface using

multilingual natural speech interactions provided by

wearable and fixed devices (e.g., smartphones, fall detec-

tion systems) for communication applications along with

remote medical monitoring (Sansen et al. 2014). The pro-

posed integrated system of natural speech interaction

consists of speech recognition, natural language under-

standing and output generation (i.e., text or audio) (Mil-

horat et al. 2013, 2014). Thanks to these features, the

system can also be utilized for disabled people suffering

from physical or visual impairments. Moreover, taking into

account the care of solitude elderly people, a virtual

assistive companion was suggested by CaMeLi Project

(Tsiourti et al. 2014). The proposed platform acquires user

behaviour and environment data, analyses them and

responses properly with respect to the conditions, thus

trying to provide an intelligent system capable of simu-

lating human interactions and conversations. It also offers

notifications (e.g., take medicine, do exercises, and eat

meals) and safety (e.g., by detecting emergency situation

and informing caregivers).

Similarly, ALFRED project (ALFRED 2015) introduces

the idea of interactive assistant to enable elderly people to

live independently and be active in social life. Using a

voice-driven interaction, elderly people are enabled to

communicate by asking questions or receiving suggestions

based on their requirements and interests (OpenPR 2015).

As a complementary service, the system also offers health

monitoring (see Sect. 5.1) by tracking users’ vital signs

with the aim of enhancing physical and cognitive condi-

tions. This is realized by utilizing games and quests pro-

vided via a physical and cognitive impairments prevention

unit (Hardy et al. 2015).

GeTVivid is another project (GeTVivid 2015) which

introduces in a platform of connected TV devices based on

the HbbTV standard to provide supports for elderly people

suffering from impairments. The system, which includes a

connected TV (TVX2015-Workshop 2015) and applica-

tions in smartphones/tablets, offers a social network for

communications and social networking (e.g., with care-

givers and other old adults) as well as a number of public

services such as medical assistance, shopping assistance,

and Meals on Wheels. It also includes a reminder for daily

activities (e.g., take medicine) (Moser et al. 2015).

6 Discussion

As discussed, many accomplished or ongoing elderly

monitoring projects have been introduced so far, using

various IoT related platforms and methods to implement

the services for elderly care. They target several demands

of elderly people over their daily life. To classify these

efforts, summarize their pros and cons, and illustrate the

differences, a comprehensive comparison on the specifi-

cations of the discussed projects is given in Table 1.

As can be observed from the table, some of these projects

have provided software applications along with embedded

devices to deeply tackle a narrow set of elderly requirements.

Two proper examples are (1) a user-friendly social network

for elderly suffering from impairments by GeTVivid project,

and (2) fitness monitoring for improving elderly health by

ELF@Home project. Moreover, some projects tackle a single

issue using different methods. For instance, as mentioned in

Sect. 5.3, fall detection is considered in both FEARLESS and

WIISEL projects; However, FEARLESS utilizes camera

based methods, while WIISEL is based on wireless wearable

sensors.On the other hand, someprojects targetwider systems

and services to address more than one aspect of elderly

demands, however they are still at early stages. ChefMyself

approach includes health monitoring, nutrition monitoring as

well as providing social networks for elderly people. Corre-

spondingly, Mobiserv project covers indoor services (e.g.,

health monitoring, nutrition monitoring, safety monitoring

and social network) utilizing a smart robot.

In addition to the discussed ongoing or recently devel-

oped services and products, there exist various IoT-based

products which are already available in the market. For

instance, various Internet- and Cloud-connected fitness

trackers (e.g., Jawbone UP,6 FitBit,7 etc.) are in the market

which can be utilized for elderly people to track their daily

activities and vital signs. There are also available tracking

devices for senior adults (e.g, Mindme,8 SafeLink,9 etc.) as

well as emergency response systems (e.g., MobileHelp10)

6 https://jawbone.com/up.
7 https://www.fitbit.com.
8 http://www.mindme.care.
9 http://safelinkgps.com.
10 https://www.mobilehelp.com.
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in the market. Medication management systems (e.g.,

TabSafe11) can be also added to this list which help

managing medications 24/7. On the other hand, the current

existing solutions in the market have still many short-

comings. Some of these devices are not miniaturized, light-

weight, low-power, user-friendly, and convenient enough

for elderly to wear 24/7. Inaccurate results and false alarms

are also issues diminishing the trust of users and caregivers.

In this section, we investigate the issues in IoT-based

remote elderly monitoring in a deeper level to pave the way

for more efficient systems in future. Nowadays amalga-

mation of IoT-based systems and big data (Laney 2001;

Beyer 2015) analytics enables systems to offer deeper and

wider range of services and applications. Therefore, the

essential demands of elderly people in their life can be

more efficiently addressed in a comprehensive remote

monitoring system. With this in mind, we represent a

hierarchical model of the elderly-centered monitoring

system in 4 tiers in Fig 7. Starting from the lowest level,

the first tier entitled as Application Layer includes the final

applications proposed to tackle the elderly requirements

(e.g., activity level monitoring, fall detection, etc.). This

layer is discussed in Sect. 5 in details. The second tier is

Domain Layer including five major monitoring service

categories. The applications indicated in the first tier are

subsets of these 5 domains. The third tier is defined as

Objective Layer in order to present and classify high-level

challenges/objectives in remote elderly monitoring.

Finally, the fourth tier is the System Layer which points to a

comprehensive elderly-centered monitoring system cover-

ing all the divisions and aspects.

In the following, we discuss the objective layer, related

challenges and viable solutions for elderly-centered moni-

toring. As illustrated in Fig. 7, the objective layer is divi-

ded into 4 different classes, each of which may partially

cover and overlap the domains represented in the previous

tier. The first objective is defined to consider an extensive

system for addressing the main requirements of elderly.

More precisely, it reflects the demand for full-fledged

systems in terms of number and type of utilized sensors to

monitor vital signs along with environmental and activity

related signals. The second objective indicates the issues

related to the long-term monitoring of elderly people.

Taking into account the back-up systems in case of emer-

gencies is specified in the third class. Last but not least, the

fourth class addresses the personalization issues in elderly

monitoring systems. Consequently, considering these

objectives enables development of a comprehensive

elderly-centered monitoring system shown as system layer

in Fig 7.

6.1 Extensive monitoring

As discussed, all the existing or under-development elderly

monitoring systems focus on a subset of aspects of elderly

requirements in their everyday life. However, from a user

point of view, an extensive monitoring is required to sup-

port different applications and services comprehensively.

In other words, there is a demand for an all-inclusive

monitoring in order to improve the quality of elderly

people’s life considering a variety of aspects (e.g.,

addressing the health and well-being requirements,

improving the independent living, and enhancing the

security). Such a system needs to monitor indoor and

outdoor activities of elderly people and to suggest related

services in real-time. Thanks to advanced technologies

such as IoT-based systems and big data analytics, devel-

oping such a system is nowadays feasible.

An extensive IoT-based elderly monitoring system can

potentially integrate many objects related to elderly to

obtain a comprehensive knowledge of elderly conditions.

Considering the issues such as scalability and availability

(Mukherjee et al. 2012), it is possible to implement big

data analytics to handle a huge volume of incoming

heterogeneous data (e.g., health data) and extract useful

information (Andreu-Perez et al. 2015). Furthermore, the

analysis can be carried out not only using incoming sensory

data, but also utilizing history data (e.g., medical records),

and complementary data (e.g., maps, public transportation

data, shopping info, and weather forecast) to provide more

comprehensive services.

The proposed system also needs to be convenient and user-

friendly. Elderly people may have different kind of impair-

ments or be forgetful in many situations, therefore, the design

process should take these aspects into account. Moreover,

attaching a large number of sensors to the body of a user is not

appropriate in practical long-term cases if they are not con-

venient to be deployed. On the other hand, as proposed by

some of the discussed approaches, required data can some-

times be collected non-invasively using other devices instal-

led at home or other places. As an example, the elderly status

recognition (e.g., detecting fall, unconsciousness, low physi-

cal activity, etc.) can be performed using surveillance cameras

and computer vision techniques. In addition, several in-home

services can be offered via smart home applications and

devices (e.g., smart TV, smart stove, etc.).

6.2 Long-term monitoring

Long-term monitoring is another challenge of remote

elderly monitoring systems. The system should potentially

provide long-term services for many years. Impairments

and chronic diseases can be properly addressed only by

long-term monitoring. As an example, types of diabetes11 http://www.tabsafe.com.
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should be monitored for the whole life span. Thus, life-

time, minimally-invasiveness, and battery-life of sensor

devices for a long-term service should be considered.

Using compact and limited number of wearable sensors in

daily activities as well as utilizing smart devices in the

environment can be a proper solutions for IoT-based sys-

tem in long-term monitoring.

Using long-term monitoring for elderly, the system can

analyze the daily habits of the users for a long period in a

deeper level. Many physical and mental diseases manifest

only via long-term monitoring of habits and behavior of the

user. Collecting and analyzing incoming big data in a long

period from a user’s daily life including physical activity,

eating, sleeping and social life can assist the system to

extract valuable knowledge. This knowledge provides a

reliable understanding of user’s life style to mitigate

improper activities (e.g. low physical activity, insufficient

sleep and malnutrition) and enables the medical experts to

perform collective analysis (e.g., analysing prevalent

behavior and epidemic diseases). Furthermore, such long-

term knowledge may contain changes in habits that can be

considered for medical analysis. Various mental illnesses

(e.g., depression and anxiety) might be detected or even

predicted by monitoring changes in habit in long-time.

6.3 Emergency monitoring

Another challenge in elderly monitoring systems is the

emergency detection with a low latency and rapid back up

supports. The likelihood of accidents such as medical

accidents (e.g., stroke and heart attack) and environmental

accident (e.g., fall detection, being lost) are higher for

elderly adults. Therefore, a comprehensive remote elderly

monitoring need to detect emergency situations and react

accordingly (i.e., notifying caregivers or medical experts to

mitigate the consequences).
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In this regard, new concepts such as smart gate-

ways (Rahmani et al. 2015) can be utilized to address the

emergency detection issues. The concept of extending the

Cloud computing paradigm named as Fog computing clo-

ser to the user location has been proposed by Bonomi et al.

(2014). In this manner, due to the additional (local) com-

putational power, networking, and online data analysis of

the streaming sensory data, the latency of the system is

reduced. Moreover, it improves the system reliability in

case of unavailability of Internet connection.

6.4 Personalized monitoring

Personalized monitoring is one of the essential objective

which IoT-based elderly monitoring systems should con-

sider in a comprehensive monitoring process. In general-

purpose elderly monitoring systems, several presumptions

are specified for the system based on the general require-

ments and conditions of users. These presumptions result in

inefficiencies in long-term elderly monitoring. Therefore,

techniques to provide adaptivity and customization (i.e.,

personalization) are of utmost significance.

Self-awareness concept (Agarwal et al. 2009) and big

data analytics can be integrated to the IoT-based systems in

order to provide a personalized monitoring. On one hand,

big data analytics extract useful information from incoming

heterogeneous big data to make the system aware of the

patient and surrounding environment states, and on the

other hand, self-aware approaches enable the system to

refine its behaviour with respect to the situation (i.e.,

patient state and environmental state) and adjust attention

to critical parameters in the system over time (Preden et al.

2015). As an example, in the context of health monitoring,

the system defines several priorities for different medical

parameters based on the elderly diseases. The priorities

indicate the importance level of the parameters. In other

words, they specify the data collecting rates from the

sensors, the execution time and the order of the data

analysis for each parameter. In this way, for instance, the

system is more sensitive to heart-related parameters of the

user suffering from cardiovascular diseases compared with

other parameters. Such adaptivity can be extended to other

services (e.g., safety monitoring, etc.) to mitigate impacts

of accidents and in general to implement a robust remote

elderly monitoring system.

7 Conclusions

Several approaches have been recently proposed to

address the daily life requirements of elderly people.

However, there exists a lack of comprehensive user-cen-

tered study in the literature. In this paper, we studied

state-of-the-art IoT-based elderly monitoring approaches

to investigate their advantages and shortcomings from a

different viewpoint by considering the elderly require-

ments at the center of attention. In addition, we intro-

duced a modernized classification and proposed a

hierarchical model for elderly-centered monitoring to

investigate the current approaches, objectives and chal-

lenges in a top-down fashion. Consequently, our study

develops a comprehensive perspective on the area, dis-

cusses the existing solutions and presents the main

objectives and trends that IoT-based systems can provide

for future remote elderly care.
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A B S T R A C T

Background: The novel technology of the Internet of Things (IoT) connects objects to the Internet and its
most advanced applications refine obtained data for the user. We propose that Internet of Things
technology can be used to promote basic nursing care in the hospital environment by improving the
quality of care and patient safety.
Objectives: To introduce the concept of Internet of Things to nursing audience by exploring the state of the
art of Internet of Things based technology for basic nursing care in the hospital environment.
Data sources and review methods: Scoping review methodology following Arksey & O’Malley’s stages from
one to five were used to explore the extent, range, and nature of current literature. We searched eight
databases using predefined search terms. A total of 5030 retrievals were found which were screened for
duplications and relevancy to the study topic. 265 papers were chosen for closer screening of the
abstracts and 93 for full text evaluation. 62 papers were selected for the review. The constructs of the
papers, the Internet of Things based innovations and the themes of basic nursing care in hospital
environment were identified.
Results: Most of the papers included in the review were peer-reviewed proceedings of technological
conferences or articles published in technological journals. The Internet of Things based innovations
were presented in methodology papers or tested in case studies and usability assessments. Innovations
were identified in several topics in four basic nursing care activities: comprehensive assessment,
periodical clinical reassessment, activities of daily living and care management.
Conclusions: Internet of Things technology is providing innovations for the use of basic nursing care
although the innovations are emerging and still in early stages. Internet of things is yet vaguely adopted in
nursing. The possibilities of the Internet of Things are not yet exploited as well as they could. Nursing
science might benefit from deeper involvement in engineering research in the area of health.

© 2017 Elsevier Ltd. All rights reserved.

What is already known about the topic?

� The Internet of Things has emerged due to the recent
technological revolution in developing low-cost, miniaturized,
and energy-efficient wireless sensor devices, ubiquitous Internet
connectivity and advances in cloud computing.

� Internet of Things is a novel paradigm where objects with unique
identities can be integrated into an information network to

provide intelligent services for remote monitoring of health and
wellbeing.

� There are several opinion papers that highlight the possibilities
of Internet of Things in the field of healthcare. However, the
nursing care is rarely mentioned in these writings.

What this paper adds

� Numerous Internet of Things based solutions are proposed for
basic nursing care in hospital environment but the innovations
are still only emerging and tested in case studies and usability
assessments.* Corresponding author.
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� The concept of Internet of Things is at present mainly used in
technological field and is not yet adopted to nursing research.

� Nursing could benefit from deeper understanding of concepts
developed and used by other disciplines.

1. Introduction

1.1. Background

Modern technology can be exploited to overcome some of the
challenges of basic nursing care in hospitals. Basic nursing care is
influenced by nursing staff shortness, work environment issues,
impractical physical care environments and difficulties in identi-
fying the patients’ needs (Jangland et al., 2016; Lasater and
Mchugh, 2016; West et al., 2005). On one hand, there is a need to
reinforce nursing procedures concerning requirements for basic
nursing care, and on the other hand, traditional standalone
equipment in hospitals can be upgraded to collect, transfer and
process the data efficiently and automatically. As a novel
multidisciplinary concept, Internet of Things (IoT) can connect
physical and virtual things and provides advanced solutions to
combine and use information from heterogeneous sources (Atzori
et al., 2010).

The most promising application of advanced technologies in
nursing is their ability to support patient safety and quality of care.
To ensure quality, safety and value in healthcare, clinical decisions
need to be supported by accurate, timely, and up-to-date clinical
information (Institute of Medicine, 2011). Nursing informatics,
defined as “science and practice (that) integrates nursing, its
information and knowledge, with management of information and
communication technologies to promote the health of people,
families, and communities worldwide.” (IMIA Special Interest
Group on Nursing Informatics, 2009) incorporates technologies
such as tele-healthcare applications, electronic health records,
automated data mining and big data technologies.

In addition to the informatics and software applications,
sensors and embedded systems development can have a signifi-
cant role in nursing care. Medical equipment, wearable sensors,
and implantable devices are examples which are proposed to assist
nursing in hospitals (Cao et al., 2012; Fraile et al., 2010). Proposed
software and hardware entities can provide recognizable improve-
ments in basic nursing care although there is a missing part to
provide connectivity between different parts and to equip nursing

with a comprehensive intelligent system. Internet of Things is able
to fill this gap and have an important role in this domain although
it may partially cover and overlap the aforementioned entities (i.e.,
health informatics and wearable devices).

1.2. Basic nursing care

Already the early nursing theorists Virginia Henderson and
Florence Nightingale worked to define the role and actions of
nurses. The common definition for nursing actions for the best
patient outcomes has been a topic of debate. However, it is agreed
that basic nursing care, also known as the “fundamentals of care”
refers to the essential elements of care that are required by every
patient regardless of their clinical condition (Kitson et al., 2010). All
basic nursing care actions share three main points: the caring
actions are needed by all patients; they are not related to a specific
health problem; and they are not directed to a specific health goal
(Englebright et al., 2014). In this review, we employ Englebright’s
et al. (2014) definition for the basic nursing care. The basic caring
actions are divided into four activities. The first activity is
comprehensive assessment including baseline assessment con-
ducted after patient admission to the hospital. Periodical clinical
reassessment is the second activity that includes regular assess-
ments throughout the hospitalization. The third one as activities
of daily living consists of personal hygiene, meals and activities.
Finally, the last one is care management including coordination of
care team activities.

1.3. Internet of Things

The Internet of things is an advanced network of objects (i.e.
things) with unique identities, each of which interconnects or
connects to a remote server to provide more efficient services
(Atzori et al., 2010). The amalgamation of various fields such as
data acquisition, communication and data analysis offers
continues connectivity for the objects to collect, exchange and
combine data. Consequently, it is possible to achieve inclusive
knowledge about the entire system.

According to the specification and functionality of an Internet of
Things based system to collect, transmit and process healthcare
related data, the architecture of the system can be specified in
three layers, the perception layer, the gateway layer and the cloud
layer (Al-Fuqaha et al., 2015; Touati and Tabish, 2013). The
perception layer (Fig. 1) is defined to capture comprehensive

Fig. 1. The architecture of Internet of Things based healthcare systems in a hospital.
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health and environmental data using heterogeneous sensors. This
layer is the lowest layer and has the most contact with the studied
or monitored entities including patients, nurses and objects.
Medical devices (e.g. heart rate monitor, pulse oximeter and
electrocardiography device), activity and localization devices (e.g.
accelerometer and bed presence) and emergency buttons are items
that stand in this layer to collect related data.

The gateway layer (Fig. 1) is allocated to connect the sensors
to a remote server. The captured data are transmitted via
wireless protocols such as Bluetooth and Wi-Fi to a local
gateway. The gateway provides continuous connectivity for the
sensors or other perception layer inputs and manages inter-
ruptions. Then, it transfers the gathered data to a remote or
local server called a cloud for further analysis. Recently, the
concept of bringing a processing paradigm entitled as fog
computing to the vicinity of the sensors was proposed (Bonomi
et al., 2014). This smart gateway is defined to improve the
functionality of the system (e.g. decreasing latency and
increasing consistency in case of the unavailability of an
Internet connection) (Rahmani et al., 2015).

The cloud layer (Fig. 1) is the third and most remote section of
the Internet of Things system. All the acquired data are
transferred to the cloud via the gateway. The cloud can be
obtained either via Internet connected remote servers provided
by third parties or by local servers connected to local hospital
information system (HIS) to provide more protective privacy and
security. Using high processing power in the cloud platform, data
analytics, data fusion and analysis are used to further process and
develop the data (server room in the figure). The results of data
processing can then be used in patient care. Real-time/offline data
visualization of patients and their surroundings are available via
monitors and interface devices (e.g. smartphones and tablets).
The system could also enable healthcare personnel for instant
responses, feedback and setting adjustments via an administra-
tion control panel. Moreover, providing more comprehensive
services, such data processing could send feedback to devices
used in nursing and patient care to update their configurations
automatically.

The cloud layer (Fig. 1) is the third and most remote section of
the Internet of Things system. All the acquired data are transferred
to the cloud from the gateway. The cloud can be provided in two
approaches. The first approach is obtained via Internet connected

remote servers provided by third parties. The second one is
achieved by local servers connected to local hospital information
system (HIS) to provide more protective privacy and security. Using
the high processing power in the cloud platform, data analytics,
data fusion and reasoning are implemented to obtain new
knowledge and results regarding incoming and stored data (server
room in the figure). Afterward, the related obtained results along
with collected data are provided for nurses. Real-time/offline data
visualization of patients and their surroundings are available via
monitors and interface devices (e.g. smartphones and tablets). The
system could also enable healthcare personnel for instant
responses, feedback and setting adjustments via an administration
control panel. Moreover, providing more comprehensive services,
it could send feedback to nursing equipment and update their
configurations automatically according to the patients’ and
professionals’ requirements.

Consequently, the Internet of Things enabled system is a
paradigm that consists of embedded technologies of sensing,
connecting and processing to bring advanced applications and
services anyplace and anytime for different fields, especially in
healthcare and nursing. Therefore, the usage of Internet of Things
based systems as the state of the art in health sciences and basic
nursing care, can influence improvements in the quality and safety
of patient care.

1.4. Study objective

In this scoping review we introduce the concept of Internet
of Things to nursing by exploring the current literature to
identify the extent, range, and nature of the literature on the
Internet of Things in basic nursing care in the hospital
environment. In addition, we introduce recent innovations
utilizing the Internet of Things concept in basic nursing care in
the hospital environment.

2. Methods

We used a scoping review methodology, which can be used for
mapping the size and scope of research on a topic, synthesizing
findings, and identifying gaps in the literature (Grant and Booth,
2009). This is an appropriate approach given that we expect to find
papers with diverse methodologies and evidence only emerging in

Table 1
The search terms and databases.

Database Search terms Number of papers found

Pubmed ”Internet of Things” OR “IoT” 429
“Nursing informatics” 1096

Cinalh ”Internet of Things” OR “IoT” 29
“Nursing informatics” 965

Scopus ”Internet of Things” OR “IoT” 251
“Nursing informatics” 1148

Google Scholar (“Internet of Things” OR “IoT”) AND (“Nursing” OR “Hospital”) 32
ScienceDirect (“Internet of Things” OR “IoT”) AND (“Nursing” OR “Hospital”) 15
SpringerLink (“Internet of Things” OR “IoT”) AND (“Nursing” OR “Hospital”) 7
IEEE xplore (“Internet of Things” OR “IoT)” AND (“Nursing” OR “Hospital”) 77

“Hygiene” AND (“Nursing” OR “Hospital”) 26
“Incontinence” AND (“Nursing” OR “Hospital”) 27
“Sleep” AND (“Nursing” OR “Hospital”) 247
“Respiration” AND (“Nursing” OR “Hospital”) 194
“Fall” AND (“Nursing” OR “Hospital”) 437

ACM DL (“Internet of Things” OR “IoT”) AND (“Nursing” OR “Hospital”) 8
“Hygiene” AND (“Nursing” OR “Hospital”) 12
“Incontinence” AND (“Nursing” OR “Hospital”) 1
“Sleep” AND (“Nursing” OR “Hospital”) 6
“Respiration” AND (“Nursing” OR “hospital”) 0
“Fall” AND (“Nursing” OR “hospital”) 23
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the literature concerning Internet of Things based innovations in
basic nursing care settings (Levac et al., 2010). We followed the
scoping review guidelines of Arksey and O’Malley (2005) in five
stages: 1) identifying the research question 2) identifying relevant
studies 3) defining a relevant study selection 4) charting the data
and 5) collating, summarizing and reporting the results.

We explored the following questions:

1. How is the Internet of Things used in basic nursing care?
2. What are the benefits of using the Internet of Things in basic

nursing care?

2.1. Identifying relevant studies

The literature search was conducted in eight databases:
Pubmed, Cinahl, Scopus, ScienceDirect, ACM DL (Association for
Computing Machinery Digital Library), IEEE Xplore DL (Institute of
Electrical and Electronics Engineers Digital Library), Google
Scholar and SpringerLink. The databases were selected to cover
the fields of the multidisciplinary research topic. The search was
conducted in March and April 2016. Moreover, an additional search
in the three nursing databases was conducted in September 2016
to include the wide range of nursing informatics literature to the
review. At first all the nursing related databases were searched
using a Boolean combination of the terms “Internet of Thing” OR
“IoT” and the technological databases were searched for “Internet
of Things” AND “Nursing” OR “Hospital”. The second search was
conducted only in technological databases replacing the term
Internet of Things with the chosen basic nursing care terms to find
detailed information. These terms were chosen to describe the
aspects that are objective and detectable. Because of the novelty of
the concept of Internet of Things, no time limit was used in first
search. However, the search concerning nursing informatics was
limited to the years 2006 to 2016. The review was limited to
English language publications. The complete search strategy for
each electronic database is listed in Table 1.

2.2. Study selection

The inclusion criteria were 1) a scientific peer-reviewed
publication describing an Internet of Things based solution for
basic nursing care 2) the Internet of Things solution is used or
proposed for hospital environment 3) the term Internet of
Things is used in the paper 4) the paper is a clinical study, a
review, a commentary, an editorial or a conference proceeding.
The exclusion criteria were 1) the paper describes only a
technical design’s development 2) the Internet of Things
solution is used only for patient monitoring outside the
hospital environment 3) the Internet of Things solution is only
used for self-monitoring 4) the publication is a book, a book
chapter, a magazine or a letter.

2.3. Charting the data

Information on authors, their country and publication year
were collected. The type of the article and study design were
analyzed. The Internet of Things innovations were identified and
labelled to describe the basic nursing care topics. The technical
development state of the three layers of the Internet of Things
based system architecture was identified. Also the main target
patient group was specified into children, adults and the elderly,
although if no patient group was mentioned in an article, adult
patients were chosen. The results of the analysis are collected in
Table 2.

3. Results

3.1. Description of process and findings

Of the 5030 articles originally identified, 149 articles were
removed as duplicates. The titles were screened and 4615 papers
were excluded as non-relevant to the topic. 265 papers were
chosen for closer assessment and identified as potentially relevant.
93 full-text articles were assessed for eligibility, and finally 62 were
included in the qualitative synthesis (See Fig. 2 for the flow
diagram). Despite the large number of articles of the search for the
term “nursing informatics”, only one article met the inclusion
criteria.

The vast majority of the articles were peer-reviewed proceed-
ings of technological conferences. These included descriptions of
Internet of Things based innovation methodology or methodology
tested in a case study or usability tests in the hospital environment.
Only one article was published in a nursing journal, two in medical
journals, and all other articles were published in technological
journals. The journal articles did not differ from peer-reviewed
proceeding papers in study designs. We found no clinical trials
with comparisons or randomized designs. The articles were
published between the years 2008–2016 and they were from 30
countries across four continents. Most of the Internet of Things
solutions were targeted to adult and elderly patients with chronic
diseases. Only a few were designed for a pediatric population. The
data used in the Internet of Things solutions were collected in most
cases from patients and the environment and more rarely from
nurses. Most of the innovations proposed were related to vital
signs detection and were set under periodical clinical reassess-
ment activities of basic nursing care. The other topics in periodical
clinical reassessment activities were neonatal monitoring, pain
management and medication. Comprehensive assessment activ-
ities included topics of hygiene and comfort. Physical activity, fall
detection, sleep, and secretion monitoring were set under
Activities of daily living. Finally, care management activities
included topics of decision making support, tracking personnel,
patients and devises, and nurse calling system. Some of the topics
could have been set under several activities, but only one was
selected. The findings are described in Table 2.

3.2. Internet of Things based innovations for basic nursing care in the
hospital environment

3.2.1. Periodical clinical reassessment
With Internet of Things-based solutions vital signs can be

recorded using wireless devices connected to a gateway (Hart et al.,
2010; Shi-Lin et al., 2015), body worn wireless sensors (Andre et al.,
2010; Donnelly et al., 2012; Huang et al., 2013) or ambient sensors
attached on walls or objects (Güder et al., 2016; Mamun et al., 2014;
Huang et al., 2015; Zito et al., 2011). Wireless detection systems
have the advantage of giving patients real-time dependable and
continuous monitoring without causing any inconvenience to
patients (Hu et al., 2010). A good example is a cuffless noninvasive
measurement of blood pressure using pulse wave transit time as a
part of a multifunctional device, containing continuous measure-
ment of seven lead electrocardiography, respiration, temperature,
blood pressure, peripheral capillary oxygen saturation, the motion
state of a patient in real time (Fang et al., 2012). The heart rate of a
patient can also be detected using a wireless ring probe (Huang
et al., 2013) or a versatile system which detects electrocardiogra-
phy, heart rate, respiration waveform and rate, skin temperature
and motion with a single wearable sensor (Donnelly et al., 2012).
The triggering algorithms are set to alarm for early recognition of
patients requiring urgent attention. Some of the innovations have
the advantage of detecting both physiological parameters and
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tracking patients movements using the same hardware (Donnelly
et al., 2012; Hu et al., 2010; Mamun et al., 2014).

Several systems for non-invasive and continuous respiration
monitoring have been developed both for adults and children.
Respiratory rate and pattern can be detected contactless from
chest movements, using ultra-wideband technology (Huang et al.,
2015; Zito et al., 2011). The sensor can also be connected into a
patient’s nasal prongs (Andre et al., 2010) or attached into a
breathing mask (Güder et al., 2016) to detect respiration through
airflow humidity changes. Humidity changes ionic conductivity
which can be measured electrically and the data can be further
transmitted to a smartphone or tablet computer for post-
processing (Güder et al., 2016). An intelligent contact-free sensing
pad under the patient on a hospital bed can also measure
respiration by recording the changes in the capacitive coupling
between the traces of the pad and correlating them to respiration
(Hart et al., 2010).

For neonatal monitoring, detection of respiration and the
possible apnea of an infant can be done by obtaining a breathing
signal from an infant's chest vibration. An algorithm is applied to
locate the chest of the infant due to possible movement and to set
off an alarm in case of apnea (Huang et al., 2015). Also for the use of
neonatal intensive care unit nurses, a newborn’s physiological
parameters, such as heart rate and temperature, and the
environmental parameters, such as humidity of the incubator,
can be detected via a wireless sensor network (Nachabe et al.,
2015). The sensors are connected to a data hub device provided
with a software agent for sensed data preprocessing and the server
publishes the data into the hospital information system. In
addition to physiological parameter detection, Martinez-Balleste
et al. (2014) have proposed an automated pain detection system for
infants using data acquisition with wearable sensors, video and
audio processing. The system automatically analyses the pain or

discomfort level of an infant and raises alarm upon predetermined
conditions.

Considering medication in hospital surroundings, Jara et al.
(2014, 2010a,b) introduce a pharmaceutical intelligent information
system for drug delivery to mitigate adverse drug reactions. In the
system, tags, e.g., Radio Frequency Identification, are provided for
each medicine; then, utilizing tag readers, the medicine is
detected, and related data is sent to the cloud layer. The related
data and the patient profile are stored and the need to inform the
healthcare personnel about possible consequences (e.g., allergies)
and further actions is considered. In a similar manner, Laranjo et al.
(2012) also offer a solution using Radio Frequency Identification
tags for identifying hospital entities to implement medication
control from the prescription to pharmaceutical drug control.
Other systems including an intelligent medicine box (Zhang et al.,
2015) and a pharmaceutical logistics and supply chain manage-
ment system (Hua-li et al., 2015) are proposed to monitor and
control patient medication and to implement tracing and supply
chain management of medicines in hospitals from purchase to
provision and distribution.

3.2.2. Activities of daily living
Sleep detection is in most cases based on vital signs monitoring

throughout sleep. Rofouei et al. (2011) have proposed a non-
invasive wearable neck-cuff sleep detection tool for the early
diagnosis of sleep apnea which provides a summary of possible
apnea events and a quantification of the severity of sleep apnea.
Also a long term detection of patients’ skin temperature using a
wireless sensor system provides information of the circadian
rhythm of patients (Rotariu et al., 2013). For versatile sleep/off
sleep monitoring, basic accelerometer sensors and motion-sensing
mattresses can be used to collect information about the sleep
activity patterns of patients. Biswas et al. (2010) have successfully

Fig. 2. Flow diagram of literature search modified from PRISMA (Moher et al., 2010).
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done actigraphy based on body-worn accelerometer sensors to
remotely monitor and study the sleep-wake cycle of patients at a
nursing home. A soft motion sensing mattress or sensors located
under a mattress can also collect data about physical activities in a
bed (Liu et al., 2015; Zhu et al., 2015; Liu and Hsu, 2013). The
corresponding digital signals collected by the mattress sensors are
classified into different events such as on/off bed, sleep posture,
pressure distribution, movement counts, respiration and heart rate
(Liu and Hsu, 2013).

Considering Internet of Things related systems, Ang et al. (2008)
have introduced a wireless intelligent incontinence management
system to monitor secretion and to transmit wetness data to a
central system and then further to alert the nurses via SMS.
Similarly, Wai et al. (2010a,b) present a system comprising three
Internet of Things layers. The first layer is defined to sense diaper
wetness. The second layer is specified to provide a wireless
connection for the sensors in the hospital. Finally, the third layer
handles system operations, provides access to patients’ inconti-
nence profiles and sends notifications in case of detecting soiled
diapers. To implement the notifications system more efficiently, a
smartphone reminder is also integrated into the system (Wai et al.,
2011). Various solutions including disposable wet sensors placed
inside of diapers are also proposed. They are defined to detect
diaper wetness and to transmit the data to the cloud for further
actions (Fuketa et al., 2014; Nilsson et al., 2011; Yamada et al., 2010)

A patient alert system and a passive fall monitoring system are
proposed by Huang et al. (2009) and Schwarzmeier et al. (2014)
respectively to provide instant position information and emergen-
cy situation detection. A motion monitoring system, including five
accelerometer sensors and a 3D avatar (an embodiment of a
person) to illustrate the movements, is offered to reduce falls
(Rawashdeh et al., 2012). Fall prevention systems are also
introduced to notify the nurses about high risk fall activities
(Visvanathan et al., 2012) and bed falling (Chou et al., 2013).
Context-aware systems are specified to implement fall detection
using visual sensors (Bian et al., 2015). In this approach, a camera is
installed on a wall or a ceiling in a room instead of attaching
devices to patients. The camera outputs are analyzed by online
video processing methods instantaneously and related fall
information are extracted and transferred to healthcare person-
nel’s computers (Enayati et al., 2014). Also mobile systems can
provide fall detection for hospitals such as a robotic system offered
by Mamun et al. (2014). Along with patient condition monitoring,
the system is enabled by a camera and a 3D laser sensor detects
falls and provides emergency notifications. In addition to fall
detection and prevention, there are systems to carry out in-general
activity monitoring considering patient’s activities continuously.
Real-time monitoring using a necklace tag is proposed to exploit
activity data. This data can be information regarding daily activity-
level and level of functional ability (Sriborrirux et al., 2014).
Providing wireless acute care, a non-contact Doppler sensor is also
used to fulfill patient monitoring considering patient’s vital signs
and motions (Hu et al., 2010).

3.2.3. Care management
As Michard (2016) proposes, computers will be able to integrate

the historical, clinical, physiologic and biological information
necessary to predict adverse events, propose the best therapy and
ensure the care is delivered properly. While the data gets bigger it
becomes vital to find the relevant information quickly and easily
for efficient and accurate decision making. Ontology based data
modelling is used to classify the records stored in one database (
Boyi et al., 2014) and the relationships between sensors and
devices can be determined (Manate et al., 2014). With the help of
algorithms, the systems can detect diseases and suggest treat-
ments based on statistical calculations based on a big amount of

raw data (Aishwarya et al., 2015). This may be particularly useful in
emergency care (Abinaya and Swathika, 2015; Boyi et al., 2014).

A smart hospital system proposed by Catarinucci et al. (2015,
2014) offers localization for entities (e.g., patients, personnel and
devices) along with emergency situation management; Carvalho
et al. (2015) propose a model for individuals in nursing home
framework for tracking purpose, and Alharbe et al. (2013) asserts a
system to detect people and items in hospitals. Providing a
connected network using the Internet of Things and intelligent
services in the cloud, also the nursing calling system is reinforced
in hospitals. An Internet of Things based call light system uses icons
and phrases to allow patients to specify their needs when making a
nurse call request. Thus, the nursing staffs are informed regarding
the purpose of their call upon the initiation of the call light request
(Galinato et al., 2015). Also the information of patients and nurses
positioning can reinforce the nursing calling system and minimize
the time between the patient assistance request and nurse arrival
(Kanan and Elhassan, 2015; Sharma and Gautam, 2015).

3.2.4. Comprehensive assessment
Hand hygiene as a significant method to mitigate infection

transmission in hospitals and has been reinforced by Internet of
Things related systems. Baslyman et al. (2015) present a real-time
hand hygiene monitoring to monitor healthcare professionals in
hospital rooms and provide a reminder whether hand hygiene is
missed. Asai et al. (2013) also offer a system using sensors and
interface devices to encourage individuals to practice hand
antisepsis. Moreover, different systems are proposed for hand
hygiene monitoring using installed sensors in hospital rooms and
user-tags for personnel (Misra et al., 2015; Meydanci et al., 2013;
Johnson et al., 2012; Herman et al., 2009). Shhedi et al. (Shhedi
et al., 2015) also introduce a system to monitor individuals in
hospital rooms. Their system recognizes whether a person enters
the room, complies with hand hygiene or leaves the room. Using
positioning sensors, their system is enabled to monitor hand
movements during hand hygiene. Similarly, a system is proposed
by Galluzzi et al. (2015) to monitor hand washing duration in
hospitals and to classify hand hygiene movements using wrist
worn sensors.

Different from the other proposed solutions used mainly for
patient detection and management, Vicini et al. (2012) introduces
a novel Internet of Things based device for the comfort of
hospitalized children. The interactive device enables socialization
not only with the hospital personnel but with other people
regardless of the illness or hospital environment. By playing active
learning games the children are given the opportunity of learning
and growing during their experience in hospital and gaining a state
of wellbeing (Vicini et al., 2012).

The main Internet of Things solutions identified in this review
are summarized in Fig. 3.

4. Discussion

The fact that most of the included articles were from technology
field can be interpreted at least in two ways. Firstly, the topic of
Internet of Things in nursing is at infancy as more research and
implementation is required. The technological field has a tradition
of testing and publishing new methodologies in early stages in case
studies and usability tests. Secondly, the articles in nursing field
may have insufficient technical description of used devises or use
different terminology for similar technology. Because of the
terminological issues, an additional literature search was con-
ducted in September 2016 in nursing informatics. However, it was
not very relevant to the topic and only one more article met the
inclusion criteria and could be included in the review (Galinato
et al., 2015). Our study revealed that nursing informatics research
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has not yet focused on Internet of Things and its possibilities in
basic nursing care. Nursing informatics mostly concerns integra-
tion of the nursing information and knowledge with the
information management technologies. However, Internet of
Things could offer a new approach to provide real-time wireless
health monitoring and cloud computing also in basic nursing care
to enable intelligent decision-making support for nurses.

The reviewed papers target at patient centered issues to
improve the quality of nursing care with personated health and
functioning profiles, and to improve patient safety with automated
alert systems and continuous real time monitoring. Innovations in
care management provide information about the location and
amount of available resources, the means of management and use
of big data. Most innovations were based on the monitoring of
patients’ state giving the nurses vital information and supporting
the assessment and decision making processes. While nurses
devote a great deal of their time to documentation, medication
administration, and care coordination and somewhat less time to
actual patient care activities (Hendrich et al., 2008), one of the
main advantages of using new Internet of Things solutions in
hospitals is the automation of patient data collection and
processing utilizing low cost sensors, devices and technologies.
Moreover, it enables the hospital system to formalize the incoming
raw data into standard electronic health record. This allows nurses
to use more time for patient care instead of routine detection of
patients’ vital signs and transferring patient data to the electronic
patient records. Also totally new innovations for problems were

offered; automated tracking of patients and personnel along with
fall detection and nurse calling systems give the organization new
means of promoting patient safety. The Internet of Things also
brings new opportunities to the still unsolved and continuous
struggle against the health care associated infections by providing
automated hand hygiene detection and reminders.

A valuable property of these innovations is that they are mostly
inconspicuous and allow the patient to move more freely which
leads to the improvement of the traditionally passivating hospital
environment. Wireless solutions promote a feeling comfort for all
patients particularly in cases of children and disoriented patients,
and also promotes patient safety. Another value is the opportunity
to include family in the care by offering real time data remotely, if
the family is not able to be present in the hospital (Nachabe et al.,
2015; Martinez-Balleste et al., 2014).

Personalized smart services could also be provided for patients
in hospitals using Internet of Things based platforms. Acquiring
and storing various information (e.g., medical parameters, activi-
ties, etc.) from a patient during their hospital stay along with the
patient’s medical history, provides a comprehensive understand-
ing about the patient’s state. Considering this knowledge, it is
possible to use data analysis algorithms including machine
learning (Murphy, 2012) and pattern recognition (Bishop, 2006)
methods to offer personalized services for each patient. For
instance, patients would achieve an advantage in diagnosis and
treatment procedures by enabling personalized decision making
approaches and subsequently minimizing mistakes.

Fig. 3. Internet of Things solutions for nursing in hospital environment.
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In nursing, the ethical issues related to Internet of Things
technologies must be highlighted. In addition to the smart
applications that Internet of Things based systems could provide
for nursing and hospital environment, the systems should provide
security. System security as an important subject in Internet of
Things based systems is defined to preserve privacy and improve
trust between patients and professionals (Moosavi et al., 2016,
2015; Sicari et al., 2015). It becomes more significant particularly
for hospitals in which patients’ medical information is available. As
discussed in Yang et al. (2012), the potential confidentiality issues
can be considered in three parts regarding the three Internet of
Things tiers. The perception layer which includes various sensors
collecting data from patients and nurses might encounter a data
breach. The gateway as an intermediate tier to provide connection
between sensors and the cloud might be targeted by many
challenges. Finally, the cloud layer containing data centers stores
all the patients’ and nurses’ related information. Addressing
security requirements are essentials in Internet of Things based
hospital systems and should be satisfied using robust security
schemes.

In addition to security and privacy issues, the transparency of
the new technology for all stakeholders should be ensured. In
health care, informed consent by Internet of Things users or
indirect stakeholders can be difficult to obtain if technical
knowledge is required (van den Hoven 2013). The nurses need
not only the skills to use the new technological solutions, they also
need understanding of the wider picture of risks and benefits.
These requirements are part of the competence nurses need in
technology and informatics in their work in the future (Gassert,
2008).

5. Limitations

Since the area of investigation is still in an early stage, the
literature is diverse in quality. We included many types of studies
to achieve a picture of the field. This has obviously affected the
scientific level of the study. However we found it important to
include all chosen studies in the analysis to get a good picture of
the state of the art. The search terms were not a complete list of all
the relevant areas in basic nursing care and this is a limitation. In
addition, the concept of the Internet of Things has a broad
definition, therefore only papers with sufficient technical descrip-
tion were chosen in the review.

6. Conclusions

In conclusion, modern Internet of Things based technology
offers various innovations for basic nursing care but most the
innovations are still emerging. Internet of things is yet vaguely
adopted in nursing. The possibilities of the Internet of Things are
not yet exploited as well as they could. The automation of the
patient and hospital environment monitoring and collection and
management of data might promote the quality of care and patient
safety in basic nursing care but there is still no evidence of
effectiveness or efficacy in the literature. In the studied research
the proposed technologies are in the testing phase and need to be
studied further to ensure their feasibility and security for hospital
use. Nursing science might benefit from deeper involvement in
engineering research in the area of health and nursing care.

Authors contributions

Review design: RM, IA, AR, RA, PL, SS; data collection: IA, RM,
VT; data analysis: RM, IA; and manuscript preparation: IA, RM, VT,
AR, RA, PL, SS.

Acknowledgments

This study was funded by the Academy of Finland, decision
number 287075.

References

Abinaya, Kumar, Swathika, V., 2015. Ontology based public healthcare system in
Internet of Things (IoT). Procedia Comput. Sci. 50, 99–102. doi:http://dx.doi.org/
10.1016/j.procs.2015.04.067.

Aishwarya, K., Harshitha, S., Chandrasekaran, K., 2015. A Reinforcement Learning
Approach to E-Health 2, 411–415.

Al-Fuqaha, A., Guizani, M., Mohammadi, M., Aledhari, M., Ayyash, M., 2015. Internet
of Things: a survey on enabling technologies protocol and applications. IEEE
Commun. Surv. Tutor. 17, 2347–2376. doi:http://dx.doi.org/10.1109/
COMST.2015.2444095.

Alharbe, N., Atkins, A.S., Akbari, A.S., 2013. Application of ZigBee and RFID
technologies in healthcare in conjunction with the Internet of Things.
Proceedings of International Conference on Advances in Mobile Computing &
Multimedia – MoMM’13, ACM Press New York, New York, USA, pp.191–195. doi:
http://dx.doi.org/10.1145/2536853.2536904.

Andre, N., Druart, S., Gerard, P., Pampin, R., Moreno-Hagelsieb, L., Kezai, T., Francis, L.
A., Flandre, D., Raskin, J.-P., 2010. Miniaturized wireless sensing system for real-
time Breath activity recording. IEEE Sens. J. 10, 178–184. doi:http://dx.doi.org/
10.1109/JSEN.2009.2035666.

Ang, L.M., Ow, S.H., Seng, K.P., Tee, Z.H., Lee, B.W., Thong, M.K., Poi, P.J.H.,
Kunanayagam, S., 2008. Wireless intelligent incontinence management system
using smart diapers. 5th International Conference on Electrical Engineering/
Electronics, Computer, Telecommunications and Information Technology, ECTI-
CON 2008, IEEE, pp. 69–72. doi:http://dx.doi.org/10.1109/ECTI-
CON.2008.4600374.

Arksey, H., O’Malley, L., 2005. Scoping studies: towards a methodological
framework. Int. J. Soc. Res. Methodol. 8, 19–32. doi:http://dx.doi.org/10.1080/
1364557032000119616.

Asai, T., Kanazawa, A., Hayashi, H., Minazuki, A., 2013. Development of a system to
raise awareness of hand hygiene in various environments. 2013 International
Conference on Signal-Image Technology and Internet-Based Systems, SITIS
2013, IEEE, pp. 924–931. doi:http://dx.doi.org/10.1109/SITIS.2013.150.

Atzori, L., Iera, A., Morabito, G., 2010. The Internet of Things: a survey. Comput. Netw.
54, 2787–2805. doi:http://dx.doi.org/10.1016/j.comnet.2010.05.010.

Baslyman, M., Rezaee, R., Amyot, D., Mouttham, A., Chreyh, R., Geiger, G., Stewart, A.,
Sader, S., 2015. Real-time and location-based hand hygiene monitoring and
notification: proof-of-concept system and experimentation. Pers. Ubiquitous
Comput. 19, 667–688. doi:http://dx.doi.org/10.1007/s00779-015-0855-y.

Bian, Z.-P., Hou, J., Chau, L.-P., Magnenat-Thalmann, N., 2015. Fall detection based on
body part tracking using a depth camera. IEEE J. Biomed. Health Inform.19, 430–
439. doi:http://dx.doi.org/10.1109/JBHI.2014.2319372.

Bishop, C.M., 2006. Pattern Recognition and Machine Learning. Springer.
Biswas, J., Maniyeri, J., Gopalakrishnan, K., Shue, L., Eugene, P.J., Palit, H.N., Siang, Foo

Yong, Seng, Lau Lik, Li, Xiaorong, 2010. Processing of wearable sensor data on
the cloud � a step towards scaling of continuous monitoring of health and well-
being. 2010 Annual International Conference of the IEEE Engineering in
Medicine and Biology, IEEE, pp. 3860–3863. doi:http://dx.doi.org/10.1109/
IEMBS.2010.5627906.

Bonomi, F., Milito, R., Natarajan, P., Zhu, J., 2014. Fog Computing: A Platform for
Internet of Things and Analytics. Springer International Publishing, pp.169–186.
doi:http://dx.doi.org/10.1007/978-3-319-05029-4_7.

Boyi, Xu, Da, Xu Li, Hongming, Cai, Cheng, Xie, Jingyuan, Hu, Fenglin, Bu, 2014.
Ubiquitous data accessing method in ioT-based information system for
emergency medical services. IEEE Trans. Ind. Inform. 10, 1578–1586. doi:
http://dx.doi.org/10.1109/TII.2014.2306382.

Bruballa, E., Taboada, M., Cabrera, E., Rexachs, D., Luque, E., 2014. Simulation and big
aata: a way to discover unusual knowledge in emergency departments: work-
in-progress paper. 2014 International Conference on Future Internet of Things
and Cloud. IEEE, pp. 367–372. doi:http://dx.doi.org/10.1109/FiCloud.2014.65.

Cao, H., Landge, V., Tata, U., Seo, Y.-S., Rao, S., Tang, S.-J., Tibbals, H.F., Spechler, S.,
Chiao, J.-C., 2012. An implantable, batteryless, and wireless capsule with
integrated impedance and pH sensors for gastroesophageal reflux monitoring.
IEEE Trans. Biomed. Eng. 59, 3131–3139. doi:http://dx.doi.org/10.1109/
TBME.2012.2214773.

Carvalho, C.M.A., Rodrigues, C.A.P., Aguilar, P.A.C., de Castro, M.F., Andrade, R.M.C.,
Boudy, J., Istrate, D., 2015. Adaptive tracking model in the framework of medical
nursing home using infrared sensors. 2015 IEEE Globecom Workshops (GC
Wkshps), IEEE, pp. 1–6. doi:http://dx.doi.org/10.1109/GLO-
COMW.2015.7414030.

Catarinucci, L., De Donno, D., Mainetti, L., Palano, L., Patrono, L., Stefanizzi, M.L.,
Tarricone, L., 2014. Integration of UHF RFID and WSN technologies in healthcare
systems. 2014 IEEE RFID Technology and Applications Conference (RFID-TA),
IEEE, pp. 289–294. doi:http://dx.doi.org/10.1109/RFID-TA.2014.6934245.

Catarinucci, L., de Donno, D., Mainetti, L., Palano, L., Patrono, L., Stefanizzi, M.L.,
Tarricone, L., 2015. An ioT-aware architecture for smart healthcare systems. IEEE
Internet Things J. 2, 515–526. doi:http://dx.doi.org/10.1109/JIOT.2015.2417684.

Chou, W.-C., Lin, W.-Y., Lee, M.-Y., Lei, K.F., 2013. Design and assessment of a real-
Time accelerometer-Based lying-to-Sit sensing system for bed fall prevention.

88 R. Mieronkoski et al. / International Journal of Nursing Studies 69 (2017) 78–90



2013 IEEE International Conference on Systems, Man, and Cybernetics, IEEE, pp.
1471–1475. doi:http://dx.doi.org/10.1109/SMC.2013.254.

Donnelly, N., Harper, R., McCAnderson, J., Branagh, D., Kennedy, A., Caulfield, M.,
McLaughlin, J., 2012. Development of a ubiquitous clinical monitoring solution
to improve patient safety and outcomes. 2012 Annual International Conference
of the IEEE Engineering in Medicine and Biology Society, IEEE, pp. 6068–6073.
doi:http://dx.doi.org/10.1109/EMBC.2012.6347378.

Enayati, M., Banerjee, T., Popescu, M., Skubic, M., Rantz, M., 2014. A novel web-based
depth video rewind approach toward fall preventive interventions in hospitals.
2014 36th Annual International Conference of the IEEE Engineering in Medicine
and Biology Society, IEEE, pp. 4511–4514. doi:http://dx.doi.org/10.1109/
EMBC.2014.6944626.

Englebright, J., Aldrich, K., Taylor, C.R., 2014. Defining and incorporating basic
nursing care actions into the electronic health record. J. Nurs. Scholarsh. 46, 50–
57. doi:http://dx.doi.org/10.1111/jnu.12057.

Fang, Zhen, Zhao, Zhan, Sun, Fangmin, Chen, Xianxiang, Du, Lidong, Li, Huaiyong,
Tian, Lili, 2012. The 3AHcare node: health monitoring continuously. 2012 IEEE
14th International Conference on E-Health Networking, Applications and
Services (Healthcom), IEEE, pp. 365–366. doi:http://dx.doi.org/10.1109/Health-
Com.2012.6379438.

Fraile, J.A., Bajo, J., Corchado, J.M., Abraham, A., 2010. Applying wearable solutions in
dependent environments. IEEE Trans. Inf. Technol. Biomed. 14, 1459–1467. doi:
http://dx.doi.org/10.1109/TITB.2010.2053849.

Fuketa, H., Yoshioka, K., Yokota, T., Yukita, W., Koizumi, M., Sekino, M., Sekitani, T.,
Takamiya, M., Someya, T., Sakurai, T., 2014. 30.3 Organic-transistor-based 2 kV
ESD-tolerant flexible wet sensor sheet for biomedical applications with wireless
power and data transmission using 13.56 MHz magnetic resonance. 2014 IEEE
International Solid-State Circuits Conference Digest of Technical Papers (ISSCC),
IEEE, pp. 490–491. doi:http://dx.doi.org/10.1109/ISSCC.2014.6757525.

Güder, F., Ainla, A., Redston, J., Mosadegh, B., Glavan, A., Martin, T.J., Whitesides, G.
M., 2016. Paper-based electrical respiration sensor. Angew. Chem. Int. Ed. 55,
5727–5732. doi:http://dx.doi.org/10.1002/anie.201511805.

Galinato, J., Montie, M., Patak, L., Titler, M., 2015. Perspectives of nurses and patients
on call light technology. Comput. Inform. Nurs. 33, 359–367. doi:http://dx.doi.
org/10.1097/CIN.0000000000000177.

Galluzzi, V., Herman, T., Polgreen, P., 2015. Hand hygiene duration and technique
recognition using wrist-worn sensors. Proceedings of the 14th International
Conference on Information Processing in Sensor Networks – IPSN’15, ACM Press
New York, New York, USA, pp. 106–117. doi:http://dx.doi.org/10.1145/
2737095.2737106.

Gassert, C.A., 2008. Technology and informatics competencies. Nurs. Clin. N. Am. 43,
507–521. doi:http://dx.doi.org/10.1016/j.cnur.2008.06.005.

Grant, M.J., Booth, A., 2009. A typology of reviews: an analysis of 14 review types and
associated methodologies. Health Inf. Libr. J. 26, 91–108. doi:http://dx.doi.org/
10.1111/j.1471-1842.2009.00848.x.

Hart, A., Tallevi, K., Wickland, D., Kearney, R.E., Cafazzo, J.A., 2010. A contact-free
respiration monitor for smart bed and ambulatory monitoring applications.
2010 Annual International Conference of the IEEE Engineering in Medicine and
Biology, IEEE, pp. 927–930. doi:http://dx.doi.org/10.1109/IEMBS.2010.5627525.

Hendrich, A., Chow, M.P., Skierczynski, B.A., Lu, Z., 2008. A 36-hospital time and
motion study: how do medical-surgical nurses spend their time? Perm. J. 12,
25–34.

Herman, T., Pemmaraju, S.V., Segre, A.M., Polgreen, P.M., Curtis, D.E., Fries, J., Hlady,
C., Severson, M., 2009. Wireless applications, for hospital epidemiology.1st Acm
International Workshop on Medical-grade Wireless Networks, ACM Press, New
York, New York, USA, pp. 45–50. doi:http://dx.doi.org/10.1145/
1540373.1540384.

Hu, W., Lie, D.Y.C., Kakade, M.U., Ichapurapu, R., Mane, S., Lopez, J., Li, Y., Li, C.,
Banister, R.E., Dentino, A., Nguyen, T., Zupancic, S., Griswold, J., 2010. An
intelligent non-contact wireless monitoring system for vital signs and motion
detection. 2010 International Conference on System Science and Engineering,
IEEE, pp. 190–194. doi:http://dx.doi.org/10.1109/ICSSE.2010.5551795.

Hua-li, K., Duan-hao, F., Wei-wei, F., Qian, L., 2015. Design and Implementation of
Pharmaceutical Logistics and Supply Chain Management System for Hospital. ,
pp. 1149–1152.

Huang, C.-N., Chiang, C.-Y., Chang, J.-S., Chou, Y.-C., Hong, Y.-X., Hsu, S.J., Chu, W.-C.,
Chan, C.-T., 2009. Location-Aware fall detection system for medical care quality
improvement. 2009 Third International Conference on Multimedia and
Ubiquitous Engineering, IEEE, pp. 477–480. doi:http://dx.doi.org/10.1109/
mue.2009.84.

Huang, J.-H., Wang, T.-T., Su, T.-Y., Lan, K.-C., 2013. Design and deployment of a heart
rate monitoring system in a senior center. 2013 IEEE International Conference
on Sensing, Communications and Networking (SECON), IEEE, pp. 71–75. doi:
http://dx.doi.org/10.1109/SAHCN.2013.6644963.

Huang, Xinming, Sun, Ling, Tian, T., Huang, Zeyan, Clancy, E., 2015. Real-time non-
contact infant respiratory monitoring using UWB radar. 2015 IEEE 16th
International Conference on Communication Technology (ICCT), IEEE, pp. 493–
496. doi:http://dx.doi.org/10.1109/ICCT.2015.7399885.

IMIA-NI, 2009. Definition of Nursing Informatics. Helsinki, Finland: IMIA Nursing
Informatics Special Interest Group. https://imianews.wordpress.com/2009/08/
24/imia-ni-definition-of-nursing-informatics-updated/ (accessed 10.10.16).

Institute of Medicine, 2011. The Learning Health System and Its Innovation
Collaboratives. . http://docplayer.net/2723483-The-learning-health-system-
and-its-innovation-collaboratives.html.

Jangland, E., Kitson, A., Muntlin Athlin, Å., 2016. Patients with acute abdominal pain
describe their experiences of fundamental care across the acute care episode: a

multi-stage qualitative case study. J. Adv. Nurs. 72, 791–801. doi:http://dx.doi.
org/10.1111/jan.12880.

Jara, A.J., Alcolea, A.F., Zamora, M.A., Skarmeta, A.F.G., Alsaedy, M., 2010a. Drugs
interaction checker based on IoT. 2010 Internet of Things (IOT), IEEE, pp. 1–8.
doi:http://dx.doi.org/10.1109/IOT.2010.5678458.

Jara, A.J., Belchi, F.J., Alcolea, A.F., Santa, J., Zamora-Izquierdo, M.A., Gómez-
Skarmeta, A.F., 2010b. A pharmaceutical intelligent information system to
detect allergies and adverse drugs reactions based on internet of things. 2010
8th IEEE International Conference on Pervasive Computing and Communica-
tions Workshops, PERCOM Workshops 2010, IEEE, pp. 809–812. doi:http://dx.
doi.org/10.1109/PERCOMW.2010.5470547.

Jara, A.J., Zamora, M.A., Skarmeta, A.F., 2014. Drug identification and interaction
checker based on IoT to minimize adverse drug reactions and improve drug
compliance. Pers. Ubiquitous Comput. 18, 5–17. doi:http://dx.doi.org/10.1007/
s00779-012-0622-2.

Johnson, R., Tsouri, G.R., Walsh, E., 2012. Continuous and automated measuring of
compliance of hand-hygiene procedures using finite state machines and RFID.
IEEE Instrum. Meas. Mag. 15, 8–12. doi:http://dx.doi.org/10.1109/
MIM.2012.6174572.

Kanan, R., Elhassan, O., 2015. A combined batteryless radio and WiFi indoor
Positioning System. 2015 23rd International Conference on Software, Tele-
communications and Computer Networks (SoftCOM), IEEE, pp. 101–107. doi:
http://dx.doi.org/10.1109/SOFTCOM.2015.7314058.

Kitson, A., Conroy, T., Wengstrom, Y., Profetto-McGrath, J., Robertson-Malt, S., 2010.
SCHOLARLY PAPER: Defining the fundamentals of care. Int. J. Nurs. Pract. 16,
423–434. doi:http://dx.doi.org/10.1111/j.1440-172X.2010.01861.x.

Laranjo, I., Macedo, J., Santos, A., 2012. Internet of Things for medication control:
service implementation and testing. Procedia Technol. 5, 777–786. doi:http://
dx.doi.org/10.1016/j.protcy.2012.09.086.

Lasater, K.B., Mchugh, M.D., 2016. Nurse staffing and the work environment linked
to readmissions among older adults following elective total hip and knee
replacement. Int. J. Qual. Heal. Care 28, 253–258. doi:http://dx.doi.org/10.1093/
intqhc/mzw007.

Levac, D., Colquhoun, H., O’Brien, K.K., 2010. Scoping studies: advancing the
methodology. Implement. Sci. 5, 1–9. doi:http://dx.doi.org/10.1186/1748-5908-
5-69.

Liu, Y.-W., Hsu, Y.-L., 2013. Development of a bed-Centered telehealth system based
on a motion-Sensing mattress. 2013 IEEE International Conference on Systems,
Man, and Cybernetics, IEEE, pp. 1466–1470. doi:http://dx.doi.org/10.1109/
SMC.2013.253.

Liu, Y.-W., Hsu, Y.-L., Chang, W.-Y., 2015. Development of a bed-centered telehealth
system based on a motion-sensing mattress. J. Clin. Gerontol. Geriatr. 6, 1–8.
doi:http://dx.doi.org/10.1016/j.jcgg.2014.06.001.

Mamun, K.A., Sharma, A., Hoque, A.S.M., Szecsi, T., 2014. Remote patient physical
condition monitoring service module for iWARD hospital robots. Asia-Pacific
World Congress on Computer Science and Engineering, IEEE, pp. 1–8. doi:http://
dx.doi.org/10.1109/apwccse.2014.7053854.

Manate, B., Munteanu, V.I., Fortis, T.F., Moore, P.T., 2014. An intelligent context-
Aware decision-Support system oriented towards healthcare support. 2014
Eighth International Conference on Complex, Intelligent and Software Intensive
Systems, IEEE, pp. 386–391. doi:http://dx.doi.org/10.1109/CISIS.2014.54.

Martinez-Balleste, A., Casanovas-Marsal, J.-O., Solanas, A., Casino, F., Garcia-
Martinez, M., 2014. An autonomous system to assess, display and communicate
the pain level in newborns. 2014 IEEE International Symposium on Medical
Measurements and Applications (MeMeA), IEEE, pp. 1–5. doi:http://dx.doi.org/
10.1109/MeMeA.2014.6860144.

Meydanci, M.A., Adali, C., Ertas, M., Dizbay, M., Akan, A., 2013. RFID based hand
hygiene compliance monitoring station. 2013 IEEE International Conference on
Control System, Computing and Engineering, IEEE, pp. 573–576. doi:http://dx.
doi.org/10.1109/ICCSCE.2013.6720030.

Michard, F., 2016. Hemodynamic monitoring in the era of digital health. Ann.
Intensive Care 6, 15. doi:http://dx.doi.org/10.1186/s13613-016-0119-7.

Misra, P., Rajaraman, V., Aishwarya, S.N., Dwivedi, B., Warrior, J., 2015. CleanHands:
an integrated monitoring system for control of hospital acquired infections.
Proceedings of the 14th International Conference on Information Processing in
Sensor Networks – IPSN ’15, ACM Press New York, New York, USA, pp. 348–349.
doi:http://dx.doi.org/10.1145/2737095.2742928.

Moher, D., Liberati, A., Tetzlaff, J., Altman, D.G., 2010. Preferred reporting items for
systematic reviews and meta-analyses: the PRISMA statement. Int. J. Surg. 8,
336–341. doi:http://dx.doi.org/10.1016/j.ijsu.2010.02.007.

Moosavi, S.R., Gia, T.N., Rahmani, A.-M., Nigussie, E., Virtanen, S., Isoaho, J.,
Tenhunen, H., 2015. SEA: a secure and efficient authentication and authoriza-
tion architecture for IoT-based healthcare using smart gateways. Procedia
Comput. Sci. 52, 452–459. doi:http://dx.doi.org/10.1016/j.procs.2015.05.013.

Moosavi, S.R., Gia, T.N., Nigussie, E., Rahmani, A.M., Virtanen, S., Tenhunen, H.,
Isoaho, J., 2016. End-to-end security scheme for mobility enabled healthcare
Internet of Things. Future Gener. Comput. Syst. 64, 108–124. doi:http://dx.doi.
org/10.1016/j.future.2016.02.020.

Murphy, K., 2012. Machine Learning: A Probabilistic Perspective. The MIT Press.
Nachabe, L., Girod-Genet, M., ElHassan, B., Jammas, J., 2015. M-health application for

neonatal incubator signals monitoring through a CoAP-based multi-agent
system. 2015 International Conference on Advances in Biomedical Engineering
(ICABME), IEEE, pp. 170–173. doi:http://dx.doi.org/10.1109/
ICABME.2015.7323279.

Nilsson, H.-E., Siden, J., Gulliksson, M., 2011. An incontinence alarm solution
utilizing RFID based sensor technology. 2011 IEEE International Conference on

R. Mieronkoski et al. / International Journal of Nursing Studies 69 (2017) 78–90 89



RFID-Technologies and Applications, IEEE, pp. 359–363. doi:http://dx.doi.org/
10.1109/RFID-TA.2011.6068662.

Rahmani, A.-M., Thanigaivelan, N.K., Tuan Nguyen, Gia, Granados, J., Negash, B.,
Liljeberg, P., Tenhunen, H., 2015. Smart e-Health Gateway: bringing intelligence
to Internet-of-Things based ubiquitous healthcare systems. 2015 12th Annual
IEEE Consumer Communications and Networking Conference (CCNC), IEEE, pp.
826–834. doi:http://dx.doi.org/10.1109/CCNC.2015.7158084.

Rawashdeh, O., Sa’deh, W., Rawashdeh, M., Qu, G., Ferrari, M., Harrison, B.,
Hammond, R., Maddens, M., 2012. Development of a low-cost fall intervention
system for hospitalized dementia patients. 2012 IEEE International Conference
on Electro/Information Technology, IEEE, pp. 1–7. doi:http://dx.doi.org/10.1109/
EIT.2012.6220763.

Rofouei, M., Sinclair, M., Bittner, R., Blank, T., Saw, N., DeJean, G., Heffron, J., 2011. A
non-invasive wearable neck-cuff system for real-time sleep monitoring. 2011
International Conference on Body Sensor Networks, IEEE, pp. 156–161. doi:
http://dx.doi.org/10.1109/BSN.2011.38.

Rotariu, C., Costin, H., Pasarica, A., Cristea, C., Dionisie, B., 2013. Wireless skin
temperature measurement system for circadian rhythm monitoring. 2013 E-
Health and Bioengineering Conference (EHB), IEEE, pp. 1–4. doi:http://dx.doi.
org/10.1109/EHB.2013.6707345.

Schwarzmeier, A., Weigel, R., Fischer, G., Kissinger, D., 2014. A low power fall
detection and activity monitoring system for nursing facilities and hospitals.
2014 IEEE Topical Conference on Biomedical Wireless Technologies, Networks,
and Sensing Systems (BioWireleSS), IEEE, pp. 28–30. doi:http://dx.doi.org/
10.1109/BioWireleSS.2014.6827736.

Sharma, C., Gautam, D.K., 2015. Design development and implementation of wired
Nurse calling system. 2015 International Conference on Green Computing and
Internet of Things (ICGCIoT), IEEE, pp.1258–1262. doi:http://dx.doi.org/10.1109/
ICGCIoT.2015.7380657.

Shhedi, Z.A., Moldoveanu, A., Moldoveanu, F., Taslitchi, C., 2015. Real-time hand
hygiene monitoring system for HAI prevention. 2015 E-Health and Bioengi-
neering Conference (EHB), IEEE, pp. 1–4. doi:http://dx.doi.org/10.1109/
EHB.2015.7391474.

Shi-Lin, H., Bei, L., Jun, Y., Guang-Fei, C., Shu-Chao, L., Dan, Z., 2015. Development of
physiological parameters gateway for medical IOT ward. Open Autom. Control
Syst. J. 7, 1667–1673. doi:http://dx.doi.org/10.2174/1874444301507011667.

Sicari, S., Rizzardi, A., Grieco, L.A., Coen-Porisini, A., 2015. Security, privacy and trust
in Internet of Things: the road ahead. Comput. Netw. 76, 146–164. doi:http://dx.
doi.org/10.1016/j.comnet.2014.11.008.

Sriborrirux, W., Leamsumran, P., Dan-klang, P., 2014. Real-time system for
monitoring activity among the elderly using an RF SoC device with triaxial
accelerometer data over a wireless sensor network. 2014 IEEE MTT-S
International Microwave Workshop Series on RF and Wireless Technologies
for Biomedical and Healthcare Applications (IMWS-Bio2014), IEEE, pp. 1–4. doi:
http://dx.doi.org/10.1109/IMWS-BIO.2014.7032430.

Touati, F., Tabish, R., 2013. u-Healthcare system: state-of-the-art review and
challenges. J. Med. Syst. 37, 9949. doi:http://dx.doi.org/10.1007/s10916-013-
9949-0.

Vicini, S., Bellini, S., Rosi, A., Sanna, A., 2012. An internet of things enabled interactive
totem for children in a living lab setting. 2012 18th International ICE Conference

on Engineering, Technology and Innovation, IEEE, pp. 1–10. doi:http://dx.doi.
org/10.1109/ICE.2012.6297713.

Visvanathan, R., Ranasinghe, D.C., Shinmoto Torres, R.L., Hill, K., 2012. Framework
for preventing falls in acute hospitals using passive sensor enabled radio
frequency identification technology. 2012 Annual International Conference of
the IEEE Engineering in Medicine and Biology Society, IEEE, pp. 5858–5862. doi:
http://dx.doi.org/10.1109/EMBC.2012.6347326.

Wai, A.A.P., Foo, S.F., Jayachandran, M., Biswas, J., Nugent, C., Mulvenna, M., Zhang,
D., Craig, D., Passmore, P., Lee, J.E., Yap, P., 2010a. Towards developing effective
Continence Management through wetness alert diaper: experiences, lessons
learned, challenges and future directions. 2010 4th International Conference on
Pervasive Computing Technologies for Healthcare, IEEE, pp. 1–8. doi:http://dx.
doi.org/10.4108/ICST.PERVASIVEHEALTH2010.8832.

Wai, A.A.P., Victor, F.S.F., Jayachandran, M., Biswas, J., Nugent, C., Mulvenna, M.,
Daqing, Z., Craig, D., Passmore, P., Jer-Ens, L., Yaps, P., 2010b. Technical
development and clinical evaluation of intelligent continence management
system at nursing home. 12th IEEE International Conference on E-Health
Networking, Application and Services, Healthcom 2010, IEEE, pp. 345–352. doi:
http://dx.doi.org/10.1109/HEALTH.2010.5556544.

Wai, A.A.P., Foo, S.F., Biswas, J., Donnelly, M., Parente, G., Nugent, C., Yap, P., 2011.
Smart phone reminder system for managing incontinence at nursing home.
Proceedings of the International Symposium on Consumer Electronics, ISCE,
IEEE, pp. 254–259. doi:http://dx.doi.org/10.1109/ISCE.2011.5973827.

West, E., Barron, D.N., Reeves, R., 2005. Overcoming the barriers to patient-centred
care: time, tools and training. J. Clin. Nurs. 14, 435–443. doi:http://dx.doi.org/
10.1111/j.1365-2702.2004.01091.x.

Yamada, K., Toshiaki, N., Ishihara, K., Ohno, Y., Ishii, A., Shimizu, S., Araki, T.,
Takahashi, R., Takahashi, H., Shimizu, E., 2010. Development of new type
incontinence sensor using RFID tag. 2010 IEEE International Conference on
Systems, Man and Cybernetics, IEEE, pp. 2695–2700. doi:http://dx.doi.org/
10.1109/ICSMC.2010.5641889.

Yang, X., Li, Z., Geng, Z., Zhang, H., 2012. A multi-layer security model for internet of
things. Internet of Things 388–393. doi:http://dx.doi.org/10.1007/978-3-642-
32427-7_54.

Zhang, T., Liu, Z., Cao, X., Xia, W., 2015. Intelligent medicine box monitoring and
management system. 2015 International Conference on Computer Science and
Mechanical Automation (CSMA), IEEE, pp. 153–156. doi:http://dx.doi.org/
10.1109/CSMA.2015.37.

Zhu, X., Zhou, X., Chen, W., Kitamura, K.I., Nemoto, T., 2015. Estimation of sleep
quality of residents in nursing homes using an internet-Based automatic
monitoring system. 2014 IEEE International Conference on Ubiquitous
Intelligence and Computing, 2014 IEEE International Conference on Autonomic
and Trusted Computing, 2014 IEEE International Conference on Scalable
Computing and Communications and Associated Sy, IEEE, pp. 659–665. doi:
http://dx.doi.org/10.1109/UIC-ATC-ScalCom.2014.138.

Zito, D., Pepe, D., Mincica, M., Zito, F., Tognetti, A., Lanata, A., De Rossi, D., 2011. SoC
CMOS UWB pulse radar sensor for contactless respiratory rate monitoring. IEEE
Trans. Biomed. Circuits Syst. 5, 503–510. doi:http://dx.doi.org/10.1109/
TBCAS.2011.2176937.

90 R. Mieronkoski et al. / International Journal of Nursing Studies 69 (2017) 78–90





Paper III

HiCH: Hierarchical Fog-Assisted Computing Archi-
tecture for Healthcare IoT

Iman Azimi, Arman Anzanpour, Amir M. Rahmani, Tapio Pahikkala,
Marco Levorato, Pasi Liljeberg, and Nikil Dutt (2017). ACM Transactions
on Embedded Computing Systems, 16:174:1–174:20





174

HiCH: Hierarchical Fog-Assisted Computing Architecture
for Healthcare IoT

IMAN AZIMI and ARMAN ANZANPOUR, University of Turku
AMIR M. RAHMANI, University of California Irvine and TU Wien
TAPIO PAHIKKALA, University of Turku
MARCO LEVORATO, University of California Irvine
PASI LILJEBERG, University of Turku
NIKIL DUTT, University of California Irvine

The Internet of Things (IoT) paradigm holds significant promises for remote health monitoring systems. Due
to their life- or mission-critical nature, these systems need to provide a high level of availability and accu-
racy. On the one hand, centralized cloud-based IoT systems lack reliability, punctuality and availability (e.g.,
in case of slow or unreliable Internet connection), and on the other hand, fully outsourcing data analytics to
the edge of the network can result in diminished level of accuracy and adaptability due to the limited compu-
tational capacity in edge nodes. In this paper, we tackle these issues by proposing a hierarchical computing
architecture, HiCH, for IoT-based health monitoring systems. The core components of the proposed system
are 1) a novel computing architecture suitable for hierarchical partitioning and execution of machine learn-
ing based data analytics, 2) a closed-loop management technique capable of autonomous system adjustments
with respect to patient’s condition. HiCH benefits from the features offered by both fog and cloud computing
and introduces a tailored management methodology for healthcare IoT systems. We demonstrate the effi-
cacy of HiCH via a comprehensive performance assessment and evaluation on a continuous remote health
monitoring case study focusing on arrhythmia detection for patients suffering from CardioVascular Diseases
(CVDs).

CCS Concepts: • Human-centered computing → Ubiquitous and mobile computing; • Computing
methodologies → Machine learning; • Applied computing → Life and medical sciences; • Computer
systems organization → Distributed architectures;

Additional Key Words and Phrases: Internet of Things, Remote Patient Monitoring, Hierarchical Computing,
Fog Computing, MAPE-K, Machine Learning

ACM Reference format:
Iman Azimi, Arman Anzanpour, Amir M. Rahmani, Tapio Pahikkala, Marco Levorato, Pasi Liljeberg, and Nikil
Dutt. 2017. HiCH: Hierarchical Fog-Assisted Computing Architecture for Healthcare IoT. ACM Trans. Embed.
Comput. Syst. 16, 5s, Article 174 (September 2017), 20 pages.
https://doi.org/10.1145/3126501

Authors’ addresses: I. Azimi, A. Anzanpour, T. Pahikkala, and P. Liljeberg, Department of Future Technologies, University
of Turku, Agora 4th floor, Vesilinnantie 5, 20500 Turku, Finland; emails: {imaazi, armanz, aatapa, pasi.liljeberg}@utu.fi; A.
M. Rahmani, Department of Computer Science, Donald Bren School of Information and Computer Sciences, University of
California, Irvine, Irvine, CA 92697-3435, USA; M. Levorato, Donald Bren School of Information and Computer Sciences,
Computer Science Department, 3206 Donald Bren Hall, University of California, Irvine, Irvine, CA, 92697-2800, USA; email:
levorato@uci.edu; N. Dutt, Department of Computer Science, Zot Code 3435, Donald Bren School of Information and
Computer Sciences, University of California, Irvine, Irvine, CA 92697-3435, USA; email: dutt@ics.uci.edu.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2017 ACM 1539-9087/2017/09-ART174 $15.00
https://doi.org/10.1145/3126501

ACM Transactions on Embedded Computing Systems, Vol. 16, No. 5s, Article 174. Publication date: September 2017.



174:2 I. Azimi et al.

1 INTRODUCTION
There is a growing demand for dependable autonomous health monitoring services for patients
suffering from acute diseases [56]. The main function of automated health monitoring sys-
tems is to detect medical emergencies and patient health deterioration early enough, as rapid
response (i.e., from a few seconds to a few minutes) is instrumental to implement effective
countermeasures [45, 53]. Thanks to recent advancements in Internet of Things (IoT) technolo-
gies, it is possible to develop remote monitoring services with 24/7 availability for early-detection
and preventive purposes.

The IoT paradigm envisions a network scenario where objects (e.g., sensors) are connected and
uniquely identified over the global communication infrastructure [9]. Within the healthcare sec-
tor, IoT architectures can be decomposed into three main layers [3], as shown in Figure 1. At the
first layer, data collection is performed by distributed and mobile sensors. At the second layer,
gateways and access points provide continuous connectivity and conventional services such as
protocol conversions. These two layers are located at the vicinity of the monitored person. Dif-
ferent communication protocols such as Wi-Fi and Bluetooth LE are often used at this layer to
communicate with sensors [54]. In a traditional (i.e., client-server cloud-based) architecture for
remote health monitoring, gateways only act as a relay between sensors and remote servers. The
third layer consists of cloud resources interconnected to the local edge layers through multi-hop
networks. The cloud layer stores and process the sensory data to extract information, and possibly
generate notifications as a form of actuation. A broad range of data analytics, machine learning
and artificial intelligence algorithms have been implemented at this layer to provide a wide spec-
trum of services [16]. For instance, the cloud can serve as a pre-processing layer for data whose
extracted content is eventually post-processed by experts (e.g., health providers). Alternatively,
the extracted information can be stored for later actions (e.g., health coaching) [41, 47].

The cloud-based IoT architecture can provide acceptable performance and reliability to support
non-safety and latency critical applications. Examples of such services are several commercial and
smart city applications [16]. However, remote patient monitoring systems necessitate a higher
degree of dependability, accessibility, and robustness. Therefore, a straightforward extension of
the classic client-server model used in the Internet to encompass “things” is not suitable for a
large class of IoT applications, among which lies that at the focus of this investigation.

Important issues which interests traditional cloud-based architectures is the occurrence of dis-
connection from the core network or bandwidth and latency variations. Clearly, these issues can
have a severe negative impact on remote health monitoring services, where the end-user is of-
ten a patient with critical and time-sensitive needs. For instance, in emergency situations, a delay
in establishing a connection may lead to fatal consequences for the patient. In addition, remote
monitoring of several patients over time can overload storage and processing capabilities of the
cloud, as well as generate an excessive load (i.e., big data) to communication networks, possibly
disrupting existing services [13, 37]. Although producing a large volume of data is inevitable in
many IoT applications, intelligent pre-processing techniques at the edge can significantly mitigate
the volume of the generated data as well as the stress to the network infrastructure.

Alternative approaches propose the use of an intermediate Fog computing layer [15] capable of
data processing to enhance reliability and efficiency of the IoT architecture. An intelligent use of
such resource can lead to performance sufficient to meet the stringent requirements of healthcare
applications. The fog layer is equipped with (limited) computational capacity, which enables the
system to locally provide basic, and yet critical, services, and locally controlled distributed systems.
Thus, to implement reliable healthcare applications and services, there is the need for effective and
application-centric methodologies to map computational and resource management tasks across
the layers of the IoT architecture. In our context, an effective model can leverage the available
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Fig. 1. IoT-based system for remote patient monitoring.

resources and manage flow of data within the system from sensors to computational resources, as
well as the reverse flow of control.

In this paper, we present a hierarchical fog-assisted computing architecture, HiCH, for remote
IoT-based patient monitoring systems featuring autonomous data management and processing at
the edge. We first show that the conventional Observe-Decide-Act (ODA) control strategy [38]
is not capable of fully exploiting the features offered by the fog computing paradigm, and then,
propose to exploit and customize the concept of MAPE-K autonomic computing – with adaption
control loops – introduced by IBM [33] as a more efficient alternative. The main contributions of
this paper are as follows:

• We propose a hierarchical computing architecture and a methodology to efficiently partition
and accommodate the existing machine learning methods for fog-enabled healthcare IoT
systems.

• We customize, enhance, and map IBM’s MAPE-K model for the proposed architecture to
better manage system resources.

• We present a closed-loop management technique featuring an adaptive data transmission
solution based on patient’s conditions.

• We demonstrate a full system implementation for continuous remote health monitoring
case study focusing on arrhythmia detection for patients suffering from CardioVascular
Diseases (CVDs).

The rest of the paper is organized as follows. Section 2 outlines background and related work
for this research. We detail our proposed approach, HiCH, in Section 3. In Section 4, we demon-
strate a full system prototype and evaluate HiCH via a case study. In Section 5, we briefly discuss
advantages, limitations and future work of HiCH. Finally, Section 6 concludes the paper.

2 BACKGROUND AND RELATED WORK
In this section, we first briefly survey contemporary IoT-based health monitoring systems pub-
lished in the literature. We then describe the computing models typically deployed in IoT systems.

2.1 IoT Architecture and Fog Computing
IoT-enabled systems for health monitoring are typically designed to provide health applications
such as early-detection and prediction for users (e.g., patients and health providers) by implement-
ing data collection from patients, data transmission and data analytics. These scheme are broad in
scope, ranging from simple to complex monitoring systems. In simple IoT-based monitoring sys-
tems, only data collection, transmission and visualization for the users are implemented, and no
decision nor analytics concerning patient’s health condition is reported [7]. Hence, these simple
IoT-based monitoring systems are insufficient for ubiquitous monitoring that demands the addi-
tional capabilities of analytics and decision-making.
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Similarly, there are various medical cyber-physical system (MCPS) solutions designed to
autonomously actuate tasks w.r.t the sensor data and local decision making. Instances are artificial
pancreas for insulin injection regulation [27] and a brain machine interfaces [57]. Such solutions
are mostly restricted to typical data processing techniques (e.g., peak detection) using local
computational capacity. Therefore, they do not use heavy data analytics such as complex learning
algorithms for predictions mainly due their resource constraints.

On the other hand, more complex monitoring systems augment intelligent services using data
analytic methods varying from rule-based method to different learning algorithms [32]. Cloud-
based services are conventionally responsible for these analytics. In such systems, medical data is
collected from the individual via sensors; the data is delivered to cloud servers through a gateway;
and extracted information and awareness regarding individual’s conditions are shared with users
(e.g., health providers). Several IoT-based architectures have been proposed for remote monitor-
ing using this model. Some examples are ECG monitoring systems using wearable devices [10,
41, 52], Early Warning Score (EWS) systems for health deterioration detection [5, 11] and remote
physiological parameter monitoring [21, 25, 26, 28, 30]. Unfortunately, these systems critically rely
on uninterrupted Internet connections during monitoring; loss of (or degraded access to) Internet
connections during monitoring may result in loss of important services such as emergency sit-
uation notification and abnormality prediction. Therefore, remote health monitoring with fully
cloud-based services run a risk of having flaws in case of patient health deterioration.

In addition to cloud-based IoT systems, there are IoT architectures enabled by fog computing
concepts. Fog computing [14, 49] is the concept of extending the cloud computing paradigm to
the edge of the network and has been recently proposed to enable new types of services such
as local computation, storage, and control for IoT systems. One approach to realize this concept,
in particular for the healthcare domain, is by forming an intermediary layer of networked smart
gateways between sensors and the cloud [50]. Fog computing offers a variety of advantages to
IoT-based applications from both user and system perspectives. Geographic diversity, improved
privacy, enhanced reliability and latency reduction are among these benefits [17, 20, 55, 58].

In fog-based architectures, gateway devices perform local data processing along with data trans-
mission to cloud servers. Several research studies have investigated fog computing for health mon-
itoring systems. In these systems, different analytics such as feature extraction [43] and data pro-
cessing methods [18, 19, 23] are pushed to the fog layer. Moreover, fog computing enables resource
management at the local layer, however the management techniques are mostly limited to methods
with low computation costs such as rule-based methods [2, 6]. Although these fog-based systems
offer notable benefits for remote health monitoring systems, their functionality is bounded due to
the limited computational capacity at the edge nodes. Therefore, powerful machine learning algo-
rithms for local decision making cannot be implemented in the fog. Furthermore, the performance,
Quality of Service (QoS) and Quality of Experience (QoE) of the system might be degraded since
these fog-based algorithms may not as powerful/sophisticated as cloud-based ones.

In sum, ubiquitous health monitoring applications need to provide a high level of quality in
attributes such as availability and accuracy, most of which cannot be satisfied by the aforemen-
tioned systems. Although both cloud-based and fog-based architectures provide benefits for the
monitoring, their applications are insufficient due to their architectural limitations. In this regard,
a new architecture is needed to overcome the limitations while leveraging the best features of-
fered by both schemes. This could be achieved by amalgamating both computing paradigms and
partitioning the health analytics in a hierarchical behavior. Moreover, a management technique
enabled by learning algorithms is required to adjust system behavior with respect to the analyt-
ics and based on the context. We overcome these issues in our HiCH approach by presenting an
autonomic computing model for the IoT architecture as described next.
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Fig. 2. IBM’s MAPE-K model [33].

2.2 Computing Models
The computation model plays an important role in IoT systems to efficiently implement various
analytics at different architectural layers. Therefore, to enhance different system characteristics, it
is crucial to identify, customize, and map a proper computing model to IoT system tiers (i.e., sensor
network, gateway, and cloud). Depending on the application, different computing models can be
utilized for this purpose.

The conventional Observe-Decide-Act (ODA) management strategy [38] is an existing popular
model that is composed of three parts: to manage data collection (Observe), to analyze data and
exploit knowledge (Decide) and to implement suitable actions (Act). Due to its centralized nature
for analytics and decision making, this model is well-suited for cyber physical systems (CPS) with
local computation capacity at the sensor network or centralized cloud-based IoT systems; however
it cannot fully exploit available resources in distributed or hierarchical computing systems.

MAPE-K is an alternative computing model introduced by IBM [33]. MAPE-K provides
automated management components for computational units and specifies system behaviors. The
architecture for MAPE-K model is specified in four different computing components: Monitor,
Analyze, Plan, and Execute with access to a partially or fully shared knowledge base (see Figure 2).

Monitor collects data coming from different resources (i.e., sensors). It is the closest computing
component to the sensing fabric. It can also track and determine events that need to be analyzed.
Analyze provides data analytics to model situations. Data pattern, prediction techniques and meta-
data are exploited in this component. Plan is in charge of selecting or generating a procedure for
the system w.r.t. the inputs received from the Analyze component. This procedure can be either a
single command or a complicated plan. Finally, Execute provides necessary changes in the system,
to implement procedures generated in Plan component and in general to adjust the behavior of
the system.

In this work, we address the reliability, efficiency, and management issues in the existing health
monitoring systems by leveraging the concept of MAPE-K and proposing a novel partitioning
strategy to hierarchically compute data analytics and manage system resources. Our approach
aims at exploiting the best of both worlds, cloud and fog computing.

3 HICH: THE PROPOSED SYSTEM
In this section, we present HiCH, a hierarchical computing architecture tailored for fog-enabled
IoT systems and designed to leverage the benefits of fog and cloud computing paradigms for re-
mote health monitoring. HiCH offers a new computing and management model with two major
contributions:

1. HiCH partitions the health data analytics into two parts: the centralized part located in the
cloud, and the distributed part running on fog nodes. In contrast to traditional approaches that
use a centralized computing core in the cloud or fog tier, we propose a hierarchical autonomic
healthcare system where the computation and knowledge are distributed across different tiers.
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Fig. 3. Enhanced MAPE-K model.

This hierarchical computing scheme enables partitioning of analytics and decision making
between the fog and cloud, thereby significantly enhancing the availability, response time and
robustness of health monitoring services at the edge. The edge devices (e.g., gateways) are
augmented with a high degree of intelligence to provide local monitoring and notification when
the cloud connectivity is unavailable or unstable.

2. HiCH deploys a closed-loop system management technique tuned to the patient’s conditions
(i.e., context). These conditions could be defined according to the patient’s medical parameters,
activities and surrounding environments. The approach can be used to manage different system
resources, although in this paper we only focus on traffic management to control data transmission
from the fog to the cloud.

To clarify the functionality and definitions of the architecture, we present and exemplify differ-
ent components of HiCH via a case study. Below, we first describe our case study of a continuous
remote health monitoring system.

3.1 Case Study
Our case study focuses on arrhythmia detection in ECG monitoring for patients suffering from
CVDs, as an exemplar of a continuous remote health monitoring using HiCH. The deployed system
uses a typical single-channel ECG with 250 samples per second, a Microcontroller Unit (MCU), and
a wireless transmitter integrated as a sensor node. In the setup, we consider 10-second windows
for ECG signals, and the transmission (from fog to cloud) period of 1 minute.

3.2 Architecture
The HiCH architecture incorporates the concept of MAPE-K and fog and cloud computing
paradigms in remote health monitoring systems, enabling hierarchical partitioning and execution
of machine learning algorithms across these computing layers.

As discussed in Section 2.2, MAPE-K model includes 4 computing components, each sharing the
system knowledge. To enable hierarchical computing, MAPE-K components need to be properly
mapped into the three layers of the IoT system. Furthermore, to fulfill the desired closed-loop
behavior for resource management, we propose an enhanced MAPE-K model in which a new
component System Management is integrated (See Figure 3).

The four MAPE-K components are enabled with feedback in the model. The feedback received
from Execute, System Management is used to periodically tune the computing components with
respect to the inputs and the computations in the model.

We distribute and map the 5 components of the enhanced MAPE-K into a 3-tier IoT-based sys-
tem. Figure 4 illustrates the architecture. The idea is to i) map the heavy training procedures in
the cloud while outsourcing the trained hypothesis (e.g., classifier) to the fog nodes to be able to
operate in a standalone way, ii) periodically update the hypothesis at the fog, and iii) exploit the
knowledge at the edge to enhance resource management via closed-loop control. The blue arrows
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Fig. 4. HiCH: Our proposed IoT-based architecture.

in Figure 4 show the closed-loop behavior: the flow of action to the user and the flow of feedback
to the system through the sensors.

Monitor is the first computing component in HiCH located in the sensor layer. This component
is a bridge between sensors and other units. Analyze is the only computing component located in
the cloud to process and model complex monitoring conditions. The component receives data from
System Management. The data contains various information regarding patient health conditions
and presumably his surrounding contexts. Analyze derives a hypothesis function (i.e., model) from
the data and transfers it to Plan.

Plan is placed in the fog layer to enable local decision making that determines the patient’s con-
dition. The decision making is enabled by receiving the hypothesis from Analyze and continuous
sensory data. The sensor data are received through System Management. Execute is the second
computing component in the fog layer to set system behaviors during monitoring. Finally, System
Management is the third component in the Fog layer to locally manage the system configurations.
It determines the current state of the system considering previous states and the decision received
regarding the patient condition. In this architecture, we only allocate data transmission (i.e., band-
width) management to this component although it can be extended to cover other types of system
resources (e.g., energy).

In the following, we present the role of each component in the architecture, and exemplify them
via our case study.

3.2.1 Monitor. The Monitor component is shown in Figure 5(a). It includes an Analog-to-Digital
Converter (ADC) to convert sensor analog outputs to digital parameters and signals. Moreover, a
Microcontroller Unit (MCU) is integrated to enable data aggregation in a local data storage and
data pre-processing such as noise filtering and normalization. Finally, the data are packetized and
periodically transmitted to System Management. The packet size and the transmission period de-
pend on the data type collected by sensors.

In our case study, a sensor node including a digitized single-channel ECG, a Microcontroller
Unit (ATmega328P), and a wireless transmitter (RN42) is used.

3.2.2 Analyze. According to the type of sensor data, different machine learning algorithms can
be chosen for data analytics in the Analyze component (Figure 5(b)). Since the generated hypothesis
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Fig. 5. Major components of HiCH.

function (model) needs to be executed at the edge in the Plan, the limited processing power and data
storage capacity of the gateways at the edge needs to be considered in the proposed techniques.

To indicate the functionality in HiCH, we assume a simple supervised learning model [1] in
Analyze. To this end, we define h as a hypothesis function in a hypothesis set (h ∈ H ) to satisfy:

h : X → Y (1)
where X ∈ Rd represents the input space including n samples with d attributes and Y is output
space that is a vector of patient or context conditions. To simplify the model, we consider an output
vector with two possible outcomes, that is, normal and emergency conditions. However, the model
can be extended to provide multi-class classifications (more details in [42]).

Let us consider a classifier h inferred by a linear machine learning method (e.g., perceptron or
linear support vector machine):

h(x ) = sдn(wTx + b) (2)
where sдn(.) is a sign function, x is the input with d attributes, b is a bias value and w is a weight
vector inferred by the learning algorithm from the training data. From Equation (2), we observe
that the computational complexity of performing a prediction with hypothesis h is O (d ) in both
space and time, since it requires storing thed-dimensional vectors x andw in memory and carrying
out an inner product between them.

Nonlinear classifiers may also be fitted to HiCH depending on their time and space complexity.
However, some nonlinear classifiers are inappropriate for this architecture. For instance, instance-
based learning methods such as K-Nearest Neighbor (KNN) cannot be used in this architecture as
the training set would need to be stored in the fog layer, and hence the space complexity would
be O (dn), where n denotes the number of training data.

In the Analyze component, x and y are constructed in Training Data (Figure 5(b)). Since sensor
data defined in specific time-windows are heterogeneous (e.g., various signals and parameters),
we must extract attributes for each time-window. x is created using the extracted attributes from
sensor data and other attribute vectors from History Data and Plan feedback. In this manner, h is
learned and personalized during the monitoring not only from current sensory data but also from
patient history and system feedback (i.e., possible errors). Moreover, y as the output labels are
generated using user feedback (e.g., daily reports in occurred events) and other calibrated devices
(e.g., medical and hospital devices).
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Fig. 6. (a) and (b) indicates collected ECG cycles. (c) represents a cycle with different temporal features.

h is generated in Learning Algorithm using x and y from Training Data and possible hypotheses
from the Hypothesis Set (see Figure 5(b)). In this system, the learning is divided into two parts. At
the system initialization phase, h is generated with recorded history data. At runtime, h is updated
during the monitoring with new data.
h is stored in Final Hypothesis and subsequently is sent to Plan for local decision making. More-

over, values such as the intensity of emergency events are sent to History Data for future learning.
In our case study, the Training Data unit is responsible for denoising the input signal by

using a bandpass filter with the range of 3−45 Hz. Then, ECG cycles are identified by segmenting
each window based on RR peaks. To this end, we use the Biosppy toolbox [34] in Python.
Figures 6(a) and 6(b) provide examples of normal ECG cycles (60 cycles) and abnormal ECG cycles
affected by arrhythmia (67 cycles) referring to a one minute period. To better illustrate the ECG
cycle differences, the detected peaks are aligned. As shown in the figures, when abnormality is not
present, the signal is almost unchanged across ECG cycles. In contrast, the signals corresponding
to arrhythmia present significant variations across ECG cycles.

Moreover, Training Data extracts 5 features in the temporal domain [36] for each ECG cycle. The
features include QRS complex duration, T wave duration, RR interval, PR interval and ST segment.
One ECG cycle in temporal domain is illustrated in Figure 6(c). To extract temporal features, we
implement cross-correlation between each cycle and a Triangular signal, defined as:

( f ∗ д) (τ )
def
=

∫ ∞

−∞
f ∗ (t )д(t + τ )dt (3)

where f is the ECG cycle, and д is a Triangular signal defined by:

x (t ) =
⎧⎪⎨⎪⎩

0 |t | ≥ 1
A[1 − |t |T ] |t | < 1

(4)

whereT is the signal length that in our case equals to a QRS complex length, andA is the amplitude
that in our case is a QRS complex amplitude. Using this cross-correlation, we utilize the two signals
similarities for detecting peaks in each ECG cycle.

We use linear Support Vector Machine (SVM), a supervised machine learning algorithm, to dis-
tinguish between the binary hypothesis (normal vs. arrhythmia). The algorithm is selected because
of its low computation cost compared to other alternatives such as neural network backpropaga-
tion in which more values (i.e., weights for different layers) should be stored in Plan. Moreover,
the algorithm represents an acceptable binary classification on the data (see Section 4.3).
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Fig. 7. Abnormality detection implemented in the Plan.

The implemented SVM classifier uses the hypothesis function defined by Equation (2) by stor-
ing the vector of primal variables w along with the constant b and then sending it to Plan. Conse-
quently, a single inner product between w and x in Plan is deployed, instead of expensive compu-
tations. For more details see [42]. The classifier is implemented using Scikit-learn [46] in Python.

3.2.3 Plan. Similar to the feature extraction approach in Analyze, attributes are extracted from
the sensor data in Test Data unit. Then, Decision Making input, x ′ ∈ Rd including d attributes, is
created (see Figure 5(c)).

The generated hypothesis in Analyze is periodically downloaded to Hypothesis Function unit.
Such feature provides a personalized classifier during the monitoring and subsequently increases
the accuracy. The update period (e.g., daily or weekly) is specified with respect to the types of the
sensor data.

A decision vector is generated from Decision Making unit that indicates the current patient’s
condition. The vector as the Plan output is forwarded to the Execute for system actuation.

In our case study, the incoming ECG signals defined in 10 windows is converted to features in
Test Data unit. Then, the window is classified as normal or abnormal using the current hypothesis
function. Finally, the component sends the label assigned to each window to Execute component.
Figure 7 shows an example where abnormality is detected at the Plan component. Decisions are in-
dicated by the red dots, with an abnormal situation detected between the 600 to 720 second interval.

3.2.4 Execute. Execute fulfills the actuation in the system by forwarding updates to three other
parts in the architecture. First, it updates System Management to apply changes with respect to
the patient condition. Second, it locally notifies patient and health providers about the patient
condition; third, it provide a system feedback for Analyze by sending the decision to the cloud.

3.2.5 System Management. In this architecture, data transmission control is performed by Sys-
tem Management. This component includes 4 different units to receive data from the sensor layer,
to locally store and organize the data and to transmit it to Plan and the remote cloud. Figure 5(d)
indicates the units along with data and command flows.

The sensory data are collected via Receiver and are stored in Data Storage. Data Storage is de-
signed to locally store and organize the data (e.g., data structure), to send a complete set of sensory
data to Plan for local decision making and to implement required data reduction for the transmis-
sion to the cloud. Transmitter sends the data to the remote servers with a reconfigurable transmis-
sion rate with respect to the commands from Management Algorithm.

Management Algorithm is the processing core of this component that receives updates from
Execute. It controls data reduction and data transmission rate via communicating with Data Storage
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Fig. 8. The state diagram for n = 4 and m = 4. S1:n shows system states while P1:m represents patient’s
conditions.

and Transmitter. We utilize a finite-state machine (FSM) to model Management Algorithm. In the
model, S = [s1, s2, . . . , sn] includes n possible system states where s1 performs the lowest state (i.e.,
the most cost-effective setting with the lowest transmission rate from the fog to the cloud) and sn
represents the highest state (i.e., the most accurate setting with the highest performance). External
input of the FSM defines as P = [p1,p2, . . . ,pm] containing patient conditions where p1 indicates
normal condition and pn represents high-risk condition.

Regarding the current state and the external input, the next state is determined, and subse-
quently system configuration is updated. In the state determination, the system instantly jumps
from a low state to higher ones to enable rapid response to emergency cases. However, it gradually
decreases (one step per iteration) from a high state to lower ones. To indicate the functionality of
the proposed FSM, we represent the state diagram of an example in Figure 8.

In our case study, System Management is a Python process running on gateways and being
responsible for deciding which portion of incoming data should be transferred to the cloud. This is
a part of the local processing which dramatically reduces the external bandwidth from the gateway
device to the cloud. Given that the decision making is implemented in the fog (i.e. Plan), and the
data is transmitted to the cloud (i.e., Analyze) for updating the model. Therefore, this data reduction
does not affect the decision making. In other words, in our case, System Management eliminates
redundant features in normal conditions although in abnormal cases, it completely transmits the
data, from which new information could be obtained for the model.

In System Management, data are recorded in two cache storage units defined based on patient’s
conditions (i.e., normal and abnormal). Figure 9 shows the control flowchart in the System Man-
agement. We define W as the number of windows in a transmission period, and Q as the portion
of data that will be transmitted if the patient’s condition is normal. In the considered setup, the
window length is 10 second, and the transmission period is 1 minute; so W is 6. The flowchart
indicates a loop over each window in the transmission period. In this loop, the cache storage A
stores every window of data irrespectively of the conditions, and cache storage B stores only Q
window(s) of data whether patient’s condition is normal in the current transmission period. At
the end of each iteration, System Management sends the data in cache A to the cloud if at least one
abnormal window is detected, otherwise it sends the data in cache B.

4 SYSTEM DEMONSTRATION AND EVALUATION
In this section, we present a typical use-case for HiCH where continuous monitoring of ECG sig-
nals is used to detect possible arrhythmia. The detection of arrhythmia triggers a notification to
the person under monitoring and health providers. In this case study, HiCH is compared with a
baseline IoT system introduced in Section 4.1.
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Fig. 9. The flowchart for data transmission from the fog to the cloud.

Fig. 10. The IoT-based system modeled by ODA.

4.1 The Baseline IoT System
As discussed in Section 2, there are various IoT-based remote health monitoring systems (e.g.,
cloud-based and fog-based) that can be selected as a baseline for performance and efficiency com-
parisons. We consider the conventional and centralized ODA- and cloud-based IoT architecture as
the baseline in this study. The baseline IoT system is illustrated in Figure 10.

In this architecture, health data is first collected from the sensor layer. The data is then transmit-
ted to the cloud through an access point, (i.e., gateway device). Afterwards, incoming data is stored
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Table 1. The Gateway Devices’ Specifications

Jetson-TK1 HP Compaq 8200 Elite
Processor Quad-core Cortex A15 + 192 CUDA cores Quad-core Core i3 2100

Architecture ARMv7-A Intel Core
Speed 2.33 GHz 3.10 GHz
RAM 2 GB 16GB

External Storage 16 GB fast eMMC 250GB SATA HDD

and analyzed in the cloud layer to provide actions for the system and notifications for users. In
this architecture, no significant computing resources are placed in the gateway and the computing
core is centralized in the remote server. The computing core in this architecture can be modeled
by ODA control strategy in which Observe is placed in the sensor layer and Decide and Act are
placed in the cloud, as shown in Figure 10.

4.2 Setup
For the training and test medical data, we utilize “Long-Term ST Database” available on Phys-
iobank [29, 35]. Since we use existing data, we emulate the sensing part by transmitting the pre-
recorded data from the MicroSD card of the sensor node. We use ATmega328P micro-controller
[8] to read the pre-recorded data, which is then sent to an RN-42 Bluetooth module [40] through
serial link.

From the available data set, we select a period of 5 hours from a healthy patient along with
5 hours from an individual suffering from a CVD. The samples are used to train a data analysis
module in the Analyze component. A test data set is also created to assess the performance of
the remote classifier whose task is to detect abnormalities. In the test data set, we simulate an
emergency scenario by introducing ECG data corresponding to arrhythmia at a random point
within a normal ECG signal. To facilitate the analysis, we divide the signal into windows of
10 seconds.

For the fog layer, we use single-board computers. Specifically, Linux-based computing boards
are selected to run an Apache server and Python code for the data processing at the fog. In this case
study, we used an NVIDIA Jetson-TK1 [44] board and an HP Compaq 8200 Elite Linux machine,
each of which presents different characteristics. The HP Compaq 8200 Elite is powered by a Quad-
core Corei3 2100 CPU and 16GB RAM, which provides much better performance compared to
Jetson-TK1 platform. Table 1 indicates the platforms’ specifications.

At the fog layer, a Python service is responsible for receiving data from sensor nodes via a Blue-
tooth module using the serial communication port. The Python service is also developed to store
and process the data. An Apache server is programmed in the gateway for transmitting data to the
cloud. The fog device uses TCP protocol to establish a wireless communication link to the cloud
server. In order to implement the adaptive behavior which is the core of the proposed architecture,
the System Management has a set of transmission rates which can be dynamically selected while
relaying the data. The rate is controlled concerning normality or abnormality detection in Plan
component.

In the baseline IoT system, the gateway sends all the data to the cloud using TCP protocol, and
waits for the acknowledgment from the cloud server. The cloud server is a Linode VPS (virtual
private server) [39] with two 2.50GHz Intel Xeon CPU(E5-2680 v3), 4GB memory and SSD storage
drive running Apache web server on Ubuntu Linux.
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Table 2. Normalized Confusion
Matrix

Predicted Value
True TN = 0,97 FP = 0,03
Value FN = 0,01 TP = 0,99

4.3 Accuracy Assessment
We first validate the outcomes of the proposed architecture. To assess the accuracy of detection at
the cloud, we use the k-fold cross-validation technique [1], where we set k to 10, the defined train-
ing set of 10 hours is partitioned into 10 sub-periods where in each experiment, 9 sub-samples are
considered as training data and 1 as validation data. The overall accuracy is equal to 0,936 (±0,055).
Although the portion of ECG signals with arrhythmia might be less than normal ones in practical
experiments, we utilized training set with almost equal portions of normal and abnormal ECG data
to obtain unbiased results.

In addition to the validation performed using training data set from the same patients, we cross-
validate the performance of the system using test data from 4 new patients, whereas the classifier
is trained using data from the previous patients. Using the true values and the estimated values,
we have the normalized confusion matrix indicated in Table 2, whose F1score is also calculated as:
0,98. However, we remark that different implementations of the classifier may produce different
results.

In consequence, the algorithm performed an acceptable classification to distinguish between
normal and abnormal ECG cycles.

4.4 Performance Evaluation
Next, we assess HiCH in comparison with the baseline IoT system from two different perspectives:
(i) we consider response time, and (ii) we evaluate data traffic (bandwidth utilization) in both
systems.

4.4.1 Response Time. We now focus on response latency, a critical metric to measure system
response to alert the user in case of emergency. Dividing time latency into data transmission time
and computation time, we have:

a) Data transmission time from the sensor node to the gateway device
b) Data transmission time from the gateway device to the cloud
c ) Notification transmission time from the cloud to the gateway device
d ) Notification transmission time from the gateway device to the patient (i.e., a node placed

in the sensor layer)

and

α ) Computation time for data analytics in the cloud
β ) Computation time for data analytics in the fog

Therefore, the baseline IoT system’s latency is calculated as a + b + α + c + d while the latency
for HiCH is a + β + d (Figure 11).

In our case study, the ECG data sampling rate is 250 samples per second while each sample is 3
bytes. Considering the recording time for a window (10 seconds in our case) and the header, the
sensor node should send 8000 bytes (7500 bytes of data + 500 bytes header) per transmission to
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Fig. 11. Response time in the baseline IoT and HiCH.

Table 3. Latency (b + c) between the Gateway Devices and Server with
Different Connection Networks

Wi-Fi 4G 3G GPRS

Spec. (Ping, DL,
UL)

2ms
30Mb/s
15Mb/s

20ms
4Mb/s
3Mb/s

100ms
750kb/s
250kb/s

500ms
50kb/s
20kb/s

b + c (ms) 125±17 147±16 405±23 3686±4

the gateway. The transmission module (i.e., RN-42 Bluetooth) in the sensor node takes 651 ms to
transmit 8000 bytes using 115200 bit/s baud rate. Therefore, a = 651ms .

Moreover, sending a 500-bytes notification header using the same module and baud rate takes
43 ms (d = 43 ms). In contrast with {a and d}, {b and c} are not fixed values and depend on the
available network specification. Table 3 shows {b + c} values for Wi-Fi, 4G, 3G and GPRS networks,
each of which has different latency (i.e., ping time), download and upload speeds. These values
were obtained from data transmission for 1 hour monitoring.

The computation time in our case study is measured as follows: α equals (22 ± 3ms), and β
(using different boards) equals: (27 ± 2ms) using HP and (65 ± 3ms) using Jetson-TK1. Given that
Plan has the most computation burdens compared to the two other components at the edge. The
response time for the systems are shown in Figure 12. The respond time for the baseline systems
(illustrated with violet bars) depends on the network transmission rate while the response time
in HiCH system (illustrated with red bars) relies on the computational capacity of the gateway
device. Compared to the baseline IoT systems, HiCH reduces the response time when using any of
the gateway devices. This improvement is particularly significant when the connection provided
by the network is weak or lost. However, we remark that gateway device specification is important
in this system. To this end, we also tested HiCH on a less powerful edge device, Raspberry Pi Zero
device [51], and obtained the response time of 1414ms .

4.4.2 Bandwidth Utilization and Storage. Next we evaluate the bandwidth savings in our system
compared to the baseline IoT system, by assessing data transmission from the gateway to the cloud
and data storage in the cloud.

We use the cache size to estimate the required bandwidth to transmit the data and the required
memory to store the data in the cloud. Table 4 shows the traffic handled by the System Management
as a function of the parameter Q (i.e., the portion of data that will be transmitted if the patients
condition is normal). The obtained values indicates a significant reduction in the bandwidth uti-
lization over a 1 hour monitoring period if Q is small. This data traffic reduction is 82% if Q is 1.
Note that if Q is set to 6, all the data is transmitted to the cloud, so it can be considered the same
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Fig. 12. Response time for different approaches.

Table 4. Data Traffic for 1 Hour Monitoring with Different Q

Data to be transferred Data description TCP overhead Total traffic
Q to the cloud (KB) (KB) (KB) (KB)
1 439 29 13 481
2 879 29 25 933
3 1318 29 37 1384
4 1756 29 49 1836
5 2197 29 61 2287
6 2636 29 73 2738

situation as in the baseline system. This reduction becomes more significant when the number and
resolution of monitored vital signs or patient activities is increased.

Similarly, Table 5 indicates the volume of stored data in the cloud for 1 hour monitoring (with
8 minutes abnormality). The volume of data during abnormality detection does not change with
varyingQ , due to the maximum transmission rate. However, the stored data in normal condition is
remarkably reduced. This reduction of unnecessary data transmission becomes particularly more
significant in long-term health monitoring scenarios where large amounts of health data need to
be stored in the cloud for every patient.

5 DISCUSSION
We now discuss the advantages, limitations and potential of HiCH in remote health monitoring
systems from both user and system perspectives.

From the user perspective, enhancing Quality of Service (QoS) and Quality of Experience (QoE)
are the main targets in HiCH. Cloud-based systems heavily depend on the connectivity between
local devices and the server, and hence, binds the system functionality to the availability of Internet
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Table 5. Data Storage for 1 Hour Monitoring with Different Q

Data in normal Data in abnormal Data stored in the Reduction in
Q cond. (KB) cond. (KB) cloud (KB) data size
1 406 355 761 71%
2 787 355 1142 57%
3 1167 355 1522 43%
4 1549 355 1904 29%
5 1929 355 2284 14%
6 2310 355 2665 0%

connection. HiCH, on the other hand, has no constraint on ubiquitous Internet connection due to
local decision making and notification.

Security is an essential issue in HiCH as well as in every health IoT application since failures
could put lives at risk [50]. We consider our system security as three parts. a) Data transmission
security from the sensor network to the fog: Most wireless transmission protocols are recently
enabled to encrypt data during the transmission. Using Bluetooth protocol, communication starts
with pairing, and subsequently encrypted data is transmitted. In our case study, RN-42 Bluetooth
module transfers data using 128-bit AES-CCM encryption [24]. b) Data transmission security from
the fog to the cloud: In WiFi and LAN networks, data is encrypted in a higher level using Secure
Sockets Layer (SSL) connection as used in our case study. c) Data storage security on the fog and the
cloud: An attribute-based encryption (ABE) algorithm provides several data access levels for stored
data in fog and the cloud. It has been shown that the ABE algorithm is feasible in IoT applications
to hold multi-level data access as well as privacy [4]. Moreover, an end-to-end secure framework
for Fog-enabled IoT-systems has been recently introduced to enable efficient authentication and
authorization while complex security algorithms perform at the edge [48].

Fully local computing systems are bounded to their processing power and data storage, so sen-
sitivity and specificity of these systems are compromised compared to cloud-based systems. In
contrast, HiCH copes with this issue by moving the training phase to the cloud and periodically
updating local decision makers. This enables the remote servers to form personalized models and
leverage patient medical history in the model building.

Moreover, system response time is reduced in HiCH particularly in case of poor connectivity.
This is advantageous to healthcare providers since they can proactively react to possible health
deterioration cases. It should be also noted that the processing power and storage capacity of
fog devices play an important role in determining the efficiency of the HiCH as shown in our
experiment. However, with the current trend of increasing processing power and storage of the
edge devices, the significance of this concern is diminishing.

Another possible limitation in HiCH is the choice of the learning algorithm. As we discussed in
Section 3, some learning algorithms, such as instance-based learning, might not fit within this
system. Hence, in some cases, the accuracy of decisions in HiCH might not be as high as in
cloud-based systems. This concern is mostly application-specific, and the range of HiCH-
compatible algorithms that are widely used nowadays for machine learning is broad.

Moreover, the closed-loop local control enables a dynamic and personalized resource manage-
ment in systems where various configurations can be adjusted with respect to patient’s condi-
tions. In this paper, we only concentrated on the traffic management between the fog to the cloud,

ACM Transactions on Embedded Computing Systems, Vol. 16, No. 5s, Article 174. Publication date: September 2017.



174:18 I. Azimi et al.

however HiCH can be enriched to consider more holistic resource management. Our future work in
this direction will consider personalized energy management to increase the sensors’ battery life.

In addition to the healthcare domain, HiCH can be adapted to other domains, where reliability,
punctuality and availability are important, for instance IoT-based home and environmental moni-
toring applications focusing on early-detection and preventive purposes [9, 31]. Examples are fire
early-detection, environmental disaster prevention and home intrusion detection. Moreover, HiCH
can be tailored for assistive IoT-based services (e.g., assisted living and assisted driving) targeting
people with disability or frailty [12, 22].

6 CONCLUSIONS
Considering the life critical nature of remote health monitoring systems, a high level of availability
and accuracy is required. IoT-based solutions appear to be a viable scheme to deliver availability
and accuracy. However, conventional centralized cloud-based IoT systems need uninterrupted In-
ternet connectivity, which poses challenges in the face of mobility and/or degraded access to the
Internet. On the other hand, fully distributed fog-based IoT systems support untethered operation
but sacrifice accuracy due to the limited computation capacity at the edge. In this paper, we pro-
posed a novel computing architecture, HiCH, for IoT-based health monitoring systems to leverage
the benefits of fog and cloud computing paradigms. The two major contributions of HiCH are:
1) a hierarchical computing architecture for partitioning and execution of machine learning data
analytics; 2) a closed-loop management technique enabled by autonomic system adjustment with
respect to patient’s condition. We evaluated HiCH in comparison with a baseline IoT system and
discussed the advantages and limitations of the proposed architecture in remote health monitoring
systems. Finally, as a proof of concept, we demonstrated a full system implementation targeting
continuous health monitoring for abnormal condition detection using ECG signals.
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ABSTRACT
Remote health monitoring is a powerful tool to provide preven-
tive care and early intervention for populations-at-risk. Such mon-
itoring systems are becoming available nowadays due to recent
advancements in Internet-of-Things (IoT) paradigms, enabling ubiq-
uitous monitoring. These systems require a high level of quality
in attributes such as availability and accuracy due to patients criti-
cal conditions in the monitoring. Deep learning methods are very
promising in such health applications to obtain a satisfactory per-
formance, where a considerable amount of data is available. These
methods are perfectly positioned in the cloud servers in a cen-
tralized cloud-based IoT system. However, the response time and
availability of these systems highly depend on the quality of In-
ternet connection. On the other hand, smart gateway devices are
unable to implement deep learning methods (such as training mod-
els) due to their limited computational capacities. In our previous
work, we proposed a hierarchical computing architecture (HiCH),
where both edge and cloud computing resources were efficiently ex-
ploited, allocating heavy tasks of a conventional machine learning
method to the cloud servers and outsourcing the hypothesis func-
tion to the edge. Due to this local decision making, the availability
of the system was highly improved. In this paper, we investigate the
feasibility of deploying the Convolutional Neural Network (CNN)
based classification model as an example of deep learning methods
in this architecture. Therefore, the system benefits from the features
of the HiCH and the CNN, ensuring a high-level availability and
accuracy. We demonstrate a real-time health monitoring for a case
study on ECG classifications and evaluate the performance of the
system in terms of response time and accuracy.
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Figure 1: A three-tier IoT-based health monitoring system
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1 INTRODUCTION
Internet of Things (IoT) is increasingly growing in healthcare sys-
tems, where patients with acute diseases and at-risk populations
such as senior adults and pregnant women can be continuously
monitored. Such IoT-based applications are promising alternatives
to traditional health services, extending the boundaries of health-
care outside of hospital settings [3, 15]. They mostly target early-
detection and prevention of patients’ health deterioration as well
as allowing independent living of the patients [5].

These systems can be conventionally partitioned into three main
tiers in the context of IoT to deliver health monitoring applica-
tions [2]. The three tiers are illustrated in Figure 1. First, a wireless
body area network (WBAN) including wearable bio-sensors ac-
quires health data. In real-world applications, such data acquisition
is mostly performed 24/7 via heterogeneous sensors by which a
massive volume of data (i.e., big data) [6, 21] is generated over time.
Second, continuous connectivity is enabled via a gateway device
located in the vicinity of the WBAN (i.e., edge). The gateway device
traditionally operates as a relay between the WBAN and servers al-
though supplementary services can be allocated to the edge. Third,
a cloud server is responsible for continuous data analysis methods,
enabling real-time decision making.

A wide range of machine learning algorithms is utilized for
decision makings in healthcare applications [1, 25]. However, most
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of the conventional methods such as traditional neural networks
and k-nearest neighbors are inapplicable when the scale of data
increases over time, and large amounts of data as big data are
generated [32]. In contrast, deep learning methods are promising
alternatives in this regard, using strategies in deep architectures
to learn hierarchical representations [27, 33]. Such methods can
manage large amounts of data while the accuracy improves with
the increase of training datasets. Convolutional neural networks
(CNN) is one example of the deep learning methods, considered in
this work for the IoT-based health monitoring.

In a cloud-based IoT architecture (Figure 1) [11, 12, 23], deep
learning methods are perfectly positioned in the cloud servers to
take advantages of high-end machines. These machines provide
a satisfactory performance with considerably low execution time.
However, the response time of the system heavily depends on the
availability and quality of Internet connection. Obviously, these
systems are unable to satisfy latency-critical applications (e.g. health
monitoring), as they have serious consequences for the patients in
emergency situations, to the detriment of a delay in establishing a
connection.

Moreover, exploiting smart gateway devices at the edge is re-
cently proposed for health monitoring [7, 28, 29]. In this regard,
the roles of the gateway devices are extended to implement data
processing, through which the collected data is analyzed locally
[8]. The gateway devices are equipped with limited computational
resources, so a smart task allocation is required to fulfill health
monitoring requirements. However, deep learning methods cannot
be fully performed on the edge devices, as they are highly expensive
in terms of computation time.

Another alternative is a hierarchical computing architecture,
in which both local and remote computing resources of the IoT-
based system are efficiently exploited. In our previous work [4], we
proposed such a hierarchical architecture for a health monitoring
system named as HiCH, partitioning a linear machine learning
method (i.e., support vector machine with a linear kernel) into
different computing components distributed in the three-layers IoT
system. The HiCH architecture could utilize the benefits of both
edge and cloud computing, where a high level of availability was
obtained due to local decision making as well as preserving the
performance of the learning algorithm.

In this paper, which is an extension of our previous work pre-
sented in [4], we investigate the feasibility of deploying deep learn-
ing as a nonlinear machine learning algorithm in the HiCH archi-
tecture. The successful integration of deep learning in the HiCH
architecture enables health monitoring systems to offer a high level
of availability and accuracy. In summary, our main contributions
in this work are as follow.

• We present that HiCH is capable of fully employing the Con-
volutional Neural Networks (CNN)-based machine learning
model [31] to perform a real-time heart-related disease de-
tection.

• We demonstrate a real-time health monitoring system imple-
mentation for a case study and evaluate the response time
of the system.

Figure 2: The hierarchical IoT-based architecture

• We evaluate the accuracy of the classification and indicate
how the collected data throughout the monitoring can influ-
ence the accuracy.

The rest of the paper is organized as follow. In Section 2, we
outline a short background of deep learning. Section 3 presents the
hierarchical architecture. The demonstration and performance of
the proposed system are indicated in Section 4. Finally, Section 5
concludes the paper.

2 DEEP LEARNING
Deep learning is one subset of machine learning algorithms that are
being used recently in various fields. It has been demonstrated to
outperform traditional methods in speech recognition, visual object
recognition, and object detection. Deep learning models consist of
multiple processing layers that are capable of learning meaningful
features of the raw data without domain-level expertise. On the
contrary, conventional machine learning methods typically require
a considerable amount of domain-level expertise to first extract
features and then perform the classification [22].

Convolutional neural networks (CNN) are a class of deep neural
networks which are often used with two-dimensional signals such
as videos and images. They can learn thousands of objects using mil-
lions of images as input datasets. Learning capacity of the CNN can
be controlled by varying the depth and breadth of the model [20].
In addition to the two-dimensional signals, CNNs can be exploited
with one-dimensional signals such as electrocardiography (ECG)
or audio signals.

A typical architecture of CNN for image recognition is formed by
stacking multiple layers of computing units with different roles [30].
The main unit in CNN architecture is the convolutional layer that
contains learnable filter banks activating when specific features
are detected. Max pooling layers leverage CNN architecture to
reduce the amount of parameters and enable over-fitting. Fully
connected layers typically follow the series of convolutional and
max-pooling layers. Role of these layers acts as a classifier for the
learned features.
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3 HIERARCHICAL COMPUTING
ARCHITECTURE

In this section, we outline the HiCH as a hierarchical comput-
ing architecture enabled by the Convolutional Neural Networks
(CNN) to perform real-time heart-related diseases detection using
ECG signals. The HiCH exploits the capabilities of edge and cloud
computing paradigms, allocating heavy computation tasks of the
classification algorithm to the cloud and outsourcing the decision
making task (i.e., classifier) to the edge. Therefore, the availability
of the IoT-based application is significantly improved, due to local
decision making in the case of degraded Internet access or connec-
tion loss. Moreover, the performance (e.g., accuracy) of the learning
algorithm is preserved in this hierarchical architecture as well as
its performance in a fully-centralized computing core in the cloud.

The HiCH architecture employs an enhanced version of the
MAPE-K model introduced by IBM [17], distributing the computa-
tions in the three-layers IoT system. The model includes 5 different
computing components named as Monitor, Analyze, Plan, Execute
and System Management. In this following, we only exploit the
first 4 components of this model, as the System Management is
responsible for managing the system configurations and is out of
the scope of this paper. For more details see [4]. Figure 2 illustrates
the proposed architecture enabled by the computing components,
each of which shares the system knowledge.

3.1 Monitor
The monitor is a bridge between the sensors and other computing
components, located in the WBAN. It includes a local processing
unit for analog to digital conversion, pre-processing methods (e.g.,
data filtering and compression) and data aggregation in a local
data storage. The stored data are periodically transmitted to the
edge. The transmission time is determined according to the data
and application, which is 10 seconds of the ECG signal in our case
study.

3.2 Analyze
Heavy computation tasks including training the hypothesis func-
tion (i.e., classifier) are allocated to the Analyze that are fully posi-
tioned in the cloud machines. As indicated in Figure 3, the hypoth-
esis function is generated using collected data and feedback. The
Training Data performs required data processing methods before
feeding the data to the Classification Algorithm.

Figure 3: The Analyze component in the cloud

Figure 4: Overall structure of CNN and MLP

In our case study, the Training Data is responsible for ECG cycles
(i.e., heartbeats) extraction from the incoming ECG signals. More-
over, a fully automatic deep neural network based classifier [31]
is employed as the Classification Algorithm to detect and classify
different abnormalities in ECG signals. In addition, a pre-trained
model (i.e., Hypothesis Set in the Figure 3) is exploited from ECG
datasets. At the beginning of the monitoring, this model acts as a
baseline in clinical trials although it is periodically updated over
time when new data and feedback are collected.

In the Classification Algorithm, first, the meaningful features are
automatically determined by leveraging a three-layers CNN. In this
method, 16, 32 and 64 neurons are selected as the first, second and
third CNN layers, respectively. Moreover, pool size of max pooling
is set as 4, and 20% dropout rate is determined to prevent overfitting.
The rectified linear unit (ReLU) is used as an activation function
[16] in convolutional layers.

Second, the Multilayer Perceptron (MLP) is utilized to implement
the classification, using the extracted features from the CNN layers.
In this method, one hidden layer with 128 neurons is selected with
a learning rate equals to 0.001. Moreover, Tanh and Adam [19]
functions are utilized as the activation function and optimization
algorithm, respectively. A High-level structure of the classification
algorithm including CNN and MLP is shown in Figure 4.

3.3 Plan
The classifier is periodically sent to the Plan located at the edge,
providing local decision making. Such periodical updates of the clas-
sifier enable personalization in the decision making, considering

Figure 5: The Plan component at the edge
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incoming data in re-training of the classifier (at the Analyze com-
ponent) throughout the monitoring. As illustrated in Figure 5, the
streaming data received from the Monitor component are classified,
and a decision vector is generated. Note that similar to the Analyze
component, required data processing methods (e.g., heartbeat ex-
traction from ECG signals, filtering, and normalization) are fulfilled
in the Test Data. The decision vector as the output contains the
decision class (e.g., patient’s health status). It is sent to the Execute
component for further actuation.

3.4 Execute
Execute is the second computing component at the edge, imple-
menting the actuation of the system. It sends notifications to the
users when an abnormality is detected in the Plan. Moreover, it
forwards system feedback to the Analyze, improving the classifier
in terms of accuracy. For example, the model is improved over time
by sending the estimated decision class and the true label of data
reported by the patient and health provider.

4 IMPLEMENTATION AND EVALUATION
We demonstrate the proposed architecture empowered by the CNN
via a health case study on ECG classification. In this regard, the
decision making is implemented at the edge, sending notifications
to the user in case of disease detection. We, first, evaluate response
time and availability of the HiCH in comparison with a conventional
IoT-based system where the computations are fully performed in the
cloud server. Then, we assess the accuracy of the HiCH, indicating
the accuracy of decision making at the beginning of the monitoring
and its improvement throughout the monitoring.

4.1 Setup
We emulate a sensor node and use the MIT arrhythmia database
available at [14, 24, 26] to train and test the classification algorithm.
The sensor node emulator is an ESP8266-12E WiFi module which
contains an 80MHz 32-Bits RISC microprocessor with 96KB RAM
and 4MB QSPI flash memory. The Wifi module connects to a local
WiFi network and the microprocessor is able to read a Micro SD
card via SPI communication. The ECG data is stored on the Micro
SD card. We program the sensor node to read 3600 ECG samples
from a file on Micro SD card during a 10-second period and send
them via an upload POST request to the edge device.

The MIT Arrhythmia database includes totally 48 separate ECG
recordings, and the length of each recording is 30 minutes. ECG
in this database is stored using a two-lead configuration using
360 Hz sampling rate and digitized with 11-bit resolution. Origi-
nally, heartbeats in the database are labeled by two cardiologists.
19 different labels have been used in classifying arrhythmias. How-
ever, AAMI [13] recommends that these classes can be divided into
five super-classes, namely normal (N), supraventricular ectopic
beat (SVEB), ventricular ectopic beat (VEB), fusion beat (F) and
unknown beat (Q). These types of arrhythmias are not immedi-
ately life-threatening, but still may demand further investigation.
Arrhythmias that belongs to this category can be detected from a
single heartbeat, which means that shape and other morphological
features define the type of the arrhythmia [18].

Figure 6: Response time in the conventional IoT-based sys-
tem and the HiCH

The edge device is an Ubuntu Linux machine running Apache
web server, PHP, and Python interpreter services. A PHP script
receives the samples file from the sensor node and calls the Python
codes for signal processing and decision making. The reply to the
sensor node upload POST request contains the result of decision
making.

To perform the comparison between the HiCH and the conven-
tional IoT-based system, we implement a similar procedure on the
cloud machine which is a virtual private server (VPS) with the same
OS and services. The VPS runs on two E5-2680 v3 Intel Xeon CPUs
at 2.50GHz with 4GB RAM and 40Gbps network.

4.2 Response Time
In this section, we assess the performance of the HiCH focusing
on the system’s response time which is the time period between
recording data and notifying the patient in case of emergency. The
response time can be divided into different intervals as:

• a = Data transmission time, WBAN to edge
• b = Data transmission time, edge to cloud
• c = Notification transmission time, cloud to edge
• d = Notification transmission time, edge to WBAN (patient)
• α = Execution time, in the cloud
• β = Execution time, at the edge

Table 1: Data transmission time using HiCH and the cloud-
based IoT with different networks

Data trans.
rate

(Kbps)

Trans. time
between WBAN
and edge (a+d)

(ms)

Trans. time
between edge

and cloud (b+c)
(ms)

H
iC

H Local
Network 30000 10 -

Cl
ou

d-
ba

se
d

Io
T

4G 4000 10 41
Fast 3G 1500 10 151

3G 750 10 450
Fast 2G 450 10 753

2G 250 10 1490
GPRS 50 10 5803
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Figure 7: Response time for different approaches using the Cloud-based IoT and HiCH architectures

As indicated in Figure 6, the HiCH response time includes a + β +d
while the response time of the cloud-based IoT system is a + b +
α + c + d .

To validate the experiments, we measure the intervals for the two
systems using different setups. In this regard, the transmission time
is measured via 4G, Fast 3G, 3G, Fast 2G, 2G and GPRS networks.
The average transmission time for the two system is represented in
Table 1. a+d as the local transmission equals to 10ms although b+c
varies from 41ms to 5803ms depending on the Internet network.

We measure the execution time of the decision-making process
(i.e., α and β) using different edge devices with different CPU per-
formance. In this regard, we utilize an HP Compaq 8200 Elite Linux
machine with a quad-core Intel Core i3 CPU at 3.10 GHz and an
NVIDIA Jetson-TK1 with a quad-core ARM Cortex A15 CPU at 2.33
GHz. Moreover, we use an Oracle Virtual Machine with a single-core
Intel Core i7 CPU at 3.4 GHz and allocate 100%, 90%, 80%, 70%, 60%, 50%
of its execution capacity to the computation in each experiment.
As the decision-making algorithm in this research is in Python, we
measure the CPU performance by counting the number of float-
ing point operations performed per second by Python interpreter
(FLOPS). Table 2 indicates the Python FLOPS and the average exe-
cution time for the two systems.

In conclusion, the response time of the two systems with dif-
ferent setups is illustrated in Figure 7. The response time of the
cloud-based IoT system highly depends on the Internet network.

Table 2: Execution time of the decision making process us-
ing HiCH and the cloud-based IoT with different devices

Execution
time (ms)

Python
FLOPS

H
iC

H

VM∗ Core, 100% Exe. Capacity 2936 17.5
VM Core, 90% Exe. Capacity 3020 13.8
HP Compaq 8200 Elite 3049 13.4
VM Core, 80% Exe. Capacity 3074 13.1
VM Core, 70% Exe. Capacity 3985 11.1
VM Core, 60% Exe. Capacity 5617 7.9
VM Core, 50% Exe. Capacity 6643 7
Jetson TK1 12425 4.3

Cl
ou

d-
ba

se
d

Io
T Cloud Server 2539 13

∗Virtual Machine

As indicated, the response time of this system with the 4G network
is the lowest although it increases when the Internet connection is
poor. On the other hand, the response time of the HiCH is deter-
mined by the processing power of the edge device. Therefore, by
selecting an appropriate edge device, HiCH ensures an acceptable
response time.

4.3 Accuracy Assessment
We evaluate the accuracy of the ECG arrhythmia classification
using the MIT Arrhythmia dataset. In this regard, we divide the
dataset into two different datasets (DS1 and DS2) using the divi-
sion method presented in [9]. Dataset division, where training and
testing dataset are generated from separate patients, is called inter-
patient paradigm. On the contrary, dataset division where testing
and training phase data contains heartbeats from the same patients
is called intra-patient paradigm. We ensure unbiased classification
accuracy by the inter-patient paradigm, considering patient-specific
variances in the data.

In the first step, the ECG classifier is trained by the DS1 dataset,
which contains 51020 ECG samples from different patients (i.e.,
inter-patient). We validate the performance of the classifier using
the DS2 dataset. The confusion matrix is specified as Table 3, using
the estimated decision for ECG samples and the true labels.

The correct estimates, highlighted in the confusion matrix, are
notably high in this initial phase. However, the accuracy might be
insufficient particularly for clinical applications as the classifier is
trained via general data and inter-patient variation of ECG mor-
phologies is considerably large [10]. Therefore, the model is not
specifically trained for the monitored patient.

To address this issue, the accuracy of the classifier is improved
over time in our proposed architecture by re-training the classifier
via incoming ECG samples from the patient along with labels from

Table 3: Confusion matrix of the classification algorithm

Estimated Decision
Normal SVEB VEB F Q

Tr
ue

D
ec

isi
on

Normal 40671 905 2615 68 0
SVEB 642 1148 47 0 0
VEB 339 2 2874 6 0

F 275 0 111 2 0
Q 2 0 5 0 0
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Figure 8: Accuracy improvement by retraining the model
with new samples

the health provider (i.e., patient-specific information from ECG
morphology). We test the performance of the classifier by randomly
selecting 50, 100, 150, 200, 250, 300 and 1000 samples from the DS2
dataset and re-training the initial classification model.

Figure 8 illustrates how the accuracy of the model improves
when the model is re-trained. The starting point represents the
initial pre-trained model with no knowledge about patient-specific
data. As indicated, the accuracy of the classifier at the starting point
is less than 0.9. In contrast, the accuracy significantly increases to
over 0.96 even if the classifier is re-trained with a small portion
(e.g., 50 samples) of the patient data (i.e., intra-patient) throughout
the monitoring.

5 CONCLUSION
IoT-based health monitoring systems enable at-risk patients to be
monitored outside of conventional clinical settings. Such systems
are demanded to deliver a high quality of experience as a defect
in the service may lead to fatal consequences for the patients. In
terms of decision making, deep learning can provide a satisfactory
performance as a massive amount of data can be fed to the classi-
fication algorithm. In the conventional cloud-based IoT systems,
these methods can be fully implemented in the cloud machines.
However, these systems are insufficient for a time-sensitive health
application due to the dependency of the service to the quality
of the Internet connection. Fully distributed edge-based systems
are other alternatives although they are incapable of implement-
ing deep learning methods due to the restricted processing power.
Another alternative, proposed in our previous work, is the hierar-
chical computing architecture to partition the learning method in
the cloud and edge. In this paper, we investigated the feasibility
of empowering the HiCH architecture with the CNN algorithm.
We compared the response time of the HiCH with a conventional
cloud-based IoT system and indicated that HiCH could ensure an
acceptable response time and improve the availability particularly
when the connection is poor. In addition, we assessed the accuracy
of the system and showed that the accuracy was improved through-
out the monitoring, feeding the streaming data to the classification
algorithm.
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a b s t r a c t

Remote health monitoring is an effective method to enable tracking of at-risk patients outside of
conventional clinical settings, providing early-detection of diseases and preventive care as well as
diminishing healthcare costs. Internet-of-Things (IoT) technology facilitates developments of such
monitoring systems although significant challenges need to be addressed in the real-world trials.
Missing data is a prevalent issue in these systems, as data acquisition may be interrupted from time
to time in long-term monitoring scenarios. This issue causes inconsistent and incomplete data and
subsequently could lead to failure in decision making. Analysis of missing data has been tackled in
several studies. However, these techniques are inadequate for real-time health monitoring as they
neglect the variability of the missing data. This issue is significant when the vital signs are being
missed since they depend on different factors such as physical activities and surrounding environment.
Therefore, a holistic approach to customize missing data in real-time health monitoring systems is
required, considering a wide range of parameters while minimizing the bias of estimates. In this
paper, we propose a personalized missing data resilient decision-making approach to deliver health
decisions 24/7 despite missing values. The approach leverages various data resources in IoT-based
systems to impute missing values and provide an acceptable result. We validate our approach via a
real human subject trial on maternity health, in which 20 pregnant women were remotely monitored
for 7 months. In this setup, a real-time health application is considered, where maternal health status
is estimated utilizing maternal heart rate. The accuracy of the proposed approach is evaluated, in
comparison to existing methods. The proposed approach results in more accurate estimates especially
when the missing window is large.

© 2019 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Remote health monitoring systems broadly extend the bound-
aries of everyday healthcare access particularly for at-risk popu-
lation groups including pregnant women [1] and senior adults [2]

∗ Corresponding author.
E-mail address: imaazi@utu.fi (I. Azimi).

who may require additional observation. These systems are very
promising in the healthcare domain as the individuals can be
continuously monitored for early detection, preventive care, and
early intervention. The key function of such healthcare systems is
to ubiquitously observe and analyze users’ health conditions, and
subsequently deliver medical early-warning as well as health and
wellness coaching.

https://doi.org/10.1016/j.future.2019.02.015
0167-739X/© 2019 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-
nc-nd/4.0/).
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Fig. 1. An IoT-based system for remote health monitoring.

Fortunately, recent advances in Internet-of-Things (IoT) tech-
nologies have paved the way for enabling such monitoring ser-
vices with 24/7 availability. IoT is a growing network of intercon-
nected objects that envision a shared knowledge for smart and
autonomous decision-making and actuation [3–6]. In the health-
care domain, IoT systems leverage different sensing, computing
and communication resources.

As illustrated in Fig. 1, the architecture of IoT-based sys-
tems can be partitioned into three main tiers [7]. First, a Sensor
network includes wearable and mobile sensors (i.e., Body Area
Network) recording health and context data, by which the user’s
condition is perceived. Second, a Gateway acts as a bridge be-
tween the Sensor network and remote servers. Such a device
(e.g., an access point) mostly performs data transmission and
conventional services such as protocol conversion. However, al-
ternative network infrastructures (e.g., smart e-health gateways)
are proposed to incorporate intelligent techniques into the edge
of the network [8–10]. Third, a Cloud Server offers broadcast-
ing, data storage and a wide range of data analytic techniques
(e.g., machine learning), through which healthcare services and
applications are obtained [11].

In the real-world domain, missing data is one of the biggest
challenges among the IoT-based health monitoring systems. Miss-
ing data refers to an entry in data where no value is available.
Such missingness often occurs over the process of health mon-
itoring, in particular long-term screening, due to failure in data
collection and data transmission, as the sensor(s) might detach
from the skin, lose connections with gateway devices or run out
of batteries. Moreover, in case of long-term monitoring, the user
might refuse or forget to use wearable sensor(s) all the time. This
inconsistent and incomplete data collection leads to failure in
decision making and consequently the mission of the application.

There is a large body of literature on the analysis of missing
data in databases [12,13]. However, most of the conventional
techniques are insufficient for real-time health monitoring sys-
tems since they neglect the variability of the missing data in
estimations. This issue is especially significant in primary vital
signs (e.g., heart rate) as the variations are considerably large,
influenced by different factors such as health conditions, physical
activities and surrounding environment. Clearly, these techniques
generate biased estimates and subsequently cause high error
rates in health applications. In consequence, a missing data re-
silient method is required to consider a wide range of parameters
while minimizing the bias of estimates. We believe such a solu-
tion can be realized for real-time health monitoring systems by
holistically leveraging IoT-enabled concepts such as multi-modal
data collection and personalization.

In this paper, we present a personalized missing data resilient
decision-making approach to continuously deliver health deci-
sions despite missing values. This approach uses a Multiple Im-
putation method [12,13] reinforced with various data resources
(e.g., context information) in IoT-based systems to estimate miss-
ing values. Subsequently, a personalized pooling method is in-
troduced to provide an acceptable decision according to states

of the user and monitoring system. Our approach is proposed
for a real human subject trial on maternal health where 20
pregnant women were remotely monitored for 7 months (i.e., 6
months of pregnancy and 1 month postpartum) beside normal
check-up visits in maternal health clinics. In this case study, we
concentrate on a real-time health application, in which maternal
health status is remotely estimated using maternal heart rates.
Major contributions of this paper are as follow:

• A personalized missing data resilient decision-making ap-
proach is proposed to continuously deliver health decisions
despite missing data.
• The approach is presented for a real human subject trial on

maternal health, focusing on a real-time health application
where maternal health statues are remotely estimated.
• Personalized models are defined and used exploiting mater-

nal (medical) history and context data to impute the missing
values.
• A personalized pooling method is introduced to fuse the

values and deliver health decisions leveraging user’s data.
• The proposed approach is evaluated in terms of accuracy of

the health decisions, in comparison to existing missing data
analysis methods.

The remainder of the paper is organized as follow. In Sec-
tion 2, we outline background and related work of this research.
Section 3 describes the proposed solution. The demonstration
and evaluation are provided in Section 4; and finally, Section 5
concludes the paper.

2. Background and related work

In this section, we first present our case study on maternal
health monitoring, including a maternal health indicator to re-
motely estimate health conditions of pregnant women. Then, we
delve into the missing data concept and possible techniques of
dealing with this issue.

2.1. Maternal health monitoring

The maternal body undergoes a variety of changes through-
out pregnancy, particularly in the cardiovascular system. Cardiac
output and compliance elevation is an example, which is re-
flected by different vital signs such as stroke volume and heart
rate [14,15]. These changes are parts of physiological adapta-
tions during pregnancy and are mostly normal. However, they
are affected by pre-pregnancy and pregnancy conditions and
complications. On the one hand, diseases and serious conditions
such as maternal obesity, diabetes and depression considerably
impact pregnancy and elevate vital signs (e.g., heart rate and
blood pressure), increasing risk factors for various health prob-
lems in the mothers and their future offspring. On the other
hand, a healthy lifestyle consisting of an adequate diet and regular
physical activity engagement could be beneficial [16,17].

To investigate such physiological changes in pregnancy, long-
termmonitoring and studies of pregnant women are desirable [18,
19], assessing their health conditions and providing efficient rec-
ommendations and guidelines. In this context, we conduct a real-
time maternal monitoring and concentrate on heart rate variation
and physical activity of pregnant women. This study includes
7 months monitoring of 20 pregnant women, in which heart rate,
steps, hand movements, sleep level and ascending/descending
stairs are continuously collected via a smart wristband. The pa-
rameters should be mapped into an abstracted level of data (i.e., a
health score) to continuously and explicitly indicate her maternal
health status.
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Therefore, a maternal health indicator is selected to remotely
estimate the health condition while the user is engaging in var-
ious physical activities in everyday settings. This indicator lever-
ages a set of guidelines, rules and recommendations that state the
target ranges of heart rate in different phases of pregnancy [14,
16,17,20–22]. In our case study, this rule-based indicator tailors
continuous monitoring of heart rate, physical activity, personal-
ized data (e.g., baseline heart rate values at the beginning of the
monitoring) and meta-data (e.g., gestational week and maternal
age) to estimate the health decision. The decision is a warning
sign ranging from 0 to 3, where 0 indicates a normal health
condition and 3 shows the highest health deterioration [23,24].

2.2. Missing data

In the first place, it is important to understand the proper-
ties and patterns of the missing values for developing effective
methods in real-world applications. Various missingness mech-
anisms cause missing values in the health monitoring systems,
interrupting real-time decision-making. As proposed by Rubin
et al. [12,13,25], such missingness mechanisms generally stand
into three main categories. (1) Missing Completely At Random
(MCAR). The missing value is independent of the data values. For
example, unpredictable data loss occurs during the monitoring in
case of sensor failure or loss of Internet connection. (2) Missing At
Random (MAR). The probability of data to be missing is related to
available information. However, the missingness does not depend
on the missing values. For instance, the vital signs are more likely
to be missing in the evening, as the sensors are disconnected
to be charged when the user is at home. (3) Not Missing At
Random (NMAR). It occurs when the missingness depends on the
missing values. For example, a pregnant woman removes the
wearable devices while she is smoking, obscuring the direct effect
of smoking on the vital signs.

There is a broad variety of missing data analysis methods
in the literature, aiming to provide estimates with acceptable
bias (i.e., distance between the estimate and the true value) for
missing values [13,26–29]. Such analysis methods have their own
strengths and restrictions. They are selected according to target
applications with different requirements (e.g., desired accuracy)
and limitations (e.g., the amount of missing data and the missing-
ness mechanisms). In the following, we outline various missing
data analysis methods available in the literature.

Deletion methods are the most straightforward approaches
for handling missing data, where records with missing values
are eliminated. Listwise deletion is one of the methods where
a record is dropped out from the analysis if it has at least one
missing attribute. This method results in a complete dataset al-
though it reduces the amount of data. Similarly, Pairwise deletion
is another method in which a record is omitted on an analysis-
by-analysis basis. This method minimizes the deletion, in contrast
with the Listwise deletion, as records with missing values are
kept if their under-analysis attributes are not missing. Such dele-
tion methods are restricted to MCAR, otherwise they produce
biased estimates [28,30–32].

Despite the deletion methods, imputation-based methods fill-
in the missing values exploiting available (i.e., observed) data.
There are different imputation methods in the literature including
mean imputation, Last Observation Carried Forward (LOCF) im-
putation, regression imputation, hot-deck imputation, cold-deck
imputation and K-Nearest-Neighbor (KNN) imputation [12,33–
35]. Unfortunately, such single imputation methods might lead
to biased estimates, as they neglect the variability of the miss-
ing values. Additionally, Multiple Imputation (MI) is a modern
missing data imputation method that complete the dataset, con-
sidering imputation uncertainty [12,13,36–38]. MI includes three

main steps as Imputation, Analysis and Pooling. First, different
estimates (n ≥ 2) for the missing values are created via different
procedures (e.g., linear regression and hot-deck). Second, the
completed datasets are analyzed. Last, the results are integrated
into one final output. In contrast with single imputation methods,
MI is applicable for both MAR and MCAR.

In addition to the imputation-based methods, model-based
methods create a model of the observed data to estimate the
missingness. For example, Maximum Likelihood Estimation (MLE)
method utilizes available data to approximate parameters (e.g.,
mean and standard deviation of a log-likelihood function) that
fits the data [13,39,40]. Missing values can be estimated via
the obtained model. MLE provides unbiased estimates for MAR
and MCAR. Furthermore, there are model-based methods such as
pattern-mixture, selection models and shared-parameter models,
that are able to yield estimates for NMAR. Such methods are ap-
propriate for studies where data are recorded repeatedly through
time [41–44].

Moreover, machine learning-based methods tailor available
data (i.e., attributes) to provide a hypothesis (i.e., classifier). The
hypothesis could assign new values to missing attributes. Thus
far, different approaches including Artificial Neural Networks
(ANN), Support Vector Machine (SVM) and Generic algorithms
have been evaluated for missing data estimations [45–50]. On
the other hand, some machine learning-based methods handle
missingness in a dataset without imputing values. In such meth-
ods, a classifier is trained by observed data including missing
values, and subsequently decision making is performed. However,
the missingness and poor correlation between available attributes
might decrease the performance of the methods. These learning-
based methods (e.g., Decision Tree) have been investigated in
different studies [51–54].

In addition, there are studies to investigate missing data in IoT
devices and wireless sensor network, featuring a multi-sensors
data collection. In this regard, a probabilistic method has been
proposed to estimate the missing value considering similarity in
neighboring sensors data [55]. Similarly, missing, corrupted and
late-reading data has been tackled in streaming data [56–58].

3. Missing data resilient decision-making approach

In this section, we tackle the missing data issue in IoT-based
health monitoring systems, which are incapable of providing
services when sensory data are unavailable or unreliable. In this
regard, we, first, outline which missing data analysis techniques
can be suitable for these systems. Then, we present the definitions
and functions of our personalized decision-making approach via
a case-study on maternal health monitoring.

As mentioned in Section 2.2, there is a wide range of methods
available for missing data estimations, targeting different applica-
tions and missingness mechanisms. Many of the available tech-
niques are, nevertheless, inappropriate for real-time decision-
making of IoT-based health monitoring systems. Deletion meth-
ods are not applicable in such systems as the decision making is
interrupted while there is a missing input. Moreover, the decision
making is vulnerable to biased values when single imputation
methods are exploited. LOCF imputation is also a straightforward
method used for longitudinal studies, which fills in missing values
leveraging the pattern of gradual changes in observed data. This
method is inappropriate, due to underestimating the variation of
the missing values. In addition, conventional multiple imputation,
model-based methods (e.g., Maximum Likelihood Estimation) and
machine learning-based methods are other possible alternatives.
In health monitoring systems, these methods are insufficient
for data with high variations such as heart rate, which highly
depends on different factors.
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Fig. 2. Health decision making while the primary data (from primary sensor) is missing. In this setup, context data (from Sensor 1 to Sensor n), history data and
user’s feedback are utilized in the computation.

In contrast, auxiliary information can be utilized in missing
data analysis techniques to mitigate the bias of the estimates [59–
62]. Auxiliary information is additional data or meta-data that
correlates with the value of interest (i.e., missing value). The use
of such information in a missing data analysis technique is suit-
able for IoT-based monitoring systems due to their capability of
heterogeneous data collection. Moreover, this information is very
promising in real-time health decision-making as the missingness
mechanism might be MAR or NMAR.

The IoT-based systems provide a great opportunity to record
such auxiliary information, also named as context, along with the
primary data collection throughout the monitoring. Context is the
information that describes the environment and condition of the
system [63]. Context-awareness in computing enables the IoT-
based systems to observe and understand the sensory data and to
be aware of their own states and surrounding environment, pro-
viding robust and adaptive behavior in different conditions [64,
65]. In addition, other meta-data such as medical records and user
feedback can be manually added to the computations to improve
the system’s performance.

To incorporate context-awareness into our missing data re-
silient decision-making approach, we believe that Multiple Im-
putation (MI) method can be an appropriate alternative. In this
regard, the computation of this decision-making approach is par-
titioned into three main components as Imputation, Analysis and
Personalized Pooling, estimating a real-time health score while the
sensory data is missing. This function is depicted in Fig. 2, where
the data collected from one sensor is missing. In the rest of this
paper, we entitle this sensor as primary sensor and its data as
primary data; and other sensors are named as secondary sensors
which acquire context data and other information including other
vital signs.

We thoroughly present these three components in the fol-
lowing and clarify the definitions and functions of our approach
via a case study on maternal health during pregnancy. In this
context, we concentrate on a maternal health indicator (see Sec-
tion 2.1) which remotely estimates the degree of maternal health
condition while the pregnant woman is engaging in various phys-
ical activities in everyday settings. This indicator tailors sensory
data and meta-data to estimate the health score (i.e., warning
sign). However, its functionality is limited to the availability of
the real-time heart rate value (i.e., primary data). The proposed
decision-making approach allows this health indicator to accept-
ably operate even if the heart rate is missed due to interruptions
in data collection or data transmission.

3.1. Imputation

A number of different methods are exploited to impute the
missing value (i.e. maternal heart rate in our case)m times, where

m ≥ 2. Therefore, m values are estimated leveraging different
resources, each of which holds a considerable correlation with the
primary data that is missing. The method of selection depends on
the nature of the data and the type of auxiliary information. In
the following, we outline methods to impute maternal heart rate
values throughout the monitoring.

3.1.1. Short-term data
First, short-term history of data (i.e., preceding neighbors)

can be utilized for the data imputation. These values correlate
strongly with the missing value, particularly when the context
situation and the individual condition are constant. Autoregres-
sive models [66] are conventionally used for such a sequence of
data, in which the current value is estimated from n preceding
values. The autoregressive model of order n is defined as:

xt = fs(t, β)

= β0 + β1xt−1 + β2xt−2 + · · · + βnxt−n (1)

where xt−1, xt−2, . . . , xtn are the previous n data, and β0, β1, . . . ,
βn are the parameters of the model estimated.

In our case study, non-missing heart rate values from previous
weeks are selected as the training data to estimate the parameters
via a regularized least-square (i.e., ridge regression) desired to
minimize:
k∑

i=1

[xi − fs(t, β)]2 + λ

n∑
j=0

β2
j

where k is the number of training data, xi indicates the actual
heart rate, fs(.) estimates the heart rate from preceding data,
and λ > 0 is a regularization parameter [67,68]. The model is
periodically updated to consider variation of maternal heart rate
throughout pregnancy.

The estimated value is added to the heart rate set, so it is
considered as a preceding neighbor for the next iteration. When a
considerable number of data items are missing, the estimates be-
come unreliable in this imputation as the errors are accumulated.
Root-mean-square error (RMSE) of the heart rate estimates for a
pregnant woman is shown in Fig. 3. As indicated, the RMSE values
increase when a large portion of data is missing. In a similar man-
ner using neighboring heart rate values, the unreliability of heart
rate estimation when the missing window is large is investigated
in [69]. In consequence, this imputation is appropriate only when
the amount of missing data is small.

3.1.2. Context data
Associations between the primary data and context informa-

tion can be exploited to impute the missing values. This can be
indicated as:

x = fc(t, γ ) (2)
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Fig. 3. RMSE of the estimates of a pregnant woman’s heart rate (1714 iterations)
using the autoregressive model.

Fig. 4. Weekly average of maternal heart rate values of 10 pregnant women
during sedentary time in the second trimester.

where γ is the context-related data and fc(.) is the function that
approximates the heart rate value. In our case study, context
data are the maternal physical activities, including 7 states as
light sleep, deep sleep, sedentary, very light activity, light activity,
moderate activity and vigorous activity. They are specified via
steps and hand movements of the user [70,71]. Such physical
activities are associated with the heart rate values and their
variations.

However, this association is specific for each individual, so
a personalized model is required. To show the differences in
maternal heart rate, we select data from 10 pregnant women
as examples. Weekly average heart rate values of these women
during the sedentary time in the second trimester (i.e., gestational
weeks 14–26) are illustrated in Fig. 4. As indicated, the heart rate
ranges are not overlapped in some cases. Average heart rates of
M4 vary from 62 to 72 beats/min althoughM3 average heart rates
are between 87 and 96 beats/min. Moreover, such a model should
be dynamically updated frequently (e.g., every week or every two
weeks) because conditions of each pregnant woman are changing
as the pregnancy advances. Fig. 5 illustrates such variations in
average heart rates of one pregnant woman in different activities
from gestational week 14 to postpartum week 4.

In our context, Eq. (2) can be defined as:

x = γ (t)TH (3)

Fig. 5. Weekly average of maternal heart rate values of a pregnant woman in
different activities from week 14 to postpartum week 4.

where γ (t) = [p1(t), p2(t), . . . , p7(t)] represents which of the 7
physical activities is allocated to t , where pk(.) is either 0 or 1
and:

p1(t)+ p2(t)+ · · · + p7(t) = 1

H = [h1, h2, . . . , h7] also indicates the most probable heart
rate value in each state. This vector is uniquely defined for each
individual according to non-missing data of previous weeks of
monitoring.

3.1.3. Lifestyle data
Similarity in heart rate patterns due to repetitive habits (i.e.,

user’s lifestyle) is another resource to impute missing values.
These patterns could be manually added by users (feedback) or
automatically extracted from the data. This is significant in the
monitoring particularly when the context data is incomplete or
not fine-grained enough. For example, we access to the physical
activity of the pregnant women, but no information is available
regarding eating and drinking habits (e.g., time and duration of
meals), which affect user’s heart rates [72]. With this intention,
the missing value can be obtained via a function as:

x = fl(φ) (4)

where φ holds history data and/or feedback.
In our case, non-missing heart rate values of the current time

window are compared with previous time windows, and the
window with the most similar heart rate pattern is extracted.
Then, the imputation is fulfilled using heart rates of the most
similar window. In this regard, Eq. (4) can be determined as:

x = xk (5)

where xk is the corresponding heart rate value of the window k,
which has the least distance to the current window. Hence, k is
specified via:

argmin
k∈φ

dist(k)

which dist(.) is a distance function defined as:

dist(k) =
n∑

i=1

∥xi0 − xik∥2

where n is the window length, and xi0 and xik are available heart
rate values in the current window and window k, respectively.

Moreover, additional information can be manually collected to
select the most similar heart rate pattern. Such information in-
cludes self-reported physical activities or events marked in user’s
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calender, from which similar windows are selected to perform
data imputation. For instance, the user participates in a certain
exercise course every odd day from 2 pm to 4 pm Heart rate data
of this exercise can be leveraged if the heart rate value is missed
in this activity in the future.

3.2. Analysis

The rule-based maternal health indicator is implemented,
mapping the sensor data into an abstracted decision. It repeats
m times per iteration, as m versions of the missing value are
estimated in the Imputation part. Therefore, m decisions are
generated in each iteration. m equals to 3 in our case study as the
missing heart rate value is filled via the 3 imputation methods.
However, the decisions might be diverse due to inaccuracy and
uncertainty in the imputation methods.

The rule-based indicator generates a warning score between
0 and 3 for each heart rate value. Similar to a typical obstetric
Early Warning Score (EWS) [23,24], different ranges are defined
for the heart rate value to obtain the score. The ranges are defined
for each pregnant woman according to personalized data such as
baseline heart rate at the beginning of the monitoring. In addition,
a set of guidelines and rules are utilized [14,16,17,20–22]. For
examples, heart rate should not exceed 140 (beats/min) while the
mother engages moderate and vigorous activities; it should not
be less than 40 (beats/min) during sleep and sedentary time; and
heart rate likely rises 20% till the end of pregnancy. Note that this
function is assumed to indicate the functionality of the proposed
approach, and it can be replaced with other classifiers.

3.3. Personalized pooling

A pooling method is performed to integrate the m decisions
into a final decision (i.e., dfinal). An arithmetic mean is a conven-
tional method in this case. However, it might be inappropriate
as the decisions with different errors are treated equally, even if
some decisions hold high error rates.

We propose a personalized pooling method to alleviate the im-
pact of the errors in the final decision. In this regard, a weighted
arithmetic mean is exploited to pool the decisions, in which the
weights become personalized throughout the monitoring lever-
aging user’s data. In each iteration, the weights are determined
and selected according to the states of the user and monitoring
system. The final decision is obtained via a dot product of the
vectors of the m decisions and the personalized weights that
satisfies:

w1 + w2 + · · · + wm = 1

When the primary data is available, the weights are calculated
by the squared error between actual and estimated values. How-
ever, as conditions of the user and system are highly dynamic
(e.g., state of the user and size of the missing window), general
weights are insufficient, minimizing the sum of squared errors
over all time points. In this regard, we define different states for
each imputation and calculate the sum of squared errors over the
corresponding points in each state. In the following, we outline
how states and weights are defined in our case study with the 3
imputation methods.

The first imputation is related to the short-term data. The
error of the imputation highly depends on the portion of missing
data, as indicated in Fig. 3. Therefore, the weights should be
determined for different missing window sizes. A missing win-
dow refers to the interval between the current point and the
last point that heart rate data was recorded. When the missing
window size is i, the last i value(s) of heart rate data including
current heart rate and previous values are removed; the current

heart rate is imputed; and the weight is determined using the
errors in this iteration and previous iterations. This process is
repeated n1 times with different sizes of missing window, where
the maximum missing window size is n1. In consequence, a set
of weights (i.e., W1 = {w1,1, . . . , wn1,1}) is obtained for the
n1 missing windows.

The second imputation is associated with the context data. The
uncertainty of the heart rate is significant in this imputation as
the most probable heart rate is selected (see Section 3.1.2). This
uncertainty (e.g., variance) are diverse in different physical activ-
ities. For instance, in most cases, the variance of deep sleep heart
rate is considerably less than the variance of heart rates of vig-
orous activity. Therefore, the squared errors should be severally
calculated for each physical activity to obtain weights—i.e., W2 =
{w1,2, . . . , wn2,2} where n2 is the number of physical activities. As
there are 7 physical activities, n2 is 7 in this monitoring.

The third imputation is related to the lifestyle data. Meta-data
including the weekly schedule of the user is considered to define
different time states (i.e., n3 states). For example, the weight
for weekend-days (as a time state) is defined, considering the
squared error of the time points during weekend days. In this
regard, a set of weights (i.e., W3 = {w1,3, . . . , wn3,3}) is calculated
for the n3 time states in the monitoring.

The three weights vectors, W1, W2 and W3, are dynamically
updated in iterations that the heart rate data is available. The dy-
namic weights determination of the personalized pooling method
when the heart rate is available is illustrated in Fig. 6.

In contrast, in the iterations with the missing heart rate, the
heart rate is imputed by the 3 imputation methods, and the
health scores (i.e., d1, d2 and d3) are calculated. The corresponding
weights (i.e., wi1,1, wi2,2 and wi3,3) are selected from the three
weights vectors according to the current missing data size, phys-
ical activity and time state, respectively (see Fig. 7). Finally, the
health decisions are pooled using the selected weights as:

dfinal = wi1,1.d1 + wi2,2.d2 + wi3,3.d3 (6)

Algorithm 1 also indicates the function of the personalized pooling
when the heart rate is available and is missing.

4. Demonstration and evaluation

In this section, we present our case study on maternal health,
where 20 pregnant women have been remotely monitored for
seven months. First, we outline the study design and recruit-
ment in this monitoring. Next, we represent the setup, data
collection and data analysis in our IoT-based system. Moreover,
the proposed approach is tested and evaluated by comparing
the approach with conventional methods. Finally, strengths and
weaknesses of the approach are discussed.

4.1. Study design

The monitoring was conducted on primiparous pregnant
women who visited one of two maternity outpatient clinics in
Southern Finland between May and September 2016. Pregnant
women in Finland are provided a free of charge ultrasound ex-
amination at the end of the first trimester. The pregnant women
were recruited in this appointment considering the following
criteria.

1. The participant expected her first child.
2. The participant was at least 18 years old.
3. The pregnancy was singleton.
4. The pregnancy was less than 15 gestational weeks
5. The participant understood Finnish or English
6. The participant owned a PC, tablet or Smartphone to be

able to synchronize the smart wristband

Consequently, twenty participants were selected as the sample
size was appropriate for a pilot study [73].
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Fig. 6. The personalized pooling when heart rate is available (weights determination).

Fig. 7. The personalized pooling when heart rate is missing (weights selection).

After the ultrasound examination, the eligible women were
met face-to-face once and after signing the informed consent, the
device and instructions were provided. Background information
was collected via a questionnaire. Some background information
is represented in Table 1. Afterward, Garmin Vivosmart R⃝ HR [74]
as the selected wristband for this study along with instructions
has been delivered to the pregnant women. During the follow-up,
the participants were interviewed via telephone.

4.2. Setup

An IoT-based system was tailored for this study, determining
the Garmin wristband as the sensor device, by which physical
activity and heart data were collected. The Garmin wristband
is a small and light water-proof band with considerable battery
life [74], so it can be an appropriate choice considering the
feasibility of the monitoring. More details regarding the feasibility
of this study can be found in [75].

The wristband includes one built-in optical-based sensor to
record a photoplethysmogram (PPG) signal enabling real-time
heart rate measurements [76] Moreover, it consists of an inertial
measurement unit (IMU) to track steps, stair ascending/descending
and hand movements. In our setup, the data collection rate
was set as 1 sample per 15 min, so a new data record was
available in every 15 min. A 24-h sample of such data with non-
missing values collected from one pregnant woman is illustrated
in Fig. 8 (a,b,c,d).

The pregnant women were asked to periodically send the data
to remote servers through a gateway device, which was a smart-
phone or a PC. Most of the data analysis was performed in the
cloud servers, amalgamating sensor data to extract new informa-
tion such as health status and physical activity [77]. For the data
analysis, we used a Linode virtual private server (VPS) [78] with
two 2.50 GHz Intel Xeon CPU (E5-2680 v3), 4 GB memory and
SSD storage drive. Fig. 8 (e,f) shows such information abstracted
from the data in Fig. 8 (a,b,c,d). As indicated, the health score was
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Algorithm 1 The function of the personalized pooling throughout
the monitoring.
1: Initialize:

n1 ← maximum missing window size
n2 ← number of physical activities
n3 ← number of time states
{w1,1, ..., wn1,1}, {w1,2, ..., wn2,2}, {w1,3, ..., wn3,3}

2: while monitoring is Active do
3: xtrue ← data from the heart rate sensor
4: if xtrue ̸= NULL then
5: dfinal ← HealthIndicator(xtrue)
6: for i1 = 1 to n1 do
7: remove last i1 value(s) of heart rate data
8: x1 ← fs(t, β)
9: ei1,1 ← squared error of the corresponding heart rate data
10: wi1,1 ← 1− Normalize(ei1,1)
11: end for
12: i2 ← determine the current physical activity
13: x2 ← fc (t, γ )
14: ei2,2 ← squared error of the corresponding heart rate data
15: wi2,2 ← 1− Normalize(ei2,2)
16: i3 ← determine the current time state
17: x3 ← fl(t, φ)
18: ei3,3 ← squared error of the corresponding heart rate data
19: wi3,3 ← 1− Normalize(ei3,3)
20: else
21: x1 ← fs(t, β), x2 ← fc (t, γ ), x3 ← fl(t, φ)
22: d1, d2, d3 ← HealthIndicator(x1, x2, x3)
23: i1 ← determine the current missing window size
24: i2 ← determine the current physical activity
25: i3 ← determine the current time state
26: Normalize(wi1,1, wi2,2, wi3,3)
27: dfinal = wi1,1.d1 + wi2,2.d2 + wi3,3.d3
28: end if
29: end while

0 when the subject was sleeping. However, it varied between 0

to 2 while she engaged in different physical activities.

Table 1
Background information of the twenty selected participants.

âĂĺ
Statement Type Value

Age at pregnancy (years) – 25.7± 4.96
Gestational age at recruitment (weeks) – 12± 2.1
Pre-pregnancy Body Mass Index – 25.0± 6.45

Quantity of pre-pregnancy physical activity in
week

Once or less 3 women
Sometimes 5 women
Almost daily 12 women

Quality of pre-pregnancy physical activity in
week

Light 8 women
Moderate 11 women
Vigorous 1 woman

Employment status
At work 13 women
Student 5 women
Unemployed 2 women

Smoking status Pre-pregnancy 7 women
In-pregnancy 5 women

The proposed decision-making approach was implemented
with a Python service in the cloud server to estimate health
status of 15 pregnant women. Five of the pregnant women were
dropped out of this analysis because the missing data was too
large (i.e., no data for at least 50% of the monitoring days). A view
of heart rate with missing values and estimated health scores for
one day of monitoring is depicted in Fig. 9. The heart rate values
are missed in two time windows with lengths of 75 and 180 min.
The blue circles in Fig. 9(b) are the scores when the heart rates are
available; and the red trinagles indicate estimated health scores
while the heart rates are missing. Note that, this approach is not
restricted to the cloud layer settings and can be pushed to the fog
layer to enable local decision making.

In addition, manual data collection was implemented to enrich
the aforementioned data collection and decision making. In this

Fig. 8. A 24-h sample of (non-missing) data collected from one pregnant women in gestational week 34 (day 244th). (a), (b), (c) and (d) indicate the variables
collected via the wristband; and (e) and (f) are the physical activities and health decisions calculated in the cloud server.
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Fig. 9. A 24-h sample of heart rates with missing values and estimated health scores. The blue circles (solid line) represent the health scores obtained from the
available heart rates while the red triangles (dashed line) indicate the estimated scores when heart rates are missing.

regard, semi-structured phone interviews were fulfilled once or
twice in a month. Such interviews contained a set of questions
to indicate the self-report physical activity on a scale 1 to 5 and
certain events that considerably influence their sleep or activities.
Pregnancy-related data including blood pressure, weight gain and
oral glucose test were also obtained from the maternity card and
hospital patient records.

4.3. Ethics

The monitoring was performed in accordance with the code of
ethics of the World Medical Association (Declaration of Helsinki)
for experiments involving humans. Moreover, it was approved by
the joint ethics committee of the hospital district of Southwest
Finland (35/1801/2016) and Turku University Hospital (TYKS).
In addition, the permission to employ Garmin Vivosmart R⃝ HR
(Garmin Ltd, Schaffhausen, Switzerland) in this monitoring was
acquired from the manufacturer Garmin Ltd.

4.4. Accuracy assessment

We validate the performance of our personalized decision-
making approach in terms of accuracy. In this regard, a cross-
validation technique is used to discard a window of the heart rate
and estimate the health score. The estimated score is compared
with the actual score obtained via the actual heart rate value.

To evaluate the proposed approach, other existing methods
are selected to impute missing heart rate values and extract the
health scores. First, the KNN as a single imputation method is
utilized, where the missing heart rate is estimated from the k pre-
ceding non-missing values by weights proportional to the inverse
of the distance to the missing value. Second, the autoregressive
model is used leveraging preceding neighbors. Third, the MLE
as a model-based method is used, in which the missing value
is extrapolated via a Sigmoid function. Fourth, the SVM (with
an RBF kernel) as a machine learning-based method is tailored,
imputing the missing value from the variation of the history of
data (i.e., last two-weeks data). The methods are implemented
using the SciPy [79] and Scikit-learn [80] libraries in Python.

In the first evaluation, we investigate the distance (i.e., RMSE)
between the estimations and actual health scores with different
windows of missing heart rate. The RMSE values are illustrated
in Fig. 10 while the missing window (i.e., x axis) varies from
15 min to 6 h. As indicated, when the missing window is small,
the proposed method, autoregressive and KNN have the lowest

RMSE; and the RMSE values of the SVM and logistic MLE methods
are higher. In contrast, in large missing windows, the RMSE values
of the autoregressive and logistic MLE and KNN methods are
significantly high, whereas the RMSE of the proposed method is
the lowest.

In addition, we evaluate the performance of the methods by
determining the C-index (i.e., concordance index) [81] of estima-
tions in different missing windows. C-index represents how well
health scores are estimated considering the correct rank/order of
outcomes. In this experiment, the scores as well the outcomes are
in ascending order, varying from 0, as the normal health status,
to 3, as the highest health deterioration. The C-index is defined
as:

1
|{(i, j)|yi > yj}|

∑
yi>yj

H(ŷi − ŷj)

where yi and ŷi indicate the actual and estimated decisions (i.e.
scores), respectively; and H(.) is the Heaviside step function.

For 15 pregnant women monitoring data, the estimation pro-
cess is randomly repeated in 2040 iterations, in which the health
scores are obtained considering different missing windows. Even-
tually, the C-index values of the 5 methods are determined. As
illustrated in Fig. 11, the proposed method’s C-index is approxi-
mately 0.82 when the missing window is small, and it decreases
to 0.7 when the missing window is considerably large. On the
contrary, C-index of SVM and logistic MLE are less than the
proposed method’s C-index in all cases; and the C-index of the
autoregressive and KNN methods drop to less than 0.55 while the
missing window is large.

4.5. Discussion

The proposed approach results in more reliable and more
accurate estimates compared with the conventional methods. As
aforementioned, deletion methods are unfit for real-time decision
making. Moreover, traditional imputation methods, model-based
methods and machine learning based methods underestimate
variability of the missing heart rate values, delivering estimates
with high error rates. This is in accord with our findings in the
previous section. In contrast, the proposed approach considers
this variability in data using context information, minimizing the
bias of estimates. This enhancement is particularly significant
when there is a high correlation between context and the missing
heart rate.
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Fig. 10. RMSE values of the health scores estimations with different methods while the missing window varies from 15 min to 6 h.

Fig. 11. C-index of the estimations with different methods while the missing window varies from 15 min to 6 h.

One of the major concern of using auxiliary information is
a low correlation between context information and the missing
data. As a result, the estimates could be biased, reducing the
precision of the output [61]. The proposed approach mitigates
such a problem in decision makings through the personalized
pooling method. In this regard, a small value is allocated to the
related weight when the correlation is insignificant.

Another issue in multi-sensor health IoT systems is the occur-
rence of missingness in more than one variable. In such cases,
the imputation of the proposed approach is repeated n × m
times, where n is the number of missed variables and m is the
number of different imputation methods for each variable. In
each imputation, one missed variable is considered as the primary
data, and other non-missed variables are the secondary data
(i.e., auxiliary information). Next, n×m decisions are generated,
and consequently the decisions are pooled.

In addition, the proposed approach is capable of handling
additions or changes in the health monitoring, adding new im-
putations to the approach or updating the existing imputations.
This modular approach, first, suits IoT systems where the context
of the user might change; and various sensors are added with
respect to needs in the monitoring. Second, the approach can
be distributed into the 3 layers of IoT systems (i.e., sensor net-
work, gateway and cloud server) according to health application
requirements. Moreover, adding new data resources can improve
the performance of the system, removing ambiguity in the con-
text information. This disambiguation is important when the
missingness mechanism is NMAR, and the variability of missing
data is invisible in available information.

Estimating health status with only one vital sign is the limi-
tation of this study, where unexpected health deterioration with
no prior history cannot be estimated when the heart rate value
is missing. Therefore, the health indicator in this monitoring only

targets real-time health coaching and preventive purposes, but
not health deterioration detection. However, this health indicator
is a proof-of-concept for the proposed decision-making approach;
and inclusion of different vital signs could alleviate this problem.

As the future work of this study, we are going to extend
our work, targeting real-time health deterioration in pregnant
women. We will use an obstetric Early Warning Score (EWS) [23,
24] as a standard manual tool in clinical settings to early-detect
patients’ health deterioration. This tool will be developed for
remote health monitoring through IoT-based systems [82,83]. In
this regard, five warning scores ranging from 0 to 3 are generated
from five vital signs which are heart rate, body temperature,
blood oxygen saturation, respiration rate and blood pressure.
The aggregation of these scores represents the level of health
deterioration.

5. Conclusion

Missing data is a prevalent problem among IoT-based health
monitoring systems, where data collection and data transmission
may be interrupted in long-term scenarios. This problem mostly
leads to failures in decision making and subsequently health ap-
plications. Conventional missing data methods are inappropriate
for such systems as these methods underestimate variability of
the missing values. This is important when the vital signs such
as heart rate are being missed, as heart rate variations could
be considerably large. In this paper, we proposed a personal-
ized missing data resilient decision-making approach tailoring
data resources in IoT systems to enable continuous health de-
cision making despite missing values. This approach exploited
the Multiple Imputation method reinforced with auxiliary infor-
mation obtained via the IoT-based system. In this regard, first,
the missing values were estimated via different methods using
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various resources. Second, the decision-making method was im-
plemented, and decisions were obtained from different estimates.
Eventually, the final decision was extracted using a personalized
pooling method. We demonstrated the proposed approach via
a real human subject trial on maternity health. The accuracy of
the proposed approach was compared with existing methods.
We indicated that the proposed approach leads to more accurate
decisions, especially when the missing window is large.
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ABSTRACT Sleep is a composite of physiological and behavioral processes that undergo substantial changes
during and after pregnancy. These changes might lead to sleep disorders and adverse pregnancy outcomes.
Several studies have investigated this issue; however, they were restricted to subjective measurements or
short-term actigraphy methods. This is insufficient for a longitudinal maternal sleep quality evaluation.
A longitudinal study: 1) requires a long-term data collection approach to acquire data from everyday routines
of mothers and 2) demands a sleep quality assessment method exploiting a large volume of multivariate data
to assess sleep adaptations and overall sleep quality. In this paper, we present an Internet-of-Things-based
long-term monitoring system to perform an objective sleep quality assessment. We conduct longitudinal
monitoring, where 20 pregnant mothers are remotely monitored for six months of pregnancy and one month
postpartum. To evaluate sleep quality adaptations, we: 1) extract several sleep attributes and study their
variations during the monitoring and 2) propose a semi-supervised machine learning approach to create
a personalized sleep model for each subject. The model provides an abnormality score, which allows an
explicit representation of the sleep quality in a clinical routine, reflecting possible sleep quality degradation
with respect to her own data. Sleep data of 13 participants (out of 20) are included in our analysis, as their data
are adequate for the study, including 172.15±33.29 days of sleep data per person. Our fine-grained objective
measurements indicate that the sleep duration and sleep efficiency are deteriorated in pregnancy and notably
in postpartum. In comparison to the mid of the second trimester, the sleep model indicates the increase of
sleep abnormality at the end of pregnancy (2.87 times) and postpartum (5.62 times). We also show that the
model enables individualized and effective care for sleep disturbances during pregnancy, as compared to a
baseline method.

INDEX TERMS Anomaly detection, Internet of Things, longitudinal study, maternity care, sleepmonitoring,
sleep quality assessment.

I. INTRODUCTION
Several physical, physiological, and hormonal adaptations
occur during pregnancy to accommodate the developing fetus
and to prepare the mother for the delivery [1], [2]. Such vari-
ations in the maternal body alter sleep patterns of pregnant
women in many ways. In this regard, sleep disturbances are

The associate editor coordinating the review of this manuscript and
approving it for publication was Mahmoud Barhamgi.

particularly prevalent throughout the pregnancy, including
various disorders to maintaining sleep (e.g., insomnia), sleep
deprivation, and restless legs syndrome [3]–[6]. Moreover,
sleep patterns of pregnant women might be altered in post-
partum months, as they experience new life situations after
labor [7].

Studies show that sleep disturbances negatively impact
maternal and child health during and after pregnancy [8].
Sleep problems are associated with a high likelihood of
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poor obstetric outcomes and different diseases such as ges-
tational diabetes, preeclampsia, and stress overload [9]–[11].
Also, they lead to increased risk of preterm birth,
intrauterine growth restriction, and unplanned Caesarean
deliveries [12], [13]. Moreover, different studies discussed
the correlation between sleep disturbances and postpartum
diseases and complications such as depression and damage
to the mother-infant relationship [12], [14]. Thus, screening,
monitoring, and assessment of maternal sleep quality are
essential during pregnancy to alleviate sleep disturbances and
prevent its potential complications [12], [15], [16].

Sleep quality is a complex concept that is traditionally eval-
uated via qualitative attributes (i.e., subjectivemeasurements)
and more recently via quantitative attributes (i.e., objec-
tive measurements) [17]. Subjective techniques determine
perceived sleep quality by inquiring the individuals about
their sleep experiences such as sleep duration and distur-
bances. These techniques are often performed via self-report
questionnaires such as the Pittsburgh Sleep Quality Index
(PSQI) [18] and Berlin Questionnaire [19]. Those are widely
used in sleep quality evaluation of different groups of people
as they are relatively straightforward and easy to implement
for longitudinal studies. Similar subjective techniques have
also been utilized for pregnant women to reveal the impact
of pregnancy onmaternal sleep [5], [8], [15], [16], [20]–[22].
However, such subjective methods can be inaccurate and
poorly reflect sleep quality level, as the data collection is
mostly limited to scheduled interviews, Internet-based sur-
veys, or self-report questionnaires. The shortcomings and
poor performance of such methods have been widely dis-
cussed in several studies investigating the validity of the
subjective sleep quality assessment methods [17], [23]–[25].

Alternatively, objective techniques measure the user’s
physical and health conditions and translate the results into
sleep attributes such as sleep efficiency and sleep stages
for further assessment. Polysomnography (PSG) is a con-
ventional test in this regard, where several bio-signals are
acquired for sleep analysis [26], [27]. The PSG, as the gold
standard of the sleep assessment, has been exploited for sleep
disturbances monitoring in pregnancy [4]. However, it is
bounded to one or a limited number of nights due to its data
acquisition limits. Actigraphy is another objective method
that examines sleep quality bymonitoring human rest/activity
cycles [28]. Data acquisition in actigraphy is more conve-
nient and non-invasive for users, as it is performed via a
small and light-weight wearable device placed on the user’s
wrist or ankle. Standalone (i.e., without network connectivity
and real-time remote access) actigraphy monitors have been
deployed for offline and short-time sleep monitoring, such
as the works presented in [29]–[32] where maternal sleep is
monitored for up to 14 days. However, the constraints in local
storage and processing have hindered the utilization of this
technology for longitudinal sleep quality monitoring.

Longitudinal objective sleep monitoring necessitates a
long-term data collection to acquire data from everyday rou-
tines of participants 24/7. We believe recent advancements

in Internet-of-Things (IoT) technologies provide an unprece-
dented opportunity to enable such continuous health mon-
itoring. IoT is an emerging network of interrelated objects
that tailors a distinct set of paradigms such as wearable
electronics, communication infrastructure, and data analytics
to deliver personalized services to the end-users [33], [34].
However, it should be noted that an IoT-based sleep monitor-
ing system, despite being a powerful tool, generates a large
volume of multivariate data which dramatically increases
over time. Such big data [35], while being a rich source of
information, call for tailored and intelligent data analytic
techniques and models.

Conventional techniques assess the sleep quality only from
a single perspective by separately extracting and analyzing
each sleep attribute (e.g., sleep duration) from a pool of
sleep-related data. Data in a high-dimensional space require
a more intelligent amalgamation method to transform all
sleep attributes into a single overall sleep quality score,
in a way that the contribution of each attribute is automat-
ically considered in the final score. This allows a straight-
forward representation of the sleep quality in a clinical
routine and reflecting possible sleep quality degradation of
an individual with respect to her own life situation and
health condition. We believe that such a method is partic-
ularly essential for maternal sleep quality assessment and
individualized care approach, as a mother’s physical and
mental states undergo a process of change throughout the
course of pregnancy and postpartum, which necessitates an
explicit indicator of the mother’s sleep changes during this
period.

In this paper, we present an IoT-based long-term monitor-
ing system that employs a wrist-worn device to assess the
sleep of pregnant women during pregnancy and postpartum
thoroughly. Our monitoring system is deployed on a real
human subject trial where 20 pregnant women are remotely
and continuously monitored for six months of pregnancy and
one month postpartum. We first study sleep quality changes
in this monitoring, leveraging several objective attributes.
We then propose an anomaly detection approach to construct
a personalized sleep model for each individual using the
sleep data from the beginning of the monitoring process.
We measure the sleep adaptations of the rest of the pregnancy
and postpartum, using the personalized model to investigate
the maternal sleep quality from a different perspective. In
summary, the contribution of this paper is manifold:

i) Presenting an IoT-based long-term monitoring system
to perform objective sleep quality assessment during
pregnancy and postpartum.

ii) Conducting a longitudinal study on a human subject
trial on maternal sleep.

iii) Observing the degradation of sleep quality during
pregnancy and postpartum separately for a set of
fine-grained quantitative sleep attributes.

iv) Proposing a neural network-based approach to inves-
tigate maternal sleep quality adaptations in a compre-
hensive and personalized way.
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The rest of the paper is organized as follows.We outline the
background and related work of this research in Section II.
Section III describes the study design. In Section IV,
we present our sleep analysis approaches. Results and find-
ings are presented in Section V. In Section VI, we discuss our
findings, evaluate the model, and represent limitations and
future directions of this study. Finally, Section VII concludes
the paper.

II. BACKGROUND AND RELATED WORK
In this section, we first outline the background of maternal
health and sleepmonitoring. Then, we present state-of-the-art
anomaly detection techniques as appropriate tools to create
models for abnormality detection.

A. MATERNAL HEALTH AND SLEEP MONITORING
Maternal health can be monitored during pregnancy to ensure
the well-being of both the mother and her future child. Preg-
nancy is a window to a woman’s future health [36], and thus
women are also interested in monitoring their health during
pregnancy. Furthermore, using systematic and regular mon-
itoring, several abnormalities and complications regarding
pregnancy could be detected early and be treated accord-
ingly. Maternal health monitoring, however, varies in differ-
ent countries, and only half of women receive the recom-
mended amount of care during their pregnancy [37]. There-
fore, there is a need to develop new solutions that can widen
the availability of maternal health monitoring for all pregnant
women.

Sleep as an important part of overall maternal health
requires particular attention. Multiple hormonal and physi-
ological changes during pregnancy might contribute to sleep
problems. For example, nausea, vomiting, or anxiety might
cause sleep disturbances in the first trimester of pregnancy.
As pregnancy progresses, the frequency and duration of
sleep disturbances increase. Frequent urination, backache, leg
cramps, and anxiety about delivery are common reasons for
compromised sleep in the third trimester.

Sleep disturbances are common during pregnancy and
are the risk factors of adverse pregnancy outcomes such
as prenatal depression, gestational diabetes, and preterm
birth [11], [16], [38], [39]. Also, many women suffer from
acute sleep deprivation during the postpartum period, and
compromised sleep may continue even several months after
birth [39]. This problemmight lead to diseases such as mater-
nal fatigue and postpartum depression [14]. It is possible to
use nonpharmacological strategies such as regular physical
activity, controlling weight gain, and relaxation, to alleviate
sleep disorders during pregnancy. Medication should be used
only in severe cases to avoid possible teratogenic effects [40].
Sleep quality assessment is the first step for managing sleep
disturbances and disorders. It gives an accurate picture of
sleep changes and assists to early-detect sleep problems [41].
In particular, systematic and personalized sleep assessment
enables the provision of right strategies to manage sleep
disturbances and disorders of each woman.

Different methods have been proposed in the literature
to investigate sleep problems. The duration, as well as the
quality of sleep during pregnancy, has usually been measured
using questionnaires [16], [42], [43]. The Pittsburgh Sleep
Quality Index (PSQI) is the gold standard for subjective
sleep quality assessment, in which individuals are asked to
answer a self-report questionnaire [18]. The tool discrimi-
nates ‘‘good’’ sleep quality from ‘‘bad’’ leveraging seven
component scores such as sleep latency, habitual sleep effi-
ciency, and use of sleepingmedication. Such subjectivemeth-
ods are not accurate; pregnant women have both over and
underestimated their sleep duration compared with objective
measurements [44].

Polysomnography (PSG) is the gold standard of sleep
monitoring. The method typically employs various wearable
sensors to capture several bio-signals including electroen-
cephalogram (EEG), electromyogram (EMG), electroocu-
logram (EOG), and electrocardiogram (ECG), providing
different sleep indices such as sleep efficiency, sleep onset
latency, and sleep stages [4], [26], [45]. However, the use of
the PSG is limited to sleep laboratories and clinical settings
due to the burdensome implementation of its multisensor data
acquisition. Therefore, the method was mostly performed
in a short period of time in sleep studies. For example,
an overnight lab-based PSG was implemented along with the
Berlin questionnaire, targeting obstructive sleep apnea [19].
Similarly, in the maternity care, sleep disturbance was inves-
tigated via a short-term PSG-based data collection, i.e., two
consecutive nights in each trimester, and in first and third
postpartum months [4].

Actigraphy is another low-cost alternative for monitor-
ing sleep and sleep-wake behavior of an individual [28].
The Sleep actigraphy typically includes an actigraph device
equipped with a 3-axis MEMS accelerometer sensor, a low-
performance processor and a limited memory. The accel-
eration data are locally processed, and sleep parameters
are extracted. The actigraphy method is easy-to-use in
out-of-hospital settings in contrast to the PSG. However,
it is bounded to offline services. Objective sleep mon-
itoring has been fulfilled in different maternal studies
using short-term actigraphymethods [30], [46]. For example,
Lee and Gay [29] investigated the association between sleep
disturbance in late pregnancy with labor using an actigraphy
for 2 days along with subjective measurements in the ninth
month of pregnancy; a seven-day actigraphy and PSQI meth-
ods were employed for maternal sleep disturbance [31]; and
Haney et al. [32] assess sleep in early pregnancy exploiting
a 14-day actigraphy method, questionnaires, and blood pres-
sure measurements.

Contact-free sensors have also been proposed for sleep
monitoring. Some examples are visual-based sensors [47],
mattress-based sensors [48], and smartphone sensors [49].
They were mostly designed to acquire sleep patterns as well
as vital signs such as heart rate and respiration rate. The use
of such systems has been limited in real-world applications
because of restrictions in data collection and high cost. In one
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study, the maternal body movements of 2 pregnant women
were monitored for a couple of weeks, using a piezoelectric
sensor board placed beneath their mattress [50].

B. ANOMALY DETECTION
Anomaly detection, also known as outlier detection, is the
problem of finding patterns or events in data that differ
from the expected behavior [51]. Anomaly detection has been
applied in many fields including fraud detection, healthcare,
and intrusion detection in cybersecurity [52]. An anomaly
detection technique applied to a problem depends on a variety
of factors including the availability of labeled data, the nature
of the data, the type of anomalies to be detected, the output
of the method, and in some cases the field of study.

The type of anomalies in a dataset can be divided into
three major categories [51]. First, point anomalies refer to
data instances that are anomalous with respect to the rest
of the data (i.e., normal data). Second, contextual anomalies
are data instances that are anomalous in a certain context.
For example, 150 heart beats per minute would be normal
during exercise although it is anomalous if the user is sleep-
ing. Third, collective anomalies refer to a group of related
data instances which together are considered anomalous. For
instance, recording a couple of high heart rate events in a day
would be detected as anomalous (e.g., health deterioration)
in a health application. Moreover, datasets can be modified
to change the anomaly type; e.g., point anomalies and collec-
tive anomalies can become contextual anomalies if we add
context information to the dataset.

The choice of a specific anomaly detection method –
supervised, semi-supervised, and unsupervised – is greatly
dependent on the type of data involved. The data can gener-
ally be divided into binary, categorical, or continuous. How-
ever, it can be a combination of these categories in some
cases. In addition, the output of the method can be either
binary (i.e., normal or anomalous) or continuous in the form
of an anomaly score which represents the degree of the
anomaly [51]. The availability of labeled data is a common
challenge in anomaly detection, as anomalies might not occur
frequently. Moreover, labeling of a dataset by an expert is
time-consuming and expensive. The extent of the availability
of a labeled dataset determines which method is used.
Supervised anomaly detection methods rely on data with

labels for both the normal and anomalous classes. They con-
struct a predictivemodel to differentiate normal and abnormal
behavior. However, unbalanced distribution of data should be
considered in such models, as in practice anomalous data do
not occur as often as normal data. Examples of such meth-
ods include Neural Networks methods [53], Support Vector
Machine (SVM) [54], and Rule-based approaches (e.g. Deci-
sion trees) [55].
Semi-supervised anomaly detection methods deploy

semi-supervised learning (also known as one-class learn-
ing methods) that only consider normal data to train their
models. When the model is created to understand nor-
mal behavior, it can then distinguish between normal and

FIGURE 1. The IoT-based system for the maternal health monitoring.

anomalous classes. These methods are commonly applied
because of unavailability or shortage of anomalous data in
many applications. Moreover, no data labeling is required,
as all the input data are normal. Some examples of these
methods are Statistical techniques [56], one-class Sup-
port Vector Machine (SVM) [57], and Neural Networks
methods [58]–[60].

In contrast, unsupervised anomaly detection methods
deploy unsupervised learning techniques that require no train-
ing data, assuming the normal data occur more often than
anomalous data. Unfortunately, applying data that do not fit
this assumption would lead to a high false positive rate. Clus-
tering techniques [61] and Nearest Neighbor techniques [62]
are examples of unsupervised or semi-supervised techniques,
which rely on the assumption that normal data remain in a
cluster or dense neighborhood while anomalous data do not.
They often require large training data for the normal classes.

III. STUDY DESIGN
This paper proposes an IoT-based monitoring system
equipped with a semi-supervised machine learning approach,
by which pregnant women can be monitored remotely, con-
tinuously, and long-term. Also, the proposed system enables
personalized sleep analysis during pregnancy and the postpar-
tum, providing effective care for maternal sleep disturbances.
We present this system for a real human subject trial on
material sleep, where pregnant women are monitored in six
months of pregnancy and one month postpartum. In this
section, we introduce the IoT-based monitoring system and
provide details about our implementation setup, the partici-
pants, and recruitment.

A. IOT-BASED MONITORING SYSTEM
An IoT-based system is introduced to continuously monitor
the pregnant women. As shown in Figure 1, the architecture of
the proposed system is partitioned into three main tiers. First,
the sensor network performs data collection in IoT-based
systems, located in the vicinity of the end-users. It acquires
pregnancy- and sleep- related data from the end-users con-
stantly. Thanks to the advances in embedded and wearable
technologies, various lightweight energy-efficient wearable
devices such as smartwatches, fitness trackers and Holter
monitors are nowadays available for this tier.

93436 VOLUME 7, 2019



I. Azimi et al.: Personalized Maternal Sleep Quality Assessment: An Objective IoT-based Longitudinal Study

The gateway, as the second tier, is a bridge between the sen-
sor network and the Internet (i.e., cloud servers). The gateway
is responsible for data transmission and protocol conversion.
Smartphones and tablets as widespread mobile computing
devices can be employed in this layer. They provide data
transmission in both directions, transmitting collected health
data to the cloud servers as well as sending reports and
feedback to the end-user. Moreover, subjective measurements
including interviews and Internet-based surveys can be car-
ried out.

The cloud server, as the third tier, includes a high-
performance computing infrastructure. It is responsible for
the sleep quality analysis (e.g., data abstraction and model-
ing). Our semi-supervised machine learning approach is fully
positioned at this tier. Moreover, the cloud server manages,
secures, and stores the data remotely and is capable of pro-
viding a control panel for data visualization. The processed
data are shared with the experts (e.g., researchers) for further
analysis.

Setup: For the data collection, we restricted our selec-
tion of sensor nodes to wearable products (e.g., smart wrist-
bands and smartwatches) that are technically applicable and
practically feasible to continuous long-term monitoring [63].
Various studies have shown the validity and reliability of
such wearables in terms of sleep parameters by comparing
different wearables with the gold standard PSG [64]–[66].
At the beginning of the study, various devices such as Garmin
Vivosmart HR [67], Microsoft Band1 and Fitbit Charge HR2

were available in the market. We selected the Garmin Vivos-
mart HR considering several factors such as the built-in sen-
sors, battery life, small size, light weight, strap design, and
waterproofness. More details of the feasibility of this study
can be found in [68].

The Garmin Vivosmart HR contains an optical sensor and
an inertial measurement unit (IMU), through which photo-
plethysmogram (PPG) [69] and acceleration signals are col-
lected. In our setup, the participants were requested to wear
the device continuously. We acquired a set of data every
15 minutes, including heart rate, step counts, and body move-
ments. The data were utilized for the sleep analysis.

In addition, the pregnant women were asked to frequently
synchronize the wristband’s data with the remote servers via
gateway devices – their smartphones or personal computers
in this setup. For the server, we used a Linode virtual private
server (VPS) [70] with two 2.50GHz Intel Xeon CPU (E5-
2680 v3), 4GB memory, and SSD storage drive. The cloud
server was used to store the data remotely, to perform the
sleep quality analysis methods, and to provide data visual-
ization.

B. PARTICIPANTS AND RECRUITMENT
The monitoring was performed on primiparous preg-
nant women attending to one of two selected maternity

1https://support.microsoft.com/en-us/help/4000514/band-2-get-started
2https://www.fitbit.com/be/chargehr

TABLE 1. Background information of the selected participants.

outpatient clinics in Southern Finland BetweenMay 2016 and
June 2017. Practically, all pregnant women in Finland visit
a public health nurse regularly in a maternal health clinic.
They may also participate in a free of charge ultrasound
examination at the end of first trimester. The participants of
this studywere recruited in this examination satisfying certain
criteria:

1) The participant is at least 18 years old.
2) She should expect her first child.
3) The pregnancy is singleton.
4) The gestational age should be less than 15 weeks.
5) She understands Finnish or English.
6) She owns a smartphone, tablet, or personal computer.
Twenty-two pregnant women who met the criteria were

informed after the ultrasound examination. Based on this
initial interest, the procedure and purpose of the study were
provided for the women with phone calls. Twenty women
agreed to participate in the study. In face-to-face meetings,
the researchers collected background information of the par-
ticipants, some of which presented in Table 1. Afterward,
the wearable devices and instructions were delivered to the
participants.

C. ETHICS
The study was conducted in accordance with the code of
ethics of the World Medical Association (Declaration of
Helsinki) for involving human subjects in the experiments.
It was also approved by the joint ethics committee of the
hospital district of Southwest Finland (35/1801/2016) and
Turku University Hospital (TYKS). Moreover, the written
informed consent was obtained from all participants enrolled.
In addition, the permission to use Garmin Vivosmart R© HR
(Garmin Ltd, Schaffhausen, Switzerland) in this study was
acquired from the manufacturer Garmin Ltd.
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IV. SLEEP QUALITY ANALYSIS
In this section, we present our sleep quality analysis approach
tailored for assessment of maternal sleep adaptations during
pregnancy and postpartum. From the collected data, we first
extract several sleep attributes, each of which focuses on a
specific aspect of sleep quality. Changes and trends of these
attributes are explored for each subject throughout the mon-
itoring process. We then propose a personalized sleep model
for each subject to assess sleep quality in a comprehensive
and personalized way. The personalized model is constructed
by feeding the sleep attributes from the early stages of the
monitoring to a machine learning approach.

A. SLEEP ATTRIBUTES
Various objective sleep attributes have been proposed in the
literature for sleep quality assessment at many levels [71].
The selection of these attributes depends on the type of
collected data (i.e., bio-signals and acceleration data) and
subsequently the level of the analysis. For example, actig-
raphy can be used to extract sleep quantity parameters such
as sleep duration and awake after sleep onset [72], [73].
On the other hand, EEG, EOG, and respiration signals are
utilized to obtain attributes related to the sleep stages (e.g.,
REM sleep) [74]. In this study, a wristband equipped with
PPG and IMU sensors is employed to continuously col-
lect different parameters such as physical activity, body
movements, and heart rates. We exploit these parameters
to extract conventional sleep quantity, quality, and schedule
attributes [17], [23], [71], [75]. In this regard, eight objective
sleep attributes are extracted from each sleep event dur-
ing nighttime to investigate maternal sleep adaptations. The
attributes are outlined as follows:
• Sleep Duration, also known as Total Sleep Time (TST),
indicates the total time that a user sleeps in a day [76].
It is one of the prevalent parameters in sleep analysis,
widely used as a predictor of illnesses and mortality.
The association between short/long sleep duration and
high risks of different diseases such as cardiovascular
diseases, stroke, and hypertension is demonstrated in
the literature [77], [78]. In this study, the sleep dura-
tion is extracted using sleep information (i.e., start and
end of the sleep) provided by the Garmin Vivosmart
HR. To validate the sleep information, we implemented
a manual cross-check between the sleep information
and other data such as body movements and heart
rates. The sleep information is corrected or discarded
if there was no match between the data. Note that a
Listwise deletion method is used to eliminate sleep
events including missing values [79]. We also excluded
short naps in the analysis, due to the limitations of our
study.

• Sleep Onset Latency (SOL) refers to the amount of time
that a user spends in bed before her status changes
to the sleep state [80]. In this study, the sleep onset
latency is obtained using the step counts data, and body
movements and orientations. It is the time between the

occurrence of the last step before the sleep event and the
beginning of the sleep event.

• Wake After Sleep Onset (WASO) refers to the amount of
time that a user is awake after the sleep has begun and
before the final awakening [80]. In this study, we use
body movements and orientations data to determine the
WASO during the sleep event. Step counts data are also
used to detect if the user leaves the bed.

• Sleep Fragmentation indicates the number of awaken-
ings that occur after the sleep is initiated and before the
final awakening [81]. In this study, the sleep fragmen-
tation is also obtained using the body movements and
step counts data, by counting the times the user wakes
or leaves the bed during the sleep event.

• Sleep Efficiency is the ratio of the time that the user is
sleeping (i.e., sleep duration) to the total time spent in
bed [4]. In this study, the bedtime is determined using
the step counts data. It is considered as the time between
the occurrence of the last step before the sleep event and
the first step after the sleep event. The sleep efficiency
is calculated as sleep duration divided by bedtime.

• Sleep Depth reflects the ratio of deep sleep duration (i.e.,
motionless sleep) to the amount of time of total sleep
(i.e., sleep duration). Conventionally, the sleep stages
including non-REM (i.e., N1, N2, N3, and N4 stages)
and REM sleep are measured via Polysomnography
tests utilizing EEG, EMG, and EOG signals [82], [83].
However, due to limitations of the data collection in
this long-term monitoring, these sleep stages cannot
be distinguished. In this study, this attribute is defined
according to the body movements data, showing the
amount of motionless sleep in total sleep period, which
likely reflects deep sleep (i.e., N3 and N4 stages).

• Resting Heart Rate refers to the number of heart beats
per minute when the user is at complete rest. As a
cardiovascular risk factor, this attribute was investigated
in studies, tackling associations between elevated resting
heart rate and increased risk of cardiovascular diseases
and mortality [84], [85]. In this study, we define this
attribute for each sleep period by calculating the mini-
mum value of total sleep heart rates.

• Heart Rate Recovery is the time between the start of the
sleep and the time when the resting heart rate is reached.
This attribute can be considered as a readiness score of
the user. In this study, heart rate recovery is obtained
using sleep event and resting heart rate information.

B. PERSONALIZED SLEEP MODEL
We propose a personalized sleep model to investigate sleep
quality adaptations in pregnancy and postpartum. The model
is trained via the user’s sleep data at the beginning of themon-
itoring. Then, the model is used to evaluate the changes and
trends of data from the rest of the monitoring (i.e., test data).
The test data instances are affected by the new life conditions
of pregnancy; and as the model output, a score is desirable
that is indicative of the degree of the sleep abnormality.
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The personalized models for sleep can leverage anomaly
detection methods for identifying such abnormalities and
outliers in a dataset. We delve into state-of-the-art anomaly
detectionmethods and develop a suitablemethod formaternal
sleep quality assessment. As mentioned in Section II-B, there
is a broad range of methods for anomaly detection. However,
many of them are inappropriate for our study.

In this monitoring scheme, a data instance or sleep event
is multivariate (i.e., multiple attributes), and no contextual or
behavioral data is included. Therefore, we only focus onPoint
Anomalies approaches where a data instance can be selected
as anomalous with respect to the rest of the data instances,
but not the context information. Moreover, the proposed
technique should create a model using the ‘‘normal’’ data.
Therefore, our selection is narrowed down to semi-supervised
anomaly detection techniques.

Considering the output produced by the anomaly detection,
binary techniques are not applicable in this study because
they assign a binary label (i.e., normal or abnormal) to the
test instance. Support vector machine-based methods are
examples of binary techniques. Also, rule-based techniques
generally require training data to contain labels for both nor-
mal and anomalous classes [55]. Moreover, Nearest Neigh-
bor techniques (e.g., KNN) use a distance between a test
data instance and its nearest neighbors to determine if it
is anomalous. However, their performance highly depends
on the size of the training data and dimensionality of the
features. Clustering techniques are difficult to apply when
the training data is small because there is a high tendency
for the anomalous class to form a large cluster leading to
a high false positive rate [61]. Statistical techniques present
alternatives that rely on the assumptions (i.e., statistical mod-
els) made about the data generating distribution. They are also
inappropriate since the assumptions tend not to hold true in
high-dimensional data (like our dataset) and cannot capture
interactions between features [51].

In contrast, artificial neural networks have been success-
fully applied to anomaly detection in various fields [53],
[58], [86]. Replicator Neural Networks (RNN), also known
as Auto-encoders, are the most commonly used form
of neural networks in semi-supervised and unsupervised
settings [58], [86], [87]. They are known for their ability to
work well with high dimensional datasets and to capture
linear and nonlinear interactions in the data. However, these
techniques might show poor performance when the training
data size is small.

Bayesian networks-based methods tackle this issue,
including probability distributions in their models. They pro-
vide an uncertainty estimate along with the output, where it
serves as a confidence bound on the output of the model.
In addition, the model performs efficiently in case of small
data instances and is robust to over-fitting [88]. This quality
is important in this study, as we have a limited amount
of data samples (i.e., sleep events for each participant) to
train an individualized sleep model. Integrating a Bayesian
method into artificial neural networks was first proposed by

FIGURE 2. Replicator neural network with one hidden layer.

MacKay [89] and Neal [90]. This technique has been applied
in several domains includingmedical diagnostics and Internet
traffic classification [91].

We exploit the same concept to construct the personalized
sleep model, incorporating a Bayesian approach into a Repli-
cator Neural Networks (RNN).

RNN was first proposed by Hawkins et al. [59] and has
been further developed by Dau et al. [60]. The method
belongs to the class of auto-associative Neural Networks
with compressed internal representations [60]. It captures a
nonlinear representation of the input data and attempts to
reproduce the input data as the output of the network. During
the training process, the weights in the network are optimized
to minimize reconstruction errors of the training data. For a
given data instance (i), the reconstruction error is defined as:

δi =
1
n

n∑
j=1

(xij − oij)2 (1)

where n is the number of features in the data instance, xij is
the input data instance, and oij is the output of the RNN. The
reconstruction error, δi, can be used as the anomaly score for
the given data instance.

Our Bayesian RNN is designed with one hidden layer,
as depicted in Figure 2. Given the training inputs as
X = {x1, . . . , xn} and their corresponding outputs as Y =
{y1, . . . yn}, we aim to find a function, f w(X ) parameterized
by weights w, that is likely to generate the outputs. f w(x) is
defined as f w(X ) = g(W2h(X )), where h(X ) is the hidden
layer which is h(X ) = g(W1X ). W1 and W2 are weights
vectors defined over probability distributions; and the activa-
tion function is the rectified linear unit (ReLU) (i.e., g(z) =
max{0, z}).

It should be noted that Bayesian Neural Networks are
based on Bayes theorem, and in general we need to find the
posterior distribution of the weights. Therefore, we begin by
setting a prior probability distribution on the weights, p(w),
with a Gaussian probability distribution. We, then, obtain the
likelihood, p(Y |X ,w), by updating our beliefs about the prior,
p(w), after seeing the data and deciding which weights are
more likely to produce the outputs. The posterior distribution
p(w|X ,Y ) is defined over the space of the weights:

p(w|X ,Y ) =
p(Y |X ,w)p(w)

p(Y |X )
(2)
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where p(Y |X ) is the model evidence. However, the posterior
distribution cannot be computed by Equation 2, as the model
evidence is intractable for most real life problems [88], [92].
Therefore, an approximation method such as Variational
Inference [93] is used to obtain an approximating distribution
as:

q(w) = p(Y |X ,w)p(w) (3)

q(w) should be as close as possible to the true posterior dis-
tribution p(w|X ,Y ) in Equation 2. Therefore, the Kullback–
Leibler (KL) divergence3 [94] of the two distributions must
be minimized:

KL(q(w)||p(w|X ,Y )) =
∫
q(w)log

(
q(w)

p(w|X ,Y )

)
dw (4)

However, Equation 4 still contains the model evidence, so it
is still intractable. This leads to the use of Evidence Lower
Bound (ELBO) as an alternative to the KL divergence. The
ELBO is the negative of the KL divergence up to a logarithm
constant. Therefore, maximizing the ELBO is equivalent to
minimizing theKL divergencewhich in turn lets us to approx-
imate the true posterior distribution:

ELBO =
∫
q(w)log p(Y |X ,w)dw− KL(q(w)||p(w))

≤ log p(Y |X ) (5)

In our Bayesian RNN, we maximize the objective in Equa-
tion 5. More details can be found in [88], [92], [95].

V. EXPERIMENTAL DETAILS AND RESULTS
Twenty pregnant women were recruited to participate in
this study. The gestational ages of the subjects were 12 ±
2.1 weeks at the beginning of the monitoring. On average,
the subjects were 25.7 years old and had pre-pregnancy body
mass index (BMI) of 25, with different lifestyles and back-
ground characteristics as shown in Table 1.

We excluded 7 participants from our sleep analysis, as they
forgot/refused to use the wristband during sleep, with the
result that their data were insufficient for our study. There-
fore, in the final analysis, 13 pregnant women were included
in our analysis. For these 13 subjects, we extracted valid sleep
data for 172.15 ± 33.29 days per person out of the total
216.61 ± 14.34 days of the monitoring (79.5%). The valid
sleep data included 76.08±15.17 days of the second trimester
per person, 78.69 ± 12.75 days of the third trimester, and
17.38± 10.45 days of 1-month postpartum.

Regular phone-interviews (i.e., once or twice a month)
were performed during the study to acquire subjective mea-
surements of their status. According to the self-reports,
the subjects mostly had their daily routines (i.e., regular
work or study) prior to week 30, and began maternity leaves

3KL divergence, written as KL(p||q) =
∫
p(x)log

(
log p(x)q(x)

)
dx, is a

measure of the distance between probability distributions in this case p and
q. A known property of the KL divergence is that is always greater or equal
to zero

from weeks 30-34 through the end of our study. In addition,
the participants were requested to report if they encounter
sleep disturbances. On average, three women reported sleep
problems at each interview till week-34, and six women expe-
rienced difficulty at sleeping in the final weeks of pregnancy.
The complaints were mostly due to back pain, sickness, and
visiting the toilet during nights.

In the following, we first present the eight objective sleep
attributes measured from the participants during pregnancy
and the postpartum; then, we demonstrate the abnormality
scores calculated using our proposed approach.

A. SLEEP ATTRIBUTES
As discussed in Section IV-A, eight objective sleep attributes
are exploited in this study to investigate the maternal sleep
changes from different perspectives. To visualize the col-
lected data, we calculate the weekly average of the sleep
attributes, where each week contains valid sleep data for
at least 4 days. The weeks with less than 4-days data
were excluded (4.7 ± 3.6 weeks per person) to reduce the
bias.

The variations in attributes for the 13 participants are
illustrated in Figures 3, starting from week 13 to week 40 of
pregnancy and week 1 to week 4 of postpartum. The varia-
tions are depicted by minimum, first-quartile, median, third-
quartile, and maximum values of the attributes in each week.
Weeks 39, 40, and 41 were the delivery weeks of 3, 7, and
3 participants, respectively. We excluded the data of week
41 in the figures, since we had the sleep data of only one
participant.
Sleep duration, a key parameter in sleep quality assess-

ment, gradually decreased during pregnancy. As indicated
in Figure 3a, it was 8 hours and 20 minutes (median
value) on the weeks 13-15, then decreased by approxi-
mately 10% and 20% in the mid and end of third trimester,
respectively. It dropped to 5 hours and 50 minutes (median
value) on the first week of postpartum and increased
afterward.

On the other hand, the WASO dramatically increased (see
Figure 3b). This parameter was more than 2-times higher at
the third trimester and 3-times higher at the postpartum in
comparison to the second trimester. Therefore, the quality of
sleep diminished at the last stages of pregnancy, and it even
became worse after the labor.

Similarly, sleep fragmentation increased, so there were
more awakening times at the third trimester and postpartum as
illustrated in Figure 3c. The variations of the sleep efficiency
were in accordance with the previous attributes, where it
gradually decreased throughout the pregnancy and was at the
lowest after the delivery (see Figure 3d).

The increase in sleep onset latencywas insignificant during
pregnancy. As indicated in Figure 3e, the parameter slightly
elevated at the third trimester (on average 30.92 minutes) in
comparison to the second trimester (on average 27.69 min-
utes). In a similar manner, sleep depth hardly increased in the
pregnancy (see Figure 3f). However, the parameter jumped
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FIGURE 3. The sleep attributes of the 13 participants from week 13 to week 40 of pregnancy and week 1 to week 4 of postpartum. The variations
are indicated by minimum, first-quartile, median, third-quartile, and maximum values of the attributes.

to more than 40% after the labor. Accordingly, motionless
sleep (i.e., deep sleep) was relatively elevated in postpartum,
although the sleep duration was less than sleep duration in the
pregnancy period.

The heart-rate-related attributes are depicted in Figures 3g
and 3h.Resting heart rate increased in the second trimester by
more than 10%. However, the parameter was relatively less in
postpartum, where it was, on average, 55 beats per minute at
the postpartum week 4. As indicated in Figure 3h, heart rate
recovery also changed during pregnancy. It decreased in the
third trimester (on average 175.78 minutes) in comparison to
the second trimester (on average 201.71 minutes).

B. ABNORMALITY SCORE
Recall that the sleep quality score is computed through an
abnormality score using our Bayesian RNN approach. The
cloud server is responsible for the sleep model construction
(i.e., training phase) and abnormality score calculation (i.e.,
testing phase). To implement the Bayesian RNN, we use the
Lasagne [96] and PyMC3 [97] frameworks in Python. The
input data of the method are the sleep data. Each data instance
includes the eight sleep attributes of a sleep event during
nighttime. The method has one input, one output, and one
hidden layers, each of which has eight units (i.e., number of
the sleep attributes).
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1) MODEL CONSTRUCTION
As aforementioned, the training data are the ‘‘normal’’ data
in such semi-supervised algorithms. In this study, the user’s
sleep data at the beginning of the monitoring were considered
as the training data. These are the data from week 13 to
week 21, as the most similar data to the user’s normal
condition. It should be noted that, in an ideal situation,
pre-pregnancy sleep data should be selected as the training
dataset (i.e., ‘‘normal’’ data).

The training data were normalized and fed to the model.
Using the PyMC3, the weights were first initialized as normal
probability distributions and then were optimized by max-
imizing the Evidence Lower Bound from the Equation 5.
Therefore, the model was enabled to replicate the input train-
ing data at the output with the minimum error.

2) SCORE CALCULATION
The model, as a compressed representation of the training
dataset, was used to reconstruct the test data. In this study,
the test data were the sleep data from week 22 to the end of
the monitoring. The error of a test instance reconstruction
indicates the abnormality level of the test instance. Let us
take two different examples. 1) Themodel replicates the input
test data at the output with small error. This indicates the test
instance is close to the training dataset (i.e., a similar sample
was already seen in the training phase). Consequently, the test
instance is ‘‘normal’’. 2) The model reproduces the input test
data at the output with large error. This shows the test instance
is far from the training dataset (i.e., the instance is new to the
model). Therefore, it is ‘‘abnormal’’.

In this regard, the abnormality level (i.e., abnormality
score) is the distance between the input and reconstructed
output, calculated as:

s =
1
n

n∑
j=1

(xj − oj)2 (6)

where n is the number of sleep attributes which is 8, xj is
the original data instance and oj is the reconstructed data
instance.

In this work, a personalized RNN model was created
for each participant using her own data; and her test data
were evaluated with the personalizedmodel. The abnormality
scores of the 13 participants are shown in Figure 4, starting
fromweek 22. The overall median values gradually increased
as the pregnancy progresses. The highest scores during preg-
nancy were for week 35 to the labor. At the postpartum
week 1, the score jumped to more than 230% in comparison
to week 40. This means that the worst sleep quality was for
the first week after the labor. Afterward, the scores slightly
decreased in the postpartum although they were considerably
higher than the scores during the pregnancy.

VI. DISCUSSION AND EVALUATION
To the best of our knowledge, this is the first IoT-based longi-
tudinal study that objectively assesses maternal sleep quality

FIGURE 4. The abnormality scores of the 13 participants of pregnancy
weeks 22-40 and postpartum weeks 1-4.

during pregnancy and postpartum. This IoT-basedmonitoring
provides a feasible method to assess the quality of women’s
sleep in a challenging transition period from pregnancy to
motherhood. In this section, we first discuss the observations
made by analyzing each attribute individually and then look
into the final sleep abnormality score.

A. SLEEP ATTRIBUTES
Different objective sleep attributes indicate the quality of
sleep diminished during pregnancy and in postpartum. Com-
pared with the existing studies, this work represents a higher
confidence level on these findings by performing long-term
and fine-grained quantitative measurements and analysis of
everyday data of pregnant women.

We found that the sleep duration and sleep efficiency
gradually decreased across pregnancy. Correspondingly,
theWASO and sleep fragmentation increased. These findings
of this continuous wristband monitoring are in concordance
with previous knowledge gained from short-term measure-
ments in a few separate time points. Sleep disturbances
during pregnancy could be considered unavoidable due to
the hormonal, anatomical, and physiological changes in the
woman’s body. For example, the levels of oxytocin, prolactin,
and cortisol increase and have effects on sleep regulation.
Furthermore, respiratory, musculoskeletal, and cardiovascu-
lar changes, as well as weight gain and bladder compression
by the uterus have impacts on sleep [80].

Moreover, our results indicate there are more changes in
these attributes after the delivery. The sleep duration and sleep
efficiency drop by 21.5% and 9.7%, and theWASO and sleep
fragmentation increase by 3.5 and 4.7 times, in comparison to
the second trimester. These postpartum findings also comply
with the previous findings; the changed life situation is a com-
mon reason for such poor sleep quality. In a previous study
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by Hughes et al. [98], for example, the total sleep time in the
first 48 hours after birth was less than 10 hours; however,
breastfeeding mothers slept longer than bottle-feeding moth-
ers. Sleep is often compromised in the postpartum period
during the first months because of infants’ sleep-wake pat-
terns and various needs leading multiple night-time awaken-
ings. Total sleep time appears to be the lowest one month
after birth, but it can remain as low still at two months
postpartum [39], [99]. In previous studies, these attributes
were measured via subjective self-report questionnaires or
short-term objective actigraphy [5], [16], [31], [100].

Based on the data in this study, the sleep onset latency did
not change significantly during pregnancy; however, the dif-
ficulties of falling asleep have been reported to increase
as pregnancy progresses [101]. In [101], about one-fourth
of pregnant women have suffered from daytime sleepiness
which might be an indicator of the insufficient sleep depth.
Subjectively rated sleepiness symptoms remained the same
during pregnancy [101] as did the sleep depth in this study.
Interestingly, the sleep depth increased more than 40% after
the delivery. This might be explained with the sleep depth
accumulated during pregnancy. Findings related to the heart
rate were supported by the earlier knowledge [102]; resting
heart rate increased during pregnancy but decreased again
during the first month postpartum, and heart rate recovery
decreased toward the end of pregnancy.

B. ABNORMALITY SCORE
Each sleep attribute represents the maternal sleep quality
from a single perspective. We tackled this issue by using an
abnormality score which is the fusion of the sleep attributes.
It provides a better understanding of changes in maternal
individual sleep quality, tailoring sleep data of early preg-
nancy to evaluate sleep data of late pregnancy and post-
partum. In an ideal situation, changes would be evaluated
against pre-conception sleep quality [103]. Moreover, it can
be used to achieve personalized healthcare. The proposed
score enables personalized decision-making through objec-
tive sleep quality assessment, where the intensity of the score
corresponds to its distance from the user’s normal condition
(i.e., user’s model). This personalization is important in such
health-related applications, as the normal health condition is
specific for each individual and is not easy to be generally
defined. For example, average resting heart rates of two
different persons could be 50 and 60 beats/min, both of which
are normal values according to their individual conditions.

We evaluate the obtained abnormality scores, comparing
the proposed sleep model with a baseline method. Recall that
as a semi-supervised approach is used in this work, the train-
ing data are label as ‘‘normal’’ and the test data are unlabeled.
To evaluate the model, we rely on the general hypothesis
behind the model, which should produce a higher score in
the case of anomalous data (i.e., differentiate ‘‘normal’’ and
‘‘abnormal’’ test instances).

In this regard, we consider a simple aggregate method
as a baseline for the performance comparison. The baseline

FIGURE 5. The abnormality scores of two participants, using the baseline
and proposed methods.

method determines sleep quality scores using overall popu-
lation values in normal conditions. We use the data from the
beginning of the monitoring (i.e., normal data) representing
the most probable sleep attributes of normal conditions in our
study. Eventually, the baseline score of each sleep event is the
sum of distances between the sleep attributes and their corre-
sponding normal population means in units of the standard
deviations.

We select two participants (i.e., P1 and P2) with different
conditions to implement the comparison between the pro-
posed method and the baseline. P1 experienced substantial
changes in her sleep although P2 had relatively less sleep
changes in pregnancy. Table 2 shows average values of some
sleep attributes of P1 and P2 in their normal conditions (i.e.,
beginning of the monitoring) and at the end of the pregnancy.
The table also indicates attributes changes (ratio), comparing
data at the end of pregnancy to population data and to her own
data. As indicated, the ratio of P1 attributes to her own data
is higher than the ratio to the population data. On the other
hand, the ratio of P2 attributes to her own data is relatively
less.

As shown in Figure 5a, the baseline score is unable to accu-
rately distinguish between P1 and P2. This is because P1’s
sleep parameters, despite the substantial changes, were close
to the population values. In contrast to the baseline method,
the sleep changes are clearly visible using the abnormality
score obtained from the proposed model (see Figure 5b). This
enables the provision of tailored individualized and effective
care, where we can identify those who need the care most and
optimize resource allocation.

C. LIMITATIONS AND FUTURE DIRECTIONS
The proposed IoT-based system is a proof-of-concept for
1) long-term monitoring of maternal daily sleep 2) effec-
tive care for maternal sleep disturbances using personalized
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TABLE 2. P1 and P2 attributes and the ratio of the attributes at the end of
pregnancy to her own data and population values.

decision-making. One of the limitations of this study is that
the study sample is small. Other studies investigate the asso-
ciations between subjective sleep measurements and other
pregnancy-related parameters and complications on large
study samples. For example, Okun et al. [104] conduct a
study on 166 pregnant women via self-report questionnaires
and indicate that poor sleep quality is correlated with an
increased risk of preterm birth. Another study is performed
on 457 pregnant women to tackle the association between
sleep quality and type of delivery and length of the labor [22].
Unfortunately, we are unable to statistically investigate such
associations in our data since our sample size is smaller.
Future directions of this study are to perform objective lon-
gitudinal studies on a larger population focusing on such
correlations.

Another limitation of our monitoring study is linked to
the data collection. We were bounded to one wristband that
monitored heart rate, step counts, and body movements.
Future work will consider multimodal and multisensor data
collection and integration with more advanced sensor nodes,
enabling the capture of additional health/sleep attributes. For
instance, PPG as a non-invasive and convenient technique
can play a significant role in such monitoring systems [69].
Finger-based and wrist-based PPG sensors can be lever-
aged in this regard to continuously acquire different health
parameters such as heart rate variability and respiration rate.
Moreover, strap monitors can be employed to record EMG
signals for possible abdominal contractions extraction. How-
ever, to enhance the feasibility of long-termmonitoring, there
needs to be a balance between the number of wearables and
their continuous use, as a high number of wearable devices
could be impractical or inapplicable for sustained long-term
monitoring. For instance, in our study, despite using only one
wristband for the data collection, we were required to exclude
the sleep data of 7 participants out of 20 due to the high
volume of missing data. The main reasons were forgetfulness
and refusal of wearing the wristband during sleep.

Finally, it is worth noting that the proposed model can be
extended to contextual anomalies methods, considering the
contextual information. These longitudinal studies demand
remote and in-home monitoring in which the participants
might be involved in different conditions and environments.

Therefore, context information including personal lifelog-
ging data, ambient data, and medication reports can improve
the accuracy of the personalized decision-making.

VII. CONCLUSION
Maternal sleep quality alters during the pregnancy and post-
partum due to the adaptations of the maternal body. Such
variations in sleep should be closely monitored as poor sleep
quality might lead to various pregnancy complications. Con-
ventional studies are insufficient for this issue as they are
limited to restricted data collection approaches. In this paper,
we conducted an objective longitudinal study to thoroughly
investigate maternal sleep adaptations in pregnancy and post-
partum. We introduced an IoT-based system to remotely
monitor pregnant women 24/7. Several sleep attributes were
extracted to observe changes in maternal sleep patterns.
Moreover, we proposed a Bayesian RNN approach to con-
struct a personalized sleep model for each individual using
her own data. The sleep model was utilized to deliver an
abnormality score, which indicated the degree of maternal
sleep quality adaptations. In total, we collected 7 months of
data from 20 pregnant women; however, we only included
172.15 ± 33.29 days of valid sleep data per person from
13 pregnant women in our sleep analysis. For each sub-
ject, the sleep model was created using the data from the
beginning of the monitoring, and the model was tested on
the rest of the pregnancy and postpartum data. The obtained
scores showed that sleep abnormalities increased during the
pregnancy (2.87 times) and after the delivery (5.62 times)
in comparison to the mid of the second trimester. This work
indicated sleep quality decreased in pregnancy and postpar-
tum with a high confidence level, leveraging fine-grained
quantitative measurements and analysis on everyday data of
pregnant women.
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